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Abstract
We apply tropical geometry to study matrix algebras over a field with valuation.
Using the shapes of min-max convexity, known as polytropes, we revisit the graduated
orders introduced by Plesken and Zassenhaus. These are classified by the polytrope
region. We advance the ideal theory of graduated orders by introducing their ideal
class polytropes. This article emphasizes examples and computations. It offers first
steps in the geometric combinatorics of endomorphism rings of configurations in affine
buildings.

Keywords Graduated orders · Polytropes · Tropical geometry

1 Introduction

Let K be a field with a surjective discrete valuation val : K → Z ∪ {∞}. We fix
p ∈ K satisfying val(p) = 1. The valuation ringOK is the set of elements in K with
non-negative valuation. This is a local ring with maximal ideal 〈p〉 = {x ∈ OK :
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val(x) > 0}. In our examples, K = Q is the field of rational numbers, with the p-adic
valuation for some prime p.

We write Kd×d for the ring of d × d matrices with entries in K . The map val is
applied coordinatewise to matrices and vectors. For example, if K = Q with p = 2,
then the vector x = (8/7, 5/12, 17) has val(x) = (3,−2, 0). In what follows, we
often take X = (xi j ) to be a d × d matrix with nonzero entries in K . In this case,
val(X) = (val(xi j )) is a matrix in Z

d×d .
Fix any squarematrixM = (mi j ) inZd×d . This paper revolves around the interplay

between the following two objects associated with M , one algebraic and the other
geometric:

1. the set �M = {X ∈ Kd×d : val(X) ≥ M}, an OK -lattice in the vector space
Kd×d ;

2. the set QM = {u ∈ R
d/R1 : ui − u j ≤ mi j for 1 ≤ i, j ≤ d}, where 1 =

(1, . . . , 1).

This interplay is strongest and most interesting when �M is closed under multiplica-
tion. In this case, �M is a non-commutative ring of matrices. Such a ring is called an
order in Kd×d . The quotient space R

d/R1 
 R
d−1 is the usual setting for tropical

geometry (Joswig 2022; Maclagan and Sturmfels 2015). Note that QM is a convex
polytope in that space. It is also tropically convex, for both the min-plus algebra and
the max-plus algebra. Following (Joswig and Kulas 2010; Tran 2017), we use the term
polytrope for QM .

Example 1 For d = 4, fix the matrix with diagonal entries 0 and off-diagonal
entries 1:

M =

⎡
⎢⎢⎣
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎤
⎥⎥⎦ . (1)

The polytrope QM is the set of solutions to the 12 inequalities ui − u j ≤ 1 for
i �= j . It is the 3-dimensional polytope shown in Fig. 1. Namely, QM is a rhombic
dodecahedron, with 14 vertices, 24 edges and 12 facets. The vertices are the images
in R4/R1 of the 14 vectors in {0, 1}4\{0, 1}. Vertices ei are blue, vertices ei + e j are
yellow, and vertices ei + e j + ek are red.

The order �M consists of all 4 × 4 matrices with entries in the valuation ring OK

whose off-diagonal elements lie in the maximal ideal 〈p〉. We shall see in Theorem 16
that the blue and red vertices encode the injective modules and the projective modules
of �M respectively.

The connection between algebra, geometry and combinatorics we present was pio-
neered by Plesken and Zassenhaus. Our primary source on their work is the book
(Plesken 1983). One objective of this article is to give an exposition of their results
using the framework of tropical geometry (Joswig 2022; Maclagan and Sturmfels
2015). But we also present a range of new results. Our presentation is organized as
follows.
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Fig. 1 The polytrope QM on the left is a rhombic dodecahedron. The four blue vertices and the four red
vertices, highlighted on the right, will play a special role for the order �M (colour figure online)

Section 2 concerns graduated orders in Kd×d . In Propositions 6 and 7 we present
linear inequalities that characterize these orders and the lattices they act on. These
inequalities play an important role in tropical convexity, to be explained in Sect. 3.
Theorem 10 gives a tropical matrix formula for the Plesken-Zassenhaus order of a
collection of diagonal lattices.

In Sect. 4 we introduce polytrope regions. These are convex cones and polyhedra
whose integer points represent graduated orders. Section 5 is concerned with (frac-
tional) ideals in an order �M . These are parametrized by the ideal class polytrope
QM . In Sect. 6 we turn to Bruhat-Tits buildings and their chambers. While the present
study is restricted to Plesken-Zassenhaus orders arising from one single apartment, it
sets the stage for a general theory.

Several results in this article were found by computations. The codes and all data
are made available at https://mathrepo.mis.mpg.de/OrdersPolytropes/index.html.

2 Graduated orders

By a lattice in Kd we mean a free OK -submodule of rank d. Two lattices L and L ′
are equivalent if L ′ = pnL for some n ∈ Z. We write [L] = {pnL : n ∈ Z} for the
equivalence class of L . An order in Kd×d is a lattice in the d2-dimensional vector
space Kd×d that is also a ring. Thus, every order contains the identity matrix. An
order � is maximal if it is not properly contained in any other order. One example of
a maximal order is the matrix ring

Od×d
K := {X ∈ Kd×d : val(xi j ) ≥ 0 for all 1 ≤ i, j ≤ d}.

