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Abstract: A timely diagnosis of coronavirus is critical in order to control the spread of the virus.
To aid in this, we propose in this paper a deep learning-based approach for detecting coronavirus
patients using ultrasound imagery. We propose to exploit the transfer learning of a EfficientNet
model pre-trained on the ImageNet dataset for the classification of ultrasound images of suspected
patients. In particular, we contrast the results of EfficentNet-B2 with the results of ViT and gMLP.
Then, we show the results of the three models by learning from scratch, i.e., without transfer learning.
We view the detection problem from a multiclass classification perspective by classifying images as
COVID-19, pneumonia, and normal. In the experiments, we evaluated the models on a publically
available ultrasound dataset. This dataset consists of 261 recordings (202 videos + 59 images)
belonging to 216 distinct patients. The best results were obtained using EfficientNet-B2 with transfer
learning. In particular, we obtained precision, recall, and F1 scores of 95.84%, 99.88%, and 24 97.41%,
respectively, for detecting the COVID-19 class. EfficientNet-B2 with transfer learning presented an
overall accuracy of 96.79%, outperforming gMLP and ViT, which achieved accuracies of 93.03% and
92.82%, respectively.

Keywords: coronavirus; classification; deep learning; transfer learning; ultrasound images

1. Introduction

COVID-19 is an infectious disease caused by a virus from the coronavirus strain.
Coronavirus is a phrase derived from the Latin word corona, which means crown. The
World Health Organization (WHO) reports that the number of those infected with this virus
is rising quickly. According to statistics released on 12 March 2021, more than 116 million
instances and around 2.5 million deaths had already been confirmed. [1]. The most well-
known symptoms of COVID-19 are fever, fatigue, and dry cough; other less-common
symptoms can include pain, nasal congestion, and loss of taste and smell. The risk of serious
complications is more significant among the elderly and people with health problems.

In addition to the ordinary real-time polymerase chain reaction (RT-PCR) test, medical
images are progressively used for screening and monitoring the disease. Indeed, medical
imaging such as ultrasound, computed tomography (CT), and X-ray are important elements
in medical practice as they allow scientists to learn more about the disease in a noninvasive
manner. Furthermore, the automatic analysis of these images using machine learning
methods can greatly assist in monitoring the effectiveness of the treatment and adjusting
protocols based on its severity. More recently, ultrasound imaging has also been used
for disease screening as it has many advantages in terms of being relatively cost effective
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compared to other imaging techniques such as CT, being safe, and providing efficient and
immediate healthcare information [2].

Deep learning techniques have recently demonstrated their dominance over traditional
approaches in numerous domains, such as computer vision and image classification [3,4].
These techniques have achieved encouraging results in classifying medical images [5,6].
Several research works have applied deep learning networks to detect COVID-19 using
lung ultrasound (LUS) [7–13], CT scan [14–22], or CXR images [23–31]. The development
of an efficient and accurate system for detecting COVID-19 is still challenging, and the need
for detecting COVID-19 cases as soon as possible with high accuracy could save the rest
of the community from this pandemic. Furthermore, the appearance of new variants of
SARS-CoV-2 is encouraging researchers to develop and improve new systems that are able
to detect patients infected by new variants.

The objective of this work is to design an automatic system for detecting COVID-19
using LUS. To this end, we employ several deep learning models. In the proposed models,
we explore two learning approaches: transfer learning and learning from scratch. The
former approach, transfer learning, is used in the case of a relatively limited number of
training samples; therefore, we fine-tune a pre-trained model instead of training a new
model from scratch as in the later approach. More specifically, we develop three well-
known models—EfficientNet-B2 [32], gMLP [33], and ViT [34]—for classifying LUS images.
We evaluate the efficiency of these models within a multiclass problem where the goal is to
classify LUS images into COVID-19, pneumonia, or normal classes.

The main contributions of this work are as follows:

• We propose a deep learning-based model for the automatic detection of COVID-19
using LUS images, to increase the accuracy and the speed of detecting COVID-19
compared with the routine rRT-PCR test.

