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Abstract: Although the cystic fibrosis (CF) lung microbiota has been characterized in several
studies, little is still known about the temporal changes occurring at the whole microbiome level
using untargeted metagenomic analysis. The aim of this study was to investigate the taxonomic
and functional temporal dynamics of the lower airway microbiome in a cohort of CF patients.
Multiple sputum samples were collected over 15 months from 22 patients with advanced lung disease
regularly attending three Italian CF Centers, given a total of 79 samples. DNA extracted from samples
was subjected to shotgun metagenomic sequencing allowing both strain-level taxonomic profiling
and assessment of the functional metagenomic repertoire. High inter-patient taxonomic heterogeneity
was found with short-term compositional changes across clinical status. Each patient exhibited
distinct sputum microbial communities at the taxonomic level, and strain-specific colonization of both
traditional and atypical CF pathogens. A large core set of genes, including antibiotic resistance genes,
were shared across patients despite observed differences in clinical status, and consistently detected
in the lung microbiome of all subjects independently from known antibiotic exposure. In conclusion,
an overall stability in the microbiome-associated genes was found despite taxonomic fluctuations of
the communities.

Keywords: cystic fibrosis; airway microbiome; metagenome composition; antibiotic resistance genes

1. Introduction

The respiratory microbial composition is particularly relevant for CF patients. In fact, bacterial lung
infections reduce life expectancy in most individuals with cystic fibrosis (CF) [1]. Many analyses of CF
microbiota have been done (see for instance [2,3]). Most of these studies used 16S rRNA gene sequencing,
yielding the identities and relative abundances of the taxa present (i.e., the microbiota). However, 16S rRNA
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based analyses have strong limits in providing strain-level or functional (meaning based on functional
genes) information, which are more appropriately gained by metagenomics analyses [4]. Studying the
microbial genetic repertoire, e.g., antibiotic resistance and virulence-related genes, with respect to
clinical status or treatment can identify mechanisms of microbial persistence and pathogenesis [3,5,6].
However, up to now, most of these studies were cross-sectional, analyzing samples collected at a single time
point from individual patients. Longitudinal studies that analyze serial samples obtained from individual
patients over time allow a better assessment of the impact of these potentially confounding variables
(including patient’s age, sex, lung disease stage, and antibiotic use) in constructing tractable models of
the relationship between the dynamics of the lung microbial community and the disease progression.
Longitudinal metagenomic investigations on the complete CF microbiome (microbiota and metagenome)
are few and on a limited number of patients [7–10] or focused on specific metabolic functions [11].
The availability of microbiome data from longitudinal studies would allow to gain information for
constructing systems-biology based models of microbiome evolution inside the CF patients, of potential
relevance for patient’s treatment and prognosis [3].

The aim of this was to increase the knowledge on the temporal dynamics of CF microbiome, to allow
gaining information on the whole community changes (as either strains/taxa or microbial functions).
We focused on patients with moderate-severe lung disease, chronically infected by Pseudomonas
aeruginosa. In fact, in a previous work [12], chronic infection with P. aeruginosa has been found to be
associated with dysbiosis in the lungs of patients with CF. The authors suggested that the dominance
of one species remodels the lung microbiota and may promote increased severity of CF lung disease.
Consequently, patients infected by P. aeruginosa could be a good model for investigating microbiome
changes over time in a heavily impacted ecology of the lung microbiome. Moreover, a more detailed
taxonomic and functional analysis could help elucidating the mechanisms leading to chronic infection
with P. aeruginosa and the microbial factors that contribute to the global changes of their lung microbiome.
In the present study, a shotgun metagenomic approach was used [13] to detect the entire sputum
microbial genomic repertoire down to the strain level [14].

A cohort of 22 patients with moderate-severe lung disease, grouped according to homozygosity
versus heterozygosity for ∆F508 (also known as F508del) in the CFTR gene and chronically infected
with P. aeruginosa, was selected and followed over 15 months during which 8 patients underwent
exacerbation events. We aimed to determine the composition of sputum microbiomes for these patients
when longitudinally sampled during the periods of stability and exacerbation, defining the relationship
between clinical status, sputum microbial metabolic gene repertoire, and the antibiotic-resistance (AR)
gene composition of sputum bacterial community, providing a previously unknown, high-resolution
view of CF sputum microbiome dynamics.

