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ABSTRACT We exemplify an interdisciplinary approach wherein a mesoscopic-scale functional model
of a biological system is derived from time-series recordings, yielding transfer functions that can be used
to design analog electronic circuits. Namely, sensory processing in the honey bee, a universal model for
studying olfaction, is considered. Existing studies have focused on its antennal lobe, wherein only the
responses of its functional units, known as glomeruli, have been accessible. Here, high temporal resolution
calcium imaging is deployed to track the dynamics of odor-evoked activity beyond this processing stage.
The responses in the somata outside of the antennal lobe are recorded, showing for the first time how the
glomerular signals are transformed before entering the higher brain centers. A transfer function approach is
applied to capture as a ‘‘gray box model’’ the remarkably heterogeneous signal transformations between
odor input and glomerular response, and between glomerular signals and somata activity. The somata
are tentatively mapped to the glomeruli via Granger causality, while machine learning classification and
clustering allow grouping common properties regarding response amplitudes and temporal profiles. The
obtained low-order transfer functions display time- and frequency-domain input-output properties closely
similar to the biological system. Because transfer functions have universal applicability, once they have
been determined, it is readily possible to design corresponding analog electronic circuits, with possible
future applications in sensor signal conditioning. To exemplify this, examples based on resistor-capacitor
(RC) networks and operational amplifiers are physically built and confirmed to generate responses highly
correlated to the initial biological recordings.

INDEX TERMS Analog filters, calcium imaging, circuit design, honey bee, neuroscience, olfaction, systems
biology, systems engineering, transfer functions.

I. INTRODUCTION
This proof-of-concept work aims to introduce and exem-
plify an analysis and design approach based on extracting
mesoscopic-scale calcium imaging time series from neuro-
physiological experiments and deriving transfer functions
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from them. In turn, these allow designing physically-
realizable analog electronic circuits mimicking the responses
of neural ensembles, herein focusing on the paradigmatic case
of olfaction.

Olfaction is a neurobiological process involving a complex
sequence of signal transformations, starting from plumes of
molecules in the environment having a spatiotemporally vary-
ing concentration. These are chemically sensed and undergo
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FIGURE 1. Schematized antennal lobe neural network, showing the
pathway from the input state at the antennas (magenta large circles) via
the glomerular intermediate processing stage to the somata output
(violet large circles). Triangles denote excitatory pre-synaptic stages,
dashes denote inhibitory pre-synaptic stages (brown shades: lateral
inhibition) and small circles denote post-synaptic stages.

multiple representations, eventually leading to odor recogni-
tion and informing an organism’s decision-making. Owing to
its fundamental nature and evolutionary importance, olfaction
has been the subject of intense experimental and theoret-
ical analyses, which have led to manifold models across
species. These are diversified by their level of physiological
detail at the micro-, meso- and macroscopic scales, and
primarily feature a feed-forward topology [1]–[8]. So far, the
olfactory system has been extensively investigated primarily
in the fruit fly (Drosophila), the microcircuits of which
have been mapped down to considerable detail [9], [10].
For the case of the honey bee, herein taken as a ‘‘toy model’’
example towards a possibly general approach, it is established
that the stimulus parameters are firstly encoded within
specialized neural structures known as the antennal lobes
(ALs) according to stereotyped activation patterns. These are
subsequently forwarded to higher-order brain centers, such as
the so-called mushroom bodies (MBs) and lateral horns (LH),
where they are decoded and evaluated, potentially triggering
a behavioral response (Fig. 1) [11].

At first, in the olfactory receptors on the antenna surface,
molecular concentrations are transduced via a ligand-receptor
binding process into the electrical activity of olfactory
receptor neurons (ORNs) [12]. This step can be repre-
sented as an initial low-pass filter, which is followed by
a differentiating linear filter that transforms the membrane
potentials generated by receptor activation into trains of
spikes, in turn conveyed to the AL [13]. The AL is formed
by neuronal ensembles known as glomeruli, each of which
receives its input exclusively from a single type of ORN.
Within the glomeruli, the afferent signals from the ORN axon
terminals elicit postsynaptic potentials in the dendritic fibers
of projection neurons (PNs). In this way, the original spike
sequence is converted into fluctuations of local membrane
potentials, which are modulated by the local neurons (LNs),
that can be excitatory (eLNs) or inhibitory (iLNs) [14].
The excitatory modulation by eLNs is fast and accounts
for the spiky initial phase of the glomerular PN response.

Contrariwise, the inhibitory action of the iLNs occurs slowly
and is responsible for attenuating the response observed over
time [15], [16].

Throughout these steps, the signals are reshaped in both
their amplitudes and temporal features [14], [17]–[19],
which together encode odor identity and intensity [20]–[22].
Finally, the signals from the PN dendrites are transformed
back into spike trains [23] and propagate towards higher-
order brain centers. Directly measuring a traveling signal
simultaneously at different locations across a multistage
neuronal circuit poses considerable instrumental difficulties,
and, consequently, relatively little is known on how exactly
the input signal is transformed along this path [11]. Here,
we attempt to address this question at two levels. First,
leveraging the increased temporal resolution of two-photon
microscopy, we simultaneously probe the glomeruli within
the AL and the somata outside it. Second, we model the
resulting multivariate data with an approach centered around
standard systems engineering notions, namely, using transfer
functions to capture the input-output relationship across each
processing stage.

By construction, suitable transfer functions can encapsu-
late an arbitrary device response. Therefore, while somewhat
removed from biology, they are inherently more gener-
ally applicable than ad-hoc models such as those based
on spiking networks. Transfer functions represent input-
output relationships in the complex Laplace domain through
the variable s [24], without needing to account in detail
for the system internal variables. Consequently, based on
potentially heterogeneous sets of experimental input-output
observations, they allow extrapolating simulated responses to
idealized impulse and step inputs, which can be compared
directly. In brief, when restricted to the imaginary axis, i.e.,
s = 2π

√
−1f , the abstract variable s allows to compactly

represent the frequency response to purely sinusoidal tones
(i.e., at frequency f ), thus accounting for the complex Fourier
domain. More in general, the roots of the numerator and
denominator polynomials (known, respectively, as the system
zeros and poles) determine with considerable generality the
characteristics of the time- and frequency-domain responses.
For example, complex conjugate poles with low damping give
rise to oscillatory dynamics in the time-domain response, and
to resonance peaks in the frequency response.

In the present study, transfer functions are particularly
suited for the purpose because they provide an external,
though partially interpretable, model of the system in terms
of how it responds to inputs. Transfer functions combine a
coarse-grained theoretical understanding of the underlying
process, with experimental data to determine the free param-
eters. As such, they make be considered a kind of ‘‘gray
box’’ model, representing an intermediate scenario between
a non-interpretable purely data-driven approach, such as a
neural network learning a relationship without making prior
assumptions about its form (black box), and a complete,
detailed mechanistic account derived from fundamental
principles and physical laws (white box). This approach is
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FIGURE 2. Experimental setup. a) An olfactometer produced odor pulses while the neural responses were synchronously recorded via a two-photon
microscope from a bee mounted on the imaging stage. b) Independent photomultipliers (PMT) in two detection channels set up so as to allow
simultaneously recording the calcium signals from the glomeruli and somata despite their substantial intensity difference.

fundamental across diverse applications in automatic control
and beyond [25], [26].

Transfer functions do not require any knowledge of the
system internal variables, which, indeed, in the case of a
mesoscopic neural structure such as the antennal lobe are not
fully accessible. Despite their versatility, transfer functions
have thus far been deployed to neuroscientific problems
only sparingly, plausibly because of their inability to repre-
sent learning or adaptiveness, only providing a filter-based
simplification of a system. Nevertheless, their empirical
usefulness has been confirmed in capturing the responses of
single neurons [27], functional interdependencies between
brain regions, and neurovascular couplings in functional MRI
[28]–[30]. Here, we apply transfer functions to decipher the
olfactory transcoding process into a representation suitable
for informing the engineering of a signal processing model
or even another physical device [31], [32]. In doing so,
we present an example of a systematic approach that,
starting from biological recordings, eventually yields analog
electronic circuits that are compact and straightforward to
realize physically. We therefore posit that, in addition to their
usefulness as models of neural activity, transfer functions
are helpful towards designing bio-inspired sensing devices
mimicking a subsystem of a natural organism, albeit with
some important limitations.

II. METHODS
A. SPECIMEN PREPARATION FOR in vivo CALCIUM
IMAGING
Fourteen honey bees (Apis mellifera) were exposed to
CO2 for 30 s, then fixed onto a custom-made imaging
stage (Fig. 2a) using soft dental wax. After that, a small
rectangular window was cut into the cuticula, and the
glands and trachea covering the AL were gently moved
aside. Subsequently, fura-2-dextran, a calcium-sensitive
fluorescent dye (type F3029, Thermo-Fisher Scientific, Inc.,
Waltham MA), dissolved in distilled water, was injected into
the antenna-cerebral tracts, posterolaterally to the α-lobe,
using a pulled glass capillary. After injection, the excised
cuticula was fixed back in its original position using
n-eicosane (Sigma-Aldrich, Saint Louis MO). The bees were

stored in a dark, cool, and humid place for about 20 hours to
allow dye diffusion into the AL.

