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Abstract
We introduce a probabilistic latent variable model for graphs that generalizes
both the established graphon and stochastic block models. This naive histogram
AHK model is simple and versatile, and we demonstrate its use for disparate
tasks including complex predictive inference usually not supported by other
approaches, and graph generation. We analyze the tradeoffs entailed by the
simplicity of the model, which imposes certain limitations on expressivity on
the one hand, but on the other hand leads to robust generalization capabilities to
graph sizes different from what was seen in the training data.

1 Introduction
Most state-of-the-art machine learning techniques for graph data are highly specialized towards
specific tasks such as node classification or synthetic graph generation. This is the case, in particular,
for the graph neural network technology. In contrast, one may be interested in more flexible
approaches that support a variety of different inference tasks based on a single model. This is the
tradition of probabilistic graphical models [16], which have been adapted to the handling of graph
data in the field of statistical relational learning (SRL) by frameworks like relational Bayesian
networks [12], Markov logic networks [21], or ProbLog [7]. Conceptually extremely powerful, these
SRL approaches face numerous challenges in the form of computational complexity of inference and
learning, and the need to provide some structural model specifications based on domain expertise.
One cause for the high computational complexity of SRL models lies in the fact that the answer to a
probabilistic query involving a certain set of named entities often depends on how many other entities
there exist in the domain, even if nothing is known about their properties, and their connections to the
query entities. In the worst case, the complexity of computing a query is exponential in the number of
these additional entities [11]. Technically, these SRL models are not projective in the sense of Shalizi
and Rinaldo [23].

Investigating projectivity in a more general setting of multi-relational graphs, Jaeger and Schulte [13]
have introduced the AHK model, which can be seen as a generalization of the classic graphon model
for random graphs developed by Aldous [3], Hoover [10], and Kallenberg [14]. As introduced in
[13], the AHK model is a very general, abstract mathematical model that does not directly provide
algorithmic learning and inference solutions. In this paper we develop a concrete, limited, class of
AHK models, together with practical learning and inference approaches. We call this model class
the naive histogram AHK (NH-AHK− ) model, because it incorporates a probabilistic independence
assumption similar in nature to the naive Bayes assumption, and it employs non-parametric histogram-
based specifications of conditional probability distributions.

Our model class can be seen as a lightweight alternative to SRL frameworks. Compared to the
latter, it loses a substantial amount of modeling capabilities (though, as we shall see, it also provides
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some capabilities not found in current SRL), but gains in terms of computational tractability, and
does not depend on model components defined using elements of logic or programming languages,
which are very difficult to learn fully automatically from data. Compared to many other machine
learning techniques, the naive histogram AHK model retains the capability to answer a wide range of
probabilistic queries, to handle incomplete data both in learning and inference, and to function as a
generator for synthetic graphs.

We introduce the NH-AHK− model in Section 4 and discuss some basic theoretical properties in
Section 5. The main algorithmic challenges and solutions are described in Section 6. In Section 7
we demonstrate the range of possible applications of the NH-AHK− model for graph modeling and
reasoning, and graph generation. An implementation of NH-AHK− and scripts for the reproduction
of our experiments are available at https://github.com/manfred-jaeger-aalborg/AHK.

2 Related Work
Several authors have proposed methods for learning a graphon model [2, 4, 9, 24]. Often the graphon
is required to be given by a smooth function [4, 9, 18, 24], but histograms or stochastic block
models are also often considered, at least as an approximation [2, 9]. Learning is almost exclusively
performed for descriptive analysis of a single network, and the learned graphon is often presented as
a heatmap representation of the network [4, 24]. Applications to predictive inference then are limited
to transductive link prediction [18]. Graphon learning from multiple graphs has been considered
under the assumption that training data contains graphs over the same set of nodes, which all have a
fixed setting of their latent variables in repeated realizations of the random graph structure [2]. Earlier
work on graphon learning only considered graphs without node attributes. Numeric node attributes
have recently been considered in [5, 25]. All of these works differ substantially from ours in that
they do not consider graphon learning from multiple graphs for applications in inductive predictive
inference and graph generation.

3 Basic Definitions
Tuples. The set of integers {0, . . . , n − 1} is denoted [n]. For any d ≥ 1, [n]d then is the set of
d-tuples with elements from [n]. With [n]d6= we denote the set of d-tuples with all distinct elements.
We write 〈n〉d for the set of d-tuples in which elements appear in their natural order, and 〈n〉d6= for
ordered tuples with all distinct elements. Thus, 〈n〉d and 〈n〉d6= are the outcome spaces of drawing an
unordered sample of size d from [n], with and without replacement, respectively. Tuples are denoted
in boldface letters u, b, . . ., and components of such tuples by corresponding subscripted normal face
letters up, bi, . . ..

Graphs. We only consider graphs without numeric attributes or edge weights. A signature S =
A ∪ E then consists of categorical node attributes A = {A0, . . . , A|A|−1} and edge relations
E = {E0, . . . , E|E|−1}. A S-graph ω = ([n],A,E) consists of a set of nodes [n] for some n ∈ N
, an n× |A|-dimensional matrix A containing the attribute values of all nodes, and a n× n× |E|-
dimensional tensor E where E[:, :, l] is the adjacency matrix for relation El. We refer to n as the
size of ω. We denote by Ω(n) the set of all graphs for a given signature S with domain [n]. The
relevant signature is usually implicit from the context, and not made explicit in the notation. An
incomplete graph ω is a graph with ? entries in A or E. We denote by ∆Ω(n) the set of probability
distributions over Ω(n). A random graph model defines for every n ∈ N a distribution Pn ∈ Ω(n).