2. Materials and Methods

2.1. Ethics Statement

The study was approved by the Ethics Committees of Children’s Hospital and Research Institute
Bambino Gesù (Rome, Italy), Cystic Fibrosis Center, Anna Meyer Children’s University Hospital
(Florence, Italy) and G. Gaslini Institute (University of Genoa, Genoa, Italy) [Prot. N. 681 CM of
2 November 2012; Prot. N. 85 of 27 February 2014; Prot. N. FCC 2012 Partner 4-IGG of 18 September 2012].
All participants provided written informed consent before the enrollment in the study. All sputum
specimens were produced voluntarily. All procedures were performed in agreement with the
“Guidelines of the European Convention on Human Rights and Biomedicine for Research in Children”
and the Ethics Committee of the three CF Centers involved. All measures were obtained and processed
ensuring patient data protection and confidentiality. Informed written consent was obtained from all
participants in the study. Parents gave their consent for minors.
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2.2. Characteristics of Enrolled Patients

Twenty-two adolescents and adults with moderate-severe lung disease (15 females and seven
males) were enrolled in the study between October 2014 and March 2015 at three Italian CF Center
(Table 1). The study subjects were selected based on eligibility criteria that included all of the following:
(i) a diagnosis of CF, i.e., a sweat test showing sweat Cl > 60 mmol/L and two known CFTR mutations
causing the disease with pancreatic insufficiency (elastase < 5 µg/g/feces) [15], (ii) aged more than
six years, i.e., between 11 and 55 years, (iii) chronically infected with Pseudomonas aeruginosa according
to the Leeds criteria [16] and iv) decline in %FEV1 in the previous three years before enrollment by
measuring the difference between the best %FEV1 registered within the previous year and the best
%FEV1 registered two-years before specimen collection, following the criteria previously reported [17].
Clinical status at the time of collection was designated as baseline (BL), when clinically stable and
at their clinical and physiological baseline, on treatment (TR), at exacerbation-associated (additional)
antibiotic treatments, and at recovery (RC), upon completion of (the additional) antibiotic treatment [18].
Forced expiratory volume in 1 s as a percentage of predicted (%FEV1) [19] were measured according to
the American Thoracic Society and European Respiratory Society standards [20]. CFTR genotype, sex,
age, and antibiotic treatment for each patient were reported in (Table 1 and Table S1). During serial
sampling, data (antibiotic usage and spirometry) were collected.

2.3. Sample Collection, Processing, DNA Extraction and Sequencing

A total of 79 sputum samples were obtained by spontaneous expectoration at baseline,
exacerbation-associated antibiotic treatments and recovery status. Samples were processed according
to standard methods as previously described [5,21]. Respiratory pathogens were identified using the
conventional techniques reported in the guidelines, as previously described [21,22]. The number of
samples, microbiological status at sampling and samplings following exacerbation events are reported
in Table S1. Sputum samples were washed in 5 mL PBS and then centrifuged (3,800 g) for 15 min.
Resulting pellets were resuspended in 5–10 mL DNAse buffer (10 mM Tris-HCl pH 7.5; 2.5 mM MgCl2;
0.5 mM CaCl2, pH 6.5) with 7.5 µL of DNAse I (2000 Units/mL) per 1 mL of sample (15U/mL final),
incubated for 2 h at 37 ◦C, and washed twice by pelleting at 3,800 g for 15 min and resuspending
in 10 mL SE buffer (75 mM NaCl, 25 mM EDTA, pH 7.5). Pellets were then resuspended in 0.5 mL
lysis buffer (20 mM Tris-HCl pH 8.0; 2 mM EDTA pH 8.0; 1% (v/v) Triton; 20 mg/mL Lysozyme
final concentration), incubated for 30 min at 37 ◦C before extracting DNA with the MoBio PowerSoil
DNA Isolation kit as per manufacturer’s instructions. Libraries were prepared with the Nextera
XT DNA Library Preparation kit (Illumina) and sequenced on the HiSeq2500 apparatus (Illumina).
Raw sequence data reported in this study have been deposited in the NCBI “Sequence Read Archive”
(SRA) under the project accession PRJNA516870.

2.4. Basic Sequence Analyses

Sequence quality was ensured by trimming reads using StreamingTrim 1.0 [23], with a quality
cutoff of 20. Bowtie2 [24] was used to screen out human-derived sequences from metagenomic data
with the latest version of the human genome available in the NCBI database (GRCh38) as reference.
Sequences displaying a concordant alignment (mate pair that aligns with the expected relative mate
orientation and with the expected range of distances between mates) against the human genomes were
then removed from all subsequent analyses.

2.5. Taxonomic Classification of Metagenomic Contigs

Assembled contigs were taxonomically classified using BLAST. First, all genomes available for
each species detected with MetaPhlAn2 were downloaded from NCBI and used to build a database for
each sample. All genomes reporting an identity higher than 90% and a coverage higher than 80% were
collected and used for taxonomic classification. Contigs reporting hits with genomes coming from
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a single species were assigned to that species whereas contigs reporting hits from multiple species
were flagged as unknown.

2.6. Bioinformatic and Statistical Analyses

To test for differentially distributed pathways and taxa across exacerbation events and genotypes
we used a moderated t-test as implemented in the limma package [25], version 3.34.9. Data obtained
with MetaPhlAn2 (taxonomic composition) and HUMAnN2 (pathway composition) were fitted into
limma’s model using subjects as blocking variable. Since both software quantify biological units
using relative counts (HUMAnN2 uses “copies per million” and MetaPhlAn2 uses percentages) we
transformed this data into logarithmic values using the formula: log2(x + 0.1), where x are the relative
counts. Obtained p-values were corrected using the Benjamini-Hochberg correction method. A similar
approach has been used for antibiotic genes detect along assembled contigs. Here the number of reads
that mapped onto each gene was used to estimate differentially abundant genes. Since the number of
reads for each sample was variable (the ratio of the largest library size to the smallest was more than
10-fold) we used limma’s voom method [26] to fit our model, as suggested by the author of limma.