• Three deep learning models are proposed and evaluated: EfficientNet-B2, gMLP,
and ViT.

• We explore the effectiveness of the proposed models in two learning approaches:
transfer learning and learning from scratch.

The remainder of this article is organized as follows: Section 2 lists the main related
works. In Section 3, we present a detailed description of the proposed deep learning
models. Section 4 is dedicated to describing the dataset and presenting the experimental
results obtained with the proposed approach and discussing our findings. Finally, Section 5
presents conclusions and future works.

2. Related Works

The literature on COVID-19 reports several methods for the analysis of medical
images such as of CT images [35–41], X-ray [42–47], and LUS [7–10]. For instance, Silva
et al. [35] proposed a voting-based approach, where the images from a given patient are
classified using a group in a voting system. In [36], the authors implemented a bidirectional
classification system using differential evolution algorithms. In [37], the authors proposed
a contrastive learning method for jointly learning on heterogonous datasets. In [38], the
authors proposed a multiscale feature fusion method for enhancing the detection accuracy.
In [39], Zhou et al. proposed a method that allows the segmentation and identification of
the infected region images from different sources. In another work [40], a method based on
an adaptive feature selection deep guided forest method was proposed.

Similarly other approaches have been developed for disease detection using X-ray
imagery [42–47]. For example, in [42], the authors developed a model for classifying images
into three different classes: non-COVID, pneumonia, and COVID. The authors in [43]
used different pre-trained Convolutional Neural Network (CNN) architectures for feature
generation and investigated different classifiers to classify the extracted features. They
found that the best results were obtained using MobileNet as a pre-trained CNN combined
with a Support Vector Machine (SVM) classifier. The authors in [44] proposed a transfer
learning approach based on decomposition techniques to detect the class boundaries.
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In [45], the authors proposed a capsule network composed of four convolutional layers and
three capsule layers for handling class imbalance problems. In [46], the authors proposed a
COVID data-based network that combines segmentation and data augmentation in order
to improve the detection accuracy. In [47], the authors suggested employing a bilateral
low-pass filter and a histogram equalization technique to pre-process the images. Then, a
pseudo-color image created from the original and filtered images is given progressively to
a CNN model for classification.

In the context of detecting COVID-19 using LUS, the authors in [9] suggested a spatial
transformer network that simultaneously predicts the severity of the disease and provides
weakly supervised localization of pathological artifacts. They also presented a technique
for frame score aggregation at the video-level based on uninorms. Their proposed model
achieved an F1 score of 71.4% in frame-based classification. The authors of [13] applied
pre-trained residual CNN models (ResNet18/ResNet50). They evaluated their proposed
models using a dataset with four to seven classes; their proposed models achieved good
results, with an F1 score of 98%. The author of [10] proposed a light deep learning model
for detecting COVID-19 using ultrasound images. Their model achieved very good results
in terms of the training time, but with a low overall accuracy of 83%.

The literature shows that it is indeed possible to develop a deep learning system for the
automatic detection of COVID-19 using LUS, to improve the performance of the systems in
terms of classification accuracy, which encourages us to present this study.

3. Materials and Methods
3.1. Dataset Description

In the experiments, we used the ultrasound dataset proposed in [8,11]. This dataset
consists of 255 LUS recordings (196 videos and 59 images) belonging to 216 distinct patients.
This dataset includes samples from COVID-19, bacterial pneumonia, and healthy patients,
as indicated in Table 1 [8].

Table 1. Number of videos and images in the dataset per class and probes.

Convex Linear
Total

#Video #Image #Video #Image

COVID-19 64 18 6 4 92

Bacterial pneumonia 49 20 2 2 73

Viral pneumonia 3 – 3 – 6

Normal 66 15 9 – 90

Total 182 53 20 6 261

The dataset was collected from different sources, including clinical information pro-
vided voluntarily by hospitals or ultrasound instructors at academic institutions, LUS
recordings published in other scholarly works, community platforms, open medical reposi-
tories, and health-tech firms. The data were acquired using a variety of ultrasound devices
with linear and convex probes. Because of their higher frequency, linear probes have a
higher resolution, which makes it easier to analyze problems along the pleural line [48].
The linear probe does not analyze deeper lung tissue because it penetrates the tissue less
than the convex probe, which can interfere with the distinction of B-lines [49].

