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Introduction

In this thesis we present a mathematical model describing the population dynamics oc-

curring between two interacting populations, one of amoebae and one of virulent bacteria;

it is meant to describe laboratory experiments with these two species in a mathematical

framework and help understanding the role of different mechanisms involved. In particu-

lar we aim to focus on how bacterial virulence may affect the dynamics of the system.

Our model is a modified reaction-diffusion-chemotaxis predator-prey one, with two key

features that make it interesting to analyze. The first is that bacteria behave both as

prey and as pathogens, while amoebae are considered both as predators and as hosts. In

fact amoebae feed on bacteria, but these are also able to infect amoeboid cells, so there

is an interplay between predation and toxicity which may result either in coexistence or

in the prevalence of one population on the other.

The second feature is that the amount of biomass due to the consumption of bacteria by

amoebae is redistributed over the total population, which therefore takes advantage of the

food ingested by single cells. This mechanism is included because it is known that, upon

starvation, amoeboid cells, stimulated by the secretion of a chemical substance, aggregate

and behave as a sole organism, so that the uptake of resources by one cell contributes to

the growth of the others. These non-local effects are taken into account by considering

an integral predation term (see [36], [10], [31] for some examples of reaction-diffusion

equation with non-local terms).

This thesis has been developed as the mathematical counterpart of the work by Olivier

Jousson and his group at the Laboratory of Microbial Genomics of CIBio (Centre for

Integrative Biology), University of Trento. The focus of this research team is to study

bacterial pathogenicity from a comparative and functional genomics point of view, in order

to understand how genes contribute to virulence, pathogenicity and drug resistance of

bacteria. In particular they have been performing in vivo experiments aimed at identifying

the genes involved in the virulence of many different Pseudomonas aeruginosa clinical

isolates, from weakly to highly virulent strains ([21], [19]). For these experiments, social

amoeba Dictyostelium discoideum was firstly used as a host model organism (as done by

1



2 LIST OF FIGURES

other authors, see for instance [4], [9]).

The choices adopted in the mathematical model seem to be adequate to describe these

mechanisms: numerical simulations performed are in good agreement with in vivo exper-

iments.

The structure of the thesis is the following: Chapter 1 gives an overview of the bio-

logical motivations of our study and presents the mathematical model; in Chapter 2 we

prove, with fixed point techniques, that the model without chemotaxis admits a unique

continuous solution. The case where chemotaxis is included poses some difficulties that

are currently being investigated.

Chapters 3 and 4 are devoted to the analysis of the spatially homogeneous model: we first

study the existence and acceptability of homogeneous steady states, and then we analyze

their stability, giving some conditions on parameters. In detail, existence and stability of

positive steady states are investigated with the quantity accounting for bacterial virulence

as a bifurcation parameter. In this way, given a set of parameters for the model, we are

able to derive how many homogeneous steady states there are and whether they are stable

or not. When no positive equilibrium is stable, periodic orbits may also appear: some

examples are given.

In Chapter 5 we study the occurrence of pattern formation resulting from our model:

following Turing’s theory of diffusion-driven instability, we give conditions on diffusion and

chemotaxis to be satisfied for obtaining patterns. In particular, we obtain that patterns

always appear from the system with the integral term, while in the case without integral

some conditions must be satisfied.

The two chapters that follow concern the numerical aspects of this work: Chapter 6

presents the discretization choices and numerical methods implemented for simulations.

Chapter 7 collects some of the simulations performed to validate the model: in the first

part we show results regarding pattern formation on one-dimensional and circular do-

mains, highlighting the differences between the two models (with and without integral)

and when varying the chemotactic sensitivity; in the second part we present some simu-

lations for the model with non-local term related to the experiments performed at CIBio,

from which we can conclude that it gives a good description of the dynamics observed in

real populations.

Finally, in Chapter 8 we collect some considerations on this thesis and on future work

to be carried on.

This doctoral thesis has been developed under PRIN-MIUR project Mathematical

Population Theory: methods, models, comparison with data.



Chapter 1

The model

1.1 Biological motivations

Pseudomonas aeruginosa is a common opportunistic bacterium, living in soil, water but

also artificial environments; this pathogen rarely affects healthy people, but, due to its

great resistance to antibiotics, it is quite dangerous for immunocompromised people (can-

cer or HIV patients) and people affected by severe diseases (such as cystic fibrosis); more-

over, it is responsible of pneumonia, septicaemia and many other nosocomial infections.

Therefore, due to this public health concern, it is important to study and understand

virulence factors, mechanisms of pathogenesis and drug resistance of different strains of

Pseudomonas aeruginosa [19], [21].

To this end, non-mammalian host models are used to reproduce infection by human

pathogens; one of the simple organisms normally used is Dictyostelium discoideum [17].

It is an amoeba (also known as slime mold) living in the soil, feeding on bacteria; as long

as nutrient is available cells grow and multiply, but upon starvation they produce cyclic

adenosine monophosphate (cAMP), a chemical substance used for signal transduction,

and they start aggregating, thus becoming a multicellular slug. Upon suitable environ-

mental conditions cells differentiate into a fruiting body with a stalk and spores; when

the fruiting body is mature the latter are released and new unicellular organisms appear.

Its simple life cycle makes Dictyostelium discoideum a suitable model organism, so it

is widely used in microbiology (see [38], [41] and many others), and also for studying

virulence of Pseudomonas aeruginosa [35], [4], [9].

The research team leaded by Olivier Jousson at CIBio, University of Trento, works

on the application of comparative and functional genomics to bacterial pathogenicity; to

this end, Pseudomonas aeruginosa is used as pathogen model to identify genetic factors

3



4 Chapter 1. The model

involved in virulence of this bacterium. Two host models are used for these experiments:

the aforementioned amoeba Dictyostelium discoideum and the nematode Caenorhabditis

elegans.

Mathematical models are a useful tool to describe biological phenomena and help

understanding the underlying mechanisms. This is the object of the thesis: to give a

mathematical interpretation to the population dynamics emerging from experiments.

In particular, we are interested in the experiments with Dictyostelium discoideum because

of the specific features of this organism which are mathematically challenging.

1.2 Derivation of the model

Our aim is to give and analyze a model describing the in vivo interaction between two

populations (namely, social amoebae Dictyostelium discoideum and bacteria Pseudomonas

aeruginosa - even though the model may be adapted to other species behaving similarly).

Partial differential equations, and in particular parabolic equations, are a widely used tool

when there is the need to describe the change over time of species whose distribution in

the environment is not uniform (a review can be found in [14]).

Our mathematical model therefore consists of a system of partial differential equations

describing the spatio-temporal evolution of two populations, namely the one of bacteria

u = u(t, x) and that of amoebae v = v(t, x). The model is given on a spatial domain Ω with

smooth boundary ∂Ω; for simplicity we start by considering a one–dimensional domain,

that is, Ω = [0, L], but then also the two-dimensional case (which is more adherent to the

biological experimental setting) will be taken into account.

In particular we are going to develop a reaction-diffusion system, falling into the category

of semilinear parabolic systems, in which a chemotaxis mechanism is included (so actually

we will speak of a reaction-diffusion-chemotaxis system, see [27] for reference).

Our system has a diffusion-chemotaxis part accounting for the spatial variation of the

two species’ concentrations. We assume that both bacterial and amoeboid populations

diffuse across Ω; in fact, modeling dispersal of populations across the environment by

means of diffusion is a classic assumption (see [28], [29], [14], [2], [37], [33], [34]). The

diffusion coefficients for bacteria and amoebae, measuring the rate at which the two species

disperse, are called d1 and d2 respectively.

Moreover, we assume that amoebae feed on bacteria, and so they are also attracted by

larger bacterial concentrations, so that we include a chemotactic term −(vχ(u, v)ux)x to

model this phenomenon; due to the lack of specific indications from biology, for greater

mathematical tractability the chemotactic sensitivity χ(u, v) is assumed to be equal to a
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linear function of the amoeboid concentration, with coefficient c.

For a deeper insight on chemotaxis and the possible form of chemotactic sensitivity in

reaction-diffusion problems, see Chapter 11 in [26].

We are not taking into account any aggregation process by chemotaxis between amoeboid

cells, which is a well-known mechanism in biology (see for instance [17]); this would

result in a third equation for cAMP, which is the chemical signal produced by amoebae

for initiating aggregation when food abundance is low. This topic has been addressed by

many authors with mathematical models involving the amoeboid population, the nutrient

and cAMP concentration; see for example [22], [6], [44] among others.

Some models also deal with the formation of patterns by amoebae when aggregating ([30],

[18]). These issues will not be addressed in this thesis.

Now we are going to focus on the reaction part of the system.

We suppose that, in the absence of amoebae, the bacterial population follows a self-

limiting growth, which is described by a logistic term ru(1−u/K), where r is the intrinsic

growth rate and K is the carrying capacity of bacteria; this term, firstly suggested by [8],

[45], [46], is classic in literature.

When both populations are present, instead, bacteria undergo predation at a rate

proportional to the amount of amoebae, with constant of proportionality a. This is the

simplest modeling choice; other possibilities may be considered too.

Predation of bacteria results in the growth of the amoeboid population; this term is quite

different from classical predator-prey models: in fact, usually the predation term in the

equation for the prey and the growth term in the equation for the predator have the same

form, except for the sign and possibly the constant rates. Here instead we want to take

into account the fact that amoebae upon starvation behave like a sole organism ([47], [22],

[30]), so that food supply is redistributed between all the cells. This kind of non-local

behavior is modeled with an integral term (see for instance [36], [10], [31]); we will come

back to the motivation for this in Section 1.3 below. As we have already said, we are

not considering aggregation processes for amoebae explicitly, but only their effect on the

growth of the population (that is, nutrient redistribution).

Another feature of our model that makes it different from classical predator-prey

models is the following: since the bacterial population under investigation belongs to a

virulent strain, we have to include the fact that amoebae are infected by bacteria and die.

This is taken into account by assuming that amoebae are attacked by bacteria following

a Holling type II functional response
buv

1 + bTv
[13], [20], with handling time T and attack

rate b. We choose this term because we assume that it takes some time to bacteria to

search and kill amoebae; notice, however, that a simpler version can be used by imposing
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T = 0.

Finally, when bacteria are absent, there is no other food source for the amoeboid

population, which consequently undergoes an exponential decay mv with death rate m.

Therefore our model can be written as follows:














ut = d1uxx + ru
(

1 − u

K

)

− auv

vt = d2vxx − c(vux)x − mv + fv

∫ L

0
uvdx

∫ L

0
vdx

− buv

1 + bTv

. (1.1)

By introducing the following non–dimensional variables

t′ = rt , x′ =
x

L
, u′ =

u

K
, v′ =

a

r
v

and dropping primes, system (1.1) becomes










ut = D1uxx + u(1 − u) − uv

vt = D2vxx − χ(vux)x − µv + δv

∫ 1

0
uvdx

∫ 1

0
vdx

− γuv

1 + τv

(1.2)

where

D1 =
d1

rL2
, D2 =

d2

rL2
, χ =

cK

rL2
,

µ =
m

r
, δ =

fK

r
, γ =

bK

r
, τ =

bTr

a

with initial conditions
u(0, x) = u0(x) ∀x ∈ Ω

v(0, x) = v0(x) ∀x ∈ Ω

and zero–flux Neumann boundary conditions

∂u

∂ν
(t, x) =

∂v

∂ν
(t, x) = 0 ∀x ∈ ∂Ω, ∀t ≥ 0

where ν is the outer normal versor to the boundary of the domain, ∂Ω. These no-flux

boundary conditions have been chosen because they are reasonable for the experimental

setting of the problem.

When considering a two-dimensional spatial domain, the system in normalized form

(where L has been replaced by mis(Ω)) reads










































ut = D1∆u + u(1 − u) − uv

vt = D2∆v − χ∇ · (v∇u) − µv + δv

∫∫

Ω
uvdx

∫∫

Ω
vdx

− γuv

1 + τv

u(0,x) = u0(x) ∀x ∈ Ω

v(0,x) = v0(x) ∀x ∈ Ω
∂u

∂ν
(t,x) =

∂v

∂ν
(t,x) = 0 ∀x ∈ ∂Ω, ∀t ≥ 0

(1.3)
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In Table 1.1 the terms appearing in the model are summarized.

Quantity Meaning

x position

t time

u(t, x) concentration of bacteria

v(t, x) concentration of amoebae

D1 diffusion rate of bacteria

D2 diffusion rate of amoebae

χ chemotactic coefficient

µ natural mortality rate of amoebae

δ growth rate of amoebae

γ killing rate of bacteria

τ handling time of amoeba by bacteria

u0(x) initial concentration of bacteria

v0(x) initial concentration of amoebae

Table 1.1: Terms appearing in models (1.2) and (1.3).

1.3 Motivations for the integral term

We come back to the predation term, to explain the choice in models (1.2) and (1.3), that

is,

δv

∫ 1

0
uvdx

∫ 1

0
vdx

(1.4)

(for a one-dimensional spatial domain, keeping in mind that u stands for bacteria and v

for amoebae).

Every amoeboid cell predates a quantity u of bacteria, so the total amount of bacteria

predated over all the domain is proportional to

∫ 1

0

uvdx; since we are assuming that in-

gested bacteria are redistributed to the whole population, we divide by

∫ 1

0

vdx, and so the

quantity received by a single cell after redistribution is proportional to

∫ 1

0
uvdx

∫ 1

0
vdx

. There-

fore the contribution of predation to the variation in time of the amoeboid population is

given by (1.4), where δ is a conversion parameter.
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We decided this form for the predation term because it is the simplest possible. Other

choices can be made to model this mechanism of food redistribution; or we may assume

different hypotheses: for instance we may assume that, if a cell predates bacteria, only

the nearest cells receive nutrient, so we would have to use a specific kernel in the integral.



Chapter 2

Well-posedness of the problem

without chemotaxis

Now that we have built our model for this amoeba-bacteria system, we need to show that

it is well-posed. Actually, we are going to prove existence and uniqueness of a solution to

a generalized version of system (1.2), where the spatial domain is a subset of R
n (instead

of R or R
2), but without chemotaxis (namely, χ = 0). The proof for the complete model

(1.2) in R
n with chemotaxis requires other tools and at the moment of writing (November

2009) is under investigation. To this end, we wish to follow the approach used in [12].

This part of the work has been elaborated in collaboration with Mimmo Iannelli and

Daniela Visetti from the University of Trento.

Given a bounded domain Ω in R
n with smooth boundary ∂Ω and t ∈ [0, +∞), we

consider the following Cauchy problem with Neumann boundary conditions































































∂u

∂t
= D1∆u + u(1 − u) − uv

∂v

∂t
= D2∆v − γ

uv

1 + τv
+ δ

∫

Ω
uv dx

∫

Ω
v dx

v − µv

u(0, x) = u0(x) ∀x ∈ Ω

v(0, x) = v0(x) ∀x ∈ Ω

∂u

∂ν
(t, x) =

∂v

∂ν
(t, x) = 0 ∀t ∈ [0, +∞], x ∈ ∂Ω

(2.1)

where u = u(t, x), v = v(t, x), ν is the outer normal vector to ∂Ω and D1, D2, δ, γ, µ, τ are

nonnegative constants.

9
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Problem (2.1) falls in the class of reaction-diffusion systems with special non local terms.

We want to prove the existence and uniqueness of solutions to problem (2.1), following

the approach presented in [15] and [16].

For technical reasons it is better to consider the following transformed variables:

u(t, x) = u(t, x) v(t, x) = e−(ω−µ)tv(t, x) ∀(t, x) ∈ [0, +∞) × Ω ,

where ω is a suitable constant, that will be chosen in the sequel. The Cauchy problem

then becomes






























































∂u

∂t
= D1∆u + u(1 − u) − e(ω−µ)tu v

∂v

∂t
= D2∆v − γ

u v

1 + τe(ω−µ)tv
+ δ

∫

Ω
u v dx

∫

Ω
v dx

v − ωv

u(0, x) = u0(x)

v(0, x) = v0(x)

∂u

∂ν
(t, x) =

∂v

∂ν
(t, x) = 0

(2.2)

From now on we will write simply u, v, instead of u, v.