Metabolic and regulatory patterns were estimated using HUMAnN2 [27] and considering only
those pathways with a coverage value≥ 80%, whereas the taxonomic microbial community composition
was assessed using MetaPhlAn2 [28]. The CARD database [29] was used in combination with the
Resistance Gene Identifier (RGI, version 4.0.3) to inspect the distribution of antibiotic resistance gene
(AR genes). Strain characterization was performed using StrainPhlAn [30].

Statistical analyses were conducted in the R environment [31] (version 3.4.4) with the help of
external packages [25,26,32]. The taxonomical and functional composition on lung microbiome was
explored using permutational multivariate analysis of variance (PERMANOVA with 1000 permutations),
‘adonis2’ function of vegan package version 2.5-2; whereas differences in bacterial diversity (Shannon and
inverse Simpson) were tested using analysis of covariance (ANCOVA), ‘aov’ function. The model fitted
for both analyses was:

X ~ Status + Genotype + Subject + FEV1 + days

where, Status is the exacerbation event, Genotype is the CFTR genotype, Subject is the patient, FEV1 was
the forced expiratory volume in 1 s, and days, was the number of days from the enrolment in the
study. For the ANCOVA analyses. Tukey’s post hoc tests were performed to test for mean differences
within each factor used to build the full model (excluding FEV1 value and days since they were not
categorical variable). Ordination analyses were conducted on both taxa (From MetaPhlAn2) and
pathways (from HUMAnN2) using the function ‘ordinate’ of the phyloseq package [32] (version 1.23.1)
with principle coordinate decomposition method (PCoA) and the Bray-Curtis dissimilarity index.
The same index was used to inspect the distribution of samples and compare beta diversity level in
both taxonomic composition and pathways.

3. Results

3.1. Population and Sampling

Twenty-two patients with CF were enrolled for a total of 15 females and seven males. The patients
were chosen from a larger cohort of patients with moderate-severe lung disease (30 < %FEV1 < 70) and
chronically infected by Pseudomonas aeruginosa. During the study period, they were treated with
maintenance antibiotics (aerosol) and only a subset (n = 8) received clinical intervention in form of
supplementary antibiotics (oral or/and intravenous) for a pulmonary exacerbation (CFPE) (Table 1 and
Table S1). The bacterial microbiome was investigated on sputum samples obtained every 3–4 months
from 22 individuals along a survey of 15 months. Within the 22 subjects enrolled, two were lost to
follow up, 8 underwent episodes of exacerbations, which provided the opportunity to explore the
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microbiome composition along the events. In total, 79 samples from these 22 subjects were collected
and analyzed by a whole metagenomic sequencing approach.

Table 1. Characteristics of patients enrolled in the study.

ID Genotype Gender FEV1 Status Age n EX %FEV1

B01 ∆F508/2183AA->G M S 27 5 yes 37.0 ± 1.70
B02 ∆F508/N1303K F SD 26 3 no 54.7 ± 3.48
B03 ∆F508/4016insT F S 30 4 no 55.0 ± 1.08
B06 ∆F508/∆F508 F SD 21 4 no 60.2 ± 3.42
G10 ∆F508/∆F508 M S 51 4 no 54.0 ± 3.08
G24 ∆F508/∆F508 F S 49 3 yes 31.0 ± 4.08
G28 ∆F508/∆F508 F NA 38 2 no 42.5 ± 1.50
G30 ∆F508/∆F508 F S 50 1 no 54
G31 G1244E/G42X F SD 53 2 no 41.5 ± 1.50
G34 ∆F508/∆F508 F S 39 1 no 47
M05 ∆F508/∆F508 M SD 32 4 no 34.8 ± 0.85
M19 ∆F508/∆F508 M S 24 4 no 44.0 ± 2.04
M21 ∆F508/N1303K M SD 27 4 yes 51.5 ± 4.35
M22 ∆F508/2789+5G->A F S 29 5 yes 50.4 ± 1.03
M23 ∆F508/G542X F S 30 4 yes 37.0 ± 1.47
M24 ∆F508/∆F508 M S 32 3 no 35.2 ± 0.85
M25 ∆F508/296+1G->T F SD 41 4 no 42.5 ± 2.02
M26 ∆F508/3849+10 F SD 49 5 yes 39.6 ± 1.94
M28 ∆F508/N1303K M S 23 4 no 39.0 ± 1.08
M29 ∆F508/G542X F S 12 4 no 43.5 ± 3.75
M31 ∆F508/∆F508 F SD 11 3 yes 32.7 ± 4.41
M33 ∆F508/G85E F SD 13 5 yes 35.4 ± 5.78

