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ABSTRACT. We study a reaction-diffusion evolution equation perturbed by a Gaussian noise. Here
the leading operator is the infinitesimal generator of a Cp-semigroup of strictly negative type, the
nonlinear term has at most polynomial growth and is such that the whole system is dissipative.

The corresponding Itd stochastic equation describes a process on a Hilbert space with dissipative
nonlinear drift and a Gaussian noise.

Under smoothness assumptions on the non-linearity, asymptotics to all orders in a small pa-
rameter in front of the noise are given, with uniform estimates on the remainders. Applications
to nonlinear SPDEs with a linear term in the drift given by a Laplacian in a bounded domain
are included. As a particular example we consider the small noise asymptotic expansions for the
stochastic FitzHugh-Nagumo equations of neurobiology around deterministic solutions.

1. INTRODUCTION

In many problems of natural sciences and engineerings, modeling of dynamical systems by non
linear deterministic partial differential equations (PDEs) is heavily used. This is, e.g. , the case for
the equations of classical hydrodynamics and more generally classical field theory, as well as for the
equations used in the description of certain neurodynamical processes, see, e.g. , [AFS08], [CMO07].

Due to the uncertainty concerning stochastic influences on the systems (e.g. by additive random
forcing) an addition of stochastic terms in the equations describing such systems is appropriate.

This generates the necessity to study stochastic partial differential equations.

The problem of the study of a deterministic evolution equation of first order in time and finite
dimensional state spaces perturbed by an additive Gaussian noise and the associated small noise
expansions has been discussed by several authors. Roughly speaking, the work concerning this
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problem concerns either individual solutions or expectations of functionals of the solution process.
For the first category let us mention e.g. [Wat87, Tuc08], [[W89].

Work concerning the second category uses methods which go back to Donsker’s school, see e.g.
[Sch66, AMO09, AS99, AFP09] and references therein.

To the latter category belongs also the Laplace method for infinite dimensional integrals, see
e.g. [AMO09, AS99, AL05, MT97, Sim05, IK08], and to the semiclassical expansions for Wiener type
integrals, see e.g. [AMO09]. These expansions go beyond the large deviations estimates which are
on the other hand valid without smoothness assumption on the drift, see e.g. [DZ98, DS89] and
[DPZ92, DPZ96, DZ98].

Astonishing enough corresponding work for the case of evolving systems with infinite dimensional
state space, i.e. for SPDEs, is much more sparse, see however e.g. [CF06, ARS00, RT00, CF06].

R. Marcus studied in [Mar78, Mar74] problems of this type in the case of globally Lipschitz
non-linear terms.

Our present paper extends the latter work in the direction of dropping the global Lipschitz
condition and allowing for non linearities of at most polynomial growth and of dissipative character,
like the ones occurring in the case of the stochastic FitzHugh-Nagumo equation studied in stochastic
neurodynamics, see [BMO8] and references therein.

More precisely our paper considers a system the deterministic part of which corresponds to a non
linear PDEs of the semilinear type with an (unbounded) linear term and a nonlinearity which is
smooth and at most polynomially growing at infinity.

This deterministic PDEs is perturbed additively by a space-time noise term of the Gaussian type,
with a small coefficient ¢ in front of it. Mathematically the problem can be looked upon as described
by a stochastic differential equation with a a small parameter in front of the Wiener process.

Since we allow for polynomial growth of the non linear part of the drift, in order to assure existence
and uniqueness of mild solutions we assume that the total drift term is dissipative.

In turn this is assured by assumptions on the linear drift term and by one sided dissipative type
conditions on the non linear term.

The study of such equations was from the very beginning influenced by motivations from areas
like quantum field theory (such as stochastic quantization equation, see [AR91, Alb, DPT00, JLMS5,
Par88] and the references therein, the Ginzburg-Landau equation of classical statistical mechanics
(the equation describing growth of surfaces in solid state physics), biology (e.g. in the study of
stochastic neurodynamics e.g. [Wat87, BMO08]) and economics (e.g. interest rate models [ALMO04,
FLTO09]).

In many problems it is interesting to know how the solutions of the perturbed problem depend
on the small parameter € describing the random forcing. E.g. in connection with FitzZHugh-Nagumo
models of neurodynamics this has been discussed heuristically by Tuckwell, see [Tuc88a, Tuc88b,
Tuc92], see also e.g. [LAGEO00] for motivations in connection with the description of phenomena
in the study of epilepsy and [ACO07] for connections with problems of syncronization in neuronal
systems.

The exploitation of the dissipativity permits to compensate for the lack of a global Lipschitz
condition on the non linear drift.

Our aim is to provide asymptotic expansions of the solution to all orders in the perturbation
parameter €, with explicit expressions both for the expansion coefficients and the remainder.

The technique used is general and also covers the case of deterministic forcing terms.

An application to models of stochastic FitzHugh-Nagumo dynamics on networks, used for the
description of biological neurons will be given in a subsequent paper [ADPM].



In a further paper we shall extend our method to study other SPDEs having other types of non
linear polynomially growing drifts.

