
Department of Information Engineering and Computer Science

IECS Doctoral School

Towards Intelligent Videogame
Generation

Videos to Games using Deep Learning

A thesis submitted for the degree of
Doctor of Philosophy

Advisor Student
Elisa Ricci Willi Menapace

Co-Advisor
Sergey Tulyakov

Reviewers
Vladislav Golyanik
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Abstract

Multimedia content plays a pivotal role in contemporary society, permeating
diverse facets of communication and entertainment. However, the creation of
high-quality multimedia content often requires specialized expertise and equip-
ment, limiting its widespread accessibility. To address these challenges, deep
learning-based methods have emerged as revolutionary tools for image and video
generation, reshaping content creation landscapes and transforming professional
workflows. These techniques have significantly impacted the media creation in-
dustry, facilitating more accessible and efficient media pipelines. Nevertheless,
videogame development remains a resource-intensive endeavor.

Videogames are complex soft real-time systems that necessitate meticulous mod-
eling of 3D objects, animations, graphical effects, physics, and intelligent agents.
The collaborative efforts of various specialized professionals, including design-
ers, software engineers, 3D artists, and sound engineers, are required to develop
videogames, each contributing their expertise to different aspects of the game.
Furthermore, the demanding quantity of assets involved often requires specialized
hardware such as 3D and motion capture equipment, professional cameras, and
sound recording devices. Although early attempts to democratize game develop-
ment introduced game engines to provide a strong foundation for the development
process, creating videogames remains a multi-million-dollar endeavor even with
sophisticated modern engines. This raises the question of whether deep learning
can revolutionize videogame creation in a similar manner.

This research proposes several novel methods aimed at streamlining the videogame
creation process, leveraging the abundance of available videos showcasing game-
play. These methods automatically convert readily accessible video collections
into playable game experiences.

Firstly, we introduce a completely unsupervised pipeline called Playable Video
Generation, which seamlessly transforms raw video collections into playable ex-
periences. We demonstrate the effectiveness of this pipeline through compelling
applications, including Atari games emulation, robotic arm control, and tennis
simulations. Recognizing that videogames predominantly involve rendered com-
positions of 3D objects rather than 2D videos, we extend the framework to 3D
environments in Playable Environments. Here, objects are represented as separate
3D entities, allowing for control over multiple entities and their attributes, such
as style, as well as camera control. Lastly, we present the concept of Promptable
Game Model, where intelligent agents within the game are empowered through
the use of natural language instructions. This integration enables the creation of
complex playable experiences in which agents are controlled through fine-grained
actions and can act independently based on their own “game AI” to defeat op-
ponents and navigate intricate environments.

By harnessing the power of deep learning techniques, this research aims to de-
mocratize videogame development by enabling the transformation of annotated
video collections into playable experiences. The proposed methods provide a
promising avenue for revolutionizing the creation of videogames, similar to the
transformative impact deep learning has had on the media creation industry.

To facilitate future work in this novel area, all the data and code is made publicly
available.
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Chapter 1

Introduction

1.1 Motivation

Multimedia content, encompassing images, videos, and audio, holds a central role in contem-
porary society, serving as a powerful tool for communication, entertainment, and information
sharing. The ubiquity of social media platforms, the interactions between companies and
customers, and the engagement between governments and citizens are all reliant on multime-
dia content. However, the creation of professional-quality multimedia content is a complex
and demanding endeavor that requires specialized knowledge, manual labor, and professional
equipment.

The emergence of deep learning techniques is bringing about a revolutionary impact on con-
tent creation, streamlining the process and transforming professional tools. This has brought to
the integration of deep learning models into widely used software suites, such as Adobe Creative
Suite, enabling professionals to create high-quality media with unprecedented ease. Notable
advancements [41, 43, 111, 114, 138, 148], have demonstrated the potential of deep learning to
enable users without specialized knowledge to create high-quality multimedia content.

While traditional multimedia has primarily focused on passive consumption, the ubiquitous
access to powerful devices coupled with the advent of augmented reality (AR) and virtual reality
(VR) technologies, has given rise to a growing presence of interactive multimedia experiences.
These interactive experiences have gained prominence due to their enhanced engagement po-
tential, making them more effective means of communication and entertainment. Videogames,
with their inherent emphasis on user interaction and engagement, have traditionally embod-
ied this interactive multimedia paradigm. As the multimedia industry undergoes a potential
shift toward increased interactivity, the importance of videogame creation becomes even more
pronounced.

Despite their significance, the development of videogames remains a highly demanding pro-
cess comparable in its sophistication and used tools to that of top movie production [35]. This
is due to the collaborative efforts of game studios comprising various trained experts such as
3D artists, software engineers, animators, game designers and sound engineers, as well as the
requirement of specialized equipment such as professional cameras and sound recording devices,
motion capture and 3D scanning equipment. Well-known videogame projects, such as AAA ti-
tles, exemplify the substantial financial investments associated with achieving the desired level
of quality. Over the years, the industry has endeavored to streamline the game development
process. The introduction of game engines provided a solid foundation for the development
efforts, while the advancements in technologies such as 3D object capture and motion capture
brought to improvement in the asset creation process. However, even with these innovations,
the creation of videogames remains complex, as the expectations for quality continue to rise.

To date, deep learning techniques have only been harnessed to a limited extent within the
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realm of videogame creation [56,128,151]. Existing learning-based approaches for game devel-
opment have predominantly focused on specific aspects of games, such as the reconstruction
of generation of 3D assets [64, 92, 96] or character animation [8, 45, 71, 128, 129]. While these
advancements have demonstrated their efficacy in narrow domains of videogame creation, they
lack a holistic approach that could replace the entire game development pipeline. Consequently,
the democratization of videogame creation, in which playable experiences can be generated by
leveraging deep learning techniques without substantial human effort, remains an open impor-
tant problem.

In light of these challenges and opportunities, this work aims to address the need for a
streamlined and accessible method to create complex interactive multimedia experiences. We
propose several techniques that make a first step towards the automated generation of playable
experiences and hope advancements in this research direction will bring advancements to the
videogame creation industry, akin in magnitude to the transformative impact deep learning is
having on the broader media creation industry.

1.2 Outline

The foundation of this research is built upon the key observation that there is a wealth of
readily available videos showcasing gameplay. Leveraging this vast collection of videos, we
propose to harness their potential to train a deep learning model that enables users to generate
video outputs interactively, with a high degree of control over every aspect of the generation
process. This level of control is a fundamental characteristic that distinguishes the task of
creating playable experiences from unconditional video generation.

The thesis is structured as follows. In Chapter 2, we present the Playable Video Genera-
tion framework, a completely unsupervised pipeline that transforms collections of videos into
playable experiences, where users can control a player using a set of discrete actions. We demon-
strate the effectiveness of this pipeline through compelling applications, including Atari games
emulation, robotic arm control, and tennis simulations. Moving forward, in Chapter 3, we
recognize that videogames predominantly involve rendered compositions of 3D objects rather
than 2D videos. To address this, we extend the framework to 3D environments, introducing
the Playable Environments framework. In Playable Environments, objects are represented as
independent 3D entities, each possessing its own properties, such as style, which can be ren-
dered in arbitrary compositions from user-defined cameras. This extension enables independent
control of multiple agents and the camera within the game environment. Finally, Chapter 4
introduces Promptable Game Models, where we enhance the level of control over the playable
experience by integrating natural language instructions. This integration empowers intelligent
agents within the game to respond to fine-grained actions and act independently based on their
own “game AI”. As a result, complex playable experiences can be created, allowing agents to
defeat opponents and navigate intricate environments.

1.2.1 Playable Video Generation

In Chapter 2, we introduce a novel task called Playable Video Generation (PVG), that mimics
the ability of humans to anticipate actions and interactions in videos without supervision. The
task of PVG aims to learn a set of distinct actions from real-world video clips in an unsupervised
manner and to generate videos conditioned on such actions, enabling users to interactively
generate new videos, providing an experience similar to a videogame. Unlike existing future
frame prediction methods that condition generation on a single action label [58, 140], PVG
allows users to provide discrete action labels at each time step during video generation, a
critical component of interactivity.
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The chapter presents a framework named Clustering for Action Decomposition and Discov-
ery (CADDY) for PVG, that employs an encoder-decoder architecture with a discrete bottleneck
layer and an action network to capture both discrete and continuous aspects of actions.

Experimental results demonstrate that CADDY produces high-quality videos and offers an
improved playability experience compared to existing methods. The datasets used for evaluation
include real-world videos (such as tennis and robotics) as well as synthetic video game data
based on Atari videogames.

1.2.2 Playable Environments

Chapter 3 introduces the concept of Playable Environments (PE) as a means to enhance the
complexity and user control in modeled playable experiences. This chapter recognizes that
real scenes can be more accurately represented as a collection of independent 3D objects,
aligning with the prevalent paradigm adopted in game engines. This representation allows
for various applications, including the independent control of players through discrete actions,
the independent control of object attributes such as style, and explicit control over the camera.
With respect to PVG, building such representation requires supervision in the form of calibrated
cameras and 3D object detection but enables a much wider degree of control.

The proposed method adopts a composite state representation, which describes the position
and attributes of all objects within the scene. It introduces a synthesis module based on
a compositional Neural Radiance Fields (NeRF) framework, enabling the rendering of the
environment state from a controllable camera perspective. Additionally, an action module is
developed to facilitate playability by modeling the actions and dynamics for each object in the
scene.

To evaluate the effectiveness of the proposed method, two large-scale datasets are utilized:
one synthetic and one real. The evaluation demonstrates the method’s ability to generate
high-quality videos with superior playability, camera control, and video quality compared to
existing baseline approaches. Furthermore, the introduction of these challenging datasets aims
to encourage further research and advancements in this research direction.

1.2.3 Promptable Game Models

Chapter 4 presents an investigation into Promptable Game Models (PGMs), which are similar
to PEs in that they learn 3D representations of modeled videogames, wherein each object and
agent is portrayed as an independent entity with a unique set of attributes expressed through a
state representation. However, PGMs differentiate themselves from PEs by introducing a more
detailed control over agents and empowering them with “Game AI” capabilities that enable
intelligent behavior within the game environment, such as defeating opponents or navigating
scenes proficiently. The key insight for enabling these capabilities lies in leveraging natural
language as a means to impart agents with an understanding of actions and their meanings,
acting as a form of fine-grained conditioning to specify the behavior of the agents.

The proposed method consists of two primary components. Firstly, a synthesis module,
constructed using a composition of Neural Radiance Fields (NeRFs), learns to render an in-
terpretable state representation to a frame. This representation encompasses all attributes of
the objects present in the scene. Secondly, a masked animation module takes in condition-
ing signals in the form of a partial sequence of state representations and a sparse sequence of
textual action inputs, which represent actions that should be performed by the agents. The
module generates a complete sequence of states as its output. The conditioning inputs es-
tablish constraints that the generated sequence must adhere to. Various inference modalities
are supported by modifying the conditioning signals, allowing for different interactions. For
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example, if no actions or states are specified for the opponent, the user can play against an
automatically generated opponent. The animation model is built upon a diffusion framework
to generate realistic sequences of states.

To facilitate the learning of videogames from videos and textual inputs, two extensive
datasets are introduced. These datasets consist of videos accompanied by textual descrip-
tions of the actions performed by each agent within the scene. The evaluation of the proposed
model demonstrates its superiority over previous state-of-the-art methods. Additionally, the
model enables a range of compelling applications, such as engaging in matches against oppo-
nents, generating fictional matches, comprehending the actions required to defeat an opponent,
and performing scene navigation based on specified waypoints.

1.3 Contributions

� Unsupervised Playable Video Generation Framework We propose a novel frame-
work for generating playable video experiences from collections of videos without the need
for manual supervision. The framework is based on a a novel combination of a discrete
bottleneck with a latent space clustering procedure to uncover a meaningful representation
of actions performed by the agent in the videos. This procedure disentangles high-level
actions and action variations, allowing for interactive video generation conditioned on the
high-level actions.

� Playable Environments as Controllable 3D Environment Representations We
present a framework for constructing controllable 3D scene representations named Playable
Environments. We introduce a composable Neural Radiance Fields (NeRF) representa-
tion to represent scenes as compositions of 3D objects, each with its own attributes. This
novel representation enables independent control over the attributes of the 3D objects,
contributing to highly customizable and interactive environments that offer the flexibility
to manipulate the camera angles, styles, and actions of the agents.

� Promptable Game Models as Learnable Game Representations We introduce
Promptable Game Models, learnable representations of games offering a subset of ca-
pabilities of modern game engines. These engines model controllable 3D environments
populated by intelligent agents, that can act independently or be controlled through a set
of constraints, expressed as a combination of high-level textual prompts or target states
of the agents. The key to achieve this is a novel masked diffusion transformer condi-
tioned on text and target environment states that encapsulates “Game AI” to evolve the
environment according to intelligent agent behavior.

� Evaluation Protocol and Synthesis Quality Metrics To assess the quality of syn-
thesized scenes featuring controllable agents, we devise an evaluation protocol comprising
a set of well-defined metrics. This evaluation protocol serves as a standardized approach
to gauge the performance and effectiveness of the proposed methods in the context of the
research.

� Datasets and Resources for Further Studies We contribute a series of datasets to
facilitate future research in this domain. Specifically, we present a large-scale 15-hour
dataset of Tennis videos with precise camera calibration, 3D ball tracking, and 3D body
pose estimations for the players. Furthermore, each agent’s actions in every frame are
richly described through textual captions. Additionally, we provide Minecraft datasets of
videos with corresponding synthetic annotations. Moreover, we release the necessary code
to acquire annotated sequences directly from the Minecraft game engine. These datasets

9



offer a unique combination of data for studying the challenges associated with generating
videogames and enhancing the development of related methodologies.

1.4 Publications

In the following list, we give an overview of the publications authored during the PhD, with
entries marked with an * not being discussed in this manuscript:

� Willi Menapace, Aliaksandr Siarohin, Ivan Skorokhodov, Ekaterina Deyneka, Tsai-Shien
Chen, Anil Kag, Yuwei Fang, Aleksei Stoliar, Elisa Ricci, Jian Ren, Sergey Tulyakov.
“Mind the Time: Scaled Spatiotemporal Transformers for Text-to-Video Synthesis”. Pa-
per currently under submission.*

� Tsai-Shien Chen, Aliaksandr Siarohin, Willi Menapace, Ekaterina Deyneka, Hsiang-wei
Chao, Byung Eun Jeon, Yuwei Fang, Hsin-Ying Lee, Jian Ren, Ming-Hsuan Yang, Sergey
Tulyakov. “Panda-70M: Captioning 70M Videos with Multiple Cross-Modality Teachers”.
Paper currently under submission.*

� Luca Zanella, Willi Menapace, Massimiliano Mancini, Yiming Wang, Elisa Ricci. “Har-
nessing Large Language Models for Training-free Video Anomaly Detection”. Paper cur-
rently under submission.*

� Anil Kag, Junli Cao, Willi Menapace, Aliaksandr Siarohin, Sergey Tulyakov, Jian Ren.
“AsCAN: Asymmetrically Distributed Convolution-Attention Neural Networks”. Paper
currently under submission.*

� Ivan Skorokhodov, Willi Menapace, Aliaksandr Siarohin, Sergey Tulyakov. “Hierarchical
Patch-wise Diffusion Models for High-Resolution Video Generation”. Paper currently
under submission.*

� Nicola Dall’Asen, Willi Menapace, Elia Peruzzo, Enver Sangineto, Yiming Wang, Elisa
Ricci. “Collaborative Neural Painting”. Paper currently under submission.*

� Luca Zanella, Benedetta Liberatori, Willi Menapace, Fabio Poiesi, Yiming Wang, Elisa
Ricci. “Delving into CLIP latent space for Video Anomaly Recognition”. Paper currently
under submission.*

� Chieh Hubert Lin, Hsin-Ying Lee, Willi Menapace, Menglei Chai, Aliaksandr Siarohin,
Ming-Hsuan Yang, Sergey Tulyakov. “InfiniCity: Infinite-Scale City Synthesis”. In ICCV
2023.*

� Elia Peruzzo, Willi Menapace, Vidit Goel, Federica Arrigoni, Hao Tang, Xingqian Xu,
Arman Chopikyan, Nikita Orlov, Yuxiao Hu, Humphrey Shi, Nicu Sebe, Elisa Ricci.
“Interactive Neural Painting”. In CVIU, 2023.*

� Willi Menapace, Aliaksandr Siarohin, Stéphane Lathuilière, Panos Achlioptas, Vladislav
Golyanik, Sergey Tulyakov, Elisa Ricci. “Promptable Game Models: Text-Guided Game
Simulation via Masked Diffusion Models”. In ACM Transactions On Graphics. Chapter 4
is mainly based on this publication.

� Aliaksandr Siarohin, Willi Menapace, Ivan Skorokhodov, Kyle Olszewski, Hsin-Ying Lee,
Jian Ren, Menglei Chai, Sergey Tulyakov. “Unsupervised Volumetric Animation”. In
CVPR 2023.*

10



� Matteo Farina, Luca Magri, Willi Menapace, Elisa Ricci, Vladislav Golyanik, Federica
Arrigoni. “Quantum Multi-Model Fitting”. In CVPR 2023 (Highlight).*

� Federica Arrigoni, Willi Menapace, Marcel Seelbach Benkner, Elisa Ricci, Vladislav
Golyanik. “Quantum Motion Segmentation”. In ECCV 2022.*

� Willi Menapace, Stéphane Lathuilière, Aliaksandr Siarohin, Christian Theobalt, Sergey
Tulyakov, Vladislav Golyanik, Elisa Ricci. “Playable Environments: Video Manipulation
in Space and Time”. In CVPR 2022. Chapter 3 is mainly based on this publication.

� Willi Menapace, Stéphane Lathuilière, Sergey Tulyakov, Aliaksandr Siarohin, Elisa Ricci.
“Playable Video Generation”. In CVPR 2021 (Oral presentation). Chapter 2 is mainly
based on this publication.

� Willi Menapace, Stéphane Lathuilière, Elisa Ricci. “Learning to Cluster under Domain
Shift”. In ECCV 2020.*

� Subhankar Roy, Willi Menapace, Sebastiaan Oei, Ben Luijten, Enrico Fini, Cristiano
Saltori, Iris Huijben, Nishith Chennakeshava, Federico Mento, Alessandro Sentelli, Emanuele
Peschiera, Riccardo Trevisan, Giovanni Maschietto, Elena Torri, Riccardo Inchingolo, An-
drea Smargiassi, Gino Soldati, Paolo Rota, Andrea Passerini, Ruud JG Van Sloun, Elisa
Ricci, Libertario Demi. “Deep learning for classification and localization of COVID-19
markers in point-of-care lung ultrasound”. In TMI, 2020.*
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Chapter 2

Playable Video Generation

In this chapter we begin our study of the problem of generating playable experiences from
videos by introducing the problem of playable video generation (PVG). To enable application
of the method beyond synthetic scenarios, a limitation of concurrent methods [16, 56, 98], we
define PVG as an unsupervised problem, making it the first method for playable experiences
generation to be demonstrated on non-synthetic video datasets. In PVG, we aim at allowing
a user to control the generated video by selecting a discrete action at every time step as when
playing a video game. The choice of discrete actions lies in their ease of use in that they
can directly be mapped to controller buttons, as opposed to continuous action representations
that are difficult for users to select and may require supervision in mapping them to controller
buttons [113]. The difficulty of the task lies both in learning semantically consistent actions that
allow control of all the main aspect of the game and in generating realistic videos conditioned
on the user input. We propose a novel framework for PVG that is trained in a self-supervised
manner on a large dataset of unlabelled videos. We employ an encoder-decoder architecture
where the predicted action labels act as bottleneck. A novel action representation is introduced
that separates the high-level discrete component representing the semantics of the action from
the low-level continuous action component expressing the variation of the particular action. The
network is constrained to learn a rich action space using, as main driving loss, a reconstruction
loss on the generated video. We demonstrate the effectiveness of the proposed approach on
several datasets, both real and synthetic, with wide environment variety. To facilitate further
research in this direction, we make code and data publicly available.

2.1 Introduction

Humans at a very early age can identify key objects and how each object can interact with its
environment. This ability is particularly notable when watching videos of sports or games. In
tennis and football, for example, the skill is taken to the extreme. Spectators and sportscasters
often argue which action or movement the player should have performed in the field. We
can understand and anticipate actions in videos despite never being given an explicit list of
plausible actions. We develop this skill in an unsupervised manner as we see actions live and
on the screen. We can further analyze the technique with which an action is performed as well
as the “amount” of action, i.e. how much to the left. Furthermore, we can reason about what
happens if the player took a different action and how this would change the video. Learning
a video generator in an unsupervised manner with such action understanding abilities would
greatly enhance the level of semantic control achievable in the video generation process, enabling
users to interactively generate and edit videos given desired actions.

From this observation, we propose a new task, Playable Video Generation (PVG) illustrated
in Fig 2.1a. In PVG, the goal is to learn a set of distinct actions from real-world video clips in
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Figure 2.1: We introduce the task of playable video generation in an unsupervised setting
(left). Given a set of unlabeled video sequences, a set of discrete actions are learned in order
to condition video generation. At test time, using our method, named CADDY, the user can
control the generated video on-the-fly providing action labels.

an unsupervised manner (green block) in order to offer the user the possibility to interactively
generate new videos (red block). PVG considers learning a set of discrete actions as they
can directly be mapped to controller buttons, giving users an intuitive mean to control video
generation, as opposed to continuous actions that require more complex mappings [113]. As
shown in Fig 2.1b, at test time, the user provides a discrete action label at every time step
and can see live its impact on the generated video, similarly to video games. Introducing
this novel problem paves the way toward methods that can automatically simulate real-world
environments and provide a gaming-like experience.

PVG is related to the future frame prediction problem [29, 70, 83, 126, 135, 139] and in
particular to methods that condition future frames on action labels [57, 97, 98]. Given one or
few initial frames and the labels of the performed actions, such systems aim at predicting what
happens next in the video. For example, this framework can be used to imitate a desired video
game using a neural network with a remarkable generation quality [57,98]. However, at training
time, these methods require videos with their corresponding frame-level action at every time
step. Consequently, these methods are limited to video game environments [57, 98] or robotic
data [97], where such annotation can be automatically generated, and cannot be employed in
real-world environments. Conversely, in PVG, we can address real-world environments where
supervision is not available since the action space is learned in an unsupervised manner As an
alternative, the annotation effort required to address real-world videos can be reduced using a
single action label to condition the whole video [140], but it limits interactivity since the user
cannot control the generated action at each frame. Conversely, in PVG, the user can control the
generation process by providing an action at every time-step after observing the last generated
frame to achieve a greater degree of control.

This paper addresses these limitations introducing a novel framework for PVG named Clus-
tering for Action Decomposition and DiscoverY (CADDY). Our approach discovers a set of
distinct actions after watching multiple videos through a clustering procedure blended with
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the generation process that, at inference time, outputs playable videos. We adopt an encoder-
decoder architecture where a discrete bottleneck layer is employed to obtain a discrete repre-
sentation of the transitions between consecutive frames. A reconstruction loss is used as main
driving loss jointly with an action loss based on a mutual information clustering procedure that
avoid the need for neither action label supervision nor even the precise number of actions. A
major difficulty in PVG is that discrete action labels cannot capture the stochasticity typical
of real-world videos. To address this difficulty, we introduce an action network that estimates
the action label posterior distribution by decomposing actions in a discrete label and a contin-
uous component. While the discrete action label captures the main semantics of the performed
action, the continuous component captures how the action is performed, such as the exact
direction or speed of movement. At test time, the user provides only the discrete actions to
interact with the generation process or optionally uses the continuous actions to control at a
finer level the action to be executed such as speed of movement.

Finally, we experimentally demonstrate that our approach can learn consistent actions in
varied environments. We conduct experiments on three different datasets including both real-
world (i.e. tennis and robotics [24]) and synthetic (i.e. video game [7]). Our experiments
show that CADDY generates high-quality videos while offering the user a better playability
experience than existing future frame prediction methods.

In summary, our work brings the following contributions:

� The problem of Playable Video Generation (PVG) consisting in the unsupervised
learning of video generators conditioned at each timestep on a set of discrete actions.

� The CADDY framework for (PVG), consisting in an encoder-decoder network condi-
tioned on a novel action representation consisting of a high-level discrete action component
and a low-level continuous action component.

