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Abstract: In this note, we assess the efficiency of a supersingular isogeny Diffie-Hellman (SIDH)-based digital
signature built on a weaker variant of a recent identification protocol proposed by Basso et al. Despite the
devastating attacks against (the mathematical problem underlying) SIDH, this identification protocol remains
secure, as its security is backed by a different (and more standard) isogeny-finding problem. We conduct our
analysis by applying some known cryptographic techniques to decrease the signature size by about 70% for all
parameter sets (obtaining signatures of approximately 21 kB for 434SIKEp ). Moreover, we propose a minor
optimisation to compute many isogenies in parallel from the same starting curve. Our assessment confirms
that determining the most efficient methods for isogeny-based signature schemes, including optimisations
such as those presented in this paper, is still a open problem, with much more work to be done.
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1 Introduction

Isogenies between supersingular elliptic curves have been used to construct cryptosystems supposed to be
secure even in the presence of quantum attackers. The family of such cryptosystems is named isogeny-based
cryptography, and its most appealing members enjoy short keys and ciphertexts. At the time of writing, the most
prominent example of this attractive feature is the digital signature SQISign [1], which is the most compact post-
quantum signature scheme. On the other hand, isogeny-based cryptosystems incur high execution times, with
SQISign making no exception (despite the recent improvements in [2]). The most promising results in terms of
computational efficiency have been obtained for the key-exchange supersingular isogeny Diffie-Hellman (SIDH)
[3] and the corresponding key-encapsulation mechanism supersingular isogeny key-encapsulation (SIKE) [4].
However, not all schemes built on SIDH share the same quality. An example is the SIDH-based digital signatures
proposed in [5,6], for which no substantial amelioration has appeared since their publication. Nevertheless, they
represented an alternative starting point for a practical isogeny-based digital signature building on existing
schemes. However, three major classical attacks [7–9] were devised in 2022, which make SIDH, SIKE, and most of
the SIDH-based cryptosystems – including the signature schemes based on SIDH mentioned above – completely
insecure. As a consequence, SQISign and Sea-Sign/CSI-FiSh1 were, until recently, the only isogeny-based digital
signature schemes still secure.

Fortunately, two isogeny-based Σ-protocols that were recently proposed have restored the family of SIDH-
based digital signatures (and non-interactive zero-knowledge proofs). The first one [13, Sec. 5.3] – denoted by
ΣwSIDH in the following – was originally designed for the SIDH setting, while for the second one [14, Sec. 4] –
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which we denote by ΣSECUER
base – the SIDH parameters are (probably the most) favourable in terms of practical

efficiency, despite it being designed for a general scenario. Consequently, their implementations can take
advantage of the optimised implementations for determining and evaluating isogenies in the SIDH configura-
tion. Even so, both ΣwSIDH and ΣSECUER

base are not affected by the attacks in [7–9] and hence can still be the base
for constructing digital signature schemes as well as non-interactive zero-knowledge proofs (NIZKPs in short).

1.1 Our contribution

In this note, we assess the compactness and efficiency that can be currently reached by digital signatures (and
NIZKPs) based on the SIDH setting. In doing so, we restrict our attention to a digital signature built on a slightly
weaker variant of ΣSECUER

base . We talk about weaker variant because ΣSECUER
base was designed to satisfy statistical

honest-verifier zero-knowledge, which is not necessary for our case study. The variant we consider – denoted
by ΣSEC – only achieves computational honest-verifier zero-knowledge, but it allows for shorter isogenies,
therefore a better efficiency. There are three main reasons to work with ΣSEC instead of other SIDH-based
Σ-protocols. First, a similar assessment focused on ΣwSIDH was recently conducted in [15]. Even more impor-
tantly, despite the similarities between ΣwSIDH and ΣSEC, the latter has a more lightweight design, leading to
smaller transcripts and faster execution times. Last but not least, the optimisations we apply to (t parallel
executions of) ΣSEC are applicable also to ΣSECUER

base and are relevant to any application of these Zero-Knowledge
Proof systems. In fact, using the Fiat-Shamir transform to remove interactivity from a Σ-protocol has applica-
tions beyond digital signatures. For example, ΣSECUER

base has been used to prove random generation of super-
singular curves of unknown endomorphism rings in a distributed and trusted manner [14].

We conduct our analysis by applying some known signature-shortening techniques. By doing so, we can
shorten the signatures produced by means of ΣSEC by approximately 69%. For example, we obtain signatures
of approximately 21 kB for the parameter set SIKEp434. In addition, we propose minor optimisations to
compute many isogenies in parallel from the same starting curve.

One of the techniques we consider to shorten the signatures is the unbalanced challenge space technique,
firstly proposed in the study by Beullens et al. [16] for a Σ-protocol obtained by running parallel executions of a
base Σ-protocol with soundness error 1/2. In this work, however, we apply it to a base Σ-protocol with
soundness error 2/3, which requires a non-trivial generalisation of the original proposal. In fact, to determine
the number of parallel executions which are required in such case for an unbalanced challenge space, we
deduce some combinatorial results. Our findings can be readily applied to every possible soundness error of
the base Σ-protocol, and therefore are of independent interest.

Our assessment confirms that the problem of designing a practical isogeny-based signature scheme
remains largely open. Nonetheless, the proposed optimisations can be applied to the distributed trusted-setup
protocol [14, Sec. 5] built on top of ΣSECUER

base to collaboratively produce a random supersingular elliptic curve
whose endomorphism ring is hard to compute even for the involved parties. Determining the best techniques
to design secure and efficient isogeny-based signatures, against which future protocols can be benchmarked, is
still a quite new and very open problem.



1 Sea-Sign [10] is an isogeny-based digital signature scheme which works with isogenies and elliptic curves over prime fields. CSI-
FiSh [11] is an optimisation of Sea-Sign for a specific set of parameters, named CSIDH-512. It is worth noticing that the security
provided by CSIDH-512 is still an active area of research [12], and instantiating SeaSign with larger parameters leads to long
execution times.
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1.2 Related work

The SIDH-based digital signature scheme proposed in the study by Galbraith et al. [5] produces signatures of
approximately 12 kB when targeting 128 bits of classical security. For the same security target, the signature
scheme in the study by Chi-DomAηnguez et al. [17] (deduced from a different SIDH-based Σ-protocol proposed
in the study by Chi-DomAηnguez et al. [13, Sec. 6]) outputs signatures of approximately 61 kB. Both these
signature schemes are no longer secure after the cryptanalytic attacks against SIDH. The analysis conducted in
the study by Chi-Domínguez et al. [15] on a still-secure digital signature built on top of ΣwSIDH achieves
signatures of size approximately 74 kB for the parameter set 434SIKEp . Note that the protocol in the study
by Galbraith et al. [5] and ΣwSIDH in the study by Chi-DomAηnguez et al. [13, Sec. 5] are 2-special sound. The
protocols in the study by Chi-DomAηnguez et al. [13, Sec. 6] is instead 3-special sound.

1.3 Roadmap

This article is organised as follows. In Section 2, we recall some cryptographic preliminaries and we provide a
description of the Σ-protocol ΣSEC, which is a diminished version of ΣSECUER

base from the study by Basso et al. [14,
Sec. 4]. By applying the Fiat-Shamir transform [18] on ΣSEC, an SIDH-based signature scheme DSSEC is
obtained. In Section 3, we apply some optimisation techniques to reduce the size of the signatures produced
byDSSEC: commitment recoverability (Section 3.1), response compression (Section 3.2), and seed trees (Section
3.3). In Section 3.4, unbalanced challenge spaces are also taken into account. We conclude the section high-
lighting the overall gain in applying these optimisations with respect to the original scheme. In Section 4, we
suggest two optimisations for the computation of several isogenies of the same degree from the same starting
curve. They consists in a pre-computation of repeated initial steps (Section 4.1) and in the parallelisation of
kernel generators computation (Section 4.2). Section 5 presents some closing remarks.

2 Preliminaries

In this section, we list some definitions and results regarding isogenies between supersingular elliptic curves,
Σ-protocols, and digital signatures. We then detail the Σ-protocol ΣSEC, a diminished variant of ΣSECUER

base from
the study by Basso et al. [14, Sec. 4].

Remark 1. In the following, commitment schemes (C) and pseudorandom number generators (Expand) are
instantiated with a hash function modelled as a random oracle � . We always assume the input domain of the
random oracle is appropriately separated when instantiating different cryptographic primitives. With an
abuse of notation, we will write ⋅Expand�( ∣∣ ) instead of ⋅Expand( ) and ⋅Com�( ∣∣ ) instead of ⋅C( ) to make
the usage of the random oracle explicit. Here, we identify Expand and Com with unique strings.

