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Abstract. The C*-algebraic formulation of generic interacting quantum
field theories, recently presented by Detlev Buchholz and one of the au-
thors (KF), is enriched by a unitary version of the Master Ward Identity,
which was postulated some time ago by Franz Marc Boas, Ferdinand
Brennecke and two of us (MD,KF). It is shown that the corresponding
axiom implies the validity of the time slice axiom. Moreover, it opens the
way for a new approach to Noether’s Theorem where it yields directly
the unitaries implementing the symmetries. It also unravels interesting
aspects of the role of anomalies in quantum field theory.
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1. Introduction

The C*-algebraic formulation of quantum physics is well known for its rather
unique combination of conceptual clarity and mathematical precision [11]. In
quantum field theory, the algebraic approach of Araki, Borchers, Haag and
Kastler [1,6,38,39] has led to deep insights into the structure of the theory. As
particularly important examples, one may mention the theory of superselection
sectors of Doplicher, Haag and Roberts (see e.g. [38]) which is at the basis of
recent work in conformal field theory (see e.g. Rehren’s contribution in [11]),
and Tomita–Takesaki modular theory [8,64,66] which is instrumental e.g. in
Quantum Statistical Mechanics via the KMS conditions [9], in the reconstruc-
tion of symmetries via Wiesbrock’s half-sided modular condition/intersection
[68,69], in localization properties of field theories with their particle inter-
pretation [17] and its mathematical ramifications [57], and which is fruitfully
used nowadays to discuss entropy and entanglement in quantum field theories
[25,43,52].

On the other hand, the axioms of algebraic quantum field theory have
not yet been equally successful in fixing specific interacting theory models. As
a bon mot, Rudolf Haag used to ask colleagues “What is the Lagrangian?” and
no answer could satisfy him.

Recently, Detlev Buchholz and one of us (KF) succeeded in finding a
framework where the classical Lagrangian determines a net of C*-algebras
[20,21]. It is a fully nonperturbative construction. It was formulated for the
case of a scalar field with polynomial self-interaction (for the incorporation of
fermions, see [13]). The algebras are generated by unitaries S(F ) labeled by
local functionals F of the (classical) scalar field configuration. F is interpreted
as a local variation of the dynamics, and S(F ) is the induced operation on
the system (the scattering “S-matrix,” an interpretation as such is offered at
the end of Sect.6). By definition, these unitaries satisfy a Causality Relation
corresponding to the ordering in time when these operations are performed,
and a relation which determines dynamics in terms of the classical Lagrangian
and which is a unitary version of the Schwinger–Dyson equation known from
perturbative quantum field theory [48]. In the case of the free Lagrangian, the
canonical commutation relations in form of the Weyl relations are a conse-
quence of the formalism [20,22].
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We discuss in this paper whether further relations can be added in or-
der to enrich the structure and to bring the formalism nearer to standard
quantum field theory. We thereby use inspiration from the path integral for-
mulation and check whether the resulting relations are compatible e.g. with
perturbation theory. An important relation is obtained by the field redefini-
tion (see e.g. [2,50,53] and references therein). Its infinitesimal version ap-
pears in a somewhat different form in the quantum master equation of the
BV formalism, and was precisely analyzed in renormalized perturbation the-
ory under the name Master Ward Identity (MWI) in [10,28,29,31,36,42]. We
postulate in this paper a unitary version of this identity (Axiom “Symmetries”
in Sect. 5)—including anomalies—and show that, in formal perturbation the-
ory, it is essentially equivalent to the infinitesimal version (see Sect 10 and
Appendix C).

The crucial ingredient for our formulation is an intrinsic nonperturbative
concept of the renormalization group (Definition 4.2). It corresponds to the
Stückelberg–Petermann renormalization group [12,32,61,65] in formal pertur-
bation theory. Here, it is used to characterize possible anomalies of the unitary
Master Ward Identity.

We then prove that the new axiom implies the time slice axiom [40] (prim-
itive causality in [39]), which states that each observable can be expressed in
terms of observables in any neighborhood of a Cauchy surface. The remark-
able stability of the algebra under a large class of time evolutions compares
well to a similar property in non-relativistic quantum field theory [18] in the
framework of Resolvent Algebras by Buchholz and Grundling [23].

Moreover, the axiom also characterizes symmetries of the theory. One
of the deepest structural results of classical physics is the intimate relation
between symmetries and conservation laws which were uncovered by Emmy
Noether [58,59] about 100 years ago. A similar connection also holds in quan-
tum physics, but since the Lagrangian is not directly used in canonical quan-
tization, it is less evident. In the path integral formulation, the situation looks
better but mathematically rigorous results are rare in this formalism. Tradi-
tionally in quantum theory, one uses the classical form for the generators of
symmetries and attempts finding the corresponding expressions in the quan-
tized theory. There is no general unique procedure to do this and it might
fail altogether. For example, in quantum field theory, one then has to rely on
renormalized perturbation theory and has to check for anomalies.

We show that in the absence of anomalies, symmetries can be locally
unitarily implemented (a unitary version of Noether’s Theorem1). We also
discuss the occurrence of anomalies and present two equivalent notions of the
induced renormalization group flow; one related to anomalies of the Master
Ward Identity (see formula (7.10) and the discussion below it), and the other
(the standard one) expressed in terms of a flow of Lagrangians together with

1Another unitary version of Noether’s Theorem was derived in [19] on the basis of the split
property [27].
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an associated field renormalization (Theorem 8.3). A new, unexpected, re-
sult is an anomalous version of Noether’s Theorem, Theorem 7.3, in which
we prove the unitary implementation of symmetries, modulo renormalization
group transformations.

It turns out to be useful to generalize the framework from theories on
Minkowski space to theories on generic globally hyperbolic spacetimes and
to make use of the locally covariant formulation [16,44], extended in such a
way that also interactions can be varied. As an immediate consequence, we
find a closed expression for the algebraic adiabatic limit by which the net of
algebras with an additional interaction can be constructed within the original
net. A complication, not present in formal perturbation theory, consists in
the possible change of the causal structure by interactions of kinetic type, i.e.
quadratic functionals of first derivatives of the field (see e.g. [21]).

2. Lagrangians, Interactions and Dynamical Spacetimes

2.1. Local Functionals and Observables

We consider an n-component real scalar field φ. The classical configuration
space E (M, Rn) is the space of smooth functions on the manifold M with val-
ues in R

n. Manifolds for us are topological spaces that are connected, Hausdorff
and locally homeomorphic to a Euclidean space, together with a smooth dif-
ferentiable structure (i.e. an atlas) and of generic dimension larger than 2.2

We equip manifolds with Lagrangians L = L0 + V0, which are density-valued
local functionals on the configuration space and are of the form

L0(x)[φ] =
1
2
g−1(dφ(x), dφ(x))dμg(x) , V0(x)[φ] = V̂0(x, φ(x), dφ(x)) , (2.1)

with a metric g for which the manifold is a globally hyperbolic spacetime3 and
such that the linearized classical field equation is normally hyperbolic. Hence,
specifying the kinetic part of the Lagrangian equips the manifold M with a
metric that makes it into a globally hyperbolic spacetime. Signatures for the
metrics are taken as (+,−, . . . ,−), μg denotes the density induced by g and V̂0

is of 1st order with respect to dφ (see e.g. (2.9)). Globally hyperbolic manifolds
are always time orientable, and we choose a fixed time orientation.

We label the fundamental observables by local functionals F ∈ Floc(M)
on the configuration space, i.e. functionals of the form

F [φ] =
∫

F̂ (x, jx(φ)) , (2.2)

with a smooth density-valued function F̂ on the jet space of E (M, Rn) with
compact support in x. A particularly simple local functional is the basic field

2The case of dimension 2 can be equally treated mutatis mutandis on some of the crucial
results, e.g. those in Appendix B.
3This entails that our manifolds are also paracompact, see [54].
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integrated with a test density h ∈ Ddens(M, Rn):

〈φ, h〉[φ] ≡ φ(h) .=
∫ n∑

i=1

φi(x)hi(x) . (2.3)

We refer to Appendix A, where one finds definitions and properties of
functionals, including, for instance, the important notion of their support. Next
we want to add to a Lagrangian L the interaction given by a local functional
F . In order to do this, we use the fact that a Lagrangian defines a family
of local functionals L(f), f ∈ D(M, [0, 1]), (named generalized Lagrangian in
[12,15]) by

L(f)[φ] .=
∫

L(x)[fφ] . (2.4)

Lagrangians L′, L with

supp (L′(f) − L(f)) ⊂ supp (f − 1) (2.5)

lead to the same equation of motion and are considered to be equivalent (no-
tation L ∼ L′). The map f �→ L(f) is a generalized field in the sense of [12,15]
(again, details are given in Appendix A). In the following, we shall always
mean a Lagrangian L in the sense of a generalized field.

Given a local functional F , on the other hand, we can define a generalized
field AF by

AF : D(M) → Floc(M) ; AF (f)[φ] .= F [fφ] . (2.6)

In Appendix A, the support of a generalized field is defined and it is shown that
suppAF = suppF . Therefore, a local functional F corresponds to a generalized
field AF with compact support. The addition of the interaction given by F ∈
Floc(M) to a Lagrangian L is now expressed by L + AF .

Next we construct the category Loc. We first describe its objects: they
are dynamical spacetimes i.e. pairs (M,L) where M is a manifold and L is a
Lagrangian of the form (2.1), considered as a generalized field in the form of
(2.4), together with a choice of time orientation. We consider local functionals
F for which the generalized field AF can be added to the Lagrangian L as
an interaction, such that the linearized equation of motion remains normally
hyperbolic with respect to a possibly changed metric g′. This requires that F
is of the form

F [φ] = Fg′,g[φ] + F0[φ] (2.7)

with

Fg′,g[φ] =
∫

1
2

(
(g′)−1

(
dφ(x), dφ(x)

)
dμg′(x) − g−1

(
dφ(x), dφ(x)

)
dμg(x)

)
,

(2.8)

where g′ is a Lorentz metric for which M is globally hyperbolic with supp (g′ −
g) compact, and F0 is a local functional of the form

F0[φ] =
∫ (

h0(x, φ(x)) + 〈h1(x, φ(x)), dφ(x)〉) dμg(x) , (2.9)
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with h0, h1 smooth functions on the bundle M × R
n, with real values and

values in the tangent bundle, respectively, and compactly supported on the
base space M . We denote the set of these functionals by Floc(M,L). For later
purposes, we denote by Q(M,L) the subset of quadratic functionals.

For F ∈ Floc(M,L), we have AF (f) ∈ Floc(M,L) if f ≡ 1 on suppF ,
hence the equivalence class of L+AF and the associated metric are well defined.
The time orientation is obtained from the time orientation of the unperturbed
Lagrangian by continuity. Notice that Floc(M,L) is not a linear space, but
has the property that for any F ∈ Floc(M,L)

F + G ∈ Floc(M,L) ⇐⇒ G ∈ Floc(M,L + AF ) . (2.10)

Moreover, in case suppF ∩ suppG = ∅, we have that with F and G also
F + G ∈ Floc(M,L), namely if g1 is the metric associated to L + AF and g2

the metric associated to L+AG, then g12
.= g1 +g2 −g is the metric associated

to L + AF+G which is easily seen to be also globally hyperbolic.
Complications arise from the fact that the set of Lorentz metrics is, in gen-

eral, not convex, hence AF (f) for 0 ≤ f ≤ 1 might not belong to Floc(M,L),
for Fg′,g of the form in (2.8) with g �= g′. In Appendix B, we solve this problem
by introducing additional metrics gi, i = 0, . . . , 4, with g0 = g, g4 = g′ such
that, for each pointwise convex combination

gλ(x) = λ(x)gi−1(x) + (1 − λ(x))gi(x) , λ ∈ C∞(M) , 0 ≤ λ ≤ 1 (2.11)

of gi−1 and gi, i = 1, . . . , 4, the manifold M is globally hyperbolic. We decom-
pose

F ≡ Fg′,g + F0 =
4∑

i=0

Fi (2.12)

with F0 as above and Fi
.= Fgi,gi−1 for i = 1, . . . , 4.

We thus get a quintuple of generalized fields AFi
, i = 0, . . . , 4 with

AFi
(fi) ∈ Floc(M,L +

∑
j<i AFj

) and
∑

i AFi
(fi) ∈ Floc(M,L) provided

fi ∈ D(M, [0, 1]), with supp fk ⊂ (fk−1)−1(1), k = 1, . . . , 4.
Let Ds(M) denote the set of finite sequences f = (f1, . . . , fn) of test

functions fi ∈ D(M, [0, 1]) subject to restrictions as above, and f ≡ 1 on a set
N means that fi ≡ 1 on N , i = 1 . . . , n.

Definition 2.1 (Interactions). The set of finite sequences V = (V1, . . . , Vn)
of generalized fields Vi whose values, upon evaluation with test functions in
D(M, [0, 1]), are local functionals in Floc(M,L +

∑
j<i Vj), shall be called in-

teractions w.r.t the Lagrangian L and denoted by the symbol Int(M,L). We
use the notation V (f) =

∑
i Vi(fi), f = (f1, . . . , fn) ∈ Ds(M) for the local

functionals which approximate V for f ≡ 1 on a sufficiently large region.

In the following, we always understand Lagrangians as generalized fields
in the sense that they might depend on a finite sequence f ∈ Ds(M). For
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example, for V = (V1, . . . , Vn) ∈ Int(M,L), L+V is evaluated with an (n+1)-
tuple (f0, f1, . . . , fn) ∈ Ds(M), and

(L + V )(f0, . . . , fn) = L(f0) +
n∑

i=1

Vi(fi) .

We now turn to the morphisms. Morphisms of Loc, ι ∈ Hom((M,L),
(M ′, L′)), are compositions of elementary morphisms of either of the following
forms:

• ιρ: Structure preserving embeddings, i.e. smooth embeddings ρ : M →
M ′ with ρ∗L = L′ which preserve the time orientation and with causally
convex image ρ(M).
Here (ρ∗L)(f) .= ρ∗(L(f ◦ ρ)), f ∈ Ds(M ′) and ρ∗F [φ] .= F [φ ◦ ρ], F ∈
Floc(M,L).

• ιΦ: Affine field redefinitions Φ : φ �→ φA + φ0 with (φA)j(x) =
∑n

i=1

φi(x)Aij(x), A(x) ∈ GL(n, R), where A and φ0 are smooth functions of
compact support, M ′ = M , L′ = Φ∗L.4

Here, (Φ∗L)(f) .= Φ∗(L(f)), f ∈ Ds(M) and (Φ∗F )[φ] .= F [Φ(φ)], F ∈
Floc(M,L).

• ιV,+: Retarded interaction M ′ = M , L′ + V = L, where V ∈ Int(M ′, L′)
with past compact support [63].

• ιV,−: Advanced interaction M ′ = M , L′ + V = L, where V ∈ Int(M ′, L′)
with future compact support [63].

2.2. Dynamical Algebras

The associated quantum field theory is now a functor A from Loc to the cate-
gory C∗ of unital C*-algebras with unital homomorphisms as arrows. The dy-
namical algebra A(M,L) is a C*-algebra freely generated by unitaries S(M,L)(F ),
F ∈ Floc(M,L) with S(M,L)(c) = eic1 for constant functionals c, c ∈ R, mod-
ulo the following relations:

Axiom 1 (Causality Relation). Let G ∈ Floc(M,L) and F,H ∈ Floc(M,L +
AG). Then

S(M,L)(F + G + H) = S(M,L)(F + G)S(M,L)(G)−1S(M,L)(G + H) (2.13)

when suppF ∩JL+AG− (suppH) = ∅ where JL+AG− denotes the causal past with
respect to the metric induced by L + AG, and

Axiom 2 (Dynamical Relation). For all F ∈ Floc(M,L), we require

S(M,L)(F ) = S(M,L)(Fψ + δL(ψ)) , ψ ∈ D(M, Rn) , (2.14)

where

Fψ[φ] .= F [φ + ψ] , δL(ψ) .= L(f)ψ − L(f) ,

4More general field redefinitions could be considered [2,50,53]. We restrict ourselves here to

affine field redefinitions, since they, together with their inverses, map polynomial functionals

to polynomial functionals (this is important for the perturbative proof of the anomalous

Master Ward Identity, see e.g. Section 10); moreover, they map the set of Lagrangians of
2nd order in the field into itself, thus allowing analytic control.
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for any f ∈ Ds(M) satisfying f ≡ 1 on supp ψ. This is the on-shell version of
the Schwinger–Dyson relation in [20].

Remark 2.2. For the Dynamical Relation note that δL(ψ) ∈ Floc(M,L), and
that with F ∈ Floc(M,L) also Fψ ∈ Floc(M,L) and Fψ+δL(ψ) ∈ Floc(M,L);
we wish also to point out that supp δL(ψ) ⊆ suppψ.

The “on-shell algebra” is distinguished from the “off-shell algebra” by the
validity of the additional relation S(M,L)(δL(ψ)) = 1 for all ψ ∈ D(M, Rn); in
perturbation theory this terminology agrees with the usual distinction between
on-shell and off-shell time-ordered products, see [13, Sect. 7].

The morphisms Aι• ≡ α• associated to the various elementary morphisms
are monomorphisms A(M,L) → A(M ′, L′) which act on the generators of the
algebra as

αρ(S(M,L)(F )) = S(M ′,L′)(ρ∗F ) , (2.15)

αΦ(S(M,L)(F )) = S(M ′,L′)(Φ∗F ) , (2.16)

αV,+(S(M,L)(F )) = S(M ′,L′)(V (f))−1S(M ′,L′)(F + V (f)) , (2.17)

αV,−(S(M,L)(F )) = S(M ′,L′)(F + V (f))S(M ′,L′)(V (f))−1 . (2.18)

In the last two equations f ∈ Ds(M) with f ≡ 1 on a neighborhood of
JL

−(suppF ) ∩ suppV for (2.17) and of JL
+(suppF ) ∩ supp V for (2.18). Due

to the Causality Relation, αV,±(S(M,L)(F )) do not depend on the remaining
freedom in the choice of f = (f1, . . . , fn). Namely, e.g. for the retarded case,
let f ′

j ∈ D(M, [0, 1]) with supp f ′
j ⊂ (fj−1)−1(1) and f ′

j ≡ 1 on supp fj+1

where we put f0 ≡ 1 and fn+1 = 0, and let f ′ denote the sequence f with fj

replaced by f ′
j . Then supp (V (f) − V (f ′)) ∩ JL

−(suppF ) ∩ suppV = ∅ and

S(M ′,L′)(V (f ′) + F ) = S(M ′,L′)(V (f ′))S(M ′,L′)(V (f))−1S(M ′,L′)(V (f) + F ).

(2.19)

We point out that αΦ and αV,± are even surjective, that is, they are
isomorphisms. For the latter two, there is a simple formula for the inverse,
namely:

(ιV,±)−1 = ι(−V ),± , hence (αV,±)−1 = α(−V ),± ,

by using that (−V ) ∈ Int(M,L).

Remark 2.3. We return to the Causality Relation (2.13): although it is a defin-
ing relation for A(M,L), it has to be interpreted as “causality” in the dynami-
cal spacetime (M,L+AG), i.e., it is required that suppF is later than suppH
with respect to the metric given by L + AG; see [21].

In causal perturbation theory [14,28,35], the factorization (2.13) is re-
quired for the S-matrix (describing perturbations of the free theory) w.r.t. the
causality structure of the free theory; actually, in that framework this factor-
ization property is equivalent to its special case obtained by setting G = 0.
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In the nonperturbative framework at hand, this equivalence does not hold.
However, the Causality Relation (2.13) is equivalent to the just mentioned
simpler causal factorization in dynamical spacetimes (M,L + AG), explicitly

S(M,L+AG)(F + H) = S(M,L+AG)(F )S(M,L+AG)(H) (2.20)

if suppF ∩ JL+AG− (suppH) = ∅, where F,H ∈ Floc(M,L + AG). Namely,
applying αAG,+ to (2.20), we indeed obtain (2.13).