� An action learning loss based on a mutual information clustering procedure for the
unsupervised discovery of discrete actions in input videos.

� Two datasets to foster future research on PVG, consisting in a real-world dataset of
tennis matches and a synthetic Atari Breakout dataset.

2.2 Related Works

2.2.1 Video generation

Recent advances in deep generative models have led to impressive progress in video genera-
tion. A variety of formulations have been explored including Generative Adversarial Networks
(GANs) [115, 135, 139], variational auto-encoders (VAEs) [4] and auto-regressive models [142].
While early works addressed the unconditional case [115, 139], many conditional video gener-
ation tasks have been addressed. The generated video can be conditioned on specific type of
information. Among numerous examples, we can cite video to video translation [141], image
animation [120,121] or pose-based generation [10].

Another typical example is the problem of future frame prediction that consists in generat-
ing a video conditioned on the first video frames. Early works employ deterministic predictive
models [25, 83, 139] that cannot handle the stochasticity inherent to real-world videos. Several
methods have been proposed to incorporate stochasticity in the model using VAE formula-
tions [29,70,135], GANs [68], or normalizing flows [65]. Inspired by VAE-based approaches, we
adopt a probabilistic formulation that is compatible with our encoder-decoder pipeline. Nev-
ertheless, our playable video generation framework goes beyond video prediction methods and
allows the user to control generation of future frames with discrete actions.
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To offer better control over the generation process than video prediction methods, some
approaches condition the generated video on an input action label [58, 140]. However, these
approaches require action annotations for training and the generated video cannot be controlled
on-the-fly since a single label is used to generate the whole video. To further increase the level
of control, other approaches condition each frame in the generated video on a different action
label [16, 57, 97, 98]. In particular, Kim et al. recently proposed GameGAN [57], a framework
that visually imitates a desired game. During training, GameGAN ingests a large collection of
videos and the corresponding keyboard actions pressed by the player. The network is trained
to predict the next frame from past frames and keyboard actions. While these methods allow
playable video generation similarly to our approach, the requirement for frame-level annotation
limits their application to constrained environments such as video games. Conversely, our
approach does not use action label supervision and can be employed in real-world environments.
In the context of future frame predictions, Rybkin et al. [113] propose to infer latent actions.
However, this method learns a continuous action space that is later mapped to discrete actions
with action supervision.

Few works have focused on the generation of videos with controllable characters in real-world
environments [33, 151]. However, these approaches heavily rely on prior knowledge specific to
the environment, such as pre-trained full-body pose estimators. On the contrary, in PVG,
the goal is to design a general framework that can be applied to varied environments without
modifications.

2.2.2 Deep clustering and unsupervised learning

Unsupervised learning has attracted growing attention with the raise of self-supervised learning
techniques. Recent works address jointly clustering and representation learning so that the net-
work is trained to categorize the training data while learning deep representation. For instance,
DeepCluster [9] alternates between k-mean clustering and a feature learning phase where clus-
ter assignments are used as supervision. As an alternative to this iterative algorithm, other
approaches [51, 84] propose the use of networks that directly output cluster assignment rather
than feature representations. In these methods, the network is trained with an information-
theoretic criterion formulated as a mutual information maximization problem. Differently from
these approaches that focus only on image clustering, CADDY tackles the problem of learning
actions in videos by blending clustering with a generation formulation.

Note that, recent works address the problem of unsupervised learning for videos [23,81,102,
125] but they are either limited to representation learning [23,81] or perform clustering at the
video-level [102,125] while PVG requires action labels at every time step.

2.3 Method

2.3.1 Overall Pipeline

In this work, we propose a framework where a user can interactively control the video generation
process by selecting an action at every time step among a set of K discrete actions. Our method,
named CADDY, is trained on a dataset of unannotated videos. We only assume that the video
sequences depict a single agent acting in an environment. No action labels are required.

Inspired by Reinforcement Learning (RL) literature [130], the object in the scene is modeled
as an agent interacting with its environment by performing an action at every time step.
Differently from RL, our goal is to jointly learn the action space, the state representation
that describes the state of the agent and its environment, and a decoder that reconstructs the
observations (i.e. frames) from the state.
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Figure 2.2: CADDY’s training procedure for unsupervised playable video generation. An en-
coder E extracts frame representations from the input sequence. A temporal model estimates
the successive states using a recurrent dynamics network R and an action network A which
predicts the action label corresponding to the current action performed in the input sequence.
Finally, a decoder D reconstructs the input frames. The model is trained using reconstruction
as the main driving loss.

CADDY is articulated into four main modules illustrated in Fig. 2.2: (i) an encoder em-
ploys a network E to extract frame representations; (ii) a temporal model estimates the label
corresponding to the action performed in the current frame and predicts a state st+1 that de-
scribes the environment at the next time step, after performing the detected action. The action
label is predicted via a network A that receives the frame representations from the current and
next frames. To predict the next frame environment state st+1, we employ a recurrent neural
network R that we refer to as Dynamics network. (iii) a decoder module employs a network
D to reconstruct each frame from the frame embedding predicted by the temporal model. (iv)
the reconstructed frames are fed to the encoder to assess the quality of the estimated action
labels.

The overall pipeline is trained in an end-to-end fashion using as main driving loss a recon-
struction loss on the output frames. The key idea of our approach is that the action network A
needs to predict consistent action labels in order to correctly estimate the next frame embed-
dings st+1, and then, accurately reconstruct the input frames. We now describe each network.
Video encoder. Let us consider a video sequence {xt}Tt=1 of length T . First, for every frame,
we extract a feature representation ft with t ∈ {1, .., T} which we call frame features. The aim
of this representation is to encode information about the appearance and the semantics of the
input frame:

ft = E(xt). (2.1)

Action network. Next, the action network A is used to infer the discrete action at ∈ {1..K}
performed between the frames xt and xt+1. The action label at characterizes the transition
between the features ft and its successor ft+1. In a deterministic environment, the evolution of
the environment is fully described by at. However, in real scenarios this assumption is rarely
satisfied and agents acting in a complex environment may express a behavior that can only be
partially described with discrete actions. To handle this, we propose to model the transition
between two consecutive frame features as the combination of the discrete action at and a
continuous component vt referred to as action variability embedding, i.e.:

at, vt = A(ft, ft+1). (2.2)

While the discrete action at describes the action performed by the agent at a high level, the
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continuous component vt describes the variability of each action and captures the possible
non-determinism in the environment.

In order to handle this non-determinism, we propose a probabilistic auto-encoder formula-
tion to train the action network. In this regard, details are given in Sec. 2.3.2.
Dynamics network. Given the features ft, the action at, and the corresponding action vari-
ability embedding vt, the dynamics network R is used to embed the dynamics of the environment
observed in the input sequence. We model the dynamics network as a recurrent network based
on convolutional LSTMs [119] with the environment state st:

st+1 = R(st, ft, at, vt). (2.3)

The induction in Eq. (2.3) is initialized with a parameter s0 that we consider to be trainable.
The action label at and the action variability embedding vt are concatenated channel-wise with
the input feature ft in the dynamics network.

Decoder. We use a decoder network D to reconstruct the frames x̂t+1 from the environment
state st+1.

2.3.2 Probabilistic Action Network

As introduced earlier, the goal of the action network is to estimate the action label at and
action variability embedding vt. The action network first uses an action state network As to
extract an action embedding et which represents the information in ft that is related to the
action currently performed. Following a probabilistic formulation, As predicts the posterior
distribution of the action embedding modeled as Gaussian:

et ∼ N (µet , σ
2
et) (2.4)

with µet , σ
2
et = As(ft). (2.5)

Similarly, the distribution of the action embedding et+1∼N (µet+1 , σ
2
et+1

) is estimated from ft+1.
We can then combine the action states et and et+1 to predict the performed action. More
precisely, we propose to model the posterior distribution of the action (at, vt) using the difference
between the two action embeddings which still follows a Gaussian distribution. From the
independence between random variables et and et+1 we have:

dt = et+1 − et ∼ N (µdt , σ
2
dt) (2.6)

with µdt = µet+1 − µet and σ2
dt = σ2

et+1
+σ2

et . (2.7)

Finally, the action direction dt is sampled according to (2.6) using the re-parametrization
trick [60] and fed to a single-layer classifier to estimate the probability of each action pt={pkt }Kk=1∈[0, 1]K .
Importantly, we implement the classification layer using a Gumbel-Softmax layer [50] to obtain
the discrete label at from the probabilities pt while preserving differentiability for Stochastic
Gradient Descent (SGD).

Regarding the action variability embedding vt, considering vt=dt would not favour the model
to learn meaningful action labels at since the changes in the environment could be directly
encoded in dt without using at. Thus, we propose to make vt dependent on both dt and at
in a way that dt cannot be recovered from vt alone, enforcing the learning of action labels at.
To this aim, we consider a set of K action direction centroids {ck}Kk=1 (one per action) that
are defined as the expected action directions for each action. Practically, the cluster centroids
are estimated using an exponential moving average over the action direction associated with
each discrete action. We propose to define the action variability embedding vt as the difference
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between the observed action direction dt and its assigned cluster centroid. Following a soft-
assignement formulation, the action variability embedding is given by the expected difference
with its action centroid:

vt =
K∑
k=1

pkt (dt − ck). (2.8)

In this way, vt acts as a bottleneck for dt since, assuming distinct centroids ck, dt cannot be
completely encoded in vt. To ensure distinct centroids, we introduce a loss that prevents their
collapse to a single point (see Sec. 2.3.3).

2.3.3 Training objectives and test

CADDY is trained in an end-to-end fashion with a combination of objectives that aim at
obtaining both high-quality output sequences and a discrete action space that captures the
agent’s high-level actions.
Reconstruction losses. The main driving loss of our system is a frame reconstruction loss
based on the perceptual loss of Johnson et al. [53]:

Lxrec =
1

T

T∑
t=1

J∑
j=1

‖Nj(xt)−Nj(x̂t)‖1 , (2.9)

where Nj, j ∈ {1, ..., J} indicates the jth channel extracted from a specific VGG-19 layer
and J is the number of feature channels in this layer. The reconstruction loss is averaged
over different layers and resolutions [121]: D is equipped with multiple heads to output x̂t at
different resolutions and xt is down-sampled to form a pyramid. This loss is completed by a L1

reconstruction loss (denoted as L1) between x̂t and xt to improve convergence.
Additionally, we propose to assess reconstruction quality at the frame feature and action

levels. The computation of these additional losses is represented in the green block of Fig. 2.2.
The reconstructed frame x̂t is fed to E leading to frame features f̂t. Then, the Euclidean
distance between initial and reconstructed features is employed:

Lfrec =
1

T

T∑
t=1

∥∥∥ft − f̂t∥∥∥2

2
. (2.10)

The motivation for this loss is that it enforces that the semantic information extracted from
input frames xt is also preserved in x̂t. To avoid trivial minimization of (2.10), we do not
back-propagate the loss gradient through ft.
Action losses. Regarding action understanding, we propose an information-theoretic objective
that acts on the action probabilities. The reconstructed frame features f̂t and f̂t+1 are fed to A
that internally estimates the action probabilities p̂t. We then maximize the mutual information
between the actions extracted from the input sequences and the corresponding ones extracted
from the reconstructed sequences:

max
θ
MI(pt, p̂t) = max

θ
(H(pt)−H(pt|p̂t)). (2.11)

Maximizing this objective function has two desirable effects. First, minimizing the conditional
entropy term H(pt|p̂t) imposes that the same action must be inferred from the input and the
reconstructed sequence. Second, maximizing the entropy term H(pt) enforces that the maximal
number of actions must be discovered. This avoids trivial solutions where only a single action
label at is constantly predicted and ensures that the K action direction centroids {ck}Kk=1 do
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not collapse to a single point.
To compute the mutual information in Eq. (2.11), we consider a mini-batch B of action

probabilities (pt,p̂t). We estimate the joint probability matrix Pij=P (at=i, ât=j), with (i, j) ∈
{1, ..., K}2, as follows:

Pij = P (at=i, ât=j) =
1

B̄
∑

(pt,p̂t)∈B

pt.p̂
>
t , (2.12)

where B̄ denotes the size of B. We obtain Pi=P (at=i) and Pj=P (ât=j) by marginalization
over Pij. The mutual information loss term is then given by:

Lact = −MI(pt, p̂t) =
K∑
t=1

K∑
j=1

Pij ln
Pij
Pi.Pj

. (2.13)

This action matching loss Lact is completed by a loss that enforces that the action vari-
ability embeddings match. Considering the action direction distributions dt∼N (µdtσ

2
dt

) and

d̂t∼N (µd̂t , σ
2
d̂t

) associated with each (pt, p̂t) in B, we measure the average Kullback–Leibler

(KL) divergence between the distribution of d̂t and dt:

Larec=
1

B̄
∑

(d̂t,dt)∈B

DKL(N (µd̂t , σ
2
d̂t

)‖N (µdt , σ
2
dt)). (2.14)

Assuming a Gaussian prior for dt, we minimize the average KL divergence DKL between the
distributions of dt and a Gaussian prior with unit variance N (0, In),

LKL =
1

B̄
∑
dt∈B

DKL(N (µdt , σ
2
dt)‖N (0, In)). (2.15)

Total loss. The total objective is given by:

L =L1 + Lxrec + λfrecLfrec + λarecLarec (2.16)

+ λactLact + λKLLKL,

where λact, λrep, λKL, λ
a
rec are positive weighting parameters. These parameters are estimated

on the training set: for every term, we iteratively experiment raising parameter values until we
can observe that the first back-propagation steps lead to a decrease of the loss term.
Test time. At test time, CADDY receives as input the initial video frame and the user provides
an action label at every time-step. We follow an auto-regressive approach where the estimated
x̂t+1 is used as input at the next time step (instead of xt+1). We no longer employ the action
network A and use the action labels at provided by the user. Regarding the action variability
embedding, we employ vt=0 that corresponds to the maximum of its posterior distribution.

Note that, this difference between training and test would affect the performance of the
network that has never received generated images as inputs. To mitigate this problem, we
propose a mixed training procedure. For the first Tf frames, we use the training procedure as
described above where the Dynamic Network R receives in input the frame features ft computed
from original frames. Then, for t>Tf , R is fed with the frame features f̂t computed from the
reconstructed frames x̂t. By mixing original and reconstructed frames, we obtain a network
that can handle both real and reconstructed frames, and consequently, is less prone to the shift
issue typical of auto-regressive methods.
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2.4 Experiments

Datasets. We evaluate our method on three video datasets:

� BAIR robot pushing dataset [24]. We employ a version of the dataset in 256x256 reso-
lution, composed of about 44K videos of 30 frames. Ground-truth robotic arm positions
are available but are only used for evaluation purposes.

� Atari Breakout dataset. We collect a dataset using a Rainbow DQN agent [39] trained
on the Atari Breakout video game environment. We collect 1407 sequences of about 32
frames with resolution 160x210 (358 for training, 546 sequences for validation and 503 for
testing).

� Tennis dataset. We collect Youtube videos corresponding to two tennis matches from
which we extract about 900 videos with resolution 256x96. To respect the single agent
assumption, we consider only the lower part of the field.

Evaluation Protocol. We propose to evaluate both action and video generation qualities by
comparing the models on the video reconstruction task. A test sequence is considered and the
action network is used to extract the sequence of learned discrete actions characterizing the
input sequence. Starting from the initial frame, the extracted actions are used to reconstruct
the remaining of the sequence. The evaluation is completed with a user-study that directly
assesses the quality of the learned set of discrete actions. We adopt a large set of metrics.

Video quality metrics.

� LPIPS [154]: We report the average LPIPS computed on corresponding frames of input
and reconstructed sequences.

� FID [40]: We report the average FID between the original and reconstructed frames.

� FVD [136]: We compute the FVD between the original and reconstructed videos.

Action-space metrics. We introduce two metrics that measure the quality of the action
space. Both metrics use additional knowledge (i.e. ground-truth information or an externally
trained detector) to measure motion consistency among frames where the same action is per-
formed. Assuming two consecutive frames, we measure the displacement ∆ of a reference point
on the object of interest. On the Tennis dataset, we employ FasterRCNN [109] to detect the
player and use the bounding box center as the reference point. On Atari Breakout, we employ
a simple pixel matching search to detect the rectangular platform and use its center as the
reference point. Finally, on BAIR, we use the ground-truth location information of the robotic
arm. The key idea of the two action quality metrics is to assess whether the predicted action
labels and the displacement ∆ are consistent by trying to predict one from the other:

� ∆ Mean Squared Error (∆-MSE): This metric measures how ∆ can be regressed from
the action label. For each action, we estimate the average displacement ∆, which is the
optimal estimator for ∆ (in terms of MSE). We report the MSE to evaluate regression
quality. To facilitate comparison among datasets, we normalize the MSE by the variance
of ∆ over the dataset.
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Tf Tinitial Tfinal batch size K

Atari Breakout 6 7 9 8 3
BAIR 6 7 12 8 7
Tennis 6 7 12 6 7

Table 2.1: Hyperparameters used on the different datasets.

� ∆-based Action Accuracy (∆-Acc): This metric measures how the predicted action can
be predicted from the displacement ∆. To this aim, we train a linear classifier and report
the action-accuracy measured on the test set.

Action-conditioning metrics. Finally, we consider two metrics that measure how the action
label conditions the generated video. Therefore, it evaluates both generation quality and the
learned action space:

� Average Detection Distance (ADD). Similarly to [121], we report the Euclidean distance
between the reference object keypoints in the original and reconstructed frames. We em-
ploy the same detector as for the action-quality metrics to estimate the reference points.

� Missing Detection Rate (MDR): We report the percentage of detections that are success-
ful in the input sequence, but not in the reconstructed one. This represents the proportion
of frames where the object of interest is missing.

2.4.1 Implementation and Training details

Optimization. In all our experiments, we use an Adam optimizer with a fixed learning rate
of 2e−4.
Sequence length scheduling. During the initial phase of training, we notice greater stability
with small values of T , while, on the other hand, training with large values of T increases the
quality of long generated sequences. For this reason, we adopt a training scheme with a variable
value of T . In particular, every 5000 iterations, we increase the current value of T by 1 until
the target value. Tab. 2.1 shows the hyperparameter configurations for our datasets. In all the
experiments, we set the initial value of T to 7 and use Tf =6 context frames.
Estimation of the number of actions K. Our method requires the number of actions K
to be provided as a hyper-parameter. For the Atari Breakout dataset, we pose K=3 following
the number of discrete actions in the real game. BAIR and Tennis, however, do not possess
an intrinsic discrete action space, so the number of discrete actions required to capture the
dynamics of the environment must be estimated. From initial experiments, we observe that
this number can be over-estimated without negative consequences on the training process, with
the model using extra actions to learn variations on the same action. On BAIR, we estimate
K = 7 which allows 2 movements on each of the 3 axes to be learned, plus a no movement
action. On Tennis, we also choose K = 7, expecting to learn 2 movements on the horizontal
axis and 2 movements on the vertical axis, a Stay action, a Hit the ball action and an extra
action that allows the model, if necessary, to learn an additional behavior of the player.
Gumbel-Softmax temperature annealing. Hard Gumbel-Softmax [50] discrete action sam-
pling ensures that the action component a is truly discrete. Using a hard sampling strategy
producing one hot vectors at the beginning of the training process, however, caused optimiza-
tion difficulties. For this reason, we adopt a soft Gumbel-Softmax sampling approach. At the
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beginning of training, we perform sampling with a temperature of 1.0 which does not enforce
a very low entropy on the sampled action vector a. As the training progresses, we linearly
reduce the sampling temperature to 0.4 at step 20.000, enforcing that the sampled values of a
are similar to one hot vectors.
Loss weights. We follow the hyperparameter selection procedure explained in Sec. 3.3 of
the main paper to estimate the loss weights on the Tennis dataset. The mutual information
maximization loss λact is used with weight 0.15, λrep is set to 0.2, and λKL is used with weight
1e−4, while λarec is posed to 1e−5. We found that these same values produce similar optimization
behaviors on the BAIR and on the Atari Breakout datasets, so we use the same loss weights
for all the experiments.
Pretraining. We notice that convergence speed is increased if the encoder network E and
the decoder network D are initialized to perform frame reconstruction. For this reason, we
integrate a short pretraining phase into our approach. In particular, instead of computing st
using the dynamics network R, we employ a small auxiliary network to directly translate ft to
st so that E and D can be trained in isolation on the reconstruction task. In this phase, the
dynamics network produces a reconstruction of st which we call ŝt, and a reconstruction loss
between st and ŝt is imposed. Gradients for this loss, however, are propagated through ŝt only.
The other loss terms remain unaltered.

2.4.2 Experimental analysis of CADDY

Ablation study. In this section, we study the impact of three key elements: Gumbel-Softmax
sampling, the action loss Lact and action variability embeddings vt. We produce the following
variants of our method: (i) uses none of these components, (ii) introduces G.S., (iii) employs
G.S. and Lact, (iv) uses G.S. and vt. The BAIR dataset is used because ground-truth displace-
ment ∆ are available.

The results are presented in Tab. 2.2. In (i), when no component is used, the lack of G.S.
sampling makes the model exploit pt at training time to encode information about the next
frame, learning a continuous rather than a discrete action representation. At test time, when
discrete actions are used, this mismatch leads to poor performance. When G.S. sampling is
introduced in (ii), the model learns discrete action representations with a ∆-MSE of 64.8%.
However, the model lacks a mechanism to resolve the ambiguity of which variation of the
discrete action should be performed. This results in difficulties in optimizing the reconstruction
objective and leads to reduced video quality. In (iii), when both G.S. sampling and Lact are
present, the optimization process favors Lact rather than the reconstruction objective, resulting
in degraded performance. Lastly, in (iv), when both G.S. sampling and vt are used without
Lact, the model uses vt at training time to encode complete information about the next frame
and a discrete action space is not learned. At test time, when vt=0, performance of the model
is poor. Overall, this ablation study confirms the positive impact of G.S sampling, the action
variability embeddings, and our mutual-information loss on the performance.
Visualization. We analyze the learned space of action directions dt. Fig. 2.3a shows the action
space learned on BAIR, where CADDY discovers two predominant categories of actions that
correspond to common small movements of the robot hand. The remaining action categories
are assigned to less common actions including lifting or lowering the robot arm or making fast
horizontal movements. Fig. 2.3b illustrates the learned action space for Atari Breakout. The
model clearly divides the action directions into three clusters corresponding to left movement,
no movement and right movement. In Tennis, as shown in Fig. 2.3c, the model learns a rich
action space whose structure is correlated with player movement. According to AMT user votes,
Action 6 (orange) corresponds to Stay and its corresponding action directions occupy the center
of the space. Action 4 (green) and 7 (red) correspond respectively to right and left movement
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Variant G.S vt Lact LPIPS↓ FID↓ FVD↓ ∆-MSE↓ ∆-Acc↑

(i) 0.263 80.0 1300 69.7 51.2
(ii) X 0.209 42.3 571 64.8 37.9
(iii) X X 0.249 76.4 1130 92.7 24.1
(iv) X X 0.245 76.9 1130 93.7 27.6

CADDY (Full) X X X 0.202 35.9 423 54.8 69.0

Table 2.2: Ablation results on the BAIR dataset. G.S: use of Gumbel-Softmax, vt; use of the
action variability embedding vt; Lact: training with the mutual information loss Lact. ∆-MSE
and ∆-Acc in %.
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Figure 2.3: Visualizations of the learned space of action directions dt with corresponding action
direction centroids {ck}Kk=1, grouped by action.

and occupy opposing portions of the action space. Similarly, Action 2 (blue) and 3 (light blue)
correspond to forward and backward movement and occupy opposing positions in the action
space. Finally, according to human evaluation, Action 1 (dark blue) and Action 5 (yellow),
which are positioned at boundary regions, have mixed correspondence to the movements of the
neighboring regions and combine movement with ball hitting actions.

Fig. 2.4 shows the object motion distribution corresponding to each action learned by
CADDY. On BAIR, the model learns actions related to movements on the x (1, 4), y (2,
3) and z (6) axes as well as a no-movement action (7). On Atari Breakout, the model learns
actions corresponding to the three possible movements, as well as the inertia of the platform
and the physics of the ball and blocks. On Tennis, the model learns actions corresponding to
forward (2) and backward (3) movement, lateral movement (4, 7), no-movement (6) and hitting
(1, 5).