This is spanned as an OK -lattice by the matrix units Ei j where 1 ≤ i, j ≤ d. It is
multiplicatively closed because Ei j E jk = Eik . We begin with some standard facts
found in Plesken (1983). The first is a natural bijection between lattice classes [L] in
Kd and maximal orders in Kd×d .
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Proposition 2 Any order � in K d×d is contained in the endomorphism ring of a
lattice L ⊂ Kd. The maximal orders in Kd×d are exactly the endomorphism rings of
lattices L:

EndOK (L) := {X ∈ Kd×d : XL ⊆ L}.

Two lattices L and L ′ in K d are equivalent if and only if EndOK (L) = EndOK (L ′).

Proof Let � = ⊕d2
j=1OK X j be an order in Kd×d . If we apply the matrices X j to

the standard lattice L0 = Od
K = ⊕d

i=1OK ei , then we obtain the following lattice in
Kd :

L :=
d2∑
j=1

X j L0 =
d∑

i=1

d2∑
j=1

OK X j ei .

Since � is multiplicatively closed, we have X j L ⊆ L for all j . Therefore � ⊆
EndOK (L).

Endomorphism rings of lattices are orders. Indeed, if L = gL0 for g ∈ GLd(K ),
then

EndOK (L) = g EndOK (L0)g
−1 = gOd×d

K g−1. (2)

This is a ring, and it is spanned as an OK -lattice by {gEi j g−1 : 1 ≤ i, j ≤ d}. This
allows to conclude that the maximal orders are exactly the endomorphism rings of
lattices. ��

For u ∈ Z
d we abbreviate gu = diag(pu1 , pu2 , . . . , pud ). This diagonal matrix

transforms the standard lattice Od
K to Lu = guOd

K . The endomorphism ring
EndOK (Lu) is the maximal order in (2). Let M(u) denote the d × d matrix whose
entry in position (i, j) equals ui − u j .

Lemma 3 The endomorphism ring of the lattice Lu is given by valuation inequalities:

EndOK (Lu) = �M(u) = { X ∈ Kd×d : val(X) ≥ M(u)}. (3)

Proof The elements of EndOK (Lu) are the matrices X = guYg−1
u where Y ∈ Od×d

K .
Writing X = (xi j ) and Y = (yi j ), the equation X = guYg−1

u means that xi j =
pui−u j yi j for all i, j . The condition val(yi j ) ≥ 0 is equivalent to val(xi j ) ≥ ui − u j .
Taking the conjunction over all (i, j), we conclude that val(Y ) ≥ 0 is equivalent to
the desired inequality val(X) ≥ M(u). ��

The matrices M(u) are characterized by the following two properties. All diagonal
entries are zero and the tropical rank is one, cf. (Maclagan and Sturmfels 2015, Section
5.3). What happens if we replace M(u) in (3) by an arbitrary matrix M ∈ Z

d×d? Then
we get the set �M from the Introduction.
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Remark 4 For any matrix M ∈ Z
d×d , the set �M is a lattice in Kd×d . It is generated

as an OK -module by the matrices pmi j Ei j for 1 ≤ i, j ≤ d. The lattice �M may not
be an order.

WriteZd×d
0 for the set of integermatricesM with zeros on the diagonal, i.e.mii = 0

for all i . If M lies in Z
d×d
0 then �M contains the identity matrix, but may still not be

an order.

Example 5 Let K = Q with the p-adic valuation, for some prime p ≥ 5. For d = 3,
set

M =
[
0 0 1
0 0 0
0 0 0

]
and X =

[
1 1 p
1 1 1
1 1 1

]
, so X2 =

[
2+p 2+p 1+2p
3 3 2+p
3 3 2+p

]
.

Since val(X) = M and val(X2) = 0, we have X ∈ �M but X2 /∈ �M . So �M is not
an order.

The inequalities derived in the next two propositions are the main points of this
section. These results are due to Plesken (1983). He states them in Plesken (1983,
Definition II.2) and (Plesken, 1983, Definition II.4). The orders �M in Proposition 6
are called graduated orders in (Plesken, 1983, Remark II.4). They are also known
as tiled orders (Dokuchaev et al. 2017; Jategaonkar 1974), split orders (Shemanske
2010) or monomial orders (Yang and Chia-Fu 2015). A graduated order �M is in
standard form if M ≥ 0 and mi j + m ji > 0 for i �= j .

Proposition 6 Given M = (mi j ) in Z
d×d
0 , the lattice �M is an order in Kd×d if and

only if

mi j + m jk ≥ mik for all 1 ≤ i, j, k ≤ d. (4)

Proof To prove the if direction, we assume (4). Our hypothesis mii = 0 ensures that
�M contains the identitymatrix, so�M has amultiplicative unit. Suppose X ,Y ∈ �M .
Then the (i, k) entry of XY equals

∑d
j=1 xi j y jk . This is a scalar in K whose valuation

is at least mi j + m jk for some index j . Hence it is greater than or equal to mik since
(4) holds.

For the only-if direction, suppose mi j + m jk < mik . Then X = pmi j Ei j and
Y = pm jk E jk are in �M . However, XY = pmi j+m jk Eik is not in �M because its
entry in position (i, k) has valuation less than mik . Hence �M is not multiplicatively
closed, so it is not an order. ��

Fix M that satisfies (4). The graduated order �M is anOK -subalgebra of Kd×d . It
is therefore natural to ask which lattices in Kd are �M -stable.