The invasiveness of the preparation and experimental
procedures was kept to aminimum. Furthermore, the integrity
of the nervous system was repeatedly tested behaviorally
via the proboscis extension reflex after contact stimulation
of the antenna with a sugar solution, largely ruling out
confounding effects of damage [33]. During recording, the
stability of the neuronal responses as visible to calcium
imaging was monitored by an experienced operator, and
no instances of response loss or abnormal drifting were
detected.

All procedures were completed according to approved
institutional protocols of the University of Trento (Trento,
Italy). In accordance with applicable laws, no project-specific
institutional or national approval was needed for experimental
work on insects.

Before the imaging session, the antennas were blocked
with a drop of n-eicosane on the pedicel, leaving the flagellum
free to move. The cuticular window, the trachea, and the
glands were moved away from the antennal lobe region.
A silicone adhesive was used to cover the brain, and a
rectangular plastic foil was attached frontally to the window
in order to separate the antennas from the immersion water
required by the objective lens.

B. TWO-PHOTON MICROSCOPY
The two-photon microscope (Ultima IV, Bruker, Inc., Bil-
lerica MA) was illuminated by a Ti:Sa laser (Mai Tai Deep
See HP, Spectra-Physics, Inc., Milpitas CA), which was
tuned to 780 nm for fura-2 excitation. All images were
acquired using a water immersion objective (10×, NA 0.3;
Olympus, Inc., Tokyo, Japan). The absolute fluorescence
signal from the glomeruli of projection neurons (hereafter,
for brevity, somata) is about 10-fold more intense than the
one from the somata , due to different partial volume effects
between the larger and denser glomeruli, and the smaller and
sparser somata. Therefore, two separate detection channels
were prepared to record from both with sufficient signal-
to-noise ratio (SNR). Namely, the received light was split
into two branches, illuminating different photomultipliers,
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by means of a dichroic mirror. The lower band was filtered
at 525± 35 nm, close to the fluorescence peak of fura-2, and
used for imaging the glomeruli. The upper band >560 nm,
corresponding to the tail of the fluorescence spectrum, was
used without additional filtering to image the somata. This
approach maximized the dynamic range without saturating
the photomultipliers, and the resulting setup is visible in
Fig. 2b. The laser power was set to ≈ 10 mW after the
objective as a compromise between maximizing the SNR and
limiting photodamage.

The image acquisition was synchronized to the stimulation
protocol and performed at a frame rate of 9.7 fps. The
resulting image of 128×128 pixels with a digital zoom factor
of 3.8 covered a field of view of 280 µm. The fluorescence
intensity was recorded with a depth of 13 bits. In addition
to the functional images, for supporting the morphological
identification of the glomeruli a z-stack of the antennal lobe
was acquired at a spatial resolution of 512×512 pixels using
a layer interval of 2 µm.

C. OLFACTORY STIMULATION
Stimulation was performed through a custom-built olfac-
tometer [34], allowing the delivery of 8 different odorants in
an air flow having a velocity of ≈ 4 m/s, corresponding to a
gentle breeze. A pseudo-random sequence with millisecond-
precision timing was used, and each stimulus lasted 3 s
followed by a 12 s recovery period. The sequence was
repeated over 10 trials. Multiple odorants were necessary
to maximize ecological validity and reduce adaptation.
All of them were diluted in mineral oil. For 3-hexanol,
1-heptanol, 1-hexanol, citral, 2-heptanone, and isoamyl
acetate, the dilution was 1:200 (vol/vol). For benzaldehyde,
the dilution was 1:50, and for geosmin, it was 10−6. These
diversified concentrations were chosen specifically to study
the bee olfactory system under naturalistic conditions, that
is ensuring receptor activation while avoiding saturation,
leading to the highest dynamic range and odor-specificity in
the glomerular code.

D. SIGNAL POST-PROCESSING
Data post-processing and analysis were performed via cus-
tom scripts written in the MATLAB language (Mathworks,
Inc., NatickMA). For each bee, the fluorescence signals were
spatially averaged over and recorded from the glomeruli,
identified using the AL atlas [35], and the neuronal somata,
delineated using regions-of-interest drawn by an experienced
operator. From these raw traces, the relative change of flu-
orescence during stimulation was calculated, and expressed
as 1F/F = −[F(t) − Fb]/Fb × 100, where Fb denotes the
average fluorescence signal intensity over the 3 s pre-stimulus
period. Finally, for each glomerulus or soma, 1F/F was
averaged over all trials. To identify the glomeruli having the
highest variance during stimulation, a principal component
analysis (PCA) was performed, taking the pixels as variables
and the frames as observations [36].

FIGURE 3. Confusion matrices for the classification of a) glomerular and
b) somata response signals across the activation (1), absent (0), and
inhibited (−1) classes.

E. RESPONSE CLASSIFICATION
The individual responses from the glomeruli and somata were
separately classified as activation, inhibition, or absent by
means of a machine learning approach. For this purpose,
a range of classifiers and settings were empirically consid-
ered, and the highest-performing configurations according
to 10-fold cross-validation were chosen. For the glomerular
responses, a one-vs-one support vector machine (SVM)
classifier with quadratic kernel and unitary box constraint
was selected. For the somata responses, a k-nearest neighbors
algorithm (kNN) with k = 10 neighbors, correlation distance
as a metric and equal weighting, performed best. In both
cases, data standardization was applied. In principle, SVM
could perform better than kNN at this task, but it was observed
that its generalization performance was lower for the somata,
as indicated by cross-validation. This difference could be
ascribed to the lower signal-to-noise ratio for the somata
traces, a finding which is well in line with other studies that
have identified superior kNNover SVMperformance in noisy
acoustic datasets [37], [38]. The underlying training sets are
provided as Supplementary Materials.

The models were trained based on response classifica-
tions performed by an experienced operator. To adequately
cover the stimulus and the immediate post-stimulus phase,
over which some elicited activity persisted, 88 time-points
(≈ 9.1 s), starting from 2 frames before stimulus onset, were
entered in the analysis as predictors. Overall, 616 manually-
classified responses were entered for training the model for
the glomeruli, whereas for the somata, 1074 responses were
available. As visible in Fig. 3, the resulting accuracy, intended
as agreement with human classification, was 99% for the
glomeruli and 83% for the somata responses.

F. TRANSFER FUNCTION ANALYSIS
To determine the transfer functions, and hence, to reveal the
underlying heterogeneity of temporal dynamics, a further step
of clustering was applied, this timewithin each response class
(activation or inhibition) and location (glomeruli or somata).
Following extensive consensus work (omitted for brevity),
based on joint consideration of the Silhouette method [39],
alongside aspects of the Calinski-Harabasz [40], and
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Davies-Bouldin [41] methods, a fixed number of
k = 4 clusters was predetermined for all combinations.

This settingwas arrived at as follows. Firstly, the Silhouette
value S(k) was calculated while assuming k = 2 . . . 8 clus-
ters, yielding S = {0.40, 0.27, 0.25, 0.19, 0.21, 0.15, 0.17}
for the activation responses of the glomeruli, S =

{0.18, 0.11, 0.10, 0.10, 0.08, 0.07, 0.06} for their inhibition
responses, S = {0.20, 0.11, 0.09, 0.08, 0.07, 0.07, 0.04}
for the activation responses of the somata, and S =

{0.15, 0.10, 0.09, 0.08, 0.06, 0.06, 0.05} for their inhibition
responses. Based on these values, k = 2 would be chosen
as sufficient. However, as a second step, the corresponding
average time-courses for the most tonic and most phasic
responses were also visually compared (Supplementary
Fig. 1). This revealed beyond doubt that the separation
between the two increased substantially between k = 2 and
k = 4, and considerably less visibly for higher numbers of
clusters. Based on this observation, k = 4 was eventually
chosen as a compromise between emphasizing the variability
of the responses and limiting the number of clusters. None of
the results presented hereafter are critically dependent on this
choice; the transformation between tonic and phasic and vice-
versa would also be visible with k = 2, albeit less markedly
(data not shown). This clustering step, therefore, should be
intended as a convenient means of partitioning a continuum
into discrete categories, rather than as aiming to uncover
responses that are in themselves separated into groups.

The trial-averaged time series, each consisting of a
central subset of 56 peri-simulus points (5.8 s span, chosen
empirically), were therefore entered into k-means clustering
based on squared Euclidean distance, with k = 4. The cluster
sizes are reported in the Results section.

