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Visual Abstract

Understanding the neural basis of emotions is a critical step to uncover the biological substrates of neuro-
psychiatric disorders. To study this aspect in freely behaving mice, neuroscientists have relied on the observa-
tion of ethologically relevant bodily cues to infer the affective content of the subject, both in neutral conditions
or in response to a stimulus. The best example of that is the widespread assessment of freezing in experi-
ments testing both conditioned and unconditioned fear responses. While robust and powerful, these ap-
proaches come at a cost: they are usually confined within selected time windows, accounting for only a
limited portion of the complexity of emotional fluctuation. Moreover, they often rely on visual inspection and
subjective judgment, resulting in inconsistency across experiments and questionable result interpretations. To
overcome these limitations, novel tools are arising, fostering a new avenue in the study of the mouse naturalis-
tic behavior. In this work we developed a computational tool [stimulus-evoked behavioral tracking in 3D for
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rodents (SEB3R)] to automate and standardize an ethologically driven observation of freely moving mice.
Using a combination of machine learning-based behavioral tracking and unsupervised cluster analysis, we
identified statistically meaningful postures that could be used for empirical inference on a subsecond scale.
We validated the efficacy of this tool in a stimulus-driven test, the whisker nuisance (WN) task, where mice are
challenged with a prolonged and invasive whisker stimulation, showing that identified postures can be reliably
used as a proxy for stimulus-driven fearful and explorative behaviors.

Key words: behavioral segmentation; DeepLabCut; mouse behavior; mouse body language; mouse emotion;
whisker nuisance

Introduction
As with any behaving animal, naturalistic mouse behav-

ior incorporates innate strategies to balance explorative
and aversive responses to the surrounding environment.
Neuroscientists often exploit this dichotomy to design be-
havioral tests assessing mouse emotional behavior. Many
of these tests put the animal in a forced choice between a
putatively safe location versus a potentially threatening al-
ternative (Takao and Miyakawa, 2006; Komada et al.,
2008; Bailey and Crawley, 2009; Campos et al., 2013;
Kraeuter et al., 2019). Other approaches use stimulus-
driven tasks to assess the positive or negative valence of
the emotional response to a reward or fearful cue respec-
tively, using one specific behavioral output as a proxy to
infer emotional state (such as self-administration of a

positive stimulus or freezing in response to a threat;
Panlilio and Goldberg, 2007; Campos et al., 2013; Gafford
and Ressler, 2016). While extremely valuable, none of
these approaches address the dynamic change in the sub-
jects’ affective state over extended periods, limiting results
interpretation to circumscribed context rather than inter-
rogating the emotional fluctuation occurring during ecolog-
ical behavioral flow. Thanks to the advent of advanced
tools for behavioral tracking and unbiased computer-
driven classification, novel ethologically relevant methods
to classify mouse emotions are arising (Wiltschko et al.,
2015; Mathis et al., 2018; Nath et al., 2019; Dolensek et al.,
2020; Bohnslav et al., 2021; Hsu and Yttri, 2021;
Karashchuk et al., 2021; Luxem et al., 2022), promising a
new era in the use of mouse behavior as an optimal transla-
tional tool for neuropsychiatric research. To fully exploit the
potential of these methods, the field craves for open-ac-
cess resources to break-down and analyze the output. For
instance, using the pose-estimation software DeepLabCut
(DLC), it is possible to reliably track several bodily hotspots
on a behaving animal, allowing for virtually limitless identifi-
cation of animal behavioral components. However, every
new tracking configuration will require dedicated analysis
pipeline to swiftly transform DLC output files into interpret-
able results. Generate and sharing tools to perform this
transformation is an integral step to standardize behavioral
assessment across research laboratories, thus improving
interpretation and replicability. In this work, we conceptual-
ized an automated procedure to discriminate mouse body
postures on a subsecond scale that we named SEB3R
(stimulus-evoked behavioral tracking in 3D for rodents),
using a combination of machine-learning based behavioral
tracking and unsupervised cluster analysis. After visual-
izing;100 videos of freely moving mice responding to a
nonpainful whisker stimulation, we concluded that a
good predictor of mice affective response could be sim-
plified as the spatial location, along the vertical (z)-axis,
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Significance Statement

We combined novel technical advancements of system neuroscience with a traditional ethology-based be-
havioral observation to design a simple computational tool for behavior detection in freely moving mice.
Using machine learning-based behavioral tracking and unsupervised cluster analysis, we identified statisti-
cally meaningful postures on a subsecond scale. We validated this tool in the whisker nuisance (WN) task,
where mice are challenged with a prolonged and invasive whisker stimulation, showing that identified pos-
tures can be used as a proxy for stimulus-driven fearful and explorative behaviors. With this tool we aim to
automate, accelerate and standardize data collection across research laboratories, improving the quality
and reproducibility of behavioral studies in mice.
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of specific “bodily hotspots”: nose, eyes, neck, mid
back, lower back, tail attachment (Fig. 1a–c). More spe-
cifically, the relative position of one hotspot compared
with the others changes drastically according to specific
behavioral states such as spatial navigation, explorative

rearing, or passive avoidance (Fig. 1a–c). Taking advant-
age of the new-generation software for pose estimation
DeepLabCut (DLC; Mathis et al., 2018; Nath et al., 2019),
we tracked these hotspots in freely moving mice and used
the output coordinates to read mice body language. To