2.1 Supersingular elliptic curves, isogenies, and hardness assumptions

We refer the reader to [19,20] for a more detailed introduction to the topic.
Let q be a power of a prime ≥p 5, and let q� be a finite field with q elements. An isogeny ⟶ ′φ E E:

between two elliptic curves E and ′E over q� , with points at infinity denoted by 0E and ′0E respectively, is a non-
constant regular rational map mapping φ 0E( ) into ′0E . Every isogeny φ can be written in its polynomial form

∕ ∕F x F x yG x G x,1 2 1 2( ( ) ( ) ( ) ( )), where F F G, ,1 2 1, and G2 are polynomials over the algebraic closure of � , F1 is
coprime with F2, and G1 is coprime with G2. The isogeny φ is said to be defined over

q
k� if the coefficients
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of the above polynomials are contained in
q

k� ; in this case, we say that ′E E, are isogenous over
q

k� . Tate’s
theorem states that ′E E, are isogenous over

q
k� if and only if ( ) ( )= ′E E# #

q q
k k� � .

An invertible isogeny is an isomorphism; in addition, if its domain and image coincide, it is an endo-
morphism. The set of all endomorphisms of an elliptic curve E together with the zero map form a ring under
pointwise addition and composition, called the endomorphism ring of E and denoted by EEnd( ). If EEnd( ) is
not commutative, then E is said to be supersingular. Every supersingular elliptic curve defined over

p
k� for

some ∈k � is isomorphic to an elliptic curve defined over
p

2� . The degree φdeg( ) of an isogeny φ is the
maximum among F Fdeg , deg1 2{ ( ) ( )}; we say thatφ is a d-isogeny. Two elliptic curves E and ′E are d-isogenous if
there exists an isogeny ⟶ ′φ E E: of degree d. Given a power q of a prime >p 5 and a prime number ≠ pℓ ,
we denote by q� (ℓ) the graph whose vertices are q� -isomorphism classes of supersingular elliptic curves over

q� and whose edges are equivalence classes of ℓ-isogenies (two isogenies are in the same class if they have the
same kernel). The composition of two isogenies of degrees d1 and d2 is an isogeny of degree d d1 2.

The kernel of an isogeny is finite, and its size is equal to the degree of the isogeny itself if the isogeny is
separable. Vice versa, if H is a finite subgroup of an elliptic curve E , then the elliptic curve ∕E H and a
separable isogeny ⟶ ′ψ E E: of kernel =ψ Hker( ) are unique (modulo isomorphism). Both ∕E H and ψ can
be computed with complexity O H#( ) using Velu’s formulas. We say that φ is a cyclic isogeny when φker( ) is a
cyclic group. Given ∈ �ℓ , we denote by E[ℓ] the ℓ-torsion subgroup ∈ =P E P 0E{ ∣[ℓ] } of E . When ℓ and p are
relatively prime, ≃ ∕ × ∕E � � � �[ℓ] ( ℓ ) ( ℓ ).

2.2 Σ-protocols

Let X and Y be two sets whose sizes depend on a security parameter λ. Then ⊂ ×X Y� is a polynomially
computable binary relation over X and Y if, for any ∈ ×X Y,x w( ) , whether ∈,x w �( ) can be decided in time
poly x(∣ ∣). If ∈,x w �( ) , we call w a witness for the statement x. The language corresponding to �

is = ∈ ∃ ∈ ∈X Y : ,x w x w� �� { ∣ ( ) }.
A Σ-protocol for a polynomially-computable binary relation � is a public-coin three-move interactive

protocol between a prover and a verifier. Informally, a prover can demonstrate knowledge of a valid witness
for a certain statement without revealing any information about the witness itself. Below, we define a relaxed
version of sigma protocols where the special-soundness extractor only extracts a witness for a slightly larger
relation �̃ , with ⊆ ˜� � . Furthermore, the definition is given in the random oracle model, i.e. prover and
verifier have access to a random oracle � . We may occasionally omit the superscript � when the meaning is
clear from the context.

Definition 1. (Σ-protocols) A Σ-protocolS for polynomially-computable binary relations ⊆ ˜� � consists of five
polynomial-time algorithms = =, , , ,1 2 1 2Gen P P P V V V( ( ) ( )) with oracle-access, where 2V is deterministic,
Gen, 1P , 2P , and 1V are probabilistic, and ,1 2P P share states. We denote by ComSet, ChSet, and ResSet the
commitment space, challenge space, and response space, respectively. In the random-oracle model, the pro-
tocol goes as follows:
• The key-generation algorithm 1λGen� ( ) takes the security parameter 1λ as input, and outputs a statement-
witness pair ∈,x w �( ) .

• On input ∈,x w �( ) , the prover computes ← ,1com P x w�( ) and sends the commitment com to the verifier.
• The verifier runs ← 1ch V com�( ) to obtain a random challenge, and sends ch to the prover.
• Given ch, the prover computes ← , , ,2resp P x w com ch�( ) and returns the response resp to the verifier.
• The verifier runs , , ,2V x com ch resp�( ) and outputs 1 if they accept, 0 otherwise.
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Here� is modelled as a randomoracle. Moreover, a transcript ∈ × × ×X, , ,x com ch resp ComSet ChSet ResSet( )

of the protocol is said to be valid (relative to x) in case , , ,2V x com ch resp( ) outputs 1.

We require the following properties of a Σ-protocol:
• Correctness: All honestly generated transcripts must be valid. Formally, it is required that

⎡

⎣

⎢
⎢
⎢
⎢

=

←
←

←
←

⎤

⎦

⎥
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( ) ( )

( )

( )

( )

• Relaxed κ-special soundness: There exists a polynomial-time extraction algorithmEx such that, given any κ

valid transcripts , , ,1 1x com ch resp( ), … , , , ,κ κx com ch resp( ) relative to the same statement ∈x � � , with
the same commitment com and κ distinct challenges 1ch ,… , κch , outputs w such that ∈, ˜x w �( ) (note thatEx

is only required to recover a witness in ⊇�̃ � ).
• Statistical and computational honest-verifier zero-knowledge (HVZK):Within this definition, we allow the
adversary, the prover, and the simulator to make queries to a common random oracle � . We say the
Σ-protocol is statistically HVZK if there exists a probabilistic polynomial-time (PPT) simulator algorithm
Sim� such that, for any ∈,x w �( ) , any honestly chosen ∈ch ChSet and any computationally unbounded
adversary � that makes at most a polynomial number of queries to � , we have

⎡

⎣
⎢ =

←
←

⎤

⎦
⎥−

= ← = λ

Pr , , 1
, ;

, , ,

Pr , , 1 , , .

1

2

com ch resp
com P x w

resp P x com w ch

com ch resp com resp Sim x ch negl

�

�

�

�

�

� �

( )
( )

( )

[ ( ) ∣( ) ( )] ( )

If the aforementioned relation holds only for computationally bounded adversaries, the protocol is said to
be computationally HVZK.

2.3 Digital signatures

Below we recall the definition of digital signature schemes, correctness, and unforgeability.

Definition 2. (Digital signature schemes) A digital signature scheme DS consists of three algorithms
, ,KeyGen Sign Vrfy( ) defined as follows:

• ←, 1λvk sk KeyGen( ) ( ): On input a security parameter λ, the key-generation algorithm outputs a pair of
verification and signing keys ,vk sk( ).

• ←σ ,Sign sk M( ): On input a signing key sk and a messageM, the signing algorithm outputs a signature σ .
• ∈ ←b σ0, 1 , ,Vrfy vk M{ } ( ): On input a verification key vk, a messageM, and a signature σ , the verification
algorithm outputs 1 (accept) or 0 (reject).

2.3.1 Correctness

For every security parameter ∈λ � and every messageM, a signature scheme is correct if the following holds:
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⎡

⎣
⎢ =

←
←

⎤

⎦
⎥ =σ

σ
Pr , , 1

, 1 ,

,
1.

λ

Vrfy vk M
vk sk KeyGen

Sign sk M( )
( ) ( )

( )

2.3.2 Security

We define existential unforgeability under chosen message attack( -EUF CMA) with the following game
between an adversary � and a challenger.

Setup: The challenger runs ←, 1λvk sk KeyGen( ) ( ) and provides the adversary � with the verifica-
tion key vk. It also prepares an empty set = ∅� .

Signing queries: The adversary � may adaptively submit messagesM to the challenger. The challenger responds
with ←σ ,Sign sk M( ) to � ’s query on a message M and updates the set ← ∪ σ,M� � {( )}.

Output: Finally, � outputs a forgery σ*, *M( ). We say that the adversary � wins if ⋅ ∉*,M �( )

and =σ, *, * 1Vrfy vk M( ) .

We then say that the signature scheme DS is -EUF CMA-secure if, for all PPT adversaries � , the advan-
tage of � in winning the above game is negligible in the security parameter λ:

≔ =-
λ λPr wins negl .AdvEUF CMA

�� ( ) [ ] ( )

Via the Fiat-Shamir transform [18], a Σ-protocol S for a binary relation � can be turned into a digital
signature scheme. The resulting scheme FS S( ) differs fromS in the challenge computation, as the challenge is
set equal to the digest H ,com M( ) – where M is the message to sign and H a hash function - instead of being
randomly produced by the verifier. If the binary relation � is based on a hard problem, then FS S( ) can be
proved EUF-CMA secure.