2. OUTLINE OF THE PAPER
Let us consider the following deterministic problem:

{duo(w = [Auo(t) + F(uo(t))]dt, t € [0,+00)

(21) up(0) = u®, u® € D(F),

where A is a linear operator on a separable Hilbert space H which generates a Cy-semigroup of strict
negative type. The term F' is a smooth nonlinear, quasi-m-dissipative mapping from the domain
D(F) C H (dense in H) with values in H; this means that there exists w € R such that (F —wI) is
m-dissipative in the sense of [DPZ96] (pag. 73), with (at most) polynomial growth at infinity (and
satisfying some further assumptions which will be specified in Hypothesis 3.1) below, D(F') is the
domain of F, dense in H. Existence and uniqueness of solutions for equation (2.1) is discussed in
Proposition 3.7 below.

Our aim is to study a stochastic (white noise) perturbation of (2.1) and to write its (unique)
solution as an expansion in powers of a parameter £ > 0, which controls the strength of the noise,
as € goes to zero. More precisely, we are concerned with the following stochastic Cauchy problem
on the Hilbert space H:

{du(t) = [Au(t) + F(u(t))|dt + e/QdW (t), t € [0,+00)

(22) uw(0) =u’, u® e D(F)

where A and F' are as described above, W is a cylindrical Wiener process on H, () is a positive trace
class linear operator from H to H and € > 0 is the parameter which determines the magnitude of the
stochastic perturbation. A unique solution of problem (2.2) can be shown to exist exploiting as in
[BMOS] results on stochastic differential equations contained, e.g., in [DPZ92, DPZ96]. Our purpose
is to show that the solution of equation (2.2), which will be denoted by u = u(t),t € [0, +00), can
be written as
w(t) = uo(t) +eur(t) +--- +e"un(t) + Ru(t,e),

where n depends on the differentiability order of F. The function ug(t) solves the associated de-
terministic problem (2.1), u;(t) is the stochastic process which solves the following linear stochastic
(non-autonomous) equation

(2.3) duy (t) = [Aur () + VF (uo(t))[u1(t)]]dt + VQdW(t), t € [0, +00)
. ul(o) = 07
while for each k = 2,...,n, ug(t) solves the following non-homogeneous linear differential equation

with stochastic coefficients

{duk(t) = [Aug(t) + VF(uo(t))[ur(t)]] dt + By (t)dt

(2.4) ue(0) =0

®.(¢) is a stochastic process which depends on uq(¢),...,us—1(t) and the Fréchet derivatives of F'
up to order k, see Section 4 for details.

The paper is organized as follows. In Section 3 we recall standard results for the solution of
equations of types (2.1), (2.2), (2.3) and (2.4). Section 4 is devoted to the study of some properties
of the nonlinear term F', in particular the n-th remainder of its Taylor expansion, while Section 5
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is concerned with the proof of the main result which gives the asymptotic behaviour of the Taylor
remainder R, (t,¢) derived in previous section. We conclude with some remarks on applications of
the results, in particular concerning the FitzHugh-Nagumo equation.

3. ASSUMPTIONS AND BASIC ESTIMATES

Before recalling some known results on problems of the type (2.1),(2.2), (2.3), (2.4), we begin by
presenting our notation and assumptions. We are concerned with a real separable Hilbert space H,
on which there are given a linear operator A : D(A) C H — H, a nonlinear operator F' : D(F) C
H — H with dense domain in H and a bounded linear operator () on H. Moreover, we are given a
complete probability space (2, F, (F¢)¢>0, P) which satisfies the usual conditions, i.e., the probability
space is complete, F contains all P-null sets in F and the filtration (F;);>¢ is right continuous. |- |g
the norm of any element of H, by || - | ¢ (H) the norm of any linear operator on H and by || - || gs the
Hilbert-Schmidt norm of any linear operator on H. Further, for any trace-class linear operator @,
we will denote by Tr@ its trace; if f is any mapping on H which is Fréchet differentiable up to order
n, n € N, we will denote by f*), i =1,...,n its i-th Fréchet differential and by D(f?) its domain
(for a short survey on Fréchet differentiable mapping we refer to Section 4). Finally, we will denote
by LP(€; C[0,T]; H) the space of continuous and adapted processes taking value in H such that the
following norm is finite

lull” =E sup |u(t)[f < oo.
t€[0,T)

Hypothesis 3.1.
(1) The operator A : D(A) C H — H generates an analytic semigroup e, t >0, on H of strict
negative type such that
HetAHL(H) <e ™ >0

with w a strictly positive.

(2) The mapping F : D(F) C H — H is conlinuous, nonlinear, Fréchet differentiable up to
order n for some positive integer n and there exist positive real numbers n,~ and a natural
number m > 0 such that:

(F(z) = F(y) —n(z —y),z —y) <0
|F(x)|y <v(Q+zly), z,y€ D(F).

(3) For some n € N and any x € D(F(i)),i = 1,...,n, there exist positive real constants
Y, © =1,...,n such that

IFD (@) ey < w(L+[z[F~"),  withm as in (2)

(4) The constants w,n satisfy the inequality w — n > 0; this implies that the term A+ F is
m—dissipative in the sense of [DPZ92], [DPZ96] (Pag.73).