Figure 1. SEB3R pipeline. a–c, Examples of body postures determined by visual inspection (left) and corresponding coordinates
detected by DLC-3D. Bodily hotspots are indicated by colored dots (orange, nose; blue, eyes; pale red, neck; magenta, mid back;
purple, lower back; yellow, tail attachment). d, Top, Angular view of the arena for 3D motion capture. Bottom, Orthogonal view of
the same mouse during the WN. e, Design of the validation experiment. Top, Open field (OF). Bottom, Whisker nuisance task. f,
Schematic workflow of the SEB3R pipeline. g, A two-step cluster analysis eliminates interindividual variability. h, Schematic view of
BMs identified during the open field session, for both sexes. i, The final number of BMs is insensitive to size-biases, thus resulting
in analogous identification in both sexes (Extended Data Figs. 1-1, 1-2, 1-3, 1-4, 1-5, 1-6 show screengrabs for the critical outputs
of the SEB3R pipeline). ***p , 0.0001; ns, not significant.
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validate this method, we compared behavior in mice
navigating undisturbed an open field (OF) arena against
a group of littermates challenged with an invasive whisker
stimulation [whisker nuisance task (WN); McNamara et al.,
2010; Fontes-Dutra et al., 2018; Chelini et al., 2019;
Balasco et al., 2022a; Fig. 1e].

Materials and Methods
Animals
All experimental procedures were performed in accord-

ance with Italian and European directives (DL 26/2014,
EU 63/2010) and were reviewed and approved by the
University of Trento animal care committee and Italian
Ministry of Health. Animals were housed in a 12/12 h light/
dark cycle with unrestricted access to food and water. All
killings for brain explant were performed under anesthesia
and all efforts were made to minimize suffering. A total of
48 age-matched adult wild-type littermates of both sexes
(weight 25–35 g) were used for the study. All mice were
generated from our inbred CNTNAP2 colony with C57BL/
6 background (Balasco et al., 2022b). Thirty-six mice
were assigned to the whisker stimulation test, while 12
were assigned to the open field condition.

3Dmotion capture
A basic requirement for DLC tracking in 3D (DLC-3D) is

to capture the subject motion using (at least) two video
cameras in a stereo-configuration (Mathis et al., 2018; Nath
et al., 2019). To this goal, two video cameras (ImageSource
DMK27BUR0135 USB3-monochrome, equipped with
TAMRON 13VM308ASIRII objectives) were secured,
using a metal pedestal, on a board of laminated wood,
in orthogonal positioning respect to each other (Fig.
1d). At the corner of the base, two aluminum guides
were placed to ensure the stability of the cubic cage
during the test. This allowed us to replace the experi-
mental cage at every given animal, thus eliminating ex-
perimental biases because of the odor of other mice,
that could potentially alter the emotional state of the test
subject. Videos were acquired at a rate of 25 frames per
second (fps) using the OBS-studio software, and edited
using a commercially available software (OpenShot Video
Editor), before being analyzed with DLC. For detail about
how to use DLC-3D we recommend this link: https://
github.com/DeepLabCut/DeepLabCut/blob/master/docs/
Overviewof3D.md.

Behavioral testing
For all experiments, mice were previously acclimated

with the experimental setup for 4 d. For the first 3 d, mice
were placed into the experimental cage (a fiberglass cubic
box with open top; 25 � 25 � 20 cm) for 2min. This time
was extended to 10min on day 4 (day before the test). This
habituation scheme will be referred as heavy habituation
(HH in figures and tables) for the rest of the manuscript. On
the day of the test, mice were acclimated with the experi-
mental environment for 5min, before the beginning of the
recordings. To assess the efficacy of our pipeline in dis-
criminating between experimental conditions, a group of

12 mice underwent WN after only 2d of habituation [re-
ferred to as mild habituation (MH) in figures and tables]. All
experiments were performed in dim light.

Open field
Mice were placed and left free to navigate the experimental

cage for a total of 20min. Video recordings followed the
same chronological scheme of theWN to be able to compare
the two conditions with each other (Fig. 1e, top).

Whisker nuisance task (WN)
WN was performed with some variation compared with

what previously described (Chelini et al., 2019; Balasco et
al., 2022a). Before the beginning of the actual test, 3 min
of the animal freely moving in the open field (OF) arena
were videotaped as a baseline activity session. The test-
ing phase was composed of four sessions, lasting 3min
each. In the first session (SHAM), a wood stick was intro-
duced in the experimental cage, avoiding direct contact
with the animal. The following three sessions (T1–T2–T3)
consisted in stimulating mice’s whiskers by continuously
deflecting vibrissae using the wooden stick (at a fre-
quency of approximately three strokes per second; Fig.
1e, bottom).
To dissect the complexity of behavioral response, multi-

ple behavioral categories were independently quantified by
a trained observer. The identified categories, re-adapted
from previous version of the test (McNamara et al., 2010;
Fontes-Dutra et al., 2018; Chelini et al., 2019; Balasco et
al., 2022a), included fearful and curious behaviors. Fearful
behaviors were divided into active avoidance (time the ani-
mal spends actively moving away from the stick) and pas-
sive avoidance (time the animal spends in a defensive
posture consisting in curved back, protracted neck, and
stretched limbs or retracted in fully hunched posture; this
measure also included the time in freezing). Curious behav-
iors were divided in aided rearing (when the animals, during
a rearing action, leans on the arena’s walls investigating
the surrounding environment) and unaided rearing (when
the rearing is not supported by walls; this behavior usually
occurs toward the center of the arena and is associated
with stick exploration duringWN).