Figure 1 shows examples of ultrasound images obtained from different probes and
records, where the left two columns (a) represent images from several records captured
using convex sensor, and the right two columns (b) represent images from different records
captured using a linear sensor.
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Figure 1. Examples of ultrasound images obtained from different probes and records using (a) a
convex sensor and (b) a linear sensor.

3.2. Compound Scaling Network

The recent trend of image classification problems is training deep neural network
architectures, mainly CNN, to predict the labels of test images. A CNN network is a
cascade of several convolution layers that have trainable weights and biases. Each layer
performs a convolution operation on the input data followed by optional nonlinear opera-
tion. Following the success of AlexNet [50] on the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC), CNNs have been successfully applied in various research domains,
including medical image analysis. The performance of ConvNets has been significantly
improved by training deeper architectures (network architectures with several convolution
layers arranged in various ways) such as GoogleNet [51], ResNet [52], and more recently,
GPipe [53]. These architectures perform scaling of the ConvNets by increasing the number
of layers (depth increase), number of channels in each layer (width increase), or image
resolution. EfficientNet [32] is currently the only model that performs scaling in all of the
three dimensions in a principled way.

The authors of EfficientNet show that although scaling ConvNets in one of the three
dimensions (depth, width, and image resolution) improves performance, the gain satu-
rates quickly as the network becomes bigger. In order to overcome this, they proposed
a compound scaling method that uniformly scales network depth, width, and resolution
using fixed scaling coefficients. Moreover, they validated the importance of balancing
a network in all dimensions first by developing a mobile-size baseline network called
EfficientNet-B0. Then, starting from this baseline network, they applied the proposed
scaling method to obtain eight variants of the EfficientNet model. Figure 2 shows the archi-
tecture of EfficientNet-B2. The proposed models significantly outperform other ConvNet
architectures on the ImageNet classification problem while having fewer parameters and
running much faster during inference, an important property for real-time applications
such as the one considered in this work. In addition, the features learned by the networks
are transferable and achieve impressive results on a wide range of datasets.
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Figure 2. The EfficientNet-B2 Architecture. The numeric value next to MBConv indicates a multipli-
cation factor for the input channels. For example, MBConv6 means the output channel size is 6 times
the input channel size. Labels in the form of a × b represent kernel size [32].

The baseline network (EfficientNet-B0) uses the mobile inverted bottleneck layer as
the main building block as shown in Figure 3, which is an inverted residual block combined
with squeeze-and-excitation (SE) blocks. An inverted residual block first projects an input
feature map into a higher dimensional space and then applies depth-wise convolution
operation in the new space. The new feature map is projected back to a low-dimensional
space using point-wise convolution (1 × 1 convolution) with linear activation. Finally, a
residual connection is added from the input to the output of the point-wise convolution
operation, resulting in an output feature map. SE blocks, on the other hand, learn to
weight channels of an input feature map adaptively. First, they convert the input to a
feature vector of size equal to the number of channels (c) and then feed it to a two-layer
neural network. The output of this network, which is a vector of size c, is used to scale
each channel based on its importance. Additionally, the baseline network is developed by
leveraging a multi-objective neural architecture search technique that takes into account
accuracy and real-world latency on mobile devices. Starting from this baseline network,
the authors applied the compound scaling method to obtain seven different EfficientNet
models (EfficientNet-B1 to B7).
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3.3. Network Optimization on Ultrasound Images

It is a known fact that training deep neural network models such as EfficientNet
requires having large labeled training examples, and collecting such data is time consuming
and costly. An alternative remedy is to either use pre-trained models as off-the-shelf
feature extractors and train a generic classifier (such as SVMs) or fine-tune the model for
the classification problem at hand. Since we have a limited number of samples for the
problem we are trying to address, we have choose to fine-tune the EfficientNet-B2 model
for classifying LUS images.
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3.4. Vison Transformers

Consider the collection of n chest medical images S = {Xi, yi}n
i=1, where Xi and yi are

sample images and their associated class label, yi ∈ {1, 2, . . . , m}, and m is the number of
identified classes for a set of images. The method’s goal is to learn how to translate the
ultrasound image input to the appropriate class label.