In order to visualize in more detail the effects produced by each action learned by CADDY,
we consider an initial frame and, for each action, we produce a sequence by repeatedly using
the current action as user input. We show the obtained results in Fig. 2.5 and Fig. 2.6. On all
the datasets, our model learns actions that correspond to movement of the object of interest
along each axis. In addition, on the Tennis dataset, CADDY learns actions related to ball
hitting.

Furthermore, we perform an evaluation of the capacity of action variability embeddings to
capture variations of the relative action. In particular, we consider a pair of actions ai and
aj. At inference time, since we pose action variability embeddings vi = vj = 0, for Eq. (8)

23



Action 1 Action 2 Action 3 Action 4 Action 5 Action 6 Action 7

t=
6

t=
4

t=
2

t=
0

Action 1 Action 2 Action 3

t=
6

t=
4

t=
2

t=
0

Figure 2.5: Videos generated by CADDY on the BAIR (left) and on the Atari Breakout (right)
datasets. We generate a sequence for each learned action by repeatedly inputting the current
action starting from the same initial frame. In all datasets, the model learns actions that
correspond to movement on each axis.
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Figure 2.6: Videos generated by CADDY on the Tennis dataset. We generate a sequence for
each learned action by repeatedly inputting the current action starting from the same initial
frame. The model learns actions that correspond horizontal (Act. 4 and Act. 7) and vertical
player movement (Act. 2 and Act. 3), no movement (Act. 6), and ball hitting (Act. 1, Act.
5).
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Figure 2.4: Qualitative evaluation of the action space learned by our model on the three
datasets. We consider an initial frame and, for every action, produce a sequence by repeatedly
selecting that action and show the final frame. The bottom row shows, for each action, the
distribution of the displacement ∆ associated with the object of interest.

we have di = ci and dj = cj i.e. the associated action directions are centered on the action
direction centroids. We argue that it is possible to produce actions with intermediate effects
between ai and aj by sampling action variability embeddings corresponding to action directions
in intermediate locations between the two action direction centroids. Let l ∈ [0, 1] be an
interpolation factor. We pose

a, c =

{
ai, ci if l <= 0.5

aj, cj if l > 0.5

v = l(cj − ci) + ci − c

The resulting action a and action variability embedding v represent an intermediate action
between ai and aj. In Fig. 2.7 we show qualitative results representing the effects obtained
using intermediate actions that interpolate between a pair of discrete actions.

Lastly, we use CADDY to produce videos with direct user interaction. Starting from an
initial frame, the user presses the button on its keyboard corresponding to the action to use at
the current step, and the model generates the next frame. An extract of the generated results
is shown in Fig. 2.8.

2.4.3 Comparison with Previous Methods

Baseline selection. Since we present the first method for unsupervised PVG, we compare the
proposed model against a selection of baselines, adapting existing methods to this new settings.
We consider two criteria in the selection of the baselines: the architecture should be adaptable
to the new setting without deep modifications, and the source code must be available to include
these modifications. Comparing existing video prediction methods in terms of FVD on a 64x64
version of the BAIR dataset shows that SAVP [70] is the best performing method with the code
publicly available. Only the methods described in [17, 80, 142] are marginally outperforming
SAVP but their code is not available.

Furthermore, SAVP [70] is widely used and features an architecture prone to be adapted
to the current setting. During training, SAVP learns an encoder E that encodes information
relative to the transition between successive frames which is used by the generator in the
synthesis of the next frame. After training the SAVP model, we cluster the latent space learned
by the encoder network on the training sequences using K-means. This procedure produces
a set of K centroids that we use as action labels. During evaluation, we compute the latent
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Action 7

Action 3

Action 4

Action 6

Action 2

Figure 2.7: Visualization of the last frame of sequences produced from the same initial frame
with differing actions and action variability embeddings. The sequences in red represent pure
discrete actions where, action variability embeddings are posed to 0. For the sequences in black
instead, actions and action variability embeddings are derived as described in Sec. 2.3.2 to rep-
resent intermediate actions between the two closest discrete actions using values of the interpo-
lation factor of 0.3, 0.5 and 0.7. Note how the player positions depicted in the black sequences
smoothly interpolate between the positions obtained with pure discrete actions, showing the
capability of action variability embeddings to capture variations on discrete actions.

representations for the input sequence and assign them the index of the nearest centroid.
As a second baseline, we choose MoCoGAN [135]. This method possesses favorable char-

acteristics for adaptation: it separates the content from the motion space and it employs an
InfoGAN [15] loss to learn discrete video categories. We consider 6-frame short videos and as-
sume a constant action over them. We employ an action discriminator that predicts the action
performed in the input video sequence. This predicted action is used as an auxiliary input to
the generator and the InfoGAN loss is used to learn the action space.

Finally, we also include SRVP [29] in our comparison. SRVP is modified similarly to SAVP
[70] to handle PVG. However, due to the poor empirical results and the high training costs, we
consider this baseline only on the BAIR dataset. Several other works have been considered,
but not adopted [58, 145] since they would require too important modifications to handle the
PVG problem.

SAVP [70], MoCoGAN [135] and SRVP [29] are designed for video generation at resolutions
lower than our datasets. Therefore, we generate videos at the resolution of 64x80, 64x64 and
128x48 respectively for the Atari Breakout, BAIR and Tennis datasets, and then upscale to full
resolution for evaluation. In addition, we create two other baselines, referred to as SAVP+ and
MoCoGAN+, obtained by increasing the capacity of the respective networks to generate videos
at full resolution. Due to the high memory requirements of SRVP [29], it was not feasible to
produce a version operating at full resolution.
Quantitative evaluation. We show the results for the evaluation on the BAIR dataset
in Tab. 2.3. According to ∆-MSE, MoCoGAN, SAVP and our model learn an action space
correlated with the movement of the robot (∆-MSE<100), but our method surpasses these
baselines by 26.1% in ∆-MSE and by 24.2% in ∆-Acc, showing greater capacity in learning
a set of discrete actions. Finally, SRVP clearly under-performs all the other methods in term
of reconstruction (LPIPS), video quality (FID and FVD). Moreover, SRVP predicts a single
action class for the whole test set. This degenerated behavior results in a 100% ∆-ACC and
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Figure 2.8: Video sequences generated by CADDY with direct user interaction on the BAIR
(a), Atari Breakout (b) and Tennis (c) datasets.

a poor ∆-MSE. Because of these poor results and its very high computational requirement,
SRVP is not shown in the following.

Tab. 2.3 reports the results on the Atari Breakout dataset. Our method outperforms the
baselines in both action and video quality metrics. In particular, our model replicates the
movement of the platform with an average ADD of 7.29 pixels and an MDR of 2.70%, indicating
that the learned set of actions are consistent with the movement of the user-controlled Atari
Breakout platform. Note that MoCoGAN obtains a lower MDR but a much higher ADD
showing that it generates correctly the platform but at the wrong position.

The evaluation results on the Tennis dataset are reported in Tab. 2.3. With the exception
of FVD, where the result is close to SAVP+, our method obtains the best performance in all
the metrics. A ∆-MSE of 72.2% shows that actions with a consistent associated movement
are learned. On the other hand, the ∆-MSE scores of the other baselines show that the
movements associated with each action do not present a consistent meaning. Moreover, our
method features the lowest ADD and a significantly lower MDR of 1.01% which indicate that
our method consistently generates the player and moves it accurately on the field.
Qualitative evaluation of reconstruction quality In Fig. 2.9, we show examples of recon-
structed sequences on the BAIR and Tennis datasets. Our method achieves a precise placement
of the object of interest with respect to the input sequence.
User evaluation of action space. To complete our evaluation, we perform a user study
on the Tennis dataset aimed at the evaluation of the learned action space. We sample 23
random frames that we use as initial frames. For each of them, we generate K continuations
of the sequences, one for each action, each produced by repeatedly selecting the corresponding
action. For each sequence, users are asked to select the performed action among a predefined set
(Left, Right, Forward, Backward, Hit the ball or Stay). An additional option Other is provided
in case the user cannot recognize any action. We measure user agreement using the Fleiss’ kappa
measure [26] that is commonly used to evaluate agreement between categorical ratings [27]. In
addition, to validate that all the actions can be generated (i.e. detecting mode collapse), we
compute the diversity of the action space, expressed as the entropy of the user-selected actions.
Results are shown in Tab. 2.4. While all methods capture actions with high diversity, our
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BAIR

LPIPS ↓ FID ↓ FVD ↓ ∆-MSE ↓ ∆-Acc ↑

MoCoGAN [135] 0.466 198 1380 88.8 20.7
MoCoGAN+ 0.201 66.1 849 98.4 22.9
SAVP [70] 0.433 220 1720 80.9 41.4
SAVP+ 0.154 27.2 303 82.0 44.8
SRVP [29] 0.491 224 3540 (100) (100)

CADDY (Ours) 0.202 35.9 423 54.8 69.0

Atari Breakout

LPIPS↓ FID↓ FVD↓ ∆-MSE↓ ∆-Acc↑ (ADD, MDR)↓

MoCoGAN [135] 0.234 99.9 447 99.6 81.9 (46.0, 0.795 )

MoCoGAN+ 65.8e-3 10.4 103 103 57.5 (54.6, 17.4 )

SAVP [70] 0.239 98.4 487 103 58.1 24.7 , 21.0

SAVP+ 39.3e-3 4.84 84.4 104 85.6 15.8 , 51.5

CADDY (Ours) 7.66e-3 0.716 5.94 82.7 91.6 7.29 , 2.70

Tennis

LPIPS↓ FID↓ FVD↓ ∆-MSE↓ ∆-Acc↑ (ADD, MDR)↓

MoCoGAN [135] 0.266 132 3400 101 26.4 28.5, 20.2
MoCoGAN+ 0.166 56.8 1410 103 28.3 48.2, 27.0

SAVP [70] 0.245 156 3270 112 19.6 10.7 , 19.7

SAVP+ 0.104 25.2 223 116 33.1 13.4 , 19.2

CADDY (Ours) 0.102 13.7 239 72.2 45.5 8.85 , 1.01

Table 2.3: Comparison with baselines on the BAIR, Atari Breakout and Tennis datasets. ∆-
MSE, ∆-Acc and MDR in %, ADD in pixels. Parentheses indicate degenerated cases resulting
in uninformative metrics (see details in the text).
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Figure 2.9: Reconstruction results on the BAIR (left) and Tennis (right) datasets. We zoom
in for better visualization.

Agreement Diversity Other votes

MoCoGAN [135] -3.15e-3 1.58 1.80%
MoCoGAN+ -2.84e-3 1.51 28.0%
SAVP [70] 0.0718 1.69 7.14%
SAVP+ -1.97e-3 1.80 5.40%

CADDY (Ours) 0.469 1.65 1.61%

Table 2.4: User study results on the Tennis dataset.

method shows a higher agreement, indicating that users consistently associate the same action
label to each learned action. In more detail, as shown in Fig. 2.10, the MoCoGAN, MoCoGAN+
and SAVP+ baselines do not learn a consistent action space. Indeed, their low Fleiss’ kappa
measures [26] show that users select different options for sequences generated with the same
action, meaning that actions cause different effects based on the particular initial frame used
to produce the sequence. On the other hand, the SAVP baseline (Fig. 2.10c) learns actions
that result in a different distribution of user votes for each row, indicating a partial capability
of the model to condition its output based on the input action. Differently from the other
methods, CADDY (Fig. 2.10e) presents for each row a polarized response in a specific column,
showing that our method associates the same meaning to an action independently from the
starting frame. Some actions, including Act. 1 and Act. 5 present a lower user agreement.
Despite the low number of votes given to the Hit action, a manual analysis of the corresponding
sequences reveals that they correspond to the synthesis of ball hitting sequences, whose typical
movement of the arm is difficult to spot and typically associated with movement of the player.
This explains the portion of votes assigned to Left, Right, Forward and Backward.
User evaluation of video quality. We perform an additional human evaluation on the
Tennis dataset to assess the quality of the synthesized videos. Since our method produces
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Figure 2.10: AMT votes for each method on the Tennis dataset. Rows correspond to the
actions learned by the model, columns correspond to the action options presented to the users.

results in 256×96, we compare only with baselines producing outputs in the same resolution to
ensure fairness, namely MoCoGAN+ and SAVP+. We run our study on AMT and ask users
to express preference between one of two videos based on video quality. One video is produced
with CADDY and the other with a baseline method. When compared to MoCoGAN+ and
SAVP+, users express preference for our method in respectively 91.8% and 89.6% of cases.

2.5 Conclusions

In this chapter, we propose the unsupervised learning problem of playable video generation as
a mean to allow the creation of video generators with increased degree of user control. We
introduce CADDY, a self-supervised method based on an encoder-decoder architecture that
uses predicted action labels as a bottleneck. To favor learning of actions, we introduce a
decomposition of actions into a discrete high-level and a continuous low-level component that
is learned through a combination of reconstruction and clustering-based action learning losses.
We evaluate our method on three varied datasets and show state-of-the-art performance. Our
experiments show that we can learn a rich set of actions that offer the user a gaming-like
experience to control the generated video, demonstrating for the first time the possibility of
building playable experiences based only on real-world videos.

While effective, the proposed framework present limitations in modeling videos with ex-
cessive camera motion and either allocates actions to explain such motion, or entangles agent
actions with camera motion. In addition, the proposed framework is best suited for scenes with
a single agent, as if multiple agents were present, the number of required actions to control all
agents grows combinatorially, making them difficult to learn and use. In the next section, we
introduce Playable Environments as a mean to address these issues.
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Chapter 3

Playable Environments

In the preceding chapter, we presented a framework for the generation of playable videos operat-
ing on 2D sequences. Despite its strengths, this approach entails certain limitations, stemming
from the implicit modeling assumption of solely utilizing a 2D representation. First, the model’s
ability to effectively disentangle agents from their background is hindered, as they are jointly
modeled by the same 2D features, restricting its capacity to represent multiple agents simulta-
neously and to separate them from the background. In addition, it is challenging for the model
to explain camera changes in the training sequences. Since no explicit camera model is pro-
vided, such movement can only be explained as actions, resulting in an undesired entanglement
of camera movements with actions issued by the user at inference time. These limitations do
not allow the framework to operate on more complex real-world video sequences with multiple
agents taken from moving cameras. In conventional game modeling, 3D game engines are em-
ployed to represent scenes through compositions of 3D objects [35]. This acknowledgment of
the world’s inherent 3D nature facilitates seamless and independent manipulation of individ-
ual objects, allowing for their rendering from arbitrary camera perspectives. Inspired by this
insight, in this chapter we propose the concept of “Playable Environments”, a novel represen-
tation for interactive video generation and manipulation in both spatial and temporal domains.
This new approach employs a composition of animatable 3D objects to represent the scene.
With a single image at inference time, our novel framework allows the user to move objects
in 3D while generating a video by providing a sequence of desired actions. The actions are
learnt in an unsupervised manner. The explicit 3D nature of the framework enables the camera
to be controlled to get the desired viewpoint. Our method builds an environment state for
each frame, with fully represents the characteristics of each object such as their position, style
an pose. The state of each object can independently be manipulated by our proposed action
module and decoded back to the image space with volumetric rendering enabling a high degree
of editability. To support diverse appearances of objects, we extend neural radiance fields with
style-based modulation enabling applications such as environment or player identity swapping.
Our method trains on a collection of various monocular videos requiring only the estimated cam-
era parameters and 2D object locations which can be obtained through automatic procedures.
To set a challenging benchmark, we introduce two large scale video datasets with significant
camera movements. As evidenced by our experiments, playable environments enable several
creative applications not attainable by prior video synthesis works, including playable 3D video
generation, stylization and manipulation. All code and data are made publicly available.

3.1 Introduction

What would you change in the last tennis match you saw? The actions of the player? The
style of the field, or, perhaps, the camera trajectory to observe a highlight more dramatically?
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Control Camera

Playable Environments

Figure 3.1: Given a single initial frame, our method creates playable environments that allow the
user to interactively generate different videos by specifying discrete actions to control players,
manipulating the camera trajectory and indicating the style for each object in the scene.

To do so interactively, the geometry and the style of the field and the players need to be
reconstructed. Players’ actions need to be understood and the outcomes of future actions
anticipated. To enable these features one needs to reconstruct the observed environment in 3D
and provide simple and intuitive interaction, offering an experience similar to playing a video
game. We call these representations Playable Environments (PE).

Such a representation enables multiple creative applications, such as 3D- and action-aware
video editing, camera trajectory manipulation, changing the action sequence, the agents and
their styles, or continuing the video in time, beyond the observed footage. Fig. 3.1 shows a
playable environment for tennis matches. In it, the user specifies actions to move the players,
controls the viewpoint and changes the style of the players and the field. The environment can
be played, akin to a video game, but with real objects.

In this chapter, we propose a method to construct PEs of complex scenes that supports a
large set of interactive manipulations. Trained on a dataset of monocular videos, our method
presents six core characteristics listed in Tab. 3.1 that enable the creation of such PEs. Our
framework allows the user to interactively generate videos by providing discrete actions 〈1〉
and controlling the camera pose 〈2〉. Furthermore, it can represent environments with multiple
objects 〈3〉 with varying poses 〈4〉 and appearances 〈5〉 and is robust to imprecise inputs 〈6〉.
In particular, we do not require ground-truth camera intrinsics and extrinsincs, but assume
they can be estimated for each frame. Neither do we assume ground-truth object locations,
but rely on an off-the-shelf object detector [109] to locate the agents in 2D, such as both tennis
players. No other supervision is required.

Playable Environments encapsulate and extend representations built by several prior image
or video manipulation methods. Novel view synthesis and volumetric rendering methods sup-
port re-rendering of static scenes. However, while some methods support moving or articulated
objects [99, 104, 134, 149], it is challenging for them to handle dynamic environments and they
do not allow user interaction, making them undesirable for modeling compelling environments.
Video synthesis methods manipulate videos by predicting future frames [66, 70, 133, 135], an-
imating [120, 121, 122] or playing videos [85], but environments modeled with such methods
typically lack camera control and multi-object support. Consequently, these methods limit
interactivity as they do not take into account the 3D nature of the environment.

Our method consists of two components. The first one is the synthesis module. It extracts
the state of the environment—location, style and non-rigid pose of each object—and renders
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Name Description

〈1〉 Playability The user can control generation with discrete actions.
〈2〉 Camera control The camera pose is explicitly controlled at test time.
〈3〉 Multi-object Each object is explicitly modeled.
〈4〉 Deformable objects The model handles deformable object such as human bodies
〈5〉 Appearance changes The model handles objects whose appearance is not constant is the training set
〈6〉 Robustness The model is robust to calibration and localization errors.

Table 3.1: Characteristics of our method for Playable Environments. Each row is referred in
the text with 〈·〉 symbols.

the state back to the image space. Recently introduced Neural Radiance Fields (NeRFs) [89]
represent an attractive tool for their ability to render novel views. In this chapter, we introduce a
style-based modification of NeRF to support objects of different appearances. Furthermore, we
propose a compositional non-rigid volumetric rendering approach handling the rigid parts of the
scene and non-rigid objects. A major limitation of NeRF is its high computational complexity of
the rendering operation. To address the issue and enable learning of high-resolution composable
NeRF representations, we extend our NeRF to represent a field of features, and introduce an
upsampler CNN operating on rendered feature maps. A perceptual loss component and patch-
based training procedure are introduced to efficiently learn such representation. The second
component—the action module—enables playability. It takes two consecutive states of the
environment and predicts an action with respect to the camera orientation. We train our
framework using reconstruction losses in the image space and the state space, and a novel
loss for action consistency. Finally, to improve temporal dynamics, we introduce a temporal
discriminator that operates on sequences of environment states.

To thoroughly evaluate 〈1−6〉, we introduce two complementary large-scale datasets for the
training of playable environments, a synthetic and a real one. The first is intended to evaluate
〈1−5〉, with a particular focus on camera control thanks to the synthetic ground truth, the
second to evaluate 〈1−6〉, with a particular focus on 〈4−6〉 given the high diversity present in
this dataset. We propose an extensive evaluation of our method with several baselines derived
from existing NeRF and video generation methods. These experiments show that our method
is able to generate high-quality videos and outperforms all baselines in terms of playability,
camera control and video quality.

In summary, the primary contributions of this work are as follows:

� A new framework for the creation of compelling Playable Environments with the char-
acteristics in Tab. 3.1. No other concurrent framework enables generation and manipu-
lation of video sequences to this degree.

� A new compositional NeRF that handles deformable objects with different visual
styles. Our representation supports high-resolution videos of scenes with multiple agents
thanks to a novel upsampler with patch-based training procedure.

� An action module that operates in the latent space of our NeRF model trained with
an adversarial procedure to improve temporal temporal dynamics.

� Two challenging large-scale datasets for training and evaluating PEs to stimulate
future research in this area.
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3.2 Related Works

3.2.1 Video generation

Video generation has seen incredible progress over past years. The video synthesis task has
numerous formulations which mostly differ in the type of conditional information that is used
for generation. The generation process could be conditioned on previous frames [25,70,83,135,
139], on another video [120, 121, 122, 141], on the pose of the agent [10] or even be completely
unconditional [115,135]. Moreover, several works proposed to condition the generation of each
single frame on an action label [16,57,97,98]. Still, all these methods require action supervision
for training.
Playable video generation (PVG) was recently introduced in Menapace et al. [85]. Dif-
ferently from prior works in this domain which required annotated action labels [55, 57], their
method, CADDY, automatically infers actions during training in a completely unsupervised
manner from raw videos. This method is closely related to ours. However, CADDY assumes
only a single controllable object while here we also model the camera movement, complex 3D
interactions and support a variety of object appearances.

3.2.2 Novel view synthesis

Novel view synthesis methods traditionally utilized depth maps [12, 103] or multi-view geom-
etry [63, 117, 160] in order to reconstruct underlying 3D representation and later render new
views of the corresponding scene. Recently, Neural Radiance Fields (NeRF) [89] revolutionized
the field of novel view synthesis. The main idea of NeRF [89] is to model the scene as a con-
tinuous 5D function, usually represented by MLP, and directly query this function along the
camera rays. Numerous follow-up works on [89] have been proposed. For instance, some works
proposed to decompose the foreground and background [94, 152]. Other works generalised
NeRF [89] to dynamic scenes [52, 99, 134, 149]. GIRAFFE [95] and GANcraft [37] proposed
to utilize an internal representation that is rendered in a feature space and later decoded by
a standard 2D convolutional network. However, none of these methods is able to generalize
to multiple monocular videos, several moving and deforming objects, and diverse objects and
scene appearances. Comparatively, our method can be trained with such data. Moreover, for
enriching the interactivity of the playable environment, our method can control objects in the
scene with action labels that are discovered in an unsupervised manner.

3.3 Method

Our framework is based on the encoder-decoder architecture shown in Fig. 3.2 whose design is
driven by the playable environment characteristics 〈1-6〉 in Tab. 3.1. At time t, the encoder
network outputs state vector sit for every object i in the scene. To enable playability 〈1〉, we
include an action module in the bottleneck layer that has two goals. First, it learns discrete
action labels in an unsupervised manner. More precisely, we learn to discretize the transition
from sit to sit+1 using an action labels ait ∈ {1, ..., K}, where the number of actions K is a
hyper-parameter specified before training. Second, the action module is used at test time to
condition the next frame generation on the action selected by the user. Finally, the decoder
network, referred to as the synthesis module, is in charge of reconstructing the input frame
combining the state of every object and the camera parameters to allow for camera control 〈2〉.
The synthesis and action modules are trained in two separate phases using reconstruction as
the main driving loss.
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Synthesis

Synthesis

Figure 3.2: Overview of our framework. The encoder E extracts environment states for
every object in the scene. The synthesis module follows a NeRF-like architecture to reconstruct
the input frame and allows for camera manipulation. We introduce the action module that
learns to encode state dynamics with discrete action labels. At test time, these learned action
labels are provided by the user to control the generated content.