Tissue processing and immunofluorescence
Ninety minutes after the end of WN, mice were deeply

anesthetized with isoflurane and killed by decapitation.
Brains were excised, washed in 0.1% PBS and postfixed
overnight in 4% paraformaldehyde (PFA), switched to a cry-
oprotectant solution (80% PBS, 20% glycerol with 0.1% so-
dium azide) and stored at 4°C. Cryoprotected brains were
sectioned on a vibratome (Leica, VT1200) at 40-mm thick-
ness. Serial sections were collected in 24 separate compart-
ments and stored at 4°C in cryoprotectant solution.
Free-floating slices were rinsed three times in PBS

(10min each), then washed in PBS containing 0.2% de-
tergent (Triton X-100, Fisher, AC215680010) for 30min.
Tissue sections were then incubated in blocking solution
[2% bovine serum albumin (BSA), 1% fetal bovine serum
(FBS) in PBS] for 3 h and then transferred to primary
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antibody solution [2% BSA, 1% FBS, 1:1000 dilution of pri-
mary antibody (rabbit anti-Arc/Arg 3.1; Proteintech, catalog
316290-1-AP)] and incubated at room temperature for 24 h.
Then, sections were rinsed three times in PBS (5min each)
and placed in a fluorophore-conjugated (Alexa Fluor Plus
488) secondary antibody solution [1:300 dilution of donkey
anti-rabbit secondary antibody (Thermo Fisher Scientific,
AB_2762833) in PBS] for 24 h. Sections were then washed
5min in PB, mounted on superfrost slides, dried for 1 h and
coverslipped with fluorescent mounting medium (Southern
biotech 0100-01). Slides were stored at 4°C in the dark until
use.

Confocal microscopy and image analysis
A confocal laser scanning microscope Leica TCS-

SP8, equipped with a HC PL APO 20� objective and in-
terfaced with Leica LAS-X software was used to detect
ARC immunolabeling in the lateral (LA) and basolateral
(BLA) nuclei of the amygdala. Images were recorded at
a resolution of 1024 pixels square, 400-Hz scan speed.
Excitation/emission wavelengths were: 490/520 for
Alexa-488 fluorophore. Acquisition parameters were set
during the first acquisition and kept consistent for all the
images. Corrected fluorescence intensity (CFI) was quan-
tified using ImageJ software according to the formula: CFI
¼ integrated density – (area size � mean fluorescence of
background readings).

Data collection and analysis
Data collection for all studies was conducted by investi-

gators blind to experimental conditions. All statistical anal-
yses were conducted using JMP-pro software (JMP
Statistical Discovery LLC, 2023). For the purpose of this
study, we have used three different experimental settings
(open field, WN mild habituation and WN heavy habitua-
tion) to assess SEB3R ability to discriminate between ex-
perimental conditions. By consequence, the absolute time
spent in BMs was not a reliably comparable measure, be-
cause of noticeable changes in the animal’s behavior dur-
ing the SHAM session. These discrepancies are a direct
consequence of the animal familiarity with the experimental
setting (habituation regimen) or the lack of the stimulus in
the control condition. To overcome this technical limitation,
two separate normalization strategies where used. Time
spent in BMs was normalized using the habituation session
(first 3min of videorecording) as a reference baseline using
the formula: (number of frames during each test session –

number of frames during habituation session)/(number of
frames during each test session 1 number of frames dur-
ing habituation session), to demonstrate SEB3R ability to
discriminate between stimulus-independent and stimulus-
driven changes. Similarly, to demonstrate SEB3R ability to
discriminate between whisker-independent and whisker-
dependent behaviors we normalized the time spent in BMs
using the SHAM session as a reference with the formula:
(number of frames during whisker stimulation session –

number of frames during SHAM session)/(number of
frames during whisker stimulation session 1 number of
frames during SHAM session).

SEB3Rworkflow
The SEB3R pipeline is summarized in Figure 1f. To run

the MATLAB scripts, body-parts coordinates need to be
first identified using DLC-3D. For instruction about DLC
usage we suggest this link (https://github.com/DeepLabCut)
and the relative literature (Mathis et al., 2018; Nath et al.,
2019). As indicated on DLC-3D instructions, no major cam-
era requirements are needed, as long as the videos can be
reliably labeled to train the network. We recommend users
to choose carefully the cameras acquisition rate depending
on their experimental needs, as the final output of SEB3R
will provide posture identification for each individual frame.
Similarly, it is important to ensure both devices run at the
same acquisition rate and are temporally synchronized. As
for the neural network, for the validation experiment, we
used ResNet-50, but we see no reasons the pipeline would
not work with other options included in DLC. The body parts
required by the analysis are (shown in Fig. 1a–c): nose, eyes,
neck, mid back, lower back, and tail attachment.
After training your 3D network, analyze your videos and

save the output tracking file in .CSV format. For each sub-
ject, place all the tracking files into a folder labeled with
the animal identification (ID) number. Files should also
contain the same ID in the name. Then place all subjects’
folders into the same mother-folder. It is recommended,
for experiments composed of multiple sessions, to ana-
lyze videos from each session separately. Doing so, the
pipeline will provide a separate output for each of the ses-
sion, facilitating data analysis. In this case it is important
for all DLC-3D files to contain the same number of frames
analyzed.