Proposition 7 A lattice L is stable under �M if and only if L = Lu with u ∈ Z
d that

satisfies

ui − u j ≤ mi j for 1 ≤ i, j ≤ d. (5)
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Moreover, if u, u′ ∈ Z
d satisfy (5), then the diagonal lattices Lu and Lu′ are isomorphic

as �M-modules if and only if they are equivalent, i.e. u = u′ in the quotient space
R
d/R1.

Proof Fix a lattice L and let u = (u1, . . . , ud) be defined by ui = min{val(bi ) : b ∈
L}. Then L ⊆ Lu because every b ∈ L is an OK -linear combination of the standard
basis of Lu , namely b = ∑d

i=1 bi ei = ∑d
i=1(bi p

−ui ) pui ei . Suppose that L is �M -
stable. Since mii = 0, we have Eii ∈ �M . Hence Eii b = bi ei ∈ L for every b ∈ L .
This implies Lu ⊆ L and hence L = Lu . Applying pmi j Ei j ∈ �M to pu j e j ∈ Lu ,
we see that pmi j+u j ei lies in Lu , and this implies mi j + u j ≥ ui . Hence (5) holds.
Conversely, suppose that (5) holds. Then the generator pmi j Ei j of �M maps each
basis vector puk ek of Lu either to zero (if j �= k), or to pmik+uk ei ∈ Lu . This proves
the first assertion.

For the second assertion, let u, u′ ∈ Z
d satisfy (5). Since multiplication by α ∈ K ∗

is an isomorphism ofOK -modules, the if-direction is clear. Conversely, if Lu and Lu′
are isomorphic, then there exists g ∈ GLd(K ) such that Lu′ = gLu and gX = Xg for
all X ∈ �M . Pick s ∈ Z>0 such that psOd×d

K ⊂ �M . Then g commutes with every
matrix in psOd×d

K . This implies that g is central inOd×d
K , and therefore g is a multiple

of the identity matrix. ��

3 Bi-tropical convexity

We now develop the relationship between graduated orders and tropical mathematics
(Joswig 2022; Maclagan and Sturmfels 2015). Both the min-plus algebra (R, ⊕ ,�)

and the max-plus algebra (R, ⊕ ,�) will be used. Its arithmetic operations are the
minimum, maximum, and classical addition of real numbers:

a ⊕ b = min(a, b) , a ⊕ b = max(a, b) , a � b = a + b for a, b ∈ R.

If M and N are real matrices, and the number of columns of M equals the number of
rows of N , then we write M � N and M � N for their respective matrix products in
these algebras.

Example 8 Consider the 2 × 2 matrices M =
[
0 1
2 0

]
and N =

[
1 0
0 0

]
. We find that

M � M =
[
0 1
2 0

]
, M � N =

[
1 0
0 0

]
, N � M =

[
1 0
0 0

]
, N � N =

[
0 0
0 0

]
,

M � M =
[
3 1
2 3

]
, M � N =

[
1 1
3 2

]
, N � M =

[
2 2
2 1

]
, N � N =

[
2 1
1 0

]
.

There are twoflavors of tropical convexity (Maclagan andSturmfels 2015, Section5.2).
A subset of Rd is min-convex if it is closed under linear combinations in the min-plus
algebra, and max-convex if the same holds for the max-plus algebra. Thus convex sets
are images of matrices under linear maps.
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We are especially interested in bi-tropical convexity in the ambient space Rd/R1.
This is ubiquitous in (Joswig, 2022, Section 5.4) and (Maclagan and Sturmfels, 2015).
Joswig (2022, Section 1.4) calls it the tropical projective torus. At a later stage, we
also work in the corresponding matrix space Rd×d/R1.

LetRd×d
0 denote the space of real d×d matrices with zeros on the diagonal, which

is a real (d2−d)-dimensional vector space with latticeZd×d
0 . For M = (mi j ) inR

d×d
0 ,

we define

QM = {
u ∈ R

d/R1 : ui − u j ≤ mi j for 1 ≤ i, j ≤ d
}
. (6)

Such a set is known as a polytrope in tropical geometry (Joswig and Kulas 2010;
Maclagan and Sturmfels 2015). Other communities use the terms alcoved polytope
andweighted digraph polytope. We note that QM is both min-convex and max-convex
(Joswig 2022, Proposition 5.30) and, being a polytope, it is also classically convex.

Using tropical arithmetic, the linear inequalities in (4) can be written concisely as

M � M = M . (7)

Thus, M is min-plus idempotent. This holds for M in Example 8. Joswig’s book
(Joswig 2022, Section 3.3) uses the term Kleene star for matrices M ∈ R

d×d
0 with (7).

Propositions 6 and 7 imply:

Corollary 9 The lattice �M is an order in Kd×d if and only if (7) holds. In this case,
the integer points u in the polytrope QM are in bijection with the isomorphism classes
of �M-lattices Lu. Here, by a �M-lattice we mean a �M-module that is also a lattice
in Kd.

Let � = {L1, . . . , Ln} be a finite set of lattices in Kd , which might be taken up
to equivalence. The intersection of two orders in Kd×d is again an order. Hence the
intersection

PZ(�) = EndOK (L1) ∩ · · · ∩ EndOK (Ln) (8)

is an order in Kd×d . We call PZ(�) the Plesken-Zassenhaus order of the
configuration �.

In the following we assume that each Li is a diagonal lattice, i.e. Li = Lu(i) for
u(i) ∈ Z

d . Our next result involves a curious mix of max-plus algebra and min-plus
algebra.