2.4 The ΣSEC protocol

In this section, we describe the Σ-protocol ΣSEC, a weaker variant of ΣSECUER
base from the study by Basso et al. [14,

Section 4] (see Remark 2 for the differences between the two protocols).
For every possible value of the security parameter λ, p will denote a prime of the form = ±p f 1

e e

1 2
1 2ℓ ℓ

(where ,1 2ℓ ℓ are small primes such that ≈e e

1 2
1 2ℓ ℓ and ∈f � is a small cofactor), E0 is a fixed supersingular

elliptic curve over
p

2� such that ( ) ( )=E f#
p

e e

0 1 2
2

2
1 2� ℓ ℓ (when considering SIKE parameters, we will take

= + +E y x x x: 60
2 3 2 ), and P Q,1 1

{ } and P Q,2 2
{ } basis for [ ]E

e

0 1
1ℓ and [ ]E

e

0 2
2ℓ , respectively. Then, the tuple

= p e e f E P Q P Q, , , , , , , , , ,1 2 1 2 0 1 1 2 2
pp ( ℓ ℓ ) forms the public parameter for the protocol.

The Σ-protocol ΣSEC consists of five oracle-calling algorithms = =, , , ,1 2 1 2Gen P P P V V V( ( ) ( )), where:
• ←E φ, 1λ

1 Gen( ) ( ): On input a security parameter, the key-generation algorithm uniformly samples s from
∕ e

1
1� �ℓ and computes the cyclic isogeny ⟶ ≔ ∕ +φ E E E P s Q: 0 1 0 1 1

⟨ [ ] ⟩ having +P s Q1 1
⟨ [ ] ⟩ as kernel. It

returns the statement-witness pair E φ,1( ).
• ← E φ,1 1com P ( ): Given a statement E1 and a corresponding witness φ, the prover uniformly samples r

from ∕ e

2
2� �ℓ and computes the point = +R P r Q2 2

[ ] –whose order is e

2
2ℓ – and the elliptic curves = ∕E E R2 0 ⟨ ⟩

and = ∕E E φ R3 1 ⟨ ( )⟩. Then, it uniformly samples b b,2 3 from 0, 1 λ{ } and commits to E2 and E3 computing
← E b1 2 2com Com�( ∣∣ ∣∣ ) and ← E b2 3 3com Com�( ∣∣ ∣∣ ) via the random oracle � . The output

is = ,1 2com com com( ).
• − ←1, 0, 1 1V com{ } ( ): On input a commitment com, 1V outputs a random challenge ∈ −1, 0, 1ch { }.
• ← E φ, , ,2 1resp P com ch( ): On input a statement E1, a corresponding witness φ, a commitment

= ,1 2com com com( ) and a challenge ∈ −1, 0, 1ch { }, it outputs a response resp defined as follows. If
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= −1ch , then = E r b, ,2 2resp ( ); if = 1ch , then = E φ R b, ,3 3resp ( ( ) ); if = 0ch , then
= E ψ φ E b b, , , ,2 3 2 3resp Ker( ( ( )) ), where ψ is the isogeny from E0 having R⟨ ⟩ as kernel.

• ∕ ← E1 0 , , ,2 1V com ch resp( ): It takes as input a statement E1, a commitment = ,1 2com com com( ), a chal-
lenge ∈ −1, 0, 1ch { }, and a response resp. Depending on ch, the algorithm performs a check. In particular, if

= −1ch then = E r b, ,resp ( ) and the algorithm checks whether the isogeny from E0 with kernel equal to
+P r Q2 2

⟨ [ ] ⟩ goes to E and whether = E b1com Com�( ∣∣ ∣∣ ). If = 1ch , then = E T b, ,resp ( ) and the algorithm
checks whether the point T is in E1, the order of T is e

2
2ℓ , the isogeny from E1 with kernel T⟨ ⟩ goes to E and

= E b2com Com�( ∣∣ ∣∣ ). Finally, if = 0ch , then = E T E b b, , ˜, , ˜resp ( ) and the algorithm checks whether the
point T is in E , the order of T is e

1
1ℓ , the isogeny from E with kernel T⟨ ⟩ goes to Ẽ , = E b1com Com�( ∣∣ ∣∣ ), and

= E b˜ ˜
2com Com�( ∣∣ ∣∣ ). If the check is successful, then it outputs 1, and 0 otherwise.

Let X be the set of supersingular elliptic curves E1 over p
2� having the same number of rational points of

E0, and Y be the set of all separable isogenies with domain E0. Define the relation

{ }= ∈ ∈ ⟶ =E φ E X φ Y φ E E φ, , , : ,
e

1 1 0 1 1
1degSEC� ( )∣ ( ) ℓ

and the relaxed relation

⎪

⎪ ⎪

⎪
=

⎧
⎨
⎩

∈
= → ∈ = ≤ ≤

= ′ ≠ ′ = ′

⎫
⎬
⎭

E

E X

φ E E φ Y φ i e

x x x x x x

˜ ,

and

: , , with 0

or , s.t. ,

.
i e

1

1

0 1 2

2

1 2
1w w deg

w Com Com
SEC�

� �

( ) ( ) ℓ ℓ

( ) ( ∣∣ ) ( ∣∣ )

It is not difficult to see that the Σ-protocol ΣSEC described earlier is correct and has relaxed 3-special
soundness for the relations SEC� and ˜ SEC� . Furthermore, under the assumption that the following problem is
hard, we prove in Proposition 1 that ΣSEC is computationally HVZK.

Problem 1. (Decisional supersingular product problem) Let ⟶φ E E: 0 1 be an isogeny of degree e

1
1ℓ . Given

′E E φ, ,2 3( ) sampled with probability 1/2 from one of the following distributions, the decisional supersingular
product problem DSSP pp requires to det ermine which distribution it is from:
• Choose a random point [ ]∈R E

e

0 2
2ℓ of order e

2
2ℓ . Let ⟶ψ E E: 0 2 and ′ ⟶ψ E E: 1 3 be the isogenies with

kernels R⟨ ⟩ and φ R⟨ ( )⟩, respectively. Then let ′ ⟶φ E E: 1 2 be the isogeny having ψ φKer⟨ ( ( ))⟩ as kernel,
where ′ =φ

e

1
1deg( ) ℓ .

• Choose E2 randomly among all the supersingular elliptic curves defined over
p

2� having the same number of

rational points as E0. Then, choose a random point ∈U E2 of order
e

1
1ℓ and compute the isogeny ′ ⟶φ E E: 2 3

having U⟨ ⟩ as kernel.

Proposition 1. Let λ be a security parameter, and let = p e e f E P Q P Q, , , , , , , , , ,1 2 1 2 0 1 1 2 2
pp ( ℓ ℓ ) be the public

parameters. The Σ-protocol ΣSEC is computationally HVZK for the relation SEC� under DSSP pp, assuming
that the commitment oracle is computationally hiding.

Proof. For = −1ch , the simulator Sim� uniformly samples r from ∕ e

2
2� �ℓ and computes the isogeny ψ of

kernel generator = +R P r Q2 2
[ ] and the elliptic curve = ∕E E R2 0 ⟨ ⟩. It then uniformly samples ←b b, 0, 1 λ

2 3

$

{ }

and sets ← E b1 2 2com Com�( ∣∣ ∣∣ ) and ← b12 3com Com�( ∣∣ ∣∣ ). The isogeny ψ is computed as in the original
protocol, so the transcript is valid. Under the assumption that the commitment oracle is computationally
hiding, an adversary cannot distinguish between the simulated 2com and a commitment computed following
the protocol.

For = 1ch , the simulator uniformly samples r from ∕ e

2
2� �ℓ , computes a basis ′ ′P Q,2 2

{ } of [ ]E
e

1 2
2ℓ and the

isogeny ′ψ of kernel generator ′ = ′ + ′R P r Q2 2
[ ] , with codomain = ∕ ′E E R3 1 ⟨ ⟩. It then uniformly samples

←b b, 0, 1 λ
2 3

$

{ } and sets ← b11 2com Com�( ∣∣ ∣∣ ) and ← E b2 3 3com Com�( ∣∣ ∣∣ ). The transcript is valid, since
by construction we have that ′ ∈R E1, that its order is e

2
2ℓ and that the resulting ′φ has image E3. Without

Efficiency of SIDH-based signatures (yes, SIDH)  7



knowing the witness, an adversary cannot tell ′R , of order e

2
2ℓ , from a point of order e

2
2ℓ that is an image

through φ. The mixing properties of supersingular isogeny graphs ensure that E3 is randomly distributed, as it
would be if it was computed following the protocol. Finally, if the commitment oracle is computationally
hiding, the adversary cannot distinguish the simulated 1com from a properly formed one.