To determine the transfer function parameters within each
cluster, the averaged response was considered. Furthermore,
to reduce the dimensionality of the analysis, the responses
from all odors administrated were pooled together, because
no consistent odor-related differences between the responses
could be decoded in the preliminary analyses. Although
each odorant was administered at a single concentration,
pooling the data from the different ORN featuring strongly
differing sensitivities to the individual odors leads to response
signals with very different amplitudes. Transfer function
determination was performed separately for the two process-
ing stages. Firstly, from the input odor time course to the
glomerular response. Second, from the time courses of the
glomeruli to those of causally-related somata, as detailed
below.

To determine the input time series for the glomerular
responses, the temporal profiles of the odorant concentrations
were measured through photoionization detection (type
miniPID 200B, Aurora Scientific, Inc., Ontario, Canada),
except for 1-heptanol, citral, geosmin, and 2-heptanone,
which were undetectable. The profiles were largely overlap-
ping, indicating that the diffusion dynamics are primarily
determined by physical parameters of the setup, such as
gas flow rate. Therefore, using a stereotyped profile was

FIGURE 4. Odorant concentration time series, a) examples measured via
photoionization and b) canonical pulse assumed for all odorants. Data
normalized to [0,1] for visualization.

acceptable, and preferable owing to the absence of noise.
Consequently, all analyses assumed a stereotyped pulse,
having exponential rise and decay respectively according to
1− exp(−10t) and exp(−2t) (Fig. 4).

Transfer function estimation was performed assuming no
delay, 3 poles, and up to 2 zeros. This parsimonious configu-
ration yielded a good fit across all responses, as demonstrated
below by the high correlation between the realized electronic
circuits and the biological recordings. The initial conditions
were automatically searched for using an empirical approach
minimizing prediction error. A least-squares non-linear opti-
mization for prediction error minimization was performed
while enforcing stability and setting λ = 10−8 during
parameter regularization. The underlying input-output data
and complete parameters obtained by the estimation process
are provided as Supplementary Materials.

The fit quality was represented based on the Normalized
Root Mean Squared Error (NRMSE) as Q = 1 − NRMSE.
To summarize the transformations performed based on the
step response, the static and maximum gains S0, Smax were
extracted, from which the relative overshoot was determined
as σ = (Smax − S0)/S0. Furthermore, the rise time τrise
was determined as the lag at which the normalized response
reaches 1− 1/e.

It should be underlined that, by its nature, calcium imaging
only offers an indirect measure of neural activity, and
the amplitudes of the recorded responses are affected by
numerous factors, including the possibly inhomogeneous
level of dye uptake and, as elaborated in the Discussion
section, the relationship of the signal to pre- and post-synaptic
potentials across the glomeruli and somata. Therefore, the
transfer functions empirically represent the transformation
of the signal time-courses, but the corresponding static
gains do not have a straightforward biological interpretation.
Accordingly, in the below, all responses are graphed in
unitless form, in contrast with electrophysiological record-
ings that offer calibrated current and voltage readings, and
are necessary to properly determine the neural transfer
functions [27], [42].

G. GRANGER CAUSALITY ANALYSIS
To date, it is technically not feasible to image in-vivo the
structural connections between the glomeruli and somata.
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Therefore, we resorted to determining the functional inter-
dependencies between them, informing at a statistical level
which pairs to consider for determining the transfer functions
between these two processing stations. Synchronization
measures such as cross-correlation can be influenced by
numerous confounding factors as exemplified in chaotic
oscillators [43]. Thus, to obtain a more robust estimate
also with respect to non-neural signal sources and other
instrumental fluctuations, we applied Granger causality. This
is a statistical measure deemed highly reliable in analyzing
diverse neuroscientific datasets including EEG and functional
MRI signals [44], [45].

Here, this analysis was systematically performed on
the time series from each glomerulus-soma pair, namely,
assuming each one as a possible driver and target within
the individual odor response maps for all individual bees
and odor stimuli. Each time series entered in the causal-
ity analysis consisted of the concatenation of 10 trials,
considered separately for each odor, spanning 4 s (3 s
during stimulation, 1 s post-stimulus). This approach was
chosen over entering the entire time series in order to
emphasize the interdependencies between the responses over
the unrelated, stochastic fluctuations. To further reduce
contamination and remove instrumental fluctuations together
with other baseline instabilities, the signals were detrended
and high-pass filtered using a second-order Butterworth
filter at 0.1 Hz.

For each pair comprising a driver D and a target T, a linear
regression of the present state of T, yT(t), was performed
twice: once only given its past state Y−T (t) and yielding
the prediction error eT|T(t) = yT(t) − E[yT(t)|Y−T (t)], and
again, given the past states of both D and T, Y−T,D(t) =
[Y−T (t),Y−D (t)], yielding the prediction error eT|T,D(t) =
yT(t) − E[yT(t)|Y−T,D(t)] [46]. The corresponding prediction
error variances, λT|T = E[e2T|T] and λT|T,D = E[e2T|T,D],
together give the Granger causality, with

GT←D = log
λT|T

λT|T,D
. (1)

Here, the past states were empirically approximated as
Y−(t) = [y(t − τ ), . . . , y(t − pτ )], setting τ = 1 and p = 4.
To test for statistical significance, 100 sets of mul-

tivariate surrogate time series were generated using the
Iterative Amplitude Adjusted Fourier Transform (IAAFT)
method [47]. After that, measurements were compared to sur-
rogates using one-sample single-sided t-tests, while adjust-
ing for multiple comparisons through the False Discovery
Rate (FDR) method [48]. The Granger causalities across the
subset of glomeruli and somata displaying significant differ-
ences were then organized in two vectors. These were finally
compared using a paired two-samples t-test to check for
asymmetry in the causality strength between the two direc-
tions, which would confirm analysis validity. The underlying
causality graphs are provided individually as Supplementary
Materials.

FIGURE 5. Representative spatiotemporal features. a) Example of the raw
fluorescence signal from a focal plane across the antennal lobe with
glomeruli at the center (numbered) and somata at the periphery (shaded).
The superimposed regions-of-interest are color-coded by their response
to isoamyl acetate, with magenta for activation, violet for absent, orange
for inhibition. b) and c) Average and half standard deviation of
glomerular and somata responses in the three response classes.

III. RESULTS
A. RESPONSE FEATURES SUMMARY
From the structural patterns of the raw fluorescence signals
(Fig.5a), a total of 225 glomeruli and 537 somata were iden-
tified, yielding an ensemble of 1800 and 4296 corresponding
time series, respectively. Out of all the glomerular responses,
28% were classified as activation and 17% as inhibition. Out
of the responding somata responses, 26% were classified as
activation and 13% as inhibition.

Visual inspection of the grand-average traces for the
automatically-classified responses confirmed a well-evident
difference between activation, inhibition, and absence of
a response, for both the glomeruli (Fig. 5b) and the
somata (Fig. 5c), which was overall in line with previous
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FIGURE 6. Spatiotemporal variability. a) Cumulative spatial distribution of the responses on the focal planes that were chosen to dissect the antennal
lobe always at a similar depth (hue denotes overlaps, scale as in Fig. 5a). b) and c) Odor-related response temporal variability (bright line: average,
shaded area: half standard deviation) recorded, respectively, from a representative soma and glomerulus.

observations. Inhibition responses were considerably shal-
lower than activations, particularly for the glomeruli (≈ 2%
vs. ≈ 5%). The averaged glomerular activations had well-
defined, sharp edges alongside a variable overshoot. The
somata activations, when considered individually, were also
sharp; however, their timing was less consistent, leading to an
overall smoother average [19], [49].

The spatial distribution of the responses did not reveal an
anatomic segregation because most locations displayed both
activation and inhibition as a function of odor type (Fig. 6a).
Furthermore, considerable odor-related dynamical variability
of the responses and associated classes could be observed
within the individual glomeruli (Fig. 6b) and soma (Fig. 6c).
As the underlying relationshipwas unknown, for the purposes
of this work, all time series were pooled. This implies that the
transfer functions obtained represent the types of input-output
transformations that the system can produce at a general level,
as an ensemble average without reference to specific stimuli.

B. TRANSFER FUNCTIONS FROM ODORANT
CONCENTRATIONS TO GLOMERULI
We first sought to determine the transfer functions between
the external input signals to the olfactory system, namely the
time-varying odorant concentrations, and the responses of its
first processing stage, namely the glomeruli. For conciseness,
in the below the response clusters are referred to with (x, o),
where x = {A, I} denotes activation or inhibition and
o = {P,Pt,Tp,T} denotes phasic, phasic-tonic, tonic-phasic
or tonic output.