To handle environments with multiple objects 〈3〉, we adopt a compositional formulation
for our encoder-decoder: we decompose the environment into a predefined set of objects. We
distinguish between two object categories, namely static objects (e.g. background) and playable
objects (e.g. human), where the latter are the dynamic objects the user will be able to control.
We define the environment state of object i as sit = (xit, w

i
t, π

i
t) where xit is the position of the

object in the environment, wi is a style descriptor, and πi is the object pose. We introduce wi

and πi to handle deformable objects 〈4〉, such as humans, and to model appearance changes of
objects in the training set 〈5〉. For every static object, we assume xit to be fixed and known.
For playable object i instead, given the current camera parameters and its bounding box bit, we
approximate xit by projecting the middle point of the lower bounding box edge onto the ground
plane. We then compute the style and pose descriptors using a convolutional encoder network
E for each object. The encoder takes as input the image cropped at the location defined by the
bounding box for each object and outputs both wit and πit. In the rest of the paper, we omit
object indexes.

We introduce a novel synthesis module detailed in Sec. 3.3.1. The action module is described
in Sec. 3.3.2. The training procedures are given in Secs. 3.3.3 and 3.3.4.

3.3.1 Synthesis Module

Point samplingObject 1

Figure 3.3: The synthesis module consists of two steps. First, non-rigid neural radiance
fields with a bending network B and style modulation are used to generate a feature map.
Second, the feature maps are fed to a ConvNet F .

The aim of the synthesis module is to reconstruct the input image from the camera pose
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and states st. We found NeRF [89] to be a reasonable base architecture for explicit camera
control 〈2〉. Therefore, we propose a novel architecture (Fig. 3.3) that combines non-rigid
neural radiance fields with a convolutional image generator to address 〈2-6〉.
Camera control 〈2〉 is achieved by employing NeRF [89] as a base architecture. NeRF [89]
represents scenes as radiance fields: a 5D continuous function that maps a 3D position and a
2D viewing direction to an emitted color c and an opacity σ. Our NeRF represents scenes using
a fully-connected network V , whose input is a single vector containing a point location in 3D.
It outputs the volume density σ and radiance c for the input point location. Given a desired
virtual camera, 3D points are sampled along the camera ray r traced through each pixel. The
color value of every pixel is computed by integration over the ray r:

C(r) =

∫ tf

tn

e−
∫ t
tn
σ(r(s))dsσ(r(t))c(r(t))dt. (3.1)

Similarly to [37, 95], instead of directly predicting color values, our neural radiance fields
generate feature maps for the input camera pose, while a convolutional image generator is in
charge of generating realistic frames. In addition, Mildenhall et al. [89] propose a stratified
sampling approach which exploits a coarse neural radiance field to locate portions of the ray
corresponding to visible surfaces and allocates additional samples to the neighborhood of such
regions. A fine neural radiance field is used to compute the final image using both the initial
and the additional sampled locations. We found stratified sampling not to improve performance
of our method and thus use only a single neural radiance field with a uniform point sampling
scheme.

For more details about NeRFs, please refer to [89].
Multi-object 〈3〉. Each object is modeled using a separate feature field parametrized as an
object-specific MLP V . The field is bounded by volume β and centered at the respective object
location xt. Given a ray r, we compute its features f(r) according to the following procedure.
We first intersect r with each bounding volume β to compute the ingress and egress location of
the ray with each object xin, xout. For each object, we then uniformly sample a given amount
of positions {xp}Np=1 between xin and xout and obtain the respective features fp and opacities
σp as fp, σp = V (xp). f(r) is obtained by integration similarly to Eq. (3.1).
Deformable objects 〈4〉. To handle deformable objects such as humans, we make use of non-
rigid NeRF models, similarly to [134]. For each playable object, we introduce a ray bending
network B parametrized as an MLP. Given an object pose descriptor π and position xp on ray
r, we use the bending network to regress the corresponding position x̃p on the bent ray r̃ as:

x̃p = xp +B(xp, πt). (3.2)

We then make use of the positions on r̃ when sampling V . In this way, B encodes the transfor-
mation from the space of the deformed object to a canonical space and V encodes a canonical
representation of the object.
Appearance changes 〈5〉. The appearance of each object may vary widely in the dataset.
In order for each object-specific model to be able to represent the complete set of possible
appearances of its object, we propose the use of a style embedding layer inspired by AdaIN [48],
which we embed into V . Assuming a hidden feature ht in V and a style code wt, we modulate
ht as follows:

h̃t = γ(wt)ht + β(wt), (3.3)

where γ and β are trainable linear layers. Following [89], we design V as a backbone
terminated by two separate branches, one for opacity and one for features prediction. We
assume that the style of an object should influence its features, but not its geometry. Therefore,
we insert our modulation layer in the features prediction branch only.
Robustness 〈6〉 to calibration and localization errors is achieved through a Feature Renderer.
Our compositional NeRF model outputs a feature map ft corresponding to an input image
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Figure 3.4: The action module. Given the states at times t and t+1, the action network A
predicts a discrete action label at and action variability vt that are combined by the dynamics
network R to estimate the new environment state st+1 given the old st.

patch. We employ a ConvNet F to reconstruct it. Due to the ability of ConvNets to model
cross-pixel relationships, inaccuracies in the estimation of features caused by input noise can be
compensated, reducing the associated blur. Note that F contains upsampling layers. It allows
an important reduction in the number of rays that are to be sampled by the NeRF model since
it outputs a feature map at a lower resolution than the image. Therefore, we reduce memory
consumption allowing larger patches to be rendered. We also find it beneficial to use multiple
input feature maps at different resolutions to capture details at different scales (see Sec. 3.4.1
for details).

3.3.2 Action Module

The action module (Fig. 3.4) learns the action space and enables playability 〈1〉. The actions
of each playable object are modeled by a separate action module, consisting of the action and
dynamics networks.
Action network. Given two successive environment states st and st+1, we use an action
network A to infer a discrete representation at ∈ {1, ..., K} of the action performed by the object
in the input sequence. Following [85], to address non determinism present in the environment,
we also extract an action variability embedding vt describing the particular variation of at
performed at time t:

at, vt = A(st, st+1). (3.4)

Dynamics network. The role of the dynamics network is to predict the state st+1 from st
and the action label at. We adopt a recurrent model R implemented as an LSTM to model the
dynamics of the object. The next state prediction ŝt+1 = (x̂t, ŵt, π̂t) is given by:

ŝt+1 = R(st, at, vt). (3.5)

In our preliminary experiments, we observe that when R directly regresses x̂t+1 as formulated
in (3.5), the model learns actions that are independent from the current camera position. This
behavior is unnatural for the user since in applications such as video games, object movements
are typically expressed relatively to the camera pose. To avoid this behavior, R is instead asked
to predict the object movement ∆ expressed in the camera coordinate system. The estimated
position is then given by x̂t+1 = xt + M∆ where M is the rotation matrix expressing the
orientation of the camera.

3.3.3 Synthesis Module Training

We train our model in two steps by first training the encoder and synthesis module until
convergence, and then the action module. We train the encoder and synthesis module using
the perceptual loss of Johnson et al. [53] that assesses image reconstruction quality in features
spaces of a pretrained VGG network. The loss is computed between the ground truth and
reconstructed image patches. The perceptual loss is complemented by an L2 reconstruction
loss in the pixel space.
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Our preliminary experiments showed that training may fail to correctly disentangle object
style and pose (i.e. w and π respectively). Indeed, the reconstruction losses can be minimized
using w alone by predicting a constant, non-deforming surface with changing style. To avoid
this problem, we make the observation that the pose of an object in neighboring frames can
change while the style does not. Therefore, we enforce better disentanglement by permuting
the order of w codes along the temporal dimension for each sequence before feeding them to
the synthesis module.

3.3.4 Action Module Training

In the second phase of training, we train the action module using a combination of losses. Each
loss is computed separately for each playable object and then averaged to produce the final
optimization objective.
Reconstruction loss. For each playable object, we reconstruct the input sequence of environ-
ment states {st}Tt=1, obtained by encoding each input image using the encoder E, and impose
an `2 reconstruction loss Lrec with the corresponding reconstructed sequence {ŝt}Tt=1.
Action learning losses. We employ the information-theoretic action learning loss of [85] to
foster the understanding of actions. For each playable object, the action network A produces
internal estimates of action probabilities pt and p̂t for input st and reconstructed ŝt environment
states, respectively. By imposing the maximization of mutual information between these two
distributions we foster the action network both to discover the K action categories, avoiding
mode collapse, and to produce consistent action estimates for the input and reconstructed
sequence:

Lact = −MI(pt, p̂t). (3.6)

In addition, to improve consistency between discrete actions and 3D movements, we propose
to optimize a novel loss consisting in a soft version of the ∆ Mean Squared Error (∆-MSE)
introduced in [85]. This metric is based on the idea that same actions at should correspond to
similar object motions ∆. Assuming a batch containing J image pairs, we extract the object
motion ∆j, j∈{1, ..., J} and estimate the mean object motion for each action:

∀k ∈ {1, ..., K}, µk =

∑J
j=1 pjk∆j∑J
j=1 pjk

, (3.7)

where pjk denotes the probability for the image pair j to be assigned to the action k. We then
minimize the mean squared distance between the motion ∆j and the mean motion for each
action:

L∆ =
1

Var(∆)

J∑
j=1

K∑
k=1

pjk ‖∆j − µk‖2
2 , (3.8)

where Var(∆) is used as a normalization factor.
Temporal discriminator. Previous methods for playable video generation [85], tend to pro-
duce sequences where the playable objects move in the scene with unrealistic motions. We
attribute this behavior to the use of reconstruction as the main training objective. Optimizing
reconstruction losses does not penalize action representations that lead to temporally incon-
sistent videos. To address the problem, for each playable object we introduce a temporal
discriminator D implemented as a 1D ConvNet over the temporal dimension. Given a sequence
of environment states, the temporal discriminator is trained to classify them as real if produced
by encoding the input images using E or as fake if reconstructed by the action module. We
implement our adversarial training procedure using a vanilla GAN loss with loss terms LG and
LD for the action module and temporal discriminator, respectively.
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Total loss. Our optimization objective for A and R is

L = λrecLrec + λactLact + λ∆L∆ + λGLG, (3.9)

where we introduce the weighting parameters λrec, λact, λ∆ and λG. For training D, we minimize
the adversarial objective LD of the discriminator.
Inference. At inference time, we assume that only the first frame of the sequence is given. We
use the encoder module to extract the first environment state ŝ1 = s1. At each timestep t, we
let the user specify a discrete action for each playable object and use the dynamics network R
to derive ŝt+1 in an autoregressive way. Since the action input is specified by the user, during
inference we do not make use of the action network and always set vt = 0. The environment
states generated by the dynamics network are rendered to images using the synthesis module.

3.4 Experiments

Datasets. Evaluating 〈1-6〉 is challenging and requires video datasets featuring camera motion
〈2〉, multiple playable objects 〈1,3〉, deforming objects 〈4〉 and varied appearance 〈5〉. For this
reason, we collect three datasets:

� Minecraft dataset. We collect a synthetic video dataset with duration of 1h with two
sparring Minecraft [1] players. Wide camera movement and diverse, deforming players
allow the evaluation of 〈1−5〉.

� Minecraft Camera dataset. We collect Minecraft [1] sequences where the camera is moved
in the neighborhood of a starting position. We use these frames as a synthetic ground
truth for the evaluation of camera control 〈2〉.

� Tennis dataset. We collect a large-scale dataset of 43 broadcast tennis matches totalling
12h of videos for the evaluation of 〈1-6〉. The dataset features challenging player poses
〈5〉, high variability in tennis fields and players 〈4〉 and noise in camera estimation and
player localizaton 〈6〉.

To allow comparison with playable video generation methods under their simplifying as-
sumptions, we adopt the Tennis dataset of [85], referred to as Static Tennis. The dataset
features limited camera movement, each video is cropped to depict only a single player, only
one field is present and players have uniform appearance, thus only 〈1,4〉 are evaluated.
Evaluation protocol. We perform a separate evaluation of the synthesis 〈2-6〉 and the ac-
tion modules 〈1〉 using similar evaluation protocols. For the former, we reconstruct each test
sequence by extracting the environment state of each frame and rendering the original frame
back. For the action module, we follow the evaluation protocol of [85]. In particular, we con-
sider a test sequence and extract the environment state of the first frame, then we use the
action network to extract the sequence of discrete actions present in the sequence and recon-
struct each frame starting from the first environment state. As video quality metrics 〈2,4-6〉
we adopt LPIPS [154], FID [40] and FVD [136] computed between the test sequences and the
reconstructed sequences. For evaluation of the action space 〈1,3〉, following [85], we define ∆ as
the difference in position of an object between two given frames and use the following metrics:

� ∆ Mean Squared Error (∆-MSE): The expected error in terms of MSE in the regression of
∆ from a discrete action. For each action, the average ∆ is used as the optimal estimator.
The metric is normalized by the variance of ∆.

� ∆-based Action Accuracy (∆-Acc): The accuracy with which a discrete action can be
regressed from ∆.
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� Average Detection Distance (ADD): The average Euclidean distance between the bound-
ing box centers of corresponding objects in the test and reconstructed frames.

� Missing Detection Rate (MDR): The portion of detections that are present in the test
sequences but that are not matched by any detection in the reconstructed sequences.

3.4.1 Implementation and Training details

Architecture details. We make use of positional encodings [89] for both V and the bending
network B. We use 10 and 6 octaves, respectively, and use the concatenation of the original
vector and the encodings as input. Following [100], we gradually introduce the positional
encodings in B during the first 60.000 training iterations. No viewing direction is given as input
to B and V to avoid artifacts when the environment is rendered from a camera pose outside of
the training distribution. In addition, to reduce memory consumption, we do not make use of
the hierarchical point sampling scheme. We model the action network A following [85] and make
use of gumbel softmax sampling [50] to obtain discrete action representations. In addition, to
foster A in predicting actions that are associated to movement, we use only object positions xt
as input rather than the complete environment state st. The temporal discriminator D receives
as input the object positions x and object poses π and is further conditioned on the actions a
and action variabilities v inferred on the ground-truth sequence. We modulate the number of
residual blocks in E based on the expected size of the input image crop.
Feature renderer details. We propose to render feature maps at multiple resolutions into the
final image using a ConvNet feature renderer F . Our ConvNet accepts feature maps {fi}li=1 at
l different resolutions, each associated to a downsampling factor di. We obtain feature map fi
by integration of the features sampled along the rays corresponding to pixel Imn in the original
image, such that

m ∈
{
di
2

+ 1 + kdi

} h
di
−1

k=0

, n ∈
{
di
2

+ 1 + kdi

} w
di
−1

k=0

, (3.10)

where h and w are the image height and width and indexes are expressed starting from 1. The
process is illustrated in Fig. 3.5. Note that each ray is sampled on a grid where the points
are at a vertical and horizontal distance of di from one another and at distance di/2 from the
border (see left of Fig. 3.5 for a visualization of the sampled positions). Note also that the
ray is sampled at the pixel location in the original image that corresponds to the center of the
associated local patch that will be synthesized by F . In our implementation, we render two
separate feature maps at downsampling factors 8x and 4x (see Fig. 3.5) to capture details at
different scales. Note that this approach allows rendering images using 12.8x fewer rays than
NeRF approaches that render each pixel with a separate ray, allowing for important reductions
in the use of memory and in computational complexity and enables the model to render large
image patches at training time. We experiment with greater downsampling factors, but find
that further increasing them causes 3D consistency artifacts. In the presence of calibration
and localization noise during training, we observe that NeRF models tend to generate blurry
results which are particularly evident on dynamic objects where calibration and localization
errors are compounded with errors in the estimation of the object pose. We ascribe this
phenomenon to the use of reconstruction losses based on L2 distance which, in the presence of
a color mismatch between the ground truth and the reconstructed pixel caused by input noise,
favors the prediction of intermediate color values, generating blur. Using a feature renderer
provides two advantages over the traditional approach. First, thanks to convolutional filters,
the prediction for the feature associated to the current position can take into account the
values of neighboring positions, enabling the model to produce a coherent output. Second, the
possibility to render large patches makes it possible to adopt losses different from L2 distance,
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Figure 3.5: Representation of the feature rendering process. We sample points on rays arranged
in a grid corresponding to feature map locations, then the sampled points are rendered into
feature maps using our NeRF pipeline. The process is repeated to produce feature maps at
different resolutions. The feature rendered F uses the rendered feature maps to reconstruct the
original image.

such as the perceptual loss of Johnson et al. [53] which penalizes more effectively implausible
predictions such as the ones containing blur.
Object configurations. On the Minecraft dataset, we model the scene using four objects.
The first object models the static scene elements close to the players, the second object models
the distant objects and the other two objects model the players. For each ray, we sample 16
positions for the first model, 1 position for the second model and 32 positions for each of the
players. On the Tennis dataset, we note that camera movement in the input dataset is mostly
limited to camera rotations. Recovering depth information for the static objects is thus an
ill-posed problem which requires prior knowledge. Note that this problem is not present for
the players since their change of position with respect to the camera allows the learning of
depth information. We thus adopt the following objects to model the environment: an object
to model the tennis field which is bounded by a box β that does not rise above ground level, an
object to model the backplate of the tennis field, which is bounded by its box β to be a planar
surface, and two objects for the players. For each ray, we sample 4 positions for the objects
modeling the static scene and 32 positions for each player.
Background modeling. The Minecraft dataset features a challenging environment with
distant visible objects. NeRF++ [152] employs an inverted sphere scene background repre-
sentation for modeling distant objects. While effective, this parametrization requires a large
number of samples to model distant objects, which increases memory consumption. To address
this issue, we propose to model background objects using a spheric background representation
which requires a single sample for each ray. In particular, we model the spheric background
with as an MLP f = V (d, o), receiving as input the direction d and the origin o of the ray, and
returning as output the associated feature. We consider the opacity σ of the associated feature
to always be 1. The parametrization on the ray origin allows the model to simulate the effects
of depth on the background objects without requiring multiple samples.
Model sharing. Instead of using a synthesis and an action module specific to each object, we
note that objects corresponding to the same class can, in principle, be represented by the same
model. In particular, in the Minecraft dataset, the two players have completely symmetric
characteristics, so we model both using a single shared model. While the same observation can
be made for the case of the players in the Tennis dataset, we found that the synthesis module
fails if the same model is used for both players. We explain this behavior by observing that
on the Tennis dataset the player closest to the camera is always observed from the back, while
the player further from the camera is always observed from the front. This asymmetry makes
it harder for a model to learn a unified player representation, so we model the players with
separate models.
Masked batch normalization and pooling. In a video sequence, detection may fail in
some frames. In the action module, the environment state corresponding to frames with miss-
ing detections and the successive ones are replaced with placeholder values. As discussed in
Sec. 3.3.4, loss masking is used to prevent effects of placeholder values on training. Neverthe-
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less, the presence of placeholder values may still alter the behavior of the action module by
affecting the estimation of batch statistics in batch normalization layers and by affecting the
behavior of operations such as global average pooling. To prevent potential undesired effects on
training, in the action module we adopt masked versions of batch normalization and of pooling
operations that operate by computing statistics only on non-placeholder values.
Synthesis module training details. We optimize the synthesis module parameters using
Adam [59] as optimizer and learning rate 5e − 4. The model is trained for 300.000 iterations
and the learning rate is exponentially decayed until 5e− 5 at the end of training. We employ a
batch size of 8 video sequences, each with 3 or 4 frames for Minecraft and Tennis, respectively.
To better disentangle style from pose (see Sec. 3.3 on the main paper) we do not use consecutive
frames for each sequence, but skip 4 and 100 frames between each selected frame, respectively,
for Minecraft and Tennis. In all the experiments, we consider input images of size 512x288 and
we render patches of size 192x192 and 256x256, respectively, for Minecraft and Tennis during
training. To improve the quality of playable objects, we sample with increased frequency
patches that contain the players. The total loss is the weighted sum of the perceptual and L2
reconstruction losses in pixel space. We assign a weight of 1.0 to the L2 reconstruction loss and
a weight of 0.1 to the perceptual loss term. The synthesis module is trained on 4x Nvidia RTX
8000. We also train models on 1x Nvidia RTX 8000 on the Tennis dataset using a reduced
rendered patch size of 160x160 pixels with a small reduction in image quality.

While it is possible to learn the feature renderer network F from scratch, we find it beneficial
to start training from pretrained weights since this guides the composable NeRF model towards
learning features encodings whose mapping to the image space is already known. We obtain
these weights with a pretraining process. We add a temporary encoder ConvNet to F and
train it as an autoencoder, using the same combination of perceptual and L2 losses used for
training of the synthesis module. To avoid disruption of the learned features in the early stage
of training of the synthesis module, we freeze F during the first training iterations of the full
model and unfreeze it once the composable NeRF model features become close to the ones the
temporary ConvNet encoder would have produced.
Action module training details. For the action module, we make use of Adam [59] as
optimizer with β1 = 0.5 and β2 = 0.999, and use a learning rate of 5e − 4. We train the
model for 300.000 iterations with an exponentially decayed learning rate which reaches the
value of 5e− 5 at the end of training. The action module and the discriminator are optimized
in alternation. We regularize the discriminator training using spectral normalization [90]. We
note that at inference time our autoregressive dynamics network receives as input sequences
of reconstructed environment states ŝt rather than environment states st produced by E as
happens during training. Following [85], to avoid performance degradation at inference time
due to this mismatch, we propose to train the action module using as input to the dynamics
network encoded environment states for the first t steps and reconstructed environment states
for the following ones. In all the experiments we use 4 initial encoded environment states. In
addition, we employ a curriculum learning strategy where we linearly increase the length of the
reconstructed sequences during training. In particular, at the beginning of training, sequences
of 5 environment states are reconstructed, while at the end of the annealing period at step
25.000 the reconstructed sequence length is set to 9. We use a batch size of 64 sequences.
Following [85], we set the number of actions K to 7 for all the experiments. We set λrec = 1.0,
λact = 0.15, λ∆ = 0.1 and λG = 0.1 in the computation of the total loss term. During training
of the action module, some frames may not contain a valid detection for each playable object.
This may be due to the absence of the object in the frame or due to missed detections. We
address this issue by computing the loss terms Lrec, Lact and L∆ by taking into account only
the prefix of the input sequence where the object has always been detected. The action module
is trained on 1x Nvidia RTX 8000.
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LPIPS↓ FID↓ FVD↓∆-MSE↓∆-Acc↑ADD↓MDR↓

MoCoGAN [135] 0.266 132 3400 101 26.4 28.5 20.2
MoCoGAN+ 0.166 56.8 1410 103 28.3 48.2 27.0
SAVP [70] 0.245 156 3270 112 19.6 10.7 19.7
SAVP+ 0.104 25.2 223 116 33.1 13.4 19.2
CADDY [85] 0.102 13.7 239 72.2 45.5 8.85 1.01

(Ours) 0.089 15.3 237 32.8 68.1 9.47 0.15

Table 3.2: Comparison with PVG state of the art on the Static Tennis dataset of [85]. ∆-MSE,
∆-Acc and MDR in %, ADD in pixels.

3.4.2 Comparison on Playable Video Generation

In this section, we evaluate the action-modeling capabilities of our method by comparing against
the state of the art in the related problem of Playable Video Generation (PVG) [85] where the
objective is to learn a set of discrete action labels in an unsupervised fashion to condition
video generation. Differently from our setting, in PVG no explicit camera control is required.
Moreover, existing PVG methods assume a single user-controllable object and that camera
motion is limited.

To satisfy these simplifying assumptions, we adopt the Static Tennis dataset of [85]. Tab. 3.2
shows the results. Our method substantially improves the ∆-MSE and ∆-Acc action quality
metrics suggesting that the learned actions are better correlated with player movement. In
addition, the reduced LPIPS and MDR indicate an improvement in the quality of the generated
reconstruction. In order to further evaluate video quality improvements with respect to [85], we
run a user study on video quality against [85] on the Static Tennis dataset, the original dataset
of [85]. Note that, for fairness of comparison, we make use of the Static Tennis dataset which
does not feature the several challenges addressed by our method but not by CADDY [85], such
as wide camera movements, multiple players and changes in appearance.

We create 206 video pairs with the two methods and ask 3 distinct AMT users to express
their preference in terms of video quality between the two videos. 618 votes expressed by 18
distinct AMT users are gathered and assign a preference of 81.6% to our method.