SEB3R step 1
Identify meaningful postures in a single subject. Launch

the script PoseExtraction by selecting your mother-folder.
Assuming you have multiple tracking files for each subject
(like in the case of an experiment with multiple sessions
on the same mouse), the first step of SEB3R imports and
combines the columns containing the z-coordinates of
each subject. This step will ensure that postures identifi-
cation is uniformed across various experimental condi-
tions, limiting the risk of obtaining false-positive results.
Then, from the z-coordinates, and within each frame, the
linear distance between all the identified hotspot is calcu-
lated subtracting the values of each individual coordinate
with the value of all the others. This will result in a 15-by-N
matrix, with N ¼ sum of the number of frames contained
in the original coordinate files. This simple step eliminates
most of the interindividual variability because of discrepan-
cies in the animal dimensions, transforming the row coordi-
nates into relative distances scaled by the animal body size.
Using the relative distances matrix, the algorithm runs a k-
means clustering using a customized version of the MATLAB
function kmean: kmean_opt (De Landtsheer, 2019). This func-
tion uses the Elbow method, a statistical strategy to deter-
mine the number of k-mean clusters to choose (Thorndike,
1953). In our context, the advantage of this methods is to
identify a “K” number of clusters preventing any input from
the human user, thus achieving complete unsupervised iden-
tification. Each subject is processed independently, but the
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algorithm will sequentially run on all the files included in the
mother folder, providing the results of k-mean clustering
for each individual animal. The script runs for 5–10min per
subject, depending on your device, and outputs two fold-
ers containing a summary of the results of the clustering.
Clusters identified in this step correspond to statistically rel-
evant postures and will be recapitulated in an output file
(MouseIDDistMean.CSV) containing (1) the animal ID in the
first column; (2) the averaged distances between hotspots
sorted by individual postures (columns 2–16); (3) the posture
identification number for each row, on column 17 (Extended
Data Fig. 1-1). A copy of all the MouseIDDistMean.CSV files
for each subject will be saved in the folder named Mean
Distances, within the mother folder. These are the files that
will be used in step 2.

SEB3R step 2
Match postures identified within each subject to deter-

mine behavioral modules (BMs) replicated across the entire

experimental group. Launch the script ModulesExtraction
and select all the folder Mean Distances (containing the out-
put files named MouseIDDistMean.CSV) within the mother
folder. This script imports and combines all the averaged
distance matrices for each subject and runs a second k-
mean clustering, automatically matching postures identified
in different animals. In this case, the user needs to choose
the k-number of clusters to select to maximize BM repre-
sentation of in the cohort. A window will pop-up asking the
user to specify the k-number desired, that will correspond
to the final number of BM (Extended Data Fig. 1-2). To this
goal, it is recommended to use a k ¼ MIN(poses)1 1,
whereMIN(poses) is the minimum number of postures iden-
tified in a single subject. As an example, in our validation ex-
periment the lowest number of postures identified in a
single subject was 8, hence we chose a k¼ 9. This crucial
step converges highly similar poses (within and between
subjects) into uniform BMs replicated across all (or most)
animals, which can be used for comparisons, under the

Figure 2. Behavioral modules (BMs) identified by SEB3R. a–i, The plots report the DLC z-coordinates for each of the six bodily hot-
spots (nose, eyes, neck, mid back, lower back, and tail attachment) that allow to identify each of the nine BMs. A representative
frame is reported for each BM.

Research Article: Methods/New Tools 6 of 15

September 2023, 10(9) ENEURO.0514-22.2023 eNeuro.org

https://doi.org/10.1523/ENEURO.0514-22.2023.f1-1
https://doi.org/10.1523/ENEURO.0514-22.2023.f1-2


Figure 3. Behavioral recognition on a frame-by-frame resolution in the WN. a, Raster plot showing the occurrence of BMs in a pro-
totypical mouse for the entire duration of the WN. Each vertical bar (|) indicates a BM detected in the corresponding period (sham
session and trial sessions T1–T3). Stimulus onset at the beginning of each stimulation trial is indicated by a red arrow. b, Example

Research Article: Methods/New Tools 7 of 15

September 2023, 10(9) ENEURO.0514-22.2023 eNeuro.org



assumption that they are equally informative of the same
behavioral state. The final number of BMs obtained with
this method has minimal interindividual variability (Fig. 1g).
Furthermore, we found no differences in the number of
BMs identified in males and female subject (Fig. 1h,i), sug-
gesting that the animal body size does not influence the
detection of BMs. For all subjects, the matched pairs (pos-
ture-BMs) are recapitulated in the output file named
ModulesAssigned.CSV (Extended Data Fig. 1-3) that will
be directly saved in the mother folder. This file will be re-
quired to proceed with the third and last step.