(5) The term W is a cylindrical Wiener process (in the sense of, e.g., [DPZ92, DPZ96])

(6) Q is a positive linear bounded operator on H of trace class, that is TrQ) < oo.

Remark 3.2. Let us give an example of a mapping F satisfying the above hypothesis (in view of
the application to stochastic neural models). Let H = L?(A) with A C R, bounded and open;
let F' be a multinomial of degree m, i.e. a mapping of the form F(u) = g,,(u), where g,,(u) is a
polynomial of degree m, that is, g, (u) = ap + a1u + -+ + a,,u™. Then it is easy to prove that
D(F) = L*"(A) C L?*(A) and (by using Hoélder inequality) D(VF®) = L?(A) . Clearly, VO F
satysfies Hypothesis 3.1. Further, in the case g3(u) = —u(u—1)(u—£),0 < £ < 1 the corresponding



mapping F coincides with the non linear term of the FitzHugh-Nagumo equation (see Remark 5.4
below).

We recall the notion of mild solution for the deterministic and stochastic problems (2.1), (2.2);
next we recall the definition of stochastic convolution and we list some of its properties.

Definition 3.3. Let u° € D(F); we say that the function ug : [0,00] — H is a mild solution of
equation (2.1) if it is continuous (in t), with values in H and it satisfies:

t
(3.1) uo(t)—etAuo—F/ e AE (ug(s))ds, t e [0,400),
0

with the integral existing in the sense of Bochner integrals on Hilbert spaces.

Definition 3.4. A predictable H-valued process u := (u(t))i>o is said to be a mild solution to (2.2)
if for arbitrary t > 0 we have:

¢ t
u(t) = e’ + / eU=AR (u(s))ds + 5/ =4 /QdW (s), P — a.s.
0 0

Moreover Wy (t) := fot e(t=9)4/QdW () is called stochastic convolution and under our hypothesis it
is a well defined mean square continuous Fy—adapted Gaussian process (see e.g. [DPZ92, Th. 5.2,
Pag.119]).

The first integral on the right hand side is defined pathwise in the Bochner sense, P-almost surely.
Let us recall a fundamental property of the stochastic convolution which will be used later:

Proposition 3.5. Under Hypothesis 3.1 the stochastic convolution W (t) is P—almost surely con-
tinuous for t € [0, +00) and it verifies the following estimate

(3.2) E {Sup|WA(t) %}"] <cC
>0
for some positive constant C' and every m € N.

Proof. The proof is based on Burkholder-Davis-Gundy’s inequality (BDG); in fact we have:

2m
/ (t— s)Ade ‘|
0
t
e valgsas|

< Cosup/ et~ S)AHL(H)(TrQ)Z’”ds

< 00,

sup
>0

E [sup [Wa(t) %}"} =E

t>0

< CoE [sup

for some constant Cy > 0 (where in the first inequality we used the (DG B)-inequality and in the
latter inequality we used the hypothesis on the trace of ) (condition (6) in Hypothesis 3.1).
a

Remark 3.6. As the proof above shows, we could drop the assumptions on Q) provided we assume
more on the semigroup (e'*);>0, namely that (e!4);>o be Hilbert-Schmidt for all t > 0, because in
the latter case the bound in the last step in (3.3) can be replaced by the bound

/Het DA |2 1Q|12m d
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A known result for the semilinear deterministic equation (2.1) associated to A and F' is given
below.

Proposition 3.7. Under Hypothesis 3.1 there exists a unique mild solution ug = ug(t),t € [0, 00)
of the deterministic problem (2.1) such that

(3.4) luo(t)| g < e 2@ M0y, ¢ > 0.

Proof. The proof of existence and uniqueness can be found e.g. in [DPZ92, Theorem 7.13, pag. 203],
while estimate (3.4) is a direct consequence of the application of Gronwall’s lemma to the following
inequality

%llLO(t)l?{ = 2(Aug(t), uo(t))dt + 2(F (uo(t)), uo(t))
< —2(w — n)|uo(t)|*.
O

Proposition 3.8. Assume that A and F satisfy Hypothesis 3.1. Then for any u® € D(F) and
t > 0, there exists a unique mild solution u = (u(t))i>0 of equation (2.2) which belongs to the space
LP(;C([0,T); H)), for any T > 0, i.e. such that

(3.5) E sup |u(t)¥, < 4o,
te[0,T]

for any p € [2,00).
Proof. For the existence and uniqueness of the solution see e.g. [DPZ92, Theorem 7.13, pag. 203].

Hence we only have to prove estimate (3.5). Let z(t) := u(t) — Wa(t); then it is not difficult to show
that z(t) is the unique solution of the following deterministic equation:

{z’(t) = Az(t) + F(2(t) + Wa(t))

with 2/(t) == L2(t).