For = 0ch , the simulator samples r from ∕ e

2
2� �ℓ and computes the isogeny ψ of kernel generator

= +R P r Q2 2
[ ] and the elliptic curve = ∕E E R2 0 ⟨ ⟩. Then it computes a basis ′ ′P Q,{ } of [ ]E

e

2 1
1ℓ , it samples s

from ∕ e

1
1� �ℓ and the isogeny ′φ of kernel generator ′ = ′ + ′S P s Q[ ] , with codomain = ∕ ′E E S3 2 ⟨ ⟩. It then

uniformly samples ←b b, 0, 1 λ
2 3

$

{ } and sets ← E b1 2 2com Com�( ∣∣ ∣∣ ) and ← E b2 3 3com Com�( ∣∣ ∣∣ ). The tran-
script is valid, since ′ ∈S E2 has order

e

1
1ℓ and the kernel it generates is that of an isogeny from E2 to E3. The

adversary cannot tell the simulated point ′S from a properly formedψ φker( ( )), otherwise it would have solved
the DSSP pp instance. □

Remark 2.Within the protocol ΣSECUER
base , the degree of the isogenies from E0 to E1 and from E2 to E3 is equal to

d

1
1ℓ (with d1 a suitable natural number bigger than e1), while the degree of the isogenies from E0 to E2 and from

E1 to E3 is equal to d

2
2ℓ (with d2 a suitable natural number bigger than e2). In this way, the protocol can be

proved to be statistically HVZK [14, Prop. 17]. The conditions to satisfy this stronger property heavily affect both
the transcript size and the execution times. Since in our work we are only interested in standard digital
signatures, it is enough to rely on the computational HVZK property of the Σ-protocol. This allows us to
preserve in full the SIDH parameters, including the degrees of the isogenies.

Figure 1: Algorithms in Σ
t

SEC. Given a supersingular elliptic curve E , IsogenyFromKernel ⋅E ,( ) denotes an algorithm which, on input a
subgroup ⊂S E , computes an isogeny from E with kernel S . Moreover, E

e
max[ℓ ] denotes the points of order eℓ in E

e[ℓ ], when ℓ is prime
and ∈e �.

8  Wissam Ghantous et al.



As the protocol ΣSEC has a soundness error = ∕ε 2 3, it is necessary to repeat its execution in parallel t times
to obtain a negligible soundness error. It is customary to set t as the minimum positive integer such that

< −
ε 2 .t λ Therefore, we obtain

>
−

≈ ⋅t λ λ
1

log 3 1
1.7 .

2
( )

(1)

The Σ-protocol that results from repeating ΣSEC in parallel t-times, which will be denoted by Σ
t

SEC in the
following, is depicted in Figure 1.

Assuming a supersingular elliptic curve over
p

2� is identified by a single element of
p

2� , the average size
(in bits) of a transcript of Σ

t

SEC (excluding the statement) is approximated by

(( ))= + ⌈ ⌉ + ⌈ ⌉ + ⌈ ⌉ + + + ⌈ ⌉ + + + ⌈ ⌉ + +4λt
t

p λ p λ p λlog 3 ttranscript
3

2 log log 4 log 1 6 log 1 2 .
e

2
2∣ ∣ (( ℓ ) ( ) ( )) (2)

where the terms indicate commitment , challenge, and response sizes (the terms within brackets correspond
to the sizes of the responses to challenge −1, 1, and 0).

Within an execution of Σ
t

SEC, the prover computes t2 elliptic-curve scalar multiplications, t2 isogenies and
t2 commitments to produce the commitment. In addition, to produce the response, the prover evaluates an
e

1
1ℓ -isogeny (on a point of order e

2
2ℓ ) ∕t 3 times, and an e

2
2ℓ -isogeny (on a point of order e

1
1ℓ ) ∕t 3 times, on average.

When Σ
t

SEC is turned into the digital signature schemeDSSEC via the Fiat-Shamir transform, the security
ofDSSEC is guaranteed by the hardness of the relation ˜ SEC� , as the problem of finding an isogeny between two
given isogenous elliptic curves is still believed to be hard (and it has not been affected by the recent crypta-
nalytic attacks onSIDH). A signature produced byDSSEC is just a transcript of Σ

t

SEC without the statement and
the challenge (as the latter can be easily recovered, being it the digest of a hash function on the message m to
sign and the commitment com). Consequently, the signature size is slightly smaller than the size of a transcript
(without the statement) of Σ

t

SEC, and the computational cost to sign is that undergone by the prover in an
execution of Σ

t

SEC, plus one hash-function evaluation. Therefore, the efficiency analysis presented above
applies almost directly to DSSEC (see the last column of Table 1 for the signature sizes of DSSEC for different
SIDH/SIKE parameters).

3 Signature-size optimisations

In this section, we apply some known cryptographic techniques toDSSEC to decrease the size of the signatures
it produces. We start with some optimisations that determine a reduction of the signature size without causing
any increase of the signing computations, and then we discuss those that have an impact on the signing time.
We stress that none of the considered optimisations affects the security of DSSEC.

Table 1: Average sizes (in bits) of the transcripts (excluding the statement) produced by Σ
t

SEC, and the average length of the signatures
produced by DSSEC, working with different SIDH/SIKE parameters. The signature sizes are obtained from equation (2) minus the
challenge length ⌈ ⌉tlog 3( )

SIKE parameters ⌈⌈ ⌉⌉plog λ t Transcript length Signature length

434SIKEp 434 128 218 543,692 543,256
503SIKEp 503 128 218 606,404 605,968
610SIKEp 610 192 326 1,163,277 1,162,625
751SIKEp 751 256 435 1,956,775 1,955,905

Efficiency of SIDH-based signatures (yes, SIDH)  9



3.1 Challenge and commitment recoverability

A Σ-protocol = =, , , ,1 2 1 2Gen P P P V V V( ( ) ( )) is said to be commitment-recoverable if, with overwhelming
probability over the random choice of a pair ←, 1λx w Gen( ) ( ), for any ∈ch ChSet and ∈resp ResSet,
there exists a unique commitment ∈com ComSet that makes , , ,x com ch resp( ) a valid transcript, and such a
commitment can be publicly computed by means of an algorithm taking , ,x ch resp( ) as input. This property
allows for shorter signatures by omitting com from them, and letting the verifier re-compute it. Its correctness
is then checked by means of the challenge ch.

The original version of the Σ-protocol Σ
t

SEC, described in Figure 1, does not satisfy commitment recover-
ability (e.g., the response iresp when = −1ich does not allow to recover i,2com ). However, we can modify (ΣSEC

and) Σ
t

SEC in such a way that the new protocol(s) are commitment recoverable.
The modification of Σ

t

SEC which we suggest2 is detailed in Figure 2. In particular, 1P remains unchanged,
while the algorithm 2P outputs the response = r b, ,i i i i2, ,2resp com( ) when = −1ich ; the response

= +φ P r Q b, ,i i i i2 2 3, ,1resp com( ( [ ] ) ) when = 1ich ; and the response = E ψ φ b b, , ,i i i i i2, 2, 3,resp Ker( ( ( )) ) when
= 0ich , where ψ

i
is the isogeny with kernel +P r Qi2 2

⟨ [ ] ⟩ from E0. The verifier then re-computes part of the
commitment, and checks whether it corresponds to that received by 1P .

The expected sizes (in bits) of the elements in a transcript of the modified Σ
t

SEC protocol (excluding the
statement) are approximated by

= = ⌈ ⌉ = ⌈ ⌉ + + ⌈ ⌉ + + + ⌈ ⌉ + +λt t
t

λ p λ p λ4 , log 3 ,
3

log 3 2 log 1 3 4 log 1 2
e

2
2com ch resp∣ ∣ ∣ ∣ ( ) ∣ ∣ (( (ℓ ) ) ( ) ( )) (3)

(the terms within the brackets corresponds to the size of the responses to challenge −1, 1, and 0, respectively).
In Table 2, we lists the approximated sizes (in bits) of commitments, challenges, and responses for the four

SIKE parameter sets.

Remark 3. The gain column in Table 2 indicates how many bits (in percentage) we save when storing the
response computed by the modified Σ

t

SEC after applying commitment and challenge recoverability. Each value
is computed as − ∕s s s0 1 0( ) , where s0 is the average length of the response output by Σ

t

SEC, and s1 is the average
length of the response output by the modified version. Every time we will introduce a new optimisation, we
will compute the gain it provides as − ∕−s s si i 1 0( ) , where si is the average response length produced by the
version of Σ

t

SEC with the current and all previous modifications, and −si 1, the response length with only the
previous modifications. Note that in this way the overall gain provided by our optimisations can be obtained
by simply adding together all the intermediate gains.

Thanks to commitment recoverability, when the modified Σ-protocol is turned into a digital signature, the
commitment com does not need to be part of the corresponding signature. In principle, the challenge ch
should now be part of the signature, as it necessary to recover the commitment com. However, the modified
Σ

t

SEC protocol is also challenge-recoverable, and then ch can be excluded from the signature. We recall that a
Σ-protocol is challenge-recoverable if the challenge ch in a transcript , , ,x com ch resp( ) can be reconstructed
from resp. This is the case for both Σ

t

SEC and its modification, since the type of each iresp in resp uniquely
determines the corresponding challenge bit ich in ch. Thus, one can simply omit the challenge from a
transcript and let it be deduced from the response. Consequently, both challenge and commitment can be
reconstructed by the verifier. Therefore, the signature sizes for different SIDH/SIKE parameters are equal to
the response sizes in Table 2. Moreover, we note that the computational effort made by the prover in the
modified Σ

t

SEC protocol is exactly the same as in the original Σ
t

SEC protocol.