We check that all these maps α• preserve the defining algebraic relations.
For αχ, this is the standard situation for local covariance. In detail, by using
(ρ∗F )ψ = ρ∗(Fψ◦ρ) (with ψ ∈ D(M ′, Rn)) we obtain

S(M ′,L′)
(
(ρ∗F )ψ + δL′(ψ)

)
= αρ

(
S(M,L)

(
Fψ◦ρ + δL(ψ ◦ ρ)

))
= αρ

(
S(M,L)(F )

)
=S(M ′,L′)(ρ∗F ); (2.21)

and for the Causality Relation the claim follows from the equivalence

suppF ∩ JL+AG− (suppH) = ∅
⇔ supp (ρ∗F ) ∩ J

ρ∗L+Aρ∗G

− (supp (ρ∗H)) = ∅. (2.22)

The definition of αV,± is just the Bogoliubov formula; for the Dynamical Re-
lation the claim relies on

S(M ′,L′)
(
V (f)

)
αV,+

(
S(M,L)

(
Fψ + δL(ψ)

))
= S(M ′,L′)

(
Fψ + δL(ψ) + V (f)

)
= S(M ′,L′)

(
(F + V (f))ψ + δL′(ψ)

)
(2.23)

and for the Causality Relation on

J
L′+AG+V (f)
− = JL′+V +AG− = JL+AG− . (2.24)

For αΦ we only have to check the Dynamical Relation, since supp (Φ∗F ) =
suppF and

J
Φ∗L+AΦ∗G

− = JL+AG− . (2.25)

We use the formula

(Φ∗F )ψ′
[φ] = F [(φ + ψ′)A + φ0] = (Φ∗Fψ)[φ] (2.26)

with ψ = ψ′A, and the corresponding formula for L and L′ = Φ∗L, and find

αΦ

(
S(M,L)(Fψ + δL(ψ))

)
= S(M ′,L′)

(
Φ∗(Fψ + δL(ψ))

)
= S(M ′,L′)

(
(Φ∗F )ψ′

+ δL′(ψ′)
)
. (2.27)

Due to the Dynamical Relation (2.14) in A(M,L), the l.h.s. is equal to

αΦ(S(M,L)(F )) = S(M ′,L′)(Φ∗F ) (2.28)

so we see that αΦ maps this relation in A(M,L) to the same relation in
A(M ′, L′).
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Remark 2.4 (Net Structure). Given any dynamical spacetime (M,L), we can
restrict the functor A to relatively compact, causally convex subregions O ⊂ M
and the arrows to inclusions O1 ⊂ O2. This subfunctor is the Haag–Kastler
net associated to (M,L) and will be denoted by A(M,L). An isomorphism
α : A(M,L) → A(M ′, L′) is called a net isomorphism if it extends to an equiv-
alence between the corresponding functors, i.e. it extends to a bijective natural
transformation. In detail, for O1 ⊂ O2 as above, let ιO2,O1

(M,L) : A(M,L)(O1) ↪→
A(M,L)(O2) be the pertinent embedding of algebras. That α extends to a
bijective natural transformation means that there exists a unique bijection
α̃ : M → M ′ fulfilling A(M ′,L′)

(
α̃(O)

)
= α

(
A(M,L)(O)

)
for all causally convex

O ⊂ M and that

α ◦ ιO2,O1
(M,L) = ι

α̃(O2),α̃(O1)
(M ′,L′) ◦ α. (2.29)

3. Algebraic Adiabatic Limit

A problem with Bogoliubov’s formulae (2.17, 2.18) is that they do not apply
to an interaction without support restriction. As remarked earlier [14,47], this
does not matter for the algebraic structure of the algebra of local observables
for which it is sufficient to fix the interaction in a sufficiently large, however
bounded, region (algebraic adiabatic limit), and it was also observed that the
algebra of the interacting theory can be identified with the algebra of the
free theory [20]. The formalism described above allows an elegant formula for
this identification by writing the interaction as a sum of a past compact and
a future compact part and composing the arrows for retarded and advanced
interactions. Namely, we find:

Proposition 3.1. Let V+ ∈ Int(M,L) have past compact support and V− ∈
Int(M,L + V+) future compact support (for the respective causal structures).
Given the isomorphisms αV−,− : A(M,L + V ) → A(M,L + V+) and αV+,+ :
A(M,L + V+) → A(M,L), with V = V+ + V−, then

αV+,V−
.= αV+,+ ◦ αV−,− (3.1)

defines an isomorphism from A(M,L+V ) to A(M,L). It acts on the generators
of the algebra as

αV+,V−(S(M,L+V )(F ))

= S(M,L)(V+(f))−1S(M,L)

(F + V+(f) + V−(g))S(M,L)(V−(g) + V+(f))−1S(M,L)(V+(f))

(3.2)

where g, f ∈ Ds(M) with g ≡ 1 on a neighborhood of JL+V
+ (suppF )∩ suppV−

and f ≡ 1 on a neighborhood of J
L+V+
−

(
suppF ∪ suppV−(g)

) ∩ suppV+. The
explicit expression (3.2) for αV+,V−(S(F )) does not depend on the choices of
f and g.

Proof. We shall use the abbreviation S = S(M,L) for simplicity. The formula
(3.2) is obtained straightforwardly by inserting the definitions (2.17) and (2.18)



The Unitary Anomalous Master Ward Identity

of αV+,+ and αV−,−, respectively. Also the independence of the choice of f and
g under the given conditions derives from the corresponding facts about the
retarded and advanced isomorphisms. Nevertheless, it is instructive to check
the independence directly.

By iteration of the argument given before equation (2.19), let f ′ be the
appropriate change for f satisfying the conditions above for fixed g. Then, we
have that supp (V+(f ′)−V+(f)) does not intersect J

L+V+
−

(
suppF∪suppV−(g)

)
,

and by causal factorization we get

S(F +V+(f ′)+V−(g))=S(V+(f ′))S(V+(f))−1S(F + V+(f)+V−(g)) (3.3)

and

S(V+(f ′) + V−(g))−1 = S(V+(f) + V−(g))−1S(V+(f))S(V+(f ′))−1, (3.4)

hence

S(V+(f ′))−1S(F + V+(f ′) + V−(g))S(V+(f ′) + V−(g))−1S(V+(f ′))
= αV+,V−(S(M,L+V )(F )). (3.5)

Let now g′ be another choice for g satisfying g′ ≡ 1 on a neighborhood of
JL+V

+ (suppF ) ∩ V−. Then, supp (V−(g′) − V−(g)) does not intersect
JL+V

+ (suppF ) and we obtain

S(F + V+(f) + V−(g′))S(V+(f) + V−(g′))−1

= S(F + V+(f) + V−(g))S(V+(f) + V−(g))−1, (3.6)

thus again αV+,V−(S(M,L+V )(F )) does not change.
To prove the joint independence of the choices, we use an intermediate

choice f ′′ for f which satisfies the conditions above for both g and g′. Then,
we first replace f by f ′′, then g by g′ and finally f ′′ by f ′. �

The isomorphism αV+,V− which embeds the original algebra (with La-
grangian L+V ) into the algebra with Lagrangian L depends, however, on the
split V = V+ + V−.

This isomorphism changes the association of local subalgebras. But on the
intersection suppV+∩suppV− the local subalgebras are only slightly deformed,
as can be seen from the conditions on the test functions f and g in (3.2). In
particular, if N is a globally hyperbolic neighborhood of suppV+ ∩ suppV−,
then

αV+,V−(A(N, (L + V )�N )) = A(N,L�N ) (3.7)

where L �N denotes the restriction of f �→ L(f) to Ds(N). (To simplify the
notation, this restriction is understood without mentioning at some places.)

This observation allows an easy proof of the validity of a weak form of
the time slice axiom.

Definition 3.2 (Time slice in representation). We say that A(M,L) satisfies, in
the representation π, the time slice axiom for some Cauchy surface Σ of M
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whenever for any causally convex and globally hyperbolic neighborhood N of
Σ we have

π(A(N,L�N )) = π(A(M,L)). (3.8)

Then, it holds that

Theorem 3.3. Let A(M,L) satisfy, in the representation π, the time slice axiom
for some Cauchy surface Σ which is also a Cauchy surface for the metric
associated to L + V , and let α

.= αV+,V− : A(M,L + V ) → A(M,L) denote the
isomorphism in (3.1) for some decomposition V = V+ + V−. Then, A(M,L+V )

satisfies, in the representation π ◦ α, the time slice axiom for Σ.

Proof. Let N be a neighborhood of Σ. Choose a decomposition V = V ′
+ + V ′

−
with

suppV ′
+ ∩ suppV ′

− ⊂ N. (3.9)

Then, the induced isomorphism α′ .= αV ′
+,V ′

− differs from α by an inner au-
tomorphism Ad(U)(•) .= U • U−1, α = α′ ◦ Ad(U), with a unitary U ∈
A(M,L+V ). From the above discussion, the following chain of identities holds
true

π ◦ α(A(N,L + V )) = π ◦ α′ ◦ Ad(U)(A(N,L + V ))

= Ad(π ◦ α′(U)) ◦ π ◦ α′(A(N,L + V ))
(3.7)
= Ad(π ◦ α′(U)) ◦ π(A(N,L))

(3.8)
= Ad(π ◦ α′(U)) ◦ π(A(M,L))

(3.1)
= Ad(π ◦ α′(U)) ◦ π ◦ α′(A(M,L + V ))

= π ◦ α′(Ad(U)(A(M,L + V )))

= π ◦ α(A(M,L + V )),

(3.10)

by which the theorem is proven. �
Remark 3.4. For the following particular case, Theorem 3.3 has already been
proven in [24]. Looking at perturbation theory in the Fock representation, let
L0 be the free Lagrangian (which may include a mass term). Then, A(M,L0)
is the algebra consisting of Wick products of free fields; it is generated by the
S-matrices S(M,L0)(F ), F ∈ Floc(M,L0), where S(M,L0)(F ) is the generating
functional of the time-ordered products of the interaction F , fixed by suitable
renormalization conditions. The time slice axiom holds in A(M,L0), as shown
in the first part of [24].

Given some Cauchy surface Σ of (M,L0), the interacting fields in the
future of Σ depend only on the interaction in the future of Σ, up to unitary
equivalence (see the algebraic adiabatic limit in [14]). We consider therefore
an interaction V ∈ Int(M,L0) with past compact support, hence αV,+ (2.17)
is an isomorphism from the interacting algebra A(M,L0 + V ) into the free
algebra A(M,L0). For G ∈ Floc(M,L0 + V ), we introduce

GV
.=

d

dλ

∣∣∣
λ=0

αV,+(S(M,L0+V )(λG)) ∈ A(M,L0); (3.11)
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GV is the interacting field corresponding to G (i.e., it agrees with G for V = 0),
expressed in terms of the free theory. The relative S-matrix

SV (G) .= αV,+(S(M,L0+V )(G))

= S(M,L0)(V (f))−1 S(M,L0)(G + V (f)) ∈ A(M,L0) ,

(where still G ∈ Floc(M,L0 + V )) is the generating functional of the time-
ordered products of the interacting fields GV .

By means of the Causality Relation (2.13) for SV , it is proven in the
same reference—in the second step—that the validity of the time slice axiom
in A(M,L0) implies that this axiom holds also for the net of algebras

M ⊃ O �→ AV (O) .=
[{SV (G)

∣∣ G ∈ Floc(O, L0 + V )}]
(where [· · · ] means the algebra generated by the elements of the indicated
set). Actually, the proof of this second step in [24] is not limited to perturba-
tion theory and agrees essentially with the proof of Theorem 3.3 given above.
Finally, the time slice axiom holds then also for the net

O �→ α−1
V,+

(
AV (O)

)
=A(O, L0 + V )=

[{S(M,L0+V )(G)
∣∣ G ∈ Floc(O, L0+V )}],

i.e. , in A(M,L0+V ).

Due to possible changes of the causal structure by kinetic terms in the
interaction, the splitting into the past and future compact part is not always
possible. The isomorphy between algebras with different Lagrangians, however,
holds in general.

Theorem 3.5. For every interaction V ∈ Int(M,L), the algebras A(M,L + V )
and A(M,L) are isomorphic.

Proof. By using the construction of Appendix B, we decompose V =
∑5

i=1 Vi

such that Vi ∈ Int(M,L+
∑

j<i Vj) and such that the spacetimes corresponding
to L +

∑
j<i Vj and L +

∑
j≤i Vj possess a joint foliation by Cauchy surfaces.

For each i = 1, . . . , 5, we then decompose Vi = V +
i +V −

i with V +
i ∈ Int(M,L+∑

j<i Vj) such that suppV +
i is past compact (with respect to L +

∑
j<i Vj)

and with V −
i ∈ Int(M,L+

∑
j<i Vj +V +

i ) such that suppV −
i is future compact

(with respect to L +
∑

j<i Vj + V +
i ). Then

α
.=

5∏
i=1

αV +
i ,+αV −

i ,− (3.12)

is an isomorphism from A(M,L + V ) to A(M,L). �

Remark 3.6. The reader should not feel worried by this result that entails
that the global algebras of free and interacting theories are isomorphic. What
matters is the locality structure, i.e. the net structure, and the isomorphism
does not extend to a net isomorphism, i.e. the sub-algebras related to bounded
regions are not mapped bijectively to each other, thus the theories are not
equivalent.
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4. Renormalization group

In perturbation theory, the axiom Dynamical Relation is equivalent to the
renormalization condition “Field Equation” [13, Sect. 7]. But in contrast to the
classical theory, in perturbative quantum field theory the field equation alone
does not in general completely fix the dynamical evolution. There remains
some freedom which has to be fixed by additional conditions (“renormalization
conditions”). They can be classified in terms of the Stückelberg–Petermann
renormalization group, see [12,32,61,65].

Example 4.1. We illustrate this problem on a simple example. We assume
that the free real scalar field on 4-dimensional Minkowski space is perturbed
by an interaction V with density φ2(x)h(x)d4x with h ∈ D(M, R). We use the
axioms for the time-ordered (or retarded) products given in [28]. Then, the
Field Equation determines uniquely the time evolution of the interacting basic
field (with derivatives), e.g. (�φ)V , because only tree diagrams contribute. But
in general, this does not hold for the interacting composite fields, e.g., (φ�φ)V ,
because of the contributions of divergent loop diagrams whose renormalization
is unique only up to a real constant.

In this example, such indeterminacy can be removed by requiring the
Master Ward Identity (MWI) as an additional renormalization condition5:

(φ�φ)V (x) = −(m2 + 2h(x))φ2
V (x) , (4.1)

which has the same form as the identity in the classical theory.

In more complicated cases, the classical identities cannot always be pre-
served, and this is how the anomalies arise.

Similarly to the perturbative case, also in the nonperturbative framework
of this paper, the axioms given so far do not yet fix completely the dynamics,
that is, the time slice axiom does not hold for the algebra they define. There
exists a large group of isomorphisms, which prevent the existence of a dy-
namical law. Actually, the axiom Dynamical Relation fixes the dynamics (for
the free Lagrangian) only for the subalgebra generated by S-matrices S(F )
with affine functionals F . For a given Lagrangian L, we consider the following
group.

Definition 4.2. The renormalization group R(M,L) for a Lagrangian L =
L0 + V , with V ∈ Int(M,L0), is the set of all bijections Z of Floc(M,L)
which satisfy the following conditions:

(i) (Compact support) The support of Z

suppZ
.={x ∈ M | for every neighborhood U � x there exist G∈Floc(M,L),

F ∈ Floc(M,L + AG) with suppF ⊂ U such that Z(F + G) �= F + Z(G)},
(4.2)

is compact.

5Note that there is no freedom of renormalization for the composite field φ2
V . Moreover, in

classical field theory (4.1) is satisfied, as it is obtained by the pointwise product of φclass
V

with the Field Equation (� + m2)φclass
V (x) = −2f(x) φclass

V (x).
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(ii) (Locality) Let G ∈ Floc(M,L) and F,H ∈ Floc(M,L + AG) with the
requirement that suppF ∩ suppH = ∅. Then

Z(F + G + H) = Z(F + G) − Z(G) + Z(G + H) . (4.3)

(iii) (Dynamics) Z preserves the dynamics, i.e.

Z(Fψ + δL(ψ)) = Z(F )ψ + δL(ψ) , ψ ∈ D(M, Rn) . (4.4)

(iv) (Field shift) Under shifts in configuration space, Z transforms as

Z(Fψ − V (f)) = Z(F − V (f))ψ + δV (ψ) (4.5)

with ψ ∈ D(M, Rn), f ∈ Ds(M), f ≡ 1 on suppψ, and F ∈ Floc(M,L−
V ) .

(v) (Causal Stability) Z does not change the causal structure, i.e.

J
L+AZ(F )
± = JL+AF± . (4.6)

For the free Lagrangian (i.e. L = L0), the condition (iv) takes the simpler
form

Z(Fψ) = Z(F )ψ , Z ∈ R(M,L0) . (4.7)

Remark 4.3. For the free Lagrangian L0, the group R(M,L0) can be compared
with the Stückelberg–Petermann renormalization group R0 as defined in [12,
28,32], see Appendix C. The conditions (ii)-(iv) given above appear also in
the definition of R0, but there is a main difference: the elements Z0 of R0 may
have non-compact support, which allows, e.g., to impose translation invariance
in Minkowski space as a renormalization condition.

Proposition 4.4. Let Z be in R(M,L), then it preserves the support of func-
tionals in the sense that for all G ∈ Floc(M,L) and F ∈ Floc(M,L + AG) it
holds

supp
(
Z(F + G) − Z(G)

)
= suppF . (4.8)

Proof. Let ψ ∈ D with suppψ ∩ suppF = ∅. The assertion follows from

Z(F + G)ψ − Z(G)ψ = Z(F + G) − Z(G) , (4.9)

which can be verified as follows: let f ≡ 1 on suppψ. Then by the conditions
(ii) (Locality) and (iv) (Field shift)

Z(F + G)ψ = Z(F + G + V (f) − V (f))ψ

= Z((F + G)ψ + δV (ψ)) − δV (ψ)

= Z(F + G + (Gψ − G + δV (ψ)) − δV (ψ)

= Z(F + G) − Z(G) + Z(Gψ + δV (ψ)) − δV (ψ)

= Z(F + G) − Z(G) + Z(G)ψ. (4.10)

�

The renormalization group for a Lagrangian L + W is obtained from
R(M,L) by the following definition:
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Definition 4.5. Let Z ∈ R(M,L) and let W ∈ Int(M,L). Then, for F ∈
Floc(M,L + W ) we define:

ZW (F ) .= Z(F + W (f)) − W (f) ∈ Floc(M,L + W ) (4.11)

with f ∈ Ds(M) and f ≡ 1 on the supports of F and Z.

This definition6 is motivated by the following results:

Proposition 4.6. Let ZW be defined in terms of Z ∈ R(M,L) and W ∈
Int(M,L) by (4.11). Then:
(i) ZW (F ) does not depend on the choice of the test function f ∈ Ds(M),

(ii) ZW ∈ R(M,L + W ).

Proof. (i) Let f1, f2 ∈ Ds(M) have the above-mentioned property. Since
supp (W (f1) − W (f2)) ∩ (suppF ∪ suppZ) = ∅ we may use Locality (ii) and
Z(W (f1)) = Z(W (f2)) + (W (f1) − W (f2)) in the following way (by abuse of
notation):

ZW (f1)(F ) = Z
(
F + W (f2) + (W (f1) − W (f2))

) − W (f1)

= Z
(
F + W (f2)

) − Z
(
W (f2)

)
+ Z

(
W (f1)

) − W (f1)

= Z
(
F + W (f2)

)
+ (W (f1) − W (f2)) − W (f1)

= ZW (f2)(F ).

(ii) By (2.10), we see that ZW maps Floc(M,L + W ) into itself. ZW is also
invertible with (bilateral) inverse (ZW )−1 = (Z−1)W as may be seen from the
equation

ZW (Z−1)W (F ) = ZW
(
Z−1(F + W ) − W

)
= Z

(
Z−1(F + W )

) − W = F .

(4.12)

We are now going to verify that each of the properties (i)-(v) in Definition 4.2
for ZW follows from the corresponding property of Z ∈ R(M,L). For Locality
(ii), this is straightforward; for the other properties, we give the details.

To verify (i), let suppF ∩ suppZ = ∅. Then, we obtain ZW (F + G) −
ZW (G) = F , hence suppF ∩ suppZW = ∅. It follows that suppZW ⊂ suppZ.

The property (iii) can be checked as follows:

ZW
(
Fψ + δ(L + W )(ψ)

)
= Z

(
Fψ + W (f)ψ + δL(ψ)

) − W (f)

= Z
(
F + W (f)

)ψ + δL(ψ) − W (f)

= Z
(
F + W (f)

)ψ − W (f)ψ + δ(L + W )(ψ)

= ZW (F )ψ + δ(L + W )(ψ).

To verify (iv), we take into account that L + W = L0 + (V + W ) and
obtain

6The notation ZW should not be confused with the notation ZW = Z(•+W (f))−Z(W (f))
used in [12]. The latter describes the renormalization of fields induced by a renormalization
W (f) �→ Z(W (f)) of the interaction W .
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ZW
(
Fψ − (V + W )(f)

)
= Z

(
Fψ − V (f)

) − W (f)

= Z
(
F − V (f)

)ψ + V (f)ψ − V (f) − W (f)

= Z
(
F − (V + W )(f) + W (f)

)ψ − W (f)ψ + δ(V + W )(ψ)

= ZW
(
F − (V + W )(f)

)ψ + δ(V + W )(ψ).

It remains to check (v). We have for f ∈ Ds(M), f ≡ 1 on some relatively
compact region O ⊃ suppZ ∪ suppF

(L+W +AZW (F ))(f)=L(f)+W (f)+ZW (F )=L(f)+Z(F +W (f)). (4.13)

But by assumption, L + AZ(F+W (f)) induces the same causal structure as
L+AF+W (f) which coincides on O with the causal structure of L+W +AZ(F ).
Since O can be arbitrarily large, condition (v) is fulfilled. �

Remark 4.7. The defining condition (iv) of Z ∈ R(M,L0+V ) in Definition 4.2
can be obtained from its simpler formulation in the particular case of R(M,L0)
(given in (4.7)) in the following way: looking at ZW , we choose W such that
it compensates the interaction, that is, W = −V . Then, Proposition 4.6 states
that Z−V ∈ R(M,L0), hence we may apply (4.7):

Z−V (Fψ) = Z−V (F )ψ , F ∈ Floc(M,L0) . (4.14)

Inserting the definition of Z−V , we precisely get the (general) formulation of
(iv) in R(M,L0 + V ) (given in (4.5)). Hence, (4.14) is an equivalent reformu-
lation of (4.5).

We are now ready to prove that naming R(M,L) a renormalization group
is sound:

Proposition 4.8. R(M,L) is a group.

Proof. We first show that Z1Z2 ∈ R(M,L) for Z1, Z2 ∈ R(M,L) by verifying
that the conditions (i) − (v) of Definition 4.2 hold.

(ii) (Locality) Let G ∈ Floc(M,L), F,H ∈ Floc(M,L + AG) and suppF ∩
suppH = ∅. Then,

Z1Z2(F + G + H)
= Z1

(
Z2(F + G) − Z2(G) + Z2(G + H)

)
= Z1

(
Z2(F + G) − Z2(G)︸ ︷︷ ︸

supp F

+Z2(G) + Z2(G + H) − Z2(G)︸ ︷︷ ︸
supp H

)

= Z1Z2(F + G) − Z1Z2(G) + Z1Z2(G + H). (4.15)

(iii) (Dynamics)

Z1Z2

(
Fψ + δL(ψ)

)
= Z1

(
Z2(F )ψ + δL(ψ)

)
= Z1Z2(F )ψ + δL(ψ).