3.4.3 Comparison with Previous Methods

Baselines. We propose to build baselines for the creation of PEs from state-of-the-art methods
in the related problem of PVG. We make use of the following set of versions of CADDY [85]
which are modified to account for multiple playable objects and for camera motion: (i) the
action network produces a distinct output for each dynamic object in the environment; (ii) (i)
+ the action and dynamics networks are conditioned on bounding box and camera information;
(iii) (ii) + output resolution is increased to match our method; (iv) (ii) + L∆; (v) (iii) + L∆.
Playability evaluation 〈1〉. We evaluate player control capabilities in Tab. 3.3. On the
Tennis dataset our model substantially improves over the baselines in the action space metrics,
LPIPS and FVD, suggesting better controllability of the players. In particular, the considerably
lower MDR indicates a better capacity of the model in generating players with respect to the
baselines. Fig. 3.6 shows qualitative reconstruction results for our method. As suggested by the
MDR and ADD scores, the model correctly synthesizes both players and is able to reconstruct
the player movements of the ground-truth sequence using only a sequence of discrete actions.
In addition, a visualization of the learned action space (see Fig. 3.7) shows that the model
learns a set of diverse discrete actions that correspond to the main movement directions. On
the Minecraft dataset, our method surpasses the baselines both in terms of video and action
quality metrics. In particular, the high variation in camera pose in this dataset is not correctly
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Tennis

Aux. H.Res.L∆ LPIPS↓ FID↓ FVD↓∆-MSE↓∆-Acc↑ADD↓MDR↓

CADDY [85] (i) 0.313 61.0 877 0.901 42.6 35.1 36.9
CADDY [85] (ii) X 0.351 69.2 1109 0.592 59.6 29.0 24.8
CADDY [85] (iii) X X 0.213 15.4 727 0.693 57.5 18.7 11.7
CADDY [85] (iv) X X 0.445 70.3 1568 0.797 62.4 29.6 33.0
CADDY [85] (v) X X X 0.534 191 8083 0.633 73.5 20.2 60.3

(Ours) 0.181 17.4 485 0.293 95.7 14.0 4.84

Minecraft

Aux. H.Res.L∆ LPIPS↓ FID↓ FVD↓∆-MSE↓∆-Acc↑ADD↓MDR↓

CADDY [85] (i) 0.743 288 3667 1.0 (100) 15.1 96.8
CADDY [85] (ii) X 0.773 296 2906 0.999 52.8 56.3 93.2
CADDY [85] (iii) X X 0.677 211 2213 0.998 53.7 42.5 82.9
CADDY [85] (iv) X X 0.707 275 2553 0.467 83.3 56.2 92.2
CADDY [85] (v) X X X 0.691 309 2187 0.439 82.6 17.4 95.1

(Ours) 0.204 16.8 329 0.271 77.7 17.8 33.9

Table 3.3: Playability evaluation with baselines on the Tennis and Minecraft datasets and
camera control evaluation on the Minecraft Camera dataset. Aux.: use of auxiliary bounding
box and camera pose information; H.Res.: use of the high resolution model; L∆: use of the loss
for ∆-MSE. ∆-MSE, ∆-Acc and MDR in %, ADD in pixels.

modeled by the baseline methods which produce irrealistic results. Note that (i) and (iv) show
a better ∆-ACC than our method which is explained by their learned action space which only
discovers a reduced number of action categories as confirmed by the high ∆-MSE.

To further evaluate the quality of the action space we perform a user study (see Tab. 3.5)
on the Tennis dataset, following the protocol of Menapace et al. [85]. We sample a set of
26 frames from the test set and for each frame we produce video continuations conditioned on
each learned action. Two separate videos are produced for each initial frame and action, the
first cropped on the lower tennis field, the second cropped on the upper tennis field to ensure
a single tennis player is depicted in each video. For each produces sequence, we ask 3 Amazon
Mechanical Turk users to choose which is the performed action between a set of options. We
then measure agreement between the users using the Fleiss’ kappa measure [26] and compute
diversity in the generated actions using entropy of user-selected actions. We consider only the
baselines with the highest video quality and with the best action space metrics. Our model
achieves the best agreement in terms of Fleiss’ kappa measure [26] and comparable diversity to
the baselines indicating that the model generates videos that are consistently conditioned by
the action and that no mode collapse of the learned actions is present.
Camera control evaluation 〈2〉. We evaluate the quality with which the model can syn-
thesize novel views. We initially perform a quantitative evaluation on the Minecraft Camera
dataset since novel view ground truth is present. We start from the first frame and reconstruct
each sequence using the camera parameters of the novel views. Results are shown in Tab. 3.4.
Despite the presence of auxiliary bounding box and camera pose inputs for CADDY [85], the
baseline method fails in synthesizing the scene from novel perspectives. We ascribe this phe-
nomenon to the lack of an explicit model for the camera. Our method instead can successfully
synthesize the scene from novel camera perspectives.

We now evaluate camera manipulation capabilities for our method on the Tennis dataset.
We consider each test sequence and sample two random camera poses by applying noise to

44



Figure 3.6: Qualitative reconstruction results produced by our method on the Tennis and
Minecraft datasets. In the reconstructed sequence, playable objects move according to the
ground truth sequence and are rendered in realistic poses.

Figure 3.7: Action space learned by our method on the Tennis dataset. Each color represents
a learned action and each arrow shows the effects of applying the respective action six times to
the initial player. The overlay on the floor shows the distribution of possible ending positions
after the application of each action.
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Tennis Minecraft Camera

Aux. H.Res.L∆ LPIPS↓ FID↓ADD↓MDR↓ LPIPS↓ FID↓ADD↓MDR↓

CADDY [85] (i) 0.659 224 50.4 82.0 0.747 306 11.7 95.8
CADDY [85] (ii) X 0.623 170 54.7 33.7 0.762 324 44.7 92.2
CADDY [85] (iii) X X 0.425 26.1 38.1 29.2 0.669 244 29.2 82.0
CADDY [85] (iv) X X 0.634 164 57.4 41.7 0.699 314 62.0 89.4
CADDY [85] (v) X X X 0.574 216 35.0 66.7 0.679 337 19.1 93.6

(Ours) 0.205 20.5 13.9 5.76 0.242 29.2 5.69 8.07

Table 3.4: Camera control evaluation on the Tennis and Minecraft Camera datasets. Aux.:
use of auxiliary bounding box and camera pose information; H.Res.: use of the high resolution
model; L∆: use of the loss for ∆-MSE. MDR in %, ADD in pixels.

Aux. H.Res. L∆ Agreement↑ Diversity↑ Other votes

CADDY [85] (iii) X X 0.353 1.77 1.86
CADDY [85] (v) X X X 0.170 1.71 24.7

(Ours) 0.444 1.7 0.80

Table 3.5: User study results on the Tennis dataset. Aux.: use of bounding boxes and camera
pose; H.Res.: use of the high resolution model; L∆: use of the loss for ∆-MSE. Other votes in
%.

the camera pose parameters in the first frame. We then generate a camera trajectory by
interpolating between the two poses and render the sequence from the novel camera trajectory.
Note that in the Tennis dataset the largest portion of the image is occupied by the field plane.
Consequently, we can approximately match each image rendered from the novel trajectory to
the corresponding original image by applying a homography. We then compute reconstruction
losses between the original and the generated sequence warped according to the corresponding
homography. While this evaluation does not account for parts of the image that do not lie on
the field plane such as the players, it can be used to detect failure cases. We show the results
in Tab. 3.4. LPIPS, ADD and MDR highlight that our method obtains better consistency than
the baselines in the generation of novel camera views.

In Fig. 3.8 we show qualitative camera and style manipulation results for our method on
the Tennis dataset. Our model can synthesize the scene under novel views and correctly alter
the style of the field and players to the one of a target image.

3.4.4 Ablation Studies

Synthesis module ablation study 〈3-6〉. In this section we evaluate the contribution of
each proposed architecture component for the synthesis module: Multi use of multi-object mod-
eling 〈3〉, π use of deformation modeling 〈4〉, w use of style modulation layers for appearance
changes 〈5〉, F use of the feature renderer for robustness 〈6〉. We produce the following method
variations: (a) no component is used; this approach resembles NeRF [89]; (b) Multi ; (c) Multi
and π; this architecture is akin to NR-NeRF [134] with 〈3〉; (d) Multi, π, and w injected with
concatenation rather than style modulation layers; (e) Multi, π, and w with style modulation
layers; (f) Multi, π, w and a simplified ConvNet F that renders the complete frame from feature
maps at a single resolution; from an architectural viewpoint, this feature rendering strategy
resembles the one of GIRAFFE [95].

Results are shown in Tab. 3.6. (c) and (e) show that deformation and style modeling with
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Figure 3.8: Camera and style manipulation results on the Tennis dataset. The original image
is rendered under a novel camera perspective using varying styles for the field and players.

style modulation layers are both necessary to accurately synthesize the scene, but generate
blurry results due to calibration and localization errors. We recover sharpness by introducing
our ConvNet feature renderer which reduces blur by modeling cross-pixel correlations. Substi-
tuting our renderer with the one of (f) leads to performance degradation due to the excessively
sparse sampling of rays imposed by memory constraints when rendering the complete frame
that leads to 3D consistency artifacts which are particularly apparent in the region of dynamic
objects.

We present qualitative results in Fig. 3.9. The evaluation confirms the importance of the
use of style modulation layers to model appearance changes and of the bending network to
model deformations. In addition, without our feature renderer F , the model produces blurry
results and lacks details such as the wrinkles on the clothes. Introducing the feature renderer F
allows the model to be trained on complete patches applying the perceptual loss term. This, in
conjunction with the ability of ConvNets to model inter-pixel relationships, enables the model
to reduce blur and to generate clothing that contains more detailed wrinkles. We also note
that, in some sequences, the feature renderer is capable of generating realistic player shadows
in portions of the image that lie outside of the bounding volume β for the radiance field of the
player. We ascribe this to the capacity of the ConvNet F to model the correlation between the
presence of the player and of its shadow.
Action module ablation study. We now evaluate the contribution of the main components
of the action module by ablating the following: Rel. use of camera-relative object movement in
the dynamics network; D use of the temporal discriminator; L∆ use of the loss on ∆-MSE; Lact

use of the information-theoretic action learning loss. Results are shown in Tab. 3.7. Removing
the temporal discriminator causes an increase in the FVD. A qualitative analysis of the results
shows that models not using D produce sequences where the players translate in the scene, but
fail to realistically move their limbs. In addition, the introduction of L∆ produces a positive
impact on the action space metrics. We also note that, thanks to the presence of L∆, the
model learns an action space even in the absence of Lact. Lastly, without camera-relative object
movement in the dynamics network, the model produces movements that are independent from
the current camera orientation, which is undesirable (Sec. 3.3.2).
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Tennis

Var. Multi 〈3〉 π 〈4〉 w 〈5〉 F 〈6〉 LPIPS↓ FID↓ FVD↓ ADD↓ MDR↓

(a) 0.505 256.1 7011 72.2 85.6
(b) X 0.619 271.4 10697 3.57 100.0
(c) X X 0.624 253.5 7280 2.65 28.6
(d) X X ∼ 0.319 96.3 3303 79.8 85.4
(e) X X X 0.286 39.3 638 3.11 7.34
(f) X X X ∼ 0.272 39.2 2678 46.9 60.5

Full X X X X 0.167 17.1 497 (1.70, 3.41) (1.61, 6.18)

Minecraft

Var. Multi 〈3〉 π 〈4〉 w 〈5〉 F 〈6〉 LPIPS↓ FID↓ FVD↓ ADD↓ MDR↓

(a) 0.735 376 2548 109.1 99.9
(b) X 0.595 266 1617 45.4 86.4
(c) X X 0.648 301 1818 10.17 50.2
(d) X X ∼ 0.361 68.6 482 7.39 31.9
(e) X X X 0.350 61.0 465 8.27 31.8
(f) X X X ∼ 0.341 67.4 1371 88.5 88.8

Full X X X X 0.193 16.5 289 5.45 33.7

Table 3.6: Synthesis module ablation results on the Tennis and Minecraft datasets. Multi : use
of multi-object modeling, π: use of deformation, w: use of style modulation layers or of direct
style encoding (∼), F : use of the feature renderer or of the simplified renderer (∼). ADD in
pixels, MDR in %.

(a) Minecraft (b) Tennis

Figure 3.9: Synthesis module reconstruction results on the Minecraft and Tennis dataset. The
image is cropped for better visualization. Multi : use of multi-object modeling, π: use of
deformation, w: use of style modulation layers or of direct style encoding (∼), F : use of the
feature renderer or of the simplified renderer (∼).
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Var. Rel.D L∆ Lact LPIPS↓ FID↓ FVD↓∆-MSE↓∆-Acc↑ADD↓MDR↓

(A) X 0.205 17.0 334 0.903 33.9 18.7 33.0
(B) X X 0.204 17.0 329 0.290 76.0 18.6 33.5
(C) X X X 0.203 16.9 340 0.263 80.0 15.4 34.0
(D) X X X 0.204 17.0 323 0.289 77.0 17.8 34.3
(E) X X X 0.204 16.9 335 0.276 77.5 17.5 34.0

Full X X X X 0.204 16.8 329 0.271 77.7 17.8 33.9

Table 3.7: Action module ablation results on the Minecraft dataset. Rel.: use of camera relative
residual ∆ output, D: use of the temporal discriminator, L∆: use of the loss for ∆-MSE, Lact:
use of the information-theoretic action learning loss. ∆-MSE, ∆-Acc and MDR in %, ADD in
pixels.

3.5 Conclusions

In conclusion, in this chapter we present a new framework for the construction of Playable
Environments where multiple agents can be controlled through discrete action, the camera can
be controlled explicitly, and style of each element in the scene can be controlled. Our frame-
work features an encoder-decoder architecture based on composable NeRFs. An upsampling
CNN and a patch-based training procedure are introduced to allow efficient generation of high
resolution videos. We introduce an action module to model the dynamics of the environment
and create compelling playable environments. An action consistency loss and temporal discrim-
inators are added to improve action control and realism of the generated dynamics. Extensive
experimental evaluation on two large-scale datasets shows that this explicit 3D representation,
at the cost of camera calibration and object detections, allows the proposed framework to tackle
datasets with camera motion and multiple agents that are challenging for 2D methods such as
the one described in Chapter 2.

Our method enables the creation of compelling playable experiences and the generation of
videos with high degree of control. We argue, however, that interaction with the environment
misses important aspect that would be expected from a video game. First, actions must be
specified for both players, making it necessary to play against another human player. Second,
important elements of gameplay such as the ball in tennis are missing due to the lower resolution
at which the synthesis model operated before the upsampler. Lastly, control over the actions
of players is coarse and makes it not possible to specify actions such as hitting the ball or
the particular tennis shot to perform, important aspects of playability. Addressing such issues
requires learning a model of games embued with a deep understanding of the environment and
of viable strategies, and capable of autonomously devising actions to reach high-level goals,
such as winning a match, a component typically referred to as “game AI”. In the next chapter,
we introduce Promptable Game Models to learn such capabilities.
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Chapter 4

Promptable Game Models

Game engines are powerful tools in computer graphics. Their power comes at the immense cost
of their development. While Chapter 2 and Chapter 3 describe automated methods for the
creation of playable experiences with no or limited supervision, we argue that several aspects
in the generated playable experiences hinder them from being considered real videogames. The
generated experiences, in fact, enable the user to control agents using only a restricted set of
discrete actions, whose meaning is assigned by the model itself. This hinders the capability
of game developers of deciding how to map actions to game controllers and the user from
generating finer, but relevant actions such as hitting a tennis ball with a certain type of shot
and deciding where to send the ball. In addition, agent intelligence, or “game AI” is not
captured, resulting in the impossibility for users to play against an opponent, an important
part of videogames, or for non-playable characters to perform basic tasks such as navigation in
the environment.

In this chapter, we present a framework to train controllable models of games that can
be prompted with a wide range of conditioning signals and reason on the given constraints
to produce realistic outputs showcasing intelligent agent behavior. The result—a Promptable
Game Model (PGM)—maintains the state of the scene and its agents and makes it possible
for a user to play the game by specifying both high- and low-level action sequences. Most
captivatingly, our PGM unlocks the director’s mode, where the game is played by specifying
goals for the agents in the form of prompts containing language and desired states. This
requires learning “game AI”, encapsulated by our animation model, to navigate the scene
using high-level constraints, play against an adversary, devise the strategy to win a point. We
showcase masked transformers trained with a diffusion objective to be proficient at this task.
To render the resulting state of the environment and its agents, we use a compositional NeRF
representation encapsulated in our synthesis model. Unlike previous works, our compositional
NeRF representation makes use of efficient representations of neural radiance fields to enable
generation of high-resolution videos without the need for upsampler networks that we found
responsible for grid artifacts in the output videos. To foster future research, we present newly
collected, annotated and calibrated large-scale Tennis and Minecraft datasets. Our method
significantly outperforms existing neural video game simulators in terms of rendering quality.
Besides, our PGM unlocks applications beyond the capabilities of the current state of the art.
To stimulate future research in this direction, we publicly release our code and data.

4.1 Introduction

Recent video generation methods, thanks to their training on extensive web-scale datasets [116],
exhibit a remarkable capacity for generating a vast amount of different concepts and scenes
[6, 41, 123]. Despite this, their generic nature hinders their comprehension of the dynamics of
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Figure 4.1: We propose Neural Game Engines (NGEs), game-engine-like models that are learned
from annotated videos. Our NGE enables the generation of videos using a wide spectrum of
conditioning signals such as player poses, object locations, and detailed textual actions (see )
indicating what each player should do. Our Animation Model uses this information to generate
future, past, or interpolated environment states according to the learned game dynamics. At
this stage, the model is able to perform complex action reasoning such as generating a winning
shot if the action “the [other] player does not catch the ball” is specified, as shown in the figure.
To accomplish this goal, the model decides that the bottom player should hit the ball with a
“lob” shot, sending the ball high above the opponent, who is unable to catch it. As a game
engine, our model renders the scene from a user-defined viewpoint (see ) using a Synthesis
Model where the style of the scene (see ) can be controlled explicitly.
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the modeled scenes. When generating or editing videos of a game, such as a tennis match, this
limitation impedes their ability to attain precise control of the player movements or to devise
optimal strategies to reach desired states of the game, such as victory over the opponent.

Conversely, humans excel at comprehending these dynamics and, after observing a few
instances of gameplay, understand the rules that govern the game, the possible actions of the
observed players and their effects. This learning process generates an internalized model of the
environment that enables the resolution of a range of prompts, i.e. to devise a game sequence
respecting a set of conditions dictated by the prompt. Not only this empowers us to envision
the evolution of the environment given different courses of action, but also facilitates reasoning
on which actions should be taken to best respond to the opponent or which path an agent
should take to reach a designated point. Learning a generative model capable of answering
such queries would unlock video generation and editing methods capable of achieving a higher
level of semantic control over the generation process thanks to their understanding of the scene
dynamics. In this context, the question emerges: Can we learn a model with such abilities?

Neural video game simulators, a growing category of video generation methods, make an
important step in this direction by focusing on modeling the dynamics of an environment, often
a sports or computer game, with high fidelity and degree of control, and show that annotated
videos can be used to learn to generate videos interactively [21, 47, 55, 57, 85] and build 3D
environments where agents can be controlled through a set of discrete actions [86]. However,
when applied to complex or real-world environments, these works present several limitations:
they do not accurately model the game’s dynamics, do not model physical interactions of objects
in 3D space, do not learn precise controls, do not allow for high-level goal-driven control of the
game flow, and, finally, do not model intelligent behavior of the agents, a capability often
referred to as “game AI”.

In this work, we overcome these limitations by introducing game models trained on a set
of annotated videos that support complex prompts. Due to the versatility of the applications
enabled by diverse prompting methods (see Sec. 4.4), we call them Promptable Game Models
(PGMs). More formally, we define PGMs as those models supporting a core set of game
modeling and prompting functions including rendering from a controllable viewpoint, modeling
of game’s dynamics, precise character control, high-level goal-driven control of the game, and
game AI. Making a first step towards the realization of such models, we propose a framework
that supports these characteristics.

To overcome the limitations of [21, 47, 55, 57, 85, 86], not only we model the states of an
environment, but we also consider detailed textual representations of the actions taking place
in it. We argue that training on user commentaries describing detailed actions of a game greatly
facilitates learning the dynamics of the game and game AI—important parts of PGMs—and
that such commentaries are a key component in enabling a series of important model capabilities
related to precise character control and high-level goal-driven control of the game flow.

In its simplest form, for games like Minecraft, this allows the user to instruct the player to
perform sequences of actions such as “Jump onto a birch pole and run through the stairs”, while
for tennis, this enables controlling each player in a precise manner with instructions such as “hit
the ball with a backhand and send it to the right service box”. Training with language enables
our model to deeply understand semantic parts of the environment in which the game is played.
For example, the model learns the locations of certain parts of the environment, as well as the
sequence of actions necessary to end up in these locations. In tennis, our PGM understands
the locations of the left & right service boxes, no-man’s land, and so on. Interestingly, these
inferences are made from language and language alone—a remarkable finding also highlighted
in PartGlot [62].

Moreover, language enables users to take the director’s mode and prompt the model with
high-level game-specific scenarios or scripts, specified by means of natural language and de-
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sired states of the environment. As an example, given desired starting and ending states, our
promptable game model can devise in-between scenarios that led to the observed outcome.
Most interestingly, as shown in Fig. 4.1, given the initial states of a real tennis video in which
a player lost a point, our model prompted by the command “the [other] player does not catch
the ball” can perform the necessary action to win the point.

Broadly speaking, a game maintains states of its environments [19, 127, 128], renders them
using a controllable camera, and evolves them according to user commands, actions of non-
playable characters controlled by the game AI, and the game’s dynamics. Our framework
follows this high-level structure highlighted in Fig. 4.1. Our synthesis model maintains a state
for every object and agent included in the game and renders them in the image space us-
ing the compositional NeRF of [86] followed by a learnable enhancer for superior rendering
quality. To model the dynamics of games and game AI that determine the evolution of the
environment states, we introduce an animation model. Specifically, inspired by [36], we train a
non-autoregressive text-conditioned diffusion model which leverages masked sequence modeling
to express the conditioning signals corresponding to a prompt. In particular, we show that using
text labels describing actions happening in a game is instrumental in learning such capabilities.
While certain prior work [55, 57, 85, 86] explored maintaining and rendering states of games,
we are not aware of any generative method that attempts to enable precise control, modeling
sophisticated goal-driven game dynamics, and learning game AI to the extent explored in this
paper.

The task of playing games and manipulating videos in the director’s mode has not been
previously introduced in the literature. With this work, we attempt to introduce the task and
set up a solid framework for future research. To do that, we collected two monocular video
datasets. The first one is the Minecraft dataset containing 1.2 hours of videos, depicting a
player moving in a complex environment. The second is a large-scale real-world dataset with
15.5 hours of high-resolution professional tennis matches. For each frame in these datasets, we
provide accurate camera calibration, 3D player poses, ball localization and, most importantly,
diverse and rich text descriptions of the actions performed by each player in each frame.

In summary, our work brings the following contributions:

� A framework for the creation of Promptable Game Models. It supports detailed
offline rendering of high-resolution, high-frame rate videos of scenes with articulated ob-
jects from controllable viewpoints. It can generate actions specified by detailed text
prompts, model opponents, and perform goal-driven generation of complex action se-
quences. As far as we are aware, no existing work provides this set of capabilities under
comparable data assumptions.

� A synthesis model, based on a compositional NeRF backed by an efficient plane- and
voxel-based object representation that operates without upsampling. With respect to the
upsampler-based approach of [86], it doubles the output resolution, can synthesize small
objects and does not present checkerboard upsampling artifacts.

� An animation model, based on a text-conditioned diffusion model with a masked train-
ing procedure, which is key to supporting complex game dynamics, object interactions,
game AI, and understanding detailed actions. It unlocks applications currently out of
reach of state-of-the-art neural video game simulators (see Sec. 4.4).

� Two datasets: a large-scale 15h Tennis and a 1h Minecraft video datasets with camera
calibration, 3D player poses, 3D ball localization, and detailed text captions.
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4.2 Related Work

Our Promptable Game Model relates to neural game simulation literature, game engines, char-
acter animation, neural rendering, sequential data generation, and text-based generation. We
review the most recent related works in this section.

4.2.1 Neural video game simulation

In the last few years, video game simulation using deep neural networks has emerged as a new
research trend [21, 47, 55, 57, 85, 86]. The objective is to train a neural network to synthesize
videos based on a specific type of prompt: a sequence of actions provided at every time step.