Permutations. P[n] stands for the set of permutations of [n]. For n = 2, this set contains two
elements: the identity mapping, and the permutation with π(0) = 1. For the latter permutation we
use the special symbol π0↔1.

Types. We introduce the key concept of types. While the exact definitions are a bit technical, the
underlying intuition is very simple: the 1-type of a node represents all the data available for that
node in isolation, which consists of its attribute values, and its possible self-loops of relations. The
(strict) 2-type of a pair of nodes contains all the data about edges connecting the two nodes. Both 1-
and 2-types can again be represented as graphs over the canonical domains [1] and [2], respectively.
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Formally: for a graph ω of size n, and i ∈ [n], we denote with ω ↓ i the graph ([1],A[i, :],E[i, i, :]).
We also call ω ↓ i the 1-type of i in ω, and denote by T1 the space of all possible 1-types. For a pair
(i, j) ∈ [n]26= we define ω ↓ (i, j) as the graph ([2], ∅,Ei,j), where Ei,j stands for the 2× 2× |E|-
dimensional tensor in which for k < |E|: Ei,j [0, 1, k] = E[i, j, k], Ei,j [1, 0, k] = E[j, i, k], and
Ei,j [0, 0, k] = Ei,j [1, 1, k] = 0. We also call ω ↓ (i, j) the strict 2-type of (i, j) in ω, and denote
by T2 the space of all strict 2-types (we add the qualifier “strict” in order to emphasize that these
2-types omit the information about i, j that is already contained in their respective 1-types). There
is a one-to-one correspondence between graphs and mappings of nodes i and pairs (i, j) to 1-types
and strict 2-types, respectively. The class of probabilistic models introduced in the following makes
essential use of this correspondence.

Projectivity. A random graph model is projective, if for all n0 < n1 ∈ N the following holds:
Pn0

is equal to the marginal distribution of Pn1
on induced subgraphs of size n0 (see [13] for a full

technical definition). Projectivity has important benefits: for inference, a query related to a specific
set of nodes does not depend on the size of the graph the nodes are embedded in (assuming no further
information on the nodes other than those named in the query is given). For learning: if the actual
data-generating distribution can be represented by a member of a certain class of projective random
graph models (such as the class of NH-AHK− models we introduce below), then the model learned
from a full dataset (consisting of possibly very large graphs), and the model learned from a dataset
consisting of (smaller) sampled induced sub-graphs of size n will agree on the probabilities for
graphs up to size n (in the large sample limit, and assuming the true maximum likelihood solution is
identified).

4 The Naive Histogram AHK− Model
We formally introduce our model. We start by recapitulating the general definition of [13] constrained
to signatures and graphs as introduced in Section 3, and limited to what in [13] is called the AHK−
model, which lacks an additional global latent mixture variable of the full AHK model. In the
following ∆Ti stands for the set of probability distributions over Ti (i = 1, 2).

Definition 4.1 Let S be a signature. An AHK−-model for S and graphs of size n is given by

• A family of i.i.d. random variables {Ui|i ∈ [n]}, where each Ui is uniformly distributed on
[0, 1].

• For i ∈ [n]: random variables Ti with values in T1, and for (i, j) ∈ 〈n〉2: random variables
T(i,j) with values in T2.

• A measurable function
f1 : [0, 1]→ ∆T1, (1)

and a measureable function
f2 : [0, 1]2 → ∆T2 (2)

that is permutation equivariant in the following sense: for (u, u′) ∈ [0, 1]2 and t ∈ T2:
f2(u, u′)(t) = f2(u′, u)(π0↔1t).

The AHK−-model defines a probability distribution over graphs Ω(n) with n nodes as the expectation
over latent ui variables

P (ω) =

∫
u∈[0,1]n

∏
i∈[n]

f1(ui)(ω ↓ i)
∏

(i,j)∈〈n〉2
f2(ui, uj)(ω ↓ (i, j))du. (3)

A simple strategy for satisfying the permutation equivariance condition for f2 is to only define a
function f<2 (u, u′) for arguments u < u′, and let

f2(u, u′) =

{
f<2 (u, u′) if u < u′

π0↔1f
<
2 (u′, u) if u′ < u.

(4)

With f2 given in this form, and denoting by 〈[0, 1]〉n the set of all ordered n-tuples of values from
[0, 1], we can re-write (3) by replacing the integral over [0, 1]n with a combination of a sum over
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node permutations, and an integral only over 〈[0, 1]〉n.

P (ω) =
∑

π∈P[n]

∫
u∈〈[0,1]〉n

∏
p∈[n]

f1(up)(ω ↓ π(p))
∏

(p,q)∈〈n〉2
f<2 (up, uq)(ω ↓ (π(p), π(q)))du. (5)

We use p, q to denote positions in a permutation π of [n]. Then π(p) stands for the node i ∈ [n] with
the pth smallest Ui.

Figure 1: Plate representation of AHK−
model

In order to turn this purely mathematical construction into
an operational model, we need to design suitable classes
of functions f1 and f<2 for which learning and inference
methods can be developed. In the following, we limit our
descriptions and definitions to the f<2 functions. The f1
are treated in an analogous manner. We base our design
on two assumptions:

A1 The naive assumption: conditional on the latent vari-
ables Ui, Uj , all relations defining ω ↓ (i, j) are inde-
pendent (in the spirit of the naive Bayes assumption).

A2 The histogram assumption: f<2 is piecewise constant
on a grid partition of its domain [0, 1] × [0, 1], i.e.,
f<2 (u, u′) = f<2 (b(u), b(u′)) where b(u) is the bin
index of u in a fixed given partioning of [0, 1] into
interval bins b1, . . . , bg with a granularity parameter
g ∈ N.