2 We stress that our modification is analogous to the one proposed in the study by Chi-DomAηnguez [15, Sec. 3.2] for the
protocol ΣwSIDH.
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3.2 Compressed responses

In Σ
t

SEC, when = 1ich the prover responds with the point +φ P r Qi2 2
( [ ] ) generating the kernel of the commit-

ment isogeny ′ ⟶ψ E E:
i i1 3, . Being P2 and Q

2
over

p
2� by construction, this requires the transmission of

⋅ +p2 log 1 bits.
Following the algorithmic improvements proposed in the studies by Costello et al. and Azarderakhsh et al.

[21,22], we can deterministically compute a torsion basis ′ ′P Q,{ } of [ ]E
e

1 2
2ℓ for any statement/public key E1.

Then, the response can be set as the result α β,i i
( ) of a double discrete logarithm, with αi, β

i
such that

′ + ′ = +α P β Q φ P r Qi i i2 2
[ ] [ ] ( [ ] ). Since +φ P r Qi2 2

( [ ] ) is of order e

2
2ℓ , one of the two coefficients α β,i i

must be
invertible modulo e

2
2ℓ ; if it is αi, we let ≔ι 1i and ≔ −

γ α β
i i i

1 , otherwise we let ≔γ 1
i

and ≔ −
ι β αi i i

1 . The response
can then be set as (ι γ,i i

), and the kernel generator computed as ′ + ′ι P γ Qi i
[ ] [ ] .

Figure 2:Modified Σ
t

SEC protocol which enjoys commitment recoverability. The blue text marks the differences with the original scheme
depicted in Figure 1.

Table 2: Sizes (in bits) of the signatures of DSSEC (i.e. the transcripts of Σ
t

SEC excluding statements and challenges) produced by the
modified Σ

t

SEC after applying challenge and commitment recoverability, for different SIDH/SIKE parameters. The “gain” column
indicates by how much the signature lengths have reduced compared to those in Table 1

SIKE param. ⌈⌈ ⌉⌉plog λ t ∣∣ ∣∣com ∣∣ ∣∣ch ∣∣ ∣∣ == ∣∣ ∣∣signatureresp Gain (%)

434SIKEp 434 128 218 111,616 10 279,622 48.53
503SIKEp 503 128 218 111,616 10 312,249 48.47
610SIKEp 610 192 326 250,368 10 597,993 48.57
751SIKEp 751 256 435 445,440 11 1,005,575 48.59

Efficiency of SIDH-based signatures (yes, SIDH)  11



With this method, the size of the response is therefore reduced to ( )⌈ ⌉ +log 1
e

2
2ℓ bits, at the cost of

computing a deterministic torsion basis both by signer and verifier, and determining a double discrete
logarithm only on the signer’s side. Note that the basis ′ ′P Q, can be computed once for all by adding it to
the statement/public key E1. The new public key would look exactly like an old SIDH public key, with
the crucial difference that the basis is computed independently of the secret isogeny φ, preventing the
applicability of the attacks on SIDH to this context. Moreover, the following pre-computation would allow
us to use the method of compressed responses at no additional computation cost. The prover needs to
determine φ P2( ) and φ Q ,

2
( ) and then compute their respective components α β, and γ ω, in the basis

′ ′P Q,{ }. Then, to compute a response, the prover would only need to calculate one multiplications and two
sums in ∕ e

2
2� �ℓ , since + = + ′ + ⋅ + ′φ P r Q α γ P r β ω Qi i2 2

( [ ] ) [ ] [ ( ) ].
We stress that, since the number of bits of the response on challenge = −1ich is one bit shorter than the

compressed response for the challenge = 1ich , the challenge recoverability of the protocol is preserved. The
new response length is then computed as follows:

( ) ( )= ⌈ ⌉ + + ⌈ ⌉ + + + ⌈ ⌉ + +
t

λ λ p λ
3

log 3 log 1 3 4 log 1 2 .
e e

2 2
2 2resp∣ ∣ (( ℓ ) ( ℓ ) ( )) (4)

Remark 4. The aforementioned compression method could also be applied for the case where = 0ch , at the cost
of a slow down, since a new canonical basis would need to be computed. Indeed, unlike for ∈ ±1ch { }, the curve
E2 varies for each challenge. We will therefore not consider this compression method for = 0ch in Table 3.

3.3 Seed trees

A primitive called seed tree [16] can be used to first generate a number of pseudorandom values and later
efficiently disclose an arbitrary subset of them, without revealing any information on the values which are
not disclosed. More precisely, a seed tree is a complete binary tree (i.e. a binary tree in which every level,
except possibly the last, is completely filled, and all nodes are as far left as possible) of λ-bit seed values such
that the left (resp. right) child of a λ-bit seed seed is the left (resp. right) half of the bit string hExpand seed( ‖ ),
where h is a unique identifier for the position of seed in the binary tree. The seed values of a subset of the set
of leaves can be efficiently revealed by sharing the appropriate set of internal seeds in the tree. As a simple
example, if the sender (who created the complete binary tree) only provides the seed value associated to the
left child of the root of the tree, then the recipient will only be able to recover the seed values associated to
the leaves in the left half of the tree. Notably, the recipient will not learn any information about the leaves in
the right half of the tree. A seed tree consists of four oracle-calling algorithms: SeedTree, ReleaseSeeds,
RecoverLeaves, SimulateSeeds. Below, we recall the formal definitions of the first three algorithms, where

⟶+⌈ − ⌉: 0, 1 0, 1λ t λlog 1 2
2Expand { } { }( ) is a Pseudo-random generator for any ∈λ t, �, instantiated by a random

oracle � .
• ⟶ ∈t, :i i t1, … ,SeedTree seed leafroot

�( ) { } { } On input a root seed ∈ 0, 1 λseedroot { } and an integer ∈t �, the
algorithm constructs a complete binary tree with t leaves by recursively expanding each seed to obtain its

Table 3: Sizes (in bits) of the responses produced by the modified Σ
t

SEC with compressed responses for different SIDH/SIKE parameters.
Commitment and challenge lengths remain unchanged with respect to Table 2. The “gain" column is computed as the difference
between the new signature lengths and the ones in Table 2 divided by the signature lengths from Table 1

SIKE param. ⌈⌈ ⌉⌉plog λ t ∣∣ ∣∣ == ∣∣ ∣∣signatureresp Gain (%)

434SIKEp 434 128 218 232,388 8.69
503SIKEp 503 128 218 257,531 9.03
610SIKEp 610 192 326 498,563 8.55
751SIKEp 751 256 435 842,740 8.33
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children seeds. Calls to the random oracle are of the form hExpand seed�( ‖ ‖ ), where ∈ −h t1, …, 1{ }

identifies the position of seed in the binary tree. The algorithm finally outputs the list of seeds associated
with the t leaves.

• ⟶jc, , :ReleaseSeeds seed seedsroot internal
�( ) On input a root seed ∈ 0, 1 λseedroot { } , a bit string

∈ −c 1, 0, 1 t{ } , and ∈ −j 1, 0, 1{ }, it outputs the list of seeds seedsinternal that covers all the leaves with index
i such that =c ji . Here, we say that a set of nodes F covers a set of leaves S if the union of the leaves of the
subtrees rooted at each node ∈v F is exactly the set S . Here, we note that each seed in seedsinternal is
coupled with an index which identifies its position in the binary tree.

• → =jc, , :i i c js.t. i
RecoverLeaves seeds leafinternal

�( ) { } On input a set seedsinternal, a bit string ∈c 0, 1 t{ } and a
chosen ∈ −j 1, 0, 1{ }, it computes and outputs all the leaves of the subtrees rooted at the seeds in seedsinternal.

By construction, the leaves =i i c js.t. i
leaf{ } output by t,SeedTree seedroot( ) are the same as those output by

j jc c, , , ,RecoverLeaves ReleaseSeeds seedroot( ( ) ) for any ∈c 0, 1 t{ } and ∈ −j 1, 0, 1{ }. We observe that the
last algorithm SimulateSeeds can be used to argue that the seeds associated with all the leaves with index i

such that ≠c ji are indistinguishable from uniformly random values for a recipient that is only given
seedsinternal, c and j .

We now describe how seed trees can be used to optimise the modified Σ
t

SEC on two fronts. The optimisa-
tion we propose in the following is motivated by the observation that in the first three lines of 1P (Figure 2),
all the elements necessary to compute the inputs to the commitment oracle are sampled: the t random

coefficients ( )← ∕r r, …, t

e t
1

$

2
2� �{ } ℓ for the commitment curves =E E,i i i

t

2, 3, 1( ) and two sets of random strings

b b, …, ,t2,1 2,( ) ←b b, …, 0, 1t
λt

3,1 3,

$

( ) { } . Of these inputs, only the coefficients need to be selectively opened, while
the entirety of the random strings can be revealed (as their disclosure does not impact the computational
HVZK property of the protocol).