Theorem 10 Let � = {Lu(1) , . . . , Lu(n)} be any configuration of diagonal lattices in
Kd. Then its Plesken-Zassenhaus order PZ(�) coincides with the graduated order
�M where

M = M(u(1)) ⊕ M(u(2)) ⊕ · · · ⊕ M(u(n)). (9)

This max-plus sum of tropical rank one matrices is min-plus idempotent, i.e. (4) and
(7) hold.
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Fig. 2 A polytrope with three
min-plus vertices (blue) and
three max-plus vertices (red)
(colour figure online)

u(1)

u(2)

u(3)

(2, 3, 0)

(0,−1, 0)

(−2, 2, 0)

Proof We regard � as a configuration in Rd/R1. By construction, M is the entrywise
smallest matrix such that � is, contained in the polytrope QM . From (Joswig, 2022,
Lemma 3.25) the matrix M is a Kleene star, that is (4) and (7) hold. The intersection
in (8) is defined by the conjunction of the n inequalities val(X) ≥ M(u(i)), which is
equivalent to val(X) ≥ M . ��

Example 11 For d = n = 3, fix u(1) = (−2,−1, 0), u(2) = (2, 1, 0), u(3) =
(−1, 3, 0) in R

3/R1. The configuration � = {u(1), u(2), u(3)} consists of the three
red points in Fig. 2. The red diagram is their min-plus convex hull. This tropical trian-
gle consists of a classical triangle together with three red line segments connected to
�. This red min-plus triangle is not convex. The green shaded hexagon is the polytrope
spanned by �. By (Joswig, 2022, Remark 5.33), this is the geodesic convex hull of �.
It equals QM where M is computed by (9):

M = (u(1))t � (−u(1)) ⊕ (u(2))t � (−u(2)) ⊕ (u(3))t � (−u(3)) =
[
0 1 2
4 0 3
2 1 0

]
.

The polytrope QM is both a min-plus triangle and a max-plus triangle. Its min-plus
vertices, shown in blue, are equal in R

3/R1 to the columns of M . Its max-plus ver-
tices, shown in red, are the points u(i). These are equal in R

3/R1 to the columns of
−Mt ; cf. Theorem 16. Moreover, the three green cells correspond to the collection of
homothety classes of lattices contained in u(i) ⊕ u( j) and containing u(i) ⊕ u( j), for
each choice of i �= j .

Remark 12 All lattices Lu for u ∈ QM are indecomposable as �M -modules, cf.
(Plesken, 1983). This is no longer true ifR is enlarged to the tropical numbersR∪{∞}.
The combinatorial theory of polytropes in (Joswig, 2022) is set up for this extension,
and it indeed makes sense to study orders�M withmi j = ∞. While we do not pursue
this here, our approach would extend to that setting.

Example 13 Set d = 4. The rhombic dodecahedron inExample 1was called the pyrope
in (Joswig and Kulas, 2010, Figure 4) and can be seen as the unit ball with respect to
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the tropical metric, cf. (Cohen et al. 2004, §3.3). This QM is a tropical tetrahedron
for both min-convexity and max-convexity. The respective vertices are shown in red
and blue in Fig. 1. We have �M = PZ(�) where � is either set of four vertices. The
�M -lattices Lu correspond to the 15 integer points in QM .

4 Polytrope regions

We next introduce a cone that parametrizes all graduated orders�M . Following (Tran,
2017), the polytrope region Pd is the set of all min-plus idempotent matrices M ∈
R
d×d
0 . Thus, Pd is the (d2 − d)-dimensional convex polyhedral cone defined by the

linear inequalities in (4). The equationsmik = mi j +m jk define the cycle space of the
complete bidirected graph Kd . This is the lineality space of Pd . Modulo this (d − 1)-
dimensional space, the polytrope region Pd is a pointed cone of dimension (d−1)2.
We view it as a polytope of dimension d2 − 2d. Each inequality mik ≤ mi j + m jk is
facet-defining, so the number of facets of Pd is d(d − 1)(d − 2).

It is interesting but difficult to list the vertices of Pd and to explore the face lattice.
The same problem was studied by Avis (1980) for the metric cone, which is the
restriction ofPd to the subspace of symmetricmatrices inRd×d

0 . Awebsitemaintained
by Antoine Deza (2021) reports that the number of rays of the metric cone equals
3, 7, 25, 296, 55226, 119269588 for d = 3, 4, 5, 6, 7, 8. We here initiate the census
for the polytrope region. The following tables report the size of the orbit, the number
of incident facets, and a representative matrix [mi j ]. Here orbit and representatives
refer to the natural action of the symmetric group Sd on Pd . The matrices [mi j ] in
Z
3×3
0 are written in the vectorized format [m12m13m21m23m31m32].

Proposition 14 The polytope P3 is a bypramid, with f-vector (5, 9, 6). Its five vertices
are

3 , 4 [001100] and 2 , 3 [001110].

The polytope P4 has the f-vector (37, 327, 1140, 1902, 1680, 808, 204, 24). Its 37
vertices are

12, 10[111011001001] 6, 12 [111011001000] 12, 14[011011001000]
3, 16 [011011000000] 4, 18[111000000000].