This problem can be embedded in an abstract framework in the following way. Let X

be the Banach space L1(Ω) × L1(Ω) with the usual norm

‖W‖X = ‖u‖L1 + ‖v‖L1 , ∀ W = (u, v) ∈ X . (2.3)

We consider the linear operator A : DA ⊂ X → X

DA =
{

W = (u, v) ∈ X | u, v ∈ W 2,1(Ω) ∩ W 1,1
0 (Ω)

}

A : DA ⊂ X → X

W 7→ (D1∆u,D2∆v) ;

(2.4)

then, for R ≥ 1, we consider the closed convex subset of X

K = {W = (u, v) ∈ X | u, v ∈ L∞(Ω); 0 ≤ u(x) ≤ R, 0 ≤ u(x) ≤ R a.e.} . (2.5)

For t ∈ [0, +∞) we can define the nonlinear operator on K F (t) : K ⊂ X → X

F (t)W =

(

u(1 − u) − e(ω−µ)tuv,− γuv

1 + τe(ω−µ)tv
+

δ
∫

Ω
uv dx

∫

Ω
v dx

v − ωv

)

, (2.6)

where W = (u, v).
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With the previous definitions, problem (2.2) can now be written as an abstract Cauchy

problem in X:







dW

dt
= A(W ) + F (t)W

W (0) = (u0, v0)
(2.7)

where (u0, v0) ∈ K.

The operator A is the infinitesimal generator of an analytic semigroup S(t) on L1(Ω)

such that S(t)K ⊂ K(see for example [32]).

For any α > 0 we consider the mild form of problem (2.7)

W (t) = e−
1
α

tS(t)(u0, v0) +
1

α

∫ t

0

e−
1
α

(t−s)S(t − s)(W (s) + αF (s)W (s)) ds , t > 0 . (2.8)

Then we can prove

Theorem 2.1 Let u0, v0 ∈ K. Then problem (2.8) admits one and only one solution

W (t) ∈ C([0, T ], K), W (t) ∈ K.

Proof. In order to prove existence of a mild solution, we fix T > 0 and look for fixed

points of the operator

Ψ(W )(t) = e−
1
α

tS(t)(u0, v0) +
1

α

∫ t

0

e−
1
α

(t−s)S(t − s)(W (s) + αF (s)W (s)) ds (2.9)

in C([0, T ], X). We first check that ΨK ⊂ K.

Since K is convex and S(t)(u0, v0) ∈ K, it is sufficient to prove that

W (s) + αF (s)W (s) ∈ K . (2.10)

Indeed, for α > 0 sufficiently small (α ≤ min
{

1/R(1 + e(ω−µ)T ), 1/R(γ + δ)
}

) and ω >
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δR, we have

(W + αF (t)W )1 = u + αu(1 − u) − αe(ω−µ)tuv

≥ u(1 − αu − αe(ω−µ)tv)

≥ u(1 − αR − αe(ω−µ)T R)

≥ 0 ,

(W + αF (t)W )1 = u(1 + α − αu − αe(ω−µ)tv)

≤ R(1 − αe(ω−µ)tv)

≤ R ,

(W + αF (t)W )2 = v

(

1 − αγ
u

1 + τeωtv
+ αδ

∫

Ω
uv dx

∫

Ω
v dx

− αω

)

≥ v (1 − αγR − αω)

≥ 0 ,

(W + αF (t)W )2 ≤ R(1 + αδR − αω)

= R .

On the other hand, function F (t) is Lipschitz continuous in K: in fact for any W =

(u, v),W = (u, v) ∈ K and for any t ∈ [0, T ],

‖
(

F (t)W − F (t)W
)

1
‖L1 = ‖u(1 − u) − e(ω−µ)tuv − u(1 − u) + e(ω−µ)tu v‖L1

≤ ‖u − u‖L1 + ‖u2 − u2‖L1 + e(ω−µ)T‖(u − u)v‖L1 + ‖u(v − v)‖L1

≤ (1 + 2R + Re(ω−µ)T )‖W − W‖X ,

(2.11)

and
∥

∥

(

F (t)W − F (t)W
)

2

∥

∥

L1 =

=

∥

∥

∥

∥

−γ
uv

1 + τeωtv
+ δ

∫

Ω
uv dx

∫

Ω
v dx

v − ωv + γ
u v

1 + τeωtv
v − δ

∫

Ω
u v dx

∫

Ω
v dx

v + ωv

∥

∥

∥

∥

L1

≤ γ

∥

∥

∥

∥

uv

1 + τeωtv
− u v

1 + τeωtv
v

∥

∥

∥

∥

L1

+ δ

∥

∥

∥

∥

∫

Ω
uv dx

∫

Ω
v dx

v −
∫

Ω
u v dx

∫

Ω
v dx

v

∥

∥

∥

∥

L1

+ ω ‖v − v‖L1

≤ R
(

γ + RγτeωT + 3δ + ω
) ∥

∥W − W
∥

∥

X
;

(2.12)

in fact,
∥

∥

∥

∥

uv

1 + τeωtv
− u v

1 + τeωtv
v

∥

∥

∥

∥

L1

≤ R(1 + RτeωT )‖(u, v) − (u, v)‖X , (2.13)

∥

∥

∥

∥

∫

Ω
uv dx

∫

Ω
v dx

v −
∫

Ω
u v dx

∫

Ω
v dx

v

∥

∥

∥

∥

L1

≤ 3R‖(u, v) − (u, v)‖X . (2.14)
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Finally, we estimate Ψ:

‖Ψ(W )(t) − Ψ(W )(t)‖X ≤

≤ 1

α

∫ t

0

∥

∥

∥e−
1
α

(t−s)S(t − s)
(

W (s) − W (s) + αF (s)W (s) − αF (s)W (s)
)

∥

∥

∥

X
ds

≤ 1

α

∫ t

0

e−
1
α

(t−s)(1 + αL)
∥

∥W (s) − W (s)
∥

∥

X
ds

≤
(

1

α
+ L

)∫ t

0

∥

∥W (s) − W (s)
∥

∥

X
ds

(2.15)

where we use the fact that F (s) is Lipschitz continuous in K for any s ∈ [0, T ].

From this we can evaluate any iterate:

∥

∥Ψk(W ) − Ψk(W )
∥

∥

C([0,T ],X)
≤
(

1
α

+ L
)k

k!
T k
∥

∥W − W
∥

∥

C([0,T ],X)
(2.16)

and taking k sufficiently large we can conclude.

�





Chapter 3

Homogeneous steady states of the

system

We consider the spatially homogeneous problem related to (1.2):

{

u′ = u(1 − u) − uv

v′ = δuv − γuv

1 + τv
− µv

(3.1)

We look for the steady states of system (3.1), that is, the intersections of zero-isoclines.

We can immediately see that there are always the trivial steady state (0, 0) and the

bacteria-only state (1, 0).

The existence of positive, or coexistence, steady states (that is, steady states whose preda-

tor and prey components are both strictly positive) is not so straightforward and needs

to be investigated accurately.

Due to the biological motivations of this study, the parameter we are most interested in

is clearly the one accounting for virulence, that is, γ: in fact, different bacterial strains

have different degrees of pathogenicity. Thus γ will be our bifurcation parameter.

The other parameter we take into account in the parameter space is the amoeba death

rate µ; this seems to be a reasonable assumption because, in the following calculations,

we will see that many quantities can be expressed in terms of it.

Both γ and µ will be related to expressions depending on the aggressiveness of amoeboid

cells δ.

15
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3.1 Existence of steady states

First of all, looking at the plots of the isoclines, namely the straight line

v = 1 − u (3.2)

and the hyperbola

v =
(γ − δ)u + µ

τ(δu − µ)
, (3.3)

one easily sees that no meaningful intersection (that is, such that 0 < u∗, v∗ < 1) occurs

when µ > δ. The case with µ < δ and γ > δ(1 + τ) is easily dealt with too: in fact, in

this case the horizontal asymptote of the hyperbola is over v = 1, so that there are no

intersections between the two isoclines. Figure 3.1 shows two examples of these situations.

a b

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

u

v

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

u

v

Figure 3.1: Example of isoclines of system (3.1) for the cases µ > δ (a, values for param-

eters: δ = 5.0, γ = 4.8, µ = 5.1, τ = 1.0) and γ > δ(1 + τ) (b, values for parameters:

δ = 5.0, γ = 11.0, µ = 0.6, τ = 1.0).

When µ < δ and γ < δ(1 + τ), instead, we need to look at the prey component of the

positive equilibria, which is found by solving, from (3.2) and (3.3),

δu − γu

1 + τv
− µ = 0 with v = 1 − u :

substituting the expression for v into the first equation, we get

δτu2 + (γ − δ − τ(δ + µ)) u + µ (1 + τ) = 0 (3.4)

The number of coexistence equilibria depends on the sign of the discriminant of Equation

(3.4); in particular, we have two equilibria if and only if it is positive.

This does not mean, of course, that both intersections are acceptable; as a consequence,
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when we find a region in the parameter space where ∆ > 0, we also have to check which

of these equilibria are actually meaningful for the situation considered.

The discriminant turns out to be a quadratic expression in µ, namely

∆ = τ 2µ2 − 2τ (τδ + γ + δ) µ + (γ − δ − δτ)2 ; (3.5)

its two roots are given by

µ± = δ +
γ + δ

τ
± 1

τ

√

(τδ + γ + δ)2 − (γ − δ − τδ)2

= δ +
γ + δ

τ
± 2

√

γδ(1 + τ)

τ
:

therefore the discriminant is positive (i.e. the isoclines intersect twice) if and only if either

µ < µ− or µ > µ+. But, since µ+ is clearly larger than δ whatever the value of γ (and

we have already seen that for µ > δ no meaningful equilibrium appears) we are only

interested in studying what happens with respect to µ−, which from now on we are going

to call µ∗ = µ∗(γ):

µ∗(γ) = δ +
γ + δ

τ
− 2

√

γδ(1 + τ)

τ
. (3.6)

Since we are in the region where µ < δ, γ < δ(1 + τ), we notice that

µ∗(γ) = δ +
γ + δ

τ
− 2

√

γδ(1 + τ)

τ
< δ

⇔ γ2 − 2δ(1 + 2τ)γ + δ2 < 0 ,

which is true if and only if

δ(1 + 2τ) − 2δ
√

τ(τ + 1) < γ < δ(1 + τ) .

We also point out that 0 < δ(1 + 2τ) − 2δ
√

τ(τ + 1) < δ.

Another property of µ∗(γ) is that

(µ∗)′(γ) =
1

τ
− 2

√

δ(1 + τ)

τ

1

2
√

γ
= 0

⇔ √
γ −

√

δ(1 + τ) = 0

⇔ γ = δ(1 + τ) .

The point where the slope of µ∗(γ) is zero is therefore

(δ(1 + τ), µ∗(δ(1 + τ))) = (δ(1 + τ), 0) ,
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(that is, µ∗(γ) is tangent to the γ-axis in γ = δ(1 + τ)).

Finally, we want to know the reciprocal position between µ = µ∗(γ) and µ = δ − γ:

δ − γ = δ +
γ + δ

τ
− 2

√

γδ(1 + τ)

τ

if and only if γ(1 + τ) + δ = 2
√

γδ(1 + τ) or, equivalently, if and only if

γ =
δ

1 + τ
;

this means that the two curves are tangent in (γ, µ) = (δ/(1 + τ), δτ/(1 + τ)).

Thus we can state the following

Proposition 3.1 The isoclines related to system (3.1) intersect twice (i.e., the discrim-

inant (3.5) of (3.4) is larger than zero) if and only if one of the two possibilities below

holds:

1. either

{

0 < γ < δ(1 + 2τ) − 2δ
√

τ(τ + 1)

0 < µ < δ
;

2. or

{

δ(1 + 2τ) − 2δ
√

τ(τ + 1) < γ < δ(1 + τ)

0 < µ < µ∗(γ)
.

This can be represented on the γ–µ plane, as shown in Figure 3.2.

δ

δ/(1 + τ) δ δ(1 + τ)

µ

0
γ

µ = µ∗(γ)

Figure 3.2: In gray, the region of [0, δ(1 + τ)] × [0, δ] on the γ–µ plane where ∆ > 0.

The remainder is characterized by ∆ < 0 instead. The expression for µ∗(γ) is given in

Equation (3.6).

To check the results above, if we take the parameters such that the corresponding point

on the γ–µ plane lies outside the gray part in Figure 3.2, then no intersection occurs: an

example is shown in Figure 3.3.
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Figure 3.3: Example of isoclines of system (3.1) for the case µ∗(γ) < µ < δ, γ < δ(1 + τ)

(values for parameters: δ = 5.0, γ = 4.8, µ = 1.1, τ = 1.0).

3.2 Acceptability of isoclines intersections

Now we focus our attention on the region where (3.5) is positive and check the acceptability

of the two solutions of (3.4); otherwise stated, we want to find assumptions under which

0 < u∗
− , u∗

+ < 1.

Condition u∗
− > 0 is almost straightforward; in fact, it is satisfied if and only if (3.4)

evaluated at u = 0 is positive and this point lies on the left-hand side of the vertex of the

parabola; that is, if and only if







µ(1 + τ) > 0
δ − γ + τ(δ + µ)

2τδ
> 0

.

The first inequality is obviously true; the second one is verified if and only if γ < δ(1 +

τ) + τµ, which is also true because here we are taking γ < δ(1 + τ).

This lets us conclude that u∗
− is always larger than zero, which in turn implies that u∗

+ is

always larger than zero too.

The case of condition u∗
− < u∗

+ < 1 is more subtle.

Firstly, we want to find regions on the γ-µ plane such that both intersections are not

acceptable (so that no coexistence steady state exists). To this end, it is sufficient to

impose u∗
− > 1; this is verified if and only if (3.4) evaluated at u = 1 is positive and this

point lies on the left-hand side of the vertex of the parabola:







γ − δ + µ > 0
δ − γ + τ(δ + µ)

2τδ
> 1

⇔
{

µ > δ − γ

γ < δ + τ(µ − δ)
.
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Now, the quantity δ + τ(µ − δ) is surely smaller than δ, because µ < δ; but

δ

1 + τ
< δ + τ(µ − δ) ⇔ µ >

τδ

1 + τ
.

Remember that µ = τδ/(1+τ) is the value corresponding to the point where µ = µ∗(γ) and

µ = δ−γ are tangent; therefore the inequality above is satisfied only when γ < δ/(1+ τ),

which also implies that

γ < δ + τ(µ − δ)

is true. In short, the region in the parameter space γ–µ with γ < δ/(1 + τ) and δ − γ <

µ < µ∗(γ) gives no acceptable coexistence steady state.

An example is shown in Figure 3.4.
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Figure 3.4: Example of isoclines of system (3.1) for the case δ − γ < µ < µ∗(γ), γ <

δ/(1 + τ) (values for parameters: δ = 5.0, γ = 1.0, µ = 4.2, τ = 1.0).

The second step is to find out when only one of the intersections between the isoclines

is acceptable, that is, u∗
− < 1 and u∗

+ > 1; this means that (3.4) evaluated at u = 1 has

to be negative:

γ − δ + µ < 0 ⇔ µ < δ − γ .

So the region µ < δ − γ gives only one acceptable equilibrium (the one with the smallest

u∗): see for example Figure 3.5.

Finally, we need to verify if the remaining part of the γ–µ plane where the discriminant

(3.5) is positive, i.e.

δ

1 + τ
< γ < δ(1 + τ) , δ − γ < µ < µ∗(γ) ,

is characterized by the acceptability of both steady states.

Similarly to what we have previously done, we impose that (3.4) evaluated at u = 1 is
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Figure 3.5: Example of isoclines of system (3.1) for the case µ < δ − γ (values for

parameters: δ = 5.0, γ = 4.8, µ = 0.1, τ = 1.0).

positive and that this point lies on the right-hand side of the vertex of the parabola:






γ − δ + µ > 0
δ − γ + τ(δ + µ)

2τδ
< 1

⇔
{

µ > δ − γ

γ > δ + τ(µ − δ)
.