(4.16)
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(iv) (Field shifts) This is evident for the massless Lagrangian L0. It remains
true for the general case, since (iv) can equivalently be written as (4.14),
and due to

ZW
1 ZW

2 (F ) = ZW
1

(
Z2(F + W (f)) − W (f)

)
= Z1

(
Z2(F + W (f)) − W (f) + W (g)

) − W (g)

= Z1Z2

(
F + W (f)

) − W (f) + W (g) − W (g)

= (Z1Z2)W (F ) (4.17)

where f ≡ 1 on suppZ1 ∪ suppZ2 ∪ suppF and g ≡ 1 on supp f . In the
third line, we have used that supp

(
W (g) − W (f)

) ∩ suppZ1 = ∅.
(i) (Compact support) Let suppF ∩ suppZi = ∅, i = 1, 2. Then,

Z1Z2(F + G) = Z1

(
F + Z2(G)

)
= F + Z1Z2(G) , (4.18)

hence supp Z1Z2 ⊂ suppZ1 ∪ suppZ2.
(v) (Causal Stability) evident.

We now show that Z ∈ R(M,L) implies Z−1 ∈ R(M,L).
(ii) (Locality) Let G ∈ Floc(M,L) and F,H ∈ Floc(M,L+AG) with suppF∩

suppH = ∅. Set G′ .= Z−1(G), F ′ .= Z−1(F +G)−G′ and H ′ .= Z−1(G+
H) − G′. Then, F = Z(F ′ + G′) − Z(G′) and H = Z(G′ + H ′) − Z(G′);
thus by (4.8), we have suppF ′ = suppF and suppH ′ = suppH, hence

F + G + H = Z(F ′ + G′) − Z(G′) + Z(G′ + H ′) = Z(F ′ + G′ + H ′)
(4.19)

by Locality of Z, and therefore

Z−1(F + G + H) = Z−1(F + G) − Z−1(G) + Z−1(G + H) . (4.20)

(iii) (Dynamics) We apply Z−1 to the equation

Z
(
Z−1(F )ψ + δL(ψ)

)
= Fψ + δL(ψ) (4.21)

and get the wanted relation.
(iv) (Field shifts) This is again evident for the Lagrangian L0. The general

case follows from Z−V ∈ R(M,L0) and the equality (ZW )−1 = (Z−1)W .
(i) (Compactness of support) It is easy to check that Z−1 verifies also (4.8).

Indeed, let F ′ = Z−1(F + G) − Z−1(G), then

F = Z
(
F ′ + Z−1(G)

) − Z
(
Z−1(G)

)
(4.22)

hence supp F ′ = suppF .
Now, let suppF ∩ suppZ = ∅. Then from (4.22) with suppF ′ = suppF ,
we get F = F ′ = Z−1(F + G) − Z−1(G). We conclude that suppZ−1 ⊂
suppZ, and therefore suppZ−1 = suppZ.

(v) (Causal Stability) evident.
�

Corollary 4.9. The map R(M,L) → R(M,L+W ) ; Z �→ ZW (4.11) is a group
isomorphism for any interaction W ∈ Int(M,L).

Proof. The claim is evident from (4.12) and (4.17). �
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The nontriviality of the group R(M,L) gives rise to a group of automor-
phisms of A(M,L) preventing the validity of the time slice axiom. In detail:

Proposition 4.10. The map

S(F ) �→ S(Z(0))−1S(Z(F )) , (4.23)

induces a representation βret(named retarded) of R(M,L) by automorphisms
βret

Z of A(M,L). The analogous advanced representation βadv of R(M,L) is
obtained by reversing the order of the factors in (4.23).

Proof. We first check that βZ ≡ βret
Z preserves the defining relations of A(M,L).

• Causality Relation: Let G ∈ Floc(M,L) and F,H ∈ Floc(M,L+AG) for
which it holds that JL+AG

+ (suppF ) ∩ suppH = ∅. Then,

S(Z(0))βZ(S(F + G + H))
= S(Z(F + G + H))
= S(Z(F + G) − Z(G) + Z(G + H))
= S

(
(Z(F + G) − Z(G)) + Z(G) + (Z(G + H) − Z(G))

)
. (4.24)

Since suppZ(F + G) − Z(G) = suppF and suppZ(G + H) − Z(G) =
suppH and by Definition 4.2 (v) J

L+AZ(G)
+ = JL+AG

+ we obtain

S
(
((Z(F + G) − Z(G)) + Z(G) + (Z(G + H) − Z(G)))

)
= S(Z(F + G))S(Z(G))−1S(Z(G + H))
= S(Z(0))βZ(S(F + G))βZ(S(G))−1 βZ(S(G + H)). (4.25)

• Dynamical Relation:

S(Z(0))βZ(S(Fψ + δL(ψ)))

= S(Z(Fψ + δL(ψ)))

= S(Z(F )ψ + δL(ψ)) = S(Z(F )) = S(Z(0))βZ(S(F )). (4.26)

We see that βZ is an endomorphism. For Z1, Z2 ∈ R(M,L), we find

βZ1βZ2(S(F )) = βZ1

(
S(Z2(0))−1S(Z2(F ))

)
(4.27)

=
(
βZ1(S(Z2(0)))

)−1
βZ1

(
S(Z2(F ))

)
=

(
S(Z1(0))−1S(Z1Z2(0))

)−1
S(Z1(0))−1S(Z1Z2(F ))

= βZ1Z2(S(F )) (4.28)

and with βidR (M,L) = idA(M,L) we conclude that Z �→ βZ is a representation
by automorphisms. �

Remark 4.11. Compared with the perturbative S-matrix and the Stückelberg–
Petermann renormalization group R0, Proposition 4.10 corresponds to the part
of the Main Theorem of perturbative renormalization, stating that if S is an
admissible S-matrix (i.e., satisfies the axioms for the time-ordered product)
this holds also for S ◦ Z for all Z ∈ R0, see [12,28,32].
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Remark 4.12. According to (4.8), the support of Z(F ) does not necessarily
coincide with the support of F but only the support of Z(F )−Z(0) does. Hence,
the automorphism βret

Z does not in general preserve the local subalgebras, thus
is not an automorphism of the net. Instead its image can be interpreted as a
theory with an additional interaction Z(0) (in the sense of a generalized field)
together with a field renormalization F �→ Z(F )−Z(0), see (8.8). This will be
crucial in the discussion of the renormalization group flow in Sect. 8.

The automorphisms induced by the renormalization group transform un-
der the addition of an interaction in the following way:

Proposition 4.13. Let V ∈ Int(M,L) have past compact support and Z ∈
R(M,L). Then

βret
Z ◦ αV,+ = αV,+ ◦ βret

ZV . (4.29)

Analogously, if V is future compact, then it holds that βadv
Z ◦αV,− = αV,−◦βadv

ZV .

Proof. Let F ∈ Floc(M,L + V ). Then, if f ∈ Ds(M) with f ≡ 1 on a suffi-
ciently large region and with the abbreviations S(M,L) ≡ S, S(M,L+V ) ≡ S′,
and β• ≡ βret

• the claim follows from

αV,+ ◦ βZV (S′(F )) = αV,+

(
S′(ZV (0))−1S′(ZV (F ))

)
= S(V (f) + ZV (0))−1S(V (f) + ZV (F ))
= S(Z(V (f))−1S(Z(V (f) + F ))
= βZ

(
S(V (f))−1S(V (f) + F )

)
= βZ ◦ αV,+(S′(F )) . (4.30)

�

We collect some properties of renormalization group elements.

Proposition 4.14. Let Z ∈ R(M,L), L = L0 + V with the free massless La-
grangian L0 and V ∈ Int(M,L0).
(i) For an affine functional F = 〈φ, h〉 + c, c ∈ R, h ∈ Ddens(M, Rn) the

relation

Z(F + G) = F + Z(G), G ∈ Floc(M,L) (4.31)

holds true. Therefore, the addition of a source term 〈φ, q〉 to the La-
grangian, with a smooth density q ∈ Edens(M, Rn), does not change Z,
i.e. Z〈φ,q〉 = Z, and R(M,L + 〈φ, q〉) = R(M,L).

(ii) We have

suppZ(0) ⊂ suppZ ∩ suppV (4.32)

and, more generally,

suppZ(F ) ⊂ supp F ∪ (suppZ ∩ suppV ). (4.33)

In addition, it holds that

supp
(
Z(F ) − F

) ⊂ suppZ , F ∈ Floc(M,L) . (4.34)
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(iii) Let V (f) ∈ Q(M,L0) for f ∈ Ds(M). Then, Z is invariant under shifts,

Z(Fψ) = Z(F )ψ , ψ ∈ D(M, Rn) . (4.35)

Moreover, for F ∈ Q(M,L) we find

Z(F ) = F + cF (4.36)

with a constant functional cF . In particular, Z(0) is a constant functional.

Proof. (i) Let h = h0 + Kψ, h0 ∈ Ddens(M, Rn), ψ ∈ D(M, Rn) where
supph0 ∩ suppZ = ∅ and K is minus the d’Alembertian, considered as a
map from functions to densities. Then,

〈φ,Kψ〉 = δL(ψ) − 1
2
〈ψ,Kψ〉 − V (f)ψ + V (f) (4.37)

with f ∈ Ds(M), f ≡ 1 on suppψ. Since constant functionals have empty
support, we obtain, from the definition of the support of Z,

Z(F + G) = Z
(
G + δL(ψ) + V (f) − V (f)ψ

)
+ 〈φ, h0〉 − 1

2
〈ψ,Kψ〉 + c

= Z
(
(G + V (f))−ψ − V (f)

)ψ + δL(ψ) + 〈φ, h0〉 − 1
2
〈ψ,Kψ〉 + c

= Z(G) − δV (ψ) + δL(ψ) + 〈φ, h0〉 − 1
2
〈ψ,Kψ〉 + c

= Z(G) + F

where the second equality follows from (iii) and the third one from (iv)
in Definition 4.2.

(ii) Let ψ ∈ D(M, Rn) with suppψ ∩ suppZ ∩ suppV = ∅. We decompose
ψ = ψ1 + ψ2 with suppψ1 ∩ suppZ = ∅, suppψ2 ∩ suppV = ∅ and
suppψ1 ⊂ suppψ. From Definition 4.2(iv), we have with f ≡ 1 on suppψ,
f ∈ Ds(M)

Z(0)ψ =Z(V (f)ψ−V (f))−V (f)ψ + V (f) = Z(δV (ψ)) − δV (ψ). (4.38)

With δV (ψ1 + ψ2) = δV (ψ1) + δV (ψ2)ψ1 and δV (ψ2) = 0 (Proposi-
tion A.5), we get

Z(0)ψ = Z(δV (ψ1)) − δV (ψ1) = Z(0) (4.39)

since supp δV (ψ1) ∩ suppZ = ∅. Hence, suppZ(0) ⊂ suppZ ∩ suppV by
definition of the support of functionals.
The statement (4.33) follows immediately from (4.8) and (4.32):

suppZ(F ) = supp
(
(Z(F ) − Z(0)) + Z(0)

) ⊂ suppF ∪ supp Z(0) .

To prove (4.34) we decompose F = F1 + F2 with suppF2 ∩ suppZ = ∅.
By the definition of suppZ we obtain

Z(F ) = Z(F1) + F2 ,

hence Z(F ) − F = Z(F1) − F1. Taking into account (4.33), we conclude
that supp (Z(F1) − F1) ⊂ suppF1 ∪ suppZ. Since for any x �∈ suppZ we
can find a decomposition with x �∈ suppF1 we arrive at the conclusion.
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(iii) To prove (4.35) we use again Definition 4.2(iv) and get for f ≡ 1 on
suppψ, f ∈ Ds(M)

Z(Fψ) = Z((F + V (f)−ψ)ψ − V (f))

= Z(F + V (f)−ψ − V (f))ψ + δV (ψ)

= Z(F )ψ + (V (f)−ψ − V (f))ψ + δV (ψ)

= Z(F )ψ (4.40)

where we used (4.31) in the third equality.
In particular, for a quadratic functional F ∈ Q(M,L) the difference F −
Fψ is affine, hence

Z(F ) − F = Z(Fψ + (F − Fψ)) − F = Z(Fψ) − Fψ = (Z(F ) − F )ψ,

(4.41)

from which we conclude that Z(F ) − F is a constant functional. �

5. Master Ward Identity

In certain cases, several elementary morphisms exist between objects of Loc.
Namely let M ′ = M , let χ be a diffeomorphism of M with compact support,
let L′ = χ∗L and assume that the time orientations coincide outside of the
support of χ. Set

δχL
.= (L′ − L)(f) ∈ Floc(M,L) , f ∈ Ds(M) with f ≡ 1 on suppχ. (5.1)

δχL can be interpreted as a retarded or an advanced interaction.7 Hence,
we obtain the arrow ιχ from (M,L) → (M,L′) and the arrows ιδχL,+, ιδχL,−
from (M,L′) → (M,L) and can build the automorphisms

αχ
±

.= αδχL,± ◦ αχ (5.2)

of A(M,L). We compute

αχ
+(S(M,L)(F )) = S(M,L)(δχL)−1S(M,L)(χ∗F + δχL) (5.3)

and

αχ
−(S(M,L)(F )) = S(M,L)(χ∗F + δχL)S(M,L)(δχL)−1 . (5.4)

If the support of χ does not intersect the past (future) of suppF , we have
χ∗F = F and from the Causality Relation we conclude that αχ

± acts trivially
on S(M,L)(F ).

An analogous discussion can be performed for compactly supported affine
field redefinitions Φ. Let again M ′ = M , and let L′ = Φ∗L. Set δΦL = L′ − L
and define

αΦ
±

.= αδΦL,± ◦ αΦ . (5.5)

In the case of a translation Φ : φ → φ+ψ, we see that the Dynamical Relation
fixes these automorphisms to the identity.

7For the simplicity of notation, we will write δχL instead of AδχL.
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The diffeomorphisms χ act on affine field redefinitions Φ = (A,φ0) by

χΦ .= (A ◦ χ−1, φ0 ◦ χ−1) . (5.6)

We find the following commutation relation

χ∗Φ∗ = (χΦ)∗χ∗ . (5.7)

Motivated by this property, we define:

Definition 5.1 (Symmetry Transformations). The group of (compactly sup-
ported) symmetry transformations

Gc(M) .= C∞
c (M,Aff(Rn)) � Diffc(M)

is the semidirect product of the group of compactly supported diffeomorphisms
of M , Diffc(M), with the group of compactly supported smooth and affine
field redefinitions, C∞

c (M,Aff(Rn)), with respect to the action (5.6), i.e., the
product in Gc(M) is defined by8

(Φ1, χ1) · (Φ2, χ2)
.= (Φ1 ◦ (χ1Φ2), χ1χ2) . (5.8)

The support of such a transformation g .= (Φ, χ) ∈ Gc(M) is

supp (Φ, χ) .= supp Φ ∪ suppχ . (5.9)

The group Gc(M) acts on Floc(M,L) by

(Φ, χ)∗
.= Φ∗χ∗ . (5.10)

By using (5.7), we verify that

(g1g2)∗ = g1∗ g2∗ . (5.11)

We also see that the support of g ∈ Gc(M) is the smallest closed subset N of
M such that suppF ∩ N = ∅ implies g∗F = F . The diffeomorphism part g̃ of
g ∈ Gc(M) can be recovered from g∗ by

supp (g∗F ) = g̃ (suppF ) , F ∈ Floc(M,L) . (5.12)

We set δgL
.= g∗L(f)−L(f) with f ∈ Ds(M) and f |supp g = 1 and observe the

relation

δghL = g∗δhL + δgL , g , h ∈ Gc(M) . (5.13)

We also set

α
(Φ,χ)
±

.= αΦ
± ◦ αχ

± , (5.14)

with g = (Φ, χ); this can equivalently be written as

α
g
+

(
S(M,L)(F )

)
= S(M,L)(δgL)−1S(M,L)(g∗F + δgL) , (5.15)

and analogously for α
g
−

(
S(M,L)(F )

)
; finally we find

α
gh
± = α

g
± ◦ αh

± . (5.16)

In a first step, we compute these automorphisms for the case of a lin-
ear field redefinition, a quadratic Lagrangian L = 1

2 〈φ,Kφ〉, with a normally

8Hence, we obtain the same commutation law as in (5.7): (idΦ, χ) · (Φ, idχ) = ((χΦ), idχ) ·
(idΦ, χ).



R. Brunetti et al. Ann. Henri Poincaré

hyperbolic formally self-adjoint differential operator K (again considered as
a map from functions to densities), and affine functionals Fh = 〈φ, h〉 +
1
2 〈h,Δadvh〉 = 〈φ, h〉+ 1

2 〈h,Δreth〉, h ∈ Ddens(M, Rn) with the retarded (Δret)
and advanced (Δadv) inverses of K. Let

Φ[φ](x) = At(x)φ(x) (5.17)

where A is a GL(n, R)-valued smooth function with compact support and the
upper index t denotes the transpose. Then

δΦL(x) =
1
2
〈φ, (AKAt − K)φ〉 . (5.18)

We use the formula

S(M,L)(G)S(M,L)(〈φ, h〉) = S(M,L)(GΔadvh + 〈φ, h〉) (5.19)

derived in [21] for test densities h and local functionals G. We have

(δΦL)Δadvh + 〈φ, h〉 = δΦL + 〈φ,AKAtΔadvh〉
+

1
2
〈Δadvh, (AKAt − K)Δadvh〉 (5.20)

and hence with h′ .= K(At)−1Δadvh we get

S(M,L)(δΦL + Φ∗Fh) = S(M,L)(δΦL)S(M,L)(〈φ, h′〉)e i
2 〈h′,Δadvh′〉 (5.21)

hence

αΦ
+(S(M,L)(Fh)) = S(M,L)(Fh′) . (5.22)

Now, the elements W (h) .= S(Fh) satisfy the Weyl relations

W (h1)W (h2) = W (h1 + h2)e− i
2 〈h1,Δh2〉 ,

W (Kψ) = 1 , ψ ∈ D(M, Rn) , (5.23)

where Δ = Δret − Δadv, as derived in [20]. Since

h′ = h + K((At)−1 − 1)Δadvh (5.24)

we conclude that αΦ
+ acts trivially on S(M,L)(Fh). This remains true when

we replace Fh by a general affine functional F = Fh + c, c ∈ R, due to
S(M,L)(G + c) = S(M,L)(G) eic. Analogously, we find αΦ

−(W (h)) = W (h). This
implies in particular that S(M,L)(δΦL) commutes with all Weyl operators and
is thus a multiple of 1 in an irreducible representation of the Weyl algebra.
Indeed, in a perturbative calculation only numerical terms can contribute to
S(M,L)(δΦL).

An analogous calculation can be done for a generic element of Gc(M).
To summarize, we have found cases in which S(M,L)(δgL + g∗F ) is equal to
S(M,L)(F ) up to a constant phase factor S(M,L)(δgL).

In a formal path integral calculation, the transformation g ∈ Gc(M)
corresponds to a change of variables. There the time ordered exponential of
some local functional F corresponds to the time ordered exponential of δgL +
g∗F up to the Jacobian of the transformation. In renormalized perturbation
theory this is taken into account in the BV-Laplacian, which is a term in the
quantum master equation. Within causal perturbation theory, it results in the
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anomalous Master Ward Identity. See [36] for the detailed account of the BV
formalism and its connection to the anomalous Master Ward Identity.

In our axiomatic framework, we incorporate it in the following axiom:
We introduce an L-dependent action of Gc(M) on Floc(M,L)

(g , F ) �→ gLF
.= δgL + g∗F . (5.25)

Obviously eL = idF loc(M,L) for the unit e ∈ Gc(M) and, since (gh)∗ = g∗h∗,
we easily verify that (gh)L = gLhL. The possible deviation of the MWI is
described in terms of a map

ζ : Gc(M) → R(M,L) ,

from the group of symmetry transformations Gc(M) (Def. 5.1) to the renor-
malization group of the Lagrangian L, R(M,L) (Def. 4.2), satisfying ζe =
idF loc(M,L), supp ζg ⊂ supp g and the cocycle relation

ζgh = ζh (ζg )
h where (ζg )h

.= h−1
L ζg hL , g , h ∈ Gc(M) , (5.26)

The set of these cocycles is denoted by Z(M,L).

Axiom 3 (Symmetries). Let (M,L) be some dynamical spacetime. A repre-
sentation π of A(M,L) satisfies the unitary anomalous Master Ward
Identity (unitary AMWI) if there exists some ζ ∈ Z(M,L) such that

π ◦ S(M,L) ◦ gL = π ◦ S(M,L) ◦ ζg , g ∈ Gc(M) . (5.27)

Let Iζ denote the intersection of all ideals annihilated by representations
which satisfy the unitary AMWI for a specific ζ, and let A(M,L, ζ) denote
the quotient A(M,L)/Iζ and A(M,L,ζ) the corresponding net. The C*-algebra
A(M,L, ζ) is generated by the unitaries S(M,L,ζ)(F ) = S(M,L)(F ) + Iζ .

For any F with suppF ∩ supp g = ∅, the identity (5.27) reads

S(M,L,ζ)(δgL + F ) = S(M,L,ζ)(ζg (0) + F ) ,

in particular S(M,L,ζ)(δgL) = S(M,L,ζ)

(
ζg (0)

)
, (5.28)

by using Definition 4.2(i).

Remark 5.2. By (5.28), we see the reason why we do not require that the
elements Z of the renormalization group R(M,L) satisfy Z(0) = constant (as
it is done for the Stückelberg–Petermann group R0, cf. Remark 4.3). Actually,
terms like Z(0), besides Proposition 4.10, will play a prominent role later (see
Sect. 8).

In Section 10, we show that in perturbation theory the unitary AMWI is
essentially equivalent to the AMWI as established in [10]. If ζg = idF loc(M,L),
we call (5.27) the unitary Master Ward Identity (unitary MWI); in perturba-
tion theory the latter is equivalent to the on-shell MWI introduced in [29,31]
and [28, Chap. 4].9 The (on-shell) MWI is a universal formulation of symme-
tries valid in classical field theory [31]. For this reason, we call ζ : g �→ ζg the
anomaly map.