The corresponding polytropes QM are pyramid, tetrahedron, triangle, segment, and
segment. The 15-dimensional polytope P5 has 2333 vertices in 33 symmetry classes.
These classes are

5, 48 [00000000000000001111] 10, 18 [00001001211121111100] 10, 42 [00000000000011101110]
20, 15 [00002012323231012201] 20, 21 [00001000110021112111] 20, 39 [00000000000011101111]
24, 20 [00001001210122111110] 24, 30 [00001000110011101111] 30, 24 [00001000110121111110]
30, 30 [00000000110011111111] 30, 30 [00000000110111111110] 30, 36 [00000000110011001111]
40, 18 [00002000221222212212] 60, 18 [00001000210122112110] 60, 18 [00001001210122121100]
60, 22 [00001000110122111110] 60, 27 [00001000110011102111] 60, 29 [00000000110011102211]
60, 33 [00000000110011101111] 120, 16 [00001001220132122110] 120, 17 [00001001210122122110]
120, 18 [00001001210122112110] 120, 18 [00001001210122122210] 120, 18 [00001001210222122110]
120, 18 [00001001220132213210] 120, 19 [00001000210022103221] 120, 19 [00001000210122122110]
120, 19 [00001001210122212210] 120, 22 [00001000110021102221] 120, 22 [00001000110122121110]
120, 23 [00001000110021102211] 120, 23 [00001000110021102222] 120, 25 [00001000110011102211]
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Proof Thiswas found by computationswithPolymake (Gawrilowand Joswig 2000);
see our mathrepo site. ��
Remark 15 The integer matrices M in the polytrope regionPd represent the graduated
orders�M ⊂ Kd×d . The data above enables us to sample from these orders. A variant
of Pd that assumes nonnegativity constraints was studied in (Deza et al. 2002), which
offers additional data. We also refer to (Dokuchaev et al. 2017) for a study of the cone
of polytropes from the perspective of semiring theory.

Our next result relates the structure of a polytrope QM to that of its graduated
order �M .

Theorem 16 Let M ∈ Pd be in standard form. The (d − 1)-dimensional polytrope
QM is both a min-plus simplex and a max-plus simplex. The min-plus vertices u are
the columns of M. They represent precisely those modules Lu over the order �M that
are projective. The max-plus vertices v are the columns of −Mt , and they represent
the injective �M-modules Lv .

Proof Thanks to (Joswig and Kulas, 2010, Theorem 7), full-dimensional polytropes
are tropical simplices, with vertices given by the columns of the defining matrix M .
We know from bi-tropical convexity (Joswig 2022, Proposition 5.30) that QM is both
min-convex and max-convex, so it is a simplex in both ways. This duality corresponds
to swappingM with its negative transpose−Mt . Note its appearence in (Maclagan and
Sturmfels, 2015, Theorem 5.2.21). The connection to projective and injective modules
appears in parts (v) and (vii) of (Plesken, 1983, Remark II.4). For completeness, we
sketch a proof.

Recall that a module is projective if and only if it is a direct summand of a free
module. Let m(1), . . . ,m(d) denote the columns of M . The lattice associated to the
j-th column equals

Lm( j) = {
x ∈ Kd : val(xi ) ≥ mi j for i = 1, . . . , d

}
.

Taking the direct sum of these d lattices gives the following identification of OK -
modules:

�M = Lm(1) ⊕ Lm(2) ⊕ · · · ⊕ Lm(d) . (10)

We see that Lm( j) is a direct summand of the free rank one module �M , so it is
projective.

Conversely, let P be any indecomposable projective �M -module. Then P ⊕ Q ∼=
�r

M for some module Q and some r ∈ Z>0. The module �r
M decomposes into r · d

indecomposables, found by aggregating r copies of (10). By the Krull-Schmidt Theo-
rem, such decompositions are unique up to isomorphism, and hence P is isomorphic
to Lm( j) for some j .

A �M -module P is projective if and only if HomOK (P,OK ) is an injective
�M -module, but now with the action on the right. The decomposition (10) dual-
izes gracefully. We derive the assertion for injective modules by similarly dualizing
all steps in the argument above. ��
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In relation to Theorem 16 we remark that the columns and negative rows of M also
have a natural interpretation as potentials in combinatorial optimization; cf. (Joswig
2022, Theorem 3.26).

Example 17 The columns of the matrix M in Example 1 are the negated unit vectors
−ei . The columns of −Mt are the unit vectors ei . Our color coding in Fig. 1 exhibits
the two structures of QM as a tropical tetrahedron in R

4/R1. The four red points are
the min-plus vertices, giving the projective �M -modules. The four blue points are the
max-plus vertices.

Given a min-plus idempotent matrix M ∈ Pd , its truncated polytrope region is

Pd(M) = {N ∈ Pd : N ≤ M}. (11)

This polytope has dimension d2 − d if M is in the interior of Pd . It parametrizes all
subpolytropes of QM , i.e. all the polytropes QN contained in QM , as the following
lemma shows.

Lemma 18 Given matrices M inPd and N inRd×d
0 such that QN ⊆ QM, there exists

a matrix C in the truncated polytrope region Pd(M) such that QN = QC.

Proof For each choice of i and j , we define ci j = max{ui − u j : u ∈ QN }. The
matrix C = (ci j ) lives in R

d×d
0 and has the property that QN = QC . Moreover, since

QN is contained in QM , we have C ≤ M . The fact that C �C = C follows from
the definition of the ci j ’s and (4). In particular, C belongs to the truncated polytrope
region Pd(M). ��

On the algebraic side,Pd(M) parametrizes allOK -orders�N that contain the given
order�M . Here M and N are assumed to be integer matrices. In particular, the integer
points u in QM correspond to maximal orders�M(u) = EndOK (Lu) that contain�M ;
cf. Proposition 2.