In this region

γ > δ + τ(µ − δ)

holds (because this inequality is satisfied if and only if µ < δτ/(1+τ), which is true here);

therefore both u∗
− and u∗

+ are smaller than one, and so the corresponding steady states

are both acceptable, as can be seen in Figure 3.6.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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0.1
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0.3
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0.5

0.6

0.7

0.8

0.9

1

u

v

Figure 3.6: Example of isoclines of system (3.1) for the case δ/(1 + τ) < γ < δ(1 + τ),

δ − γ < µ < µ∗(γ) (values for parameters: δ = 5.0, γ = 4.8, µ = 0.6, τ = 1.0).

Therefore, we sum up our study on the existence and acceptability of internal equilibria

in the following
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Proposition 3.2 Consider the region of the γ-µ plane where the isoclines of system (3.1)

intersect twice, as given by Proposition 3.1. Then the number of acceptable internal steady

states is:

• zero for















0 < γ <
δ

1 + τ

δ − γ < µ < µ∗(γ)

;

• one for

{

0 < γ < δ

0 < µ < δ − γ
;

• two for















δ

1 + τ
< γ < δ(1 + τ)

δ − γ < µ < µ∗(γ)

.

Figure 3.7 is a representation on the γ–µ plane of this result.

In this way, given a certain combination of parameters for the problem, we are able to

determine how many steady states, other than the trivial ones, the spatially homogeneous

system has.

2

0

1

δ

δ/(1 + τ) δ δ(1 + τ)

µ

0
γ

µ = µ∗(γ)

Figure 3.7: Number of coexistence steady states on the γ–µ plane: zero (yellow), one

(green) or two (red).



Chapter 4

Analysis of the behavior of the

homogeneous model

In the previous chapter we have analyzed the existence of steady states. We are now

concerned with their stability and with the behaviors of the solutions in large.

4.1 Stability of (0, 0) and (1, 0)

First of all we consider the zero–steady state (0, 0) and the bacteria–only state (1, 0). The

respective Jacobian matrices for these states are

J(0, 0) =

(

1 0

0 −µ

)

, J(1, 0) =

(

−1 −1

0 δ − γ − µ

)

.

Consequently, (0, 0) is unstable for all values of the parameters, since the eigenvalues at

this steady state are 1 and −µ < 0.

When considering J(1, 0), instead, the eigenvalues are −1 and δ − γ − µ: therefore when

this second quantity is negative, (1, 0) is stable, while it is unstable otherwise.

We can conclude

Lemma 4.1 (0, 0) is always unstable; (1, 0) is stable if δ−γ < µ and unstable otherwise.

We notice that (0, 0) and (1, 0) (when unstable) are saddle points.

The analysis of stability for the internal steady states (u∗, v∗) is performed in the

following sections.

23
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4.2 Stability of coexistence steady states

Showing the stability of the coexistence steady states is not so straightforward: this is

largely due to the fact that the algebraic expressions for u∗ and v∗ are quite complex, and

substitution into the Jacobian matrix

J(E∗) =





−u∗ −u∗

(

δ − γ

1 + τv∗

)

v∗ γτu∗v∗

(1 + τv∗)2



 , (4.1)

does not help.

However, we will provide some conditions to determine the sign of trace and determinant

of J(E∗).

In fact, we have

trJ(E∗) = u∗

(

−1 +
γτv∗

(1 + τv∗)2

)

(4.2)

det J(E∗) =
u∗v∗

(1 + τv∗)2

(

−γτu∗ + δ(1 + τv∗)2 − γ(1 + τv∗)
)

. (4.3)

Noticing that trJ(E∗) is negative if and only if

τ 2v∗2 + τ(2 − γ)v∗ + 1 > 0 , (4.4)

and since the discriminant of the quadratic polynomial above is ∆ = τ 2γ(γ − 4), we have

two possibilities:

(T1) if γ < 4, then trJ(E∗) < 0;

(T2) if γ > 4, then trJ(E∗) < 0 if and only if either v∗ < v1 or v∗ > v2 where v1/2 are the

roots of the quadratic polynomial in (4.4), i.e.

v1/2 =
γ − 2 ±

√

γ(γ − 4)

2τ
(4.5)

Concerning det J(E∗), we have that it is positive if and only if

δτ 2v∗2 + 2δτv∗ + δ − γ − γτ > 0 . (4.6)

Since in this case the discriminant ∆ = δγτ 2(τ + 1) is positive, we have two situations

depending on the sign of the y-intercept:

(D1) if γ < δ/(1 + τ), then det J(E∗) > 0;
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(D2) if γ > δ/(1 + τ), then det J(E∗) > 0 if and only if

v∗ > v3 =
γ − 2 ±

√

γ(γ − 4)

2τ
(4.7)

Note that v3 is the only positive root of the quadratic polynomial (4.6).

Therefore, depending on the value assumed by γ, possibly with some additional conditions

E∗ changes its stability. In particular, the value γ =
δ

1 + τ
is involved in conditions (D)

and corresponds to the point of the γ-µ plane where the curves µ = δ − γ and µ = µ∗(γ)

are tangent (see Figure 3.7).

Thus we have different situations depending on whether δ/(1 + τ) is larger or less than 4.

Therefore, keeping in mind Figure 3.7, we need to consider three situations:

δ

1 + τ
< 4 < δ ,

δ

1 + τ
< δ < 4 , 4 <

δ

1 + τ
< δ.

corresponding to a), b) and c) in Figure 4.1 respectively.

We can immediately notice that, due to (T1) and (D1), the following statement holds:

Proposition 4.1 The unique steady state corresponding to regions (a,I), (b,I) and (c,I)

in Figure 4.1 is stable.

For all the other regions we need to analyze in detail conditions (T2) and (D2).
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Figure 4.1: Subdivision of the region of the γ–µ plane where internal steady states exist,

according to conditions (T) and (D). The three graphs differ for the mutual position

of δ/(1 + τ), 4 and δ on the γ-axis. Regions marked with (I) correspond to condi-

tions (T1)-(D1); regions (b,II) and (c,II): conditions (T1)-(D2) region (a,II): conditions

(T2)-(D1); regions (a,III) and (b,III): conditions (T2)-(D2); regions (b,IV) and (c,III):

conditions (D2); (a,IV), (b,V) and (c,IV): conditions (T2)-(D2).
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4.3 Regions (b,II) and (c,II)

Here we consider regions (b,II) and (c,II), where only one internal steady state exists,

(T1) is satisfied and γ > δ/(1 + τ).

We remind that, in condition (4.7), v∗ is the (unique) positive root of

p(v) = δτv2 + [τ(µ − δ) + δ − γ] v + γ − δ + µ . (4.8)

Since the algebraic expression of v∗ is quite complex, instead of comparing v∗ and v3

directly, we evaluate the polynomial p(v) at v = v3 (see Equation (4.7)): clearly, v∗ > v3

whenever the resulting value is negative, otherwise the reverse inequality holds.

By substituting (4.7) into (4.8) we get

p(v3) = δτ

(

1

τ 2
+

δγ(1 + τ)

δ2τ 2
− 2

δτ 2

√

δγ(1 + τ)

)

+ (τ(µ − δ) + δ − γ)

(

−1

τ
+

√

δγ(1 + τ)

δτ

)

+ γ − δ + µ ,

and after some algebra we have

p(v3) = 2γ
1 + τ

τ
− γ − µτ + δτ + δ

δτ

√

γδ(1 + τ) .

This quantity is negative if and only if

τ

δ

√

γδ(1 + τ)µ <
√

γδ(1 + τ)
(

τ + 1 +
γ

δ

)

− 2γ(1 + τ) ,

that is, if and only if

µ < δ
τ + 1

τ
+

γ

τ
− 2γδ

1 + τ

τ

1
√

γδ(1 + τ)

= δ +
γ + δ

τ
− 2

√

γδ(1 + τ)

τ
(4.9)

= µ∗(γ) ,

where µ∗(γ) has been defined in (3.6).

(4.9) is certainly true, because the existence of positive steady states is guaranteed only

for µ < µ∗(γ), and here in particular µ < δ − γ < µ∗(γ) (see Section 3.1). Therefore,

polynomial in (4.8) evaluated at v = v3 is negative and we can conclude that v∗ > v3 in

regions (a,II) and (b,II), so that E∗ is stable.

Such results are summarized in the following proposition:

Proposition 4.2 The unique positive steady state E∗ corresponding to regions (b,II) and

(c,II) is always stable.
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4.4 Regions (a,II), (a,III) and (b,III)

In region (a,II) we have the existence of only one steady state and 4 < γ <
δ

1 + τ
; so we

have to consider condition (T2).

We use the same method seen in Section 4.3: v∗ is less than v1 if and only if p(v1) is

positive; v∗ is larger than v2 if and only if p(v2) is negative.

Looking at (4.4), we have that v1 satisfies

τ 2v2
1 = τ(γ − 2)v1 − 1 ,

so we can use this property1 when evaluating p(v1):

p(v1) = δτ(γ − 2)v1 − δ +
(

τ 2(µ − δ) + τ(δ − γ)
)

v1 + τ(γ − δ + µ) ;

substituting the expression for v1 and rearranging terms, the quantity above can be written

as

p(v1) =
1

2

[

δγ2 − γ2 − 3δγ + 2γ + τ(µγ − δγ + 2γ) − (δγ − δ − γ + τ(µ − δ))
√

γ(γ − 4)
]

,

which is positive if and only if

(

τγ − τ
√

γ(γ − 4)
)

µ > (δγ − δ − γ − τδ)
√

γ(γ − 4) + γ2 − δγ2 + 3δγ − 2γ + τδγ − 2τγ ,

that is, if and only if

µ >
1

2τ

(

(δ − (1 + τ))
√

γ(γ − 4) − δγ + γ − τγ + 2δ + 2τδ
)

(4.10)

= δ − γ +
1

2τ

(

(δ − (1 + τ))
√

γ(γ − 4) − δγ + γ + τγ + 2δ
)

. (4.11)

For conciseness we call η1(γ) the previous expression:

η1(γ) = δ − γ +
1

2τ

(

(δ − (1 + τ))
√

γ(γ − 4) + γ(1 + τ − δ) + 2δ
)

= δ − γ + ε1(γ) (4.12)

where

ε1(γ) =
1

2τ

(

(δ − (1 + τ))
√

γ(γ − 4) + γ(1 + τ − δ) + 2δ
)

. (4.13)

Figure 4.2 shows the graph of ε1(γ) = 0 as a function of γ and δ.

From (4.12) we notice that (4.10) is never satisfied whenever ε1(γ) > 0, because from this

1this of course is not necessary: it is just for convenience during calculations.
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condition η1(γ) > δ−γ follows, while in the case of one acceptable steady state µ < δ−γ

must necessarily hold.

On the contrary, if ε1(γ) < 0, then η1(γ) < δ − γ, therefore condition (4.10) becomes

η1(γ) < µ < δ − γ.

Summarizing:

v∗ < v1 ⇔
{

ε1(γ) < 0

η1(γ) < µ < δ − γ
. (4.14)

ε1(γ) < 0

ε1(γ) > 0

δ

4
2 + τ γ

Figure 4.2: Subdivision of the parameter space γ-δ into zones where ε1(γ) is positive or

negative. In the former case v∗ > v1 and so stability is ensured if v∗ > v2; in the latter

case, from (4.14) we need also check that η1(γ) < µ < δ − γ.

If we are in a situation where v∗ can not be less than v1 (i.e., if either ε1(γ) > 0 or

µ < η1(γ)), then we need to check if v∗ > v2 holds (at least for some choices of parameters).

The procedure is the same used for v1: we evaluate p(v2) and impose it to be negative;

knowing that

τ 2v2
2 = τ(γ − 2)v2 − 1 ,

we have

p(v2) = δτ(γ − 2)v2 − δ +
(

τ 2(µ − δ) + τ(δ − γ)
)

v2 + τ(γ − δ + µ)

which (substituting the expression for v2) is equivalent to

p(v2) =
1

2

[

δγ2 − γ2 − 3δγ + 2γ + τ(µγ − δγ + 2γ) + (δγ − δ − γ + τ(µ − δ))
√

γ(γ − 4)
]

.



30 Chapter 4. Analysis of the behavior of the homogeneous model

Thus, p(v2) < 0 if and only if
(

τγ + τ
√

γ(γ − 4)
)

µ < (δ + γ + τδ − δγ)
√

γ(γ − 4) + γ2 − δγ2 + 3δγ − 2γ + τδγ − 2τγ ,

i.e., if and only if

µ <
1

2τ

(

(1 + τ − δ)
√

γ(γ − 4) − δγ + γ − τγ + 2δ + 2τδ
)

= δ − γ +
1

2τ

(

(1 + τ − δ)
√

γ(γ − 4) + γ(1 + τ − δ) + 2δ
)

. (4.15)

Similarly to what we have already done for v1, we call

η2(γ) = δ − γ +
1

2τ

(

(1 + τ − δ)
√

γ(γ − 4) + γ(1 + τ − δ) + 2δ
)

= δ − γ + ε2(γ) (4.16)

where

ε2(γ) =
1

2τ

(

(1 + τ − δ)
√

γ(γ − 4) − δγ + γ + τγ + 2δ
)

. (4.17)

ε2(γ) = 0 as a function of γ and δ is represented in Figure 4.3.

Obviously, if ε2(γ) > 0, η2(γ) is larger than δ − γ; this implies that (4.15) is satisfied,

because, again, µ < δ − γ here. Otherwise, η2(γ) < δ − γ.

In short,

v∗ > v2 ⇔ either ε2(γ) > 0 or

{

ε2(γ) < 0

µ < η2(γ)
. (4.18)

ε2(γ) > 0

ε2(γ) < 0

2 + τ

δ

4
γ

Figure 4.3: Subdivision of the parameter space γ-δ into zones where ε2(γ) is positive or

negative. In the former case v∗ > v2 and so E∗ is stable; in the latter case, from (4.18)

we have that we need also check if µ < η2(γ).
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Now let us look at the other two regions. namely (a,III) and (b,III). They are charac-

terized by a unique internal steady state and

max

{

4,
δ

1 + τ

}

< γ < δ .

The calculations necessary to prove that the Jacobian matrix has positive determinant

are the same as in Sections 4.3, whereas for showing when the trace is negative we follow

the procedure that we have just seen in the first part of this Section for region (a,II); con-

sequently, in this zone of the γ–µ plane the determinant is always positive, and therefore

E∗ is stable if at least one between (4.14) and (4.18) holds.

Summarizing, we have the following

Proposition 4.3 The unique steady state corresponding to regions (a,II), (a,III) and

(b,III) is stable if and only if one of the following alternatives holds:

1.

{

ε1(γ) < 0

η1(γ) < µ < δ − γ
;

2. ε2(γ) > 0 ;

3.

{

ε2(γ) < 0

µ < η2(γ)
.

This result is represented in Figure 4.4.

A

B

C

2 + τ

δ

4
γ

Figure 4.4: Stability regions on the parameter space γ-δ for cases (a,II), (a,III) and (b,III).

Region A: E∗ stable if η1(γ) < µ < δ − γ. Region B: E∗ stable if µ < η2(γ). Region C:

E∗ stable.



32 Chapter 4. Analysis of the behavior of the homogeneous model

4.5 Regions (b,IV) and (c,III)

In regions (b,IV) and (c,III) there are two internal steady states, (T1) is satisfied (because

γ < 4) and (D2) is the condition to be verified for stability to be guaranteed.

Here we have to take into account the fact that there are two coexistence states E∗
−

and E∗
+, whose second components will be from now on called v∗

− and v∗
+; we remind that

v∗
± are the two (positive) roots of p(v) (see Equation (4.8)), and that v∗

− < v∗
+.

In Section 4.3 we proved that p(v3) < 0 if and only if µ < µ∗(γ), which is the case for the

regions of the γ-µ plane under consideration. This means that v3 lies between v∗
− and v∗

+;

consequently, we have that v∗
+ > v3 and v∗

− < v3, i.e., E∗
+ is stable and E∗

− is unstable (in

particular, it is a saddle point).

Proposition 4.4 In regions (b,IV) and (c,III), the steady state E∗
− is unstable, while E∗

+

is always stable.