9For perturbative, scalar QED a proof of the equivalence of the unitary MWI to the on-shell
MWI is given in [34].
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The cocycle relation (5.26) is motivated by the following result:

Proposition 5.3. Let Υ : Gc(M) → R(M,L) and let π be a representation of
A(M,L) such that

π ◦ S(M,L) ◦ gL = π ◦ S(M,L) ◦ Υg . (5.29)

Then, it holds that

π ◦ S(M,L) ◦ Υgh = π ◦ S(M,L) ◦ Υh ◦ (Υg )h with (Υg )h
.= h−1

L Υg hL . (5.30)

Proof. We shall write S ≡ π ◦ S(M,L) for simplicity. A straightforward appli-
cation of (5.29) and the definition of (Υg )h gives

S ◦ Υgh = S ◦ (gh)L = S ◦ gL ◦ hL = S ◦ Υg ◦ hL = S ◦ hL ◦ (Υg )h

= S ◦ Υh ◦ (Υg )h . (5.31)

�

Note that in causal perturbation theory with S-matrices evaluated on
off-shell field configurations [32], the relation (5.30) even implies the cocycle
relation (5.26). In contrast, the S-matrices in Proposition 5.3 would correspond
to perturbative S-matrices evaluated on on-shell configurations and are not
injective maps on Floc(M,L), so the cocycle relation does not automatically
follow.

In the formulation of the cocycle condition, we used an action of the
group Gc(M) on renormalization group elements Z ∈ R(M,L) by

Z �→ Zg .= g−1
L ZgL for g ∈ Gc(M). (5.32)

This is well defined due to the following result:

Lemma 5.4. Let Z ∈ R(M,L) and g ∈ Gc(M) and let Zg be defined by (5.32).
Then, Zg ∈ R(M,L).

Proof. We have to check the defining conditions of R(M,L) (Definition 4.2) for
Zg : Locality (ii) is obtained straightforwardly by using that suppF ∩supp H =
∅ implies supp g∗F ∩ supp g∗H = ∅.

To verify (i) for Zg let supp g∗F ∩ suppZ = ∅. Then, we obtain

gLZg (F + G) = Z(g∗F + gLG) = g∗F + Z(gLG) = gL(F + Zg (G)) ,

hence supp Zg ⊂ (g̃ )−1(suppZ), where g̃ is defined in (5.12).
To check (iii), we set ψ∗F

.= Fψ and ψLF
.= δL(ψ)+ψ∗F . With this, the

condition (iii) says that ψL commutes with elements of the renormalization
group. We have

gLψL = (g ′ψ)LgL , where g ′ψ .= g (φ + ψ) − gφ ∈ D(M), (5.33)

and find

ZgψL = g−1
L ZgLψL = g−1

L Z(g ′ψ)LgL

= g−1
L (g ′ψ)LZgL = ψLg−1

L ZgL

= ψLZg , (5.34)
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by using (iii) for Z in the third equality sign.
(iv) We first consider the case of a quadratic Lagrangian. Then,

Zgψ∗(F ) = Zg(ψL(F ) − δL(ψ)
)

= g−1
L Z

(
gLψL(F ) − g∗δL(ψ)

)
= g−1

L Z
(
gLψL(F )

) − δL(ψ)

= ψLg−1
L ZgL(F ) − δL(ψ)

= ψ∗Zg (F ) (5.35)

where we used in the third line that g−1
∗ δL(ψ) is an affine functional (hence

we may apply Proposition 4.14(ii)) and that gL is an affine map, and in the
4th line the result (5.34).

For the general case, we show that the transformation with g commutes
with the addition of an interaction according to (4.11), namely we have

(ZW )g (F ) = g−1
L+W ZW gL+W (F )

= δg−1(L + W ) + g−1
∗ ZW

(
δg (L + W ) + g∗F

)
= δg−1L − W + g−1

∗ Z
(
δgL + g∗(F + W )

)
= (Zg )W (F ). (5.36)

As explained in Remark 4.7, we have to show that (Zg )−V ψ∗ = ψ∗ ((Zg )−V ).
From (5.35), we know that (Z−V )g commutes with ψ∗; therefore, this holds
also for (Zg )−V .

(v) With simplified notation, we have

L + Zg (F ) = L + δg−1L + g−1
∗ Z(δgL + g∗F )

= g−1
∗ (L + Z(δgL + g∗F )). (5.37)

But by assumption, L + Z(δgL + g∗F ) induces the same causal structure as
L+δgL+g∗F = g∗(L+F ). Hence, also Zg preserves the causal structure. �

For later purpose, we prove the following results:

Proposition 5.5. Let ζ be as introduced above. Then, the following properties
hold:
(i) Let ζ ∈ Z(M,L) and W ∈ Int(M,L). Then, ζW : g �→ (ζg )W (Defini-

tion 4.5) is an element of Z(M,L + W ), i.e.,

(ζgh )
W = (ζh )

W h−1
L+W (ζg )W hL+W . (5.38)

(ii) The advanced and retarded maps αV,± (2.17) and (2.18) induce isomor-
phisms αV,± from A(M,L + V, ζV ) to A(M,L, ζ).

Proof. (i) According to Proposition 4.6, ζW takes values in R(M,L + W ). To
shorten the notations, we write W in place of W (f):

(ζh )
W h−1

L+W (ζg )W hL+W (F )

= (ζh )
W h−1

L+W

(
ζg (hLF + h∗W ) − W

)
= (ζh )

W
(
δh−1L + (δh−1W − h−1

∗ W ) + h−1
∗ ζg (hLF + h∗W )

)
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= (ζh )
W

(
h−1

L ζg (hLF + h∗W ) − W
)

= ζhh−1
L ζg hL(F + W ) − W

= (ζgh )
W (F ), (5.39)

where the cocycle relation for ζ is used in the last step.
(ii) The assertion follows from the observation that the unitary AMWI

in A(M,L + V, ζV ) is mapped to the unitary AMWI in A(M,L, ζ). To wit,
writing again V instead of V (f), we obtain

αV,+

(
S(M,L+V )(gL+V F )

)
= S(M,L)(V )−1 S(M,L)

(
δg (L + V ) + g∗F + V

)
= S(M,L)(V )−1 S(M,L)

(
δgL + g∗(F + V )

)
(5.40)

and

αV,+

(
S(M,L+V )(ζV

g (F ))
)

= S(M,L)(V )−1 S(M,L)

(
ζg (F + V )

)
, (5.41)

thus the ideal IζV is mapped onto the ideal Iζ . The same applies for
αV,−. �

Definition 5.6 (Cocycle Equivalence). Two cocycles ζ, ζ ′ ∈ Z(M,L) are equiv-
alent, if there exists some Z ∈ R(M,L) with

Zζ ′
g = ζgZ

g , g ∈ Gc(M) . (5.42)

One easily verifies that this is indeed an equivalence relation: symme-
try follows from (Zg )−1 = (Z−1)g and transitivity from (Z1Z2)g = Z

g
1 Z

g
2 .

Equivalences between cocycles lead to the following relations:

Proposition 5.7. Let ζ ∈ Z(M,L) be a cocycle and Z ∈ R(M,L). Then,
(i) The map ζ ′ : g �→ ζ ′

g with

ζ ′
g

.= Z−1ζgZ
g ∈ R(M,L) (5.43)

is a cocycle, i.e., it satisfies the relation (5.26).
(ii) Both βret

Z and βadv
Z (Proposition 4.10) induce isomorphisms β

ret/adv

Z from
A(M,L, ζ ′) to A(M,L, ζ), where ζ ′ is defined as in (i).

(iii) The isomorphism εZ
.= α−1

AZ(0),+
◦ βret

Z = α−1
AZ(0),− ◦ βadv

Z extends to a net
isomorphism

A(M,L,ζ′) → A
(M,L+AZ(0),ζ

AZ(0) )
.

Proof. (i) Inserting the definitions and the cocycle relation for ζ, we obtain

ζ ′
gh = Z−1ζghZ

gh = Z−1ζh (ζg )
h (Zg )h = Z−1ζhZ

h (Z−1ζgZ
g )h = ζ ′

h (ζ
′
g )

h .

(ii) The automorphisms β
ret/adv
Z map the ideals defined by the unitary AMWI

into each other, as may be seen from the equation (denoting S(M,L) = S)

βret
Z (S(gLF )−1S(ζ ′

gF )) = S(ZgLF )−1S(Zζ ′
gF )

= S(gLZgF )−1S(ζgZgF ) , (5.44)

for the retarded case, the advanced case follows analogously.
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(iii) Since supp (Z(F ) − Z(0)) = suppF , the isomorphism εZ ,

εZ(S(M,L,ζ′)(F )) = S
(M,L+AZ(0),ζ

AZ(0) )
(Z(F ) − Z(0)) , (5.45)

preserves the local subalgebras.
�

We can use the cocycle relation (5.26) for the map g �→ ζg to define a
modified action of Gc(M) on Floc(M,L) by

gζF
.= gLζ−1

g (F ) (5.46)

namely

(gh)ζ = (gh)Lζ−1
gh = gLhL(ζhg )−1ζ−1

h = gLζ−1
g hLζ−1

h = gζhζ . (5.47)

Remark 5.8. Note that the unitary AMWI can be written in terms of gζ as

S = S ◦ gζ .

We now consider the case that the cocycle ζg in the unitary AMWI is
trivial for g ∈ H with H ⊂ Gc(M). We have the following result:

Proposition 5.9. The set H = {h ∈ Gc(M) | ζh = idF loc(M,L)} is a subgroup of
Gc(M).

Proof. Let h1, h2 ∈ H then (hi)ζ = (hi)L, i = 1, 2, hence

(h1h2)ζ = (h1)ζ(h2)ζ = (h1)L(h2)L = (h1h2)L (5.48)

thus ζh1h2 = id and h1h2 ∈ H . Moreover, for h ∈ H

(h−1)ζ = (hζ)−1 = (hL)−1 = (h−1)L , (5.49)

so also h−1 ∈ H . �

6. Time Slice Axiom and the Relative Cauchy Evolution

We now want to prove that the unitary AMWI implies the time slice axiom.

Theorem 6.1. (Time slice) Let N ⊂ M be a causally convex and globally hyper-
bolic neighborhood of a Cauchy surface of M with respect to the causal structure
induced by the Lagrangian L and let ζ ∈ Z(M,L) be a cocycle. Then,

A(N,L�N , ζ �N ) = A(M,L, ζ). (6.1)

Here, ζ �N : Gc(N) → R(N,L �N ) is obtained by the restriction of ζ :
Gc(M) → R(M,L).

Proof. We shall use the notation S ≡ S(M,L,ζ) for simplicity throughout the
proof and do not display explicitly the restrictions as in (6.1). We first restrict
ourselves to a stationary spacetime R × Σ with time coordinate t and with
a time independent quadratic Lagrangian L and a neighborhood N of the
submanifold t = 0.

Let F ∈ Floc(R × Σ, L). We show that S(F ) can be written as a finite
product of S-matrices whose arguments have supports in J−(N) ∩ suppF .
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−0

−a/2

−a

−a−τ

−a/2−τ

t

suppF

χ(supp F )

N

{0} × Σ

τ

τ

J−(supp F )

χ(J−(suppF ))

Figure 1. Illustration of the proof of Theorem 6.1: N is
filled by a light gray, suppF and J−(suppF ) ∩ {t ≥ a/2} are
sketched by a solid line, the remaining part of J−(suppF ) is
sketched by a dotted line, χ(suppF ) is filled by a dark gray,
χ
(
J−(suppF )

)
= J

L+δχL
−

(
χ(suppF )

)
and χ

(
J−(suppF ) ∩

{t ≥ a/2})
are sketched by a dashed line. Note that the latter

set is obtained from J−(suppF ) ∩ {t ≥ a/2} by a transla-
tion of the time variable by (−τ); however, J−(suppF ) and
χ(J−(suppF )) join at t = 0, since there they leave the support
of χ

If suppF ⊂ J−(N) this is trivial. If suppF �⊂ J−(N), we argue as
follows: Let a = sup{t|(t, x) ∈ suppF}. Choose τ ∈ (0, a/2) and a com-
pactly supported diffeomorphism χ with support in J+(Σ) which acts on
the set {(t, x) ∈ J−(suppF )|t ∈ [a/2, a]} as a translation of the time vari-
able by −τ and maps the set {(t, x) ∈ J−(suppF )|t ∈ [0, a/2]} into the set
{(t, x) ∈ J−(suppF )|t ∈ [0, a/2 − τ ]}. An example for such a diffeomorphism
is

χ(t, x) = (t + ρ(t)σ(x), x) (6.2)

with test functions ρ ∈ D(R+), σ ∈ D(Σ) with ρ̇ > −1, ρ(t) = −τ , t ∈ [a/2, a]
and 0 ≤ σ ≤ 1, σ ≡ 1 on {x|(t, x) ∈ J−(suppF ) for some t ∈ [a/2, a]}; see
Figure 1.

Next we prove the following auxiliary result:

Lemma 6.2. Let (M,L) be a stationary dynamical spacetime. Let χ be a com-
pactly supported diffeomorphism of M with χ(t, x) = (t + v, x) for all (t, x)
in an open set U , where v is constant. Then, the variation δχL ∈ Floc(M,L)
satisfies supp δχL ∩ χ(U) = ∅.
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Proof. The thesis is equivalent to the condition

δχL[φ + ψ] = δχL[φ] , (6.3)

for any φ ∈ E (M) and any ψ ∈ Ec(M) with suppψ ⊂ χ(U), where δχL[φ] =
L(f ◦ χ)[φ ◦ χ] − L(f)[φ] with f ∈ D(M) and f ≡ 1 on suppχ.

According to (2.4), we have L(f)[φ] =
∫

L(x)[fφ] where L(x) is a density
which depends on the jet of fφ at x. Thus

L(f)[φ + ψ] − L(f)[φ] = L(hf)[hφ + ψ] − L(hf)[hφ] (6.4)

for any smooth function h with h ≡ 1 on suppψ. We now choose an h with
supph ⊂ χ(U). Then,

δχL[φ + ψ] − δχL[φ] = δχL[hφ + ψ] − δχL[hφ]
= L((hf) ◦ χ)[(hφ + ψ) ◦ χ] − L(hf)[hφ + ψ]

−L((hf) ◦ χ)[(hφ) ◦ χ]
+L(hf)[hφ] (6.5)

But since the functions hf, hφ and ψ are supported in χ(U), χ acts on them
as a time translation by v, and (6.3) follows from the stationarity of L. �

Continuation of the proof of Theorem 6.1. From the unitary AMWI, we obtain

S(F ) = S(δχL + χ∗ζ−1
χ (F )) . (6.6)

Since ζχ ∈ R(M,L) and L is quadratic, ζ−1
χ (0) is a constant (Proposition 4.14(ii))

and therefore supp ζ−1
χ (F ) = suppF (by using (4.8)).

Then, suppχ∗ζ−1
χ (F ) = χ(suppF ) and

χ(suppF ) ∩ J+(N) ⊂ J−(suppF ) ∩ {t ≤ a − τ} , (6.7)

and since by assumption L is stationary,

supp δχL ⊂ J+(Σ) \ χ
(
J−(suppF ) ∩ {t ≥ a/2})

⊂ J+(Σ) \ (
χ(J−(suppF )) ∩ {t ≥ a/2 − τ}) (6.8)

by using the Lemma. We decompose δχL = H+ + H− such that

supp H− ⊂ J+(Σ) ∩ {t < a/2} , suppH+ ∩ χ(J−(suppF )) = ∅ . (6.9)

Since χ(J−(suppF )) = J
L+δχL
− (χ(suppF )) and H+ does not change the met-

ric in this region, we can replace δχL by H− and get suppH+ ∩ J
L+AH−
−

(suppχ∗ζ−1
χ (F )) = ∅, thus we obtain the factorization

S(F ) = S(δχL)S(H−)−1S(H− + χ∗ζ−1
χ (F )) . (6.10)

Again by the unitary AMWI, S(δχL) = S(ζχ(0)). ζχ(0) is a constant functional
and thus has empty support. Hence, the arguments of all S-matrices on the
right hand side have compact supports contained in (J+(N) ∩ {t ≤ a − τ}) ∪
(J−(N) ∩ suppF ).

We may now iterate the argument and find after a finite number of steps,
that S(F ) can always be written as a product of S-matrices whose arguments
have support in J−(N) ∩ suppF .
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We then repeat the procedure for the time reversed situation and arrive
at the desired result for the special case of a free stationary Lagrangian.

For a generic choice of a dynamical spacetime (M,L), a cocycle ζ and a
neighborhood N of a Cauchy surface Σ, we choose a foliation M = R×Σ with
{0} × Σ ≡ Σ where the metric associated to L assumes the form

g(t, x) = a(t, x) dt2 − ht(x) (6.11)

with a smooth positive function a and a smooth family ht of Riemann metrics
on Σ. We then set

L0 =
1
2
g−1
0 (dφ, dφ)dμg0 (6.12)

with

g0(t, x) = a(0, x)dt2 − h0(x) . (6.13)

Let us define V
.= L − L0 ∈ Int(M,L0), hence −V ∈ Int(M,L). According to

Proposition 5.5, ζ−V is an R(M,L0)-valued cocycle. We now use Theorem 3.3
for a faithful representation π0 of A(M,L0, ζ

−V ). Since L0 is stationary and
quadratic, we know from the first part of the proof that the time slice axiom
holds for π0. Since Σ is a Cauchy surface for both, g and g0, we conclude that,
for any splitting V = V+ +V− into a past compact and a future compact part,
the representation π

.= π0 ◦ αV+,V− has the property

π(A(N,L, ζ)) = π(A(M,L, ζ)) . (6.14)

Since with π0 also π is faithful, we conclude that

A(N,L, ζ) = A(M,L, ζ) . (6.15)

�
Granted the time slice axiom, we can briefly discuss the relative Cauchy

evolution that was defined and implemented in the more general framework
of locally covariant quantum field theory [16], to which we refer for more de-
tails. The basic advanced and retarded maps in (2.17) and (2.18) interpolate
between the algebra A(M,L′, ζ) and the perturbed algebra A(M,L, ζV ), with
L = L′ +V (Proposition 5.5), where the interaction V changes also the metric
g in a compact region of M , but the resulting transformed metric g + h re-
mains globally hyperbolic. Let N± be two neighborhoods of Cauchy surfaces
in (M,L′), one in the past and the other in the future of the support of the
perturbation V , w.r.t. the causal structure induced by L′. Let χ± denote the
isometric embeddings of N± into M . We combine the basic retarded and ad-
vanced maps (2.17) and (2.18) with the monomorphisms αχ± induced by these
embeddings. Since Theorem 6.1 holds, these combinations give rise to bijective
maps. Let us call them as α̃V,−

.= αχ− ◦ α−1
V,− and α̃V,+

.= αχ+ ◦ α−1
V,+, where

the extensions αV,± are the ones from Proposition 5.5(ii). We obtain:

A(M,L′, ζ)
α−1

V,±−−−→ A(M,L′ + V, ζV )

= A(N±, (L′ + V )�N± , ζV �N±)

= A(N±, L′ �N± , ζ �N±)
αχ±−−−→ A(M,L′, ζ) .
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Hence, it is straightforward to compute that the relative Cauchy evolution
automorphism βV of A(M,L′, ζ) defined via these maps is given by

βV
.= α̃V,+ ◦ α̃−1

V,− = Ad
(
S(M,L′,ζ)(V (f))−1

)
.

Remark 6.3. As expected, the relative Cauchy evolution i.e. scattering mor-
phism as also called in [16], is indeed implemented by the scattering matrices.
This also justifies, a posteriori, the interpretation of the symbols S•(F ) as
scattering matrices, inducing a perturbation of the theory by an intermediate
change in the interaction and metric in a compact region.

Our new formulation of the relative Cauchy evolution also allows one to
obtain the stress-energy tensor. If δsL is the change in the Lagrangian induced
by a change in the metric from g to gs, the S-matrix S(M,L,ζ)(δsL) may be
interpreted as the time-ordered exponentiated stress-energy tensor, so to ob-
tain the stress-energy tensor, we need to be able to differentiate S(M,L,ζ)(δsL)
in an appropriately regular Hilbert space representation π for a smooth one-
parameter family of metrics gs with , g0 = g, s ∈ [0, 1] and (gs − g) compactly
supported, satisfying the geometric assumptions as in Section 4.1 of [16]. As-
sume that π is such that π(S(M,L,ζ)(δsL)) is differentiable as a function of s
in the sense of quadratic forms on a dense domain V , i.e. we require that

d

ds
〈θ, π(

S(M,L,ζ)(δsL)
)
θ〉

∣∣∣
s=0

=
∫

M

tμν(x)hμν(x)
√−gdx

with θ ∈ V and hμν = d
ds (gs)μν

∣∣
s=0

, and that the right-hand side defines an
operator-valued distribution Tμν with matrix elements tμν and domain V .

One should choose this domain according to the physical problem at
hand, so that it remains invariant under some appropriate class of observables.
Note that our current formulation is an improvement over the results of [16],
since there one could only reconstruct the derivation given by the commutator
with the stress-energy tensor, while here we obtained the stress-energy tensor
itself.

Covariant conservation of the stress-energy tensor can be obtained as
follows. Let (χs) be a 1-parameter group of compactly supported diffeomor-
phisms and consider the induced change (gs − g) of the metric and δsL of the
Lagrangian. We interpret the equation

S(M,L,ζ)

(
δsL

)
= 1 , (6.16)

for all χs ∈ Diffc(M), as the finite version of the covariant conservation of the
stress-energy tensor. Namely, differentiating this property in the representation
π results in ∇μTμν = 0, in the sense of operator-valued distributions (see, e.g.,
[41]).

To see when the stress energy tensor is covariantly conserved, note that
by the unitary AMWI, we have that

S(M,L,ζ)

(
δsL

)
= S(M,L,ζ)

(
ζχs

(0)
)
,

so (6.16) holds if the cocycle ζ is trivial for the subgroup Diffc(M) of Gc(M),
i.e. in the absence of anomalies for diffeomorphisms.
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7. Symmetries of the Lagrangian and the Anomalous Noether
Theorem

In this section, we will show how unbroken symmetries of the Lagrangian (those
that survive quantization and do not lead to nontrivial anomalies) give rise
to the unitary action on our algebras that can be interpreted as the quantum
version of Noether’s theorem (Corollary 7.5), which follows from our main
result: the Anomalous Noether Theorem (Theorem 7.3).