Example 19 Let M be the d × d matrix with entries 0 on the diagonal and 1 off the
diagonal. Thus QM is the pyrope (Joswig and Kulas 2010, § 3). We consider two
cases: the hexagon (d = 3) and Example 1 (d = 4). The truncated polytrope region
Pd(M) classifies subpolytropes of QM .
d=3: The 6-dimensional polytope P3(M) has the f-vector (36, 132, 199, 151, 60, 12).
Its 36 vertices come in ten symmetry classes.We list the corresponding 3×3matrices:

1, 6 [1,1,1,1,1,1] 2, 6 [1, 12 , 12 ,1,1, 12 ] 3, 8 [0,−1, 0,−1, 1, 1] 3, 8 [1, 0,−1,−1, 0, 1] 3, 8 [1,0,1,1,0,1]
3, 6 [1,1,1,1,0,0] 3, 6 [0,1,1,1,1,0] 6, 7 [0,−1, 1, 0, 1, 1] 6, 7 [1, 1, 1, 1, 0, 1] 6, 6 [0,0,1,1,1,0]

These polytropes are shown in red in Fig. 3. Our classification into S3-orbits is finer
than that from symmetries of the hexagon QM , which leads to only eight orbits. For
us, this classification is more natural because it reflects algebraic properties of orders.
It distinguishes min-plus vertices frommax-plus vertices of QM . The polytopeP3(M)

has 41 integer points, so there are 41 orders containing �M . In addition to 34 integer
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Fig. 3 The regular hexagon has 36 extreme subpolytropes in ten symmetry classes

vertices, there are seven interior integer points, namely [0, 0, 0, 0, 0, 0] and six like
[0, 0, 0, 0, 1, 1], not seen in Fig. 3.
d=4: The truncated polytrope region P4(M) for (1) is 12-dimensional. Its f-vector is

(961, 17426, 103780, 304328, 517293, 549723, 377520, 168720, 48417, 8620, 894, 48).

The 961 vertices come in 65 orbits under the S4-action. Among the simple vertices
we find:

1, 12 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] 8, 12 [1, 1, 1, 1, 1
2 , 1, 1, 1, 1

2 , 1, 1
2 , 1]

4, 27 [1, 1, 1, −1, 0, 0, −1, 0, 0, −1, 0, 0] 4, 27 [−1,−1,−1, 1, 0, 0, 1, 0, 0, 1, 0, 0]

The list of all vertices, and much more, is made available at our mathrepo site. Such
data sets can be useful for computational studies of OK -orders in Kd×d .

5 Ideals

To better understand the order �M for M ∈ Pd , we study its (fractional) ideals. By
an ideal of �M we mean an additive subgroup I of �M such that �M I ⊆ I and
I�M ⊆ I . A fractional ideal of �M is a (two sided) �M -submodule J of Kd×d such
that α J ⊂ �M for some α ∈ K ∗.

Example 20 Fix X ∈ Kd×d and consider the two-sided �M -module

〈X〉 = �M X�M = {
AXB : A, B ∈ �M

}
.

This is an ideal when X ∈ �M . If X /∈ �M then αX ∈ �M for some α ∈ K ∗. Hence,
〈X〉 is a fractional ideal. These are the principal (fractional) ideals of �M .

For all that follows, we assume that M ∈ Pd is an integer matrix in standard form.

Proposition 21 The nonzero fractional ideals of the order�M are the sets of the form

IN = {
X ∈ Kd×d : val(X) ≥ N

}
, (12)
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where N = (ni j ) is any matrix in Z
d×d with N � M = M � N = N. This is

equivalent to

nik ≤ ni j + m jk and nik ≤ mi j + n jk for 1 ≤ i, j, k ≤ d. (13)

Proof The result appears in (viii) from (Plesken, 1983, Remark II.4). The min-plus
matrix identity N � M = N is equivalent to nik ≤ ni j + m jk because m j j = 0. ��
Remark 22 If N has zeros on its diagonal and satisfies (4) then IN = �N is an order,
as before. However, among all lattices in Kd×d , ideals are more general than orders.
In particular, we generally have nii �= 0 for the matrices N in (12). A fractional ideal
IN is an ideal in �M if and only if N ≥ M . If this holds then the polytrope QN is
contained in QM .

Example 23 The Jacobson radical of the order �M is the ideal Jac(�M ) = IM+Idd .
Here Idd is the identity matrix. The quotient of �M by its Jacobson radical is the
product of residue fields �M/Jac(�M ) ∼= (OK /〈p〉)d . See (i) in (Plesken, 1983,
Remark II.4) for more details.

Let QM denote the set of matrices N in R
d×d that satisfy the inequalities in (13).

These inequalities are bounds on differences of matrix entries in N . We can thus
regard QM as a polytrope in R

d×d/R1, where 1 = ∑d
i, j=1 Ei j . The matrices N

parameterizing the fractional ideals IN of �M (up to scaling) are the integer points
ofQM . One checks directly thatQM is closed under both addition and multiplication
of matrices in the min-plus algebra. Its product � represents the multiplication of
fractional ideals as the following proposition shows.

Proposition 24 If M ∈Pd is in standard form and N , N ′ ∈ QM then IN IN ′ = IN � N ′ .