The prototype was inspired by a Vision Transformer (ViT). The vanilla Transformer [34],
which has attracted a lot of attention recently for its capacity to deliver state-of-the-art
(SOTA) performance in machine translation and other applications involving natural lan-
guage processing [54], serves as the sole architectural foundation for ViT.

Encoder–decoder blocks of the Transformer design enable the concurrent processing
of sequential data without the need for recurrent networks. The self-attention mecha-
nism, which is suggested to capture long-range links between the sequence’s pieces, is
substantially responsible for the success of Transformer models. In an effort to apply the
standard Transformer to image categorization, Vision Transformer was proposed. Without
incorporating any architecture tailored to certain types of data, the major objective was to
generalize image categorization to modalities other than text. ViT performs classification
by mapping a series of image patches to the semantic label using the encoder module of
the Transformer in particular. Contrary to traditional CNN architectures, which frequently
employ filters with local receptive fields, the Vision Transformer’s attention mechanism
enables it to be applied across various regions of the image and to integrate data from
throughout the entire image.

Three key building components make up the proposed ViT model: an embedding
layer, an encoder, and a final classifier. The input image is separated into non-overlapping
patches in the first stage, which is then supplied into the embedding layer, encoder, and
final classifier. We go into great detail about the model’s elements in the subsections that
follow. The proposed ViT model’s general structure is shown in Figure 4.
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3.4.1. Linear Embedding Layer

First, a sequence of separate, non-overlapping patches are created from the input
image. The input image x which has the dimensions h× w× c (where h, w, and c are the
height, width, and number of channels, respectively) is then split into a series of lengths m
by dividing it into small patches x =

{
x1

p, x2
p, · · · , xm

p

}
, which have the dimensions p× p,
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which is fixed, and m is equal to h× w/p2. A typical patch size is 16 × 16 or 32 × 32; a
smaller patch size yields a longer sequence, and vice versa.

The word tokens from the first Transformer are comparable to these patches. Using
a learnt embedding matrix E, the sequence of patches is linearly projected onto a vector
of the model dimension d before being fed into the encoder. The learnable classification
word xclass that is necessary to complete the classification job is concatenated with the
embedding representations after that. The flattened image patches are fed into a linear
embedding layer E to match their dimension to the model dimension d, and afterwards
they are transformed into embeddings.

Each patch embedding is added to its appropriate positional information to avoid the
flattening operation from erasing the positional information. The learned class token xclass
is attached to the resulting position-aware embeddings. Through a self-attention process,
the categorization token and patch embeddings communicate with one another.

z0 =
[

xclass; x1
pE; x2

pE; . . . ; xm
p E
]
+Epos While E ∈ R(p2·c)×d,∧Epos ∈ R(m+1)×d (1)

3.4.2. ViT’s Encoder Module

The transformer encoder receives the resulting embedded patch sequence z0. The
encoder is made up of a stack of L identical layers, each of which is made up of two primary
building blocks: a feed-forward network (FFN) block and a multi-head self-attention (MSA)
block. The Transformer encoder’s main component, the MSA, uses the self-attention (SA)
technique to identify dependencies between various patches of the input image. (2) and (3)
both display specifics of the calculations that occur in the SA block. The input sequence is
first used to create three distinct matrices: the key K, the query Q, and the value V. An
attention map is produced by using an inner product to match the query matrix to the key
matrix. After being scaled by the key’s dimension dK, the output is then obtained using
the SoftMax function. In order to concentrate on more crucial parameters, the outcome is
finally multiplied by the value V.