Therefore, instead of independently choosing t coefficients and t2 random bit-strings, t3 seeds could be
generated using two distinct seed trees, one for the coefficients which originates from the root seedroot

coeff and
one for the random bit-strings which originates from the root seedroot

str . Then, instead of selectively revealing
a subset of the t2 bit strings according to the response algorithm 2P , the prover could directly sends the
initial seed seedroot

str used to generate them, letting the verifier compute them all. On the other hand, instead
of responding with the random coefficients ri for the challenge bits = −1ich , the prover could output

← −, , 1seeds ReleaseSeeds seed coeff chinternal root( ). The verifier would then use seedsinternal along with ch
and = −j 1 to recover the required seeds by running RecoverLeaves.

Let us analyse how generating all random strings from a single root seed seedroot
str and revealing it to the

verifier affects the response length. Each random string is represented by λ bits, and without the use of seed
trees, one of them is communicated if = −1ich or = 1ich , and two of them if = 0ich . For t responses iresp on

challenges evenly distributed over −1, 0, 1{ }, this amounts to + + =t λ λ λ tλ2
1

3

4

3
( ) bits. If all random strings are

generated with a seed tree from a root seed seedroot
str , releasing just the root seed requires only λ bits.

Such neat analysis cannot be performed on the application of the seed tree primitive to the generation of
the coefficients r r,…, t1 , since the amount of internal seeds that need to be revealed depends on how −1, 0, and 1

Table 4: Sizes (in bits) of the different components of the transcripts (excluding the statement) produced by the modified Σ
t

SEC of Figure
2 when it also incorporates compressed responses (for challenges = 1ich ) and seed trees. The “gain” indicates by how much the
signature lengths have reduced compared to those in Table 3

SIKE param. ⌈⌈ ⌉⌉plog λ t ∣∣ ∣∣com ∣∣ ∣∣ch ∣∣ ∣∣ == ∣∣ ∣∣signatureresp Gain (%)

434SIKEp 434 128 218 111,616 10 188,771 8.03
503SIKEp 503 128 218 111,616 10 211,370 7.62
610SIKEp 610 192 326 250,368 10 403,020 8.22
751SIKEp 751 256 435 445,440 11 676,681 8.49

Efficiency of SIDH-based signatures (yes, SIDH)  13



are distributed over the challenge string. In the worst-case scenario, i.e. when all the leaf seeds need to be
revealed, instead of plog

2
bits for the coefficient ri, only λ bits for the generating seed need to be communicated.

The following equation (5) determines how seed trees affect the lengths of the responses produced by the
modified Σ

t

SEC of Figure 2 when it also incorporates compressed responses (for challenges = 1ich ). In par-
enthesis, we add response lengths for = −1, 1, 0ich respectively, where the λ2 addends represent the necessary
information for commitment recoverability; the lengths of random strings b b, …, ,t2,1 2,( ) b b, …, t3,1 3,( ) is
removed from each response and replaced by a unique λ addend representing seedroot

str .

( )= + + + ⌈ ⌉ + + + ⌈ ⌉ +λ
t

λ λ λ p
3

2 log 1 2 4 log 1 .
e

2
2resp∣ ∣ (( ) ( ℓ ) ( )) (5)

In Table 4, we report the numbers produced by equation (5) for different SIKE parameters. Table 4 differs
from Table 3 only in the last two columns.

3.4 Unbalanced challenge space

Equation (5) clearly shows that the response iresp when = 0ich is significantly bigger than when ∈ −1, 1ich { }.
As a consequence, one might consider to unbalance the challenge string ch in order to decrease the overall size
of = =i i

t

1resp resp( ) . Such modification was proposed in the study by Beullens et al. [16, Sec. 3.4.1], and has the
extra positive effect of making the transcript/signature size constant. To be more concrete, the modification
consists in choosing a positive integer K and performing M parallel executions of ΣSEC, exactly K of which use
the unfavourable challenge bit 0. The number of challenges in −1, 0, 1 M{ } having exactly K components equal

to 0 is ⎛
⎝

⎞
⎠ ⋅ −2

M

K

M K . Equation 1 dictates that, for a given K , M should be selected in such a way that the success

probability of a dishonest prover is bounded above by −2 λ, i.e.

⎛
⎝

⎞
⎠ ⋅ ≥

−
M

K

2
2 .

M K

λ

n
(6)

Therefore, for generic M and K , it is necessary to find the maximal number = M K,n n of challenges to which a
dishonest prover would be able to correctly reply. Afterwards, we will find the optimal ∈M � and

∈ ⌈ ∕ ⌉K t0, …, 3{ } such that

= + ⎡
⎢

− ⎤
⎥ + + ⌈ ⌉ + + + ⌈ ⌉ +λ

M K
λ λ λ K p

2
2 log 1 2 4 log 1

e

2
2resp∣ ∣ (( ) ( (ℓ ) )) ( ) (7)

is minimal. We first start by finding n.

Lemma 1. We can express n as follows:

= ⎧⎨⎩
⎛
⎝

⎞
⎠ ⋅ ∈ ⎫⎬⎭

−h

K
h K Mmax 2 : , …, .M hn { } (8)

Proof. Let S be the set of all subsets U of −1, 0, 1 M{ } consisting of elements of Hamming weight −M K (i.e.
elements with −M K non-zero components) and such that, for any index ∈i M1, …,{ }, U does not contain
three elements whose i-th components are all distinct. Then n is the maximum cardinality among the sets in S .
Given a set ∈U S , let hU denote the number of indices i such that there exists a sequence inU that has a zero at
index i, i.e.

≔ ∈ ∃ ∈ =h i M x U x# 1, …, : , 0 .U i{ { } }

Hence, for a set ∈U S , we can have ⎛
⎝

⎞
⎠

h

K

U choices for the entries that are zero. The remaining −M hU entries can

be either 1 or −1, giving us −2M hU choices. Therefore, the maximal size of a set ∈U S is n as in equation (8). □
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Proposition 2. Let hmax denote a value of h realising the maximum of the set in Equation (8). Then =h K2max and

= ⎛
⎝

⎞
⎠ ⋅ −K

K

2
2 .M K2n

Proof. Let us study the behaviour of the discrete function ≔ ⎛
⎝

⎞
⎠ ⋅ −

f h 2
h

K

M h( ) taking values in K M, …,{ }, with

parametrised integers <K M . We start by noticing that the left factor ⎛
⎝

⎞
⎠

h

K
is monotonically increasing, while

the right factor −2M h is monotonically decreasing, with ratio ∕ =− − +2 2 2M h M h 1( ) for any value of h.
The function f h( ) is initially increasing, since the left factor grows faster than how the right factor

decreases. In fact, for any ≥h K ,

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

=
+

+ −
> ⇔ < −

+

h

h K
h K

1

1
2 2 1.

h

K

h

K

1

For = −h K2 1, the ratio between the binomial coefficients for h and +h 1 is exactly 2, so
− =f K f K2 1 2( ) ( ).

For any > −h K2 1, the function f is decreasing, since ⎛
⎝

⎞
⎠∕

⎛
⎝

⎞
⎠ <+

2
h

K

h

K

1 for ≤ <K h M2 .

We conclude by arbitrarily choosing =h K2max as a value of h maximising f (one can equivalently set

= −h K2 1max , obtaining a less neat formula), and thus = ⎛
⎝

⎞
⎠ ⋅ −2

K

K

M K
2

2n . □

As an example, when =λ 128 and K is set to 75, it is sufficient to have =M 247 parallel runs of ΣSEC, since
here the value hmax giving us the maximal size ofU is 150. The values of M and K that optimally minimise the
length of the response for different SIDH/SIKE parameters are collected in Table 5.

To obtain the values in Table 5, we simply run through all values of M , up to a very large upper bound (say
twice the value of the corresponding t), and all values of ∈ ⌈ ∕ ⌉K t0, …, 3{ } and pick out the values M K,( )

minimizing resp∣ ∣. As expected, the values of M obtained end up being very close (just a little bit bigger) than
the corresponding values of t (which can be found, for example, in Table 4).

3.5 Summary

We conclude this section highlighting the overall gain in applying challenge and commitment recoverability,
compressed responses, seed trees, and unbalanced challenge space optimisations to the ΣSEC protocol. We
phrase the results in terms of signature sizes:
• for 434SIKEp , we shorten the signature from 66.31 kB to at most 18.89 kB, corresponding to a reduction of at
least 71.51%,

Table 5: Values of M and K for the unbalanced challenge space that minimise the response length of the modified Σ
M

SEC for different
SIDH/SIKE parameters still guaranteeing a negligible soundness error. The size of resp is in bits, while the “gain" column reports by how
much the signature lengths have reduced compared to those in Table 4

SIKE parameters ⌈⌈ ⌉⌉log p λ M K h max ∣∣ ∣∣resp Gain (%)

434SIKEp 434 128 250 48 96 154,783 6.26
503SIKEp 503 128 250 48 96 169,041 6.99
610SIKEp 610 192 362 76 152 336,095 5.76
751SIKEp 751 256 478 103 206 571,453 5.38
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• for 503SIKEp , we shorten the signature from 73.97 kB to at most 20.63 kB, corresponding to a reduction of at
least 72.10%,

• for 610SIKEp , we shorten the signature from 141.92 kB to at most 41.03 kB, corresponding to a reduction of at
least 71.09%,

• for 751SIKEp , we shorten the signature from 238.76 kB to at most 69.76 kB, corresponding to a reduction of at
least 70.78%.