This problem was first addressed using training videos annotated with the corresponding
action labels at each time step [16,57,98]. They consider a discrete action representation that is
difficult to define a priori for real-world environments. More recently, [55] proposed a framework
that uses a continuous action representation to model real-world driving scenarios. Devising a
good continuous action representation for an environment, however, is complex. To avoid this
complexity, [85,86] propose to learn a discrete action representation. [47] expands on this idea
by modeling actions as a learned set of geometric transformations, while [21] represents actions
by separating them into a global shift component and a local discrete action component.

Differently from our PGM, previous works perform generation in an autoregressive manner,
conditioned on the actions and, therefore, are unable to answer prompts entailing constraint- or
goal-driven generation for which non-sequential conditioning is necessary. We find the proposed
text-based action representation and masked training procedure to be crucial to unlocking such
applications.

Among these works, Playable environments [86] is the most closely related to ours. Rather
than employing a 2D model, they use a NeRF-based renderer [89] that enables them to represent
complex 3D scenes. We follow this high-level design but introduce a more efficient plane-
and voxel-based NeRF representation that enables the rendering of outputs at double the
original resolution without the use of upsampling modules which we found to be the cause
of checkerboard artifacts, failures in rendering of small objects and to be prone to failure
when training at higher resolutions. In addition, the employed discrete action representation
shows limitations in complex scenarios such as tennis, where it is only able to capture the main
movement directions of the players and does not model actions such as ball hitting. In contrast,
we employ a text action representation that specifies actions at a fine level of granularity
(i.e. which particular ball-hitting action is being performed and where the ball is sent), while
remaining interpretable and intuitive for the user. Lastly, we replace the adversarially-trained
LSTM animation module with a more capable masked diffusion transformer.

4.2.2 Game Engines

Game engines brought a revolution to game development by providing extensible and reusable
software that can be employed to create a wide range of game models [35]. Nowadays, a
range of game engines exists (Unity, Unreal, id Tech, Source, CRYENGINE, Frostbite, RAGE )
and have grown to become vast software ecosystems. Modern game engines are organized
into components including a rendering engine [93], a resource manager, a module for physics
and collision, an animation manager and, importantly, a gameplay foundation system that
models the game rules and encapsulates game AI functionalities [35]. The presence of these
components, coupled with the labor of a range of trained experts including software engineers,
artists (animators, 3D modelers, texture and lighting artists) and game developers, enables the
construction of sophisticated game models supporting low-level character control and scripted
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agent behavior. We show that monocular videos annotated with a fraction of the effort can
be used to learn models of games that support answering challenging prompts related to agent
intelligence, a capability difficult to achieve through scripted agent behavior.

4.2.3 Character Animation

Character animation is a long-standing problem in computer graphics. Several recent methods
have been proposed that produce high-quality animations. Holden et al. [44] propose a learnable
version of Motion Matching [8] that formulates character animation as retrieval of the closest
motion from a motion database and supports interaction with other characters or objects.
Other approaches model the evolution of characters using time series models conditioned on
the preceding state and control signals [45, 71, 128, 129]. Starke et al. [128] propose a model
based on a mixture of experts that controls character locomotion and object interactions, in a
follow-up work [129] they introduce local motion phases to model complex character motions
and interaction with a second character.

To produce high-quality animations the methods rely on difficult-to-acquire motion capture
data enriched with contact information [44,128,129], motion phases [128] or engineered action
labels [128, 129]. Additionally, handcrafted dataset-specific feature representations and map-
pings from user controls to such representations are often leveraged, and additional knowledge
is injected through postprocessing steps such as inverse kinematics or external physics models.
While these assumptions promote high-quality outputs, they come at a significant effort. In
contrast, our method sidesteps these requirements by not using motion capture and basing user
control on natural language that is cheaper to acquire and does not require manual engineering.
Finally, character animation methods support limited goal-driven control such as interacting
with a specific object while avoiding collisions [128]. In contrast, our method models complex
game AI tasks such as modeling strategies to defeat the opponent, which are instrumental in
answering complex user prompts.

4.2.4 Neural Rendering

Neural rendering was recently revolutionized by the advent of NeRF [89]. Several modifications
of the NeRF framework were proposed to model deformable objects [76,100,101,134,143], and
decomposed scene representations [67, 86, 91, 95, 99, 144]. In addition, several works improved
the efficiency of the original MLP representation of the radiance field [89] by employing octrees
[82,147], voxel grids [31], triplanes [11], hash tables [92], or factorized representations [13].

Our framework is most related to that of [143], since we model player deformations using an
articulated 3D prior and linear blend skinning (LBS) [73]. Differently from them, however, we
consider scenes with multiple players and apply our method to articulated objects with varied
structures for their kinematic trees. While similar to the rendering framework of [86], our
framework does not adopt computationally-inefficient MLP representations, using voxel [31] or
plane representations instead, thus does not rely on upsampler networks.

4.2.5 Sequential data generation with diffusion models

In prior work, sequential data generation was mainly addressed with auto-regressive formula-
tions combined with adversarial [68] or variational [4,28] generative models. Recently, diffusion
models have emerged as a promising solution to this problem leading to impressive results
in multiple applications such as audio [14, 61, 69, 72] and video synthesis [6, 41, 43, 123], lan-
guage modeling [22], and human motion synthesis [20, 153]. Following this methodological
direction [131], introduces a score-based diffusion model for imputing missing values in time
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series. They introduce a training procedure based on masks that simulate missing data. This
approach motivates our choice of a similar masking strategy to model the conditions entailed
by the given prompt and generate the unknown environment states. In this work, we show that
mask-based training is highly effective in modeling geometric properties together with textual
data modalities.

4.2.6 Text-based generation

In recent years, we have witnessed the emergence of works on the problem of text-based gen-
eration. Several works address the problem of generating images [107,108,111,114] and videos
with arbitrary content [41,43,46,123], and arbitrary 3D shapes [2, 49,77].

Han et al. [36] introduced a video generation framework that can incorporate various condi-
tioning modalities in addition to text, such as segmentation masks or partially occluded images.
Their approach employs a frozen RoBERTa [78] language model and a sequence masking tech-
nique. Fu et al. [32] propose an analogous framework. Our animation framework employs a
similar masking strategy, but we model text conditioning at each timestep in the sequence, use
diffusion models which operate on continuous rather than discrete data, and generate scenes
that can be rendered from arbitrary viewpoints.

More relevant to our work, several papers introduced models to generate human motion
sequences from text [3,132]. Recently, diffusion models have shown strong performance on this
task [20, 153]. In these works, sequences of human poses are generated by a diffusion model
conditioned on the output of a frozen CLIP text encoder. It is worth noting that these prior
works model only a single human, while our framework supports multiple human agents and
objects, and models their interactions with the environment.

4.3 Method

This section introduces our framework for the creation of Promptable Game Models that allows
the user to perform a range of dynamic scene editing tasks, formulated as a set of conditioning
prompts.

Similarly to game engines that maintain states of each object, render the environment using
a graphics pipeline, and have a model of the game dynamics, we divide our PGM into two
modules: a synthesis model and an animation model. The synthesis model generates an image
given the representation of the environment state. The animation model, instead, aims at
modeling the game’s dynamics, with player actions and interactions, in the high-level space of
the environment states. Actions are modeled as text, which is an expressive, yet intuitive form
of control for a wide range of tasks. The overview of our framework is provided in Fig. 4.2a.

In more detail, our model defines the state of the entire environment as the combination
of all individual object states. Consequently, each individual state is the set of the object
properties such as the position of each object in the scene, their appearance, or their pose.
Formally, the environment state at time t can be represented by st ∈ S = (Rn1 × ... × RnP ),
P properties of variable length ni defined as the union of the properties of each object. This
state representation captures all variable aspects of each individual object in the environment,
thus it can be used by the synthesis model to generate the scene.

On the other hand, the animation model predicts the evolution of an environment in time,
which is represented by the sequence of its states {s1, s2, . . . sT} = s ∈ ST , where T is the length
of the sequence. The model provides control over sequence generation with the help of user-
defined conditioning signals, or prompts, that can take two forms: explicit state manipulation
and high-level text-based editing. With respect to the former, the user could change the position
of the tennis ball at time step t, and the model would automatically adapt the position of the
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Figure 4.2: (a) Overview of our framework. The animation model produces states s based
on user-provided conditioning signals, or prompts, sc, ac that are rendered by the synthesis
model. (b) The diffusion-based animation model predicts noise εk applied to the noisy states spk
conditioned on known states sc and actions ac with the respective masks ms,ma, diffusion step
k and framerate ν. The text encoder T produces embedding for the textual actions, while the
temporal model A performs noise prediction. (c) The synthesis model renders the current state
using a composition of neural radiance fields, one for each object. A style encoder E extracts
the appearance ω of each object. Each object is represented in its canonical pose by C and
deformations of articulated objects are modeled by the deformation model D. After integration
and composition, the feature grid G is rendered to the final image using the feature enhancer
F .
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ball in other nearby states. As far as the latter is concerned, users could provide high-level text-
based values of actions such as “The player takes several steps to the right and hits the ball with
a backhand” and the model would generate the corresponding sequence of states (see Fig. 4.7).
These generic actions in the form of text are central to enabling high-level, yet fine-grained
control over the evolution of the environment. To train our framework we assume a dataset of
camera-calibrated videos, where each video frame is annotated with the corresponding states s
and actions a.

4.3.1 Synthesis Model

In this section, we describe the synthesis model that renders states from controllable viewpoints
(see Fig. 4.2c). We build our model based on a compositional NeRF [86] framework which en-
ables explicit control over the camera and represents a scene as a composition of different,
independent objects. Thanks to the independent representation of objects, each object prop-
erty is directly linked to an aspect of the respective object and can thus be easily controlled
and manipulated. The compositional NeRF framework allows different, specialized NeRF ar-
chitectures to be used for each object based on its type. To further improve quality, rather than
directly rendering RGB images with the NeRF models, we render features and make use of a
feature enhancer CNN to produce the RGB output. In order to represent objects with different
appearances, we condition the NeRF and enhancer models on the style codes extracted with
a dedicated style encoder [86]. Our model is trained using reconstruction as the main guiding
signal.

In Sec. 4.3.1-4.3.1 we illustrate the main components of the synthesis module and in Sec. 4.3.1
we describe the training procedure.

Scene Composition with NeRFs

Neural radiance fields represent a scene as a radiance field, a 5D function parametrized as
a neural network mapping the current position x and viewing direction d to density σ and
radiance c.

To allow controllable generation of complex scenes, we adopt a compositional strategy where
each object in the scene is modeled with a dedicated NeRF model [86, 91, 146]. The scene is
rendered by sampling points independently for each object and querying the respective object
radiance field Ci. The results for all objects are then merged and sorted by distance from the
camera before being integrated.

All objects are assumed to be described by a set of properties whose structure depends on
the type of object, e.g. a player, the ball, the background. We consider the following properties:

� Object location. Each object is contained within an axis-aligned bounding box b3D
i which

is defined by size and position. In the case of the ball, we additionally consider its velocity
to model blur effects (Sec. 4.3.1).

� Object style. All objects have an appearance that may vary in different sequences, thus
we introduce a style code ωi as an additional property for all objects. Since it is difficult
to define such style information a priori, we assume it to be a latent variable and learn it
jointly during training.

� Object pose. Articulated objects such as humans require additional properties to model
varying poses. We model the deformation of articulated objects as a kinematic tree with
Ji joints and consider as object properties the rotation R and translation tr parameters
associated with each joint (Sec. 4.3.1).

From now on, we drop the object index i to simplify notation.
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Style Encoder

Representing the appearance of each object is challenging since it changes based on the type
of object and illumination conditions. We treat the style ω for each object as a latent variable
that we regress using a convolutional style encoder E . Given the current video frame I with
O objects, we compute 2D bounding boxes b2D for each object. First, a set of residual blocks
is used to extract frame features which are later cropped around each object according to b2D

using RoI pooling [34]. Later, a series of convolutional layers with a final projection is used to
predict the style code ω from the cropped feature maps.

Volume Modeling for Efficient Sampling

Radiance fields are commonly parametrized using MLPs [89] but such representation requires
a separate MLP evaluation for each sampled point, making it computationally challenging to
train high-resolution models. To overcome such issue, we model the radiance field C of each
object in a canonical space using two alternative parametrizations.

For three-dimensional objects, we make use of a voxel grid parametrization [31,143]. Starting
from a fixed noise tensor V′ ∈ RF ′×H′

V ×W
′
V ×D

′
V , a series of 3D convolutions produces a voxel

V ∈ RF+1×HV ×WV ×DV containing the features and density associated to each point in the
bounded space. Here, F ′ and F represent the number of features, while HV , WV and DV

represent the size of the voxel. Given a point in the object canonical space xc, the associated
features and density σ are retrieved using trilinear sampling on V. To model the different
appearance of each object, we adopt a small MLP conditioned on the style ω to produce a
stylized feature with the help of weight demodulation [54].

For two-dimensional objects such as planar scene elements, we make use of a similar
parametrization where a fixed 2D noise tensor P′ ∈ RF ′×H′

P×W
′
P is mapped to a plane of features

P ∈ RF×HP×WP using a series of 2D convolutions. Given a ray r, we compute the intersection
point x between the plane and the ray which is used to sample P using bilinear sampling.
Similarly to the voxel case, a small MLP is used to model object appearance according to ω.
We assume planes to be fully opaque and assign a fixed density value σ to each sample. Thanks
to this representation, a single point per ray is sufficient to render the object.

Deformation Modeling

Since the radiance field C alone supports only rendering of rigid objects expressed in a canonical
space, to render articulated objects such as humans we introduce a deformation model D. Given
an articulated object, we assume its kinematic tree is known and that the transformation
[Rj|trj] from each joint j ∈ 1, ..., J to the parent joint is part of the object’s properties.
From these we can follow the kinematic tree to derive transformations [R′j|tr′j] for each joint
from the bounding box coordinate system to the canonical coordinate system. Intuitively,
these transformations represent how to map a point xb in the bounding box coordinate system
belonging to the joint j to the corresponding point xc in the canonical space.

We implement a deformation procedure based on linear blend skinning (LBS) [73] that
establishes correspondences between points in the canonical space xc and in the deformed
bounding box space xb by introducing blending weights w for each point in the canonical
space. These weights can be interpreted as the degree to which that point moves according to
the transformation associated with that joint.

xb =
J∑
j=1

wj(xc)
(
R′−1
j xc −R′−1

j tr′j
)
. (4.1)

During volumetric rendering, however, we sample points xb in the bounding box space and
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query the canonical volume in the corresponding canonical space point xc. Doing so requires
solving Eq. (4.1) for xc, which is prohibitively expensive [76]. Inspired by HumanNeRF [143],
instead of modeling LBS weights w, we introduce inverse linear blending weights wb:

wb
j(xb) =

wj(R
′
jxb + tr′j)∑J

j=1 wj(R′pxb + tr′j)
. (4.2)

such that the canonical point can be approximated as:

xc =
J∑
j=1

wb
j(xb)

(
R′jxb + tr′j

)
. (4.3)

We parametrize the function w mapping spatial locations in the canonical space to blending
weights as a neural network. Similarly to C, we employ 3D convolutions to map a fixed noise
volume W′ ∈ RF ′×H′

W×W
′
W×D

′
W to a volume of blending weights W ∈ RJ+1×HW×WW×DW , where

each channel represents the blending weights for each part, with an extra weight modeling the
background. The volume channels are normalized using softmax, so that they sum to one, and
can efficiently be queried using trilinear sampling. To facilitate convergence, we exploit the
known kinematic tree to build a prior over the blending weights that increases blending weights
in the area surrounding each limb [143].

Enhancer

NeRF models are often parametrized to output radiance c ∈ R3 and directly produce an image.
However, we find that such approach struggles to produce correct shading of the objects, with
details such as shadows being difficult to synthesize. Also, to improve the computational
efficiency of the method, we sample a limited number of points per ray that may introduce
subtle artifacts in the geometry. To address these issues, we parametrize the model C to output
features where the first three channels represent radiance and the subsequent represent learnable
features. Then, we produce a feature grid G ∈ RF×H×W and an RGB image Ĩ ∈ R3×H×W .
We introduce an enhancer network F modeled as a UNet [112] architecture interleaved with
weight demodulation layers [54] that maps G and the style codes ω to the final RGB output
Î ∈ R3×H×W .

Object-specific rendering

Our compositional approach allows the use of object-specific techniques. In particular, in the
case of tennis, we can apply dedicated procedures to enhance the rendering quality of the ball,
the racket, and the 2D user interfaces such as the scoreboards. The rendering of the tennis
ball is treated specially to render the blur that occurs in real videos in the case of fast-moving
objects. The racket can be inserted in a post-processing stage to compensate for the difficulty
of NeRFs to render thin, fast-moving objects. Finally, the UI elements are removed from the
scene since they do not behave in a 3D consistent manner. For Minecraft, we describe how the
scene skybox is modeled.
Ball Modeling Fast-moving objects may appear blurred in real video sequences. This effect
is frequent in ball objects found in sports videos and is thus desirable to model this effect. To
model them, we adopt a procedure inspired by [18], which distributes multiple rays in time to
model blur effects. We extend the object properties of the ball object to also include a velocity
vector v. Given the ball radius r and an estimate for the shutter speed tc of the camera, we can
compute in closed form the probability p that a given point in space intersects with the ball
object while the ball moves during the time the camera shutter remains open to capture the
current frame. To model blur, we assign to each point a fixed density multiplied by p. Modeling
p in closed form avoids the need to sample multiple rays in time, improving performance.
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Figure 4.3: Visualization of the quantities involved in the computation of the probability p that
the ball intersects with a certain point in space during a randomly sampled time instant in the
interval from the opening to the closing of the shutter of the camera to capture the current
frame. The leftmost and rightmost balls depict the ball position at the times the camera shutter
opens and closes respectively. For simplicity, we represent the space where the velocity vector
of the ball is aligned with the y-axis.

To compute p (see Fig. 4.3), we first use the velocity vector v to estimate the rotation Rb

that maps each point xb in the ball bounding box to a canonical space xc in which the ball
velocity vector is aligned to the positive y-axis xc = Rbxb. Then we compute the distance
traveled by the ball while the shutter remains open d = ||v||2tc. We then compute the useful
cross-section of the ball dy that can intersect with xc as the diameter of the circumference
originating from the intersection between the ball and a plane with a distance from the ball
center ry equal to the distance of xc from the y-axis:

dy =

{
2r sin

(
arccos

( ry
r

))
if ry ≤ r

0 otherwise
. (4.4)

Finally, p equals the probability that an interval with size equal to the cross-section, posi-
tioned in a random portion of space contained inside an interval of size d+ dy, that represents
the length of the space that has been touched by the ball while the shutter stays open, contains
our point xc:

p(xc) = max

(
0,min

(
min

(
dy
d
, 1

)
,
1

2
+
dy
2d
− |x

y
c |
d

))
, (4.5)

where xyc is the y-axis coordinate of xc.
Racket Modeling Modeling the scene as a composition of neural radiance fields allows appli-
cations such as the insertion of user-defined watertight 3D meshes into the scene. To do so, we
first define the 3D bounding box for the mesh. Then, we extract the signed distance function
(SDF) of the 3D mesh. To allow fast retrieval of SDF values during rendering, we sample SDF
values along an enclosing voxel grid so that subsequently they can be efficiently retrieved using
trilinear sampling. During neural rendering, when a sampled point intersects with the object’s
bounding box, we query its SDF function and assign a fixed, high density to points that fall
inside the object. For simplicity, we assume the object has a uniform appearance and assign
a fixed feature vector to such points. To attach the mesh to an articulated object, we align it
to its desired position in the object’s canonical space, select which joint the mesh should move
according to, and we modify blending weights W for the desired joint to have a high value in
the region corresponding to the mesh (see Eq. (4.2)).

We employ this technique on the Tennis dataset to manually insert rackets in the scene that
cannot be easily learned since they appear frequently blurred and have no ground truth pose
available. After the synthesis model is trained, we use this technique to insert a racket mesh
in the hand of each player and configure it to move it according to the elbow joint. Fig. 4.4
shows examples of rackets inserted in tennis scenes.

When inserting additional objects at inference time, we find the enhancer model F may
introduce artifacts at the contours of the inserted object. For this reason, we modify F with
a masking mechanism that directly uses values from the NeRF-rendered RGB image Ĩ before
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Figure 4.4: Examples of tennis scenes with and without inserted rackets.

the enhancer rather than the enhanced image Î for pixels corresponding to the inserted object
and its contour region.
2D UI Elements The presence of 2D user interfaces, such as scoreboards, in the training
frames may cause artifacts in the final outputs due to attempts of the synthesis model to model
these view-inconsistent elements [86]. To address this issue, we assume that the potential
regions where such interfaces may be present are known and we never sample training patches
that intersect with these regions. In this way, the model does not attempt to generate such UI
elements and instead models the underlying portion of the 3D scene using data from different
views.
Skybox Modeling The Minecraft background is represented as a skybox that is modeled by
extending the planar object modeling mechanism of Sec. 4.3.1. In more detail, we sample the
feature plane P according to the ray’s yaw and pitch of the current ray, which can be interpreted
as querying points on the surface of a sphere with a radius approaching infinity.

Training

We train our model using reconstruction as the main driving signal. Given a frame I and
reconstructed frame Î, we use a combination of L2 reconstruction loss and the perceptual loss
of Johnson et al. [53] as our training loss. To minimize the alterations introduced by the
enhancer and improve view consistency, we impose the same losses between I and Ĩ, the output
of the model before the feature enhancer. All losses are summed without weighting to produce
the final loss term. To minimize GPU memory consumption, instead of rendering full images,
we impose the losses on sampled image patches instead [86].

We train all the components of the synthesis model jointly using Adam [59] for 300k steps
with batch size 32. We set the learning rate to 1e − 4 and exponentially decrease it to 1e − 5
at the end of training. The framework is trained on videos with 1024x576px resolution.

4.3.2 Animation Model

In this section, we describe the animation model (see Fig. 4.2b), whose task is that of generating
sequences of states s ∈ ST according to user inputs. The animation model allows users to
specify conditioning signals, or prompts, in two forms. First, conditional signals can take
the form of values that the user wants to impose on some object properties in the sequence,
such as the player position at a certain time step. This signal is represented by a sequence
sc ∈ ST . This form of conditioning allows fine control over the sequence to generate but requires
directly specifying values of properties. Second, to allow high-level, yet granular control over
the sequence, we introduce actions in the form of text ac ∈ LA×T that specify the behavior
of each of the A actionable objects at each timestep in the sequence, where L is the set of all
strings of text. To maximize the flexibility of the framework, we consider all values in sc and ac

to be optional, thus we introduce their respective masks ms ∈ {0, 1}P×T and ma ∈ {0, 1}A×T
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that are set to 1 when the respective conditioning signal is present. We assume elements where
the mask is not set to be equal to 0. The animation model predicts sp ∈ ST conditioned on sc

and ac such that:
s = sp + sc, (4.6)

where we consider the entries in sp and sc to be mutually exclusive, i.e. an element of sp is 0 if
the corresponding conditioning signal in sc is present according to ms. Note that the prediction
of actions is not necessary, since s is sufficient for rendering.

We adopt a temporal model A based on a non-autoregressive masked transformer design
and leverage the knowledge of a pretrained language model in a text encoder T to model
action conditioning information [36]. The masked design provides support for the optional
conditioning signals and is trained using masked sequence modeling, where we sample ms and
ma according to various strategies that emulate desired inference tasks.

In Sec. 4.3.2 we define our text encoder, Sec. 4.3.2 defines the diffusion backbone, and in
Sec. 4.3.2 we describe the training procedure.

Text Encoder

We introduce a text encoder T that encodes textual actions into a sequence of fixed-size text
embeddings:

aemb = T (ac) ∈ RA×T×Nt , (4.7)

where Nt is the size of the embedding for the individual sentence. Given a textual action, we
leverage a pretrained T5 text model [106] Tenc that tokenizes the sequence and produces an
output feature for each token. Successively, a feature aggregator Tagg modeled as a transformer
encoder [137] produces the aggregated text embedding from the text model features. To retain
existing knowledge into Tenc, we keep it frozen and only train the feature aggregator Tagg.