SEB3R step 3
Assign BMs to each frame. Launch the script

AssignModulesAndQuantify and select the mother folder
and the ModulesAssigned.CSV file. The algorithm will im-
port, one-by-one, the Clustered.CSV files generated in
step 1. These files originate from the initial DLC-3D tracking
and contain: the animal ID in column 1, the z-coordinates
for each frame in columns 2–7, and the posture identifier
(i.e., clusters identified in step 1) assigned to each frame in
column 8 (Extended Data Fig. 1-4). Using the output of
step 2 (ModulesAssigned.CSV), the postures contained in
column 8 of Clustered.CSV are matched with the corre-
sponding BMs, generating an output file identical to the
Clustered.CSV, with the addition of a column 9 containing
BMs identifying number for each frame (MouseID.CSV;
Extended Data Fig. 1-5). The output files of this step will be
saved in the folder Modules located within each subject
subfolder (one file will be generated for each original DLC-
3D tracking files input at the beginning of step 1). Thanks
to this step, each frame is labeled with the appropriate BM,
providing behavioral recognition on a timescale that de-
pends on the original cameras acquisition frame-rate, al-
lowing absolute flexibility in analyzing time-dependent
changes in the behavioral flow. Figure 2 illustrates the nine
BMs detected in our validation experiment. Finally, for
each subject, the pipeline prints a file recapitulating the
total number of frames assigned to each independent BM
(FrequenciesMouseX.CSV; Extended Data Fig. 1-6), which
can be used as an outcome measure to quantify the ex-
pression of different behaviors over consecutive sessions
of the same test. In these files, each row corresponds to a
BM and each column contains the number of frames as-
signed to that BM for each separate session of the test, ac-
cording to the number of DLC-3D tracking files originally
provided.

Code accessibility
This code can run on any personal laptop on MATLAB-

2020 and subsequent versions. The MATLAB code for
SEB3R with the relative instructions are available on

public repository GitHub, at the following address: https://
github.com/gchelini87/SEB3R.
We also share the data resulting from our validation ex-

periments on g-node platform as an aid to familiarize with
the use of SEB3R: https://gin.g-node.org/gchelini/SEB3R_
Validation_Data/settings.

Results
Previous studies show that during the consecutive ses-

sions of the WN the mouse attitude toward the stimulus
(wooden stick) shifts drastically from a complex aversive
response to relaxed and explorative (Balasco et al.,
2022a). For this reason, this test was chosen to assess
whether the BMs detected with SEB3R (Fig. 2a–i) could
be used to reliably identify changes in stimulus-driven
fearful and curious behaviors over an extended experi-
mental session.

SEB3R provides subsecond behavioral detection
Figure 3 shows that BMs can be reliably identified on a

frame-by-frame resolution during the WN. All nine BMs
are detected throughout the four sessions (sham, T1–T3)
of the whisker stimulation task.
We found that BMs duration is highly variable, and the

majority of BMs events are composed of sequences of
one to ;20 frames, with a corresponding median of three
frames (120ms) that is shared by all three experimental
conditions (Fig. 3c). Exceptionally we observed some lon-
ger bouts spanning from 400–806 frames in all three ex-
perimental conditions (see an example in Movie 1). Given
our resolution of 25 fps (that is, each frame captures
40ms of action), we wondered whether there was a lower
threshold in the duration of BMs to be considered etho-
logically unreliable. To answer this question, we quantified
the cumulative percentage of time spent in BM bouts
shorter than three frames using the following formula:
[(number of frames in 1-frame long bouts 1 number of
frames in 2-frames long bouts) � 100]/(total number of
frames) (Fig. 3d). To note, and in keeping with what
shown in Figure 3c, manual quantification revealed that it
is common to record behavioral bouts resolving within
100 and 200ms, leading us to hypothesize that three
frames might be the lowest reasonable threshold for reli-
able detection of ethologically relevant behaviors.
To our surprise, we found that sequences lower than

100ms account for;11% of the total time in the WN (irre-
spectively to the habituation condition), while only ;8%
in the OF (Fig. 3d). More broadly, we found that BMs se-
quences are longer in the OF compared with both WN
conditions (Fig. 3c; Kruskal–Wallis’s test: mild vs heavy
habituation p¼ 0.49; mild habituation vs OF p, 0.0001;
heavy habituation vs OF p,0.0001). Moreover, this effect

continued
of BMs detected during the first 5 s of whisker stimulation in the WN; the x-axis reports the seconds after the beginning of whisker
stimulation in T1. c, Violin plot showing the spread in the duration of BMs sequences. d, Percentage of frames belonging to BMs se-
quences shorter than three frames (120ms) is lower in the OF condition compared with WN. e, Cumulative frequencies chart shows
that BMs sequences are longer in in the OF compared with WN (x-axis is cropped at a duration of 39 frames to better appreciate
the differences; all 3 curves perfectly overlap after this point). ***p , 0.0001.
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Figure 4. SEB3R discriminates stimulus-driven behavioral changes. a, Control condition (open field, OF). b, Whisker nuisance (WN)
with heavy habituation (HH). c, WN with mild habituation (MH). The percentage change in time spent in BMs varies depending on
the test session and experimental conditions. The heatmap scale indicates the percentage change in the time spent in each BM nor-
malized over the habituation session (baseline value¼0%); where the habituation session is the first of the five sessions in each of
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is abolished in curiosity-driven BMs 3-6-9 (Extended Data
Fig. 3-1). While our data do not allow to conclude that
bouts lower than 100-ms capture complete behavioral se-
quences, the discrepancy observed between OF and WN
suggests that the velocity of behavioral action increases
in response to the invasive stimulation. This indicates that
even the lowest detectable BMs sequences retain sub-
stantial biological valence. Speculatively, we interpret
these short bouts as transitioning frames from one BM to
another, rather than full behavioral sequences. However,
since we do not have instruments to definitively establish
this claim, we have included them as part of the total time
of BMs expression. We believe this kind of analysis could
be reliably used as an additional metric to investigate
qualitative behavioral differences; hence, we have in-
cluded a script to SEB3R toolbox to automatically extrap-
olate BMs sequence duration (SequenceDuration.m).