Responses within the activation and inhibition classes fea-
tured an inherent variability introduced by multiple factors,
comprising different neural tunings across the glomeruli,
odor-specific effects, and interactions between these aspects.
As specified above, a further step of k-means clustering
based on Euclidean distance, with k = 4, was performed to
disentangle this heterogeneity at least partially. The resulting
clusters for the activation responses revealed a continuum
between an almost perfectly phasic, that is, derivative-like,

response (Fig. 7a) and an almost perfectly tonic, that is,
proportional-like, response (Fig. 7d). This finding indicates
that some components of the first processing stage react
preferentially to the onset of an odor, whereas others encode
its sustained presence. This diversification represents a highly
conserved property of neural sensory architectures across
species and modalities, serving, for example, to emphasize
environmental changes [50], [51]. A similar observation
could be established for the inhibition responses (Fig. 8),
although their diversity was less evident, plausibly also owing
to the smaller amplitudes.

The obtained transfer functions are reported in Table 1 for
the activation and Table 2 for the inhibition responses. For the
activation class, the majority of responses were determined
to be intermediate between phasic and tonic, while the fit
quality Q was appreciably higher for the tonic-phasic and
tonic responses (Table 1). Differently, for the inhibition class,
there was a preponderance of tonic-phasic responses, and the
fit quality tended to be lower (Table 2). The following features
could be generally noted.

First, despite the inherent complexity of the system under
investigation and the nonlinear, adaptive mechanisms it is
based upon, these low-order linear models can reproduce the
glomerular output signals elicited in response to the odorant
presentation. Besides the fit quality measure Q, this could be
visually ascertained by comparing the measured waveforms
with the model outputs (Figs. 7 and 8, 1st column). In all
cases, the transfer function order was limited to 3, render-
ing these models particularly simple and computationally
undemanding as compared to simulating a spiking neural
network.

Second, the transfer function characteristics differ
substantially between the clusters. Since, in the present
context, the focus is on processing a stimulus having a well-
defined onset, their features are conveniently illustrated with
reference to canonical inputs, i.e., a Dirac (i.e., infinitely-
narrow) impulse and a Heaviside unit step. For the activation
responses (Fig. 7), all four identified systems are stable,
such that the impulse response converges to zero, although
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TABLE 1. Transfer functions modeling the activation responses from the odorant concentrations to the glomeruli. Q ∈ [0,1] denotes fitting quality, S0 and
Smax the static and maximum gains from the step response, σ the corresponding relative overshoot and τrise the rise time. Corresponding plots shown in
Fig. 7.

FIGURE 7. Odorant concentration to glomeruli transfer functions for the activation responses, depicting the time- and frequency-domain characteristics
corresponding to the four clusters (a) (A,P), (b) (A,Pt), (c) (A,Tp) and (d) (A,T). Temporal curves (1st column) for input (magenta), recorded output (orange),
and model output (violet). Simulated model outputs in response to an impulse input (2nd column) and a unit step input (3rd column), alongside
frequency response represented by the amplitude Bode plot (4th column). All y-axes denote unitless amplitude, expressed in decibel for the Bode plots.
Corresponding transfer functions given in Table 1.

TABLE 2. Transfer functions modeling the inhibition responses from the odorant concentrations to the glomeruli. Q ∈ [0,1] denotes fitting quality, S0 and
Smax the static and maximum gains from the step response (accounting for the negative sign), σ the corresponding relative overshoot and τrise the rise
time. Corresponding plots shown in Fig. 8.

along different trajectories (Fig. 7, 2nd column). All transfer
functions have a negative and real pole alongside a pair of
complex and conjugate poles, but the zeros are diversified
(Table 1). The most phasic response, for cluster (A,P), has
two real and positive zeros. The intermediate responses, for
clusters (A,Pt) and (A,Tp), have two real and negative zeros.
The most tonic response, for cluster (A,T), has complex
conjugate zeros.

All step responses converge to different steady-state
values, given that the models feature different static gains
S0 (Fig. 7, 3rd column). Their diversity can be appreciated
particularly by considering the relative overshoot, which,
for perfectly tonic and phasic responses, by definition is
σ = 0 and |σ | = ∞, respectively. Notably, the response
for cluster (A,P) has a negative static gain S0 < 0 and a
remarkably narrow peak of positive response, leading to a
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FIGURE 8. Odorant concentration to glomeruli transfer functions for the inhibition responses, depicting the time- and frequency-domain characteristics
corresponding to the four clusters (a) (I,P), (b) (I,Pt), (c) (I,Tp) and (d) (I,T). Temporal curves (1st column) for input (magenta), recorded output (orange),
and model output (violet). Simulated model outputs in response to an impulse input (2nd column) and a unit step input (3rd column), alongside
frequency response represented by the amplitude Bode plot (4th column). All y-axes denote unitless amplitude, expressed in decibel for the Bode plots.
Corresponding transfer functions given in Table 2.

strongly negative σ alongside |σ | = 9.53, highlighting its
marked differentiating action. For clusters (A,Pt) and (A,Tp),
S0 > 0 while σ > 1 and decreasing σ , whereas, for
cluster (A,T), eventually σ ≈ 0. The timescales of these
responses are similar and comparably short compared to the
input function, with τrise < 0.15 s.
Considering next the frequency responses of these systems,

clusters (A,P), (A,Pt) and (A,Tp), having a noticeable phasic
contribution, are associated with band-pass behavior (Fig. 7a-
c, 4th column), whereas cluster (A,T), having predominantly
tonic output, is associated with low-pass behavior (Fig. 7d,
4th column). Although the qualitative frequency response
is the same across clusters (A,P), (A,Pt) and (A,Tp), the
location and width of the passband are diversified, together
with the level of attenuation at low frequencies. However,
across all of them, the band between 1 and 10 rad/s
appears similar. Altogether, these features assert that the
input signal processing is qualitatively distinct between the
clusters.

The transfer functions representing the inhibition
responses delineate a comparable situation. All systems are
stable, but their impulse and step responses display different
characteristics (Fig. 8, 2nd and 3rd columns). Similar to the
activations, all transfer functions have a negative and real
pole alongside a pair of complex and conjugate poles, and
the zeros are diversified (Table 2). The most phasic response,
for cluster (I,P), has two real and negative zeros, whereas the
others, for clusters (I,Pt), (I,Tp) and (I,T), all have complex
conjugate zeros.

The static gain and the damping factor of the poles vary
between the clusters, such that the step response attains
different steady-state values and the oscillations appear more
persistent for cluster (I,Pt) than the others. Notably, the
maximum overshoot is considerably lower than for the
activations, namely σ = 1.75 vs. |σ | = 9.53, indicating a
less marked differentiating action. Nevertheless, the gradient
between clusters is clearly observable, in this case reaching

σ = 0. The response time scales are similar, except for cluster
(I,T), which features a longer rise time τrise = 0.34 s.
Again, the frequency responses of these transfer functions

are band-pass for clusters (I,P), (I,Pt) and (I,Tp) and low-
pass for cluster (I,T), which reassures about the validity of
the analyses. However, for cluster (I,T), due to the presence
of a pair of weakly damped complex and conjugate zeros,
a marked notch is apparently found around 10 rad/s; this
should be interpreted cautiously.

C. INFORMATION FLOW BETWEEN GLOMERULI
AND SOMATA
Over the time series pooled over all the bees and odors,
the Granger causality analysis detected 19660 significant
functional connections from the glomeruli to the somata,
and 19447 connections in the opposite direction, with an
underlying average graph density of≈ 31% for 52±14 nodes.
It should be again underlined that no univocal correspondence
between glomeruli and somata could be established across
individual bees, because of anatomical variability and the
absence of means to standardize the identification of the
latter. Therefore, the corresponding matrices could not be
averaged together and are not shown here; the connectivity
information was, in other words, only utilized within each set
of time series to infer the probable underlying relationships
between glomeruli and somata.

In line with the expectations for a primarily bottom-up,
that is, feed-forward architecture, on average the causality
strength was higher from the glomeruli to somata than in
the opposite direction (two-samples t-test, t(39105) = 14.6,
p < 0.001, 0.0188 ± 0.0154 vs. 0.0167 ± 0.0117,
mean±standard deviation; Fig. 9a). The corresponding his-
tograms overlapped substantially, and the distribution was
right-skewed, more markedly so in the direction from the
glomeruli to the somata. Namely, above a strength of
G ≈ 0.025, the frequency of functional connections was

VOLUME 10, 2022 17177



E. Tiraboschi et al.: Transfer Function-Based Characterization of Honey Bee Olfactory System

FIGURE 9. Granger causality values. a) Histogram from glomeruli to
somata (orange) and vice-versa (violet); the vertical line represents a
threshold above which the causality strength was consistently higher for
the connections from glomeruli to somata. b,c) The effect was most
evident for the distribution tail, magnified in the insets for the two
directions.

consistently higher, for all bins, in the direction from the
glomeruli to the somata than vice-versa (Fig. 9b,c).

This analysis could not fully discern the underlying
connections, which are expected to be mainly feed-forward
towards the somata [1]–[8]. Nevertheless, through comparing
the measured to the surrogate time series at a statistical
level, it was sufficiently capable of identifying the relevant
combinations to support the mapping of transfer functions
from the glomeruli to the somata. This was deemed accept-
able for the present proof-of-concept study, focused on the
transfer function-based modeling of these two processing
stages. However, the elevated uncertainty associated with this
analysis should be acknowledged.