Total: 22
Heterozygote:11
Homozygote:10

Other:1

F:15
M:7

S:12
SD:9 32.1 ± 2.73 78 no:14

yes:8 43.5 ± 1.09

ID, study id; Genotype, cystic fibrosis transmembrane regulator (CFTR) genotype; Gender, gender; Age, enrollment’s
age; n, number of samples collected; EX, yes if an exacerbation event has occurred during the study (no otherwise) [17]
FEV1, mean value of forced expiratory volume in 1 s plus/minus the standard error on the mean; heterozygote and
homozygote refers to ∆F508 genotype; %FEV1 status: S = with a rate decline lower than 1.5%, SD = with a rate
decline higher than 5%. NA, not assigned.

3.2. Airway Microbiomes are Taxonomically Distinct and Show Patient-Specific Strain Colonization

The overall taxonomic representation of the microbiomes from the 79 samples is reported in
Figure 1a,b, whereas a summary of obtained reads per sample was reported in Table S2. Firmicutes,
Proteobacteria, Bacteroidetes, and Actinobacteria were the most represented phyla. A high relative
abundance (49% of total reads) of the “classical” CF bacterial signatures (taxa), such as Staphylococcus
aureus and Pseudomonas aeruginosa, Rothia mucilaginosa, and Prevotella melaninogenica (all present in the
top-10 species within each phylum, Figure 1b and Table S3), was found.
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Figure 1. Taxonomic distribution in patients enrolled in the study. (a) The taxonomic distribution
of all species detected using MetaPhlAn2 was reported in each row of the matrix whereas columns
represent samples collected during the study. Colors from dark blue to red were used to report “copies
per million” (CPM) values as obtained from HUMAnN2 with black reporting a CPM value of zero.
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The plot was divided according to patient status: BL, baseline; TR, treatment; RC, recovery. Species
were ordered according to their mean abundance and grouped according to their Phylum. (b) The mean
abundance value of the top-ten species (if available) detected within each Phylum was reported together
with the standard error. The relative abundance of taxa is reported (Abundance %).

Although principal coordinates analysis showed that subjects did not cluster based on treatment
events and/or genotype (Figure S1a), the PERMANOVA analysis (Table 2) reported a significant
effect of both factors. However, the R2 values, namely the proportion of variance explained by the
factor considered, were very low (Table 2, R2 = 0.03 for both factors, p-values < 0.05) probably due to
intra-patient heterogeneity. No interaction effect of CFTR genotype on sputum microbiome was found
(p-value > 0.05, treatment-genotype interaction effect). Subject effect was predominant with an R2

value of 0.52. Similarly, neither FEV1 nor time showed any significant relationship with taxonomy or
functional profile (Table 2). A high fraction (more than 50%) of the total variance can be thus explained
by inter-subject variation.

Table 2. Permutational multivariate analysis of variance on both taxonomic distribution and
metabolic pathways.

Df SumOf Sqs R2 F Pr(>F)

TAXONOMY
Status 2 0.68 0.03 1.91 0.0300

Genotype 1 0.77 0.03 4.30 0.0020
Subject 18 11.97 0.52 3.74 0.0010

FEV1 value 1 0.27 0.01 1.53 0.1349
Days 1 0.28 0.01 1.58 0.1229

Status:Genotype 1 0.11 0.01 0.64 0.7642
Residual 49 8.72 0.38 - -

PATHWAY
Status 2 0.20 0.04 2.37 0.0220

Genotype 1 0.14 0.03 3.42 0.0080
Subject 18 2.43 0.48 3.20 0.0010

FEV1 value 1 0.09 0.02 2.14 0.0989
Days 1 0.05 0.01 1.26 0.2458

Status:Genotype 1 0.08 0.02 1.96 0.1169
Residual 49 2.07 0.41 - -

The permutational multivariate analysis of variance (PERMANOVA) analysis based on taxonomic distribution
was reported in the upper part of the table whereas the analysis based on metabolic pathways was reported at
the bottom. Df, degrees of freedom; SumOfSqs, sum of squares; R2, r-squared statistic (reported as proportion);
F, F-statistic; Pr(>F), p-value associated to the F-statistic. Significant effects, namely those reporting a p-value lower
than 0.05, were reported in bold.

We then performed a metagenomic data-based strain-level analysis of the sputum microbiomes,
by StrainPhlAn, a tool that permits to identify the specific strain of a given species within a metagenome [30].
This analysis demonstrated, in samples from the same patient but at different time points, that bacterial
lineages were in general, closely related and tightly clustered together, confirming a patient-specific
bacterial colonization and colonizing strain stability over time (Figure 2 and Figure S2).
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Figure 2. Strain-level phylogenetic trees of the main cystic fibrosis (CF) pathogens detected in the study.
Phylogenetic trees obtained through StrainPhlAn pipeline were reported for the main pathogenic
signatures of CF disease: (a) Pseudomonas aeruginosa; (b) Staphylococcus aureus; (c) Rothia mucilaginosa;
(d) Prevotella melaninogenica. Points at the end of each clade are colored according to patients so that
two points with the same color, in the same tree, represent the same species in two different time points,
for the same patient.