Temporal Modeling

In this section, we introduce the temporal model A that predicts the sequence of states s
conditioned on known state values sc, action embeddings aemb, and the respective masks ms

and ma. Since only unknown state values need to be predicted, the model predicts sp and
the complete sequence of states is obtained as s = sp + sc, following Eq. (4.6). Diffusion
models have recently shown state-of-the-art performance on several tasks closely related to our
setting such as sequence modeling [131] and text-conditioned human motion generation [20,153].
Thus, we follow the DDPM [42] diffusion framework, and we frame the prediction of sp = sp0
as a progressive denoising process sp0, ..., s

p
K , where we introduce the diffusion timestep index

k ∈ 0, ..., K. The temporal model A acts as a noise estimator that predicts the Gaussian noise
εk in the noisy sequence of unknown states spk at diffusion timestep k:

εpk = A(spk|s
c, aemb,ms,ma, k). (4.8)

An illustration of the proposed diffusion model is shown in Fig. 4.2b.
We realizeA using a transformer encoder [137]. To prepare the transformer’s input sequence,

we employ linear projection layers P with separate parameters for each object property. Since
corresponding entries in spk and sc are mutually exclusive, we only consider the one that is
present as input to the transformer and we employ different projection parameters to enable
the model to easily distinguish between the two. An analogous projection is performed for aemb

and, subsequently, the projection outputs for states and actions are concatenated into a single
sequence e ∈ RP+A×T×E, which constitutes the input to the transformer. An output projection
layer with separate weights for each object property produces the prediction εpk at the original
dimensionality. To condition the model on the diffusion time-step k, we introduce a weight
demodulation layer [54] after each self-attention and feedforward block [153].
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Figure 4.5: Style swap results on the Tennis and Minecraft datasets. We produce the central
image by swapping the style code ω for the players on the leftmost image with the ones from
the rightmost image. Minecraft results are cropped for better visualization.

To model long sequences while keeping reasonable computational complexity and preserving
the ability to model long-term relationships between sequence elements, it is desirable to build
the sequences using states sampled at a low framerate. However, this strategy would not allow
the model to generate content at the original framerate and would prevent it from understanding
dynamics such as limb movements that are clear only when observing sequences sampled at high
framerates. To address this issue, we use the weight demodulation layers to further condition
our model on the sampling framerate ν to enable a progressive increase of the framerate at
inference time (see Sec. 4.5.4).

Training

To train our model, we sample a sequence s with corresponding actions a from a video in
the dataset at a uniformly sampled framerate ν. Successively, we obtain masks ms and ma

according to masking strategies we detail in Sec. 4.5.3. The sequence for training are obtained
following sp0 = s� (1−ms) and sc = s�ms, and actions as ac = a�ma, where � denotes the
Hadamard product.

We train our model by minimizing the DDPM [42] training objective:

Ek∼U(1,K),ε∼N (0,I)||εpk − εk||, (4.9)

where εpk is the noise estimated by the temporal model A according to Eq. (4.8). Note that the
loss is not applied to positions in the sequence corresponding to conditioning signals [131].

Our model is trained using the Adam [59] optimizer with a learning rate of 1e − 4, cosine
schedule, and with 10k warmup steps. We train the model for a total of 2.5M steps and a batch
size of 32. We set the length of the training sequences to T = 16. The number of diffusion
timesteps is set to K = 1000 and we adopt a linear noise schedule [42].

4.4 Applications

Our framework enables a series of applications that are unlocked by its expressive state rep-
resentation, the possibility to render it using a 3D-aware synthesis model, and the ability to
generate sequences of states with an animation model that understands the game dynamics
and can be conditioned on a wide range of signals. In the following, we demonstrate a set of
selected applications.
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Original camera Manipulated camera Manipulated camera depth

Figure 4.6: Camera manipulation results on the Tennis and Minecraft datasets. The lack of
camera translation on the Tennis dataset does not allow to capture the 3D geometry of static
objects, which is replaced by a prior [86].
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Figure 4.7: Different sequences predicted on the Tennis and Minecraft datasets starting from
the same initial state and altering the text conditioning. Our model moves players and desig-
nates shot targets using domain-specific referential language (eg. “right service box”, “no man’s
land”, “baseline”). The model supports fine-grained control over the various tennis shots using
technical terms (eg. “forehand”, “backhand”, “volley”).

65



"e player runs to the right and 
performs another backhand to the 

le side of the field"
"e player moves slightly to the le"

"e player takes steps to the right and 
sends the ball to the right side of no man's 

land with a backhand"
"e player starts moving to the le"

"e player jumps to the le and sends the 
ball to the le part of the service line with 

a backhand"

"e player jumps diagonally backwards to 
the le and waits for the ball"

Game AI Actions (Top player)

Game AI Actions (Boom player)

"e player moves forward and sends the 
ball to the right service box with a 

backhand"

"e player moves to the right for the hit 
but the game is ended"

Figure 4.8: Sequences generated by specifying actions for one of the players and letting the
model act as the game AI and take control of the opponent. The game AI successfully responds
to the actions of the player by running to the right (see top sequence) or towards the net (see
bottom sequence), following two challenging shots of the user-controlled player.

Figure 4.9: Sequences generated without any user conditioning signal. The actions of all
players are controlled by the model that acts as the game AI. In tennis, the players produce a
realistic exchange, with the bottom player advancing aggressively toward the net and the top
player defeating him with a shot along the right sideline. The Minecraft player and tennis ball
trajectories are highlighted for better visualization.

"Jump on the gold pillar"
"Run to the stairs"

+ "Jump on the gold pillar""Run to the stairs"Initial State Final State

Figure 4.10: Given an initial and a final state, we generate all the states in between. We
repeat the generation multiple times conditioning it using different actions indicating the desired
intermediate waypoints.
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Initial State

Original Losing Sequence

Winning Sequence

"e player 
does not catch 
the ball"

"e player 
does not catch 
the ball"

"e player 
does not catch 
the ball"

Figure 4.11: Given a sequence where the bottom player loses (see top), we ask the model to
modify it such that the bottom player wins instead (see bottom). To do so, we condition the
top player on the action “The player does not catch the ball”. While in the original sequence
the bottom player aims its response to the center of the field where the opponent is waiting,
the model now successfully generates a winning set of moves for the bottom player that sends
the ball along the left sideline, too far for the top player to be reached.

Our state representation is modular, where the style is one of the components. To demon-
strate style swapping capabilities, in Fig. 4.5 we swap the style of the player ω in the original
image with the one from a target image. Similarly to a traditional game engine, our synthe-
sis model renders the current state of the environment from a user-defined perspective. This
enables our PGM to perform novel view synthesis as shown in Fig. 4.6.

We now show a set of applications enabled by the animation model. In Fig. 4.7, we show
results for generating different sequences using textual actions starting from a common initial
state. Thanks to the textual action representation, it is possible to gain fine control over the
generated results and to make use of referential language.

Our animation model, however, is not limited to generating sequences given step-by-step
actions. Thanks to its understanding of the game’s dynamics, the model can tackle more
complex tasks such as modeling an opponent against which a user-controlled player can play
(see Fig. 4.8), or even controlling all players in a scene without user intervention (see Fig. 4.9),
in a way similar to a traditional game engine’s “game AI”.

The animation model also unlocks the “director’s mode”, where the user can generate
sequences by specifying prompts consisting in a desired set of high-level constraints or goals.
The model is able to reason on actions to find a solution satisfying the given constraints. As a
first example, Fig. 4.10 demonstrates results for a navigation problem, where the user specifies a
desired initial and final player position in the scene, and the model devises a path between them.
Notably, the user can also constrain the solution on intermediate waypoints by means of natural
language. As a second example, Fig. 4.11 shows that the model is capable of devising strategies
to defeat an opponent. Given an original sequence where the player commits a mistake and
loses, the model can devise which actions the player should have taken to win. Notably, these
model capabilities are learned by just observing sequences annotated with textual actions.

4.5 Evaluation

In this section, we introduce our Tennis and Minecraft datasets (Sec. 4.5.1), describe our exper-
imental protocol (Sec. 4.5.2), and perform evaluation of both the synthesis model (Sec. 4.5.5)
and the animation model (Sec. 4.5.6).
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Figure 4.12: Synthesis model qualitative results on the Tennis dataset. Compared to PE [86],
our model generates sharper players and static scene elements. Our ablation study shows
corruption of the player geometry when voxels or our deformation model are not used. When
removing our canonical plane representation, static scene elements appear blurry. When our
feature enhancer is removed, the model does not generate shadows and players lose quality.

4.5.1 Datasets

We collect two datasets to evaluate our method. Both datasets and the employed data collection
tools are publicly available. In the following, we describe their structure and the available
annotations.

Tennis dataset

We collect a dataset of broadcast tennis matches starting from the videos in [86]. The dataset
depicts matches between two professional players from major tennis tournaments, captured
with a single, static bird’s eye camera.

To enable the construction of PGMs, we collect a wide range of annotations with a combi-
nation of manual and automatic methods:

� For each frame, we perform camera calibration.

� For each of the two players, we perform tracking and collect full SMPL [79] body pa-
rameters. Note that in our work we only use a subset of the parameters: rotation and
translation associated with each joint, and the location of the root joint in the scene.

� For each player and frame, we manually annotate textual descriptions of the action being
performed. We structure captions so that each includes information on where and how
the player is moving, the particular type of tennis shot being performed, and the location
where the shot is aimed. Captions make use of technical terms to describe shot types and
field locations. In contrast to other video-text datasets that contain a single video-level [5]
or high-level action descriptions weakly aligned with video content [88], the captions in
our dataset are separate for each object and constitute a fine-grained description of the
actions taking place in the frame.
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� For the ball, we perform 3D tracking and provide its position in the scene and its velocity
vector indicating the speed and direction of movement.

We collect 7112 video sequences in 1920x1080px resolution and 25fps starting from the
videos in [86] for a total duration of 15.5h. The dataset features 1.12M fully-annotated frames
and 25.5k unique captions with 915 unique words.

We note that broadcast Tennis videos are monocular and do not feature camera movements
other than rotation, thus the dataset does not make it possible to recover the 3D geometry of
static objects [86].

Minecraft dataset

We collect a synthetic dataset from the Minecraft video game. This dataset depicts a player
performing a series of complex movements in a static Minecraft world that include walking,
sprinting, jumping, and climbing on various world structures such as platforms, pillars, stairs,
and ladders. A single, monocular camera that slowly orbits around the scene center is used
to capture the scenes. We collect a range of synthetic annotations using a game add-on we
develop starting from [110]:

� Camera calibration for each frame.

� Player rotation and translation parameters associated with each joint in the Minecraft
kinematic tree format, and the location of the root joint in the scene.

� A synthetically-generated text caption describing the action being performed by the
player. We assign varied, descriptive names to each element of the scene and build
captions that describe scene elements or directions towards which the player is moving.
Additionally, our captions capture how movement is happening i.e. by jumping, sprinting,
walking, climbing, or falling. We adopt a stochastic caption generation procedure that
generates multiple alternative captions for each frame.

A total of 61 videos are collected in 1024x576px resolution and 20fps for a total duration of
1.21h. The dataset contains 68.5k fully annotated frames and 1.24k unique captions with 117
unique words.

4.5.2 Evaluation Protocol

We evaluate the synthesis and the animation models separately, following a similar evaluation
protocol. We divide the test dataset into non-overlapping sequences of 16 frames sampled at
5fps and 4fps respectively for the Minecraft and Tennis datasets and make use of the synthesis
or animation model to reconstruct them. In the case of the synthesis model, we directly
reconstruct the video frames and compute the following metrics:

� LPIPS [154] is a standard metric for evaluating the reconstruction quality of the generated
images

� FID [40] is a widely-used metric for image generation quality

� FVD [136] is a standard metric for assessing the quality of generated videos

� Average Detection Distance (ADD) [85] measures the average distance in pixels between
the bounding box centers of ground truth bounding boxes and bounding boxes obtained
from the generated sequences through a pretrained detector [109]
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� Missing Detection Rate (MDR) [85] estimates the rate of bounding boxes that are present
in the ground truth, but that are missing in the generated videos

For the animation model, we evaluate reconstruction of the object properties. Note that
different strategies for masking affect the behavior of the model and the nature of the recon-
struction task, thus we separately evaluate different masking configurations corresponding to
different inference tasks. We compute metrics that address both the fidelity of the reconstruc-
tion and the realism of the produced sequences:

� L2 computes the fidelity of the reconstruction by measuring the distance between the
ground truth and reconstructed object properties along the sequence

� Fréchet Distance (FD) [30] measures the realism of each object property by computing the
Fréchet Distance between the distribution of real sequences of a certain object property
and of generated ones.

We select different reconstruction tasks for evaluation:

� Video prediction conditioned on actions consists in reconstructing the complete sequence
starting from the initial state while the actions are specified for all timesteps. This setting
corresponds to the evaluation setting of [86].

� Unconditioned video prediction consists in reconstructing the complete sequence starting
from the first state only.

� Opponent modeling consists in reconstructing the object properties of an unknown player,
based on the state of the other player, with actions specified only on the known player.
Good performance in this task indicates the ability to model an opponent against which
a user can play.

� Sequence completion consists in reconstructing a sequence where 8 consecutive states are
missing. No actions are specified for the missing states. Good performance in this task
indicates ability in reasoning on how it is possible to reach a certain goal state starting
from the current one.

4.5.3 Implementation and Training Details

Synthesis model architecture We model Minecraft scenes considering as objects the player,
the scene, and the background. To model Tennis scenes, we consider as separate objects the
two players, the ball, the field plane, and the vertical backplate at the end of the field. Both
players share the same canonical representation. Note that the field and backplate are modeled
as planar objects due to the lack of camera translation on the tennis dataset, which does not
make it possible to reconstruct the geometry of static objects [86].

For each ray, we uniformly sample 32 points for players, 16 for the ball, 48 for the Minecraft
scene, and 1 for all remaining objects that are modeled as planes. We do not employ hierarchical
sampling, which we empirically found not to improve results. A patch size of 180x180px and
of 128x128px are employed respectively for the Tennis and Minecraft datasets.

We model the initial blocks of the style encoder E as the first two residual blocks of a
pretrained ResNet 18 [38]. To prevent players from being modeled as part of the background,
we always sample images in pairs from each video and randomly swap the style codes ω of
corresponding objects [86].

To represent the player canonical radiance fields, we use a voxel V with F = 64 features
and HV = WV = DV = 32. Deformations are represented using blending weights W with
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HW = WW = DW = 32. For the Minecraft scene, the size of the voxel V is increased to
HV = WV = DV = 128. The Minecraft skybox is represented with feature planes P with
F = 64 features and size HP = WP = 256. Due to their increased complexity and variety of
styles, in the Tennis dataset feature planes P with F = 512 features are adopted. The MLPs
performing stylization of the canonical field features are modeled using 2 layers with a hidden
dimension of 64, with a final number of output features F = 19, where the first 3 channels
represent radiance.
Animation model architecture For the text encoder, we model Tenc as a frozen T5-Large
[106] model and Tagg as a transformer encoder [137] with 4 layers, 8 heads, and a feature size of
1024. For each sequence, the output aemb of T is the transformer encoder output corresponding
to the position of the end-of-sentence token in the input sequence. We experimented with mean
pooling and a learnable class token with comparable results. Consistently with [114], we found
alternative choices for Tenc (T5-Small, T5-Base [106] and the CLIP text encoder [105]) to
underperform T5-Large.

For the temporal model A, we employ a transformer encoder with 12 layers, 12 heads, and
768 features. To favor generalization to sequences of different lengths at inference time, we
adopt relative positional encodings [118] that specify positional encodings based on the relative
distance in the sequence between sequence elements. We produce embeddings for the diffusion
timestep k and framerate ν using sinusoidal position encodings [137]. Additionally, to enable
the model to better distinguish between noisy sequence entries and conditioning signals, we
find it beneficial to condition also on ms and ma using the same weight demodulation layer.

The temporal model receives a flattened sequence of object properties grouped and encoded
as follows: the position of objects as the bounding box center point; the player poses ex-
pressed with joint translations and rotations separately, with rotations expressed in axis-angle
representation, which we find to produce more realistic animations with respect to the 6D repre-
sentation of [157]; the ball speed vector expressed as its orientation in axis-angle representation
and norm. Separating positions from joint translations and rotations has the practical implica-
tion that these properties can be independently used as conditioning signals during inference.
This enables applications such as generating realistic joint rotations and translations given a
sequence of object positions in time describing the object movement trajectory. We assume
style to remain constant in the sequence, thus we do not include it as input to the model.
Synthesis model training We employ a reduced learning rate of 1e−5 for the 3D CNNs that
model the canonical radiance field voxels V and blending weights W that we find important
to improve the learned geometry and avoid artifacts such as holes.

We train our full model on 8 A100 40GB GPUs for 4 days and 2 days respectively on the
tennis and Minecraft datasets. We train the reduced version of our model (Ours Small) on 4
A100 40GB GPUs for 3 days and 2 days respectively for the Tennis and Minecraft datasets.
Animation model training We create masks ms and ma by randomly selecting one of the
following masking strategies: (i) randomly mask each sequence element with a probability 0.25;
(ii) randomly mask each sequence element with a probability 0.5; (iii) mask all sequence ele-
ments corresponding to a block of consecutive timesteps of random length; (iv) the complement
of (iii); (v) mask all sequence elements corresponding to the last timesteps of the sequence; (vi)
mask all sequence elements corresponding to a randomly chosen set of object properties.

With probability 0.5, we set ma = 1, excluding actions from the masking operation, so that
the model can learn to solve (ii), (iii), (iv) also in the scenario where text guidance is provided.
We design the masking strategies to mimic masking configurations that are relevant to infer-
ence problems such as autoregressive generation (v), unconditional generation (vi), generating
opponent responses to user actions (vi), sequence inpainting (iii), sequence outpainting (iv) and
framerate increase (iii).

We train our full model on 8 A100 40GB GPUs for 15 days and 10 days respectively on the
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tennis and Minecraft datasets. We train the reduced version of our model (Ours Small) on 2
A100 40GB GPUs for 6 days and 4 days respectively for the Tennis and Minecraft datasets.

4.5.4 Inference Details

Inference Speed Our synthesis model renders images at 2.96fps over a single A100 GPU. We
can parallelize inference by generating batches of 8 consecutive frames on separate GPUs for
23.7fps. The animation model runs at 1.08fps using 1000 diffusion sampling timesteps. Meng et
al. [87] show that a reduction to 16 timesteps is possible with no or minimal loss in quality for
a projected performance of 67.5fps. Hence, we believe our framework can be made real-time,
which is a scope for future works.
Animation Model Inference Details At inference time, the user is presented with a fully-
masked, empty sequence sc = 0, ms = 0, ac = “”, ma = 0. Any object property can be specified
as a conditioning signal in sc and text action descriptions for any sequence timesteps can be
provided in ac, with masks updated accordingly. The desired framerate ν is also specified.

The text encoder T produces text embeddings aemb as in Eq. (4.7). Successively, the reverse
process is started at diffusion time k = K, with spK sampled from the normal distribution. The
DDPM sampler [42] queries the temporal model according to Eq. (4.8) to progressively denoise
spk and obtain the predicted sequence sp = sp0. The final sequence is obtained as s = sp + sc,
following Eq. (4.6).
High Framerate Generation To produce sequences at the dataset framerate, we devise a
two-stage sampling procedure designed to prevent an excessive increase in the sequence length.
In the first stage, we sample the desired sequence at a low framerate ν1. In the second stage,
we exploit the masking mechanism and framerate conditioning to increase the framerate and,
consequently, the length of the generated sequence. After the first stage, we consider a higher
framerate ν2 and extend the sampled sequence s with new states between existing ones, that we
call keyframes, until the sequence length corresponding to ν2 is reached. This sequence consti-
tutes the new sc. Any previous action conditioning is copied in a new ac in the corresponding
keyframe locations. Masks are updated to be 1 in the position of the keyframes and 0 elsewhere.
The sampling process is then repeated with the new conditioning signals and a sequence s is
produced at the final framerate ν2. To avoid an explosion in the length of the sequence, we
exploit keyframes to divide the sequence into shorter chunks beginning and terminating at a
keyframe, and sampling is performed separately on each chunk.

4.5.5 Synthesis Model Evaluation

In this section, we evaluate the performance of the synthesis model.

Comparison to Baselines

We evaluate our method against Playable Environments (PE) [86], the work most related to
ours in that it builds a controllable 3D environment representation that is rendered with a
compositional NeRF model where the position of each object is given and pose parameters are
treated as a latent variable. Since the original method supports only outputs at 512x288px
resolution, we produce baselines trained at both 512x288px and 1024x576px resolution which
we name PE and PE+ respectively. For a fair comparison, we also introduce in the baselines
our same mechanism for representing ball blur and train a variant of our model using the same
amount of computational resources as the baselines (Ours Small).

Results of the comparison are shown in Tab. 4.1, while qualitative results are shown in
Fig. 4.12. Our method scores best in terms of LPIPS, ADD and MDR. Compared to PE+, our
method produces significantly better FID and FVD scores. As shown in Fig. 4.12, PE and PE+
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Tennis LPIPS↓ FID↓ FVD↓ ADD↓ MDR↓

PE† [86] 0.188 11.5 349 3.74 0.200
PE+ [86] 0.232 40.4 2432 132.3 49.7

w/o enhancer F 0.167 15.6 570 3.02 0.0728
w/o explicit deformation in D 0.156 13.3 524 3.10 0.0587
w/o planes in C 0.241 30.4 1064 2.94 0.0611
w/o voxels in C 0.170 17.1 757 3.03 0.0399
w/o our encoder E 0.174 15.0 600 3.18 0.0564

Ours Small 0.156 13.4 523 2.88 0.0470
Ours 0.152 12.8 516 2.88 0.0423

Minecraft LPIPS↓ FID↓ FVD↓ ADD↓ MDR↓

PE† [86] 0.0235 13.9 21.5 5.77 0.0412
PE+ [86] 0.0238 15.5 51.7 120.6 0.939

Ours Small 0.00996 3.56 8.83 2.02 0.0529
Ours 0.00814 2.81 7.08 1.98 0.0508

Table 4.1: Comparison with baselines and ablation of the synthesis model. MDR in %, ADD in
pixels. Note that FID and FVD are computed on images downscaled to the feature extractor
training resolution, thus blurriness in the PE baseline caused by its reduced resolution is not
captured by these metrics. LPIPS correctly reflects lack of sharpness in the PE results (see
Fig. 4.12). † denotes output in 512x288px rather than 1024x576px resolution.

produce checkerboard artifacts that are particularly noticeable on static scene elements such as
judge stands, while our method produces sharp details. We attribute this difference to our ray
sampling scheme and feature enhancer design that, in contrast to PE, do not sample rays at low
resolution and perform upsampling, but rather directly operate on high resolution. In addition,
thanks to our deformation and canonical space modeling strategies, and higher resolution, our
method produces more detailed players with respect to PE, where they frequently appear with
missing limbs and blurred clothing. Finally, our model produces a realistic ball, while PE
struggles to correctly model small objects, presumably due to its upsampling strategy that
causes rays to be sampled more sparsely and thus do not intersect with the ball frequently
enough to correctly render its blur effect.

Ablation

To validate our design choices, we produce several variations of our method, each produced by
removing one of our proposed architectural elements: we remove the enhancer F and directly
consider Ĩ as our output; we remove the explicit deformation modeling procedure in D of
Sec. 4.3.1 and substitute it with an MLP directly predicting the deformation using a learnable
pose code as in [86, 134]; we remove the plane-based canonical volume representation in C for
planar objects and use an MLP instead; we remove the voxel-based volume representation in
C and use an MLP instead; we substitute our style encoder E with an ad-hoc encoder for each
object in the scene, following [86].

We perform the ablation on the Tennis dataset and show results in Tab. 4.1 and Fig. 4.12.
To reduce computation, we train the ablation models using the same hyperparameters as the
“Ours Small” model.

When removing the enhancer F , our model produces players with fewer details and does
not generate shadow effects below players (see first row in Fig. 4.12). When our deformation
modeling procedure is not employed, the method produces comparable LPIPS, FID, and FVD
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scores, but an analysis of the qualitatives shows that players may appear with corrupted limbs
(see last row in Fig. 4.12). In addition, the use of such learned pose representation would reduce
the controllability of the synthesis model with respect to the use of an explicit kinematic tree.
When plane-based or voxel-based canonical modeling is removed, we notice artifacts in the
static scene elements, such as corrupted logos, and in the players, such as detached or doubled
limbs. Finally, when we replace our style encoder design with the one of [86], we notice fewer
details in scene elements.