Under these assumptions, f<2 can be represented as a g × g × |E| × 2-dimensional array F2, where
F2[k, h, l, 0] and F2[k, h, l, 1] specify the probabilities of an edgeEl(i, j), respectivelyEl(j, i), given
that ui < uj , k = b(ui), and h = b(uj). We can then substitute in (5):

f<2 (up, uq)(ω ↓ (π(p), π(q))) =

|E|∏
l=1

∏
d∈{0,1}

E[π(p), π(q), l] · F2[bp, bq, l, d] + (1−E[π(p), π(q), l] · (1− F2[bp, bq, l, d]), (6)

where E is the edge relation tensor of ω. The right-hand side here depends on π and u only
through the relative order and bin membership of the two nodes π(p), π(q). The same term will
be encountered in many evaluations of π,u pairs of the outer summation/integration in (5). We
collect these values in a g × g × n × n-dimensional table BPω, so that BPω(k, h, i, j) contains
the multiplicative factor contributed to P (ω) by the nodes i, j, whenever b(ui) = k, b(uj) = h, and
π−1(i) < π−1(j). Replacing the integral over u by a sum over possible induced bin membership
vectors, then (5) can be written as (but still omitting f1):

P (ω) =
∑

π∈P[n]

∑
b∈〈g〉n

∏
(p,q)∈〈n〉2

BPω(bp, bq, π(p), π(q))V (b), (7)

where V (b) is the volume of the n-dimensional hypercube defined by the bin sequence b, intersected
with 〈[0, 1]〉n.

All definitions here are given for directed graphs. Undirected graphs are handled by a slightly
simplified model where the table F2 only needs to be |E| × g× g-dimensional, omitting the argument
that encodes the direction of an edge. The probability of an incomplete graph is computed in exactly
the same way by taking the product in (6) only over the relations Al for which E(π(p), π(q), l) 6=?.
Importantly, due to A1, no summation over possible values of unobserved edges or attributes is
needed.

5 Expressivity and Complexity
The general AHK− model generalizes the basic graphon model with the ability to model discrete node
attributes and multiple directed edge relations. The NH-AHK− model with its restriction to histogram
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representations generalizes the stochastic block model in a similar manner. Though NH-AHK− is
conceived as a lightweight alternative to more expressive SRL languages, its latent variables enable
some modeling capabilities not commonly found in existing SRL frameworks. An example of this
will be given in Section 7.1.

While the shared nature of being generative random graph models supports a more direct expres-
sivity comparison between NH-AHK− and stochastic block models or SRL frameworks, one can
also compare the capabilities of NH-AHK− vs. graph neural networks in terms of discriminating
different structures. Figure 2 shows a standard example illustrating limitations of graph neural
networks: the two graphs and their nodes are indistinguishable by standard GNN architectures
in the sense that every such GNN will construct node or graph feature vectors that are identi-
cal for the two graphs [1]. A stochastic block model (and hence a NH-AHK− model) with two
blocks and high intra-block and low inter-block probabilities, on the other hand, will assign a
much higher probability to the right than the left graph, and thus distinguish these two graphs.

Figure 2: GNN indistinguishable graphs

A fundamental limitation of the AHK model is
the inability to represent sparse random graph
models: the expected number of edges neces-
sarily grows linearly in the number of possible
edges, i.e., quadratic in the number of nodes.

Even though NH-AHK− makes the significant
simplifying assumptions A1 and A2, it still leads
to high complexity of probabilistic inference. A
direct evaluation of (7) is exponential in n, and
hence intractable for all but very small graphs. As the following proposition shows, this is an inherent
complexity that is unlikely to be avoidable by other inference designs.

Proposition 5.1 Computing the probability P (ω) of a graph ω in an NH-AHK− model is NP-hard.

The proof is by an easy reduction of the 3-colorability problem: consider an NH-AHK− model that
represents a simple stochastic block model with 3 blocks, where intra-block links have probability
zero, and inter-block links have probabilities > 0. Then a graph has a nonzero probability under this
model, iff it is 3-colorable.

6 Inference and Learning

For inference we need to evaluate (7). For learning we need to compute the gradient of (7) with
respect to the parameters contained in the array F2. Given the gradients, and assuming a fixed bin
partitioning, learning is performed by stochastic gradient descent using Adam [15]. If the granularity
is given, but the boundary points defining the bins are to be optimized, then the gradient of (7)
also needs to be computed with respect to these boundary points (which affect (7) only via the
volume factors V (b)). The granularity itself can either be viewed as a hyper-parameter that can
be set or optimized using the common approaches to hyperparameter tuning, or one can use an
iterative refinement approach where learning starts at g = 1, and when learning at a given g value has
terminated, then the currently widest bin is split into two, and learning continues at g + 1. This is
iterated until the log-likelihood obtained at a g level does not exceed the likelhood at g − 1 by more
than a specified factor. Key to making both inference and learning tractabel is to replace the outer
two sums over π ∈ P[n] and b ∈ 〈g〉n by an expectation over sampling with a proposal distribution
Q(π, b), such that Q(π, b) approximates the posterior P (π, b|ω) ∼ P (ω|π, b)V (b) (from Bayes’s
rule, and using that P (π, b) = n!V (b) is constant in π). We sample π, b by iteratively inserting a
next node into already partially constructed π and b tuples. We make the probability of inserting the
next node i at a given position with a given bin assignment proportional to the product of:

• the BPω values we obtain from pairs i, j for nodes j already contained in the current partial π.
Note that inserting node i into π does not change any of the BPω factors contributed by pairs of
nodes j, j′ already contained in π, since these values only depend on the relative order of j and
j′ and their bin memberships, but not on their absolute positions in π.
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Query edge(s) Probability
1→ 0 0.43
0→ 3 0.29
3→ 0 0.16
3→ 2 0.005
1→ 0&0→ 3 0.134
0→ 3&3→ 0 0.0017

Figure 3: Queries on DAG model

• an estimate of the BPω values we will obtain from pairs i, j for nodes j that are not yet contained
in pi. For this we take a maximum over the BPω values that can be obtained by a future insertion
of j before or after the position of i with the corresponding possible bin assignments for j.