Bacterial diversity measures (Shannon and inverse Simpson indices) varied according to clinical
status, genotype, and subject (Figures S3 and S4, Tables S4 and S5). Samples collected during clinical
treatments exhibited lower microbial diversity than samples collected at either baseline or recovery
visits, highlighting the role of clinical treatments in perturbing CF lung communities as confirmed by
the Tukey’s post hoc test.

3.3. Stability and Subject-Specific Distribution Patterns of Metagenomic Functions

The results of functional metagenomic analyses were consistent with the taxonomic findings
described above. The list of metabolic pathways identified in metagenomic assemblies is reported in
Table S6. The category “Biosynthetic pathways” was the most represented functional category (Figure 3).
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Figure 3. Pathway distribution according to exacerbation events. The pathway distribution was
reported for each sample (columns) and for each pathway detected (rows). Colors from dark blue to
red were used to report “copies per million” (CPM) values as obtained from HUMAnN2 with black
reporting a CPM value of zero. On the right, the percentage of taxa in which each pathway was detected
was reported using different colors. The main colors correspond to the Phylum whereas the different
shades correspond to the genus detected (if available). BL, baseline; TR, treatment; RC, recovery.

Pathways were mainly detected in members of the phyla Firmicutes and Proteobacteria, followed by
Bacteroidetes and Actinobacteria. Exacerbation events and patient genotype significantly impacted
pathway distribution (Table 2, R2 values of 0.04 and 0.03 respectively, p-values < 0.05), though with
less an effect than that of subject (R2 = 0.48). The sample distribution according to representation and
abundance of metabolic pathways was very heterogeneous with no sharp differences according to
genotypes or exacerbation events (Figure S1). Alpha diversity of metabolic pathways dropped significantly
in samples collected during exacerbation events, but the drop was significant only considering the
inverse Simpson index (p-value = 0.036, Figures S3b and S4, Table S5). Comparing beta-diversity values
on both taxonomic and functional distribution a lower taxonomic similarity than functional (pathways)
was detected (Figure 4 and Table S7).

In other words, metabolic pathways were very consistent across patient status (baseline, treatment
recovery) and had even less fluctuations than microbiota composition. This evidence was additionally
confirmed by the differential abundance analysis. For contrasts made within each genotype, 40 pathways
reported significant differences across exacerbation statuses [p-values < 0.05 and |log(fold-change)| > 5]
all in the homozygote group (Figure S5 and Table S8), whereas, considering all samples together,
no pathway was found to be more abundant in one condition in respect to another (data not shown).
These results confirmed the resilience of the CF microbiome, suggesting that neither clinical change
nor antibiotic treatments are accompanied by major changes in sputum microbial functions.
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Antibiotic resistance genes (ARG) were inspected in relation to treatment events. Mapping of 
sequence reads to the CARD database resulted allowed to identify resistance-associated genetic 
determinants representing a range of resistance mechanisms, including antibiotic inactivating 
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Figure 4. Beta diversity analysis on both taxonomic and functional distribution. (a) Hierarchical clustering
based on UPGMA method. Clustering was performed on both pathway distribution (the upper triangle)
and taxonomic composition of samples (lower triangle). The Bray-Curtis distance was used to compute
distances between samples, but it was transformed into similarity value by subtracting 1 before plotting.
Thus, red colors represent high similarity values whereas blue colors represent low similarity values.
The shape of the points on each tip of trees refers to the genotype whereas the colors refer to the
exacerbation events. (b) Results of Tukey’s post hoc test on beta diversity values across patient genotypes
and exacerbation events. Contrasts were computed even to test differences between taxonomic distribution
and pathways with taxa reporting higher level of beta diversity. Homozygote and heterozygote refer to
∆F508 mutation of CFTR gene. BL, baseline; TR, treatment; RC, recovery. Each box shows the “interquartile
range” (IQR) that is the differences between the third and the first quartile of data (the 75th and the 25th
percentile). Horizontal bars are medians whereas whiskers represent the minimum and maximum values
defined as Q1 – (1.5 × IQR) and Q3 + (1.5 × IQR), respectively.

3.4. Resistome Composition through Exacerbation Events and Treatments

Antibiotic resistance genes (ARG) were inspected in relation to treatment events. Mapping of
sequence reads to the CARD database resulted allowed to identify resistance-associated genetic
determinants representing a range of resistance mechanisms, including antibiotic inactivating enzymes
and efflux pumps, and conferring resistance to a number of antibiotic classes, including peptides,
aminoglycosides, fluoroquinolones, monobactams, and nitroimidazoles.