The individual clusters identified at the glomerular level
were selected but, to improve statistical reliability, only those
glomerulus-soma pairs belonging to the same activation or
inhibition class and having a Granger causality strength
G > 0.025 were considered in estimating the transfer
functions. At this threshold, there were 4429 causal inter-
dependencies in the direction from the glomeruli to the
somata, and 3643 in the opposite direction. Although limited
to ≈ 20%, this asymmetry suggested that the inferred
directed connections from the glomeruli to the somata could
be utilized to tentatively reconstruct the transfer functions
between them. At more stringent thresholds, the asymmetry
increased drastically, with 793 vs. 338 connections (≈ 130%)
for G > 0.05, and 86 vs. 9 connections (≈ 850%) for
G > 0.1. While this confirms the validity of the analysis,
in light of the fact that the number of connections dropped
drastically, thus limiting statistical sampling, we opted for
the more parsimonious threshold at G > 0.025. For the
avoidance of doubt, only connections from the glomeruli
to the somata were considered in the below, and these

asymmetry indications are only reported as an indirect
evidence of the putative validity of Granger causality results.

D. TRANSFER FUNCTIONS FROM GLOMERULI TO SOMATA
Having tentatively established the connectivity from the
glomeruli to the somata, the transfer functions between them
could be estimated. The classification into four clusters of
the glomerular and somata responses gives rise to sixteen
possible pairings of input/output response types, all of
which could be observed in the recordings. The following
analysis focused on the two extremes to reduce the amount
of data and focus on the most representative pairings out
of the four activation-related glomerular clusters. Namely,
we considered the clusters having the most phasic (Fig. 7a)
and the most tonic profiles (Fig. 7d), and, more specifically,
we focused on the cases wherein they are paired with
the most phasic and the most tonic profiles of somata
responses. Four pairings were obtained from the data pooled
in this manner, herein referred to with (x,i→o) where x =
{A, I} denotes activation or inhibition and i, o = {P,T}
denote phasic or tonic input and output. For each of them,
a corresponding transfer function was derived, considering
as input the average signal of a glomerular cluster and as
output the average response of a somata cluster (magenta
traces in Fig. 10, 1st column). The same approach was applied
to the inhibition responses (magenta traces in Fig. 11, 1st

column). Because of the uncertainty associated with the
indirect nature of the pairing between glomeruli and somata,
as reflected in the relatively modest causality asymmetry,
we parsimoniously refrain from presenting differences in
prevalence between the response pairings.

The transfer functions obtained for the activation and
inhibition responses (Tables 3, 4) confirm that third-order
linear systems could also successfully capture the input-
output behavior of the inferred glomeruli-somata couplings.
This is evident considering the high overlap between the
recorded somata outputs and the responses calculated using
the corresponding estimated transfer functions (Fig. 10,
1st column and 11, 1st column). The fit quality Q of the
activation-related transfer functions tended to be more con-
sistently high as compared to the transformation of odorant
concentrations into glomerular responses in the previous
stage. Even more evidently in this instance, the inhibition-
related transfer functions were associated with a markedly
poorer fit quality, plausibly due to their lower amplitude.

A well-evident diversification of the responses is also
appreciable in this case. However, considering firstly the
activations (Table 3), it is noteworthy that the transfer
functions have all real, and in particular negative, poles and
zeros. Consequently, no oscillations appear in the impulse
(Fig. 10, 2nd column) and unit-step responses (Fig. 10, 3rd

column).
As previously noted, the diversity of the transfer functions

could be appreciated mainly based on the step responses,
by considering the relative overshoot σ alongside the
response time scale represented by the rise time τrise.
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FIGURE 10. Glomeruli to somata transfer functions for the activation responses, depicting the time- and frequency-domain characteristics corresponding
to the four clusters (a) (A,P→P), (b) (A,P→T), (c) (A,T→P) and (d) (A,T→T). Temporal curves (1st column) for input (magenta), recorded output (gray), and
model output (black). Simulated model outputs in response to an impulse input (2nd column) and a unit step input (3rd column), alongside frequency
response represented by the amplitude Bode plot (4th column). All y-axes denote unitless amplitude, expressed in decibel for the Bode plots.
Corresponding transfer functions given in Table 3.

FIGURE 11. Glomeruli to somata transfer functions for the inhibition responses, depicting the time- and frequency-domain characteristics corresponding
to the four clusters (a) (I,P→P), (b) (I,P→T), (c) (I,T→P) and (d) (I,T→T). Temporal curves (1st column) for input (magenta), recorded output (gray), and
model output (black). Simulated model outputs in response to an impulse input (2nd column) and a unit step input (3rd column), alongside frequency
response represented by the amplitude Bode plot (4th column). All y-axes denote unitless amplitude, expressed in decibel for the Bode plots.
Corresponding transfer functions given in Table 4.

For the pairings (A,P→P) and (A,T→T), the overshoot
is shallow, with σ ≈ 0, and the response is fast, with
τrise ≈ 0.2 s, implying that the response is predominantly
proportional, therefore propagating the input signal largely
unaltered in its time course. On the other hand, for pairing
(A,P→T), σ = 0 and the response is markedly slow,
with τrise ≈ 8.5 s, implying, over the relevant time scales,
an integrative action that transforms a phasic input into a tonic
output. Contrariwise, for pairing (A,T→P), the overshoot is
substantial, with σ ≈ 40 and an almost null static gain
S0 ≈ 0, alongside a fast response τrise < 0.1 s, implying a
strongly differentiating action which transforms a tonic input
into a phasic output.

For the frequency responses (Fig. 10, 4th column), pairings
(A,P→P) and (A,T→T), yielding respectively a phasic
output in response to a phasic input and a tonic output
in response to a tonic input, have similar characteristics,
which resemble a low-pass filter featuring an inconspicuous

resonance at ≈ 1 rad/s. The transfer function yielding a
tonic output in response to a phasic input, pairing (A,P→T),
also has low-pass filter behavior, however, without any peak.
On the other hand, for pairing (A,T→P), yielding a phasic
output in response to a tonic input, a strongly band-pass
filter behavior is found, further confirming the strongly
differentiating action at low frequencies.

Considering next the inhibition responses (Table 4), a dif-
ferent situation is found, which resembles the dissociation
previously noted for the transfer functions from odorant
concentrations to glomerular responses. Considering the
markedly lower signal amplitude, these estimations and the
associated phasic/tonic classifications should be considered
as tentative (11, 1st column), as also indicated by their
relatively low quality Q. One transfer function, for pairing
(I,T→T), has real and negative poles and zeros, whereas the
others feature a pair of complex and conjugate poles with low
damping alongside a pair of complex and conjugate zeros,
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TABLE 3. Transfer functions modeling the activation responses from the glomeruli to the somata. Q ∈ [0,1] denotes fitting quality, S0 and Smax the static
and maximum gains from the step response, σ the corresponding relative overshoot and τrise the rise time. Corresponding plots shown in Fig. 10.

FIGURE 12. Prototypical analog circuits realizing a selection of the biologically-observed transfer functions. a) Third-order filter associated with a
transfer function having its zeros and poles all real and negative. b) Third-order filter associated with a transfer function having a negative and real
pole alongside a pair of complex and conjugate poles.

all with negative real part. Consequently, damped oscillations
could be observed in the impulse and unit-step responses
(Fig. 11, 2nd and 3rd column). In particular, for the transfer
function for pairing (I,T→P), yielding a phasic output in
response to a tonic input, the damping factor is relatively
small; this results in weakly-damped oscillations in the time-
domain response alongside a marked peak in the frequency
response (Fig. 11c, 3rd and 4th column).

Compared to the activations, in this case, the diversity
as expressed by the relative overshoot σ and response time
scale τrise is less evident. In particular, all values of σ and
τrise are comparatively low, indicating that the integrative and
differentiating action is weak. Nevertheless, the frequency
responses of the pairings (I,P→P), (I,P→T) and (I,T→P)
are characterized by low-pass filter behavior alongside a
resonance peak having a different amplitude, reflecting the
different damping in the system poles; on the other hand, for
pairing (I,T→T), a band-pass filter behavior is observed.

IV. ANALOG SIGNAL PROCESSING
A. CIRCUIT DESIGN
Next, we demonstrate how electronic circuits could be
systematically designed based on these biologically-derived

transfer functions. Importantly, circuit realization in this
context should not merely be viewed as conducive towards
hypothetical engineering applications. Instead, it should also,
if not primarily, be intended as a way to confirm beyond the
realm of numerical simulations the physical viability of the
transfer functions obtained as models of mesoscopic neural
dynamics.