The basic idea can be summarized as replacing an exact optimization over n! many possible permu-
tations π by an approximation that only takes pairwise orderings of elements in π into account. A
detailed description of the samping algorithm and an illustration of its effectiveness is contained in
Appendix A.

Drawing a single sample from Q still is cubic in n (see Appendix A). This implies strict limitations
on the sizes of graphs that can be handled. In the case of probabilistic inference, these limitations
are often not so problematic, since queries often only refer to a small number of nodes of interest.
Training data, on the other hand, will often consist of graphs that are intractable for approximate
gradient computations. In this case, we use a subsampling strategy, and learn from small induced
subgraphs obtained by random uniform sampling of nodes in the original training graphs.

7 Examples and Experiments
7.1 Directed Acyclic Graphs

In this section we demonstrate the capabilities of the NH-AHK− model by learning and reasoning
with directed acyclic graphs. We created a training set containing 100 small directed acyclic graphs
with 3 to 7 nodes. The graphs are directed Erdős-Rényi random graphs filtered on being acyclic. The
sampled graphs had an average edge density of 0.43 (w.r.t. to the maximal number of n · (n− 1)/2
edges in an acyclic graph).

We apply the learned model to answer several queries about the graphs shown in Figure 3. The
edges shown in the graphs are known to exist. All other edges are considered unknown, and we
query the probability of their existence. The first three queries for the graph on the left are about
edges that are consistent with acyclicity and the observed edges. Their probabilities depend on the
number of complete orderings of the nodes that are consistent with the partial order imposed by

6



A Simple Latent Variable Model for Graph Learning and Inference

Figure 4: Top: Query molecule; brown: carbon (C), green: nitrogen (N), blue: oxygen (O). Box
plots of computed probabilities for single node and multiple-node queries.

the observed edges. The edge 1 → 0 is consistent with every possible complete ordering, and its
probability is the overall edge density in the training set. The relative order between nodes 0 and
3 is not fully determined by the observed edges, but there are more complete orderings in which 0
preceds 3 than vice-versa, which is why the edge 0→ 3 has a higher probability. The edge 3→ 2 is
inconsistent with acyclicity, and therefore has a very low probability. The final two queries are about
the probabilities of joint occurrences of two edges. The first combination of edges is still consistent
with acyclicity, and the probability for the combination is close to the product of the individual edge
probabilities. The last combination introduces a cycle, and therefore it has a much lower probability
than the product of individual edge probabilities.

Inference for the small graph on the left can be performed exactly. Figure 3 on the right shows a
larger query graph for which approximate inference has to be used. This graph also is twice as big as
the largest training graph. We query the model for the probabilities of the edges 1 → 13, 13 → 1,
and 7→ 11. The plot at the bottom right shows for N = 100, 500, 1000, 5000, 20000 samples the
computed probabilities for the three queries. The plots show average and standard deviation over
5 inference runs. We observe that at N = 5000 the approximate inference results are already quite
stable. The estimated probabilities obtained at N = 20000 are 0.342, 0.001, and 0.255, respectively,
for the three queries, again reflecting the proportion of total node orderings that are consistent with
the given partial topological order and the query edge direction. The time for computing a single
sample was approximately 0.006 seconds, or 30s for one inference run at N = 5000 (jointly for all 3
queries).

7.2 Molecules

The well-known MUTAG dataset consists of 188 molecules of 10-28 atoms (nodes). Nodes have an
attribute element ∈ {C,N,O, F, I, Cl, Br}, and molecules carry a Boolean class label mutagenic.
The standard task is to predict the class labels. However, we here use this dataset to learn a model for
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probabilistic inference. To this end, we use the first 187 molecules for training, and consider the last
molecule as a subject for inference. Due to the small size of the molecules, no sub-sampling of the
training graphs here is necessary. We learn with a fixed granularity of g = 10.

Figure 4 at the top shows the query molecule. Like most molecules in the dataset, it only contains the
elements C,N and O. We consider atoms 0,1,2 and 13,14,15 as query atoms and set their element
attribute to unknown. Given the known graph structure (different from Figure 3, edges not shown in
Figure 4 are known not to exist) and the observed elements of the atoms 3,. . . ,12, we want to infer the
elements of the query atoms. The trained NH-AHK− model allows us to both query for the marginal
probabilities of each query atom individually, and to query for the probabilities of joint configurations
of multiple query atoms. We pose these joint queries for the two groups of query atoms, computing
the probabilities of all joint configurations that involve the three elements C,N,O, and in which the two
atoms 0,2, respectively 14,15, are the same element. We perform importance sampling inference
with N = 5000 samples, repeated for 5 runs. Figure 4 shows boxplots of the obtained probability
estimates in the 5 runs. For nodes 0,1,2 we obtain for the single node probabilities a high probability
for C, and much lower probabilities for N and O (top 3 left plots). This is quite in line with the result
for the joint configuration, where the C-C-C configuration is about five times as likely as the second
most probable N-O-N configuration (top right plot; joint configurations not shown in the boxplots
all have very low probabilities). For the 13,14,15 group we observe in the single node inferences
that N for 13 and O of 14,15 are the most probable elements. However, in all cases C is almost
as likely. Here joint inference provides a quite different picture in that now the joint configuration
O-N-O is about twice as likely as the C-C-C configuration. This example demonstrates how the
NH-AHK− model can model mutual dependencies that can be exploited for better predictions of
joint configurations than what can be obtained by just combining independent individual predictions
(in other cases it may very well be the case that the most probable joint configuration is not the
combination of the most probable individual attributes).