Only six types of genes conferring resistance to β-lactamases and multidrug efflux transporters,
were found to be affected by an exacerbation condition, all regarding samples from patients heterozygous
for ∆F508 whereas, as found for metabolic pathways, no gene was significantly impacted in terms
of abundance by antibiotic treatment when considering all samples at once (Figure S6 and Table S9).
A similar approach was used to inspect the effect of antibiotic treatment on ARG distribution. ARG were
inspected also in relation to the antibiotic treatments reported in Table S1. The class of each antibiotic
was correlated to the presence (and the abundance) of genes that may, in principle, confer resistance
to antibiotics from the corresponding class. Differential abundance analyses (Table 3 and Figure S7)
showed 11 genes affected by antibiotic intake (8 as reduction in abundance, 3 as increase in abundance),
suggesting a corresponding decrease in the number of sensitive or increase in abundance of resistant
strains. Results showed a large group of ARGs present in most of the samples and that the
antibiotic treatment used in each sample was mirrored by the representation of the ARG classes
(Figure 5 and Figure S8).
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Table 3. Antibiotic resistance genes differentially distributed depending on drug intake.

Gene Name Gene Family Resistance Mechanism Drug Class Antibiotic Class logFC AveExpr t P.Value adj.P.Val

basS pmr phosphoethanolamine transferase antibiotic target alteration peptide antibiotic peptide antibiotic −0.80 11.51 −5.22 <0.00001 0.0001
FosA fosfomycin thiol transferase antibiotic inactivation Fosfomycin peptide antibiotic −1.10 10.08 −3.56 0.0006 0.0199

ArmR resistance-nodulation-cell division
(RND) antibiotic efflux pump antibiotic efflux

aminocoumarin antibiotic; carbapenem; cephalosporin;
cephamycin; diaminopyrimidine antibiotic; fluoroquinolone
antibiotic; macrolide antibiotic; monobactam; penam; penem;
peptide antibiotic; phenicol antibiotic; sulfonamide antibiotic;
tetracycline antibiotic

peptide antibiotic −1.56 9.24 −3.42 0.0010 0.0213

OXA-50 OXA beta-lactamase antibiotic inactivation cephalosporin; penam aminoglycoside antibiotic −0.45 11.61 −3.51 0.0008 0.0397

Pseudomonas
aeruginosa soxR

ATP-binding cassette (ABC) antibiotic
efflux pump; major facilitator
superfamily (MFS) antibiotic efflux
pump; resistance-nodulation-cell
division (RND) antibiotic efflux pump

antibiotic efflux;
antibiotic target alteration

acridine dye; cephalosporin; fluoroquinolone antibiotic;
glycylcycline; penam; phenicol antibiotic; rifamycin antibiotic;
tetracycline antibiotic; triclosan

fluoroquinolone antibiotic −1.28 10.13 −4.43 <0.00001 0.0020

MexR resistance-nodulation-cell division
(RND) antibiotic efflux pump

antibiotic efflux;
antibiotic target alteration

aminocoumarin antibiotic; carbapenem; cephalosporin;
cephamycin; diaminopyrimidine antibiotic; fluoroquinolone
antibiotic; macrolide antibiotic; monobactam; penam; penem;
peptide antibiotic; phenicol antibiotic; sulfonamide antibiotic;
tetracycline antibiotic

fluoroquinolone antibiotic −0.73 11.11 −3.30 0.0015 0.0454

MexR resistance-nodulation-cell division
(RND) antibiotic efflux pump

antibiotic efflux;
antibiotic target alteration

aminocoumarin antibiotic; carbapenem; cephalosporin;
cephamycin; diaminopyrimidine antibiotic; fluoroquinolone
antibiotic; macrolide antibiotic; monobactam; penam; penem;
peptide antibiotic; phenicol antibiotic; sulfonamide antibiotic;
tetracycline antibiotic

monobactam 1.75 10.90 4.95 <0.00001 0.0004

mdtO major facilitator superfamily (MFS)
antibiotic efflux pump antibiotic efflux acridine dye; nucleoside antibiotic monobactam 2.13 10.40 3.73 0.0004 0.0150

OpmD resistance-nodulation-cell division
(RND) antibiotic efflux pump antibiotic efflux acridine dye; fluoroquinolone antibiotic; tetracycline antibiotic monobactam −2.15 10.44 −3.28 0.0016 0.0414

MexT resistance-nodulation-cell division
(RND) antibiotic efflux pump antibiotic efflux diaminopyrimidine antibiotic; fluoroquinolone antibiotic;

phenicol antibiotic monobactam −1.52 10.57 −3.19 0.0021 0.0414

MexK resistance-nodulation-cell division
(RND) antibiotic efflux pump antibiotic efflux macrolide antibiotic; tetracycline antibiotic; triclosan nitroimidazole antibiotic −3.85 11.97 −3.71 0.0004 0.0407

Results of limma analysis were reported in the table together with the genotype, the antibiotic resistance gene name (according to the CARD database), and the antibiotic resistance class.
Drug class refers to compounds with similar chemical structures and related mode of action which relies on the same resistance mechanism. Other columns are: logFC, the log2-transformed
fold change value; AveExpr, the average log2-expression level for that pathway across all samples; t, the t-value according to limma’s moderated t-test; P.Value, the p-value; adj.P.Val,
the adjusted p-value using the Benjamini–Hochberg correction. The fold-change value reported refers to the contrast between patients who are treated with an antibiotic sensible to the
resistance mechanism specified and patients that were not. Only contrasts with an adjusted p-value lower than 0.05 and an absolute log fold-change value higher than 5 were reported.