With no loss of generality (because of inclusion results for LP-spaces with respect to bounded
measures) we can assume that p = 2a, a € N. Now combining conditions (1) and (2) in Hypothesis
3.1 and reacalling Newton’s formula we have:

%V(t)ﬁ? = 2a(2'(t), 2())|2() |7 2 = 2a(Az(t) + F(2(t) + Wa(t)), 2(£))|2(8)[77
56) < —2aw|2(t)|2 + 2a(F(2(t) + Wa(t)), 2(t))]2(t) %{‘172
' < —2a(w — n)|2(t)[3 + 2a| F(Wa(t)|u|2(8)[5
< ~2a( — )0 +2a- SEPOVAG[ + Cadagla(o)

for some constant C, > 0 and a sufficiently small £ > 0 such that —2a(w — ) + 2a - €C, < 0.
Applying the previous inequality and Gronwall’s lemma we get:

t
|2(E)[20 < e(-2alomm+eCazat) 0120 %/ e 2| P(W 4 (s)) 34 ds.
0



Then there exists a positive constant C' such that:
t
(3.7) lut)® <C <e<2a<wn>+fca2a>t|u0|§;l +2a /0 e~ 2ale=m=9)| P (W, (s5))|3¢ds 4 |[Wa(t) i,) :

Since by condition (2) in Hypothesis 3.1, F' has (at most) polynomial growth at infinity, for any
a € N we have:

[EWa)F < Cam(1+[Wa()[™)** < Cam(1+ [Wa®)F™),

for some positive constant Cj ,,, depending on m and a. Moreover, we recall that, by Proposition
3.5 it holds that

E {sup |WA<t>|%fm} <a
>0

where C/ . is again a positive constant depending on m and a; hence

a,m

t ¢
(38) E {sup/ e~ 20w E=9)| P (T 4 (s5)) %}lds} < CE [Sup/ e 2alw=m(t=s) (] 4 |WA(t)|§{“m)ds}
t>0Jo t20J0

¢ ¢
<CE {sup/ e 2alw—mt=s)gg + Cé,m/ e_2a(‘“_’7)ds} <C
0 0

t>0

for some positive constant C,C depending on a and m. Consequently, putting togheter inequalities
(??) and (3.8), we obtain
Esup [u(t) 3 < Clu’|F +C,
t>0

so that the thesis follows.

4. PROPERTIES OF THE NON-LINEAR TERM F' AND TAYLOR EXPANSIONS

In this section we study the non-linear term F' in order to write its Taylor expansion around the
solution ug(t) of (3.1) with respect to an increment given in terms of powers of £. In order to do
that we recall some basic properties of Fréchet differentiable functions.

Let X and V be two real Banach spaces. For a mapping F' : X — V the Gateaux differential at
z € X in the direction h € X is defined as

VF()[h] = lim ZEF M) = F@)

s—0 S

whenever the limit exists in the topology of V| see , e.g., [LL72, Pag.12].

We notice that if VF(z)[h] exists in a neighborhood of zy € X and is continuous in x at zg
and also continuous in h at h = 0, then VF(x)[h] is linear in h (see, e.g., [LL72, Problem 1.61,
Pag. 15]). If VF(xzo)[h] has this property for all 29 € Xy C X and all h € X we shall say that F
belongs to the space G'(Xg; V). If F is continuous from X to V and F € G*(Xo; V) and one has
F(z + h) = F(z) + VF(z)[h] + R(z, h), for any z € X, with:

|R(x’h)|V _

(4.1) lim =0

Ihlx—0  |h|y
with |- |y and |- |x denoting respectively the norm in V and X, then the map h — VF(z)[h] is a
bounded linear operator from X, to V', and V F(x)[h] is, by definition, the unique Fréchet differential
of F' at x € Xy with increment h. R(z,h) is called the remainder of this Fréchet differential, while
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the operator sending h into VF(z)[h] is then called the Fréchet derivative of F' at = and is usually
denoted by F'(z) (see,e.g., [LL72, Pagg. 15/16, Problem 1.6.2 and Lemma 1.6.3]). We have then
VF(z)[h] = F'(x) - h, with the symbol - denoting the action of the linear bounded operator F’(x)
on h.

F'(z) is also called the gradient of F' at z (see, e.g., [LL72, Pag.15]) and it coincides with the
Gateaux derivative of F at z. We shall denote by ™) (X, V) the subset of §'(Xp, V) such that the
Fréchet derivative exists at any point of Xy. Similarly we introduce the Fréchet derivative F”(x)
of F/ at x € X. This is a bounded linear map from a subset D(F’) of X into B(X,V) (B(X,V)
being the space of bounded linear operators from X to V). One has thus F”' € B(X, B(X,V)). If
we choose h,k € X then F"(z) -k € B(X,V) and (F"(z)-k) - h € V. The latter is also written
F"(x) h k or F"(x)[h,k]. F"(x)[h, k] is bilinear in h, k, for any given x € D(F"), it can be identified
with the Gateaux differential V2 F(z)[h, k] of VF(z)[h] in the direction k, the latter looked upon
as a map from X to B(X,V).