Notice that here both (1, 0) and E∗
+ are stable; this means that there are two basins

of attraction, separated by the stable manifold of the unstable equilibrium E∗
−, and the

behavior of a trajectory depends on where it originates. Figure 4.5 shows such examples:

in both a and b there are two internal steady states; E∗
− is unstable while E∗

+ (which

is about (0.468826, 0.531173) in the first plot and (0.187004, 0.812995) in the second) is

stable. Notice that solid trajectories tend to E∗
+ and dashed ones tend to the bacteria-only

state (1, 0).

4.6 Regions (a,IV), (b,V) and (c,IV)

Here we have two internal steady states and we have to consider (T2) and (D2).

As regards the condition on the determinant, what we said in the previous section is

still valid; thus we can immediately deduce that E∗
− is unstable (again, a saddle point),

because at least one of the two properties required (namely, the one on the determinant)

is never satisfied when evaluating J(E∗
−).

We can now focus our attention on the other steady state, E∗
+. From Section 4.5 we

already have that (D2) is satisfied by E∗
+, so we need only check (T2). We will follow

the approach seen in Section 4.4.

First of all we investigate the possibility of having v∗
+ < v1. Here imposing p(v1) > 0 is

necessary but not sufficient, because also the points on the left of v∗
− satisfy this condition

but of course are smaller than v∗
+. Therefore, there is another property to be verified: v1
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Figure 4.5: Two examples showing that, when E∗
+ is stable, the behavior of trajectories

depends on their starting points. a (case (b,IV)): δ = 5.0, γ = 3.9, µ = 1.5, τ = 1.0;

starting points: (0.2, 0.2) (solid line) and (0.1, 0.2) (dashed line). b (case (c,III)): δ = 3.0,

γ = 3.5, µ = 0.2, τ = 1.0; starting points: (0.2, 0.38) (solid line) and (0.2, 0.34) (dashed

line).

must lie on the right of the abscissa of the vertex of p(v); that is,

v∗
+ < v1 ⇔







p(v1) > 0

v1 >
γ − δ + τ(δ − µ)

2τδ

.

From the previous cases we know that p(v1) > 0 is satisfied for η1(γ) < µ < µ∗(γ) when

ε1(γ) > 0, and for δ − γ < µ < µ∗(γ) (i.e., for all µ in these regions) when ε1(γ) < 0

(remind that η1(γ) and ε1(γ) have been defined in (4.12) and (4.13) respectively).

In such cases we also have to impose v1 to be larger than the abscissa of the vertex of

p(v):

v1 =
γ − 2 −

√

γ(γ − 4)

2τ
>

γ − δ + τ(δ − µ)

2τδ
,
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which is true if and only if

µ >
δ

τ

[

γ

(

1

δ
− 1

)

+ τ + 1 +
√

γ(γ − 4)

]

= δ +
γ + δ

τ
+

δ

τ

(

−γ +
√

γ(γ − 4)
)

.

For conciseness let us set

ν1(γ) = δ +
δ + γ

τ
+

δ

τ

(

−γ +
√

γ(γ − 4)
)

, (4.19)

so that

v∗
+ < v1 ⇔ either

{

ε1(γ) < 0

ν1(γ) < µ < µ∗(γ)
or

{

ε1(γ) > 0

max {ν1(γ), η1(γ)} < µ < µ∗(γ)
.

(4.20)

We remind that determining whether ε1(γ) is positive or negative for a specific pair of

parameters (γ, δ) is possible by looking at Figure 4.2.

When none of the possibilities in (4.20) is satisfied, we need to investigate the possibil-

ity of having v∗
+ > v2. Here two circumstances appear: if v2 is on the left of the abscissa of

the vertex, then surely v∗
+ > v2; otherwise, we have to impose a further condition, namely,

p(v2) < 0.

Now, we find that

v2 =
γ − 2 +

√

γ(γ − 4)

2τ
<

γ − δ + τ(δ − µ)

2τδ

if and only if

µ < δ +
δ + γ

τ
− δ

τ

(

γ +
√

γ(γ − 4)
)

. (4.21)

Therefore, calling

ν2(γ) = δ +
δ + γ

τ
− δ

τ

(

γ +
√

γ(γ − 4)
)

, (4.22)

we can state that, if we have a combination of parameters such that µ < ν2(γ), then E∗
+

is stable; otherwise, for assuring stability of E∗
+ we also have to check that p(v2) < 0.

This has already been done in Section 4.4: it must be µ < η2(γ) where η2(γ) is the same

as in Equation (4.16).

If ε2(γ) < 0 then η2(γ) < δ − γ, so in regions (a,IV), (b,V) and (c,IV) of the γ–µ plane

p(v2) is always positive (and thus the steady state is unstable); on the other hand, if

ε2(γ) > 0 then condition µ < η2(γ) can be restated as δ−γ < µ < η2(γ). Remember that

η2(γ) and ε2(γ) are as in Equations (4.16) and (4.17) respectively.
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To summarize, when v∗
+ > v1, trJ(E∗

+) can still be negative if the following holds:

v∗
+ > v2 ⇔

either δ − γ < µ < min {µ∗(γ), ν2(γ)}

or

{

ε2(γ) > 0

max {δ − γ, ν2(γ)} < µ < η2(γ)

. (4.23)

Proposition 4.5 In regions (a,IV), (b,V) and (c,IV), E∗
− is unstable and E∗

+ is stable if

and only if one of the following holds:

1.

{

ε1(γ) < 0

ν1(γ) < µ < µ∗(γ)
;

2.

{

ε1(γ) > 0

max {ν1(γ), η1(γ)} < µ < µ∗(γ)
;

3. δ − γ < µ < min {µ∗(γ), ν2(γ)} ;

4.

{

ε2(γ) > 0

max {δ − γ, ν2(γ)} < µ < η2(γ)
.

Again, whenever conditions for E∗
+ to be stable are satisfied, there are two attractors, so

there are two basins of attraction divided by the stable manifold of the saddle point E∗
−.

4.7 Unstable coexistence steady states

In the previous section we found conditions under which a coexistence steady state is

stable 2. Now we focus on the case when all internal states are unstable.

First of all, for the general case we rule out the possibility of unbounded trajectories.

In order to do so, we look at the direction of the vector field of the problem: for the first

component

u′ = u(1 − u − v) > 0 ⇔ v < 1 − u ,

and for the second component

v′ = v

(

δu − µ − γu

1 + τv

)

> 0 ⇔ v >
(γ − δ)u + µ

τ(δu − µ)
.

So the vector field points down and to the right below both isoclines; up and to the right in

the region over the hyperbola and below the line; up and to the left above both isoclines;

down and to the left in the region over the line and below the hyperbola.

2remember that, when there are two internal states, one is always unstable.
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In particular, when a trajectory crosses the line v = 1 from below, then

u′ < −u2 < 0

that is, it always points to the left of the u-v space; so eventually it is forced to cross the

hyperbola and then re-enter the region with v < 1.

Moreover, a trajectory can never cross the line u = 1, and it is also bounded by the

coordinate axes (the vector field points down on the v-axis, left on the u-axis for 0 < u <

1).

This means that every trajectory can be confined in some (possibly large) finite subset of

the plane (also known as trapping region; see for example [39]), which might be described

as R = [ε, 1] × [0, ρ], for proper values of 0 < ε ≪ 1 and ρ > 0 depending on the starting

point of the trajectory.

This conclusion lets us apply a well-known tool in the study of dynamical systems:

the Poincaré–Bendixson theorem (for a reference, see for instance Appendix A in [40]).

Theorem 4.1 (Poincaré–Bendixson theorem) Let R be a closed, bounded subset of

R
2, ẋ = f(x) a system of differential equations defined on an open set containing R.

Suppose that R contains finitely many equilibria, and that a forward orbit φ(t,x0)t≥0

starting at x(0) = x0 ∈ R remains in R for all t.

Then the ω–limit set of x0 is either a fixed point or a periodic orbit.

Here we have finitely many equilibria (the bacteria-only state and one or two coexistence

steady states, depending on the choice of parameters) belonging to R, which is properly

chosen in order to contain φ(t,x0)t≥0 for a given x0 ∈ R.

Therefore, according to the Poincaré–Bendixson theorem, the trajectory must approach

either a limit cycle or a fixed point.

Now we consider the different situations that may arise.

4.7.1 One coexistence steady state

In this case, the bacteria-only equilibrium is always unstable (see Section 4.1); if the

coexistence steady state is unstable too (this event may occur in cases (a,II), (a,III) and

(b,III), as we have seen in Section 4.4), then the only possibility is that trajectories

approach a closed stable orbit.

4.7.2 Two coexistence steady states

When two internal steady states E∗
−, E∗

+ are admissible, we have that (1, 0) is stable

(Section 4.1) and E∗
− is unstable (Sections 4.5 and 4.6), while the stability of E∗

+ depends
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on the specific choice of parameters; if it is unstable (in particular, an unstable node or

focus3), then Poincaré-Bendixson theorem ensures that the ω-limit set for a trajectory is

either an equilibrium or a limit cycle. The trapping region here includes the bacteria-only

state which is stable, but it seems difficult here to apply tools such as the Bendixson-Dulac

criterion (see Appendix A in [40]); therefore we cannot theoretically exclude the existence

of closed orbits.

In fact, by performing numerical simulations we notice that both situations are possible:

in some cases all trajectories reach (1, 0); sometimes there exists a limit cycle such that

if the starting point lies inside it, then the trajectory approaches it, while if the starting

point lies outside, the trajectory approaches (1, 0); or there are two basins of attraction

for the points outside the limit cycle, such that trajectories starting from outside the limit

cycle can either go to (1, 0) or approach the limit cycle itself.

Figures 4.6 and 4.7 show some examples of these behaviors, by varying µ or γ respectively.

3it cannot be a saddle point since the determinant of the Jacobian matrix is always positive.
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Figure 4.6: Trajectories for system (3.1) in the case of two unstable coexistence steady

states when varying µ. Fixed parameters are: δ = 5.0, γ = 4.8, τ = 1.0. Starting points

for trajectories: (0.4, 0.6) (solid line), (0.2, 0.2) (dashed line), (0.7, 0.6) (dashed dotted

line). a µ = 0.9. b µ = 0.72. c µ = 0.6.
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Figure 4.7: Trajectories for system (3.1) in the case of two unstable coexistence steady

states when varying γ. Fixed parameters are: δ = 5.0, µ = 0.6, τ = 1.0. Starting points

for trajectories: (0.1, 0.1) (dashed line), (0.2, 0.2) (solid line), (0.4, 0.6) (dashed dotted

line). a γ = 5.2. b γ = 4.88. c γ = 4.5.
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4.8 Examples

The last part of this chapter is devoted to some simulations related to the theoretical

results obtained in the previous sections. In particular, we consider three examples corre-

sponding to the three possibilities shown in Figure 4.1; according to the different situations

that can arise, we show bifurcation diagrams summarizing the stability of steady states

of the model; the bifurcation parameter is γ, i.e., the parameter of the model accounting

for virulence of bacteria.

Moreover, we prove whether conditions for stability given in the previous sections are

satisfied or not.

Simulations have been performed by using Matcont, a Matlab package for bifurcation

analysis of dynamical systems.

4.8.1 An example from case a)

Firstly, we consider an example corresponding to case a) in Figure 4.1, by taking δ = 6.0

and τ = 0.2. The aforementioned graph for this particular choice of parameters is shown

in Figure 4.8.

IV
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654

I II

2

1

µ

0
γ

III

Figure 4.8: An example of the case shown in Figure 4.1 a, with δ = 6.0 and τ = 0.2.

First of all we consider the zone with 2.0 < µ < 6.0: let us take, for instance, µ = 4.0.

By varying γ we see that there is a unique internal steady state for 0 < γ < 2.0, which

is a stable focus because the eigenvalues evaluated along the branch in Figure 4.9 a are

complex conjugate with negative real part. This is confirmed also by Proposition 4.1,

because here we are considering region I.

For γ larger than 2.0 there is no coexistence state.
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The second case we see is µ = 1.5: since 1.0 < µ < 2.0, from Figure 4.8 we have

that, by increasing γ, we cross regions I and II where a unique internal state exists. This

is confirmed from the simulation (bifurcation diagram in Figure 4.9 b): in fact, there is

only one positive branch, corresponding to a stable focus (this fact being ensured both

by eigenvalues and by Propositions 4.1 and 4.3); for γ > 4.5, instead, we only have states

(0, 0) and (1, 0).

The remaining case, where all the four regions in Figure 4.8 are crossed, is 0 < µ < 1.0:

we take µ = 0.5. The bifurcation diagram can be seen in Figure 4.9. For γ < 5.5 =

δ − µ there is a unique internal state, which is again a stable focus (in agreement with

Propositions 4.1, 4.3); at the branching point BP (γ = 5.5) state E∗
− appears: evaluation

of the eigenvalues lets us conclude that it is a saddle point, while E∗
+ is still stable. In fact,

with some calculations it is possible to show that the first set of conditions for stability

given by Proposition 4.5 holds.

Finally, at γ = 5.602944 we have a limit point LP and internal states do not exist anymore.

4.8.2 An example from case b)

Let us consider now an example of case b), with δ = 4.5 and τ = 1.0.
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Figure 4.10: Choosing δ = 4.5 and τ = 1.0 our model corresponds to case b) of Figure

4.1.

Firstly, let us take 2.25 < µ < 4.5, for instance µ = 2.6: this means that we are always

in region I in Figure 4.10, The simulation (whose bifurcation diagram is shown in Figure

4.11 a) shows that the only internal steady state is a stable focus, since along the positive

branch we have complex conjugate eigenvalues with negative real part.

This is expected because we know from Proposition 4.1 that in region (bI) the steady

state is always stable.
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Figure 4.9: Bifurcation diagrams (branch corresponding to (1, 0) not shown) for a choice

of parameters corresponding to Figure 4.8: δ = 6.0, τ = 0.2. a µ = 4.0. b µ = 1.5. c

µ = 0.5. BP : branching point; LP : limit point.

Then we consider 1.0 < µ < 2.25: we take µ = 1.5, so that, when varying γ, we

consider situations corresponding to regions I, II and IV. In this case, looking at Figure

4.10, we know that we find only one internal steady state for values smaller than 3.0 =

δ−µ, two internal states for 3.0 < γ < 3.151531 and no internal states for larger values of

γ. This is confirmed by the bifurcation diagram Figure 4.11 b; the branching point BP ,

where a second state appears, corresponds to γ = 3.0, while the limit point LP can be
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found at γ = 3.151531. Moreover, from the simulation we can see that E∗
+ (corresponding

to the upper branch), since eigenvalues are complex with negative real part, is always a

stable focus, while E∗
− (lower branch) is a saddle point (real eigenvalues with opposite

sign).

This is confirmed also from the theoretical results of the previous sections: Propositions

4.1, 4.3 and 4.4 tell that in regions (bI), (bII) and (bIV) E∗
+ is always stable.

Now we take into account the case of 0.5 < µ < 1.0; for instance, let us take µ = 0.7,

so that by varying γ we go through regions I, II, IV and V. The situation here is more

complex, as can be seen in Figure 4.11 c: there is a unique coexistence state up to

γ = 3.8 = δ − µ, where the branching point BP is located, and from the eigenvalues we

see that this steady state is a stable focus; this is confirmed also by Propositions 4.1 and

4.2.

Then we enter region IV: the upper branch still corresponds to a stable focus, while the

lower branch represents a saddle point. Proposition 4.4 is confirmed again.

In region V, for γ = 4.205955 and γ = 4.679759 we have two supercritical Hopf bifurca-

tions (first Lyapunov coefficients l1 = −1.798048 · 10−1 and l1 = −1.023855 · 101 respec-

tively) and periodic orbits appear. Finally, the limit point corresponds to γ = 4.68004.

Proposition 4.5 gives four conditions for the stability of E∗
+: after some calculations

we find that, for 4 < γ < 4.05 the first condition of the proposition is fulfilled, while

for 4.05 < γ < 4.205955 and 4.679759 < γ < 4.68004 the second condition is true,

so for these values of γ in region V the state is stable; for the remaining values, i.e.