Microorganisms 2020, 8, 1003 12 of 18

Microorganisms 2020, 8 x FOR PEER REVIEW 13 of 19 

 

 
Figure 5. Antibiotic resistance genes map. Antibiotic Resistance Genes (ARGs) were reported in the 
y-axis whereas samples were reported in the x-axis. Antibiotic classes (both for ARG and for patient 
treatments) were reported using dots at the end of the heatmap. Hierarchical clustering was 
computed using the Jaccard index for binary data with the UPGMA method. Red cells correspond to 
the presence of a gene in samples whereas gray cell correspond to absence. Only genes detected in at 
least 10% of the subjects were reported. 

4. Discussion 

Longitudinal studies provide important information on the stability and dynamics of microbial 
ecosystems [33] As all biotic communities, microbial communities tend to evolve towards a stable 
composition, either in natural environment or in association with host (as human-associated 
microbiomes). Changes in the community can be triggered by external conditions, as changes in host 
physiology (e.g., inflammation status) and/or other perturbations (e.g., antibiotic treatment). Indeed, 
perturbation studies help to probe community dynamics and resilience and possibly discover new 

monobactamaminoglycoside antibiotic
cephalosporin
fluoroquinolone antibiotic
penam

carbapenem
oxazolidinone antibiotic

glycopeptide antibiotic
rifamycin antibiotic macrolide antibiotic

nitroimidazole antibiotic
peptide antibiotic

tetracycline antibiotic

Figure 5. Antibiotic resistance genes map. Antibiotic Resistance Genes (ARGs) were reported in the
y-axis whereas samples were reported in the x-axis. Antibiotic classes (both for ARG and for patient
treatments) were reported using dots at the end of the heatmap. Hierarchical clustering was computed
using the Jaccard index for binary data with the UPGMA method. Red cells correspond to the presence
of a gene in samples whereas gray cell correspond to absence. Only genes detected in at least 10% of
the subjects were reported.

4. Discussion

Longitudinal studies provide important information on the stability and dynamics of microbial
ecosystems [33] As all biotic communities, microbial communities tend to evolve towards a stable composition,
either in natural environment or in association with host (as human-associated microbiomes). Changes in
the community can be triggered by external conditions, as changes in host physiology (e.g., inflammation
status) and/or other perturbations (e.g., antibiotic treatment). Indeed, perturbation studies help to probe
community dynamics and resilience and possibly discover new findings for accessing ways for modifying
the microbiome [34,35]. Here, we investigated the temporal dynamics of the CF sputum microbiome using
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shotgun metagenomics, including both periods of stability and respiratory exacerbations. Key questions were
(i) what was the composition and stability of the lung microbiome in patients with CF when longitudinally
sampled; and (ii) if the clinical status influenced the metabolic repertoire and resistome composition of lung
bacterial community. Our results describe a unique examination of the dynamic of the lung microbiome
in patients with moderate-severe lung disease carrying the ∆F508 mutation of CFTR gene and containing
clinical measurements over a 15-month period.

The sputum microbiomes of CF patients were highly patient-specific, suggesting the host has
one of the most important determinants of sputum microbiome composition. Indeed, there was less
variation within the same individual at different time points than between different individuals at the
same time point, proving some degree of temporal stability of an individual’s sputum microbiome,
as indicated by the lack of a time effect on the taxonomic distribution of microbiomes. Moreover, the use
of strain-level profiling allowed to monitor the resilience of predominant taxa detected in sputa of CF
single patients during the entire study period. Assembly-free strain-level profiling in metagenomes
through single nucleotide variants (SNVs) and genomic content has been widely used for comprehensive
strain-resolved metagenomics [36]. Data derived from StrainPhlAn, a tool developed for the analysis
of human microbiome that permit identification of the specific strain of a given species within
a metagenome [30], have been found to correlate with traditional typing methods like MetaMLST,
a metagenomic cultivation-free extension of Multi Locus Sequence Typing (MLST) [37].

Our results revealed that the predominant taxa detected in sputa of CF patients exhibited
extraordinary resilience, as demonstrated by the presence of the same strains of several species
during the entire study period. Resilience at the genus or species level was already known [38–40].
However, our approach went further, indicating that even single strains, not just more general
taxonomies (as genus or species levels) are stable inside patients. Carmody and colleagues showed
a relatively stable sputum community that was often altered during period of exacerbation even in
the absence of viral infection or antibiotics only in a small group of patients [41]. A similar result was
shown in the work from Fodor and colleagues [40] where, though occasional short-term compositional
changes in the airway microbiota were found, the main taxonomic signatures of CF disease were highly
stable. Even in other pulmonary diseases, such as non-cystic fibrosis bronchiectasis, respiratory sample
bacterial communities showed a conserved structure for long periods of time, as showed in the work
by Cox and colleagues where patients were followed for a six-month period [39].