4.5.6 Animation Model Evaluation

In this section, we evaluate the performance of the animation model.

Comparison to Baselines

Similarly to the synthesis model, we compare our animation model against the one of Playable
Environments (PE) [86], the most related to our work since it operates on a similar environment
representation. While the baseline jointly learns discrete actions and generates sequences con-
ditioned on such actions, we assume the text action representations to be available in our task,
so, for fairness of evaluation, we introduce our same text encoder T in the baseline to make
use of the action information. To reduce computation, we perform the comparison using half
of the computational resources and a reduced training schedule, consequently, we also retrain
our model, producing a reduced variant (Ours Small). To render results we always make use
of our synthesis model.

We show results for all inference tasks in Tab. 4.2. Our method outperforms the baseline
in all evaluation tasks according to both L2 and FD metrics. From the qualitative results in
Fig. 4.13 and in accordance with the FD metrics, we notice that our method produces more
realistic player poses with respect to PE that tends to keep player poses close to the average
pose and to slide the players on the scene. We attribute this difference to the use of the diffusion
framework in our method. Consider the example of generating a player walking forward. It is
equally probable that the player moves the left or right leg first. In the case of a reconstruction-
based training objective such as the main one of PE, the model is encouraged to produce an
average leg movement result that consists in not moving the legs at all. On the other hand,
diffusion models learn the multimodal distributions of the motion, thus they are able to sample
one of the possible motions without averaging its predictions.

Ablation

To validate this hypothesis and demonstrate the benefits of our diffusion formulation, we pro-
duce two variations of our method. The first substitutes the diffusion framework with a re-
construction objective, keeping the transformer-based architecture unaltered. The second in
addition to using the reconstruction objective models A using an LSTM, similarly to the PE
baseline. Differently from the PE baseline, however, this variant does not make use of adver-
sarial training and employs a single LSTM model for all objects, rather than a separate model
for each.

We show results in Tab. 4.2. Our model consistently outperforms the baselines in terms
of FD, showing a better ability to capture realistic sequences. Consistently with our assess-
ment in Sec. 4.5.6, Fig. 4.13 shows that our method trained with a reconstruction objective
produces player movement with noticeable artifacts analogously to PE, validating the choice of
the diffusion framework.
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Figure 4.13: Qualitatives results on the Tennis and Minecraft dataset. Sequences are produced
in a video prediction setting that uses the first frame object properties and all actions as
conditioning. The location of players is consistently closer to the ground truth for our method.
Our method captures the multimodal distribution of player poses and generates vivid limb
movements, while the baselines produce poses as the average of the distribution, resulting in
reduced limb movement and tilted root joints
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Robustness to prompt variations

We perform a study on the Tennis dataset to evaluate the capability of our animation model to
support diverse language prompts. We randomly sampled 50 prompts from our tennis dataset
and asked ChatGPT to “Produce a semantically equivalent reformulation of the prompt <prompt
>”. The sentence similarity between original and reformulated prompts measured by Jaccard
similarity on their 3-grams is 0.390, while it is 0.203 for random dataset prompt pairs, indicating
high diversity. As an example, the prompt “the player stops and quickly runs to the right and
hits the ball with a backhand towards the center of no man’s land” is reformulated to “The
player comes to a stop and rapidly sprints towards the right before executing a backhand stroke
that directs the ball towards the center of no man’s land”, and prompt “the player prepares to hit
the ball but stops, returning ball hits the net” is transformed to “The player readies themselves
to strike the ball, but abruptly halts and as a result, the returned ball collides with the net”.

Successively, we run an AMT user study. Users are shown a video and two prompts (the
true prompt used to produce the video, and a random negative prompt) and they are asked
to recognize which of two prompts is the one used to produce a certain video. The average
accuracy over 500 responses is 74.4% and 77.1% for videos produced using reformulated and
dataset prompts respectively, indicating capability of the model to generate videos matching
prompts independently from the form of the used language.

The model trained on Minecraft allows for limited prompt variation due to the synthetic
nature of the training language whose limited variation does not enable the model to learn
generalization capabilities to different sentence structures as the ones acquired for Tennis. This
limitation could be addressed by improving the synthetic language generation process, which
we leave as future work.

Animation Model Masking Strategies Ablation

In Tab. 4.3, we ablate the contribution of the animation model training masking strategies
(see Sec. 4.5.3) on the Tennis dataset. We group the masking strategies in four groups of
semantically-related strategies: “Random” (i + ii) which masks random sequence elements,
“Block” (iii + iv) which masks blocks of contiguous timesteps, “Last” (v) which masks the last
timesteps of the sequence, “Opponent” (vi) that masks a randomly chosen set of properties in
the whole sequence.

The use of only the “Random” masking strategy results in the worst performance as the
model only learns to interpolate between adjacent values and fails on tasks requiring long
predictions. Adding the “Block” strategy enables the model to learn how to interpolate between
values separated by larger gaps, producing good results in the sequence completion task. The
addition of the “Last” training strategy enables the model to learn how to produce future
states from a given initial one, improving the results on both video prediction tasks. The
“Opponent” masking strategy enables the model to recover properties that are missing in the
whole sequence, enabling best performance on the opponent modeling task. Finally, combining
all masking strategies enables the model to jointly learn these capabilities, producing the best
results.

Animation Model Dataset Size Ablation

In Tab. 4.4, we analyze the performance of the animation model as a function of the available
portion of the training data on the Tennis dataset. The model performance gradually reduces
as the amount of training data shrinks. When the amount of available training data falls
below 60% of the original dataset size, the model overfits to the training data, yielding poor
performance.
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4.6 Conclusions

In this chapter, we demonstrate the feasibility of learning game models able to answer challeng-
ing user prompts. We introduce a two-stage framework for the creation of promptable game
models. The first stage is comprised of a compositional NeRF representation that renders
states of environments to frames. To render high-quality videos we build efficient representa-
tions of radiance fields that allow direct rendering of high-resolution frames without the need
for upsampling networks. The second stage is responsible for learning the dynamics of the
environment that evolve states in time. A masked diffusion transformer is introduced that gen-
erates sequences of states based on user-provided conditioning signals, or prompts, composed
of desired states of the environment and textual descriptions of actions.

We show that textual action representations are critical for unlocking fine-grained control
over the generation process, and enabling compelling constraint- and goal-driven generation
applications. While the acquisition of these textual representations entails annotation efforts,
the associated collections costs remains orders of magnitude smaller with respect to the costs
associated with traditional game development and recent image and video captioning methods
[74,75,150,155,158] are a promising avenue to automate this task. The framework is evaluated
on a real-world tennis dataset and a synthetic minecraft dataset showcasing complex actions
and agent behavior.

Our method obtains state-of-the-art results and allows the generation of videos given com-
plex high-level goals, a capability not demonstrated in previous works. These results, jointly
with two richly-annotated text-video datasets, pave the way towards learning promptable mod-
els for complex, real-world scenes.
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Tennis Minecraft

Position Root angle Joints 3D Position Root angle Joints 3D
L2↓ FD↓ L2↓ FD↓ L2↓ FD↓ L2↓ FD↓ L2↓ FD↓ L2↓ FD↓

Action conditioned video prediction

PE 3.117 87.688 1.182 12.627 0.277 30.711 2.720 90.904 1.822 23.949 0.365 47.956
Rec. LSTM 1.753 7.413 1.100 8.416 0.234 18.455 2.623 54.927 2.040 62.363 0.579 118.592
Rec. Transf. 1.183 2.996 0.913 7.566 0.212 15.976 2.798 76.582 1.794 52.677 0.506 100.731
Ours Small 1.244 1.071 1.187 0.601 0.178 1.570 0.533 2.494 0.901 5.624 0.145 4.083
Ours 1.064 0.846 0.961 0.421 0.153 1.049 0.523 2.582 0.749 4.578 0.135 3.794

Unconditional video prediction

PE 3.973 146.019 1.604 30.448 0.437 78.835 3.994 197.434 2.111 59.112 0.370 46.665
Rec. LSTM 2.064 11.283 1.224 14.860 0.264 28.736 2.850 68.915 1.999 69.886 0.581 121.187
Rec. Transf. 1.649 10.514 1.123 15.648 0.251 27.258 2.834 76.780 1.795 50.871 0.480 87.584
Ours Small 2.352 2.271 1.455 0.781 0.213 1.827 2.341 9.795 1.814 8.969 0.199 4.422
Ours 1.925 1.377 1.277 0.518 0.192 1.261 2.330 11.032 1.685 5.648 0.197 4.385

Sequence completion

PE 4.353 641.976 0.903 13.955 0.251 62.981 1.504 29.582 0.926 10.634 0.197 24.096
Rec. LSTM 1.581 5.507 0.697 2.517 0.143 10.443 1.401 18.044 1.066 17.664 0.309 59.750
Rec. Transf. 1.169 3.735 0.631 2.514 0.138 10.519 0.830 6.232 0.700 4.822 0.170 21.615
Ours Small 1.578 2.243 0.832 0.560 0.114 0.851 0.379 1.095 0.516 3.456 0.077 2.265
Ours 1.153 1.349 0.703 0.288 0.101 0.558 0.343 0.830 0.433 2.022 0.065 1.899

Opponent modeling

PE 1.720 40.766 0.814 6.783 0.246 40.441
Rec. LSTM 0.990 4.809 0.606 2.411 0.132 9.305
Rec. Transf. 0.294 0.364 0.403 1.623 0.100 5.628
Ours Small 0.344 0.187 0.581 0.301 0.088 0.765
Ours 0.252 0.143 0.437 0.198 0.069 0.478

Average

PE 3.291 229.112 1.126 15.953 0.303 53.242 2.739 105.973 1.620 31.232 0.311 39.572
Rec. LSTM 1.597 7.253 0.907 7.051 0.193 16.735 2.292 47.296 1.702 49.971 0.489 99.843
Rec. Transf. 1.074 4.402 0.767 6.838 0.175 14.845 2.154 53.198 1.430 36.123 0.385 69.977
Ours Small 1.380 1.443 1.014 0.560 0.148 1.253 1.084 4.461 1.077 6.016 0.140 3.590
Ours 1.099 0.929 0.844 0.356 0.129 0.836 1.065 4.815 0.956 4.083 0.132 3.360

Table 4.2: Animation model comparison with baselines and ablation on the Tennis and
Minecraft datasets. Position and Joints 3D in meters, Root angle in axis-angle representa-
tion.
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Table 4.3: Ablation on the Tennis dataset of different training masking strategies of Sec. 4.5.3:
“Random” (i + ii), “Block” (iii + iv), “Last” (v), “Opponent” (vi). Position and Joints 3D in
meters, Root angle in axis-angle representation.

Position Root angle Joints 3D
L2↓ FD↓ L2↓ FD↓ L2↓ FD↓

Action conditioned video prediction

Random 3.350 78.825 1.703 5.455 0.241 6.242
Random + Block 1.814 1.906 1.458 1.069 0.203 2.033
Random + Last 1.335 1.005 1.241 0.783 0.186 1.764
Random + Opponent 1.355 1.279 1.225 0.687 0.185 1.681
All 1.244 1.071 1.187 0.601 0.178 1.570

Unconditional video prediction

Random 4.583 227.295 1.663 5.814 0.287 12.649
Random + Block 2.621 3.995 1.569 0.988 0.221 2.371
Random + Last 2.229 2.296 1.503 0.960 0.215 2.099
Random + Opponent 3.358 13.365 1.661 0.992 0.238 2.364
All 2.352 2.271 1.455 0.781 0.213 1.827

Opponent modeling

Random 2.246 12.463 0.882 1.040 0.125 1.411
Random + Block 2.031 4.768 0.901 0.333 0.123 0.934
Random + Last 1.965 4.623 0.861 0.631 0.125 1.143
Random + Opponent 1.486 1.191 0.823 0.359 0.115 0.755
All 1.578 2.243 0.832 0.560 0.114 0.851

Sequence completion

Random 0.581 2.030 0.670 0.503 0.104 1.199
Random + Block 0.364 0.223 0.590 0.331 0.090 0.825
Random + Last 0.414 0.387 0.614 0.350 0.093 0.904
Random + Opponent 0.494 0.608 0.659 0.403 0.096 0.896
All 0.344 0.187 0.581 0.301 0.088 0.765

Average

Random 2.690 80.153 1.229 3.203 0.189 5.375
Random + Block 1.707 2.723 1.129 0.680 0.159 1.541
Random + Last 1.486 2.078 1.055 0.681 0.155 1.477
Random + Opponent 1.673 4.111 1.092 0.610 0.158 1.424
All 1.380 1.443 1.014 0.560 0.148 1.253
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Table 4.4: Animation model performance as a function of the dataset size on the Tennis dataset.
Position and Joints 3D in meters, Root angle in axis-angle representation.

Position Root angle Joints 3D
L2↓ FD↓ L2↓ FD↓ L2↓ FD↓

Action conditioned video prediction

20% 4.237 425.180 1.645 10.917 0.251 14.293
40% 3.723 244.390 1.543 6.925 0.236 9.027
60% 1.331 1.403 1.236 0.954 0.189 1.869
80% 1.283 1.024 1.207 0.714 0.183 1.607
100% 1.244 1.071 1.187 0.601 0.178 1.570

Unconditional video prediction

20% 4.391 445.758 1.736 12.150 0.260 15.167
40% 4.287 323.800 1.701 6.922 0.254 10.196
60% 2.446 4.059 1.537 1.216 0.222 2.257
80% 2.402 2.475 1.510 0.955 0.216 1.892
100% 2.352 2.271 1.455 0.781 0.213 1.827

Opponent modeling

20% 3.829 321.502 0.993 2.212 0.130 2.469
40% 3.086 170.115 0.937 1.771 0.129 1.979
60% 1.673 2.094 0.837 0.416 0.119 0.862
80% 1.550 1.606 0.817 0.450 0.114 0.749
100% 1.578 2.243 0.832 0.560 0.114 0.851

Sequence completion

20% 1.456 71.621 0.738 2.809 0.118 3.492
40% 1.184 37.588 0.706 1.808 0.111 2.633
60% 0.370 0.228 0.608 0.291 0.094 0.853
80% 0.372 0.237 0.589 0.231 0.090 0.773
100% 0.344 0.187 0.581 0.301 0.088 0.765

Average

20% 3.478 316.015 1.278 7.022 0.190 8.855
40% 3.070 193.973 1.222 4.357 0.183 5.959
60% 1.455 1.946 1.054 0.719 0.156 1.460
80% 1.402 1.335 1.031 0.588 0.151 1.255
100% 1.380 1.443 1.014 0.560 0.148 1.253
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Chapter 5

Discussion

In this chapter, we conclude this doctoral thesis by highlighting applications of the presented
methodologies (see Sec. 5.1), ethical considerations regarding the proposed generative frame-
works (see Sec. 5.2), discussing their limitations (see Sec. 5.3), highlighting future research
directions (see Sec. 5.4) and giving final remarks (see Sec. 5.5).

5.1 Applications

In this thesis, we discuss a range of techniques that enable the creation of playable experiences
from a set of annotated videos. We note, however, that the applicability of such techniques
spans several areas beyond videogame creation.

Thanks to the fine grained control on the generation process, the presented techniques are
amenable to use as video editing methods for complex scenes, enabling changes in movement,
action, style and identities of its characters. Such capabilities find relevance in diverse domains,
including the tactical analysis of sports matches. In this context, experts engage in match
analysis by superimposing player movement patterns and shot trajectories onto displayed video
frames. This visual representation aims to showcase potential alternative courses of action to
the audience. The proposed techniques offer an additional dimension to this process, allowing
the expert to simulate the proposed course of action and generate an associated video. This
not only validates the proposed analysis but also enhances the engagement for the audience.

The animation module presented in Chapter 4 learns the dynamics complex environments
with multiple interacting agents. Most interestingly, not only it enables its simulation from a
given initial state, but enables the explanation of observed outcomes, such as deriving possible
ways in which the modeled system can end in a given state. These capabilities open up venues
of application in the realm of simulation, helping designers understanding the dynamics of their
modeled systems.

5.2 Ethical Considerations

The techniques described in this doctoral thesis belong to the realm of video editing method-
ologies. These methodologies, along with those falling under the broader category of generative
AI, are responsible for a paradigm shift in the landscape of multimedia content creation. They
have rendered it feasible for individuals lacking professional expertise in multimedia to create
sophisticated special effects and attain realistic alterations in multimedia content. This democ-
ratization of multimedia production empowers ordinary users with formidable tools to manifest
their creativity. However, it is imperative to recognize that these transformative capabilities
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may also be harnessed for nafarious purposes, such as the manipulation of video content to
deceive or disseminate malicious messages.

The methodologies outlined in this thesis possess inherent attributes that provide safeguards
against their malevolent applications. The proposed CADDY framework for Playable Video
Generation operates on scenes containing a single agent and no camera movement. Further-
more, it necessitates the utilization of a comprehensive dataset composed of multiple videos for
training. This requirements restrict the applicability of the method, rendering it unsuitable for
the manipulation of scenes with limited source footage. Additionally, the system provides users
with a finite set of discrete actions, which, in turn, renders it challenging for them to achieve a
level of control sufficient to perpetrate deception.

Conversely, the design of Playable Environments and Promptable Game Models permits
sophisticated control over the scene contents and visuals, but assumes the availability of multiple
camera-calibrated observations of a single scene in the training dataset. Furthermore, it requires
that the desired edit has been observed at least once in the training data. These prerequisites
serve as a safeguard against the illicit application of the method to tamper a single video, where
the volume of available data would be inadequate and the desired alterations unlikely to have
been previously depicted.

In view of the rapid and pervasive proliferation of generative AI techniques, it is of pri-
mary importance to foster public awareness and education about such generative techniques.
Moreover, the development of automated techniques for the detection of artificially generated
content constitutes an important line of defense against the risks associated with malicious or
deceptive contents.

5.3 Limitations

Within the scope of this doctoral thesis, we have presented three methodologies that facilitate
the creation of interactive game-like experiences, each of which introduces additional dimensions
of control and seeks to address shortcomings present in preceding approaches. Notwithstanding
the merits of our most recent work, Promptable Game Models, which showcases the potential
for generating immersive interactive experiences with a granular level of control and embedded
“game AI” capabilities, certain aspects of this framework continue to pose a limitation.

The steady increase in output resolution, which has quadrupled since the inception of
Playable Video Generation, in conjunction with the incorporation of 3D scene representations,
has led to a significant escalation in computational demands, despite careful model optimiza-
tion. Ensuring the possibility of real-time performance is an important aspect of playability,
and the ongoing enhancement of neural radiance fields and the refinement of diffusion model
distillation techniques present promising avenues to enhance the overall performance of the
model.

Our proposed frameworks are constrained in their ability to generate actions that lie sub-
stantially outside the bounds of the training data distribution. For instance, they are incapable
of generating actions as executing a backflip or performing a push-up, which have not been
previously demonstrated in the training dataset. Consequently, the creative applications of
these frameworks are limited to interpolations between known concepts. Moreover, since the
models are conditioned on datasets exclusively containing plausible actions, they exhibit unde-
fined behavior when confronted with actions that are implausible. This includes scenarios such
as attempting to strike a ball while moving in the opposite direction of the intercept path or
leaping onto a pillar that lies to far for a plausible jump. In such instances, our observations re-
veal that the model typically neglects the implausible components of the command, generating
instead the nearest plausible alternative command or, on less frequent occasions, manifesting
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implausible outcomes, such as improbable long-distance jumps.
Playable Environments and Promptable Game Models assume a static scene geometry, thus

precluding the generation of video content in unseen environments. This inherent constraint
restricts the applicability of these models to situations in which multiple video sources are
available, collectively depicting a scene with unchanging geometry.

Lastly, each of our proposed frameworks has escalated the need for annotation. While
Playable Video Generation operates within a completely unsupervised framework, Playable
Environments introduces the prerequisites of camera calibration and localization of objects
within the scene. Furthermore, Promptable Game Models necessitate textual action annota-
tions. Although the availability of such annotations has markedly enriched the capabilities of
our models, their acquisition poses a challenge to the widespread adoption of our methodology
across diverse environments. To mitigate this issue, there is potential to employ automated
methods for generating various types of annotations, with the most challenging being the pro-
vision of textual action annotations. Notably, the recent advancements in image and video
captioning techniques [74, 75, 156, 159] offer promise in the creation of automated dataset cap-
tioning pipelines.

5.4 Future Work

This thesis has delved into methodologies for the generation of interactive experiences resem-
bling video games. A common thread that unites the various proposed methods is the search
for fine-grained control within the video generation process and precision in simulating 3D en-
vironments—attributes that fundamentally underpin playability. Notably, the video generation
techniques presented in this work are tailored to a single environment.

In contrast, recent advancements in diffusion-based video generation methods [6, 41, 123]
have showcased an impressive capacity to generate video content spanning a wide spectrum of
scenes via text conditioning. However, these approaches often lack the granularity of control
and the precision required to accurately simulate the environment.

Bringing together the capability to control video generation in a playable manner and the
ability to recreate diverse 3D environments within a framework capable of generating an exten-
sive array of video content represents an promising direction that could enable a range of signif-
icant applications such as the fine-grained editing of real-world footage. Notably, recently pro-
posed methods for constructing radiance fields from real-world videos without the need for cam-
era calibration [124], and the advent of automated video captioning techniques [74,75,156,159],
hold promise in establishing a large-scale dataset of videos enriched with 3D and textual an-
notations. This dataset could serve as the foundational resource for training models that can
integrate these capabilities—a promising avenue for future research.

5.5 Conclusions

This doctoral thesis has been dedicated to the introduction and exploration of methodologies
for the development of playable video generation models. The novel proposed video generation
approaches are designed to learn how to simulate environments depicted in observed datasets,
and the actions of their agents. In doing so, these models allow the generation of videos with a
high degree of user control, akin to the interaction experienced by users in the realm of video
games.

The development of such techniques begins with the formulation of Playable Video Gen-
eration, a novel formulation that seeks to address the problem in a completely unsupervised
manner. This problem consists in learning a video generator capable of being manipulated
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through a set of discrete actions, using an unlabeled dataset of videos as its foundation. To
this end, we introduce a novel framework for playable video generation named Clustering for
Action Decomposition and Discovery (CADDY). This framework relies on a novel action rep-
resentation that captures both high-level discrete action components and low-level continuous
action variations. The efficacy of CADDY is demonstrated on diverse datasets, encompass-
ing real-world tennis and robotics data, as well as synthetic Atari video game datasets. In
each instance, our proposed framework outperforms the state-of-the-art, yielding high-quality
videos.

Recognizing the inherently three-dimensional nature of the environments modeled by CADDY
and the limitations of representing camera movement within two-dimensional frameworks, we
advance our exploration to Playable Environments. This novel concept extends the founda-
tional principles of Playable Video Generation into the three-dimensional realm. Within this
framework, we introduce a methodology for crafting playable environments that accommodate
multiple deformable agents. Users are given granular control over the agents, the stylistic at-
tributes of objects within the environment, and explicit control over the camera perspective.
Our framework relies on a compositional neural radiance field formulation that independently
models each object in the scene, enabling the rendering of the environment state from a user-
controlled viewpoint. To establish a benchmark for future research, we introduce two datasets,
featuring a synthetic Minecraft dataset and a real-world tennis dataset annotated with camera-
calibrated videos and 2D object bounding boxes. Our results show that the proposed method
surpasses the previous state-of-the-art.

In the final chapter, we introduce Promptable Game Models, which integrate natural lan-
guage as a means of enabling fine-grained control over the video generation process. The model
also demonstrates an ability to simulate intelligent agents that respond to natural language
instructions and exhibit intelligent behaviors consistent with their own “game AI”. This novel
framework leverages a masked diffusion transformer, enabling non-autoregressive generation of
sequences of environment states that fulfill a set of user-defined conditions expressed through
prompts, which encompass both natural language actions for the agents and desired environ-
ment states. Moreover, we introduce efficient neural radiance field representations that enable
the rendering of high-resolution videos without the need for upsampling, a development crucial
for overcoming checkerboard artifacts and enhancing the modeling of smaller objects, critical
aspects of existing methods. To foster future research in this domain, we release two datasets
enriched with camera calibration data, 3D object poses, and textual action annotations. Our
results demonstrate the superiority of our proposed framework in terms of visual fidelity and
the capabilities it affords in generating scene states, outperforming the current state-of-the-art
methodologies.
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