[Q, K, V] = zUQKV ;UQKV ∈ Rd×3dK (2)

SA(z) = softmax
(

QKT/
√

dK

)
·V (3)

Using multiple self-attention heads (SA1, SA2 . . . SAh), where h is the number of heads,
the multi-head self-attention is an extension of SA that performs the SA procedure con-
currently. The purpose of using h heads is to let each head to concentrate on a unique
relationship between the image’s patches. Following that, a linear layer projects the outputs
of all heads to the final dimension, as shown in Equation (4):

MSA(z) = Concat(SA1(z); SA2(z); . . . SAh(z))WO, WO ∈ Rh·dK×d (4)

where WO stands for the final projection matrix’s learned parameters.
The MSA block is followed by the second block in the encoder layer, called FNN. It has

a GeLU activation function [55] sandwiched between two completely linked layers. Each
block of the two encoder layers is followed by a layer of normalization (LN). The outputs
are calculated utilizing residual connections and the following Equations (5) and (6):

z′l = MSA(ln(zl−1)) + zl−1,l = 1 . . . L (5)

zl = FNN
(
ln
(
z′l
))

+ z′l,l = 1 . . . L (6)

The classification layer, which consists of a fully connected layer (FC) with a SoftMax
activation function to generate the class labels, receives the output of the ViT encoder. We
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instruct the classifier to predict the class label using the classification token represented by
the first element of the encoder output z0

L.

y = Softmax
(

FC
(

z0
L

))
(7)

3.5. gMLPs

Transformers’ multi-head self-attention layers are simplified by gMLP, which is sug-
gested as evidence that self-attention is not essential for ViT [33]. gMLP is a simple variation
of MLP with gating that includes static parameterized channel projections and spatial pro-
jections. As depicted in Figure 5, it consists of a stack of L identical blocks. The element-wise
multiplication (linear gating) procedures known as linear projection operations � are used.
BERT for NLP and ViT for vision are the input and output protocols. Positional encodings
are not necessary for gMLPs, unlike Transformers, nor is there any need to mask out the
paddings throughout the fine-tuning of NLP.
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4. Results

Given an ultrasound image of a patient, a multiclass model tells whether the patient
has COVID-19 (has the coronavirus), is normal (does not have the coronavirus), or has
pneumonia. As mentioned in the previous section, we applied transfer learning for this
problem. To achieve this task, we fine-tuned three well-known architectures: EfficientNet-
B2, ViT, and gMLP networks. Furthermore, we repeated the experiments without the
transfer learning approach, i.e., learning from scratch.

4.1. Dataset Preparation

In order to conduct the experiments, we followed the same procedure followed by the
author of the dataset [8]. They considered the recordings of convex probes and discarded the
recordings of linear probes (20 videos and 6 images) and the recordings of viral pneumonia
patients (6 videos). The convex videos vary in length and type and are composed of
160 ± 144 frames at a frame rate of 25 ± 10 Hz. These recordings (179 vides and 56 images)
were manually processed and split into frames at a rate of 3 Hz (with 30 frames per video
at maximum). At the end, the constructed ultrasound database contained images from
three classes (i.e., 1204 COVID-19, 704 bacterial pneumonia, and 1326 healthy images). The
irrelevant data (i.e., measure bars, texts, and artifacts on the borders) were cropped from
the images before they were resized to 224 × 224 pixels.

Similar to [8], all experiments in this study were repeated five times according to a
5-fold cross-validation procedure. In the 5-fold database split, a patient-based split was
used, in which the images belonging to a single video are included in the same fold,
and all three classes must appear in each fold. Applying the cross-validation method for
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database splitting is one of the known methods to evaluate the generalization capabilities
and prevent overfitting in the predictive models [56,57].

4.2. Performance Evaluation

As performance metrics, we report the accuracy (8), precision (9), recall (10), and F1
scores (11).

Accuracy =
TP + TN

TP + FP + TN + FN
(8)

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

F1 =
2× Precision× Recall

Precision + Recall
(11)

where TP, TN, FP, and FN are the true positive, true negative, false positive, and false
negative values, respectively. These evaluation metrics are used by several similar works
in the literature [8,13,34,41]; thus, using them gives the ability to compare our results with
those of the other studies and to be consistent with the assessment procedures of medical
diagnostic systems [58]. These metrics are calculated from a confusion matrix.