7.3 Graph Generation

The NH-AHK− model allows efficient sampling of graphs of arbitrary size. In this section we
explore the capability of NH-AHK− to serve as a simple baseline approach to learning graph
generators. Observe that one must distinguish graph generators and generative models: the former
are designed only to support sampling of random graphs; the latter are defined by the semantic
property of specifying a full joint distribution, and are traditionally intended to support probabilistic
and predictive inference. Dedicated graph generators usually do not support any inference, and not
every generative model supports efficient sampling from the distribution it defines.

Datasets and settings: We evaluate our model using two well-known graph benchmarks: Community
[27] and EGO [27] networks. The Community dataset consists of 500 synthetic two-community
graphs. Community fits the modeling capabilities of the NH-AHK− model very well. The EGO
dataset comprises 816 2-hop ego networks extracted from the Citeseer network [22]. The sizes of
the graphs range between 4 ≤ n ≤ 262. EGO appears like a reasonable challenge for NH-AHK− .
We note that other common benchmarks like Grid [27] represent sparse graph distributions that are
inherently out of scope for NH-AHK− .

Our primary focus is on a generator’s extrapolation capability: to generate larger graphs than seen
in the training data. We therefore use separate test sets that contain graphs of the same size as the
training graphs, and graphs that are (on average) larger by scaling factors (sf ) of 1.5, 2, 4, and 8.
For Community we just create synthetic examples of the appropriate sizes. The EGO graphs are
partitioned into subsets according to their size, such that the different sets differ (approximately) by
our scaling factors. The training set then contains graphs of sizes 4 ≤ n ≤ 18.

Other approaches: We compare NH-AHK− against two popular architectures for graph generation:
GraphRNN [27] generates new graphs in an incremental, auto-regressive manner. DiGress [26] is a
diffusion-based, one-shot generative model based on graph transformers. We have selected these two
models because of their complementary designs, and because they are able, in principle, to generate
graphs of arbitrary size. As a very simple baseline we include the Erdős–Rényi (ER) model [8].

Metrics: A common score to evaluate graph generators is the maximum mean discrepancy (MMD)
of degree, clustering, and orbit distributions[17, 19, 26, 27]. However, it has recently been shown
that MMD is quite sensitive to the choice its parameters [20]. Moreover, degree, clustering, and
orbit distribution do not capture well the characteristic structure of Community and EGO networks.
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Community EGO

Method Stat. Scaling factor Stat. Scaling factor
1 1.5 2 4 8 1 1.5 2 4 8

NH-AHK− 0.02 0.00 0.00 0.00 0.00

dia.

0.47 0.75 1.00 1.15 1.73
DiGress nb of 0.00 0.20 0.53 - - 0.32 0.78 0.33 0.35 0.40
GraphRNN com. 1.05 - - - - 2.08 - - - -
ER 2.42 2.07 1.90 1.25 1.23 0.40 2.03 1.48 0.96 2.05
NH-AHK−

mod.

0.03 0.03 0.02 0.02 0.02

rad.

0.39 0.13 0.03 0.10 0.05
DiGress 0.00 0.08 0.14 - - 0.08 0.29 0.05 0.85 1.05
GraphRNN 0.06 - - - - 1.11 - - - -
ER 0.29 0.34 0.36 0.40 0.43 0.39 1.13 1.29 1.77 1.94

Table 1: Community and ego network results: EMD between number of communities (top-left),
modularity (bottom-left), diameter (top-right) and radius (bottom-right) of generated and test networks,
for increasing values of the scaling factor between training and generated/test networks. Best results
are highlighted in bold.

We therefore introduce metrics that are more tailored towards these particular benchmarks. For
Community we measure similarity between generated and test set by comparing the distribution of
the number of communities and their modularity scores 1. A characteristic feature of ego-networks is
the distribution of pair-wise distances between nodes, which (for our 2-hop networks) is bounded
by 4, and, for at least one node, all distances to other nodes are bounded by 2. We use the radius
and the diameter to capture essential distance properties of a graph. All our base metrics, thus, are
graph-level measures, and we compare two graph sets by the earth-movers distance (EMD) between
the distributions of these measures. In Appendix B.5 we also report results using the standard MMD
metrics.

Results: In Table 1, we present the Earth Mover’s Distance (EMD) between the generated and
test networks for each scaling factor for Community and EGO networks, left and right of Table
1, respectively. A scaling factor equal to 1 indicates that the generated networks are of the same
size as the training set. Notably, certain entries of GraphRNN are left unfilled due to the models’
inability to generate larger networks (for further details, refer to Appendix B.4). While DiGress
encounters memory limitations when generating Community networks with a scaling factor of 4 and 8.
Examining the Community results, it is evident that despite competitors being tailored specifically for
graph generation, NH-AHK− demonstrates comparable results in network generation and surpasses
them in generating larger networks. Furthermore, it is important to note that the NH-AHK− model for
this dataset required only 3 parameters, while GraphRNN and DiGress require almost 400,000 and
4.6 million parameters, respectively. On the other hand, within the EGO networks, the NH-AHK−
model can capture the radius but fails in capturing the diameter. Once again, the main objective here
is to demonstrate that the NH-AHK− model, with only 6 parameters, stands in comparison with
specific graph generation models: GraphRNN with nearly 400,000 parameters and DiGress with 2
million parameters. We provide a visualization of generated graphs in Appendix B.6.