Antibiotic exposure did not result in durable, persistent changes in sputum microbiota; the main
taxa linked to CF infection were still present even after aggressive antibiotic treatment. From a taxonomic
perspective, samples coming from the same patient clustered together, highlighting the role of the
host in bacterial strain selection during the baseline but even during (and after) exacerbation events.
Despite this patient-specific colonization, sputum taxonomic composition differed significantly from
one subject to another even when sampled at the same time. Though the common CF pathogens
were recovered, a notable exception was found for Rothia mucilaginosa. In fact, in contrast with other
studies where this species was rarely identified [42–44], in our samples, it was detected in high relative
abundance. This finding may suggest a potential involvement of R. mucilaginosa in CF microbiome
dynamics and pathogenicity, which deserves further attention.

Conversely, microbial functional genetic pathways were more homogeneous across patients.
This high conservation could be related to the characteristics of the lung environment itself, such as
mucus compositions, nutrient availability, and oxygen levels, which can be broadly similar across
patients with a similar clinical status. This finding is consistent with the concept that the function
of a biotic community is more conserved than the presence of single members due to functional
redundancy of different microbial taxa [45]. From this point of view, the airway microbiome can
be considered as performing a similar “ecosystem service”, irrespective of the taxonomy present as
pointed out by various authors in other environments [45]. Evidence of functional stability of the
human microbiota was previously reported for the gut microbiome [46], indicating that single subjects
can be considered to some extent as different ecological niches, inhabited by unique collections of
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microbial taxa (i.e., strains), but sharing the same set of genes. Investigations on the actual functionality
(e.g., by metatranscriptomics) of the identified core-set of genes could provide clues about the genetic
function of the microbiome to be targeted in future therapeutic treatments [3].

The finding that CFTR genotypes relate with different representation in some pathways, may suggest
that the airways microbiome is influenced by the type of CFTR alteration. However, this hypothesis
deserves further attention to clarify a putative role of microbial pathways with respect to the CFTR
genotype and vice versa. If confirmed, this hypothesis could offer possible opportunities for treating
patients by targeting some CFTR genotype-related microbial metabolism.

Despite a clear effect of antibiotic treatment during (and after) exacerbation periods, the community
structure is always recovered with the main pathogenic taxa emerging again. This effect is confirmed by
the resistome analysis of CF airway microbiota (i.e., all antibiotic-resistance genes in both pathogenic
and non-pathogenic bacteria), by correlation of antibiotic-resistance genes (ARG) distribution and
antibiotic intake. In the present study, patients subjected to a given antibiotic treatment did not seem
to select bacteria resistant to the antibiotic used but the detection of a resistance genetic determinants
seems to be distributed in almost all patients regardless of the treatment. Few studies have characterized
the airway resistome associated with the airway microbiome in patients with CF lung disease by
shotgun sequencing methods [5,47–50]. Understanding the impact of antibiotic treatment on the
respiratory tract resistome could allow one to have a more in-depth comprehension of emergence and
expansion of populations of multi-resistant organisms and spread of genes encoding antimicrobial
resistance in CF airway microbiota [51].

5. Conclusions

In conclusion, the temporal dynamics of the sputum microbiome in the largest cohort of patients
with CF analyzed so far, showed (i) patient-specific signatures of the airway microbiome at strain-level,
(ii) lack of variation in the microbiome across pulmonary exacerbations, and (iii) a core set of antibiotic
resistance genes that did not vary by antibiotic intake. While the dynamics of CF sputum microbial
composition were highly patient-specific, the overall sputum metagenome composition was stable,
showing a high resilience along time and antibiotic exposure. The high degree of redundancy in
the CF lung microbiome could testify to ecological aspects connected to the disease that were never
considered so far, as the large core-set of genes shared between patients despite observed differences in
clinical status or antibiotic treatment. The main conclusion of the present study is that the management
of chronic CF infection may be improved by a more patient-specific personalization of clinical care
and treatment. In particular, moving away from taxonomic inventories towards gene content of
CF microbiome could lead to the identification of the microbial gene repertoire associated with CF
lung disease and may provide the clinicians with new biomarkers of CF progression and targets for
antibiotic therapy [3,52]. Longitudinal studies of CF airway microbiota will permit to tailor therapeutic
interventions and select antibiotic therapies based on the composition and relative abundance of
antibiotic resistance genes within the respiratory microbiome.
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resistance gene distribution, Figure S7: Effect of the antibiotic intake on the distribution of antibiotic resistance
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Summary of all species detected with a mean abundance higher than 0.2%, Table S4: Analysis of variance on alpha
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