Accuracy is one of the main measures that could be used to analyze the performance
of the classification systems. Moreover, precision and recall are two other performance
measures that aid in discrimination between the classification systems. How many of the
predictions are accurate is determined by precision, also known as positive prediction. On
the other hand, recall (also known as sensitivity) demonstrates a system’s ability to identify
a patient’s ailment. [58]. Recall shows how well the system is performing; false-negative
predictions, or the inaccurate evaluation of infected patients as non-infected patients, come
at a significant cost. Consequently, recall can be regarded as one of the most crucial criteria
in the event of pandemics such as COVID-19.

F-measure or F1 score is a well-known measure in the classification systems. It
is calculated as the weighted harmonic mean of both precision and recall. F1 score is
considered as an extra evaluation metric to differentiate between the systems that could
generate a comparable value of precision and recall.

These metrics’ equations are used for multiclass classification problems as in our
problem by simply considering TP as the class we want to calculate metrics for and TN as
the rest of the classes.

4.3. Transfer Learning

As described earlier, we developed three models to detect COVID-19 through ultra-
sound imagery by applying a deep transfer learning approach. In this subsection, we report
the results of the three proposed architectures.

4.3.1. EfficientNet-B2

We fine-tuned EfficientNet-B2 for detecting COVID-19 using ultrasound images. We
fine-tuned only the last 100 layers of this network and froze the remaining ones. We used
the stochastic gradient descent (ADAM) for optimization with number of training epochs
set to 20, mini-batch size set to 20, and learning rate set to 0.0001. Table 2 shows the detailed
values of the different parameters of EfficientNet-B2, gMLP, and ViT networks.

Figure 6 shows the confusion matrices of the different five trails of our experiments
of the EfficicentNet-B2 model. We noticed that in five trials, COVID-19 class images were
correctly classified at a percentage higher than 99.41%, leading to a high recall of 99.81%,
which shows the ability of the proposed model to recognize COVID-19 images in most
cases, even in the fifth trial, which shows low performance in classifying healthy and
pneumonia classes.
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Starting from the confusion matrices in Figure 6, we calculated the accuracy of the
EfficientNet-B2 model on the three classes (normal, pneumonia, and COVID-19) and present
the results in Table 3.

Table 2. Parameter optimization for EfficientNet-B2, gMLP, and ViT.

Parameter EfficientNet-B2 gMLP ViT

Number of iterations 25 25 25

Batch size 20 20 16

No. of classes 3 3 3

Input size 224 × 224 224 ×224 224 × 224

Optimizer Adam AdamW Adam

No. of epochs 20 50 50

Learning rate 1 × 10−4 1 × 10−4 1 × 10−4

Table 3. Accuracy per class (%) of the EfficientNet-B2 model with a transfer learning approach. We
present the results of the five trials, where each trial is an experiment of the 5-fold cross-validation
procedure. The last column represents the overall accuracy of the model.

Normal Pneumonia COVID-19 Overall Accuracy

Trial no. 1 100 99.20 100 99.83

Trial no. 2 100 100 100 100

Trial no. 3 100 100 100 100

Trial no. 4 100 100 100 100

Trial no. 5 61.44 87.30 99.41 84.41

Average ± std. 99.28 ± 19.27 97.30 ± 6.22 99.88 ± 0.29 96.79 ± 7.07

The overall accuracy of the proposed architecture was 100% in three of the five trials
and 99.83% in the first trial. The only exception is in the fifth trial, with an overall accuracy
of 84.41%. It is worth noting that the accuracy of the system for detecting COVID-19 is
excellent at 99.88% on average and 100% in four of the five trials.

The high accuracy of the architecture in detecting COVID-19 leads us to report the
other evaluation metrics of detecting COVID-19 in Table 4.

Table 4. Performance metrics (%) of the five trials of the EfficientNet-B2 model with a transfer
learning approach; we report the results of COVID-19 class.