Similarly one defines the j-th Fréchet derivative F()(z) and the j-th Gateaux derivative VFW) (x)[hy, ..., h;].
F(j)(m) acts j-linearly on hq,...,h; with h; € X for any i = 1,...,5. Let Xy be an open subset of
X and consider the space ) (Xy, V) of maps F from X to V such that FU)(z) exists at all 2 € X
and is uniformly continuous on Xy. The following Taylor formula holds for any x,h € X for which
F(h) and F(xz + h) are well defined (i.e. h and x + h are elements of D(F') ), and j =1,...,n+1
with 2 € N?_, FU)(Xy, V) such that

(4.2) F(z+h)= F(z)+ VF(z)[h] + 1v<2>F(:c)[h, hl+ -+ ivWF(x) (..., h] +R™ (;h)
2 n! ——
n—terms
where |R(”) (x; h) |X < Cyon-|h|y for some constant C; ,, depending only on z and n, see, e.g., [KF61,
Theorem X.1.2 Chapter].
Now let us consider the case X = H, with H being the same Hilbert space appearing in problem
(2.1). Let F be as in Hypothesis 3.1 and set Xo = D(F). Let us define for 1 > € > 0 the function
h(t):

h(t) = ekfug(t),
k=1

where the functions uy (t) are p-mean integrable continuous stochastic processes in L7 (Q2, C ([0, T]; H)),
defined on the whole interval [0, T for p € [2,00). Then using the above Taylor formula we have

Fluo(t) + h(t)) = Fluo(t)) + VF(uo(t))[P()] + %VF(Q) (1), ()] + - --

4.3 1
(43) +EV(")F(JC) [h(t), ..., h(t)] +R"™ (uo(t); h(t))
! —_—
n—terms

and, recalling that for any j = 1,...,n, V@ F(uy(t)) is multlinear, we have

1, 1 & .

EV(J)F(Uo(t)) (D), b)) == Y VI F(ug(t)[uk, (8), - un, (1))

! —_— k=

jterms

We notice that any derivative in the right member is multiplied by the parameter ¢ raised to a power
between j and nj.



Taking into account the above equality we can rewrite (4.3) as

Fuo(t) + h(t)) = Fluo(t)) + > "V F (ug(t))[ux(t)]
k=1
n glitiz @)
+ Y S VO o) (1), wi (0] + -
(44) J1+j2=2

n

€j1+"'+jk
+ Z Tv(k)F(Uo(t))[Ujl(t)a--~aujk(t)] ...
i tin=k

SO P g () (1) ua (1] + B (o (1); (1), ),

where the quantity Rgn)(uo(t); h(t),€) is given in terms of the derivatives of f with the parameter &

raised to powers greater than n and in terms of the n-th remainder R(™ (uo(t); h(t)) in the Taylor
expansion of the map F (as stated in Equation (4.2)). Namely, we have:

n nj
R (on(t),e) =S Y et
(45) j=2i14...+ij=n+1

%V(”F(u()(t))[um (8), i, (0] + R (uo (1); h(t)),

R™ (ug(t); h(t)) being as in (4.2). In this way equation (4.4) can be rearranged as
F(ug(t) + h(t)) = Fluo(t) + > Y etrtis
(46) J=2 i1+ +i;=j
1 .
VOF(o(0) [, (1), i, (0] + B (wo(0; A1), €).

Lemma 4.1. Let Rﬁ") be as in formula (4.5), then for all p € [2,00) there exists a constant C > 0,
depending on |uols, . .., |un|g, VFD, ... .V F™ p n, such that:

E sup |R§n)(u0(t);h(t),€)\%SCEP("'H)
te[0,4+00)

forall0 <e <1.
Proof. Since:

RO (uo(t)ihlt),e) =3 3 et

Jj=2i1+...+i;=n+1

%V(j)F(Uo(t))[Un (B, - ui, (5] + RO (ug(); (1),
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then for € € (0, 1] we have

|R§")(UO(t);h(t),€)%SCiﬁ("“)pK,max IVDE (uo(0)) ] (1 ) (Zlu p)]
’ j=1,....,n

+ 2 |R™ (uo(t); n(t))|
(4.7) o O e
SC&ZAWHijPthﬁﬂ%-UMﬂV“”V](}:MMQN%>-%CfﬁRWWUMﬂﬂNﬂN%
i=1

< Cre™IP 4 CRNR™ (uo (8); h(1)) [}y

where CT(L%I),, C,(f,)) are constants depending only on n, p and C,, is a suitable positive constant depend-
ing on p,n,max;—i ., [757(1 + |u0(t)|m_j)p] (7; being the constants appearing in Hypothesis 3.1,
condition (3)) and |u;(¢)[%, i = 1,...,n. We notice that the above inequality follows by recalling
that the deterministic function ug(t) is bounded (in the H—norm) (see Proposition 3.7).