BMs identified using SEB3R discriminate stimulus-
driven changes in mouse behavior
To assess SEB3R ability to discriminate between experi-

mental conditions, we compared the percentage change in
time spent in each BM during the habituation phase with the
four consecutive sessions of the test. Predictably, no signifi-
cant differences were observed at any timepoint in the open
field (OF) condition (Fig. 4a). Conversely, we identified signif-
icant changes in the heavy habituation (BM1, prob . x2 .
0.02. BM3, prob . x2 . 0.005; BM4, prob . x2 . 0.0108;
BM5, prob . x2 . 0.011; BM6, prob . x2 . 0.023; BM8,
prob . x2 . 0.0001; BM9, prob . x2 . 0.0001; Fig. 4b)
and mild habituation (BM1, prob. x2 . 0.0013; BM3, prob
. x2. 0.0022; BM6, prob. x2. 0.0112; BM8, prob. x2

. 0.0001; BM9, prob. x2.0.0001; Fig. 4c) groups at sev-
eral different timepoints (descriptive statistics and p-values
of the Friedman’s test for nonparametric repeated measure
relative to this analysis are summarized in Extended Data
Fig. 4-1). Notably, the majority of the BMs (seven out of
nine) showed changes starting from the SHAM session,
when the stimulus (stick) was introduced in the arena,
but before the beginning of the whisker stimulation. This
data demonstrates that the exposure to a novel stimulus,
although not tactile, is sufficient to trigger a meaningful
change in mice behavioral state. Then, to specifically as-
sess the whisker-dependent changes in behavior, we
normalized BMs intensity as percentage variation from
the SHAM and compared the three consecutive sessions
of whisker stimulation (T1–T2–T3) with the baseline value
(SHAM¼ 0, after normalization), for all three experimen-
tal conditions. Data resulting from the control condition
(open field, OF) were normalized in analogous way, using
the second session of acquisition in replacement for the

SHAM. As a reference, we established that there were no
changes in the open field, in none of the timepoints com-
pared with the baseline (T1–T2–T3; Fig. 4d–l). In the mild
habituation group, instead, significant increase in the
expression of BM1 (T2 and T3, p, 0.0001), BM2 (T2,
p¼ 0.0006. T3. p, 0.0001), BM3 (T2, p,0.0001. T3,
p¼ 0.0002), BM5 (T3, p, 0.0034), BM6 (T2, p¼ 0.0077),
and BM9 (T2, p, 0.0077) were found, while a significant
decrease was observed for BM7 (T2 and T3, p, 0.0034)
and BM8 (T2, p¼ 0.0006, T3, p,0.0001). Finally, in heavy
habituation, a significant increase was found in BM3 (T2,
p¼ 0.0084. T3, p¼ 0.0016), BM4 (T1, p¼ 0.0016) and BM5
(T2 and T3, p¼ 0.006), while a significant decrease was
found in BM1 (T1, p¼ 0.0084), BM8 (T2, p¼ 0.0036) and
BM9 (T1, p, 0.0001. T2, p¼ 0.0005). Descriptive statistics
and the results of Friedman test with Wilcoxon test for post
hoc repeated measure multiple comparisons are sum-
marized in Extended Data Figures 4-2, 4-3, 4-4, 4-5, 4-
6, 4-7, 4-8, 4-9, 4-10; significant differences with SHAM
are graphically recapitulated in Figure 4m. Moreover, we
found that the mild habituation condition showed significant
increase in the expression of BM1 (T1, p¼ 0.01. T2,
p¼ 0.0027), BM2 (T2, p¼ 0.008. T3, p¼ 0.0004), BM3 (T2,
p¼ 0.008), BM8 (T2, p¼ 0.008), and BM9 (T2, p¼ 0.005)
compared with heavy habituation (asterisks in Fig. 4d,f,k,l;
descriptive statistics and results of Mann–Whitney test with
Steel–Dwass nonparametric multiple comparisons are
summarized in Extended Data Figs. 4-11, 4-12, 4-13).
Extended Data Figure 4-14 shows the absolute time
spent in BMs before normalization.
Altogether, these findings confirm that SEB3R classifi-

cation successfully identifies time-driven and stimulus-
driven changes in the expression of specific behaviors,
discriminating between different experimental conditions.