Proof Let X ∈ IN ,Y ∈ IN ′ . The inequalities val(X) ≥ N , val(Y ) ≥ N ′ imply
val(XY ) ≥ val(X)� val(Y ) ≥ N � N ′ and so XY ∈ IN � N ′ . This gives the inclusion
IN IN ′ ⊆ IN � N ′ . Let ui j = min

1≤k≤d
(nik + n′

k j ) be the (i, j) entry of N � N ′. For the
inclusion IN � N ′ ⊆ IN IN ′ , it suffices to show that pui j Ei j is in IN IN ′ for all i, j . Fix

i, j and let k satisfy ui j = nik + n′
k j . The matrices pnik Eik and pn

′
k j Ek j are in IN and

IN ′ . Their product pui j Ei j is in IN IN ′ . ��
We call QM the ideal class polytrope of M . The min-plus semigroup (QM , � )

plays the role of the ideal class group in number theory. Its neutral element is the given
matrix M .

Example 25 Fix M =
[
0 1
1 0

]
∈ P2. The polytropeQM is the octahedron with vertices

[
0 1
1 2

]
,

[
2 1
1 0

]
,

[
1 2
0 1

]
,

[
1 0
2 1

]
,

[
0 1
1 0

]
,

[
1 0
0 1

]
∈ Z

2×2/Z1.

This octahedron contains 19 integer points N . These are in bijection with the equiva-
lence classes of fractional ideals IN in the order�M . Themidpoint ofQM corresponds
to the Jacobson radical IM+Id2 . The remaining 12 integer points are the midpoints of
the edges.
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One may ask whether the ideal class semigroup (QM , � ) is actually a group. To
address this question, we define the pseudo-inverse of a fractional ideal I in the order
�M as follows:

(�M : I ) = { X ∈ Kd×d : X I ⊆ �M and I X ⊆ �M }.

Lemma 26 The pseudo-inverse of a fractional ideal in�M is a fractional ideal in�M.

Proof Let A ∈ �M and X ∈ (�M : I ), so that X I , I X ⊆ �M . Since I is a frac-
tional ideal, we have AI ⊆ I and I A ⊆ I . From these inclusions we deduce that
X AI , I X A, AX I , I AX are all subsets of �M . This implies X A, AX ∈ (�M : I ).
Hence (�M : I ) is a fractional ideal. ��
Proposition 27 Let M ∈ Pd in standard form and N ∈ QM. Then (�M : IN ) = IN ′
where

n′
i j = max

1≤�≤d

(
max(m� j − n�i ,mi� − n j�)

)
for 1 ≤ i, j ≤ d. (14)

Proof By Proposition 21 and Lemma 26, there exists N ′ ∈ QM such that IN ′ =
(�M : IN ). Then IN ′ IN ⊆ �M and IN IN ′ ⊆ �M , and IN ′ is the largest fractional

ideal with this property. These two conditions are equivalent to pn
′
i j Ei j IN ⊆ �M and

pn
′
i j IN Ei j ⊆ �M for all i, j . The first condition holds if and only if n′

i j + n j� ≥ mi�

for all �. The second condition holds if and only if n�i + n′
i j ≥ m� j for all �. The

smallest solution N ′ = (n′
i j ) is given by (14). ��

Passing from ideals to their matrices, we also call N ′ the pseudo-inverse of N inQM .

Example 28 Let d = 2 and M as in Example 25. The 19 ideal classes N in QM have
only three distinct pseudo-inverses: N ′ ∈ {[

0 0
0 0

]
,
[
0 1
1 0

]
,
[
1 0
0 1

]}
. For most ideal classes

N , we have N � N ′ �= M and N ′ � N �= M . This means that most N do not have an
inverse in (QM , � ). In particular, the ideal class polytrope QM is a semigroup but
not a group.

The semigroupQM has the neutral element M and each ideal class N ∈ QM has a
pseudo-inverse N ′ given by the formula (14). With this data, we define the ideal class
group

GM = {
N ∈ QM : N � N ′ = N ′ � N = M

}
.

This is the maximal subgroup of the semigroupQM . It would be interesting to under-
stand how M determines the structure of GM . Note that GM = {[

0 1
1 0

]
,
[
1 0
0 1

]}
in

Example 28.

Example 29 Here are three examples of ideal class groups of graduated orders:

M2 = [
0 1
1 0

]
M3 =

[
0 1 1
1 0 1
1 1 0

]
M4 =

[
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

]

GM2
∼= Z/2Z GM3

∼= Z/6Z GM4
∼= S4
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The isomorphism types of these groups were computed using GAP; the code is at our
mathrepo site. We do not know how this list continues for pyropes (Joswig and
Kulas 2010, §3) in higher dimensions.

We end this section with a conjecture about the geometry of GM inside QM .

Conjecture 30 For any integermatrixM in the polytrope regionPd , the elements in the
ideal class polytrope GM are among the classical vertices of the ideal class groupQM .

6 Towards the building

Affine buildings (Abramenko and Brown 2008; Zhang 2021) provide a natural setting
for orders and min-max convexity. The objects we discussed in this paper so far are
associated to one apartment in this building, namely, that corresponding to the diagonal
lattices. The aim of this section is to present this perspective and to lay the foundation
for a general theory that goes beyond one apartment.