Now by the bound on R(™ in equation (4.2) we have that

(R (o (1); B(0)) [ < Culh(0) 577"
with C,, depending on ug(t) and n but independent, of h(t). Since h(t) = S oy eFug(t), then:
(4.8) [R™ (o (1) h(1)) [y < eI Crp (fur (D], -, un () 11)

with C,, , = C’n,p(\ul(tﬂH sy Jun(t)] y) independent of €.
Hence by (4.7) and (4.8) we have that

E sup |R{"” (uo(t); h(t),e)[fy < Cpe™,
t€[0,T)
where C! := C/ (p, VOF, ... ;N F |ug|m, ..., |un|s) is independent of e.
O

As we said before, we want to expand the solution of equation (2.2) around wug (), that is we want
to write u(t) as:

(4.9) u(t) = ug(t) + eur(t) + - - - 4+ €"un(t) + Ru(t, ),

(with the term R, (t,e) = O(e"™!)), for any t > 0), where the processes (u;(t))¢>0,4 = 1...,n can
be found by using the Taylor expansion of F' around wug(t) and matching terms in the equation for
u. Given predictable H—valued stochastic processes vg(t), ..., v (t) let us use the notation:

k
(4.10) Oy (t) [vo(t), v1(t), .. o] =D > VO F(ue(t)[vi, (¢), ..., i, (B)].

j=2 i1,..i €L, n

Z{:l =k
With the above notation uy(t),...,u,(t) occurring in (4.9) satisfy the following equations:
duy (t) = [Au (t) + VF (uo(t))[u1 (t)]]dt + /QdW (t),

(4.11) mﬂﬂ:mww+VﬂwonAMW+¢xmuwu:o,

duy,(t) = [Aug(t) + VF(uo(t))[uk(t)]]dt + @y (t)dt, up(0) =0,
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with
(4.12) (I)k(t) = <I>k(t) [UQ(t>, N ,’U,kfl(t)] .

Notice that while u; (¢) is the solution of a linear stochastic differential equation (with time dependent
drift operator A+ VF(ug(t))), the processes ug, .. ., u, are solutions of non-homogenous differential
equations with random coefficients whose meaning is given below.

Definition 4.2. Let 2 < k < n, then a predictable H-valued stochastic process ux = u(t) ,t > 0 is
a solution of problem (2.4) (i.e. (4.11) ) if almost surely it satisfies the following integral equation

up(t) :/0 e(t_s)AVF(uo(s))[uk(s)]ds+/0 y(s)ds, t>0,2<k<n,

with ® as in (4.10).

In the following result we estimate the norm of ®; in H by means of the norms of the Gateaux
derivatives of F' and the norms of v;(t), j = 1,...,k — 1, where v;(t) are H-valued stochastic
processes.

Lemma 4.3. Let us fixr 2 < k <n and let vo(t),v1(t),...,vk—1(t) be H-valued stochastic processes.
Then @y (t) [vo(t), ..., vk—1(t)] as in (4.10) satisfies the following inequality

@k (t) [0(t), - -, ve—1 ()]l < Cloo ()] gk (k + ot ()15 + -+ + o1 (057,

where C' is some positive constants depending on k and the constant v;, j =2,...,k introduced in
Hypothesis 3.1.

Proof. We have

u D F(vo(t)) [, (t), ..., vy,
PP ART P TH | S i .10)| C O RSSRTAC)

(4.13) i o=k Y
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and using assumption (3) in Hypothesis 3.1, we get

k J
1 .
CAGIFES ﬁHVF(J)(’UO(t))HL(HJ',H))H|’Uiz(t>‘H
j ’ =1

J=2 iq,..., ijEN

S =k

k J .
< Syt Y S 0l

i1y ijeN [=1
Zg=1 =k

& k—1
: =1

i1,0ei €N
Zg=1 u=k

k 1 ‘ k—1
<D+ foo(®)] )R (k +2_lu(®) H>

=1
k-1

< C(1+ oo (1) )k (k + ) Ju(t) ’13_1> :
=1

for some positive constant C, from which the assertion in Lemma (4.3) follows.
O

Remark 4.4. Notice that by Lemma 4.3, if v1,...,vk—1 are p-mean (p € [2,00) ), integrable con-
tinuous stochastic processes then the same holds for ®y.

5. MAIN RESULTS
Proposition 5.1. Under Hypothesis 3.1 the following stochastic differential equation:

- dus (t) = [Au (t) + VF(up(t)[us (D]]dt + V@AW (), t € [0, +00)
. (3} (O) = 07
has a unique mild solution such that for any p > 2 it satisfies the following estimate:

(5.2) E sup |ui(t)]} < +oo, for any T > 0.
t€[0,T)

Proof. First we show uniqueness. Let us suppose that wi(t) and ws(t) are two solutions of (5.1).
Then by Ito’s formula we have:

dwi (t) — wa(t)]* = (A(wi () — wa(t)), wi(t) — wa(t)) dt
+ (VE (uo(t))[wi (t) — wa(t)], wi(t) — wa(t)) dt,
so that, by the dissipativity condition on A and the estimate on VF in Hypothesis 3.1, (3), we have
dlwi (1) — w2 ()]* < —wlwi (t) = wa () + 3L+ uolf ™) wi (1) — w2 (t)]*.