Let G(M) denote the unit component of the semidirect product of the
diffeomorphism group of M and the group of affine field redefinitions, as de-
scribed in Definition 5.1, but without the restriction to compact support. Note
that Gc(M) is a normal subgroup of G(M). Each element g ∈ G(M) has an
action on Floc(M,L) that can be approximated locally by elements of Gc(M)
in the sense of the following definition.

Definition 7.1. Let O ⊂ M be a relatively compact subset. G(g ,O) denotes
the set of all g ′ ∈ Gc(M) such that g ′

∗F = g∗F for all F ∈ Floc(M,L) with
suppF ⊂ O.

Note that this set is non-empty, since one can always use partitions of
unity to construct these local approximations.

For a given Lagrangian L on M , we consider the subgroup of dynamical
symmetries

HL = {h ∈ G(M)|h∗L ∼ L} . (7.1)

The group of dynamical symmetries h is represented by automorphisms γh of
A(M,L), induced by their action on the generators,

γh (S(F )) .= S(h∗F ) . (7.2)

The ideal Iζ of A(M,L) induced by the cocycle ζ is generated by the elements

Pζ(g , F ) .= S(gLF )S(ζgF )−1 − 1 , g ∈ Gc(M) , F ∈ Floc(M,L) . (7.3)

We apply the automorphism γh of A(M,L) to these elements and obtain

γh (Pζ(g , F )) = S(h∗gLF )S(h∗ζgF )−1 − 1

= S((hgh−1)Lh∗F )S((hζ)hgh−1h∗F ) − 1

= Phζ(hgh−1, h∗F ) (7.4)

with the action

(h , ζ) �→ hζ , (hζ)g
.= h∗ζh−1ghh−1

∗ (7.5)

of HL on Z(M,L). Here, we used that Gc(M) is a normal subgroup of G(M)
and that

h∗δgL = δhgh−1h∗L (7.6)

as well that h∗L ∼ L by assumption.
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To verify the consistency of the definition (7.5), first note that (hζ)g ∈
R(M,L) as one finds straightforwardly by checking the defining properties of
R(M,L); in addition, one verifies that (hζ) satisfies again the cocycle relation,

(hζ)g1g2 = (hζ)g2 g
−1
2L (hζ)g1 g2L , g1, g2 ∈ Gc(M), h ∈ HL, (7.7)

and associativity:

h1(h2ζ) = (h1h2)ζ , h1, h2 ∈ HL . (7.8)

The latter is straightforward, while (7.7) is obtained by inserting the definitions
and the cocycle relation for ζ and by using

gLh∗ = h∗(h−1gh)L , h ∈ HL, g ∈ Gc(M) , (7.9)

which relies on h∗L ∼ L.
From (7.4), we conclude that γh (Iζ) = Ihζ and, therefore, γh induces an

isomorphism γh of the quotient algebras

γh : A(M,L, ζ) → A(M,L, hζ) . (7.10)

Hence, HL induces a flow on the space of theories with a given Lagrangian
L, but possibly different cocycles ζ. This is quite analogous to the flow of the
renormalization group under scalings for scale-invariant Lagrangians as we will
discuss in the next section.

We want to understand better the action of HL on cocycles. We use the
fact that the symmetries of the Lagrangian can be locally approximated by
compactly supported symmetries. We find the following relations:

Proposition 7.2. Let O ⊂ M be an open relatively compact region and h ∈ HL.
Then for supp g , supp F ⊂ h̃(O), with h̃ defined as in (5.12) and h ′ ∈ G(h ,O)
as in Definition 7.1, we have:

(hζ)gF = (h ′ζ)gF , (7.11)

(h ′ζ)g = Z−1ζgZ
g with Z

.= ζ(h ′)−1 , (7.12)

where (h ′ζ) is defined by the formula (7.5).

Proof. h ′ ∈ G(h ,O) is equivalent to (h ′)−1 ∈ G(h−1, h̃(O)), hence (h ′)−1
∗ F =

h−1
∗ F . Moreover, ˜h ′h−1 is a diffeomorphism of M which is the identity on
h̃(O), hence due to supp g ⊂ h̃(O)

gh ′h−1 = h ′h−1g (7.13)

and thus (h ′)−1gh ′ = h−1gh . Now supp h−1gh ⊂ O, hence supp ζh−1ghh−1
∗ F ⊂

O. Inserting these relations into (7.5) yields the first equality.
We now use that h∗L ∼ L for h ∈ HL. Therefore, supp δh ′L ∩ h̃(O) = ∅

for h ′ ∈ G(h ,O) and with

δh ′L + h ′
∗δ(h ′)−1L = 0 (7.14)

we get supp δ(h ′)−1L ∩ O = ∅. Hence supp δ(h ′)−1L ∩ supp ζ(h ′)−1gh ′ = ∅. Then
with

h ′
∗G = h ′

LG − δh ′L , (h ′)−1
∗ G = (h ′)−1

L G − δ(h ′)−1L (7.15)
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and

ζ(h ′)−1gh ′
(
(h ′)−1

∗ G
)

= ζ(h ′)−1gh ′
(
(h ′)−1

L G
) − δ(h ′)−1L (7.16)

for G ∈ Floc(M,L) (by using (4.2)) we get

(h ′ζ)g = h ′
Lζ(h ′)−1gh ′(h ′)−1

L . (7.17)

Using the cocycle identity, we finally get the second equation

(h ′ζ)g = h ′
Lζh ′(h ′)−1

L ζg ζ
g
(h ′)−1 = Z−1ζgZ

g with Z
.= ζ(h ′)−1 . (7.18)

�

We observe that, locally, the flow of HL is induced by the anomaly map
ζ restricted to local approximations of HL. We now study the consequences of
the unitary AMWI.

Theorem 7.3 (Anomalous Noether Theorem). Let (M,L) be a dynamical space-
time, equipped with a cocycle ζ ∈ Z(M,L). For h ∈ HL and any choice of
h ′ ∈ G(h ,O), with O ⊂ M relatively compact and causally convex, there exists
a unitary U ∈ A(M,L, hζ) such that

γh (S(M,L,ζ)(F )) = Ad(U)
(
β

ret

(hζ)h′ (S(M,L,(hζ)′)(F ))
)

(7.19)

for all F ∈ Floc(M,L) for which suppF ⊂ O, with

(hζ)′
g

.= (hζ)−1
h ′ (hζ)g (hζ)gh ′ = ((h ′)−1hζ)

−δ(h′)−1L

g . (7.20)

and (hζ)′
g = ζg if supp g ⊂ O.

Proof. The unitary AMWI yields for h ∈ HL

γh (S(M,L,ζ)(F )) = S(h ′
∗F ) = S

(
(hζ)h ′(F + δ(h ′)−1L)

)
, (7.21)

with S
.= S(M,L,hζ). We have supp δ(h ′)−1L∩O = ∅. Since O is causally convex,

we decompose (see the corresponding procedure in Theorem 3.5)

δ(h ′)−1L =
5∑

i=1

∑
±

Q±
i (7.22)

with suppQ+
i ∩ J

L+AQ<i

− (O) = ∅ and suppQ−
i ∩ J

L+A
Q<i+Q

+
i

+ (O) = ∅, Q<i
.=∑

j<i,± Q±
j , in particular Q<1 = 0 and Q<6 = δ(h ′)−1L. We then use step-

wise causal factorization for S′(F + Q<6) with S′ .= β
ret

(hζ)h′ ◦ S(M,L,(hζ)′)

(noticing that by Proposition 4.10 and 5.7, we have β
ret

(hζ)h′ (S(M,L,(hζ)′)(F )) ∈
A(M,L, hζ)) starting with i = 5 and obtain

γh (S(M,L,ζ)(F ))

= S((hζ)h ′(0)) S′(F + Q<6)

= S′(Q<6)
−1 S′(F + Q<5 + Q+

5 ) S′(Q<5 + Q+
5 )−1 S′(Q<6)

= S′(Q<6)
−1 S′(Q<5 + Q+

5 ) S′(Q<5)
−1 S′(F + Q<5) S′(Q<5 + Q+

5 )−1 S′(Q<6)

= . . .
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= . . . S′(Q<2 + Q+
2 )S′(Q<2)

−1S′(Q+
1 )S′(F )

S′(Q+
1 )−1S′(Q<2)S

′(Q<2 + Q+
2 )−1S′(Q<3) . . . ,

where we have also taken into account that

S
(
(hζ)h ′(0)

)
S′(Q<6) = S

(
(hζ)h ′(δ(h ′)−1L)

)
= γh (S(M,L,ζ)(0)) = 1

by the unitary AMWI for F = 0. We end up with (7.19), where

U =
4∏

i=0

S′(Q<6−i)−1S′(Q<5−i + Q+
5−i) . (7.23)

In the formula for U , one may replace S′ by S ◦ (hζ)h ′ .
The second equation in (7.20) is verified as follows

(hζ)′
g = (hζ)−1

h ′ (hζ)g (hζ)gh ′

(5.26)
= (hζ)h

′
(h ′)−1(hζ)h ′g

= (h ′)−1
L (hζ)(h ′)−1(hζ)(h

′)−1

h ′g h ′
L

(5.26)
= (h ′)−1

L (hζ)h ′g(h ′)−1h ′
L

(7.5)
= (h ′)−1

L h∗ζh−1h ′g(h ′)−1hh−1
∗ h ′

L

(5.25)
= δ(h ′)−1L + ((h ′)−1hζ)g (• − δ(h ′)−1L)

= ((h ′)−1hζ)
−δ(h′)−1L

g .

To prove the last statement, let supp g ⊂ O. We set k .= (h ′)−1h and use that
supp k ∩ O = ∅. Then kg = gk and supp (k ζ)g ⊂ supp g ⊂ O. We split

F = k∗F − δk F (7.24)

and use that supp δk F ∩ O = ∅. Then,

(k ζ)
−δ(h′)−1L

g (F ) = (k ζ)g (k∗F − δ(h ′)−1L) − δk F + δ(h ′)−1L

= (k ζ)g
(
k∗F

) − δk F

= k∗ζg (F ) − δk F

= k∗(ζg (F ) − F ) + F

= ζg (F ) − F + F

= ζg (F ); (7.25)

in the second step we have taken into account that supp δ(h ′)−1L ∩O = ∅ (see
the proof of Proposition 7.2) and in the second last step that supp (ζg (F )−F ) ⊂
supp ζg ⊂ O (4.34). This finishes the proof. �

Remark 7.4. A simple example of implementation of the previous theorem can
be found in Subsection 10.2.
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We now turn to the group of unbroken symmetries, HL,ζ
.= {h ∈ HL|hζ =

ζ}. Elements of this group induce automorphisms γh of A(M,L, ζ), but may
still have nontrivial anomaly. A group which has locally trivial anomalies can
be defined by

H 0
L,ζ

.= {h ∈ HL | for all relatively compact O there exists h ′ ∈ G(h ,O)

with ζh ′(F ) = F if suppF ⊂ O}. (7.26)

Actually, H 0
L,ζ is a subgroup of HL,ζ . Namely, let h ∈ H 0

L,ζ . By using Propo-
sition 7.2, we obtain

(hζ)gF = (h ′ζ)g (F ) = (ζ(h ′)−1)−1 ζg (ζ(h ′)−1)g (F )

= (ζ(h ′)−1)−1 ζg (F )

= ζg (F ) (7.27)

for a suitable choice of h ′; in the last step we have taken into account that
supp ζg (F ) ⊂ (suppF ∪ supp g ) by using (4.33).

As a straightforward application of Theorem 7.3 to what just discussed,
we find

Corollary 7.5 (Unitary Noether Theorem). For any h ∈ H 0
L,ζ and a causally

convex and relatively compact region O, there exists a unitary U ∈ A(M,L, ζ)
such that

γh (S(M,L,ζ)(F )) = Ad(U)
(
S(M,L,ζ)(F )

)
(7.28)

for all F with suppF ⊂ O.

This entails that symmetries h ∈ H 0
L,ζ are locally implemented by uni-

taries, and the particular case of the unitary MWI

S(M,L,ζ)(δ(h ′)−1L) = 1 , h ′ ∈ G(h ,O)

is a unitary version of a conservation law. This constitutes a unitary version
of the Noether theorem. We see, however, that, dependent on the anomaly ζ,
the Noether theorem applies only to a subgroup of unbroken symmetries.

Example 7.6. To give a concrete example for δ(h ′)−1L in the case that ζh ′ = id,
we look at scalar QED (for details see [34, Sect. 4.2]): for L = L0 the free
Lagrangian (including the mass term for the complex scalar field φ) and for
the affine field redefinition ιh ′ given by

φ(x) �→ φ(x) eiα(x) , φ∗(x) �→ φ∗(x) e−iα(x) , Aμ(x) �→ Aμ(x),

where α ∈ D(M, R), one obtains

δ(h ′)−1L0 = (∂j)(α) + (φ∗φ)
(
(∂α)2

)
,

where j is the electromagnetic current of the free theory (i.e., the Noether
current pertaining to the invariance of L0 under the global U(1)-transformation
φ(x) �→ φ(x) eia with a ∈ R).
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8. Renormalization Group Flow

We have seen in the previous section that the presence of anomalies in form of
a cocycle ζ might induce a nontrivial action of the symmetry group HL of the
Lagrangian on the theory by the action of HL on ζ. We also observed that,
locally, the action of h ∈ HL can be understood as an action of the renormal-
ization group on the theory (Theorem 7.3) where the renormalization group
element is given by ζh ′ , for a local approximation h ′ ∈ G(h ,O). We now want
to see whether also a global interpretation is possible. For this purpose, we
ask in which sense our cocycles can be extended to not necessarily compactly
supported symmetry transformations h ∈ HL. A direct extension of ζ, how-
ever, might not map compactly supported functionals to compactly supported
functionals.

We therefore define for F with suppF ⊂ O, h ′ ∈ G(h ,O)

θh (F ) .= ζh ′(F ) − ζh ′(0) . (8.1)

θ is well defined in view of the following proposition:

Proposition 8.1. ζh ′(F ) − ζh ′(0) does not depend on the choice of h ′.

Proof. Let h ′′ ∈ G(h ,O). Then, h ′′ = jh ′ with j ∈ Gc(M) and supp j∩ h̃(O) =
∅. The cocycle relation yields

ζh ′′ = ζh ′ζh
′

j . (8.2)

We have

ζh
′

j (F ) = (h ′)−1
L ζj(h ′

∗F + δh ′L)

= (h ′)−1
∗ ζjδh ′L + F + δ(h ′)−1L

= (h ′)−1
∗ (ζjδh ′L − δh ′L) + F. (8.3)

Since supp (ζjδh ′L − δh ′L) ⊂ supp j (by (4.34)) we get from Locality of ζh ′ the
relation

ζh ′′(F ) = ζh ′(h ′)−1
∗ (ζjδh ′L − δh ′L) − ζh ′(0) + ζh ′(F ) . (8.4)

But the first term on the right hand side is equal to ζh ′′(0). This yields the
claim. �

In the next step, we show that the family ζh ′(0), h ′ ∈ G(h ,O),O ⊂ M
relatively compact, defines a generalized field δζ,hL. Namely, given f ∈ D(M),
we choose O such that supp f ⊂ O and set

δζ,hL(f)[φ] .= ζh ′(0)[fφ] − ζh ′(0)[0] , h ′ ∈ G(h ,O) . (8.5)

Analogously to (A.14), the defining properties of a generalized field
(Definition A.1) are satisfied. Moreover, we prove that it is also well defined,
namely

Proposition 8.2. ζh ′(0)[fφ] − ζh ′(0)[0] does not depend on the choice of h ′.
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Proof. Choosing h ′′ as in the previous proposition, we have

ζh ′′(0) =
(
ζh ′(h ′)−1

∗ (ζjδh ′L − δh ′L) − ζh ′(0)
)

+ ζh ′(0) . (8.6)

The support of the first term on the right hand side is equal to supp (h ′)−1
∗ (ζjδh ′

L − δh ′L) ⊂ (h̃ ′)−1(supp j), hence its evaluation on configurations fφ with
supp f ⊂ O is independent of φ, and we arrive at

ζh ′′(0)[fφ] − ζh ′′(0)[0] = ζh ′(0)[fφ] − ζh ′(0)[0] . (8.7)

�

We now can construct the flow of theories under the action of the symme-
try group in terms of the renormalization group. By the Anomalous Noether
Theorem, Theorem 7.3, we saw that, up to an inner automorphism, the action
of γh can locally be replaced by an isomorphism induced by a renormalization
group transformation β

ret

Z .
We recall that a renormalization group element Z ∈ R(M,L) induces an

isomorphism βret
Z and, from Remark 4.12 (see also (5.45)), that βret

Z can be
interpreted as the composition of two actions: one adding an interaction Z(0)
and the other transforming the local functionals by F �→ Z(F ) − Z(0), i.e.

βret
Z (S(M,L)(F )) = αAZ(0),+

(
S(M,L+AZ(0))(Z(F ) − Z(0))

)
. (8.8)

Passing to the quotient algebras depending on a cocycle ζ, notice that for
both previous actions (extended to the quotients, with Z

.= ζh ′ + c, where c
.=

−ζh ′(0)[0] is a constant 10) we give meaningful expressions, which depend only
on h , but neither on the choice of h ′ ∈ G(h ,O) nor of O (by Propositions 8.1
and 8.2). Hence, we interpret the h-transformed theory as a theory with an
additional interaction AZ(0) = δh,ζL and a field transformation F �→ Z(F ) −
Z(0) = θh (F ). This corresponds nicely to the standard description of anomalies
(as e.g. the scaling anomaly) by running coupling constants (i.e. addition of
terms to the Lagrangian) and renormalizations of composite fields (i.e. field
transformation). We formulate our findings in the following theorem:

Theorem 8.3. Symmetries h ∈ HL of a Lagrangian L induce, in the presence of
a nontrivial anomaly ζ, a flow of the associated quantum field theory A(M,L,ζ)

which can be described in two equivalent ways: either as an action of h−1

on the anomaly leading to the net A(M,L,h−1ζ) (see (7.10)) or as a change
L �→ L̃

.= L + δhζL of the Lagrangian, followed by a transformation θh of the
fields. The equivalence follows from the fact that the map

S(M,L,h−1ζ)(F ) �−→ S(M,L̃,ζ̃)(θhF ) (8.9)

where ζ̃
.= ζδh,ζL, induces a net isomorphism A(M,L,h−1ζ) → A(M,L̃,ζ̃).

10Here we use that for any Z ∈ R(M, L) and any c ∈ R it holds that also Z + c ∈ R(M, L)
and that βret

Z = βret
(Z+c). The latter relies on causal factorization: S(M,L)((Z + c)(F )) =

S(M,L)(Z(F )) eic.
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Remark 8.4. Note that if we restrict ourselves to scaling transformations, then
Theorem 8.3 corresponds to the Theorem 6.2 of [12] (algebraic Callan–Symanzik
equation). In the same paper, also the relations to other renormalization group
flow equations (e.g., Polchinski) are discussed.

Remark 8.5. The map (8.9) corresponds to the net isomorphism εZ

(Proposition 5.7(iii)) with Z = ζh ′ − ζh ′(0)[0], since (by Proposition 7.2)
locally it holds that (h−1ζ)g = (h ′−1ζ)g = Z−1ζgZ

g . However, since h has
non-compact support, it does not suffice to refer to this result, instead we give
a direct proof.

Proof. Since θh preserves the support due to condition (ii) for elements of
the renormalization group, the map preserves the local subalgebras. We check
whether it also maps the axioms for S

.= S(M,L,h−1ζ) into the corresponding
axioms for S̃

.= S(M,L̃,ζ̃) and vice versa.
We use the fact that θh interpolates between the respective Lagrangians,

namely we have

θh (F
ψ + δL(ψ)) = ζh ′(Fψ + δL(ψ)) − ζh ′(0)

= ζh ′(F )ψ + δL(ψ) − ζh ′(0)

= θh (F )ψ + ζh ′(0)ψ + δL(ψ) − ζh ′(0)

= θh (F )ψ + δL̃(ψ) (8.10)

as well as

θh(h−1ζ)g (F ) = ζh ′(h−1ζ)g(F ) − ζh ′(0)

= ζg ζ
g
h ′(F ) − ζh ′(0)

= ζ̃g
(
ζ
g
h ′(F ) − ζh ′(0)

)
= ζ̃g

(
g−1
∗ θhgL(F ) + g−1

∗ ζh ′(0) + δg−1L − ζh ′(0)
)

= ζ̃gθ
g
h (F ) (8.11)

where θ
g
h

.= g−1
L′ θh gL, by using Proposition 7.2 in the second step.

Since θh also satisfies the Locality condition of Definition 4.2 (ii), the
Causality Relation (Axiom 1) for S is mapped into

S̃
(
(θh (G + F ) − θh (F )) + θh(F ) + (θh (H + F ) − θh (F ))

)
= S̃(θh (G + F ))S̃(θh (F ))−1S̃(θh (H + F ))

(8.12)

if suppG∩JL+AF− (suppH) = ∅. This is the same axiom for S̃ due to supp (θh (G
+ F ) − θh(F )) = suppG and since L̃ + Aθh (F ) induces the same causal struc-
ture as L + AF . The Dynamical Relation (Axiom 2) for S is mapped into
S̃

(
θh(F )ψ + δL̃(ψ)

)
= S̃(θh (F )); this follows straightforwardly from (8.10).