For this purpose, we exemplify the calculation of the
component values for the prototypical circuits shown
in Fig. 12a and b. These realize the transfer functions
corresponding, respectively, to all the pairings in Table 3 and
to cluster (A,P) in Table 1. The arguments are generalizable
to all other transfer functions considered in this work.

The circuits are based on active filters realized with
operational amplifiers as the gain element, alongside resistors
(R) and capacitors (C). They are obtained via cascading three
(Fig. 12a) or five (Fig. 12b) stages. Each stage implements
one of the multiplicative factors into which the corresponding
transfer function can be decomposed, that is, a pole and
a zero, or two complex and conjugate zeros together with
two complex and conjugate poles. These circuits should be
considered purely as examples, and other topologies could be
equivalently selected for mapping a transfer function. They
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are, nevertheless, particularly parsimonious and therefore
well-suited for discrete realization on a circuit board or
miniaturized realization as part of a CMOS integrated
circuit [52].

The first step in establishing a functional equivalence
between the analog circuits and the transfer function models
of the bee’s olfactory response is to derive the transfer
functions of the circuits shown in Fig. 12. This step can
be completed by applying the standard methods of circuit
theory [53]. For the circuit in Fig. 12a, one obtains the
following transfer function, wherein R6 and R7 set the output
gain

TF(s) =
R7

R6 + R7

1
C1R1

R5
R4

R3
R2

1(
s+

1
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)

×

(
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)
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)
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1
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) . (2)

Since all the poles and zeros of this transfer function are
real and negative, the same can be adopted to realize all
the cases (A,P→P), (A,P→T), (A,T→P) and (A,T→T) in
Table 3, once the component values have been determined
according to the steps specified below.

On the other hand, the circuit in Fig. 12b implements the
following transfer function
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(3)

The circuit comprises multiple stages, including a low-
pass multiple-feedback configuration having a pair of com-
plex and conjugate poles, two stages implementing a pair
consisting of a negative pole and a negative zero, and two
all-pass filters having a negative pole and a positive zero.
It is necessary to select the poles and zeros such that i)
the poles in −1/C5R6 and in −1/C8R9 cancel the negative
zeros in −1/C4R5 and in −1/C7R8, and ii) the pole in
−1/C6R7 is at a frequency sufficiently higher than the rel-
evant band of the biological system so as to have a negligible
impact. Then, the circuit can be used, for instance, as a
physically-viable approximation of the transfer function for
cluster (A,P) (Table 1).

FIGURE 13. Plug-board realization examples. a) Third-order filter
associated with a transfer function having its zeros and poles all real and
negative (circuit in Fig. 12a). b) Third-order filter associated with a
transfer function having a negative and real pole alongside a pair of
complex and conjugate poles (circuit in Fig. 12b).

Having established the circuit topologies, the component
parameters can be determined to realize the desired dynamics
on the same time scale as a biological case. To illustrate
this step, we return to pairing (A,P→P) in Table 3 and, for
convenience, we recall the transfer function model

TF(s) =
73.23(s+ 2.00)(s+ 0.1)

(s+ 76.11)(s+ 1.04)(s+ 0.11)
, (4)

then equate term-by-term Eq. (4) with Eq. (2), yielding

1
C1R1

= 76.11,
1

C2R2
= 1.04

1
C3R3

= 2,
1

C4R4
= 0.11

1
C5R5

= 0.1,
1

C1R1

R7
R6 + R7

R5
R4

R3
R2
= 73.23.

Considering now the transfer function of cluster (A,P) in
Table 1, that is, the one given by

TF(s) = −
7.76(s− 33.36)(s− 0.23)

(s+ 2.31)(s2 + 14.80s+ 200.80)
, (5)

following the design guidelines described above, setting the
high frequency pole at −1/ (C6R7) = −k rad/s, and then
adopting similar steps to the derivation used in the previous
example, equating term-by-term Eq. (5) with Eq. (3), yields

1
C1C2R2R3

= 200.80,
1

C4R5
=

1
C5R6

= 33.36

1
C2

(
1
R1
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1
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= 14.80,
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=
1
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= 0.23,

1
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= k

1
C1C2R2R3

R5
R4

R8
R7
= 7.76k.

B. CIRCUIT REALIZATION AND MEASUREMENT
Finally, we physically built and measured the circuits
realizing the transfer functions corresponding to all the
pairings in Table 3 (Fig. 13a) and to cluster (A,P) in Table 1

VOLUME 10, 2022 17181



E. Tiraboschi et al.: Transfer Function-Based Characterization of Honey Bee Olfactory System

TABLE 4. Transfer functions modeling the inhibition responses from the glomeruli to the somata. Q ∈ [0,1] denotes fitting quality, S0 and Smax the static
and maximum gains from the step response, σ the corresponding relative overshoot and τrise the rise time. Corresponding plots shown in Fig. 11..

(Fig. 13b). For this purpose, off-the-shelf through-hole
resistors (tolerance 5%) and electrolytic capacitors (tolerance
20%) were assembled onto a plug-board, together with
operational amplifiers (type TL082, ST Microelectronics
SpA, Agrate Brianza MI, Italy). The dual power supply
voltage was set to ±9 V.

Signal generation and digitization were performed through
a USB-connected AD/DA converter (type AnalogDiscovery
2; Digilent Inc., Pullman WA). The waveforms input to the
transfer functions (magenta traces in Fig. 7a and Fig. 10a-d)
were upsampled by a factor of 100, then converted to
analog signals at 1 kSa/s, 14-bit. To prevent saturation of
the intermediate stages, the peak amplitude was set to about
100 mV. The signals generated by the circuits were digitized
at 800 Sa/s, 14-bit, downsampled, and re-aligned to the
biologically-recorded outputs (orange trace in Fig. 7a and
gray traces in Fig. 10a-d). To assess the degree of similarity,
the point-to-point linear correlationwas calculated. It is worth
underlining that, given the fact that the signal amplitude
swings at all stages were small compared to the power
supply voltage and that the input signals were very slow
compared to the gain bandwidth of the chosen integrated
circuits, the operational amplifiers could be treated as ideal
entities. In other words, insofar as these assumptions are
met, according to fundamental circuit theory one can abstract
from the non-linear and non-ideal characteristics of the
underlying transistors and simply treat each stage as a purely
linear entity [52]. The underlying recordings are provided as
Supplementary Materials.

Because off-the-shelf resistors and capacitors values are
discretized according to standard tables, the component
choices were adjusted to approximate the intended parameter
settings as closely as possible. To minimize drifting which
would otherwise cause saturation, a finite static gain needs
to be set. For that purpose, 470 k� resistors were added in
parallel to the RC feedback networks, namely C3/R3 and
C5/R5 in Fig. 12a, andC4/R5 andC7/R8 in Fig. 12b. Together
with resistor tolerances, this introduced minor mismatches
in the overall gain. For the circuit in Fig. 12b, to avoid an
excessively high gain in the fourth stage, we set k = 20;
while this value is comparatively low, the corresponding
high-frequency pole had a negligible impact. Moreover,

to maximize the signal-to-noise ratio during measurements,
the input signal was amplified ×10, and the output was
accordingly divided (not shown). At this point, it is opportune
to point out a difference with respect to the initial scenario.
In the biological recordings, the signal-to-noise ratio intended
as the random dispersion of the evoked responses was on
the order of unity, as visible in Fig. 5b. In the realized
circuits, the samewas approximately 100-fold higher. In other
words, the noise present in the initial recordings was treated
merely as a source of parametric uncertainly in the transfer
functions, and not replicated. While this is unavoidable in
this linear analysis, it should be borne in mind that the
initial noise is not only due to instrumental and physiological
contamination, but stochastic dynamics form an essential
aspect of neural behavior also at the mesoscopic scale [1], [3],
[10], [13]. Such dynamics would not in any case have been
realistically reproduced by simply choosing a lower signal-to-
noise arrangement of the linear electronic circuits, therefore,
we parsimoniously aimed to maximize the signal-to-noise
ratio while explicitly acknowledging this simplification.