8 Conclusion
In this paper we have introduced theory and implementation of the NH-AHK− model. The model
is conceived as a highly versatile, lightweight graph learning and inference tool that combines key
features of SRL frameworks on the one hand, and GNNs on the other. Like SRL models it is fully
generative and supports a wide range of probabilistic queries beyond simple classification tasks. We
have demonstrated the capabilities of answering joint queries for multiple edges, or multiple node
attributes. Like GNNs, NH-AHK− does not rely on expert knowledge to specify the logical structure
of a model in some form of probabilistic programming language. For the purpose of graph generation
we found that NH-AHK− can compete with, and partly outperform highly engineered specialized
GNN models on tasks that are compatible with the inherently dense nature of NH-AHK− models.
Other advantages of NH-AHK− beyond what has been demonstrated in this paper include the support
for multi-relational graphs, and the ability to learn from incomplete data.

1computed with the Clauset-Newman-Moore greedy modularity maximization algorithm [6]
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A Importance Sampling
Given an NH-AHK− model and a graph ω, the goal is to sample a random pair of a permutation
π and a bin assignment b, such that the sampling probability Q(π, b) approximates the posterior
distribution P (π, b|ω). For a full description of the method, we need to also provide the details of the
handling of the f1 factors in (5), which in (6) and (7) were omitted. Without loss of generality, we
assume that categorical attribute Al has values in [ml] for some ml ∈ N. Under assumptions A1,A2,
the function f1 can be represented by g ×mh-dimensional tables F1,l (l = 1, . . . , |A|), such that
F1,l[k, v] is the probability that a node i with k = b(ui) has value v for attribute Al (i.e., the rows of
F1,l are multinomial distributions over the values of Al).

For a given graph ω, we define in analogy to BPω:

UPω(k, i) =

|A|∏
l=1

∑
v∈[ml]

I[A[i, l] = v]F1,l[k, v], (8)

where I[] is the indicator function.

ISAMPLE (n,g,BP,UP)
1 πinit= random permutation of [n]
2 π = [], b = [] /* Initialize as empty lists */
3
4 for i=1,. . . ,n do
5 next=πinit[i]
6 remaining=πinit[i+ 1 : n]
7 insertions=list of possible combinations of insertion position for next into π, and associated bin

assignement.
8 sampleprobs=GETSAMPLEPROBS(insertions,π,b,remaining,BP,UP)
9 sample an insertion position/bin according to sampleprobs

10 insert next at the sampled position/bin
11 end
12 return π, b

Algorithm 1: High-level importance sampling algorithm

The importance sampling algorithm receives as input the pre-computed tables BPω,UPω . The high-
level structure of the algorithm is shown in Algorithm 1. We start by creating an initial random

11
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permutation πinit of the nodes, and then take nodes in the order of πinit to iteratively insert them into
the final permutation π. Given partially constructed π, b, the list of possible combinations of insertion
positions and bin assignments is computed in line 7. For example, if n = 5, g = 3 and currently
π = (4, 1), b = (1, 2), then insertions = ((0, 0), (0, 1), (1, 1), (1, 2), (2, 2), meaning that the next
node can be inserted as the first element of π with bin assignment 0 or 1, in the middle between nodes
4 and 1 with bin assignment 1 or 2, or at the end with bin assignment 2 (this only depends on g and
the current b, not the current π). The core of the importance sampling procedure then consists of line
8 where a probability distribution over insertions is calculated by Algorithm 7.

GETSAMPLEPROBS (insertions,π,b,next,remaining,BP,UP)
1 weights=[]
2 for (pos, bin) ∈ insertions do
3 w = leftweight(next, π, b, pos, bin) · rightweight(next, π, b, pos, bin) ·

remainweight(next, remaining, bin)
4 w = w · UP[bin, next]
5 append w to weights
6 end
7 return weights normalized to probability distribution

Algorithm 2: Core weighting heuristic

The main component of this algorithm is line 3, where for a candidate insertion (pos, bin) three
weight factors are combined: leftweight is the contribution to P (ω|π, b) (for the final π, b, currently
under construction) that derives from node pairs i, next for nodes i that are already included in the
current π to the left of the candidate insertion position pos:

leftweight(next, π, b, pos, bin) :=

pos−1∏
p=0

BP[bp, bin, π[p], next] (9)

In our previous example: if next = 3, and (pos, bin) = (1, 2) ∈ insertions, then
leftweight(3, (4, 1), (1, 2), 1, 2) = BP[1, 2, 4, 3]. Analogously, we define:

rightweight(next, π, b, pos, bin) :=

length(π)−1∏
p=pos+1

BP[bin, bp, next, π[p]] (10)

In our example: rightweight(3, (4, 1), (1, 2), 1, 2) = BP[3, 1, 2, 2]. The remainweight term estimates
the contribution to P (ω|π, b) from node pairs i, next for nodes i ∈ remaining. Since positions and
bin memberships of these i are not yet determined, we make an optimistic estimate by maximizing
over all possibilities of placing i before or after next, and the corresponding possible bin assignments
for i:

remainweight(next, remaining, pos, bin)

:=
∏

i∈remaining

max{max
b≤bin

BP[b, bin, i, next],max
b≥bin

BP[bin, b, next, i]} (11)

In our example, let remaining = [0, 2]. Then remainweight(3, [0, 2], 2) =∏
i∈{0,2}max{BP[0, 2, i, 3],BP[1, 2, i, 3],BP[2, 2, i, 3],BP[2, 2, 3, i]}

Line 4 multiplies the weight computed so far with the factor UP[bin, next] that represents the contri-
bution to P (ω|π, b) that derives from the probabilities of the node attributes. This only depends on
the bin membership of next, not the permutation π.