Now uniqueness follows by applying Gronwall’s lemma.
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As far as existence is concerned, we proceed by a fixed point argument. We introduce the mapping
I' from =, 7 (see. eq. (??) ) into itself defined by

() = [ €IV (ol wls)ds + Wa ()

We are going to prove that there exists 7' > 0 such that I' is a contraction on £P(Q;C([0,T]; H)).
In fact, for any v,w € Z, r we have, for any 0 <t < T"

p

I (v(#)) = T(w(®)|P =E sup

t€[0,T]

t
—s)A
<Bsup 1A iy 9P o)) o) = sl s

/ =AY F(ug(s))) [o(5) — w(s)|ds

0 H

T N
<Eaup [V (un(s)[e(s) ~ (o)l | 1T s

1 ~
< Esup [u(s) — w(s) [0 (1 + Juo(t)" 1) — (1 - =)
[0,7] wp

1 ~
< D 1 m—1\p _ (1 _ —pr) ,
< *wp%( + [uo[™ )P o — wlP e

where in the third inequality we used conditions (3) in Hypothesis 3.1. Then if T is sufficiently small
(depending on w, p,y1,up), we see that I' is a contraction on LP(Q; C([0,T]; H)).

By considering the map I' on intervals [0,T],[T,2T],... we have that ' is a contraction on
LP(;C([0,T]; H)), hence we have existence and uniqueness of the solution for inequality (5.1) in
the space LP(§; C([0,T); H)) for all p € [2,00). Let us now consider estimate (5.5). By condition
(3) in Hypothesis 3.1 we have for all points in the probability space and p = 2a with a € N:

%lm(f)li‘? = 2a(Aua (t), ur (8))[ur ()3 7% + 2a(VE (uo(t)) [ur ()], wa () Jur () 77~
(5.3) - 2a(Wa (), (8) s (1) 352
< —2awlur ()3 + 2a7 (1 + [uo ™) ur ()] F + 2a(Wa(t), ua (t))ua (t)[ 77~
< —2a@lui ()3 + Ca|Walt)|3,
where @ := w — (1 + |ug|). By Proposition 3.5 we have that:

E sup |[Wa(t)|2 <, T >0,
t€[0,T)

so that integrating on [0, T], taking the expectation of both members in the inequality and applying
Gronwall’s lemma to (5.3) we obtain:

sup |ua (t)| %
t€[0,T]

E < e 20T < ¢,

where C, is a positive constant (independent of T') and (5.2) follows.
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Theorem 5.2. Let us fixr 2 < k < n, assume that Hypothesis 3.1 holds, and let uy be the solution
of the problem (2.3), suppose moreover that u; is the unique mild solution of the following Abstract
Cauchy Problem (ACP):

duj (t) = [Auj (t) + VF(uo(t))[u](t)]]dt + q)j(t) [uo(t), N ,Uj_l(t)] dt
(ACP(j)) u;(0) = 0
forj =2,...,k—1 satisfying:

(5.4) E sup |u;(t)]} < +oo, T > 0;
t€[0,T]

then there exists a unique mild solution uy(t) of the following non-homogeneous linear differential
equation with stochastic coefficients (in the sense of Def. 4.2) :

duy(t) = [Aug(t) + VF (uo(t)) [ur(t)]]dt + @r(t)dt t € [0,+00)

(ACP(K)) ur(0) = 0
and for any p € [2,00) it satisfies the following estimates, for any T > 0:
(5.5) E sup |ug(t)[f; < 4oo.

t€(0,T]

Proof. We proceed by a fixed point argument, where the contraction is given by

D(y(t)) == /O eT=IATF (ug (1)) [y(t)]ds + /0 =94, (s)ds

on £P(Q; C([0,T); H)). In fact, arguing as in Proposition 5.1, we see that for 7' € [0, T] sufficiently
small, I is a contraction on £P(2; C([0,T]; H)), so that existence and uniqueness of the solution for
ACP(k) follows for every p € [2,00). Let us consider estimate (5.5). By condition (4) in Hypothesis
3.1 we have, for p = 2a with a € N (and all points in the probability space) :

E|uk(t) 2 = 2a(Aug(t), up ()| ue (B3¢ + 2a(V F (uo () [k (£)], ur ()| ur ()| 77>
(5.6) + 2a( Pk (t), up (£)) Jur (t) |72
< —2awlug (t)[3 + 2077 (1 + [uo|) fur (6) |7 + 2al @k (t) 1w (8) |77~
< —2a@|ug ()38 + Co| Pk (1)]37,

where @ := w — y(1 + |ug|) as in the proof of Prop (5.1). By the assumption (5.4) made on
ui(t),...,u;(t) and Lemma 4.3 we have that:

E sup |®(t)|F <C;, T >0,
tel0,7)

so that taking the expectation of inequality (5.6) and applying Gronwall’s lemma (similarly as in
the proof of Proposition 5.1) we obtain:

E sup |up(t)|3 < Cle 2% < C,
t€[0,T]

where C, is a positive constant (which can be taken independent of T') and the thesis follows.