For pairing (A,P→P) in Table 3, the following component
values were chosen,R1 = 1.2 k�,C1 = 10µF,R2 = 4.3 k�,
C2 = 220 µF, R3 = 5 k�, C3 = 100 µF, R4 = 8.9 k�,
C4 = 1000 µF, R5 = 10 k�, C5 = 1000 µF, R6 = 1.8 k�,
R7 = 3.3 k�, yielding

TF(s) =
70.5(s+ 2)(s+ 0.1)

(s+ 83.3)(s+ 1.06)(s+ 0.11)
. (6)

The circuit-generated output, visible in Fig. 14a, had a near-
complete overlapwith the corresponding biological recording
(r = 0.95, p < 0.001).
For pairing (A,P→T) in Table 3, the following component

values were chosen,R1 = 1.8 k�,C1 = 10µF,R2 = 6.3 k�,
C2 = 10 µF, R3 = 3 k�, C3 = 6.6 µF, R4 = 8.4 k�,
C4 = 1000 µF, R5 = 7.7 k�, C5 = 66 µF, R6 = 1.5 k�,
R7 = 2 k�, yielding

TF(s) =
13.9(s+ 50.5)(s+ 1.97)

(s+ 55.6)(s+ 15.9)(s+ 0.12)
. (7)

The circuit-generated output, visible in Fig. 14b, also had
a near-complete overlap with the corresponding biological
recording (r = 0.99, p < 0.001).
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For pairing (A,T→P) in Table 3, the following component
values were chosen,R1 = 6.3 k�,C1 = 10µF,R2 = 2.4 k�,
C2 = 220 µF, R3 = 3.9 k�, C3 = 100 µF, R4 = 3 k�,
C4 = 440 µF, R5 = 83 k�, C5 = 1000 µF, R6 = 10 k�,
R7 = 0.22 k�, yielding

TF(s) =
15.4(s+ 2.6)(s+ 0.01)

(s+ 15.9)(s+ 1.9)(s+ 0.76)
. (8)

The circuit-generated output, visible in Fig. 14c, also had
a near-complete overlap with the corresponding biological
recording (r = 0.99, p < 0.001).
For pairing (A,T→T) in Table 3, the following component

values were chosen, R1 = 3.6 k�, C1 = 4.7 µF, R2 =
3.6 k�, C2 = 100 µF, R3 = 3 k�, C3 = 47 µF, R4 =
6.2 k�, C4 = 1000 µF, R5 = 7.5 k�, C5 = 1000 µF,
R6 = 10 k�, R7 = 10 k�, yielding

TF(s) =
29.8(s+ 7.1)(s+ 0.13)

(s+ 59.1)(s+ 2.8)(s+ 0.16)
. (9)

The circuit-generated output, visible in Fig. 14d, also had
a near-complete overlap with the corresponding biological
recording (r = 0.97, p < 0.001).
For cluster (A,P) in Table 1, the following component

values were chosen, R1 = 20 k�, R2 = 20 k�, R3 = 20 k�,
C1 = 1.2 µF, C2 = 10 µF, R4 = 40 k�, C3 = 10 µF,
R5 = 0.38 k�, C4 = 77 µF, R6 = 3 k�, C5 = 10 µF,
R0 = 20 k�, R7 = 0.51 k�, C6 = 100 µF, R8 = 43 k�,
C7 = 100 µF, R9 = 43 k�, C8 = 100 µF, yielding

TF(s) = −
8.5(s+ 34.2)(s− 33.3)

(s+ 2.5)(s2 + 15s+ 208.3)(s+ 33.3)
(s+ 0.23)(s− 0.23)
(s+ 19.6)(s+ 0.23)

' −
8.5(s− 33.3)(s− 0.23)

(s+ 2.5)(s2 + 15s+ 208.3)(s+ 19.6)
. (10)

Also in this case, the circuit-generated output, visible in
Fig. 14e, had near-complete overlap with the corresponding
biological recording (r = 0.99, p < 0.001).
The five realized circuits, therefore, reproduced with

remarkable accuracy the neural responses, despite the
approximations associated with the finite transfer function
order and realization using discrete electronic components.

V. DISCUSSION
A. TRANSFER FUNCTIONS AS A ‘‘GRAY BOX’’ MODEL
This study was predicated on the ability to simultaneously
record the neural responses during olfactory stimulation
in the glomeruli and somata using two-photon calcium
imaging. This enabled determining models of biological
signal processing across the first two stages of the honey bee’s
olfactory system. The first processing step in the antennal
lobe can be dissected into two input-output subsystems,
namely, from the ORN dendrites to a glomerulus and from the
glomerulus to the PN somata. Therein, channels are laterally
interlinked by LNs, which were found in the fruit fly to be
both excitatory and inhibitory [15], [16]. In the honey bee,

FIGURE 14. Experimentally-recorded waveforms for the inputs (orange)
and outputs (violet), corresponding to a) pairing (A,P→P) in Table 3 (Eq.
6), b) pairing pairing (A,P→T) in Table 3 (Eq. 7), c) pairing pairing (A,T→P)
in Table 3 (Eq. 8), d) pairing pairing (A,T→T) in Table 3 (Eq. 9), e) cluster
(A,P) in Table 1 (Eq. 10).

thus far, only inhibitory local neurons have been identified
directly [54].

According to established models of the antennal lobe,
one would expect limited changes in the signal propagating
from the PN dendrites in the glomeruli to the somata, since
the coupling between PNs via local neuron is assumed to
be limited to the glomerular region [11]. However, calcium
imaging paired with electrophysiological recordings in the
moth AL suggests that the PN dendritic calcium signal from
the glomeruli tracks the postsynaptic potential, whereas the
calcium signal in the somata is a good measure of the PN
spiking output [55]. Moreover, the PN dendritic signal in
the glomeruli seems to depend primarily on acetylcholine
channel influx rather than intracellular potential, whereas
the somata signal depends more on voltage than acetyl-
choline [56]. Despite these intricacies, the inferences about
olfactory coding that can be drawn from calcium imaging
and direct electrophysiological recordings are essentially
overlapping [57].

The sheer difficulty in ascribing the diversified responses
across the glomeruli and somata to well-defined architectural
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and physiological aspects ultimately motivated us to consider
an ‘‘agnostic’’ approach. Namely, this entailed capturing
at the mesoscopic scale the changes in the input signals
across these stages, without developing a detailed model
of the system internal behavior, accepting instead a so-
called ‘‘gray box’’ representation in terms of a low-order
transfer function [24], [53]. On the one hand, this approach
is unrewarding in terms of attaining a detailed understanding.
However, on the other, it is very effective in yielding efficient
and compact mathematical or even physical artificial replicas
of biological processes. These can be used for a multitude
of purposes, as exemplified by the active filter circuits
demonstrated in this work [31], [32]. Such a situation is
representative of the role of ‘‘gray box’’models across diverse
areas of engineering and science [25], [26].

B. GLOMERULAR RESPONSES
A principal finding from the outputs at the glomerular level is
that the activity of the PNs shows a broad range of excitation
and inhibition responses, with widely varying dynamics,
particularly regarding transiency. A classification based on
response parameters did not clearly correspond to glomerulus
location and evoking odors, suggesting an intricate inter-
action among manifold mechanisms of signal transduction.
In general, the PN response profiles were found to exhibit the
typical phasic-tonic shape of activation responses, showing
a steep rise and a relatively rapid accommodation (Fig.7)
after stimulus end; furthermore, a phasic undershoot followed
most responses. Conversely, inhibition responses were, in the
majority of cases, found to be tonic (Fig.8). These response
types have been consistently observed in previous studies of
PN activity in the honey bee [58], and can be accounted for
by lateral inhibition via the LNs setting in shortly after the
initial excitation.

It has been posited that these transformations broaden
the PN tuning, producing more uniform distances between
odor representations in the PN coding space [59]. Here,
cluster analysis of the responses showed that the diversifying
trait is the different weighting between phasic and tonic
contributions, ranging from purely spike-like to almost
box-like responses. For convenience, this was illustrated
using a four-level categorization, though the results are
not textcolorredcritically dependent on this choice. This
diversification is plausibly introduced by coupling to the
inhibitory network of local neurons, whose contribution
varies in number and strength. Spike-like responses foremost
emphasize the odor onset times, whereas box-like responses
reproduce the stimulus pulse shape and intensity [60].

In turn, this implies that the individual glomerular
responses contribute differently to different coding mecha-
nisms [61]. Rate or amplitude coding use information about
the neuronal firing rate or equivalently the calcium amplitude
to represent information about a stimulus [62]. This requires
integrating glomerular responses over time and hereby
delivers precise information on the stimulus intensity [63].
Conversely, the mechanism of latency or first-spike coding is

based on detecting the onsets of single glomerular responses,
wherein their relative time differences provide rapidly-
available information about odor identity [22], [64].

C. SOMATA RESPONSES
Thanks to instrumental advances, in this study we could,
for the first time, acquire the calcium signals in parallel
from a large number of glomeruli-somata pairs. The results
regarding their association need to be interpreted carefully
since no structural connectivity information was available.
Connectivity was, therefore, inferred indirectly via statistical
estimates of Granger causality based on the recorded time
series. Nevertheless, some tentative conclusions could be
drawn. We confirm that responses in the somata are generally
more transient than those in the glomeruli [19], [49]. In about
half of the activation responses, phasic and tonic profiles
retain their shapes (Fig.10 a,d). However, in the other half,
a significant change in the response profile could be detected,
such that the majority of output signals are more spike-
like compared to the corresponding inputs (Fig.10c vs. b).
Remarkably, for the inhibition responses, the tendency was
the opposite; although, also in this case, about half of the
output signals did not significantly change shape (11 a,d),
those that did show a preponderance of prolonged responses
(11 b with respect to c).
Indirectly, this situation suggests that, in a fraction of cases,

a further inhibitory lateral modulation may be acting on the
signal post-synaptically along its way from the PN dendrites
to the neuronal body/axonal cone. While, to the authors’
knowledge, this interaction is not included in the standard
antennal lobe models, it has been proposed before, predicated
on experiments showing pulse shape transformations similar
to the ones observed here. For example, a reduction in
the excitation pulse length at the level at the somata
was reported in the moth [55]. The reason for such a
transformation is plausibly to be found in the transition
between coding schemes, namely, from dense coding in
the antennal lobe to sparse coding in the mushroom body,
which unavoidably also requires a sparsification of pulses
in time [65]. Consistent results for inhibition responses were
found in the moth [66]. Whether the occasionally-observed
opposite transformation, namely prolonged excitatory and
shortened inhibitory responses, could also be explained by
lateral coupling or not, depends on the presence of local
excitatory neurons. These have been found in the fruit fly
[15], [16] but, thus far, not in the honey bee. However, the
broad tuning of PN responses in the honey bee AL is an
argument for their existence [60].