BMs are informative of the mouse emotional response
to whisker stimulation
To evaluate SEB3R reliability in identifying dynamic

changes in the mouse emotional state, we assessed the
linear correlation between the time spent in each BM and
the time spent into discrete behavioral categories quanti-
fied by a manual user during the WN. We observed that
behaviors indicative of fear and anxiety had a strong posi-
tive correlation with BMs 4 and 8, while being negatively
correlated with BMs 1-3-6-9 (Fig. 5a). More specifically,
among fear-related BMs, BM4 showed stronger correla-
tion with evasive behaviors (r¼ 0.42, p¼ 0.0002; Fig. 5b;
Movie 2), while BM8 showed stronger association with
passive avoidance response (r¼ 0.36, p¼ 0.001; Fig. 5c;
Movie 3). A mirrored trend was observed for explorative
rearing, where strong positive correlations were found for

continued
the three experimental conditions (control, WN-HH, and WN-MH). (Statistics are summarized in Extended Data Fig. 4-1.) d–l, Each
plot shows the percentage changes of BMs with respect to the SHAM session, for all three experimental conditions. Asterisks (*) in-
dicate p,0.05 between HH and MH. m, Diagram recapitulating significant differences between the SHAM session and each stimu-
lation trial. White ¼ no difference. Red ¼ significantly higher than SHAM. Blue ¼ significantly lower than SHAM. (Statistics are
summarized in Extended Data Figs. 4-2, 4-3, 4-4, 4-5, 4-6, 4-7, 4-8, 4-9, 4-10 for repeated measure and Extended Data Figs. 4-11,
4-12, 4-13 for between groups multiple comparisons). Error bars refer to SEM.
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BMs 1-3-6-9, while negative correlations was observed
for BMs 2-7-8 (Fig. 5a). As an example, Figure 5d shows
correlation between BM6 and total rearing time (r ¼ 0.92,
p, 0.0001; Movie 4). No correlation was found between
BM5 and the categories assessed (Fig. 5a), likely indicating
that this specific BM relates to an emotionally neutral be-
havior such as spontaneous spatial navigation (Pearson’s
correlation coefficients are summarized in Extended Data
Fig. 5-1; p-values of the correlations are summarized in
Extended Data Fig. 5-2). These data suggest that BMs
identified by SEB3R can be reliably used as a proxy to iso-
late multiple emotionally charged behaviors.

Fear-associated BM8 finds direct neural
correspondence in the basolateral amygdala
To further provide proof-of-principle evidence of the biolog-

ical relevance of our behavioral classification, we asked
whether BMs could be mapped within specific brain areas.

We therefore assessed the association between the activation
of the amygdaloid complex with freezing-associated BM8
(as shown in Fig. 5a,c) in the mild habituation group, aiming
to find correspondence with anxiety-related behaviors. To
probe for neural activation, we used immunofluorescent la-
beling of ARC, a protein coded by an immediate early gene
whose expression in the amygdala is activated by stressful
stimuli (Dirven et al., 2022). We quantified the fluorescent
intensity within the lateral (LA) and basolateral (BLA) nuclei.
Strikingly, in BLA, we found that ARC expression was posi-
tively correlated with BM8 selectively (r¼ 0.81, p¼ 0.001;
Fig. 6a,b). To the contrary, BLA ARC expression was nega-
tively correlated with BM6 (r ¼ �0.61, p¼ 0.05; Fig. 6a),
which was identified as indicative of explorative behavior.
No significant correlation was found between LA ARC ex-
pression and all BMs (Extended Data Fig. 6-1). These find-
ings suggest that blindly identified BMs correspond to
biologically relevant instances represented within specific
neural circuits.

continued
Figure 5. BMs correlate with discrete behavioral categories quantified by a trained user. a, Heatmap showing correlation between
BMs and behavioral categories. Color indicates strength and direction of Pearson’s r (summarized in Extended Data Fig. 5-1).
Asterisk indicates significant correlation (summarized in Extended Data Fig. 5-2). b–d, Left panels, Top charts, Correlated BMs and
behavioral categories show a similar temporal progression. Left panels, Bottom charts, Heatmaps showing the strength and direc-
tion of the correlations between BMs and behavioral categories. Center panels, Representative frames corresponding to each BMs
displayed in the left panel. Right panels, 3D triangulation of corresponding BMs. Error bars refer to SEM.

Movie 2. Example of a representative cluster of frames identified as BM4 taken from one of the original video files. BM4 was shown
to be mostly correlated with active avoidance response. [View online]

Movie 1. Example of the longest behavioral bout identified by SEB3R in the validation study; total length of the bout was 806 frames
corresponding to ;32 s. [View online]
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Discussion
In this work, we used a new-generation software for

mouse body tracking combined with a strategy for auto-
mated posture detection to achieve successful and bio-
logically relevant deconstruction of the mouse body
language during freely moving behavior. This approach
eliminates biases intrinsic of subjective rating strategies
while significantly reducing the time required for quantifi-
cation. Moreover, thanks to the frame-by-frame temporal
resolution (Fig. 3), it offers the flexibility to study behav-
ioral changes in selected time-windows as well as for
extended periods. This feature renders our approach
well-suited to ask questions beyond the simple categori-
cal quantification looking at presence of absence of a
behavioral outcome, allowing investigation of qualitative
features such as complexity, persistency, and flexibility of
the response to a stimulus. In addition, it detects the fluc-
tuations of ethologically relevant behaviors in real time; as
an example, SEB3R could be adapted to quantify freezing
in fear-conditioning paradigms or to track pursuit during
hunting. Finally, our approach would allow to investigate
the neural correlates of specific behavioral hallmarks by
combining behavioral parcellation with in vivo electro-
physiological recordings or optical imaging. To this point,
we showed that the frequency of BM8, putatively identi-
fied as associated with passive avoidance response (Fig.
6), was strongly correlated with activity-dependent ARC