Definition 31 The affine building Bd(K ) is an infinite simplicial complex. Its vertices
are the equivalence classes [L] of lattices in Kd . A configuration {[L1], . . . , [Ls]} is
a simplex in Bd(K ) if and only if, up to some permutation, there exist representa-
tives L̃i ∈ [Li ] satisfying L̃1 ⊃ L̃2 ⊃ · · · ⊃ L̃s ⊃ pL̃1. The maximal simplices
{[L1], . . . , [Ld ]} are called chambers. The standard chamber C0 is given by the diag-
onal lattices Li = L(1i−1,0d−i+1) = L(1,...,1,0,...,0).

Given a basis {b1, . . . , bd} of Kd , the apartment defined by this basis is the set of
classes [L] of all lattices L = ⊕d

i=1 p
uiOK bi where u1, . . . , ud range over Z. Hence

the apartment is

{ [
pu1OK b1 ⊕ · · · ⊕ pudOK bd

] : u1, . . . , ud ∈ Z
} = { [gLu] : u ∈ Z

d }
,

where g ∈ GLd(K ) is the matrix with columns b1, . . . , bd . The standard apartment
is the one associated with the standard basis (e1, . . . , ed) of Kd . The vertices of the
standard apartment are the diagonal lattice classes [Lu] for u ∈ Z

d . We identify this
set of vertices with Zn/Z1.

The general linear groupGLd(K ) acts on the buildingBd(K ). This action preserves
the simplicial complex structure. In fact, the action is transitive on lattice classes, on
apartments and also on the chambers. The stabilizer of the standard lattice L0 is the
subgroup

GLd(OK ) = { g ∈ Od×d
K : val(det(g)) = 0 } ⊂ GLd(K ).

Starting from the standard chamber C0, there exist reflections s0, s1, . . . , sd−1 in
GLd(K ) that map C0 to the d adjacent chambers in the standard apartment. For i ≥ 1,
define si by

si (ei ) = ei+1, si (ei+1) = ei and si (e j ) = e j when j �= i, i + 1.
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The map s0 is defined by s0(ei ) = ei for i = 2, . . . , d − 1 and s0(ed) = pe1,
s0(e1) = p−1ed . The reflections s0, . . . , sd−1 are Coxeter generators for the affine
Weyl group W = 〈s0, . . . , sd−1〉. The group W acts regularly on the chambers C
in the standard apartment (Bourbaki 2002, § 1.5, Thm. 2): for every C there is a
unique w ∈ W such that C = wC0. The elements of W are the matrices hσ gu where
hσ = (1i=σ( j))i, j for σ ∈ Sd , and u ∈ Z

d with u1 + · · · + ud = 0. Thus W is the
semi-direct product of Sd and the group of diagonal matrices gu whose exponents sum
to 0.

Our primary object of interest is the Plesken-Zassenhaus order PZ(�) of a finite
configuration � in the affine building Bd(K ). This is the intersection (8) of endo-
morphism rings. In this paper we studied the case when � lies in one apartment. In
Theorem 10 we showed that PZ(�) = �M where M is the matrix in Pd that encodes
the min-max convex hull of�. This was used in Sections 4 and 5 to elucidate combina-
torial and algebraic structures in PZ(�). A subsequent project will extend our results
to arbitrary configurations � in Bd(K ).

We conclude this articlewith configurations given by two chambersC,C ′ inBd(K ).
We are interested in the their order PZ(C ∪ C ′). A fundamental fact about buildings
states that any two chambers C,C ′ lie in a common apartment, cf. (Bourbaki, 2002),
(Abramenko and Brown, 2008). Also, since the affine Weyl group W acts regularly
on the chambers of the standard apartment, we can then reduce to the case where the
two chambers in question are C0 and wC0 for some w = hσ gu ∈ W .

Example 32 The standard chamber C0 is encoded by M0 = ∑
1≤i< j≤d Ei j . The poly-

trope QM0 is a simplex. The order PZ(C0) = �M0 consists of all X ∈ Od×d
K with

xi j ∈ 〈p〉 for i < j .

Let Du = val(gu) denote the tropical diagonal matrix with u1, . . . , ud on the
diagonal and+∞ elsewhere.We alsowrite Pσ := val(hσ ) for the tropical permutation
matrix given by σ .

Proposition 33 We have PZ(C0 ∪ hσ guC0) = �Mσ,u where the matrix Mσ,u equals

Mσ,u = M0 ⊕ (
Pσ � Du � M0 � D−u � Pσ−1

)
.

Proof We have PZ(C0 ∪ hσ guC0) = PZ(C0) ∩ PZ(hσ guC0) and PZ(C0) = �M0

from Example 32. Suppose that M ∈ Z
d×d
0 satisfies PZ(hσ guC0) = �M . By

Theorem 10, the order �M0 ⊕ M is equal to PZ(C0 ∪ hσ guC0). To determine M ,
notice that PZ(wC0) = hσ gu PZ(C0)g−uhσ−1 . This implies the stated formula
M = Pσ � Du � M0 � D−u � Pσ−1 . ��

Wemay ask for invariants of the orders PZ(C0 ∪wC0) in terms of w ∈ W . Clearly,
not all polytropes in an apartment arise as the min-max convex hull of two chambers.
Which graduated orders are of the form PZ(C0 ∪ wC0)? Which other elements w′ in
the affineWeyl groupW give rise to the same Plesken-Zassenhaus order PZ(C0∪wC0)

up to isomorphism?
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