We also note that all the optimisations discussed in this section could be extended to the distributed trusted-
setup protocol [14, Sec. 5] built on top of ΣSECUER

base to collaboratively produce a random supersingular elliptic
curve whose endomorphism ring is hard to compute even for the parties who did the sampling (Table 6).

4 Running-time optimisations

In an execution of the Σ-protocol Σ
t

SEC, t2 commitment isogenies need to be computed. The same holds for all
the modified protocols introduced in Section 3, including the one that considers fixed-weight challenges, which
we denote by Σ

M

SEC (see Section 3.4). All such isogenies have degree e

2
2ℓ – half of them originate from E0 and half

from E1.
We now present two optimisations that take advantage of the computation of several isogenies of the same

degree from the same supersingular elliptic curve. Despite focusing on Σ
t

SEC (and, implicitly, on Σ
M

SEC), both
optimisations could be extended to the distributed trusted-setup protocol [14, Sec. 5] built on top of ΣSECUER

base .
To better explain such optimisations, we recall the fastest generic method to compute a cyclic isogeny of

degree e

2
2ℓ from its kernel. For simplicity, we specialise our presentation to the SIKE parameters, and therefore

in the following, we will replace 1ℓ with 2, 2ℓ with 3, e1 with a and e2 with b.
Let ψ be an isogeny of degree 3b from a supersingular elliptic curve E over

p
2� , with kernel generated by

≔ +R P r Q[ ] for some basis P Q,{ } of E 3b[ ] and some ∈ ∕r 3b� � . The isogeny ψ can be expressed as the

composition = ∘ ∘ ⋯ ∘ = ∏−
=
− −

ψ ψ ψ ψ ψ
b b

j

b b j1 1
0

1( ) ( ) ( ) ( ), where each ψ
j( ) has degree 3. The first isogeny ψ

1( ) of

such decomposition is the isogeny whose kernel is generated by −
R3b 1[ ] . Then ψ

2( ) is the isogeny with kernel
generated by −

ψ R3b 2 1[ ] ( )( ) , and so on untilψ
b( ), the last 3-isogeny with kernel generated by −

ψ ψ R… …b 1 1( ( ( )) )( ) ( ) .
The strategies described in [23, Appendix D] speed up the computation of = ∘ ∘ ⋯ ∘−

ψ ψ ψ ψ
b b 1 1( ) ( ) ( ) by

minimising the number of operations to execute. We give a high-level description of these strategies in the
following lines. To recursively determine the kernels of and computing the 3-isogenies in the decomposition

= ∏ =
− −

ψ ψ
j

b b j

0

1 ( ), the strategies combine two operations: scalar multiplication and isogeny evaluation. Each of
these two operations runs in a certain time, with the latter slightly faster than the former. The goal of the
strategies is that of minimising the overall computational cost. Referring to Figure 3, we can graphically
describe their goal and how they operate. In particular, they aim to obtain the points on the hypotenuse of
the right-angled triangle using the least amount of arrows – with blue arrows representing scalar multi-
plications by 3 and red arrows representing 3-isogeny evaluations – under the condition that the +i 1( )-th
line from the top cannot be accessed before reaching the rightmost point on the i-th line from the top, i.e.
before the computation of the 3-isogenyψ

i( ). In fact, the elements on the hypotenuse, from the top-right corner

Table 6: Overall gains in applying all the proposed optimisations to the ΣSEC protocol

SIKE parameters ⌈⌈ ⌉⌉plog λ ∣∣ ∣∣resp (kB) Total gain (%)

434SIKEp 434 128 18.89 71.51
503SIKEp 503 128 20.63 72.1
610SIKEp 610 192 41.03 71.09
751SIKEp 751 256 69.76 70.78
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to the bottom-left corner, represent the kernels ofψ ψ ψ, ,…, b1 2( ) ( ) ( ), respectively. The naive (standard) approach

to compute = ∏ =
− −

ψ ψ
j

b b j

0

1 ( ) would be to start at the first line, go all the way to the right, then move down to the
next line, and go all the way to the right, and so on. However, there exist alternative strategies which
accelerate the computations. In particular, Figure 3 depicts the optimal strategy proposed in [23, Appendix
D] for the case =b 6 (the general strategy for a generic b is just a generalisation of it).

4.1 Computing several isogenies in parallel

We now go back to the computation of t2 commitment isogenies within an execution of Σ
t

SEC (or within one of
its variations). To outline the first optimisation we propose, we restrict our attention to the isogenies ψ ψ,…,

t1

which originate from E0. Analogous considerations hold for the isogenies originating from E1.
As we saw earlier, for ∈i t1, …,{ }, the fastest method to compute ψ

i
from its kernel +P r Qi2 2

⟨ [ ] ⟩ – where
P Q,2 2

{ } is a basis of E 3b
0[ ] – is that of determining the composition ∘ ∘ ⋯ ∘−

ψ ψ ψ
i

b

i

b

i

1 1( ) ( ) ( ) of 3-isogenies. We

then observe that there are 3 possible values for ψ
i

1( ), 32 for ψ
i

2( ), 33 for ψ
i

3( ), and so on. For example, the three

possible values for ψ
i

1( ) have + ⋅− −
P Q3 0 3b b1

2
1

2
⟨[ ] [ ] ⟩, + ⋅− −

P Q3 1 3b b1
2

1

2
⟨[ ] [ ] ⟩ and + ⋅− −

P Q3 2 3b b1
2

1

2
⟨[ ] [ ] ⟩ as

kernels. Since =t 218 for 434SIKEp and 503SIKEp , =t 326 for 610SIKEp and =t 435 for 751SIKEp , some of
the possible 3-isogenies will surely occur multiple times3. In particular, for ∈j b1, …,{ } and two different

′ ∈i i t, 1, …,{ }, it holds that

∘ ⋯ ∘ = ∘ ⋯ ∘ ⇔ ≡′ ′ ′ψ ψ ψ ψ r r mod 3 .
i

j

i i

j

i i i
j1 1 ( )( ) ( ) ( ) ( ) (9)

Figure 3: Graphical representation of the optimal strategy proposed in the study by Azarderakhsh et al. [23, Appendix D] for the case
=b 6 to compute a 36-isogeny from a kernel generator R. Blue arrows represent scalar multiplications by 3, red arrows represent 3-

isogeny evaluations.



3 When using an unbalanced challenge space, as discussed in Section 3.4, ΣSEC is repeated M times, with >M t for all SIKE
parameters.
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After a few steps, however, repetitions are expected to stop occurring (for the rapid-mixing property of
supersingular isogeny graphs). For example, considering the 434SIKEp parameters, since there are =3 2435

possible values for r mod 3i
5( ) and =t 218, the fourth is the last factor where we can still expect a good amount4

of repetitions.
Given the aforementioned observations, a speed-up in computing the t isogenies of degree 3b from E0 can

be obtained by avoiding repeatedly computing 3-isogenies which occur multiple times. To be more precise, this
can be achieved by pre-computing all possible values forψ ψ,…,

i i

α1( ) ( ) –with α being the biggest positive integer
such that < t3α – and then, for every ∈i t1, …,{ }, calculating the congruence classes of ri modulo 3, 3 ,…, 3α2 to
determine ψ ψ,…,

i i

α1( ) ( ), respectively. Alternatively, for each ∈i t1, …,{ } and ∈j α1, …,{ }, the congruence class

of ri modulo 3 j can be determined before computing the kernel ofψ
i

j( ) and the isogeny itself. If such congruence

class matches the one of a coefficient rk with ∈ −k j1, …, 1{ }, then the kernel of ψ
i

j( ) and the isogeny itself do

not need to be re-computed, since =ψ ψ
i

j

h

j( ) ( ).
Figure 4 shows how the modular-arithmetic checks can be exploited within the optimal strategies pro-

posed in the study by Azarderakhsh et al. [23, Appendix D]. In particular, they grant the possibility of moving
from line 1 to line +α 1 (where α is equal to 3 in the toy example depicted in the figure) without the need to
reach the rightmost of the first α lines. In other words, the vertical orange arrows can be simply determined
form the modular-arithmetic checks.