immunolabeling in the BLA, thus suggesting that BMs are
not only valuable proxies for behavioral interpretation, but
have a well-defined neuroanatomical location to be ex-
ploited for in vivo studies.
Our validation experiments focused on a whisker-

guided response (WN), a task that triggers complex and
ambivalent reaction in wild-type mice (McNamara et al.,
2010; Fontes-Dutra et al., 2018; Chelini et al., 2019;
Balasco et al., 2022a). One major limitation of previous
versions of this approach consists in the fact that most
manually quantified behaviors show virtually the same
temporal progression depending on their biological va-
lence; anxiety-related behaviors dramatically increase
during the first trial and are followed by a sharp decline in
the second and third trials because of adaptation; an op-
posite tendency is observed for explorative categories
(Chelini et al., 2019; Balasco et al., 2022a). Thanks to
SEB3R and its unbiased extraction of BMs, we described
independent behavioral categories characterized by their
own temporal fluctuation as well as specific intrinsic interin-
dividual variability, demonstrating a more scrupulous selec-
tion of behavioral states. At the same time, the automated
quantification retained the capacity of discriminating be-
tween groups characterized by different affective states, as
testified by the differences observed between heavy habitu-
ation and mild habituation (Fig. 4). Given the parallelisms
and discrepancies observed with the manual quantification,

Movie 4. Example of a representative cluster of frames identified as BM6 taken from one of the original video files. BM6 was shown
to be mostly correlated with unaided rearing. [View online]

Movie 3. Example of a representative cluster of frames identified as BM8 taken from one of the original video files. BM8 was shown
to be mostly correlated with passive avoidance response. [View online]
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it is important to clarify the divergent nature of BMs with re-
spect to traditional behavioral characterization. Especially
for anxiety-related behaviors we have found significant cor-
relation with behavioral categories, but the strength of the
correlation was relatively weak (,0.5; Fig. 5a–c). This is not
only because of the unavoidable noise included in both
measurements, but also to the fact that the two measures
are not directly overlapping. BMs are, by definition, indirect
measures that can be used as a proxy to infer emotional
states, they are not the behavioral state itself. By the same
principle, correlation between manually and automatically
quantified rearing is virtually perfect, as in that case the vis-
ual observer is directly quantifying the posture rather than a
more complex behavioral construct. However, the remark-
able similarities between automated and manual quantifica-
tion, as in the case of the temporal dynamic of BM4 and its
correspondence with evasive behaviors (Fig. 5a,b), confirm
the efficacy of this computational approach in detecting
emotion-driven behaviors, even in the context of a mildly
emotionally loaded task, such as whisker stimulation. Thus,
SEB3R promises to be an effective tool to study affective re-
sponses in tasks with high emotional salience such as fear
conditioning.
This work aligns with recent advancement in system

neuroscience and a variety of novel computational meth-
ods to study animal behavior (Wiltschko et al., 2015;
Mathis et al., 2018; Nath et al., 2019; Dolensek et al.,
2020; Bohnslav et al., 2021; Hsu and Yttri, 2021;
Karashchuk et al., 2021; Luxem et al., 2022). Given this
context, it is worth mentioning the advantages and limita-
tions of this method. The main difference between SEB3R
and other methods resides in its low computational com-
plexity. k-mean cluster analysis is a relatively simple ap-
proach that does not compare in efficacy with emerging
mathematical models used in other approaches. As a re-
sult, behavioral segmentation achieved with SEB3R is lim-
ited compared with previous studies (Wiltschko et al.,

2015; Dolensek et al., 2020). By contrast, SEB3R’s reduc-
tionist approach degrades the behavioral complexity by
forcingly compressing some datapoints in an array of in-
terpretable behavioral modules, allowing the user to
achieve a meaningful decoding of behavioral flow, to be
used for translational inference. Another advantage of
SEB3R stands in its technical feasibility. After obtaining
behavioral tracking with DLC-3D, which has minimal tech-
nical needs per se (Mathis et al., 2018; Nath et al., 2019),
the pipeline runs on any personal or professional device,
without the need of a strong background in programming
or computational skills. Thanks to minimal technical re-
quirements of SEB3R we aim to provide the scientific com-
munity with a tool that uniforms behavioral segmentation
across research laboratories, allowing to investigate the af-
fective content of behavior in freely moving mice in multiple
experimental settings. Nonetheless, SEB3R’s simplistic
approach leaves room for future improvements. For in-
stance, by discretizing the current classification it would be
theoretically possible to include additional principal com-
ponents to the cluster analysis, improving precision and
specificity of the behavioral detection. In conclusion, the
method proposed here will improve the translational valid-
ity of several behavioral tests by reducing quantification
biases, ensuring replicability (within and beyond different
laboratories), and expanding the number of behavioral cat-
egories to be analyzed. Finally, by applying novel system
neuroscience approaches to a traditional ethology-based
behavioral observation, we prove how the convergence of
these two disciplines can contribute the study of the brain
and its disorders.
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