Complexity. (Sketch) The total number of insertions calculated in line 7 of ISAMPLE isO(n(n+g))
(over all iterations of the for-loop). The weight computation for one candidate insertion in lines 3-5 of
GETSAMPLEPROBS is O(ng) (the combined computation of leftweight,rightweight, remainweight
effectively iterates over all nodes other than next, and the computation of remainweight also involves
an iteration over the bins). This gives a total complexity of O(n3g + n2g2), which also dominates
the complexity of the pre-computation of BP, which is O(n2g2).
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Figure 5: Exact and importance sampling distribution for the DAG of Figure3

Figure 6: Exact and importance sampling distribution for the ego graph of radius 2 of node 13 in
Figure 4

Illustration. The effectiveness of the importance sampling method is demonstrated by the following
comparison of the actual probabilities P (ω, π, b), and empirical sample probabilities obtained from
ISAMPLE. Figure 5 shows heatmap representations of the values of P (ω, π, b) (left) and the empirical
distribution of 100.000 samples from ISAMPLE. Here ω is the 5 node query graph shown on the left
of Figure 3, and the underlying model is the model learned in Section 7.1, which has a granularity
g = 2. Thus, there are 5! = 120 permutations (y-axes in the figure), and

(
5+2−1

5

)
= 6 different b

vectors (x-axes in the figure). P (ω, π, b) is sharply concentrated on the three permutations that are
topological orders of the graph, and so is the sampling distribution.

Figure 6 gives a similar illustration for the MUTAG example of Section 7.2. We use as ω the
ego-graph of radius 2 of node 13, which consists of 6 nodes. With a model granularity of g = 10,
this gives us 6! = 720 permutations and

(
6+10−1

6

)
= 5005 different b vectors. Figure 6 displays a

detail of size 50× 50 of the resulting 720× 5005-dimensional heatmaps. Again we observe a very
good match between the true and the sampling distribution.

B Generated graph evaluation
B.1 Graph Generation Baselines

The official repository of GraphRNN [27] and DiGress [26] were used for implementing the two
baselines in Section 7.3. For GraphRNN we stuck to the original configuration provided in the
repository for all datasets, while for DiGress on the EGO dataset we reduced the number of layers to
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5 to account for the smaller size of the networks. For model selection, we resorted to the heuristics
already provided in the repositories, selecting as the best epoch for DiGress over EGO and Community
respectively epoch 799 and 699, while for GraphRNN 1600 and 1600. The experiments were launched
on a single A100 80GB GPU.

B.2 Data Details

Community: Each community is generated by the Erdos-Renyi model with N ∼ U(30, 80) many
nodes, and intra-community edge probability p = 0.3. The communities are connected by random
edges with edge probability of 0.0025.

EGO: The collection of ego-graphs is divided as follows:

Scaling factor Number training graphs Number test graphs Size range
1.0 94 24 4-18
1.5 - 227 19-24
2.0 - 134 25-33
4.0 - 198 34-67
8.0 - 139 70-262

B.3 Learned Models

The learned NH-AHK− model for the EGO data is defined by the binbounds 0, 0.25, 0.5, 1.0 and

F2 =

(
0.24311648 0.87151754 0.68273159

0.01519822 0.05864193
0.15766381

)
F2[k, h] is the probability of an edge between nodes belonging to bins k and h (the graphs here
are undirected, so that only the upper triangular matrix is needed) According to this model, nodes
belonging to the first bin [0, 0.25] are highly connected to nodes in the other two bins; nodes in the
second bin are sparsely connected to nodes in any other bin than the first, and nodes in the third bin
also have a certain edge density (0.157) among themselves, apart from having a high connectivity
with the nodes in the first bin.

The learned NH-AHK− model for the Community data is defined by the binbounds 0, 0.5, 1.0 and

F2 =

(
0.30327248 0.00788412

0.25864134

)
which corresponds to a simple stochastic block model for two communities.

B.4 Generating Bigger Graphs

While the number of edges is usually upper-bounded by the maximum size of the BFS queue found in
the train set, GraphRNN [27] can generate an arbitrary number of nodes by unrolling the trained RNN.
DiGress [26], on the other hand, can generate bigger graphs by sampling the number of nodes from a
desired node distribution. In Table 2 we reported the average number of nodes for the reference test
set and the generated graphs. The results show an inherent limitation of GraphRNN in generating
larger networks, in contrast to all the other methods. We claim that this behavior can be due to the
local auto-regressive nature of the architecture, which seems to suffer from overfitting on the training
distribution, which in turn generally shows a pretty narrow variability in the number of nodes. The
same does not happen for DiGress, which first samples a noisy graph of size n and then reverts the
noise via the trained Graph Transformer [26].

B.5 MMD Evaluation

To ensure a rigorous evaluation, we assess the performance of the NH-AHK− model using the
Maximum Mean Discrepancy (MMD) metric across degree distributions, clustering distributions,
and orbit distributions. We compute these statistical measures and the MMD score employing the
same framework as utilized by GraphRNN. The corresponding source code can be accessed at the
following link2.