An alternative and equally plausible explanation is that
these transformations are not describing processes in single
neurons, but that the inputs and outputs come from highly
correlated yet distinct cells. Clearly, it also cannot be
excluded that these transformations may arise as an artifact
of the selection of glomeruli-somata pairs based on Granger
causality. That appears plausible in light of the limited
asymmetry observed. Future work should address this aspect,
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for example, as a function of different causality thresholds to
sparsify the graphs. Nevertheless, the wide variety of output
signal shapes found in our recordings appears well in line
with calcium imaging studies performed downstream, at the
axon terminals (buttons) of the mushroom body calyces; at
that point, however, further modulation by feedback neurons
from the mushroom body plausibly also plays a role [67].

D. PUTATIVE TRANSFORMATION MECHANISMS
The observed relationships between the glomerular and
somata responses, as said, point to the possible action of post-
synaptic inhibition beyond the glomeruli.This would realize
a form of adaptive gain control [55], which may underpin the
observation that second-order neurons display broader tuning
and more complex responses [14]. Namely, PN responses
rise and accommodate rapidly, emphasizing odor onset,
such that weak ORN inputs are amplified, whereas strong
inputs are not. This nonlinear transformation broadens
PN tuning, yielding more uniform distances between odor
representations in the PN coding space [59]. However,
these gain effects can not be directly inferred from the
measured amplitudes of the calcium-induced fluorescence
changes (Fig. 5,6). As stated above, on the one hand, the
response amplitudes depend on uncontrollable factors such
as dye uptake and, on the other, although the measurements
come from the same cell, the biophysical contributions to
the calcium concentrations vary strongly between dendrites
and soma [55], [56]. This resembles the situation for
other indirect measures of neural activity whose coupling
functions are underdetermined, such as the blood oxygen
signal in functional MRI and near-infrared spectroscopy [68].
Therefore, electrophysiological measurements are necessary
to make quantitative assertions about gain and therefore
fully determine neuronal transfer functions, as extensively
exemplified and argued in Refs. [27], [42]. The present results
inform how to target such measurements in future work.

From another perspective, the transformation from ORN
to PN described by the normalization model equalizes
magnitudes and decorrelates responses to different odors
through feedforward nonlinearities and lateral suppression.
This allows highly selective and sparse responses to be
generated through the application of a fixed threshold, for
which response magnitude equalization is crucial [69]. This
processing step may implement a spatiotemporal sparsifi-
cation through spike frequency adaptation [65], and more
generally a central role has been posted for self-organization
and criticality in olfactory processing [2]. Altogether, these
arguments unavoidably raise the question of whether model-
ing this knowingly complex processing via transfer functions
has any true explanatory value.

There are, in particular, three issues to be considered.
First, the transfer functions are linear, which is at odds
with manifold evidence of nonlinear processing. Second,
they embody a pure feed-forward view of the processing
architecture, which is also at odds with the view that
lateral inhibition plays a key role. Third, their parameters

are assumed to be fixed, whereas, in biological systems,
dynamical activity and adaptiveness imply continuous and
pervasive retuning.

E. THE SCOPE FOR TRANSFER FUNCTIONS
The relevance or otherwise of the proposed approach based
on determining transfer functions from neurophysiological
time series, then synthesizing analog electronic circuits based
on them, critically depends on the purpose of investigation.
Evidently, this approach cannot replace the microscale,
bottom-up analysis of neural microcircuits, which is the
basis of the field of spiking neuromorphic circuits. That
approach yields analog CMOS architectures which mimic
individual neurons and their interconnections, while having
circuit variables explicitly associated to physiologically-
meaningful quantities, such as ion currents [70]. Simi-
larly, this approach cannot replace large-scale computational
investigation wherein complex dynamical phenomena can
be flexibly and extensively explored, aiming, for example,
to explain self-organization phenomena and other emergent
properties [2]. Plausibly, transfer functions would also be
incapable of accounting for the myriad of intricate inter-
relationships between odor type and spatial distribution of
neural activity, which have been outright neglected in this
work. As considered in the previous Section, by their nature,
they represent a highly simplified, linear and deterministic
account of neural dynamics, which by construction neglects
both their stochasticity and their non-linear nature. Con-
sequently, and no less importantly, transfer functions as
used in this work represent a ‘‘snapshot’’ of the input-
output relationship. Since the coefficients cannot change as a
function of the previous inputs, they are inherently unsuitable
for creating hardware systems capable of learning. As such,
they are just models of signal filters, rather than adaptive
devices.

Instead, the purpose here was to show that a minimalistic,
high-level empirical representation of the mesoscale-level
system responses can be agnostically obtained using transfer
functions, that is, choosing ab initio a ‘‘gray box’’ approach
which prioritizes compactness and ease of realization. For
example, in a biological scenario, the conversion between
phasic and tonic responses may involve self-tuning microcir-
cuits considerably more complex than these tentative linear
approximations [71], [72]. Nevertheless, in some cases a
detailed representation of such mechanisms may not be
necessary to reproduce their overall response satisfactorily.
In particular, this level of complexity reduction may be the
key to unlocking the practical feasibility of bio-inspired
engineering in real-world applications.y

The empirical observation of similar responses should
clearly not be misinterpreted as implying a structural
correspondence between the electrical components in the
circuits (e.g., resistors and capacitors) and elements of
neural circuitry. Such a one-to-one correspondence cannot be
established by the present kind of research. In fact, it cannot
be established at all based on two-photon microscopy and
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necessitates methods such as single-cell recordings. These
models should, therefore, be intended as phenomenological
rather than structural, and as mesoscopic rather than micro-
scopic representations.

At the same time, an important limitation of the present
work which should be acknowledged is the fact that no
attempt wasmade to decode the complex association between
the type of odor presented and the spatiotemporal distribution
of activation over the glomeruli and somata [6]–[10]. Pooling
all the data and resorting to a fundamental and linear tool
such as Granger causality to establish the correspondence
between the glomeruli and the somata may be viewed as
an abdication from answering this question. However, the
focus of this paper was on delivering a compact and linear
account of signal processing [24], [44], [45]. On the one hand,
such a step was necessary because, while the anatomical
variability of the glomeruli is limited, that of the somata
is considerably larger due to their sheer number and small
size [11], [21], [22], [34]. On the other hand, we acknowledge
that future work should address the application of nonlinear
tools from machine learning, such as deep neural networks,
to decoding this representation, eventually informing a more
detailed understanding of the entire information processing
chain.

Despite all the conceptual limitations mentioned above, the
accuracy of the synthesized analog circuits in reproducing the
initial recordings was striking, with a near-perfect correlation
observed between the biological and electronic experiments.
From this, one concludes that, at the mesoscopic scale,
regardless of the underlying complexity, even a low-order
linear approximation can be adequate to account for the
ensemble responses around a particular operating point.
On the one hand, the proposed transfer functions are unlikely
to be able to account for concentration-related and odor-
specific effects, which were not addressed in this work.
On the other, the obtained circuits are incomparably simpler
to realize than complex neuromorphic architectures, and their
parameters can be determined straightforwardly via closed-
form equations. Equally, by their nature, they are orders
of magnitude less power-consuming than the numerical
simulation of any realistic model. As regards neuromorphic
engineering in particular, it is worth remembering that, even
though presently the focus is mainly on single neuron-
level replication, in the past architectures based on capturing
at the mesoscale the behavior of entire populations of
neurons, such as slow fluctuations in local field potential
in response to light, have been proposed and successfully
deployed [73]. The scope of the present transfer function-
based modeling should therefore be considered in that regard,
and particularly with an eye to the practical realization
of built-in sensor front-ends, such as for artificial noses.
In this sense, the ability to synthesize a biologically-plausibly
response with a closed-form approach, based on standard
operational amplifiers, is a notable advantage over the known
intricacies of iterative design and parameter tuning associated
with spiking neuromorphic circuits [31], [32].
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