4.205955 < γ < 4.679759, none of the four conditions is satisfied, so the state is unstable.

Finally, let us deal with a case where 0 < µ < 0.5; for instance, µ = 0.2. For values of

γ ≤ 4 the set of parameters corresponds to regions I or II and the unique internal state

is a stable focus: we can tell it both from the eigenvalues and Propositions 4.1 and 4.2.

At γ = 4.007513 (that is, in region III) there is a supercritical Hopf bifurcation with

first Lyapunov coefficient l1 = −1.378195 · 10−2. The second internal state (a saddle

point) appears at γ = 4.3; for γ = 5.521059 we have a neutral saddle H (real eigenvalues,

coincident in absolute value, one negative and one positive) and for values of γ larger than

6.516718 there are no steady states other than the trivial ones.

Let us see if this is confirmed also theoretically. For 4 < γ < 4.3 we refer to Proposition

4.3: here the second and third conditions can not be satisfied, so the only possibility for E∗

to be stable is that the first condition is true; indeed, this happens when 4 < γ < 4.007514.

For 4.007514 < γ < 4.3, instead, E∗ is unstable.

For greater values we have to consider Proposition 4.5, where four conditions for stability

are given. By substitution of the values given for parameters it is possible to see that
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none of them is satisfied, so E∗
+ is unstable here.
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Figure 4.11: Bifurcation diagrams (branch corresponding to (1, 0) not shown) for a choice

of parameters corresponding to Figure 4.10: δ = 4.5, τ = 1.0. a µ = 2.6. b µ = 1.5. c

µ = 0.7. d µ = 0.2. BP : branching point; LP : limit point; H (upper branch): Hopf

bifurcation point; H (lower branch): neutral saddle.

4.8.3 An example from case c)

To conclude, we consider a situation corresponding to case c) of Figure 4.1, with δ = 3.0

and τ = 1.0: Figure 4.12 represents the setting of the model in this case.

We first consider 1.5 < µ < 3.0: let us take µ = 2.0: there is only an internal steady

state, which from eigenvalues we can identify as a stable focus. Here we cross only region

I, so Proposition 4.1 ensures stability of the unique equilibrium.

Then we take µ = 1.0 to account for the region where 0.202041 < µ < 1.5. Here we
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Figure 4.12: When δ = 3.0 and τ = 1.0 we are in a situation corresponding to Figure 4.1

c.

have that E∗
+ is always a stable focus, while the second internal state, which exists when

γ ranges from 2.0 (branching point BP ) to 2.101021 (limit point LP ), is a saddle point.

From the theoretical viewpoint, stability of E∗
+ follows from Propositions 4.1, 4.2 and 4.4.

Finally, the third situation 0 < µ < 0.202041, where we cross regions I, II, III and IV:

let us take µ = 0.1. Here the unique internal state existing for γ < 2.9 is a stable focus

(as already known from Proposition 4.1); at γ = 2.9 = δ−µ we enter region III and find a

branching point BP where the second state appears: E∗
+ is still stable and, as we know also

from theoretical results, E∗
− is unstable (a saddle point). At γ = 4.014922 (inside region V)

there is a supercritical Hopf bifurcation (first Lyapunov coefficient l1 = −2.330104 ·10−2),

and in fact E∗
+ becomes unstable too. At γ = 4.335077 there is a neutral saddle, and then

no internal state exists for γ larger than 4.550807.

Theoretical results for assessing stability of E∗
+ for γ > 2.9 are given in Propositions 4.4

and 4.5. The former tells that in region III (that is, 2.9 < γ < 4) the equilibrium is always

stable; as regards the latter, calculations reveal that for 4 < γ < 4.014922 the second set

of conditions for stability is satisfied, thus E∗
+ is stable; for remaining values, namely

4.014922 < γ < 4.550807, none of the four sets of conditions holds, so the equilibrium is

unstable.
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Figure 4.13: Bifurcation diagrams (branch corresponding to (1, 0) not shown) for a choice

of parameters corresponding to Figure 4.12: δ = 3.0, τ = 1.0. a µ = 2.0. b µ = 1.0.

c µ = 0.1. BP : branching point; LP : limit point; H (upper branch): Hopf bifurcation

point; H (lower branch): neutral saddle.



Chapter 5

Spatial pattern formation

Here we consider our model (1.2) for investigating pattern formation and for determining

the role of the different mechanisms introduced. First of all, we give a brief overview on

Turing pattern formation.

Patterns are a frequently observed phenomenon in chemistry, physics and biology: they

occur in chemical reactions, cell growth, animal dispersal into the environment, species

interactions, animal coats, just to mention a few examples. So in the last decades there

has been a lot of interest in including these mechanisms into a mathematical framework.

The mathematical formalization of these phenomena is based on reaction-diffusion and

reaction-diffusion-chemotaxis equations.

The first work discussing the relation between reaction-diffusion systems and reacting

chemical substances (thus giving an explanation to the process known as morphogenesis)

is that from Alan Turing [42], published in 1952. In this paper a novel concept was

introduced: diffusion, which had always being regarded as a homogenizing process, indeed

can lead to spatial heterogeneity by causing the reacting morphogens to produce patterns

when they are slightly perturbed from their homogeneous steady state. Since Turing’s

work lots of papers and books have focused on the comprehension of these processes

([3],[7], [24], [25] and many others), so that nowadays reaction-diffusion theory and its

application to pattern formation is an important research field, also because, though

aiming at modeling a great variety of complex phenomena, yet it is analytically tractable

and rich.

A general treatment of the theory of Turing pattern formation can be found in [26]

and [27].

Many authors have applied this theory to spatially explicit predator-prey systems ([1], [5]

among others). Here we are going to show similar results referred to our specific problem.

47
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Basically, we consider our models (1.2) and (1.3) and derive conditions on parameters un-

der which a spatially homogeneously stable steady state of the system can be destabilized

by diffusion (and chemotaxis), thus giving rise to the formation of spatial patterns over

the domain.

5.1 Theoretical results for the case with chemotaxis

and without integral

We consider system (1.2) in one spatial dimension

{

ut = D1uxx + F (u, v)

vt = D2vxx − χ(vux)x + G(u, v)
, (5.1)

where we have defined

F (u, v) = u(1 − u) − uv

G(u, v) = −µv + δuv − γuv

1 + τv
. (5.2)

This first step aims to analyze a basic case where the redistribution mechanism is absent.

We linearize around the homogeneously stable1 coexistence steady state (u∗, v∗).

We call (ũ, ṽ) a small perturbation of the steady state and substitute

u = u∗ + ũ , v = v∗ + ṽ

into the system:



















(ũ + u∗)t = D1(ũ + u∗)xx + (ũ + u∗)(1 − ũ − u∗) − (ũ + u∗)(ṽ + v∗)

(ṽ + v∗)t = D2(ṽ + v∗)xx − χ((ṽ + v∗)(ũ + u∗)x)x

−µ(ṽ + v∗) + δ(ũ + u∗)(ṽ + v∗) − γ(ũ + u∗)(ṽ + v∗)

1 + τ(ṽ + v∗)

,

1We know that, depending on the choice of parameters, we might have zero, one or two coexistence

steady states, and we have already shown that, if the last is the case, the equilibrium with the lowest

bacterial component is stable, while the other one is unstable. Since pattern formation theory is based on

the assumption that a homogeneously stable situation is destabilized by diffusion, we need only consider

the stable steady state. If we are in a situation where there is no such steady state, then of course Turing

mechanisms do not apply.
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For linearization we drop terms of the type ũ2, ṽ2 and ũṽ and use a Taylor expansion for

the Holling-type term; what is left is















ũt = D1ũxx + ũ(1 − u∗) + u∗(1 − u∗) − ũv∗ − ṽu∗ + u∗v∗

ṽt = D2ṽxx − χv∗ũxx − µṽ − µv∗ + δũv∗ + δṽu∗ + δu∗v∗

− γũv∗

1 + τv∗
− γu∗v∗

1 + τv∗
− γu∗ṽ

(1 + τv∗)2

;

rearranging terms and having in mind the equations solved by u∗ and v∗ we get the

linearized system
{

ũt = D1ũxx + F ∗
u ũ + F ∗

v ṽ

ṽt = D2ṽxx − χv∗ũxx + G∗
uũ + G∗

vṽ
, (5.3)

where F ∗
u , F ∗

v , G∗
u and G∗

v are the derivatives of F (u, v) and G(u, v) with respect to u and

v, evaluated at the steady state; in detail,

F ∗
u = −u∗

F ∗
v = −u∗

G∗
u =

(

δ − γ

1 + τv∗

)

v∗

G∗
v =

γτu∗v∗

(1 + τv∗)2

This problem is to be solved by means of the separation of variables method.

We look for solutions of the form

w(t, x) = (ũ(t, x), ṽ(t, x))T = cT (t)X(x) , (5.4)

where c = (c1, c2)
T is a constant vector, whose components can be found by performing

a Fourier expansion of the initial conditions.

Substitution into (5.3) yields

{

c1T
′X = D1c1TX ′′ + F ∗

uc1TX + F ∗
v c2TX

c2T
′X = D2c2TX ′′ + G∗

uc1TX + G∗
vc2TX

; (5.5)

the expression for T (t) consequently is

T (t) ∝ exp (λt) (5.6)

where λ has to be determined. Next, we determine X(x) as the general solution of the

eigenvalue problem

−ηX(x) + X ′′(x) = 0 (5.7)
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on [0, 1] with zero-flux boundary conditions, finding that a corresponding eigenfunction is

Xk(x) ∝ cos(kx), k = nπ, n = 0, 1, 2, . . . , ηk = −k2 . (5.8)

X(x) will be a combination of Xk(x) for different k, so that the solution to (5.3) will be

w(x, t) =
∑

k

ck exp (λt) cos kx. (5.9)

And finally, substituting into system (5.5) we get the following equation for c:

X
[

λI + k2D − J
]

c = 0. (5.10)

where

D =

(

D1 0

−χv∗ D2

)

, J =

(

F ∗
u F ∗

v

G∗
u G∗

v

)

.

Now, equation (5.10) is satisfied whenever

det
(

λI + k2D − J
)

= 0 . (5.11)

When k = 0 (5.11) is equivalent to

λ2 − trJλ + det J = 0 .

This is the homogeneous case, that is, no spatial effect is present; since we chose (u∗, v∗)

to be the stable steady state, the eigenvalues are negative.

Thus the solution component corresponding to k = 0 is

w0(t) = c0

(

A1 exp (λ−
0 t) + A2 exp (λ+

0 t)
)

,

(where λ±
0 are the negative eigenvalues), which cannot persist at large times.

Considering the case k 6= 0, instead, in order to have a nontrivial solution for the eigen-

vectors, the eigenvalues are found by solving

λ2 + Φ(k2)λ + Ψ(k2) = 0 (5.12)

where Φ(x) and Ψ(x) are defined, for x > 0, as

Φ(x) = (D1 + D2)x − (F ∗
u + G∗

v)

Ψ(x) = D1D2x
2 − (D1G

∗
v + D2F

∗
u + χv∗F ∗

v ) x + det J .
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Since we know that (u∗, v∗) is stable, we have that −(F ∗
u + G∗

v) > 0, therefore Φ(x) > 0

for all x.

The two solutions of (5.12) are given by

λ±(k2) =
1

2

[

−Φ(k2) ±
√

Φ2(k2) − 4Ψ(k2)
]

. (5.13)

The values of k2 for which ℜ(λ+(k2)) > 0 are those such that Ψ(k2) < 0.

For this to be satisfied two conditions must necessarily hold: both the coefficient of the

first order term and the minimum of Ψ must be negative.

Therefore, first of all we have to impose

D1G
∗
v + D2F

∗
u + χv∗F ∗

v > 0 (5.14)

(this is possible for proper choices of parameters, since F ∗
u , F ∗

v < 0 and G∗
v > 0).

This yields

χ < −D1G
∗
v + D2F

∗
u

v∗F ∗
v

= χ̃ (5.15)

Then we have to find the minimum value for Ψ(k2):

Ψ′(k2) = 2D1D2k
2 − (D1G

∗
v + D2F

∗
u + χv∗F ∗

v ) = 0

is satisfied for

k2 = k2
min =

D1G
∗
v + D2F

∗
u + χv∗F ∗

v

2D1D2

> 0 (5.16)

(because of (5.14)); therefore Ψmin = Ψ(k2
min) is given by

Ψmin = − 1

4D1D2

(D1G
∗
v + D2F

∗
u + χv∗F ∗

v )2 + det J , (5.17)

and this quantity is negative if and only if

(D1G
∗
v + D2F

∗
u + χv∗F ∗

v )2 > 4D1D2 det J . (5.18)

This is the second condition to be imposed in order to have an instability range for

wavenumbers, which is delimited by the two solutions of Ψ(k2) = 0, namely,

k2
± =

1

2D1D2

[

(D1G
∗
v + D2F

∗
u + χv∗F ∗

v ) ±
√

(D1G∗
v + D2F ∗

u + χv∗F ∗
v )2 − 4D1D2 det J

]

,

(5.19)

so that

k2
− < k2 < k2

+ . (5.20)
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is the instability range.

There is a critical value determining whether the instability range exists or not, that is,

when Ψmin = 0: in that case,

(D1G
∗
v + D2F

∗
u + χv∗F ∗

v )2 = 4D1D2 det J ;

we can therefore define a critical chemotactic coefficient,

χcrit =
1

v∗F ∗
v

[

−(D1G
∗
v + D2F

∗
u ) +

√

4D1D2 det J
]

, (5.21)

such that, when χ < χcrit, condition (5.18) is satisfied.

We can compare χ̃ in (5.15) and χcrit in (5.21) to see if they are compatible; actually,

since F ∗
v < 0, we have that χcrit < χ̃, so the condition for the existence of the range of

instability (5.20) is simply

χ < χcrit =
1

v∗F ∗
v

[

−(D1G
∗
v + D2F

∗
u ) +

√

4D1D2 det J
]

. (5.22)

We can summarize these results in the following

Proposition 5.1 Let (5.3) be the system describing the spatio-temporal evolution of the

perturbation which is the linearization of the system in one spatial dimension (5.1), where

F (u, v) and G(u, v) are as in (5.2).

If (5.22) holds, then the solution to (5.3) is, for t large,

w(x, t) ∼
k=k+
∑

k=k−

ck exp (λ(k2)t) cos(kx) , (5.23)

where k2
± are defined in (5.19).

5.1.1 Special case: χ = 0

A special case is when chemotaxis does not occur, i.e. χ = 0. As a consequence condition

(5.22) becomes
1

v∗F ∗
v

[

−(D1G
∗
v + D2F

∗
u ) +

√

4D1D2 det J
]

> 0 .

Therefore we need to impose conditions on the diffusion coefficients in order to have

instability and the resulting pattern formation, namely
{

D1G
∗
v + D2F

∗
u > 0

(D1G
∗
v + D2F

∗
u )2 > 4D1D2 det J .

(5.24)
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The first inequality gives

D2 < −G∗
v

F ∗
u

D1. (5.25)

The critical situation (dividing cases where pattern formation occurs from cases where

perturbations of the steady state are dumped) corresponds to

(D1G
∗
v + D2F

∗
u )2 = 4D1D2 det J ;

from this we are able to define two critical diffusion coefficients for amoeba, as a function

of the diffusion coefficient of bacteria:

Dcrit
2 =

1

(F ∗
u )2

(

det J − F ∗
v G∗

u ± 2
√

−F ∗
v G∗

u det J
)

D1 , (5.26)

such that when either D2 < (Dcrit
2 )− or D2 > (Dcrit

2 )+ the interval (5.20) exists.

We check if the two conditions in (5.24) are compatible. (5.25) may be rewritten as

D2 <
γτv∗

(1 + τv∗)2
D1 ;

the quantity on the right-hand side is smaller than D1: in fact, this is true if and only if

τ 2v∗2 +τ(2−γ)v∗+1 > 0 holds; but this expression is equivalent to trJ < 0 (see Equation

(4.4) in Chapter 4), which is certainly true since (u∗, v∗) is homogeneously stable.