2https://github.com/snap-stanford/GraphRNN
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Scaling Factor Test set NH-AHK− GraphRNN DiGress ER
1.0 8.9 (±4.1) 9.7 (±3.7) 14.8 (±1.3) 7.5 (±4.7) 8.9 (±4.1)
1.5 20.3 (±2.0) 20.6 (±1.8) 15.0 (±1.1) 14.6 (±4.9) 20.3 (±2.0)
2.0 29.4 (±2.7) 28.5 (±2.9) 14.9 (±1.5) 24.4 (±3.7) 29.4 (±2.7)
4.0 45.4 (±8.8) 45.8 (±10.2) 15.0 (±1.5) 57.3 (±3.6) 45.4 (±8.8)
8.0 118.8 (±27.8) 115.0 (±20.9) 14.8 (±1.4) 127.1 (±3.3) 118.8 (±27.8)

(a) Average number of nodes of EGO networks

Scaling Factor Test set NH-AHK− GraphRNN DiGress ER
1.0 98.4 (±28.8) 102.8 (±26.0) 157.4 (±2.2) 110.8 (±30.2) 98.4 (±28.8)
1.5 167.3 (±42.2) 164.2 (±43.8) 158.8 (±2.4) 173.9 (±26.3) 167.3 (±42.2)
2.0 235.6 (±55.9) 217.3 (±61.2) 160.3 (±1.1) 264.5 (±26.1) 235.6 (±55.9)
4.0 445.4 (±117.3) 446.6 (±120.3) 160.8 (±2.8) - 445.4 (±117.3)
8.0 889.5 (±198.2) 910.4 (±209.5) 165.6 (±2.1) - 889.5 (±198.2)

(b) Average number of nodes of Comm networks

Table 2: Average number of nodes and standard deviation for reference test sets of EGO and
Community, and of the generated graphs

EGO Community
Scaling Factor 1.0 1.5 2.0 4.0 8.0 1.0 1.5 2.0 4.0 8.0

de
g.

NH-AHK− 0.17 0.73 0.78 0.58 0.46 0.00 0.00 0.00 0.00 0.00
DiGress 0.07 0.06 0.59 1.09 1.12 0.00 0.01 0.01 - -
GraphRNN 0.02 0.15
ER 0.09 0.33 0.50 0.47 0.89 0.01 0.01 0.01 0.01 0.01

cl
us

t. NH-AHK− 0.03 0.24 0.23 0.25 0.17 0.06 0.07 0.05 0.09 0.06
digress 0.04 0.01 0.08 0.17 0.20 0.06 0.12 0.23 - -
GraphRNN 0.04 0.01
ER 0.02 0.03 0.05 0.07 0.12 0.02 0.02 0.02 0.02 0.03

or
b.

NH-AHK− 0.01 0.02 0.03 0.04 0.12 0.06 0.02 0.04 0.09 0.16
DiGress 0.05 0.00 0.02 0.10 0.28 0.01 0.06 0.15 - -
GraphRNN 0.02 0.00
ER 0.04 0.08 0.11 0.13 0.29 0.10 0.20 0.28 0.46 0.70

Table 3: Evaluation of degree distributions, clustering distributions, and orbit distributions using the
Maximum Mean Discrepancy (MMD) metric for each model and network.
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B.6 Additional analysis

Here we report additional analysis on the Community dataset and samples of generated graphs.
Given that the original Community networks consist of precisely two communities, each with an
intra-community edge probability of 0.3 and inter-community edges with a probability of 0.0025,
we partition the input graphs using the Clauset-Newman-Moore greedy modularity maximization
algorithm[6]. Subsequently, we evaluate the intra-community and inter-community edge probabilities.
The summarized average values are presented in Table 4. As we present the average values, we also
include the values from the test set. Consequently, the optimal model is the one with a value closest
to that of the test set. Discerning from the table, it becomes evident that exclusively the NH-AHK−
model maintains its proximity to the test set, even as the scaling factor increases.

Scaling factor 1 1.5 2 4 8

in
tr

a-
co

m
m

. Test 0.30 (±0.01) 0.30 (±0.01) 0.30 (±0.01) 0.30 (±0.00) 0.30 (±0.00)
NH-AHK− 0.28 (±0.02) 0.28 (±0.02) 0.28 (±0.02) 0.28 (±0.02) 0.28 (±0.02)
Digress 0.29 (±0.01) 0.27 (±0.13) 0.28 (±0.17) - -
GraphRNN 0.27 (±0.08) - - - -
ER 0.34 (±0.13) 0.29 (±0.13) 0.27 (±0.12) 0.26 (±0.17) 0.22 (±0.12)

in
te

r-
co

m
m

. Test 0.003 (±0.00) 0.002 (±0.00) 0.002 (±0.00) 0.003 (±0.00) 0.002 (±0.00)
NH-AHK− 0.004 (±0.00) 0.004 (±0.00) 0.004 (±0.00) 0.004 (±0.00) 0.004 (±0.00)
Digress 0.003 (±0.00) 0.014 (±0.02) 0.021 (±0.02) -
GraphRNN 0.010 (±0.00) - - - -
ER 0.083 (±0.01) 0.085 (±0.01) 0.085 (±0.00) 0.085 (±0.00) 0.084 (±0.00)

Table 4: Intra-community and inter-community edge probability on the Community dataset

Figure 7 depicts test and generated random samples. The top row presents two Community networks
for each model, while the bottom row displays two EGO networks for each model.

Co
m

m
un

ity

Original Original NH-AHK NH-AHK DiGress DiGress GraphRNN GraphRNN

EG
O

Original Original NH-AHK NH-AHK DiGress DiGress GraphRNN GraphRNN

Figure 7: Samples from the test set, NH-AHK− , DiGress, and GraphRNN, for Community and
EGO networks

Figure 8 illustrates test and generated random samples as the scaling factor increases. It’s worth
noting that GraphRNN is not included due to its inability to generate larger graphs. While DiGress is
not able to generate Community networks with scaling factors 4 and 8.
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Figure 8: Samples from the test set, NH-AHK− , DiGress, and GraphRNN, for Community as the
scaling factor increases.
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Figure 9: Samples from the test set, NH-AHK− , DiGress, and GraphRNN, for EGO as the scaling
factor increases.
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