Finally, the unitary AMWI for S is mapped into S̃(gL̃(θghF )) = S̃(ζ̃g (θ
g
hF )), as

a consequence of (8.11). This proves that the map is homomorphic. But since
θh is invertible, as a consequence of the invertibility of ζh ′ for all h ′ ∈ G(h ,O),
the map is also bijective. �
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Figure 2. Covariance with respect to diffeomorphisms ρ :
M → M ′ and symmetry transformations g ∈ Gc(M) (for
the latter we assume M ′ = M). The diagram describes the
functors Floc, R and A and the natural transformation S

9. Covariance

Up to now we did not impose any covariance conditions on the choice of the
anomaly. In perturbative locally covariant quantum field theories, renormal-
ization is restricted by the requirement that the quantities of interest (fields,
time ordered products, etc.) can be understood as natural transformations
between certain functors on the category of spacetimes. In our present pa-
per, we enlarged this category. We will now consider several subcategories and
natural transformations between functors on them and discuss the resulting
restrictions for the anomaly.

We start with the space of local functionals. Floc associates to any dy-
namical spacetime (M,L) the space Floc(M,L). Arrows ιρ : (M,L) → (M ′, L′)
for diffeomorphisms ρ : M → M ′ with ρ∗L′ = L induce maps Flocιρ ≡ ρ∗ :
Floc(M,L) → Floc(M ′, L′) with

(ρ∗)F [φ] = F [φ ◦ ρ] . (9.1)

Arrows ιg : (M,L) �→ (M ′, L′) for symmetry transformations g ∈ Gc(M)
with M ′ = M and L′ = g∗L induce the maps Flocιg ≡ g∗ : Floc(M,L) →
Floc(M ′, L′). We do not introduce the maps FlocιV,± corresponding to inter-
actions.

The functor of observable algebras A : (M,L) → A(M,L) is defined on
the whole category. The S-matrix is a natural transformation

S : Floc
�−→ A (9.2)

for the subcategory where the interaction arrows ιW,± are removed, as illus-
trated in Figure 2.

The interactions transform under symmetries and embeddings as

(g∗V )(f) .= g∗(V (f ◦ g̃ )) (9.3)

In order to include the arrows corresponding to interactions, we introduce a
bundle over the space of past compactly supported interactions with fibers of
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R(M, L + W ) R(M, L)

(M, L + W ) (M, L)

Int2+(M, L + W tnI) 2
+(M, L)

A(M, L + W ) A(M, L)

ιW,+

A

Int2+

Srel
(M,L+W )

R

Int2+

R

Srel
(M,L)

A

Z Z−W

Int2+ιW,+

αW,+

Figure 3. Covariance with respect to the subtraction of an
interaction W with past compact support, given by the mor-
phism ιW,+

associated local functionals,

Int2+(M,L) =
⊔

V ∈Int(M,L),supp V past compact

{V } × Floc(M,L + V ) . (9.4)

In addition to the arrows for field redefinitions and embeddings which just act
for both components as before, we also introduce the action of arrows ιW,+ for
interactions W with past compact support

Int2+ιW,+ :

{
Int2+(M,L + W ) −→ Int2+(M,L)
(V, F ) �−→ (V + W,F )

, (9.5)

where W ∈ Int(M,L), V ∈ Int(M,L + W ) (hence V + W ∈ Int(M,L)) and
F ∈ Floc(M,L + W + V ). We then consider the relative S-matrices

Srel
(M,L)(V, F ) .= αV,+

(
S(M,L+V )(F )

)
= S(M,L)(V (f))−1 S(M,L)(F + V (f))

(9.6)

and find that they define a natural transformation Srel : Int2+ → A, i.e.

Srel
(M,L)(V + W,F ) = αW,+

(
Srel

(M,L+W )(V, F )
)

,

if only the arrows for retarded interactions are considered, see Figure 3. An
analogous construction can be done for the advanced case.

The functor R : (M,L) �→ R(M,L) of renormalization groups maps the
interaction arrows ιV,± to the maps Z �→ Z−V (or equivalently: ZV �→ Z). For
symmetries, we get (g∗Z)(F ) .= g∗(Z(g−1

∗ F ). For embeddings ρ : (M,L) →
(M ′, L′) there is the difficulty that (for F ∈ Floc(M ′, L′)) ρ−1

∗ F is only defined
if suppF ⊂ ρ(M), hence we decompose F = F0 + F1 with suppF0 ⊂ ρ(M)
and suppF1 ∩ ρ(suppZ) = ∅ and set

(ρ∗Z)(F ) .= ρ∗(Z(ρ−1
∗ F0)) + F1 . (9.7)

The right hand side is independent of the split F = F0 + F1, since for another
split F = F ′

0 + F ′
1 the functional G = F ′

0 − F0 = F1 − F ′
1 satisfies suppG ∩

ρ(suppZ) = ∅, hence

ρ∗(Z(ρ−1
∗ F ′

0)) = ρ∗(Z(ρ−1
∗ F0)) + G . (9.8)
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Figure 4. Naturality of ζ with respect to the subtraction of
the interaction V . For shortness, we write V for V (f)

We finally discuss the covariance properties of the cocycles ζ. The sym-
metry groups Gc(M) do not depend on the Lagrangian and their elements
g = (Φ, χ) do not transform under changes of the interaction. Under symme-
try transformations h ∈ Gc(M), they transform by conjugation: g �→ hgh−1.
Under embeddings, we have to use that they are compactly supported. So we
set

ρ∗(Φ, χ) .= (ρΦ, ρ∗χ) (9.9)

with ρΦ �ρ as defined in (5.6) and extended to the identity outside of ρ(M),
and with

ρ∗χ(x) =
{

ρ(χ(ρ−1(x))), x ∈ ρ(M)
x, else (9.10)

The cocycles then transform by

ζ �→ ζ−V (9.11)

under interactions ιV ;±, by ζ → gζ under symmetry transformations ιg , (here
we use the definition (7.5) for g ∈ Gc(M)), and by

(ρ∗ζ)ρ∗g = ρ∗ζgρ−1
∗ (9.12)

under embeddings ιρ by using (9.7). Note that ρ∗ζ is defined only for symmetry
transformations with support in the image of ρ.

We can now discuss the appropriate naturality conditions on ζ. The co-
variance under adding interactions is already taking into account: ζ : Gc ×
Floc → Floc is a natural transformation with respect to ιV,±, i.e. ζ−V

g (F +
V (f)) = ζg(F ) + V (f), as illustrated in Figure 4. As a consequence, it is
sufficient to define the cocycle for a specific Lagrangian.

Actually, in perturbation theory one discusses the renormalization within
the free theory (including its time ordered product) which determines then
also the interacting theory. The covariance under embeddings is the crucial
condition for local covariance. Due to the work of Hollands and Wald [44] (see
also [49]), this condition is satisfied in perturbation theory; hence, we may
impose it in our framework: ζ : Gc × Floc → Floc is a natural transformation
with respect to ιρ, i.e. (ρ∗ζ)ρ∗g (ρ∗F ) = ρ∗

(
ζg(F )

)
, see Figure 5.

Analogously to the latter result, we can also impose the naturality condi-
tion for the arrows coming from symmetry transformations g ∈ Gc(M), since
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Figure 5. Naturality of ζ with respect to diffeomorphisms
ρ : M → M ′

Figure 6. Behavior of ζ under the application of a symmetry
h ∈ Gc(M) and the induced change of the Lagrangian

due to the assumption on global hyperbolicity no compactly supported sym-
metry transformation leaves the Lagrangian invariant.

There remains, however, the relation between the arrow corresponding
to the application of a symmetry h ∈ Gc(M) and the arrow corresponding to
the induced change of the Lagrangian: L → h∗L = L + δhL, details are given
in Figure 6.
Full naturality of ζ would yield ζ

δhL

hgh−1(h∗F )=h∗ζg(F ), that is,

hζ=ζδhL . (9.13)

But for such a ζ, the renormalization group flow would be trivial:

Proposition 9.1. Let ζ ∈ Z(M,L).
(i) The cocycles hζ and ζδhL are equivalent for every h ∈ Gc(M),

(hζ)g = Z−1ζ
δhL
g Zg , g ∈ Gc(M) , (9.14)

with Z
.= ζ

δhL

h−1 .
(ii) If h ′ζ=ζδh′ L for all h ′ ∈ Gc(M), then hζ = ζ for all h ∈ HL.

Proof. (i) We use the calculations in Section 7 leading to Proposition 7.2,
but now for a generic element h ∈ Gc. The transformed cocycle hζ takes
values in R(M, h∗L). The second equation in the proposition then as-
sumes the form (9.14). This follows by the following chain of identities:

(hζ)g (F )
(7.5)
= h∗ζh−1ghh−1

∗ (F )
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= hh∗L(h−1
h∗L

h∗)ζh−1gh (h−1
∗ hh∗L)h−1

h∗L
(F )

(5.25)
= hh∗L

(
δh−1h∗L + ζh−1gh (δhL + h−1

h∗L
(F ))

)
(4.11)
= hh∗Lζ

δhL

h−1ghh
−1
h∗L

(F )

(cr)
= hh∗L(ζδhL

h h−1
h∗L

ζ
δhL
g g−1

h∗L
ζ

δhL

h−1gh∗L)(F )
(cr)
= (ζδhL

h−1)−1ζ
δhL
g (ζδhL

h−1)g (F ), (9.15)

where “(cr)” stands for the cocycle relation (5.26) in R(M, h∗L).
(ii) For k , g ∈ Gc(M), the assumption (9.15) together with (9.13) implies

ζ
δk L
g = (k ζ)g = (ζ

δk L

k −1)−1ζ
δk L
g (ζ

δk L

k −1)g
(cr)
= (ζ

δk L

k −1)−1ζ
δk L

k −1g . (9.16)

Using that ZV
1 ZV

2 = (Z1Z2)V (for Z1, Z2 ∈ R(M,L), V ∈ Int(M,L)) we
see that Gc(M) � g �→ ζg is a representation

ζk −1ζg = ζk −1g = ζg (ζk −1)g . (9.17)

Let now h ∈ HL, and let g ∈ Gc(M), F ∈ Floc(M,L). Choose h ′ ∈
G(h ,O) for some relatively compact, causally convex region O ⊂ M with
supp g , suppF ⊂ h̃(O). Then according to Proposition 7.2, we have

(hζ)g (F ) = ζ−1
(h ′)−1ζg ζ

g
(h ′)−1(F ) . (9.18)

The claim now follows from (9.17).
�

The assumption of full naturality would exclude important examples of
anomalies in perturbation theory. Instead we require that the equivalence class
of ζ is natural for the categorical structure described above.

Remark 9.2. The algebra A(M,L, ζ) is well defined for any choice of the co-
cycle ζ satisfying the defining conditions given in formula (5.26) and directly
before it. In particular, we may choose ζg = idF loc(M,L) for all g ∈ Gc(M).
However, this would not be an optimal choice for a model (M,L) with a non-
trivial anomaly (as one knows, e.g., from perturbative computations) since
this might prevent the existence of physical states (as, e.g., the vacuum in
Minkowski space) for A(M,L, ζ).

10. The Unitary AMWI in Perturbation Theory

10.1. Perturbation Theory

The unitary anomalous MWI (see (5.27)) is an additional axiom. In this sub-
section, we show that an essentially equivalent condition holds in perturbation
theory. In perturbation theory (in terms of formal power series in the coupling



The Unitary Anomalous Master Ward Identity

constant λ), for a free (i.e. quadratic) Lagrangian L, S-matrices are defined as
time-ordered exponentials

S(λF ) ≡ eiλF
T ≡ 1 +

∞∑
n=1

(iλ)n

n!
F ·T . . . ·T F , F ∈ Floc(M) . (10.1)

Here ·T , the renormalized time-ordered product, is a binary, commutative
and associative product [36] on a subspace (which contains the local function-
als) of the space of all functionals on the configuration space (not restricted
to solutions of the field equation, i.e. in the “off-shell formalism”11). S(λF ) is
realized as formal power series of functionals. Floc(M) is the vector space of
polynomial local functionals on M . The formal parameter λ serves only as a
bookkeeping device, so for the simplicity of notation we are going to omit it
and write formal power series as infinite sums.

The perturbative S-matrix S is supposed to satisfy the causal factoriza-
tion condition (2.13) (see Remark 2.3). It can be constructed by the Epstein–
Glaser method [35], generalized to curved space times [14,44,45]. It is not
uniquely determined by the condition (2.13), but according to Stora’s Main
Theorem of Renormalization [32,60,61] any other solution Ŝ is of the form

Ŝ = S ◦ Z (10.2)

where Z is a formal power series

Z(F ) =
∞∑

n=0

1
n!

Zn(F⊗n) (10.3)

of linear symmetric maps Zn : Floc(M)⊗n → Floc(M), and the composition
has to be understood in the sense of insertions of a formal power series into
another one. The formal power series Z are invertible (in the sense of formal
power series) and generate a group, the renormalization group in the sense
of Stúckelberg and Petermann [65], see also [32]. Applying (10.2) to the local
functional F = 0, we immediately get Z(0) = Z0 = 0. However, for a better
agreement with Definition 4.2 of R(M,L) and with Proposition 4.10, we may
add a constant functional c ∈ R: in terms of Z̃

.= Z + c (hence Z̃(0) = c) the
Main Theorem formula (10.2) can equivalently be written as

Ŝ(F ) = βZ̃(S(F )) , F ∈ Floc(M) , (10.4)

with βZ̃
.= βret

Z̃
or βZ̃

.= βadv
Z̃

(both choices coincide) and β
ret/adv

Z̃
defined in

Proposition 4.10.
The ambiguity on the choice of S can be restricted by renormalization

conditions which then also restrict the renormalization group to a subgroup.

11This differs from the formalism often used in physics, where the time ordered products are

identified with Fock space operators, corresponding to functionals which vanish on solutions

of the free field equation (“on-shell formalism”). Since the functionals vanishing on solutions

do not form an ideal for the off-shell time-ordered product, the on-shell time-ordered product

is less well behaved.
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For our purposes, we need unitarity, field equation (FE) (i.e. the Schwinger–
Dyson equation (2.14), see [13, Sect. 7]), Action Ward Identity and field inde-
pendence and denote the corresponding subgroup of the renormalization group
by R0. (For details see [32] or [28, Chap. 3.1].) We do not impose covariance
conditions since we want to study the behavior of S under symmetry trans-
formations g ∈ Gc(M) which would destroy these conditions. Since they are
compactly supported we are interested in the subgroup Rc of R0 of renor-
malization group elements with compact support (in the sense of (4.2)). The
explicit definition of Rc is given in Appendix C.

Note that (10.1) implies d
dλ |λ=0S(λF ) = iF and hence Z1 = id. For a

generally covariant formalism, however, this choice is too restrictive [45]. We
take this generalization into account by admitting nontrivial, but still invertible
Z1. For convenience, we continue to use the formulation for the S-matrix as
in formula (10.1) and obtain the more general S-matrices by composition with
the renormalization group map Z as in equation (10.2).

We use as an input the anomalous MWI from Brennecke and one of us [10,
Thm. 7], see also [28, Chap. 4.3]. This identity is equivalent to a renormalized
version of the Quantum Master Equation in the BV formalism (see [36]) and
can be understood as an infinitesimal version of the unitary AMWI introduced
in our paper, the latter turns out from Theorem 10.3 below.

Gc(M) and Rc can be equipped with appropriate topologies and made
into infinite-dimensional Lie groups modelled on locally convex topological
vector spaces (for more details, see, e.g., [51,55,56] and [Rej16] for review in
the context of perturbative AQFT). For Gc(M) this is relatively easy, since
Diffc(M) is a standard example of an infinite dimensional Lie group, while
C∞

c (M,Aff(Rn)) is just the gauge group of point-wise affine transformations
(smooth functions with values in the finite-dimensional Lie group of affine
transformations on R

n), hence also standard. The action of diffeomorphisms
on the group of affine transformations is smooth, so the Lie group structure on
the semidirect product follows. As for Rc, note that this is a subspace of the
space of formal power series with values in multilinear maps from Floc(M) to
Floc(M), which in itself is a topological vector space, so Rc can be equipped
with the induced topology.

Note that we avoid the more subtle aspects of infinite dimensional differ-
ential geometry, since here we work with very explicit formulas and the precise
choice of a setting for infinite dimensional calculus is not that relevant.

Let LieGc(M) denote the Lie algebra of Gc(M) (Definition 5.1) and LieRc

the Lie algebra of Rc. The anomalous MWI states that there exists a linear
map Δ : LieGc(M) → LieRc such that

eiF
T ·T

(
∂XF + ∂XL − ΔX(F )

)
=

∫ (
eiF
T ·T Xφ(x)

) δL

δφ(x)
(10.5)

for all F ∈ Floc(M), X ∈ LieGc(M) and with the action

∂XG[φ] .=
∫

δG

δφ(x)
Xφ(x) (10.6)
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for G ∈ Floc(M), and with ∂XL
.= ∂XL(f) with f ≡ 1 on suppX, where

the functional derivatives are considered as densities. This defines a map from
LieGc(M) to Γ(TE (M, Rn)), the space of vector fields on E (M, Rn), by X �→
∂X . The relation to the renormalized BV Laplacian � of [36] is given by
�F (∂X) ≡ ΔX(F ).

Remark 10.1. The statement that ΔX ∈ LieRc is not given in the original
formulation of the AMWI (in [10, Thm. 7] or [28, Chap. 4.3]), but apart
from this the geometrical formulation of the AMWI (10.5) is equivalent to
the original one, as one sees from the following translation (for illustration
see [28, Example 4.2.1] and [34]). In the mentioned references the AMWI is
formulated in terms of the local functional A

.=
∫

d4x h(x)Q(x) δL(f)
δφ(x) (where

h ∈ D(M), Q is a polynomial in φ and its partial derivatives and f |supp h = 1),
the pertinent derivation12 δA ≡ δhQ

.=
∫

d4x h(x)Q(x) δ
δφ(x) and the anomaly

map F �→ ΔA(eF
⊗) ≡ Δ(eF

⊗;hQ). Now, A and δA can be obtained as follows:
for a smooth curve (gλ) in Gc(M) with g0 = e and with tangent vector X ∈
LieGc(M) at λ = 0 we set

h(x)Q(x) .= Xφ(x) =
d

dλ

∣∣∣
λ=0

(gλφ)(x) (10.7)

and consequently

δAG ≡ δhQG = ∂XG (10.8)

for G ∈ Floc(M), in particular A = ∂XL. In this paper, we write −ΔX(F ) for
the anomaly map Δ(eF

⊗;hQ).
The statement that ΔX ∈ LieRc for X ∈ LieGc(M) is proved in Ap-

pendix C. It expresses that the Stückelberg–Petermann group has an addi-
tional purpose (besides describing the non-uniqueness of the perturbative S-
matrix by the Main Theorem (10.2)): it also characterizes the anomalies of
the MWI, restricted to fields Q which are of first order in φ. This is analogous
to the two different purposes of the (nonperturbative) renormalization group
R(M,L) (Definition 4.2) worked out in this paper: the automorphisms β

ret/adv
Z

of A(M,L) (with Z ∈ R(M,L), see Proposition 4.10) and the characteriza-
tion of the anomaly map g → ζg (belonging to the unitary AMWI (5.27)) by
ζg ∈ R(M,L).

For perturbative, scalar QED, the equivalence of the on-shell MWI and
the unitary MWI13 expressing global U(1)-symmetry is proved in [34, Thm. 4.1].
We now generalize this result in different ways, we prove it for the anoma-
lous MWI and for arbitrary models and arbitrary symmetry transformations
g ∈ Gc(M).

Remark 10.2. In the following Theorem, we use the simple form of the S-
matrix as in (10.1). Using instead a general S-matrix by composition with
a renormalization group map Z would require in the result only a change

12In [28] the derivation δA of [10] is denoted by δhQ.
13The unitary MWI is also an on-shell statement.
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to an equivalent cocycle, as explained in Definition 5.6 and Proposition 5.7.
(The proofs of Lemma 5.4 and Proposition 5.7 apply also to the perturbative
framework considered here, because the definition of Rc C.1 is analogous to
the Definition of R(M,L) 4.2 reduced to the special case V = 0.)

Theorem 10.3. In formal perturbation theory (i.e. the equations hold in the
sense of formal power series), the on-shell AMWI and the unitary AMWI are
equivalent in the following sense:

(i) The on-shell AMWI (i.e., (10.5) mod δL
δφ ) implies the unitary AMWI,

S ◦ gL(F ) = S ◦ ζg (F ) mod
δL

δφ
for all g ∈ Gc(M) , F ∈ Floc(M),

(10.9)

with a cocycle ζ taking values in Rc and with supp ζg ⊂ supp g , g ∈
Gc(M).

(ii) The unitary AMWI (10.9) implies the on-shell AMWI (10.5) where X is
the tangent vector at λ = 0 of a smooth curve (gλ) in Gc(M) with g0 = e
and the anomaly map ΔX is given by ΔX = d

dλ

∣∣
λ=0

ζgλ . It holds that
supp ΔX ⊂ suppX.

Proof. (i) Let g ∈ Gc(M). We choose a smooth curve λ �→ gλ ∈ Gc(M) with
g0 = e and g1 = g and let Xλ ∈ LieGc(M) be defined by d

dλg
λ = Xλgλ. In

the spirit of Remark 5.8 we search for a smooth curve λ �→ ζ−1
gλ ∈ Rc with

ζ−1
e = id and

d

dλ
S

(
gλ
Lζ−1

gλ (F )
)

= 0 mod
δL

δφ
. (10.10)

Inserting then λ = 0 and λ = 1 into S ◦gλ
L ◦ ζ−1

gλ , we obtain the unitary AMWI
(10.9).

We get

d

dλ
gλ
∗ G[φ] =

d

dλ′

∣∣∣
λ′=λ

(gλ′
gλ−1

)∗gλ
∗ G[φ]

=
d

dλ′

∣∣∣
λ′=λ

gλ
∗ G[gλ′

gλ−1
φ]

=
∫

d4x
δgλ

∗ G

δφ(x)
[φ]Xλφ(x) = ∂Xλgλ

∗ G[φ] (10.11)

(for G ∈ Floc(M)); by using this result we perform the differentiation and
obtain the condition

S
(
gλ
Lζ−1

gλ (F )
) ·T

(
∂Xλgλ

Lζ−1
gλ (F ) + ∂XλL + gλ

∗
d

dλ
ζ−1
gλ (F )

)
= 0 mod

δL

δφ
.