The two conditions (5.25) and D2 > (Dcrit
2 )+ are thus compatible if

det J − F ∗
v G∗

u + 2
√

−F ∗
v G∗

u det J

F ∗
u

2 < −G∗
v

F ∗
u

; (5.27)

but the left-hand side term is equal to

G∗
v

F ∗
u

− 2G∗
u

F ∗
u

+
2
√

(F ∗
u )2G∗

u(G
∗
u − G∗

v)

F ∗
u

2 =
G∗

v

F ∗
u

− 2G∗
u

F ∗
u

+
2
√

G∗
u(G

∗
u − G∗

v)

F ∗
u

which is less than −G∗
v

F ∗
u

if and only if

2
G∗

v

F ∗
u

− 2G∗
u

F ∗
u

+
2
√

G∗
u(G

∗
u − G∗

v)

F ∗
u

< 0 ,

that is, if and only if

G∗
v − G∗

u −
√

G∗
u(G

∗
u − G∗

v) > 0 . (5.28)

After some calculations, this is satisfied if and only if

δT 2(v∗)2 + 2δTv∗ + δ − γ − γT < 0 (5.29)
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which is false: in fact, this implies that det J(E∗) < 0, which is not the case since E∗ is

homogeneously stable.

Therefore (Dcrit
2 )+ > −G∗

v

F ∗
u

.

Now we look for the compatibility of (5.25) and D2 < (Dcrit
2 )−. This time (Dcrit

2 )− < −G∗

v

F ∗

u

if and only if

G∗
v − G∗

u +
√

G∗
u(G

∗
u − G∗

v) > 0 (5.30)

that is, if and only if

G∗
v(G

∗
v − G∗

u) < 0 (5.31)

and since G∗
v > 0, this means that

δT 2(v∗)2 + 2δTv∗ + δ − γ − γT > 0 (5.32)

which is true (det J(E∗) > 0). Thus we are able to conclude that the two conditions in

(5.24) can be summarized as

D2 < (Dcrit
2 )− (5.33)

and we can state the following

Proposition 5.2 Let χ = 0 in (5.3). Then conditions (5.14) and (5.18) ensuring (5.23)

are replaced by

D2 < (Dcrit

2 )− (5.34)

where (Dcrit

2 )− is defined in (5.26).

Notice that condition (5.34) is less restrictive than (5.22).

This means in a sense that chemotaxis has a stabilizing effect on the dynamics of the two

populations, possibly because aggregation prevents the perturbation of the steady state

from expanding.

5.2 Theoretical results for the case with both integral

and chemotaxis

Now we introduce the diffusion and chemotaxis terms in the system with the integral

term, in order to study the possibility of having spatial patterns.

We consider the full system with the integral term










ut = D1uxx + u(1 − u) − uv

vt = D2vxx − χ(vux)x + δv

∫ 1

0
uv dx

∫ 1

0
v dx

− µv − γuv

1 + τv

, (5.35)
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and linearize about the homogeneously stable coexistence steady state (u∗, v∗): the dif-

ference with the system we have seen in the previous section lies in the linearization of

the integral part; in fact, if we call (ũ, ṽ) the deviation from the steady state, set

u = ũ + u∗ , v = ṽ + v∗

and substitute into the term

δv

∫ 1

0
uv dx

∫ 1

0
v dx

,

we get

1
∫ 1

0
ṽ dx + v∗

δ(ṽ + v∗)

(

v∗

∫ 1

0

ũ dx + u∗

∫ 1

0

ṽ dx + u∗v∗

)

=

=
1

v∗

(

1 +
∫ 1
0 ṽ dx

v∗

)

(

δu∗ṽ + δv∗

∫ 1

0

ũ dx + δu∗

∫ 1

0

ṽ dx + δu∗v∗

)

=

(

1 −
∫ 1

0
ṽ dx

v∗

)

(

δu∗ṽ + δv∗

∫ 1

0

ũ dx + δu∗

∫ 1

0

ṽ dx + δu∗v∗

)

= δu∗ṽ + δv∗

∫ 1

0

ũ dx + δu∗

∫ 1

0

ṽ dx + δu∗v∗ − δu∗

∫ 1

0

ṽ dx

= δu∗ṽ + δu∗v∗ + δv∗

∫ 1

0

ũ dx.

Therefore, when we add this expression to the other linearized components, this is what

we get:






















ũt = D1ũxx − u∗ũ − u∗ṽ

ṽt = −χv∗ũxx + D2ṽxx −
γv∗

1 + τv∗
ũ +

(

δu∗ − µ − γu∗

(1 + τv∗)2

)

ṽ

+δv∗

∫ 1

0

ũ dx + δu∗v∗ − µv∗ − γu∗v∗

1 + τv∗

.

By rearranging terms, this can be rewritten as






ũt = D1ũxx + F ∗
u ũ + F ∗

v ṽ

ṽt = −χv∗ũxx + D2ṽxx + (G∗
u − δv∗)ũ + G∗

vṽ + δv∗

∫ 1

0

ũ dx
, (5.36)

where F ∗
u , F ∗

v , G∗
u and G∗

v are the partial derivatives of the reactions F (u, v) and G(u, v)

as defined in Section 5.1, evaluated at the steady state.

Again, we look for a solution

w(t, x) = cT (t)X(x) ;
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as before Xk(x) ∝ cos(kx), with k = nπ , n = 0, 1, 2, . . . and η = −k2 is a solution to

(5.7), and X(x) is a linear combination of Xk(x).

Substitution into (5.36) and some algebra yield

[

λIX + k2DX − AX − M

∫ 1

0

Xdx

]

c = 0. (5.37)

where

D =

(

D1 0

−χv∗ D2

)

, A =

(

F ∗
u F ∗

v

G∗
u − δv∗ G∗

v

)

, M =

(

0 0

δv∗ 0

)

.

Now, for mode number k = 0, system (5.37) reduces to

[λI − A − M ] c = 0 ,

which is satisfied when

det (λI − A − M) = λ2 − (F ∗
u + G∗

v)λ + F ∗
uG∗

v − F ∗
v G∗

u = 0 : (5.38)

but since we know that the steady state (u∗, v∗) is homogeneously stable, we get that the

two solutions of (5.38) have negative real part.

When k 6= 0, instead, (5.37) becomes

[

λI + k2D − A
]

Xk(x)c = 0 ;

so, in order to find the eigenvalues, the equation to be solved is

det (λI + k2D − A) = λ2 +
[

k2(D1 + D2) − (F ∗
u + G∗

v)
]

λ (5.39)

+
[

D1D2k
4 − (D1G

∗
v + D2F

∗
u + χv∗F ∗

v )k2 + F ∗
uG∗

v − F ∗
v G∗

u + δv∗F ∗
v

]

= 0.

If we define

Φ(x) = (D1 + D2)x − (F ∗
u + G∗

v)

Ψ(x) = D1D2x
2 − (D1G

∗
v + D2F

∗
u + χv∗F ∗

v ) x + (det J + δv∗F ∗
v )

then (5.39) is equivalent to

λ2 + Φ(k2)λ + Ψ(k2) = 0.

As before, since Φ(k2) > 0, the instability range (that is, the interval of k2 such that

ℜλ(k2) > 0) is found by imposing Ψ(k2) < 0.
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If we analyze more in detail the y-intercept of the parabola given by y = Ψ(k2), we get

that

det J + δv∗F ∗
v = F ∗

uG∗
v − F ∗

v

(

δv∗ − γv∗

1 + τv∗
− δv∗

)

= − γτu∗2v∗

(1 + τv∗)2
− γu∗v∗

(1 + τv∗)

= − γu∗v∗

(1 + τv∗)2
(1 + τ(u∗ + v∗))

which of course is always negative: therefore there is always some k 6= 0 such that Ψ(k2)

is negative, so, differently from the case without integral, there is always an instability

range, whatever the sign of D1G
∗
v +D2F

∗
u +χv∗F ∗

v , as we can see in Figure 5.1. The width

−10 −8 −6 −4 −2 0 2 4 6 8 10
−15

−10

−5

0

5

10

k2

Ψ
(k

2 )

Figure 5.1: Two examples of Ψ(k2). Since det J + δv∗F ∗
v < 0, there is always a range of

unstable wavenumbers 0 < k2 < k̄2.

of this interval depends on the specific choice of parameters; in particular, it is given by

0 < k2 < k̄2 , (5.40)

where

k̄2 =
(D1G

∗
v + D2F

∗
u + χv∗F ∗

v ) +
√

(D1G∗
v + D2F ∗

u + χv∗F ∗
v )2 − 4D1D2 (det J + δv∗F ∗

v )

2D1D2

.

(5.41)

We are able to conclude that the full solution to the linearized system with the integral

term is, for t large, given by

w(x, t) ∼
k=k̄
∑

k=0

ck exp (λ(k2)t) cos (kx).
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Proposition 5.3 For the problem with redistribution mechanism (5.35), there is always

an interval of wavenumbers 0 < k2 < k̄2, where k̄2 is defined as in (5.41), such that

perturbation of the homogeneous steady state persists for t large; in other words,

w(x, t) ∼
k=k̄
∑

k=0

ck exp (λ(k2)t) cos (kx) for t large. (5.42)

5.3 Destabilizing the bacteria-only state (1, 0)

Since the bacteria-only homogeneous equilibrium (1, 0) is stable when µ > δ−γ, one may

wonder if it is possible to destabilize it with diffusion and/or chemotaxis.

The linearization of the full system (1.2) around (1, 0) yields

{

ũt = D1ũxx − ũ − ṽ

ṽt = D2ṽxx + (δ − γ − µ)ṽ
,

so in this case the matrix appearing in (5.37) become

D =

(

D1 0

0 D2

)

, A =

(

−1 −1

0 δ − γ − µ

)

while M is the 2 × 2 zero matrix.

Following the usual procedure, the mode corresponding to k = 0 is stable, because the

corresponding eigenvalues are λ = −1 and λ = δ − γ − µ, which are both negative.

For all the other modes, instead, the dispersion relation is given by det λI + k2D − A = 0,

i.e.

λ2 + Φ(k2)λ + Ψ(k2) = 0

with

Φ(x) = (D1 + D2)x + 1 + µ + γ − δ

Ψ(x) = D1D2x
2 + (D2 + D1(µ + γ − δ))x + µ + γ − δ .

We notice that Ψ(k2) is always strictly positive; this means that the two eigenvalues surely

have negative real parts, so there is no instability range in this case.

This lets us deduce that

Proposition 5.4 When the homogeneous steady state (1, 0) is stable, it can never be

destabilized by means of Turing mechanisms.
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5.4 The two-dimensional case

Now we are going to analyze Turing pattern formation in the case of a two-dimensional

domain Ω. We remind that the problem we are taking into account is










































ut = D1∆u + u(1 − u) − uv

vt = D2∆v − χ∇ · (v∇u) − µv + δv

∫∫

Ω
uvdx

∫∫

Ω
vdx

− γuv

1 + τv

u(0,x) = u0(x) ∀x ∈ Ω

v(0,x) = v0(x) ∀x ∈ Ω
∂u

∂ν
(t,x) =

∂v

∂ν
(t,x) = 0 ∀x ∈ ∂Ω, ∀t ≥ 0

. (5.43)

The corresponding linearized system accounting for the behavior of the perturbation (ũ, ṽ)

of the homogeneous steady state (u∗, v∗) is then

{

ũt = D1∆ũ + F ∗
u ũ + F ∗

v ṽ

ṽt = −χv∗∆ũ + D2∆ṽ + G∗
uũ + G∗

vṽ

when we do not consider non-local interaction between the two populations, or

{

ũt = D1∆ũ + F ∗
u ũ + F ∗

v ṽ

ṽt = −χv∗∆ũ + D2∆ṽ + (G∗
u − δv∗)ũ + G∗

vṽ + δv∗
∫∫

ũdxdy

when this mechanism is involved.

This implies that the solution to the linearized problem is the analogous of (5.4) for

the two-dimensional case (be it with or without integral term):

w(t, x) = cT (t)X(x)Y (y); (5.44)

this time the problem ∆Z + k2Z = 0 is solved by Z = X(x)Y (y); thus, by separating

variables, we have
X ′′(x)

X(x)
+

Y ′′(y)

Y (y)
= −k2 = −(k2

1 + k2
2) (5.45)

where
X ′′(x)

X(x)
= −k2

1 and
Y ′′(y)

Y (y)
= −k2

2.

The solutions are

X(x) ∝ cos (k1x) and Y (y) ∝ cos (k2y), (5.46)

where, by applying Neumann boundary conditions, k1 = nπ and k2 = pπ for n, p =

0, 1, 2 . . ..
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Therefore conditions on wavenumbers ensuring diffusion-driven instability that we found

in the previous sections are still valid, provided

k2 = n2π2 + p2π2 , n, p = 0, 1, 2, . . . . (5.47)

In detail:

Proposition 5.5 Let us consider the two-dimensional problem (5.43). Then pattern

formation of Turing type due to destabilization of the homogeneously stable equilibrium

(u∗, v∗) always applies for the case with non-local term, while it is feasible under condi-

tions (5.14) and (5.18) when the interaction is only local.

In particular the two intervals of instability for wavenumbers are, respectively,

k2
− < k2 = k2

1 + k2
2 < k2

+ ,

k2
± =

1

2D1D2

[

(D1G
∗
v + D2F

∗
u + χv∗F ∗

v ) ±
√

(D1G∗
v + D2F ∗

u + χv∗F ∗
v )2 − 4D1D2 det J

]

(5.48)

and

0 < k2 = k2
1 + k2

2 < k̄2 ,

k̄2 =
(D1G

∗
v + D2F

∗
u + χv∗F ∗

v ) +
√

(D1G∗
v + D2F ∗

u + χv∗F ∗
v )2 − 4D1D2 (det J + δv∗F ∗

v )

2D1D2

.

(5.49)

Therefore

w(t, x, y) ∼
∑

k1,k2

c12 cos(k1x) cos(k2y) , (5.50)

where k1 = nπ, k2 = pπ are taken as above.
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Numerical approximation of the

problem

Our system has been solved with a forward in time, centered in space, explicit finite differ-

ence scheme. For reference on numerical approximation of partial differential equations,

see for instance [23] or [43].

For standard diffusion equations it is well known that, in order to ensure stability and

convergence of this method, the time step ∆t and the space step ∆x must satisfy

∆t ≤ (∆x)2

2
.

In the case of a nonlinear reaction-diffusion-chemotaxis equation the situation is much

more complicated, and it is quite difficult to derive an analogous bound for ∆t. Therefore,

space and time steps used for performing numerical simulations have been carefully chosen

in order to avoid instability and divergence of the method.

We performed numerical simulations for both one-dimensional and two-dimensional

domains: the results of the former are more easily interpreted because we can plot solu-

tion profiles, while the latter, though computationally more demanding, has been chosen

because density plots in this case are more adequate to be compared with the results of

the biological experiments (which basically are performed on disks).

We are going to explain both approaches in the following sections.

6.1 Numerical method for one-dimensional domain

We consider system (1.2), which is in non-dimensionalized form, thus the spatial domain

is Ω = [0, 1]. We are interested in computing the solution of the problem from the initial

61
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time t0 = 0 up to a given time T , so we consider t ∈ [0, T ].

First of all, we need to specify a mesh for discretization: suppose that we want to

divide Ω and [0, T ] in N and M intervals respectively; then we can define the space step

and time step as

∆x =
1

N

∆t =
T

M

(6.1)

respectively; the points on the grid will be (xi, tj), where

xi = i∆x for i = 0 . . . N

tj = j∆t for j = 0 . . . M.

The mesh over which we will perform our simulations is shown in Figure 6.1.