We are now able to state the main result of this section:
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Theorem 5.3. Under Hypothesis 3.1 the solution u(t) of (2.2) can be expanded in powers of € > 0
in the following form

u(t) = up(t) + eur(t) + -+ e"un(t) + Ru(t,e), neN,
where uy s the solution of

duy (t) = [Auy () + VF (uo(t)) [us ()] dt + /QdW (¢)

Ul(O) = 0,
while ug, k=2,...,n is the solution of
(ACP(k)) {duk<t) = [Auk(t) + VF (uo(t))ur(t)]dt + @5 (t)dt,
uk(O) =0
and Ry (t,¢),
Ralt,e) = ult) — uo(t) = 3 Fu(t) =
(5.7) h=t

= / et=9)4 (F(u(s)) — F(ug(s)) — Z eV F (ug(s))[ur(s)] — Z @k(s)> ds,
0 k=1 k=2

verifies the following inequality

E sup |R,(t,e)ff < Cpe™t,
te[0,T)

with a constant Cp > 0.

Proof. Let us define R, (t,¢), n € N, as stated in the theorem. Since by construction
- u(t) = el 4 f§ e mIAR (u(s))ds + eWa(t)
- uo(t) = e+ [ et IAF (ug(s))ds
- wn(t) = J e IATF (g () (3)]ds + Wa(t)
- ug(t) f =AY F (ug(s)) [u(s) ds—|—f0 (t=9)Ad, (s)ds for k=2,...,n
with @ (s) := 0(8), ..., ug—1(s)] defined in (4.12), we have

Dy, [u
R, (t,e) = /te(ts)A <F(u(s)) ZakVF N]uk(s)] — Z@’Ms)) ds.
0 k=1 k=2

Recalling that R{" (uo(s); h(s),€) = F(u(s)) — F(uo(s)) — Sp_y €V F (uo(s))[u(s)] — j_y i(s)

we get:

¢ P
E sup R,(te)% <E sup / et =ARM (44 (s); h(s), €)ds
t€[0,T) t€[0,T) H
<E sup / DAL,y RS (o (5); h(s), ) 2y ds
(58) te[0,T]
t
<E sup [Ry" (uo(t): h(t). o)1}y / e

t€[0,T] 0

< Crpe? ™R sup |R (ug(t); h(t), )5,
t€[0,T]
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for some positive constant C,, (depending on n,p, but not on ¢), where in the second and third
inequality we have used the contraction property of the semigroup generated by A. Now recalling
Lemma 4.1 the inequality in Theorem 5.3 follows.

O

Remark 5.4. Our results apply in particular to stochastic PDEs describing the FitzHugh-Nagumo
equation with a Gaussian noise perturbation, as those studied e.g., in [Tuc88a, Tuc88b, Tuc92] and
[BMOS].

The reference equation is given by (see [BM08, Equation (1.1)])

dev(t, x) = Ou(c()0v(t, 2)) — pla)o(t,x) — w(t, z) + f(v(t,2)) + b (t, 2)
Ow(t,x) =yv(t,z) — aw(t,x) + efa(t, )

0,v(t,0) = dyv(t,1) =0

v(0,2) = vo(x) w(0,z) = wo(x)

(5.9)

with the parameter ¢ > 0 in front of the noise, where u,w are real valued random variables, a,y
are strictly positive phenomenological constants and ¢, p are strictly positive smooth functions on
[0,1]. Moreover, the initial values vy, wy are in C([0,1]). The nonlinear term is of the form f(v) =
—v(v—1)(v—¢) where £ € (0,1). Finally 81, 82 are independent Q;—Brownian motions with values
in L2(0,1), with Q; positive trace class commuting operators, commuting also with Ay, A¢ being
defined below. The above equation can be rewritten in the form of an infinite dimensional stochastic
evolution equation on the space

(5.10) H := L*(0,1) x L*(0,1)
by introducing the following operators:
Ag = 0pc(2)0,
D(Ap) == {u € H?*(0,1) : v,(0) = v,(1)},

_ Agfp 7[
A_< ~I aI)’

with domain D(A) := D(Ap) x L?(0,1), and

F(U) _ <—v(v - (1))(v - £)> 7

In this way, equation (5.9) can be rewritten as

{du(t) = Au(t) + F(u(t))dt + VQdW ()
u(0) = ug

and

with A and F satisfying Hypothesis 3.1 when £2 — ¢ 4+ 1 < 3mingepo, p(x) (cfr. [BMOS]).

Then by Theorem 5.3 we get an asymptotic expansion in powers of € > 0 of the solution, in
terms of solutions of the corresponding deterministic FitzHugh-Nagumo equation and the solution
of a system of (explicit) linear (non homogeneous) stochastic equations. The expansion holds for
all orders in € > 0. The remainders are estimated according to Theorem 5.3. We can use these
results to carry through a discussion similar to the one made by Tuckwell [Tuc08, Tuc92] in the case
where Q = (Q1,Q2) with @; the identity. Tuckwell, in particular, has made expansions up to second
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order in ¢ for the mean and the variance of the solution process u = (u(t)):>o (see [Tuc08, Tuc92]),
proving in particular that one has enhancement (respectively reduction) of the mean according to
whether the expansion is around which stable point of the stationary deterministic equation.

In a future work [ADPM] we shall apply these results to the case of networks of FitzHugh-Nagumo
neurons. Moreover in the second part of the present work we shall study asymptotic expansions for
the case where the dissipativity condition is replaced by other conditions on the non Lipschitz drift
term.
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