(10.12)

We insert the anomalous MWI (10.5) and find
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S
(
gλ
Lζ−1

gλ (F )
) ·T

(
ΔXλ(gλ

Lζ−1
gλ (F )) + gλ

∗
d

dλ
ζ−1
gλ (F )

)
= 0 mod

δL

δφ
.

(10.13)

We thus get the wanted family λ �→ ζ−1
gλ as the unique solution of the differ-

ential equation

d

dλ
ζ−1
gλ = −(gλ

∗ )−1ΔXλgλ
Lζ−1

gλ , (10.14)

with the initial condition ζ−1
g0 = id. Since

gλ
∗

−1
ΔXλgλ

L ∈ LieRc , (10.15)

as explained in the next paragraph, it follows that ζ−1
gλ ∈ Rc, in particular

ζg ∈ Rc.
The claim (10.15) follows from ΔXλ ∈ LieRc. In detail, let μ �→ Υλ

μ be
a smooth curve in Rc with Υλ

0 = idF loc and ΔXλ = d
dμ

∣∣
μ=0

Υλ
μ. Then, analo-

gously to Lemma 5.4, using the formulas from Appendix C, also (gλ−1)LΥλ
μ gλ

L =

δgλ−1L + gλ
∗

−1Υλ
μ gλ

L lies in Rc, and (10.15) follows by applying d
dμ |μ=0.

To prove the statement on the support of ζg , we choose gλ such that
supp gλ ⊂ supp g , 0 ≤ λ ≤ 1 and thus supp ΔXλ ⊂ suppXλ ⊂ supp g . Let
F,G ∈ Floc(M) with suppF ∩supp g = ∅. We have supp (Z(F +G)−Z(G)) ⊂
suppF for Z ∈ Rc (see [12, formula (6.3)] or Proposition 4.4) and hence

supp gλ
∗ (ζ−1

gλ (F + G) − ζ−1
gλ (G)) ⊂ suppF . (10.16)

Thus with gλ
L(•) = gλ

∗ (•) + δgλL, we find

ΔXλgλ
Lζ−1

gλ (F + G) = ΔXλ
(
gλ
Lζ−1

gλ (G) + gλ
∗ (ζ−1

gλ (F + G) − ζ−1
gλ (G))

)
= ΔXλgλ

Lζ−1
gλ (G) (10.17)

and

ζg−1(F + G) = F + G +
∫ 1

0

dλ
d

dλ
ζ−1
gλ (G) = F + ζ−1

g (G) (10.18)

i.e. supp ζg = supp ζ−1
g ⊂ supp g .

It remains to show that ζ satisfies the cocycle identity. As shown in
Proposition 5.3, the cocycle identity

S ◦ ζgh (F ) = S ◦ ζh ◦ (ζg )h (F )

holds after evaluation of both sides on on-shell configurations. However, G �→
S(G) is not injective as a map from local functionals to functionals on-shell.
We solve this problem in the following way: we add a source term 〈φ, q〉 to
the free Lagrangian L. This does not change the time ordered product. From
(10.5), we see that also the anomaly map ΔX is not changed; hence, this holds
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also for the pertinent ζ satisfying the unitary AMWI. By Proposition 5.3, we
conclude

S ◦ ζgh (F ) = S ◦ ζh ◦ (ζg )h (F ) mod
δL

δφ
+ q (10.19)

for all sources q, hence for all field configurations. Since the off-shell S-matrix
is injective, we obtain the cocycle relation.

(ii) The assertion is obtained by applying d
dλ |λ=0 to the unitary AMWI

(10.9) for λ �→ gλ. The statement on the support follows from the fact that for
any neighborhood U of suppX we can find a smooth curve gλ with supp gλ ⊂
U and d

dλ |λ=0gλ = X. Thus, supp ΔX ⊂ U for all neighborhoods of suppX
and hence supp ΔX ⊂ suppX. �

If the unitary AMWI (10.9) is anomaly free, then this holds also for the
AMWI (10.5); explicitly, if ζgλF = F for a certain F ∈ Floc(M) and in a
neighborhood of λ = 0, then ΔX(F ) = 0. From the proof, we see that the
reversed statement holds in the following sense: if, for a certain F ∈ Floc(M)
and a suitable choice of the curve (gλ), it holds that ΔXλ(gλ

LF ) = 0 for all
λ ∈ [0, 1], then S(gLF ) = S(F )mod δL

δφ .

10.2. Scaling Anomaly

We determine the anomaly in a special case—the dilations in 4-dimensional
Minkowski space M, which are a combination of a structure preserving embed-
ding ρ with an affine field redefinition Φ. We study the massless real scalar field
case, i.e., L

.= 1
2 (∂φ)2, and we work with the additional renormalization con-

dition that the time-ordered product scales almost homogeneously (see [32]).
Let R � λ �→ gλ be a 1-parameter subgroup of Gc with generator X ∈ LieGc

which acts on field configurations as

Xφ(x) =
d

dλ

∣∣∣
λ=0

gλφ(x) = β(x) (1 + xμ∂μ)φ(x) (10.20)

with λ ∈ R, β ∈ D(M, R). Let

β|U = b ∈ R , (10.21)

for some open convex neighborhood U of the origin. Then for x ∈ e−|b|U , we
have

gλφ(x) .= φ(x eλb) eλb , λ ∈ [−1, 1] . (10.22)

In view of the AMWI, we compute

∂XL
(10.6)
= −

∫
d4x �φ(x)Xφ(x)

(10.20)
= −

∫
d4x β(x)∂μjμ(x) (10.23)

with the dilation current

jμ(x) =
(
φ(x) + xν∂νφ(x)

)
∂μφ(x) − 1

2
xμ∂νφ(x)∂νφ(x) . (10.24)



The Unitary Anomalous Master Ward Identity

We want to compute ΔX(F ) =
∑∞

n=0(ΔX)(n)(F⊗n)/n! (understood as
formal power series in F ) for the particular local functional

F [φ] .=
∫

d4x f(x)φ(x)2/2 with supp f ⊂ e−|b|U . (10.25)

Note that supp gλ
∗ F ⊂ U for λ ∈ [−1, 1]. By using (10.6), we obtain

∂XF [φ] = b

∫
d4x

δF

δφ(x)
(1 + xμ∂μ)φ(x)

= b

∫
d4x f(x)

(
1 +

1
2
xμ∂μ

)
φ(x)2 . (10.26)

The sequence (ΔX)(n)(F⊗n) can be computed by solving the unitary
AMWI (10.5) by induction on n, see [10, formula (5.15)] or [28, formula
(4.3.10)]. In 0th order, we use the conservation law for the dilation current
in the massless theory and conclude that Δ(0) = 0, in agreement with the
general results of [10]. In first order, we obtain

(ΔX)(1)(F ) = ∂XF + i F ·T ∂XL + i

∫
d4x

(
F ·T Xφ(x)

)
�φ(x) (10.27)

and in second order

(ΔX)(2)(F⊗2) = 2i F ·T ∂XF + 2i F ·T (ΔX)(1)(F ) − F ·T F ·T ∂XL

−
∫

d4x
(
F ·T F ·T Xφ(x)

)
�φ(x) . (10.28)

Since the MWI holds true in classical field theory, that is, for tree diagrams,
the only potentially nonvanishing contributions come from local terms of the
loops F ·T ∂XL[0], F ·T ∂XF [0] and F ·T F ·T ∂XL[0]. Integrating by parts, we
note that

∂XL =
∫

d4x ∂μβ(x)jμ(x) , (10.29)

so due to our assumption on β and f given in (10.21) and (10.25), the only
nonvanishing contribution to ΔX(F ) comes from F ·T ∂XF [0].

With D2 being the renormalized fish diagram,i.e.,

D2(z) =
(
DF (z)

)2∣∣
renormalized

= D2(−z) (10.30)

(where DF is the Feynman propagator of the massless scalar field), and by
using the Action Ward Identity, we compute

F ·T ∂XF [0] = b

∫
d4xd4y f(x)f(y)

((
1 +

1
2

yμ∂y
μ

))
D2(x − y) . (10.31)

We may symmetrize, that is, we may replace (1 + 1
2 yμ∂y

μ)D2(x − y) by

((
1 +

1
4
(xμ∂x

μ + yμ∂y
μ

))
D2(x − y) =

(
1 +

1
4
(xμ − yμ)∂x

μ

)
D2(x − y)

=
1
4

∂x
μ(x − y)μD2(x − y) . (10.32)
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Using DF (z) = −1
4π2

1
z2−i0 , we obtain

zμD2(z) =
1

8π2
∂μDF (z) for z �= 0 . (10.33)

Moreover, since both sides have unique extensions from D ′(R4\{0}) to D ′(R4)
which preserve almost homogeneous scaling, they agree everywhere. Inserting
this result, we end up with

ΔX(F ) =
1
2
(ΔX)(2)(F⊗2) = i F ·T ∂XF [0] =

b

32π2

∫
d4x (f(x))2 . (10.34)

Here, we have taken into account that (ΔX)(n)(F⊗n) = 0 for all n ≥ 3.
Proceeding by induction on n, this can be seen as follows (for details see [10,32]
and [28, Chaps. 3.1 and 4.3]): writing∫

d4y

n∏
j=1

(
d4xj f(xj)

)
Δ(n)(x1, . . . , xn; y) .= (ΔX)(n)(F⊗n)

the terms contributing to Δ(n)(x1, . . . , xn; y) are (up to constant prefactors)(
φ2(x1) ·T . . . ·T φ2(xn−1) ·T φ(y)Xφ(y)

)
δ(xn − y),(

φ2(x1) ·T . . . ·T φ2(xn) ·T �φ(y)Xφ(y)
)

(
φ2(x1) ·T . . . ·T φ2(xn) ·T Xφ(y)

)
�φ(y),(

φ2(x1) ·T . . . ·T φ2(xn−2)
)
bδ(xn−1 − y, xn − y) , (10.35)

note that the last term is coming from(
F ·T (n−2) ·T (ΔX)(2)(F⊗2)

)
=

(
F ·T (n−2)

)
(ΔX)(2)(F⊗2) .

Now we use that

supp Δ(n)(x1, . . . , xn; y) ⊂ Δn+1
.= {(x1, . . . , xn, y) ∈ M

n+1 |x1 = · · · = xn = y} , (10.36)

that is, on M
n+1 \ Δn+1 the contributions to Δ(n)(x1, . . . , xn; y) cancel out.

This holds even on the whole manifold M
n+1. To wit, looking at the causal

Wick expansion of the terms given in (10.35), all coefficients (which are C-
valued distributions depending on the relative coordinates) scale almost ho-
mogeneously with a degree smaller than 4n, as one verifies by power count-
ing. Since we require that the extension of the time ordered products to the
thin diagonal preserves almost homogeneous scaling, terms proportional to
∂aδ(x1 − y, . . . , xn − y) cannot be produced.

Proposition 10.4. The anomaly ζ associated to the 1-parameter group (gλ) acts
on

F [φ] =
∫

d4xf(x)φ(x)2/2

as

ζgλ(F ) = F +
λb

32π2

∫
d4x (f(x))2 + c(λ) , λ ∈ [−1, 1] (10.37)

with constant functionals c(λ) not depending on F with c(0) = 0 and c′(0) = 0.
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Moreover c(λ) can be removed by a suitable renormalization.

Proof. Obviously, the formula (10.37) for ζgλ satisfies the necessary condi-
tion d

dλ |λ=0ζgλ(F ) = ΔX(F ). We have to show that there exist a c(λ) (with
the mentioned properties) such that ζgλ(F ) satisfies the differential equation
(10.14), that is,

− d

dλ
ζ−1
gλ (F ) = (gλ

∗ )−1ΔX(gλ
Lζ−1

gλ (F )) (10.38)

by using that Xλ = X.
First note that, since Z(G+a) = Z(G)+a for any Z ∈ Rc, G ∈ Floc(M)

and a ∈ C, the assertion (10.37) can equivalently be written as

ζ−1
gλ (F ) = F − λb

32π2

∫
d4x (f(x))2 − c(λ) , λ ∈ [−1, 1] . (10.39)

Now we insert (10.39) into the r.h.s. of (10.38) and use the facts that
ΔX(G + C) = ΔX(G) for G ∈ Floc(M) and any constant functional C (as
one easily sees from (10.5)), that supp δgλL ∩ supp gλ

∗ F = ∅ and that ΔX is
additive on functionals with disjoint support (property (iii) of z ∈ LieRc in
Appendix C) and obtain

(gλ
∗ )−1ΔX(gλ

Lζ−1
gλ (F )) = (gλ

∗ )−1ΔX(δgλL) + (gλ
∗ )−1ΔX(gλ

∗ F ) . (10.40)

We have gλ
∗ F =

∫
d4x

(
e−2λbf(e−λbx)

)
φ(x)2/2, hence

(gλ
∗ )−1ΔX(gλ

∗ F ) =
b

32π2

∫
d4x e−4λbf(e−λbx)2

=
b

32π2

∫
d4x f(x)2 . (10.41)

Inserting (10.39) also into the l.h.s. of (10.38), we see that (10.39) satisfies
(10.38) iff

d

dλ
c(λ) = (gλ

∗ )−1ΔX(δgλL) ; (10.42)

taking also into account that c(0) = 0, c(λ) is uniquely fixed.
To remove c, we use a renormalization Z ∈ R0 with

Z(F ) = F , Z(δgλL) = δgλL − c(λ) . (10.43)

Since F is quadratic in φ, we may use the result of Proposition 5.7 that the
cocycle belonging to the renormalized time ordered product is the equivalent
cocycle ζ ′

gλ = Z−1ζgλZgλ

. For the latter, we find

c′(λ)
(10.37)

= ζ ′
gλ(0) = Z−1ζgλZgλ

(0)

= Z−1ζgλ(gλ
L)−1Z(δgλL)

= Z−1ζgλ(gλ
L)−1

(
δgλL − c(λ)

)
= Z−1ζgλ

(
δ(gλ)−1L + (gλ

∗ )−1δgλL − c(λ)
)

= Z−1ζgλ

(−c(λ)
)

= 0 (10.44)
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where we used

δ(gλ)−1L + (gλ
∗ )−1δgλ

L = 0 and ζgλ

(
0 − c(λ)

)
= ζgλ

(
0
) − c(λ) = 0 .

(10.45)

This concludes the proof. �

We can also compute the action of global scaling transformations using
the concepts of Section 8. Namely, let hλ ∈ HL act on configurations φ as

hλφ(x) = eλbφ(xeλb) , x ∈ M . (10.46)

Then, given f and λ, we choose U such that supp f ⊂ e−|λb|U and find for all
such U

θhλ(F )
(8.1)
= ζgλ(F ) − ζgλ(0) = F +

λb

32π2

∫
d4x f(x)2 . (10.47)

The induced change of the Lagrangian vanishes, since for g ∈ D(M, R) we
have

δζ,hλL(g)[φ]
(8.5)
= ζgλ(0)[gφ] − ζgλ(0)[0] = 0 . (10.48)

Finally, we may look at the anomalous Noether Theorem 7.3 which simplifies
in our case since the transformation gλ does not change the causal structure.
Following the proof of that theorem, we split

δgλL = Q+ + Q− (10.49)

such that suppQ+ ∩ J−(e|λb|U) = ∅ and suppQ− ∩ J+(e|λb|U) = ∅ and find
for supp f ⊂ U and β(x) = b for x ∈ e|λb|U

S(θhλ(F )) = S(Q−)−1S(hλ
∗F )S(Q−) . (10.50)

10.3. Axial Anomaly

Another famous example of an anomaly is the axial anomaly. For a massless
Dirac field ψ in 4-dimensional Minkowski space, the axial current

ja
μ

.= ψγμγ5ψ (10.51)

is conserved as a consequence of the Dirac equation. It is the Noether current
corresponding to the symmetry

gψ(x) .= eiα(x)γ5
ψ(x), gψ(x) .= gψ(x) = ψ(x) eiα(x)γ5

, α ∈ D(M, R) ,

(10.52)

namely with the free Lagrangian

L
.= iψγμ∂μψ (10.53)

we have

δgL =
∫

d4x α(x)∂μja
μ(x) . (10.54)

We compute the anomaly ζg on F =
∫

d4x jμ(x)Aμ(x) with the vector current
jμ = ψγμψ and an external electromagnetic potential Aμ ∈ D(M, R4). As
shown in [13], the formalism of the present paper can be extended to Fermi
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fields by adding external Grassmann parameters in an appropriate way. For
quadratic expressions in the basic Dirac field, these parameters are not needed.

As in the case of scaling we choose a 1-parameter group gλ with gλψ(x) .=
eiλα(x)γ5

ψ(x). Its generator X acts on ψ and ψ as

Xψ(x) =
d

dλ

∣∣∣
λ=0

gλψ(x) = iα(x)γ5ψ(x) , Xψ(x) = ψ(x)iα(x)γ5. (10.55)

Since gλ
∗ F = F we obtain ∂XF = d

dλ |λ=0 gλ
∗ F = 0 and, by using (10.54), we

get ∂XL = d
dλ |λ=0 δgλL = δgL. Since gλ1gλ2 = gλ1+λ2 it holds that

Xλgλφ(x) =
d

dλ′

∣∣∣
λ′=0

gλ′
gλφ(x) = Xgλφ(x), that is, Xλ = X. (10.56)

As in the case of scaling, only the divergent loop graphs contribute to
the anomaly. We consider the distributions D• ∈ D ′(R4n)

Dμ1,...,μn;ν(x1 − y, . . . , xn − y) .=
(
jμ1(x1) ·T · · · ·T jμn

(xn) ·T ja
ν (y)

)c[0] ,

(10.57)

the upper index “c” means that we select the contribution of all connected
diagrams. By Furry’s theorem (which is a consequence of charge conjugation
invariance of the time ordered product), Dμ1,...,μn;ν vanishes for n odd. By
using the inductive Epstein–Glaser construction of the time ordered product,
one shows that the divergence of Dμ1,...,μn;ν with respect to ν and y vanishes
outside of the origin and is therefore a derivative of the δ-function

n∑
i=1

∂ν
xi

Dμ1,...,μn;ν
.= pμ1,...,μn

(∂)δ (10.58)

where p• is a family of homogeneous polynomials of the partial derivatives
∂νi

xi
with degree 3n + 4 − 4n = 4 − n. It is symmetric under permutations of

the index i and odd under parity. The only nontrivial case is n = 2 where
pμ1μ2(∂) = cεμ1μ2ρσ∂ρ

x1
∂σ

x2
with some constant c ∈ R. An explicit calculation

yields c = 1
2π2 (for a derivation of this result based on the Epstein–Glaser

method, see [33]), under the condition that the Ward identities for the vector
current are satisfied, i.e., ∂μi

xi
Dμ1,...,μn;ν = 0 for all 1 ≤ i ≤ n.

We compute ΔX as in the previous section and find

ΔX(F ) = −1

2
F ·T F ·T ∂XL[0]

= −1

2

∫
d4x1d4x2d4y Aμ1(x1)Aμ2(x2)α(y) ∂ν

y Dμ1,μ2;ν(x1 − y, x2 − y)

=
1

2

∫
d4x1d4x2d4y Aμ1(x1)Aμ2(x2)α(y) cεμ1μ2ρσ∂ρ

x1
∂σ

x2
δ(x1 − y)δ(x2 − y)

=
c

2

∫
d4y α(y)(∂ρAμ1)(y)(∂σAμ2)(y)εμ1μ2ρσ

= − 1

16π2

∫
α dA ∧ dA

(10.59)

with the 1-form A
.= Aμdxμ.
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In order to compute ζgλ(F ), we also have to determine ΔX(gλ
LF ). We

first study ΔX(δgλL). Also here the only possible contribution comes from the
triangle diagram

ΔX(δgλL) = −1

2
(δgλL ·T δgλL ·T ∂XL)c[0]

= λ2
∫

d4xd4yd4z α(x)α(y)α(z) ∂μ
x ∂ν

y ∂ρ
z

(
ja
μ(x) ·T ja

ν (y) ·T ja
ρ (z)

)c
[0]

(10.60)

since for an even number of factors ja the correlation functions can be renor-
malized to coincide with those of the vector current, and thus their divergences
vanish, and for 5 factors the divergence of the correlation function with respect
to one factor is of the form

aμνρσδ (10.61)

with a tensor of 4th order which is symmetric with odd parity, hence a• = 0.
The divergence of the triangle diagram does not vanish, actually it is of the
form

∂ρ
z

(
ja
μ(x) ·T ja

ν (y) ·T ja
ρ (z)

)c[0] = − 1
6π2

εμνσ1σ2∂
σ1
x ∂σ2

y δ(x − z, y − z)

(10.62)

(see, e.g. , [33]). Inserting it into (10.60) we see that also this term does not
contribute, i.e. ΔX(δgλL) = 0.

Also mixed terms which possibly could contribute to the value of ΔX
on the sum G

.= gλ
LF = F + δgλL vanish. To explain this first note that

∂XG = ∂XδgλL = 0, since gλ
∗ ja = ja. In second order in G, the statement

follows from
(
j ·T ja ·T ∂ja

)c[0] =
(
j ·T j ·T ∂j

)c[0] = 0 by Furry theorem. For
n > 2, we obtain

(ΔX)(n)(G⊗n)[0] = (ΔX)(n)(G⊗n)c[0] = in
(
G·T n ·T ∂XL

)c[0] , (10.63)

where we first use that (ΔX)(n) is supported on the thin diagonal (see (10.36))
and then (10.5). In addition, we have taken into account that (since (ΔX)(2)

(F⊗2) ∈ R) there is no connected diagram contributing to
(
G·T (n−2) ·T (ΔX)(2)

(F⊗2)
)

=
(
G·T (n−2)

)
(ΔX)(2)(F⊗2). By suitable renormalization (respecting

the mentioned renormalization conditions), one can reach that
(
j(x1) ·T . . . ·T j(xk) ·T ja(xk+1) ·T . . . ·T ja(xn) ·T ∂ja(y)

)c
[0] = 0 for n > 2 .