We introduce the following notation:

W j
i = w(xi, tj)

and approximate the temporal derivatives with a forward difference:

∂w

∂t
(xi, tj) ∼

W j+1
i − W j

i

∆t
, i = 0 . . . N , j = 0 . . . M − 1 ; (6.2)

the second order spatial derivatives with a centered difference scheme:

∂2w

∂x2
(xi, tj) ∼

W j
i+1 − 2W j

i + W j
i−1

(∆x)2
, i = 0 . . . (N − 1) , j = 0 . . . M ; (6.3)

0 i

j

M

N
∆x

∆t

Figure 6.1: The mesh for the discretization of Ω × [0, T ].
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and finally, the first order spatial derivatives appearing in the chemotactic term with a

centered difference:

∂w

∂x
(xi, tj) ∼

W j
i+1 − W j

i−1

2∆x
, i = 0 . . . (N − 1) , j = 0 . . . M (6.4)

Clearly, depending on the specific derivative considered, we will have either w = u or

w = v.

These are the discretizations chosen for the derivatives. We need to approximate also

the integrals appearing in the equation for v in system (1.2).

To this end we use Simpson’s method (see for instance [11]): using the space step defined

above, the integral of function w (where this time w = uv or w = v) over the spatial

domain Ω is discretized as follows:

∫

Ω

w(t, x)dx ∼ ∆x

3

∑

i=1...(N−1)

i odd

[

W j
i−1 + 4W j

i + W j
i+1

]

. (6.5)

We may also use other methods; this issue is briefly addressed in Section 6.1.1.

Therefore the discretization of model (1.2) is, for i = 1 . . . (N−1) and j = 1 . . . (M−1),

given by

U j+1
i − U j

i

∆t
= D1

U j
i+1 − 2U j

i + U j
i−1

(∆x)2
+ U j

i (1 − U j
i ) − U j

i V
j
i

(6.6)

V j+1
i − V j

i

∆t
= D2

V j
i+1 − 2V j

i + V j
i−1

(∆x)2
− χ

U j
i+1 − 2U j

i + U j
i−1

(∆x)2
V j

i

−χ
(U j

i+1 − U j
i−1)

2∆x

(V j
i+1 − V j

i−1)

2∆x
− µV j

i − γU j
i V

j
i

1 + τV j
i

+δ

∑

i=1...(N−1)

i odd

[

U j
i−1V

j
i−1 + 4U j

i V
j
i + U j

i+1V
j
i+1

]

∑

i=1...(N−1)

i odd

[

V j
i−1 + 4V j

i + V j
i+1

] V j
i .

Finally, we have to deal with initial and Neumann boundary conditions. The former are

included in the initialization: for all i, U0
i and V 0

i are assigned according to the initial

value given as an input.

The latter are taken into account in the following way: at every time step we assume,

without loss of generality, that there exist two additional points, one on the left of x = 0

(that we are going to name −∆x) and one on the right of x = 1 = N∆x (named
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(N + 1)∆x); Neumann boundary conditions hence become

∂w

∂ν
(0, tj) ∼

W j
1 − W j

−1

2∆x
= 0

∂w

∂ν
(1, tj) ∼

W j
N+1 − W j

N−1

2∆x
= 0

which imply

W j
1 = W j

−1 and W j
N+1 = W j

N−1

for W = U, V and j = 0 . . . M .

Consequently, for i = 0 and i = N the first-order spatial derivatives in the equation for v

are zero, while the second-order spatial derivatives become

∂2w

∂x2
(0, tj) ∼

W j
1 − 2W j

0 + W j
−1

(∆x)2
=

2(W j
1 − W j

0 )

(∆x)2

∂2w

∂x2
(1, tj) ∼

W j
N+1 − 2W j

N + W j
N−1

(∆x)2
=

2(W j
N+1 − W j

N)

(∆x)2
.

(6.7)

6.1.1 On the discretization of integrals

In order to approximate the integrals appearing in model (1.2) we use Simpson’s method;

clearly, this is not the only admissible choice: other methods may be used, such as, for

instance, Romberg’s method (see [11]) which is proven to be more accurate. Another

possibility is to use the approximation given by Riemann sums: this is a more naive

approach, but still accurate if the step is taken small enough.

In our numerical simulations we tested these three types of discretization: the results

did not differ significantly, provided the space step was small enough for convergence;

moreover, Romberg’s method is computationally more demanding than the other two.

Therefore we chose to use Simpson method as a good compromise between accuracy and

computational cost.

6.2 Numerical method for a square domain

The aforementioned numerical method can be extended to the case of a two-dimensional

spatial domain Ω; that is, when we consider system (1.3).

Firstly, we consider a square domain, i.e. Ω = [0, 1]× [0, 1] (we may also use a rectangular

domain: the procedure would be exactly the same). In this case we have to construct a
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three-dimensional mesh: assuming that Ω lies on the x−y plane, we divide the side of the

square along the x-axis into N intervals, and the side along the y-axis into P intervals;

the time interval [0, T ] is divided, as before, into M intervals.

Therefore we get the two space steps and the time step as in (6.1):

∆x =
1

N

∆y =
1

P

∆t =
T

M

(6.8)

and a generic point on the grid, (a representation of which is shown in Figure 6.2) is

(xi, yk, tj) where

xi = i∆x for i = 0 . . . N

yk = k∆y for k = 0 . . . P

tj = j∆t for j = 0 . . . M.

Notice that, for simmetry reasons, in our simulations we will always take N = P , i.e.

∆x = ∆y.

Therefore this time the discretized model will be function of U j
i,k = u(xi, yk, tj) and V j

i,k =

v(xi, yk, tj).

The second-order derivatives are replaced here by the Laplacian, so we have

∆w(xi, yk, tj) ∼
W j

i+1,k − 2W j
i,k + W j

i−1,k

(∆x)2
+

W j
i,k+1 − 2W j

i,k + W j
i,k−1

(∆y)2
, (6.9)

i = 0 . . . (N − 1) , k = 0 . . . (P − 1) , j = 0 . . . M ;

y

x

t

j

∆t

0

N

Pk

i

M
∆y

∆x

Figure 6.2: The spatial domain Ω is discretized into small rectangles; the system is eval-

uated over this spatial mesh at times 0 ≤ tj ≤ T .
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the first-order derivative with respect to y is

∂w

∂y
(xi, yk, tj) ∼

W j
i,k+1 − W j

i,k−1

2∆y
, i = 0 . . . (N − 1) , k = 0 . . . (P − 1) , j = 0 . . . M .

(6.10)

Clearly, the integral term now contains double integrals. We may use Simpson’s method

as we did in Section 6.1, extended to two dimensions; however, this is more complex

to implement and computationally heavier, so we decide to approximate the integral by

means of Riemann sums: at every time step j,

∫∫

Ω

w dxdy ∼
N
∑

i=0

P
∑

k=0

W j
i,k∆x∆y ; (6.11)

if ∆x and ∆y are sufficiently small, this simple approximation will be accurate enough to

avoid us appealing to more refined methods.

We can therefore write our numerical approximation of system (1.3):

U j+1
i,k − U j

i,k

∆t
= D1

(

U j
i+1,k − 2U j

i,k + U j
i−1,k

(∆x)2
+

U j
i,k+1 − 2U j

i,k + U j
i,k−1

(∆y)2

)

+U j
i,k(1 − U j

i,k) − U j
i,kV

j
i,k

V j+1
i,k − V j

i,k

∆t
= D2

(

V j
i+1,k − 2V j

i,k + V j
i−1,k

(∆x)2
+

V j
i,k+1 − 2V j

i,k + V j
i,k−1

(∆y)2

)

−χ

(

U j
i+1,k − 2U j

i,k + U j
i−1,k

(∆x)2
+

U j
i,k+1 − 2U j

i,k + U j
i,k−1

(∆y)2

)

V j
i,k

−χ
(U j

i+1,k − U j
i−1,k)

2∆x

(V j
i+1,k − V j

i−1,k)

2∆x

−χ
(U j

i,k+1 − U j
i,k−1)

2∆y

(V j
i,k+1 − V j

i,k−1)

2∆y

−µV j
i,k −

γU j
i,kV

j
i,k

1 + τV j
i,k

+ δ

∑N
i=0

∑P
k=0 U j

i,kV
j
i,k∆x∆y

∑N
i=0

∑P
k=0 V j

i,k∆x∆y
V j

i , (6.12)

for i = 1 . . . (N − 1), k = 1 . . . (P − 1) and j = 1 . . . M .

Finally, we come to initial and boundary conditions. For initial conditions, U0
ik and V 0

ik

are assigned for every point of the spatial mesh (xi, yk), i = 0 . . . N, j = 0 . . . P .

As regards Neumann boundary conditions, we need to divide the points of the sides

of the square into three categories:
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a) points of the kind (0, yk) and (1, yk), k = 1 . . . (P − 1);

b) points of the kind (xi, 0) and (xi, 1), i = 1 . . . (N − 1);

c) vertices (0, 0), (0, 1), (1, 0) and (1, 1).

For points of type a) the normal derivative is parallel to the x-axis: so, as in Section 6.1,

we can think, without loss of generality, of having two additional points (x−∆x, yk) and

(x(N+1)∆x, yk) so that first-order derivatives are zero while the Laplacians become

∆w(0, yk, tj) ∼
2(W j

1,k − W j
0,k)

(∆x)2
+

W j
0,k+1 − 2W j

0,k + W j
0,k−1

(∆y)2

∆w(1, yk, tj) ∼
2(W j

N+1,k − W j
N,k)

(∆x)2
+

W j
N,k+1 − 2W j

N,k + W j
N,k−1

(∆y)2
.

(6.13)

For the points of type b), instead, the normal derivative is parallel to the y-axis, so the

additional points are (xi, y−∆y) and (xi, y(P+1)∆y), and the Laplacians are

∆w(xi, 0, tj) ∼
W j

i+1,0 − 2W j
i,0 + W j

i−1,0

(∆x)2
+

2(W j
i,1 − W j

i,0)

(∆y)2

∆w(xi, 1, tj) ∼
W j

i+1,P − 2W j
i,P + W j

i−1,P

(∆x)2
+

2(W j
i,P+1 − W j

i,P )

(∆y)2
.

(6.14)

Finally, for the four vertices (points of type c)) the Laplacians are taken to be

∆w(0, 0, tj) ∼
2(W j

1,0 − W j
0,0)

(∆x)2
+

2(W j
0,1 − W j

0,0)

(∆y)2

∆w(1, 0, tj) ∼
2(W j

N,0 − W j
N−1,0)

(∆x)2
+

2(W j
N,1 − W j

N,0)

(∆y)2

∆w(0, 1, tj) ∼
2(W j

1,P − W j
0,P )

(∆x)2
+

2(W j
0,P − W j

0,P−1)

(∆y)2

∆w(1, 1, tj) ∼
2(W j

N,P − W j
N−1,P )

(∆x)2
+

2(W j
N,P − W j

N,P−1)

(∆y)2
.

(6.15)
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6.3 Numerical method for a circular domain

As we said in the introduction of this chapter, in order to compare our model with

experiments from biology, we need to use a two-dimensional domain; moreover, since co-

cultures of amoebae and bacteria are made on petri dishes, it is more suitable considering

a circular domain (rather than a square one). This is the issue we address in this section.

If Ω is a circle, we may use finite elements methods rather than finite differences; or we

may write our problem in polar coordinates, build a polar mesh and use finite differences.

Actually, we choose an alternative approach. Since we have already implemented the

numerical approximation on a square domain, we can maintain the rectangular mesh and

build the new circular domain over it: we assign a negative value (say, −2) to the nodes

of the mesh lying outside the circle of radius 1/2 inscribed in the square.

In this way, points where u and v have this value are not considered when evaluating

(6.12), because they do not belong to the circle.

One may think that a rectangular mesh on a circular domain is not so appropriate;

actually, if space steps are sufficiently small, the rectangular grid is almost the same as

the polar one.

a b

Figure 6.3: On a circular domain we may use either a polar grid or a rectangular one: if

steps are sufficiently small, the two options are almost equivalent. a Rectangular mesh.

b Polar mesh.

Therefore, for all rows i = 0 . . . N we define two indices, named left[i] and right[i],

which approximate the margins of the circle for that specific row1, as shown in Figure

6.4; so that at every time step 0 < tj ≤ T , we evaluate (6.12) for all i between 1 and

N − 1 and for j between left[i] and right[i] (instead of j = 1 . . . (M − 1)). The integrals

appearing in the equation for amoebae have obviously been evaluated only on the circle.

Consequently, also Neumann boundary conditions have to be imposed on left[i] and right[i]

1for small space steps this is a good approximation.
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right[i + 1]

right[i + 2]

left[i + 1]

left[i + 2]

left[i] right[i]

Figure 6.4: Definition of column indices left[i] and right[i].

instead of the sides of the square.

These are the only changes to be done in order to adapt the method presented in the

previous section.

6.4 Initial conditions

Simulations were run with initial conditions of two types: either both amoeboid and bac-

terial populations are distributed all over the domain Ω, or there is a homogeneous layer

of bacteria with a spot of amoebae in the center.

The first choice corresponds to a situation where it is interesting to study and verify

numerically the formation of Turing patterns. The latter, instead, reproduces the initial

conditions of in vivo experiments, where bacteria are plated homogeneously on the petri

dish and then a small amount of amoebae is inoculated.

Since, of course, in real experiments there are some fluctuations, so that the concentration

of cells in a homogeneous layer actually is not exactly homogeneous, we have also per-

formed simulations accounting for a perturbed initial datum. This stochastic variability

has been modeled by W 0
ik (W = U or W = V ), where W 0

ik are independent Gaussian

random variables of mean w0 and variance assigned.





Chapter 7

Simulations

In this part we will show the results of some representative simulations taken from these

that we have performed to validate the findings of the previous chapters. In particular we

will focus on whether Turing pattern formation occurs or not depending on the conditions

presented in Chapter 5.

We will consider firstly a one-dimensional domain, and then a two-dimensional circular

domain; on both of them we will start from a perturbation of the spatially uniform steady

state.

We will investigate the role of the integral term on determining the type of pattern

emerging at large times. Finally, we will perform some simulations with initial data related

to biological experiments: a spot of amoeboid population is put over a homogeneous layer

of bacteria.

Numerical methods used have been presented in Chapter 6.

7.1 Simulations without integral term

In this Section we show the results of simulations regarding Turing pattern formation

when assuming that the uptake of bacteria is only local (i.e., the predation term is not

integral). We are going to consider both the case of one-dimensional and two-dimensional

domains, and for these two cases we are going to see what is the behavior when the

chemotactic coefficient satisfies conditions for pattern formation, when conditions are

violated or when chemotaxis is absent. Moreover, we are going to show that there is

no qualitative difference if the case under examination gives one or two homogeneous

coexistence steady states.

71
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Parameter value

D1 0.7

D2 0.05

χ 0.0, 0.03, 1.0

µ 0.95

δ 5.0

γ 4.0

τ 0.5

u0 0.5

v0 0.4

Table 7.1: Parameters for simulations without integral. This combination leads to one

coexistence steady state.

7.1.1 One-dimensional domain

We consider the problem without integral over the domain Ω = [0, 1].

Firstly we give an example where there is only one internal steady state; this equilibrium

is homogeneously stable, and we are going to show how it can be destabilized by diffusion

and chemotaxis.

The set of parameters for the model is summarized in Table 7.1. The resulting steady

state is given by u∗ = 0.545952, v∗ = 0.454048; it is stable because trJ(E∗) = −0.216661

and det J(E∗) = 0.251569. Calculations lead to deduce that the critical value for χ (see

Equation (5.21)) is equal to χcrit = 0.062679.

Therefore if we take χ = 0.0, then we have that condition (5.14) is satisfied and χ < χcrit,

so patterns should arise. This is in fact what happens, as can be seen in Figure 7.1.

If we take χ = 0.03, conditions remain valid, so we still have patterns, as in Figure

7.2.

If instead we consider χ = 1.0, then we cannot have diffusion-driven instability be-

cause conditions are not satisfied. This is confirmed from simulations: after some initial

oscillations, then solution tends homogeneously to the initially perturbed steady state, as

can be seen in Figure 7.3.
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a

time

Omega

u

b

time

Omega

v

Figure 7.1: Behavior of the solution over time and space with parameters as in Table 7.1

and χ = 0.0. a Representation of u (bacteria). b Representation of v (amoebae).
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a

time

Omega

u

b

time

Omega

v

Figure 7.2: Behavior of the solution over time and space with parameters as in Table 7.1

and χ = 0.03. a Representation of u (bacteria). b Representation of v (amoebae).
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a

time

Omega

u

b

time

Omega

v

Figure 7.3: Behavior of the solution over time and space with parameters as in Table 7.1

and χ = 1.0. a Representation of u (bacteria). b Representation of v (amoebae).
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Parameter value

D1 0.7

D2 0.05

χ 0.0, 0.03, 0.07

µ 1.05

δ 5.0

γ 4.0

τ 1.0

u0 0.4

v0 0.6

Table 7.2: Parameters for simulations without integral. This combination leads to two

coexistence steady states.