To evaluate the advantage in applying the described tweak, we first deduce formulas for the number of
horizontal and vertical arrows, respectively, required in the optimal strategies from the study by Azarderakhsh
et al. [23, Appendix D] to compute isogenies of degree 3b:

= ⎢
⎣

− ⎥
⎦ = ⎢

⎣
+ ⎥

⎦ −H b
b

V b
b

b
3 4

2
,

1

2
mod 2 .os os

2

( ) ( ) ( ) (10)

We borrow from the study by Azarderakhsh et al. [23, Appendix D] the costs (in cycles) of a point-tripling
operation, p

3
, and of computation and evaluation of a 3-isogeny, q

3
. With them and Equation (10), we calculate

the cost of the optimal strategies from [23, Appendix D] to compute t isogenies of degree 3b, and we compare it
with the cost when pre-computation is performed. The results are presented in Table 7. For example, for

434SIKEp , t is equal to 218, =b 137, =p 5,322
3

, and =q 5,282
3

, with the total cost for computing t isogenies of
degree 3137 via the optimal strategy being

⋅ + ⋅ =V q H p218 137 137 5,716,545,548 .os 3 os 3
( ( ) ( ) )

If isogenies are pre-computed and selected using modular arithmetics according to equation (9), we can start
each isogeny computation from the fifth line (as noted earlier, we expect a good amount of repetitions in the first
four factors when =t 218), thus reducing the amount of arrows to compute. In this case, ′ = −H H137 137 4os os( ) ( )

horizontal arrows and ′ = − +V V137 137 4 4os os( ) ( ) vertical arrows are required to compute a single 3137-isogeny.
The total cost of computing 218 isogenies of degree 3137 in parallel is

⋅ + ⋅ + ⋅ =V q q H p218 133 4 133 5,396,382,900 ,os 3 3 os 3
( ( ) ( ) )

which corresponds to an efficiency increase of 5.60% for 434SIKEp parameters.
We can analogously compute the savings determined by our tweak for the other SIKE parameter sets, pre-

computing the first 5 steps for 610SIKEp and 751SIKEp (in which cases < t35 ). The results are summarised in Table
7, where we also indicate the cost of storing the pre-computed kernel generators of all possible initial steps ψ ψ,…

1 4
.

For comparison with the parallel strategy with pre-computation, we now describe a sequential approach
to speed up Σ

t

SEC by avoiding recomputing the same steps several times, but without introducing any pre-
computations. When we compute the first isogenyψ

1
from its coefficient r1, we store the kernels of its first four



4 Some repetitions are also expected in the fifth factor. In particular, an average of 28.35 repetitions occur. In other words, if we
were to pick 128 items from a set of =3 2435 , then on average (repeating this experiment many times), we would get around 28
repetitions.
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initial steps. When computing the second isogeny, we first check whether ≡r r mod 3 j
2 1( ) for any =j 1, 2, 3, 4:

if so, we already have the kernel for that step, and we can save all horizontal lines that would be required to
compute it; if not, we compute the kernel corresponding to that step and store it. Repeating this simple
procedure would allow us to compute the initial steps of all t isogenies ψ ψ,…,

t1
without repeating the same

unnecessary scalar multiplications, at the cost of evaluating modular equivalences. To analyse the cost of this
strategy, let us start from the one when we considered pre-computations, and let us increase it by the extra
cost of performing scalar multiplications in the first 4 steps. In particular, we need ⋅ −b3 1( ) scalar multi-
plications to obtain the three possibilities for ψ

i

1( ); as per the optimal strategy, we need 32 isogeny evaluations

on the kernels −
R3b

i
2 to obtain the nine possibilities for ψ

i

2( ). Then again, we perform ⋅ −b3 33 ( ) scalar multi-

plications to obtain the 27 possibilities for ψ
i

3( ), and finally 34 isogeny evaluations to obtain the 81 possibilities

for ψ
i

4( ). The total cost of this strategy is therefore

Figure 4: By doing some pre-computation or avoiding the multiple computation of 3-isogenies, the optimal strategy from [23, Appendix
D] to compute and evaluate a 36-isogeny from a kernel generator R is granted the possibility to move from line 1 to line +α 1 (with =α 3

in the figure) without the need to reach the right most of the first α lines. In particular, the points in boxes can be obtained instantly from
modular-arithmetic checks, and they determine, in turn, the vertical orange arrows.

Table 7: Costs (in clock cycles and kilobytes of storage) and percentage gains in using the pre-computation tweak to compute t

commitment isogenies in Σ
t

SEC and in its unbalanced challenge variant Σ
t U,

SEC compared to those of using the optimal strategies from the
study by Azarderakhsh et al. [23, Appendix D], for different SIKE parameter sets

Protocol SIKE parameters t b Old cost (cc) New cost (cc) Gain (%) Storage (kB)

Σ
t

SEC 434SIKEp 218 137 5,716,545,548 5,400,988,804 5.52% 13.035

503SIKEp 218 159 7,642,101,180 7,275,879,492 4.79 15.105
610SIKEp 326 192 16,365,527,304 15,704,201,096 4.04 55.41
751SIKEp 435 239 33,908,315,250 32,272,252,410 4.82 68.2

Σ
t U,

SEC
434SIKEp 250 137 6,555,671,500 6,019,478,500 8.18 39.43

503SIKEp 250 159 8,763,877,500 8,140,531,500 7.11 45.65
610SIKEp 362 192 18,172,763,448 17,438,407,352 4.04 55.41
751SIKEp 478 239 37,260,171,700 35,462,383,108 4.82 68.2
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⋅ − ⋅ + ⋅ + − ⋅ + ⋅ − ⋅ + ⋅t V b q q H b p b p q4 4 4 30 84 90 ,os 3 3 os 3 3 3
( ( ) ( ) ) ( )

for 434SIKEp and 503SIKEp and

⋅ − ⋅ + ⋅ + − ⋅ + ⋅ − ⋅ + ⋅t V b q q H b p b p q5 5 5 264 1,254 90 ,os 3 3 os 3 3 3
( ( ) ( ) ) ( )

for 610SIKEp and 751SIKEp (considering the fact that repetitions occur in the fifth step as well), and it requires
the same amount of extra storage as the pre-computation strategy. The results for all SIKE parameter sets are
presented in Table 8.

4.2 Computing multiple scalar multiplications in parallel

Following the optimisations presented in the previous section, we note that many points belonging to E0 must
be computed. These points are used in the commitment generation of Σ

t

SEC (or in one of its variants), and are
the kernel generators R R R, ,… t1 2 , where each = +R P r Qi i2 2

[ ] is obtained by randomly sampling ri from ∕ e

2
2� �ℓ

(or by using a seed tree, as shown in Section 3.3).
We now discuss how to calculate all Ri’s in parallel and obtain some computational savings. An analogous

strategy can be applied to parallelise the computation of the kernel generators of the commitment isogenies
which originate from E1.

For each Ri, the scalar multiplication r Qi 2
[ ] can be performed using the classical double-and-add strategy,

in which the points that obtain doubled and (possibly) added at each step are multiples of Q
2
. Hence, we can

perform the multiple doublings of Q
2
only once for all Ri’s, as detailed in Figure 5, where m is the minimum

number of bits necessary to represent any coefficient in ∕ e

2
2� �ℓ , and = −

r r r r, , …,i i i i

m0 1 1
2( ) is the little-endian

binary representation of ∈ ∕ri

e

2
2� �ℓ .

Table 8: Costs (in clock cycles and kilobytes of storage) and percentage gains in computing t commitment isogenies in Σ
t

SEC following
the strategy that avoids pre-computation but performs modular-arithmetic checks on-the-fly, compared to those of the optimal strategy
from [23, Appendix D], for different SIKE parameter sets

SIKE parameters t b Old cost (cc) New cost (cc) Gain (%) Storage (kB)

434SIKEp 218 137 5,716,545,548 5,422,890,556 5.14 13.035
503SIKEp 218 159 7,642,101,180 7,301,293,764 4.46 15.105
610SIKEp 326 192 16,365,527,304 15,967,764,224 2.43 55.41
751SIKEp 435 239 33,908,315,250 32,601,850,914 3.85 68.2

Figure 5: Algorithm to compute t coefficients = +R P r Qi i2 2
[ ] in parallel.
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In analysing how much this strategy saves us, let riHw( ) denote the Hamming weight (i.e. the number of
non-zero components) of the binary representation of the coefficient ri, and let cADD and cDBL denote the
cost (in cycles) of adding and doubling points over an elliptic curve, respectively. With a naive approach, we
would perform −m 1 doublings and +r 1iHw( ) additions (with “+1" counting for the last addition by P2) for
each Ri, at a total cost of

∑− ⋅ + + ⋅
=

t m r1 1 .

i

t

i

1

cDBL Hw cADD( ) ( ( ) )

With our parallelised approach presented in Figure 5, we still perform the same amount +r 1iHw( ) of
additions for each Ri, but the −m 1 doublings are performed once for all the Ri’s, which saves us

− −t m1 1 cDBL( )( ) (at least 99% of the doublings for any ≥t 100, as in our case study).

5 Conclusions

We have assessed the efficiency of a SIDH-based digital signature built on a weaker but more efficient variant
of the recent identification protocol ΣSECUER

base from the study by Basso et al. [14, Section 4]. The Σ-protocol we
consider only achieves computational honest-verifier zero-knowledge instead of the stronger notion of statis-
tical honest-verifier zero-knowledge, but it allows for shorter isogenies. We have conducted our analysis by
applying some known cryptographic techniques to decrease the signature size and proposing a minor opti-
misation to compute many isogenies in parallel from the same starting curve. In addition, we provide novel
results on unbalanced challenge space with ternary challenges. Our assessment confirms that the problem of
designing a practical isogeny-based signature scheme remains largely open. Nonetheless, the proposed opti-
misations can be applied to the distributed trusted-setup protocol [14, Sec. 5] built on top of ΣSECUER

base to
collaboratively produce a random supersingular elliptic curve whose endomorphism ring is hard to compute
even for the parties who participated in the sampling.
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