(10.64)

Hence,

ΔX(G) =
1
2
(ΔX)(2)(F⊗2) = ΔX(F ) . (10.65)

So we obtain

gλ
∗

−1
ΔXgλ

L(F ) = ΔX(F ) . (10.66)
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Proceeding analogously to the scaling anomaly (Proposition 10.4), we can
now solve the differential equation for ζgλ(F ) and obtain

ζgλ(F ) = F − λ

16π2

∫
α dA ∧ dA . (10.67)

11. Conclusions and Outlook

In the program of constructing algebraic quantum field theories [20], we suc-
ceeded in incorporating both aspects of causality: the causal independence of
spacelike separated regions as well as a dynamical law by which future and past
in a region of causal dependence are fixed. We have proven the time-slice ax-
iom and constructed the general expression for the relative Cauchy evolution.
We have used the latter to obtain the stress-energy tensor as an unbounded
operator, improving on the results of [16], where only the derivation obtained
as the commutator with the stress-energy tensor could be reconstructed.

In addition to a classical Lagrangian which fixes the dynamics only in the
case of the free theory and the subalgebra of Weyl operators, we introduced a
cocycle on a group of classical symmetries with values in the renormalization
group. Together with the Lagrangian this specifies the dynamics. Moreover, it
describes whether classical symmetries of the Lagrangian are unbroken in the
quantized theory, and allows a direct characterization of the renormalization
group flow induced by anomalies. This means that anomalies appear when a
classical symmetry is broken in the process of quantization and the departure
from the classical expression is quantified in terms of a certain renormaliza-
tion group cocycle. The transformation of the S-matrix obtained this way may
be interpreted as a quantum symmetry arising from the classical symmetry
modified by the cocycle. Such quantum symmetries can then be unitarily im-
plemented, which is the content of our anomalous Noether theorem. We have
also shown that in perturbation theory, the derivative of our cocycle is related
to the BV Laplacian or the anomaly term in the perturbative anomalous Mas-
ter Ward identity. This emphasizes the fact that our formulation indeed allows
one to upgrade classical symmetries to quantum symmetries and their relative
difference is reflected by the presence of anomalies.

There is one essential point missing in our construction, namely the im-
plication of the spectrum condition, related to the existence of a vacuum,
stability of states etc.[7]. There have been various attempts to understand this
implication for the structure of the algebra, starting from Sergio Doplicher’s
“algebraic spectrum condition” [26], including Rainer Verch’s approach to an
algebraic concept of wave front sets [67], but it is fair to say that there is not
yet a fully satisfactory answer. From our experience with perturbation theory,
we know that the spectrum condition imposes constraints on the choice of co-
cycles which lead to the occurrence of anomalies. Ignoring the slight difference
between R(M,L0) and the Stückelberg–Petermann renormalization group (see
Remarks 4.3 and 4.11), we strongly presume that, due to the main theorem
of renormalization [12,32,61] and Proposition 5.7, the equivalence class of the
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cocycle is uniquely fixed. We may therefore formulate the remaining open prob-
lem in the algebraic construction of quantum field theories as the problem to
determine this equivalence class.

In this paper, we treated only scalar theories, but we included also an
example of computation of an anomaly for fermions along the line of [13]. It
would be desirable to cover also gauge theories. We plan to return to this
problem in future work.
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Appendix A. Functionals and Generalized Fields

Definition A.1. The (functional) support of a map F : E (M) → C is the
smallest closed subset N of M such that F [φ + ψ] = F [φ] for all φ, ψ ∈ E (M)
with suppψ ∩ N = ∅.

A local functional F ∈ Floc(M) is a map F : E (M) → R with compact
support which satisfies the Hammerstein relation

F (φ + χ + ψ) = F (φ + χ) − F (χ) + F (χ + ψ) (A.1)

for φ, χ, ψ ∈ E (M) with suppφ ∩ suppψ = ∅.
A generalized field is a map A : D(M) → Floc(M) with suppA(f) ⊂

supp f such that

A(f + g + h) = A(f + g) − A(g) + A(g + h) (A.2)

whenever supp f ∩ supph = ∅. Two generalized fields A,A′ are equivalent if

supp (A − A′)(f) ⊂ supp (f − 1) ∀f ∈ D(M) . (A.3)

The support of a generalized field A is defined by

suppA = {x |x ∈ suppA(f) ∀ f ≡ 1 near x} (A.4)

Note that x ∈ suppA(f) for every f with f ≡ 1 near x if x ∈ suppA(f ′)
for some f ′ with f ′ ≡ 1 near x. Namely we can split f ′ = f0 + f1 + f2 with
f = f0 + f1 and x �∈ supp f1,2 and supp f2 ∩ supp f0 = ∅. Then,

A(f ′) = A(f) − A(f1) + A(f1 + f2) (A.5)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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and

suppA(f ′) ⊂ suppA(f) ∪ suppA(f1) ∪ suppA(f1 + f2)

⊂ suppA(f) ∪ supp f1 ∪ supp f2 ,

hence x ∈ suppA(f) if x ∈ suppA(f ′).
Obviously, for a generalized field A it holds that

suppA ⊂
⋃

f∈D (M)

suppA(f) . (A.6)

Proposition A.2. Equivalent generalized fields have the same support.

Proof. Let A′ be equivalent to A and x �∈ suppA. Then, there exists an f0 ≡ 1
near x such that x �∈ supp A(f0). Since

suppA′(f0) ⊂ suppA(f0) ∪ supp (A′ − A)(f0)) ⊂ suppA(f0) ∪ supp (f0 − 1) ,

we see that x �∈ suppA′(f0), hence x �∈ suppA′. �

We can characterize equivalence classes of generalized fields by their rel-
ative action.

Definition A.3. Let A be a generalized field. The relative action of A is a map
δA : D(M) → Floc(M) defined by

δA(ψ)[φ] = A(f)[φ + ψ] − A(f)[φ] , f ≡ 1 on suppψ . (A.7)

To see that this definition does not depend on the choice of f , let f ′ be
another choice. We split f ′ = f0 + f1 + f2 with f = f0 + f1 and suppψ ∩
supp f1,2 = ∅ and supp f2 ∩ supp f0 = ∅. Then, the relation (A.5) holds true;
and since suppA(f1) ⊂ supp f1 and suppA(f1 + f2) ⊂ supp f1 ∪ supp f2, we
have A(f1)[φ + ψ] = A(f1)[φ] and A(f1 + f2)[φ + ψ] = A(f1 + f2)[φ]. This
yields the assertion.

Proposition A.4. Two generalized fields are equivalent iff their relative actions
are equal.

Proof. Let A,A′ be generalized fields. If they are equivalent, then supp (A −
A′)(f) ⊂ supp (f − 1) for all f . Let f ≡ 1 on suppψ. We then have

δA(ψ) − δA′(ψ) = A(f)[• + ψ] − A(f) − A′(f)[• + ψ] + A′(f)
= (A − A′)(f)[• + ψ] − (A − A′)(f) = 0 (A.8)

since supp (f − 1) ∩ suppψ = ∅.
Let on the other side δA = δA′, f ∈ D(M) arbitrary and x �∈ supp (f−1).

There exists a neighborhood V of x such that f ≡ 1 on V . Then, for all ψ
with suppψ ⊂ V

(A − A′)(f)[• + ψ] = δA(ψ) − δA′(ψ) + (A − A′)(f) = (A − A′)(f) (A.9)

hence x �∈ supp (A − A′)(f), i.e. A and A′ are equivalent. �

The proposition leads to a criterion for the support of a generalized field:
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Proposition A.5. Let A be a generalized field and let supp δA be the smallest
closed subset N of M such that δA(ψ) = 0 for all ψ ∈ D(M \ N). Then, it
holds that

suppA = supp δA . (A.10)

Proof. Let x ∈ suppA. Then for any neighborhood V of x and any f ≡ 1 on
V , there exists some ψ with suppψ ⊂ V such that

0 �= A(f)[• + ψ] − A(f) = δA(ψ) . (A.11)

The opposite inclusion follows by essentially the same argument. �

We now look at generalized fields with compact support and set

A(1)[φ] = δA(χφ)[0] , χ ∈ D(M) , χ ≡ 1 on suppA (A.12)

A(1) does not depend on χ, namely for χ′ ≡ 1 on suppA we have

δA(χ′φ)[0] = A(f)[χ′φ] − A(f)[0] = A(f)[χ′φ] − A(f)[χφ] + δA(χφ)[0].
(A.13)

(where f ≡ 1 on suppχ ∪ suppχ′) and supp (χ′ − χ) ∩ suppA = ∅, hence
A(f)[χ′φ]−A(f)[χφ] = δA((χ′ −χ)φ)[χφ] = 0. We also have A(1) = A′(1) for
A,A′ equivalent.

We have found a map A �→ A(1) from generalized fields with compact
support to local functionals. On the other hand, we can also consider a map
from local functionals to generalized fields

F �→ AF , AF (f)[φ] = F [fφ] . (A.14)

The associated relative action can be written as

δAF (•)[φ] = F [φ + •] − F [φ] (A.15)

by choosing f ≡ 1 on suppF ; hence suppAF = supp δAF = suppF . We also
find

AF (1)[φ] = δAF (χφ)[0] = F [χφ] − F [0] = F [φ] . (A.16)

with χ ≡ 1 on suppF . Moreover, the generalized field AA(1) built from the local
functional A(1) is equivalent to A, since δAA(1)(ψ) = A(1)[• + ψ] − A(1)[•] =
δA(ψ).

Appendix B. Interpolating Metrics

In this Appendix, we show that, given two Lorentz metrics g0, g1 on the man-
ifold M for which the manifold becomes globally hyperbolic, there exists a
sequence of 5 metrics, starting with g0 and ending with g1, such that for each
neighboring pair all pointwise convex combinations are Lorentz metrics for
which M is globally hyperbolic, see (2.11).

We choose time functions ti associated to gi, i = 0, 1, with timelike
differentials dti such that supp (t1 − t0) is compact and such that the convex
combinations λdt1 + (1 − λ)dt0 nowhere vanish, 0 ≤ λ ≤ 1 (always possible in
more than 2 dimensions).
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There exists a vector field X with 〈dti,X〉 = 1, i = 0, 1. In a first step, we
define metrics g′

i with larger lightcones (i.e. g′
i ≥ gi) for which X is timelike.

In the second step, we define a metric g01 whose lightcone contains X and is
contained in the lightcones of both metrics. We obtain a sequence of 5 metrics,

g0 ≤ g′
0 ≥ g01 ≤ g′

1 ≥ g1 (B.1)

such that for each neighboring pair all convex combinations are globally hy-
perbolic Lorentz metrics.

In detail, we construct the metrics g′
0, g′

1 and g01 as follows: we define
Riemannian metrics γi by

γi(Y, Y ) = 2ai〈dti, Y 〉2 − gi(Y, Y ) , i = 0, 1 . (B.2)

with ai = (g−1
i (dti, dti))−1. Let di = γi(X,X). We set

g′
i

.= kdt2i − γi (B.3)

with k > 1 + d0, 1 + d1, 2a0, 2a1 to be determined later, and find that X is
timelike for g′

0 as well as for g′
1 and that g′

i ≥ gi, i = 0, 1. We then construct
g01 by

g01
.= b dt0dt1 − c(dt20 + dt21) − γ0 − γ1 (B.4)

where b, c > 0 are chosen such that X is timelike for g01 and such that each
vector field Y which is timelike for g01 and future directed with respect to
t0 + t1 is also timelike and future directed for g′

i, i = 0, 1.
The condition that X is timelike for g01 requires b > 2c + d0 + d1. Let

now Y be a future directed vector field with respect to g01 and t0 + t1. We
see immediately that then 〈dti, Y 〉 > 0 for both values of i. We then use the
inequality

2〈dt0, Y 〉〈dt1, Y 〉 ≤ (λ〈dt0, Y 〉2 + λ−1〈dt1, Y 〉2) , λ > 0 (B.5)

with λb = 2c as well as with λ−1b = 2c. We obtain the inequalities

0 < g01(Y, Y ) ≤
(

b2

4c
− c

)
dt2i − γ0(Y, Y ) − γ1(Y, Y ) , i = 0, 1 . (B.6)

We therefore choose k such that
b2

4c
− c ≤ k . (B.7)

and get g′
i(Y, Y ) > 0, i = 0, 1.

Appendix C. Proof of ΔX ∈ LieRc

In this appendix, we prove that the anomaly map ΔX of the perturbative
AMWI (10.5) lies in LieRc. In a first step we list the defining properties
of the subgroup Rc of the Stückelberg Petermann renormalization group R0

determined by the renormalization conditions given at the beginning of Sect. 10
and obtain the defining properties of LieRc; we also give an explicit formula
for the Lie bracket. In a second step we verify that the latter are satisfied by



R. Brunetti et al. Ann. Henri Poincaré

ΔX(F ) ≡ Δ(eF
⊗;hQ) by using the structural results for Δ(eF

⊗;hQ) derived in
[10, Sect. 5.2] (see also [28, Chap. 4.3]).

Definition C.1. The compactly supported subgroup Rc of the Stückelberg–
Petermann renormalization group is the set of formal power series Z =

∑∞
n=0

1
n!Zn, with n-linear symmetric maps Zn of local functionals to local functionals
(cf. (10.3)), with the following properties:
(1) Z1 is invertible,
(2) Z(F +G) = Z(F )−Z(0)+Z(G) for suppF ∩suppG = ∅, F,G ∈ Floc(M),
(3) Z(Fψ + δL(ψ)) = Z(F )ψ + δL(ψ) for ψ ∈ D(M, Rn),
(4) Z(F )ψ = Z(Fψ) for ψ ∈ D(M, Rn),
(5) suppZ is compact where the support is defined analogously to (4.2).

Mind the difference: the n-fold time ordered product F1 ·T · · · ·T Fn

is a C-valued functional, but Z(F ) is an R-valued functional (by definition
of Floc) —this is the reason why there is no defining property for Rc cor-
responding to the renormalization condition unitarity for the S-matrix. An
immediate consequence of the property (4) is that suppZ(F ) = suppF for all
F ∈ Floc(M) and thus Z(0) = Z0 = const. Note that condition (2) implies
due to multilinearity of the coefficients of Z the general locality condition
(2’) Z(F + G + H) = Z(F + H) − Z(H) + Z(G + H) with F,G as above and

H ∈ Floc

(see [12, Appendix B]); and, assuming the validity of (4), (3) can equivalently
be written in the simpler form
(3’) Z(F + δL(ψ)) = Z(F ) + δL(ψ) for ψ ∈ D(M, Rn).

We also point out that each Zk, k ∈ N, satisfies the properties (2)-(5)
individually—this observation is crucial for the proof of the Main Theorem
[32]. It is obvious for (2), (4) and (5); and (3’) can be verified as follows:

Zk

(
F + δL(ψ)

)
=

dk

dλk

∣∣∣
λ=0

Z
(
λ(F + δL(ψ))

)

=
dk

dλk

∣∣∣
λ=0

Z
(
λF + δL(λψ) + cψ(λ)

)

=
dk

dλk

∣∣∣
λ=0

(
Z(λF ) + δL(λψ) + cψ(λ)

)

= Zk(F ) + δk1 δL(ψ), (C.1)

where cψ(λ) is a constant and we use that δL(ψ) = 〈φ,Kψ〉 + 1
2 〈ψ,Kψ〉

and that Z(F + c) = Z(F ) + c (since supp c = ∅). In particular note that
Z1

(
δL(ψ)

)
= δL(ψ).

As mentioned in Subsection 10.1, we do not require that Z1 = id, in
contrast to [12,32], but in agreement with [46] . The reason is that the func-
tional F as the argument of S has to be understood as related to a quantum
observable F̂ by normal ordering. A symmetry transformation then acts on
F in two ways: via its action on field configurations and via its action on the
normal ordering prescription. The latter action is incorporated in the action
of the renormalization group in the unitary AMWI.
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Usually, a normal ordering prescription is of the form

F̂ = α−1
H F with αH

.= e
1
2 〈H, δ2

δφ2 〉 (C.2)

where H coincides up to smooth terms with an admissible 2-point function
of the free theory (i.e. satisfying microlocal spectrum condition). We point
out that the algebra of quantum observables F̂ is abstractly defined and the
formula (C.2) has to be understood in a formal sense, because α−1

H F does, in
general, not exist as a functional, see [12] and [37]. If the normal ordering is
changed one should keep F̂ fixed and therefore has to admit changes of F .
More explicitly, if the new normal ordering is characterized by H ′ we find

F̂ = α−1
H′ Z1(F ) and hence Z1 = αH′−H . (C.3)

Note that Z1 is well defined on polynomial functionals, since H ′−H is smooth.
The set of admissible H is restricted by the above condition (5) on Z1. ((1)-(4)
are obviously satisfied, because Z1 = αH′−H is invertible, linear, acts trivially
on δL(ψ) = 〈φ,Kψ〉 + 1

2 〈ψ,Kψ〉 and commutes with functional derivatives.)
Explicitly, since Z1 must have compact support, also H ′ −H and all its deriva-
tives restricted to the diagonal must have compact support. Note that H ap-
pearing in (C.2) is a solution of the free field equation, but all further admissible
H ′ do not necessarily have this property.

The associated Lie algebra LieRc is defined as follows: it is the set of
formal power series z =

∑∞
n=0

1
n!zn, with n-linear symmetric maps zn of local

functionals to local functionals, with the properties
(i) id + λz1 is invertible for λ sufficiently small,

(ii) z(F +G) = z(F )−z(0)+z(G) for suppF ∩ suppG = ∅, F,G ∈ Floc(M),
(iii) z(Fψ + δL(ψ)) = z(F )ψ for ψ ∈ D(M, Rn),
(iv) z(F )ψ = z(Fψ) for ψ ∈ D(M, Rn),
(v) the support of z,

supp z
.= {x ∈ M | for every neighborhood U � x there exist F,G ∈ Floc(M),

with suppF ⊂ U such that z(F + G) �= z(G)}, (C.4)

is compact.
To obtain an explicit formula for [za, zb]LieRc

, we use that it is connected
to the product in the Lie group Rc by the expansion

Za(λ)Zb(λ)Za(λ)−1Zb(λ)−1 = id + λ2 [za, zb]LieRc
+ O(λ3) , (C.5)

where

Zi(λ) .= id + λ zi , i = a, b . (C.6)

By taking into account that

z(F + λG) = z(F ) + λ〈z′(F ), G〉 + O(λ2) , (C.7)

where

〈z′(F ), G〉 .=
d

dλ

∣∣∣
λ=0

z(F + λG) =
∞∑

n=1

1
(n − 1)!

zn(F⊗(n−1) ⊗ G) (C.8)
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is linear in G, we obtain

Z(λ)−1(F ) = F − λ z(F ) + λ2 〈z′(F ), z(F )〉 + O(λ3) . (C.9)

By using (C.7) and (C.9), we see by a straightforward computation that
Za(λ)Zb(λ)Za(λ)−1Zb(λ)−1 is indeed of the form given in (C.5), and we can
read off that

[za, zb]LieRc
(F ) = 〈(za)′(F ), zb(F )〉 − 〈(zb)′(F ), za(F )〉 . (C.10)

Remark C.2. The renormalization group Rc may be considered as a group of
diffeomorphisms of the space of local functionals. Accordingly, the associated
Lie algebra corresponds to a Lie algebra of vector fields equipped with the
usual Lie bracket.

Finally, we are going to prove that ΔX ∈ LieRc. In first order, ΔX is
a second order differential operator, due to the two contractions in the time
ordered product F ·T ∂XL (see (10.27)), terms with more contractions do not
occur since ∂XL is of second order in φ. Hence id + λ(ΔX)1 is invertible
on polynomial local functionals, so condition (i) holds. ΔX evidently also
satisfies conditions (ii) and (v). Condition (iv) follows from the condition field
independence (which implies formula (5.27) of [10]), due to the fact that Gc(M)
contains only affine field redefinitions, hence the term in equation (5.26) of [10]
does not contribute.

(iii) is not explicitly mentioned in [10]. It follows from the following cal-
culation. We use the notation ψL and ψ∗ introduced in the proof of Lemma 5.4,
so that (iii) assumes the form zψL = ψ∗z, and find

S(ψLF ) ·T ΔX(ψLF )
(10.5)
=

d

idλ

∣∣∣
λ=0

S
(
gλ
L(ψLF )

)
mod

δL

δφ

(5.33)
=

d

idλ

∣∣∣
λ=0

S
(
(g ′λψ)Lgλ

LF
)

mod
δL

δφ

(FE)
=

d

idλ

∣∣∣
λ=0

S
(
gλ
LF

)
mod

δL

δφ

(10.5)
=

d

idλ

∣∣∣
λ=0

S
(
F + λΔX(F )

)
mod

δL

δφ

(FE)
=

d

idλ

∣∣∣
λ=0

S
(
ψL(F + λΔX(F ))

)
mod

δL

δφ

= S(ψLF ) ·T (ψ∗ΔX(F )) mod
δL

δφ

We now use the fact that ΔX(G + c) = ΔX(G) for G ∈ Floc(M) and a
constant functional c and add a source term 〈φ, q〉 to the Lagrangian, thus
replacing L by Lq

.= L + 〈φ, q〉. Neither the time ordered product nor ΔX nor
ΔX(ψLq

F ) depend on q, and S(ψLq
F ) = ei〈ψ,q〉S(ψLF ). Hence, the equation

S(ψLF ) ·T ΔX(ψLF ) = S(ψLF ) ·T (ψ∗ΔX(F )) (C.11)
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holds everywhere. Since the off-shell S-matrix is invertible with respect to ·T ,
we arrive at condition (iii).

References

[1] Araki, H.: Mathematical theory of quantum fields. Oxford Science Publications,
Oxford (2009)

[2] Balduf, P.-H.: Propagator-cancelling scalar fields. arXiv:2102.04315

[3] Bernal, A.N., Sanchez, M.: Smoothness of time functions and the metric splitting
of globally hyperbolic spacetimes. Commun. Math. Phys. 257, 43–50 (2005)
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