In the second example we investigate what happens if there are two coexistence states.

We may expect the same behavior as in the previous example, since we know that one

of the internal states is certainly unstable, so we have to start from the other one, which

needs to be stable, and try to destabilize it and form patterns. The parameters are

summarized in Table 7.2.

The two coexistence steady state here are E∗
+ = (0.427466, 0.572534) and E∗

− =

(0.982534, 0.017466); by evaluating the corresponding Jacobian matrices we see that the

former is stable, while the latter is unstable. Moreover, the critical value for χ (evaluated

from (5.21)) is χcrit = 0.040181.

As before, we first take χ = 0.0: conditions (5.14) and (5.18) are satisfied so that spatial

patterns form, as we can see in Figure 7.4.

The same happens when χ = 0.03; there is pattern formation again, but we can notice

from Figure 7.5 that the resulting pattern is different. This means, as it may be expected,

that we can observe a variety of patterns by simply varying the value for χ.

For values χ > χcrit patterns cannot form. Figure 7.6 shows the results when taking

χ = 0.07.

These two examples show a qualitatively similar behavior so, as it may be expected,

the fact that system (3.1) admits one or two internal steady states does not affect the

occurrence of patterns.
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a

time

Omega

u

b

time

Omega

v

Figure 7.4: Behavior of the solution over time and space with parameters as in Table 7.2

and χ = 0.0. a Representation of u (bacteria). b Representation of v (amoebae).
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a

time

Omega

u

b

time

Omega

v

Figure 7.5: Behavior of the solution over time and space with parameters as in Table 7.2

and χ = 0.03. a Representation of u (bacteria). b Representation of v (amoebae).
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a

time
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u

b
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Figure 7.6: Behavior of the solution over time and space with parameters as in Table 7.2

and χ = 0.07. a Representation of u (bacteria). b Representation of v (amoebae).
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a1 b1

c1 d1

Figure 7.7: Simulation results for bacteria on a circular domain when parameters are as

in Table 7.2 and χ = 0.0 (conditions for pattern satisfied). a1 t = 200; b1 t = 600; c1

t = 1000; d1 t = 2000.

7.1.2 Two-dimensional domain

We also show the corresponding simulations for a circular domain. We use the same

parameters as in the example with two internal states (see Table 7.2), so conditions for

pattern formation are exactly the same.

Taking χ = 0.0 and χ = 0.03 we get two different patterns, shown in Figures 7.7, 7.8 and

7.9, 7.10 respectively.

These figures confirm that resulting patterns can be quite different: the experiment

without chemotaxis gives a “striped” pattern, while the other one has a more “spotted”

structure. This may depend on the fact that chemotaxis is an aggregation process, so it
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a2 b2

c2 d2

Figure 7.8: Simulation results for amoebae on a circular domain when parameters are as

in Table 7.2 and χ = 0.0 (conditions for pattern satisfied). a2 t = 200; b2 t = 600; c2

t = 1000; d2 t = 2000.

may enhance the formation of spots instead of stripes. From the mathematical viewpoint,

the instability interval for wavenumbers is different in the two cases (2.65008 < k2 <

4.65684 and 3.04721 < k2 < 4.04993 respectively), so the unstable modes of the solution

at large times are not the same, and this can explain the variability in the type of pattern

emerging.

When χ is such that theoretical conditions for pattern formation are violated, sim-

ulations confirm that the homogeneously stable steady state cannot be destabilized by

means of chemotaxis (figures not shown).
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a1 b1

c1 d1

Figure 7.9: Simulation results for bacteria on a circular domain when parameters are as

in Table 7.2 and χ = 0.03 (conditions for pattern satisfied). a1 t = 200; b1 t = 600; c1

t = 1000; d1 t = 2000.

7.2 Simulations with integral term

In this Section we consider the same sets of parameters used in Section 7.1, and we are

going to perform simulations for the model with integral term. We will see that the

behavior of the solution differs from the case of a local interaction.

7.2.1 One-dimensional domain

Over the one-dimensional domain Ω = [0, 1] we first use parameters as in Table 7.1.

We remind that in this case the stable internal state is E∗ = (0.545952, 0.454048); this
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a2 b2

c2 d2

Figure 7.10: Simulation results for amoebae on a circular domain when parameters are

as in Table 7.2 and χ = 0.03 (conditions for pattern satisfied). a2 t = 200; b2 t = 600;

c2 t = 1000; d2 t = 2000.

time instead, from the results of Section 5.2 we know that there is no critical value for

chemotactic sensitivity, because pattern formation always occurs. We are going to use the

same chemotactic coefficients as before, so that we can compare the two cases (without

and with integral).

Firstly we consider χ = 0.0: the results are shown in Figure 7.11.

The simulation shows a completely different pattern: starting from the perturbation of

E∗, the solution has some small oscillations over Ω which after a short time are dumped,

except for one small region where a peak appears; in the end, the solution is constant with

a peak of constant height and width for concentration of amoebae v and a corresponding
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a

time

Omega

u

b

time

Omega

v

Figure 7.11: Behavior of the solution over time and space with parameters as in Table

7.1 and χ = 0.0. a Representation of u (bacteria). b Representation of v (amoebae).
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sink for concentration of bacteria u. The same qualitative behavior appears if we take

χ = 0.03 and χ = 1.0 (results in Figures 7.12 and 7.13 respectively) as well as other

values (results not shown), which differ from one another in the transient phase and for

the values reached at large times.

The output does not change qualitatively when we take the parameters of the model as

in Table 7.2, so that we have the stable state E∗
+ = (0.427466, 0.572534) and the unstable

state E∗
− = (0.982534, 0.017466). Also here we compute the solution for χ = 0.0 (Figure

7.14), χ = 0.03 (Figure 7.15) and χ = 0.07 (Figure 7.16), to find, again, that at large

times amoebae form a single peak while in bacterial population correspondingly there is

a sink. Different chemotactic sensitivities result only in different values reached.

The location of the peak and sink in Ω depends on the perturbation of the initial datum:

if another simulation is run with a different noise for perturbing (u0, v0), then the behavior

is the same, except that the peak (and sink) may change its position (figures not shown).
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Figure 7.12: Behavior of the solution over time and space with parameters as in Table

7.1 and χ = 0.03. a Representation of u (bacteria). b Representation of v (amoebae).
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Figure 7.13: Behavior of the solution over time and space with parameters as in Table

7.1 and χ = 1.0. a Representation of u (bacteria). b Representation of v (amoebae).
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Figure 7.14: Behavior of the solution over time and space with parameters as in Table

7.2 and χ = 0.0. a Representation of u (bacteria). b Representation of v (amoebae).
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Figure 7.15: Behavior of the solution over time and space with parameters as in Table

7.2 and χ = 0.03. a Representation of u (bacteria). b Representation of v (amoebae).
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a

time

Omega

u

b

time

Omega

v

Figure 7.16: Behavior of the solution over time and space with parameters as in Table

7.2 and χ = 0.07. a Representation of u (bacteria). b Representation of v (amoebae).
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7.2.2 Two-dimensional domain

The results of Section 5.2 clearly hold also for a circular domain, so our expectation is to

have patterns for every value of χ. In particular, the pattern will likely be the analogous of

the one-dimensional case, that is, a homogeneous layer of bacteria with a spot of amoebae.

As a matter of fact, this is what happens: Figures 7.17 (bacteria) and 7.18 (amoebae)

show the results without chemotaxis, while Figures 7.19 (bacteria) and 7.20 (amoebae)

have been obtained with χ = 0.03. As for the one-dimensional situation, a change in the

noise used for perturbing the initial datum influences the position of the final spot, but

not the qualitative behavior of the solution.

a2 b2

c2 d2

Figure 7.17: Levelplot for concentration of bacteria as resulting from simulations for the

model with integral term on a circular domain, when parameters are as in Table 7.2 and

χ = 0.0. a2 t = 5; b2 t = 15; c2 t = 25; d2 t = 100.
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a2 b2

c2 d2

Figure 7.18: Levelplot for concentration of amoebae as resulting from simulations for the

model with integral term on a circular domain, when parameters are as in Table 7.2 and

χ = 0.0. a2 t = 5; b2 t = 15; c2 t = 25; d2 t = 100.
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a2 b2

c2 d2

Figure 7.19: Levelplot for concentration of bacteria as resulting from simulations for the

model with integral term on a circular domain, when parameters are as in Table 7.2 and

χ = 0.03. a2 t = 5; b2 t = 15; c2 t = 25; d2 t = 100.
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a2 b2

c2 d2

Figure 7.20: Levelplot for concentration of amoebae as resulting from simulations for the

model with integral term on a circular domain, when parameters are as in Table 7.2 and

χ = 0.03. a2 t = 5; b2 t = 15; c2 t = 25; d2 t = 100.
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7.3 Simulations related to biological experiments

The experimental setting for biological studies under consideration consists in a spot with

some amoeboid cells on a homogeneous layer of bacteria; different strains of Pseudomonas

aeruginosa, from weakly to highly virulent, are employed. The plates are observed for a

short period (about 4-7 days), during which the two populations grow and interact; at

the end of experiments amoeboid cells can be counted, and it is possible to see how the

initial spot has expanded.

The results are basically the following: if bacteria belong to a permissive strain, then

amoebae are able to expand and form a small disk; in some cases it is possible to see

a sort of intermediate region between the populations, called clear zone, which is a ring

surrounding the disk, with a lower concentration of amoebae.

When the bacterial strain is more aggressive, instead, amoebae can still expand, but they

are limited in their growth, and the clear zone never occurs; highly virulent isolates do

not allow amoeboid population to grow at all.

In this Section we show the results of some of the simulations related to these phe-

nomena. The numerical method for discretization of system (1.3) is the same used in the

previous Section; here we consider only a circular domain, which represents the plate used

for experiments.

Clearly, the initial conditions are different from the simulations performed so far: in fact,

here we need to consider a homogeneous layer of bacteria u0 and a spot of amoebae v0 in

the center.

Parameters used are summarized in Table 7.3 below.

Parameter value

D1 0.7

D2 0.05

χ 0.01

µ 1.05

δ 5.0

γ 0.0, 1.0, 7.0

τ 1.0

u0 0.4

v0 0.6

Table 7.3: Parameters used for simulations in Figures 7.21, 7.22, 7.23, 7.24, 7.25.

Firstly, we consider the case of a completely permissive (i.e. non virulent) isolate; this
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means that we take γ = 0.0. Actually, the system becomes a predator-prey model where

predation is non-local, so the expectation is to see that amoebae can grow indefinitely

because they are not killed by bacteria; this is in fact what happens: in Figures 7.21 and

7.22 we can see that the disk of amoebae expands while bacteria are eaten correspondingly.

The expanding white ring is a zone with few of both populations, so it may correspond

to the clear zone observed in experiments.

Next we consider an intermediate situation, with γ = 1.0. The results of the corre-

sponding simulations are visible in Figures 7.23 and 7.24: amoebae initially expand, but

after a while the disk does not increase neither in size nor in number of cells; the clear

zone is much less evident.

If we increase γ the spot of amoebae gets smaller, and for γ > δ after a short time

it disappears, so that the final configuration is a homogeneous layer of bacteria and no

amoeboid cells. This fact is not unexpected, because this means that bacteria are so

virulent that the killing of amoeboid cells cannot be compensated by feeding, so in the

end amoebae disappear.

An example of a simulation for a very virulent strain (γ = 7.0) is represented in Figure

7.25.

These simulations seem to be consistent with the behavior observed in the experiments

with a spot of Dictyostelium discoideum on a homogeneous layer of Pseudomonas aerug-

inosa, so we can conclude that model (1.3) is able to describe the interaction between

these two populations properly.
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a1 b1

c1 d1

e1 f1

Figure 7.21: Levelplot for concentration of bacteria. Initial conditions: spot of amoebae

on a homogeneous layer of bacteria. Parameters as in Table 7.3 and γ = 0.0. a1 t = 5;

b1 t = 50; c1 t = 250; d1 t = 500; e1 t = 1000; f1 t = 5000.
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a2 b2

c2 d2

e2 f2

Figure 7.22: Levelplot for concentration of amoebae. Initial conditions: spot of amoebae

on a homogeneous layer of bacteria. Parameters as in Table 7.3 and γ = 0.0. a2 t = 5;

b2 t = 50; c2 t = 250; d2 t = 500; e2 t = 1000; f2 t = 5000.
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a1 b1

c1 d1

Figure 7.23: Levelplot for concentration of bacteria. Initial conditions: spot of amoebae

on a homogeneous layer of bacteria. Parameters as in Table 7.3 and γ = 1.0. a1 t = 5;

b1 t = 50; c1 t = 250; d1 t = 500.
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a2 b2

c2 d2

Figure 7.24: Levelplot for concentration of amoebae. Initial conditions: spot of amoebae

on a homogeneous layer of bacteria. Parameters as in Table 7.3 and γ = 1.0. a2 t = 5;

b2 t = 50; c2 t = 250; d2 t = 500.
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a1 b1

a2 b2

Figure 7.25: Levelplot for concentration of amoeba (a1, b1) and bacteria (a2, b2). Initial

conditions: spot of amoebae on a homogeneous layer of bacteria. Parameters as in Table

7.3 and γ = 7.0. a t = 2; b t = 4.





Chapter 8

Conclusions and future directions

In this thesis we have designed and analyzed a mathematical model describing the popula-

tion dynamics of interacting bacterial and amoeboid populations. This model belongs to

the class of parabolic semilinear systems: specifically, it is a reaction-diffusion-chemotaxis

predator-prey system with non-local effect of predation, where the prey acts also as a

pathogen.

First of all we have proved with fixed point techniques that, in the absence of chemo-

taxis, the system admits a unique continuous solution. Then we have been concerned with

the analysis of homogeneous steady states: we have considered different cases depending

on the value of the parameter accounting for bacterial virulence, and we have proved

the existence of one or two coexistence equilibria and their stability, providing conditions

on the natural mortality rate of amoebae. Moreover, we have shown that, upon certain

parameters choices, it is also possible to have periodic solutions.

The issue following the study of the stability of internal equilibria has been to assess

the possibility of having patterns of Turing type: we have considered a slight pertur-

bation of the spatially homogeneous stable steady state, solved the resulting system by

separation of variables and derived conditions for pattern formation, or diffusion-driven

instability, on parameters related to chemotaxis and diffusion. We have considered both

the cases with and without the integral (corresponding to non-local and local predation

effect respectively), and the interesting feature that we have found is that, for the system

with the integral term, pattern formation is always possible, which is not the case of the

simpler model.

We have also dealt with the numerical aspects of the problem. We have discretized our

system with finite differences, and we have solved it numerically with two types of initial

conditions: homogeneous initial datum for both populations (both on a line segment and

103
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on a circle), or homogeneous datum for bacteria and a delta function (single spot) for

amoebae (only on a circular domain). The former kind of simulations were aimed at val-

idating the analytical results on pattern formation, while the purpose of the latter type

has been to show the behavior of the solutions when varying the virulence parameter,

which corresponds to using different strains for experiments.

These numerical studies have shown on the one hand that theoretical results are confirmed

and that a variety of patterns can appear depending on the choice of parameters; on the

other hand that the model is able to reproduce the behaviors observed during in vivo

experiments.

Some topics have not been covered in this thesis, but are the subjects of future work:

firstly, the proof of the existence of a unique solution to the full problem with chemotaxis,

which would complete what has been done in Chapter 2.

Another issue to be addressed is the study of stationary solutions of the system: this

part is actually quite complex due to the integral term; preliminary results show that

multiple solutions can be found, thus possibly explaining the complex dynamics arising

from simulations.
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