Precision Recall F1

Trial no. 1 99.69 100 99.84

Trial no. 2 100 100 100

Trial no. 3 100 100 100

Trial no. 4 100 100 100

Trial no. 5 77.72 99.41 87.24

Average ± std. 95.84 ± 1.95 99.88 ± 0.29 97.41 ± 5.68

Table 4 demonstrates that the proposed architecture exhibits high performance, with
an average recall of 99.88%, precision of 95.84%, and F1 score of 97.41%. The excellent value
for recall informs us that the system correctly classifies the images with COVID-19 markers.
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4.3.2. Contrasting EfficientNet-B2 with ViT and gMLP

In order to show the high performance of the proposed EfficientNet-B2 in classifying
the ultrasound imagery, we now compare its accuracy in detecting COVID-19 with the
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results of two well-known deep learning techniques: gMLP and ViT16. The results are
reported in Table 5.

Table 5. Comparing the accuracy of EfficientNet-B2 in classifying COVID-19 class images with the
accuracies of gMLP and ViT16.

EfficientNet-B2 gMLP ViT16

Trial no.1 99.83 91.51 90.7

Trial no.2 100 92.36 99.06

Trial no.3 100 98.62 97.64

Trial no.4 100 95.34 97.41

Trial no.5 84.41 83.58 80.38

Average ± std. 96.79 ± 7.07 92.82 ± 5.60 93.03 ± 7.78

In Figure 7, we show the receiver operating characteristic (ROC) curve with the average
scores’ area under the curve (ROC-AUC) of the different classes by applying the three models.
The results show that EfficientNets yields better results compared to ViT and gMLP.
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Figure 7. ROC curves of the three models: (a) EfficientNet-B2, (b) ViT, and (c) gMLP. We show the
one-vs-rest ROC curve for the three classes.

4.4. Learning from Scratch

In the previous sections, we explored the efficiency of the EfficientNet-B2 through
transfer learning in classifying ultrasound images. Furthermore, we found that it outper-
forms gMLP and ViT. Therefore, in this section, we utilize EfficientNet-B2 to solve our
problem with learning from scratch, i.e., without a transfer learning approach. Likewise,



J. Pers. Med. 2022, 12, 1707 13 of 17

we compare the performance of EfficientNet-B2 with the performance of gMLP and ViT16
in terms of the accuracy of classifying COVID-19 class, as depicted in Table 6.

Table 6. Accuracy of the proposed architecture by applying learning from scratch. The accuracy is
compared with the accuracies of gMLP and ViT16.

EfficientNet-B2 gMLP ViT16

Trial no. 1 84.8 88.1 82.7

Trial no. 2 89.9 71.8 62.2

Trial no. 3 89.8 77.2 67.8

Trial no. 4 89.8 70.9 68.0

Trial no. 5 76.5 79.4 74.1

Average ± std. 86.2 ± 5.82 77.48 ± 6.93 70.96 ± 7.79

From the results in Table 6, we can also see that EfficientNet-B2 beats the other models
with an average accuracy of 86.2% compared with accuracies of 77.48% and 70.96% for
gMLP and ViT16, respectively.

4.5. Comparing with the State of the Art

In order to prove the superiority of our proposed models, we compare the results of
our best model EffieceintNet-B2 with the models of the authors of the dataset as presented
in Table 7.

Table 7. Performance of the proposed architecture compared with the accuracies of models proposed
by the authors of the dataset.

Overall Accuracy % Precision % Recall % F1 %

Born et al. [8] 87.8 90 88 89

Born et al. [12] 89 88 96 92

EfficientNetB2
(Transfer Learning)

Proposed
96.79 95.84 99.88 97.41

From the reported results, we find that our proposed model achieves very good
performance in terms of the evaluation metrics, with unbeatable improvement in all the
reported evaluation metrics.

4.6. Discussion

The reported results in the previous section show that the proposed approaches could
clearly improve the performance of the COVID-19 detection systems using LUS. The results
presented in Table 3 show that employing the transfer learning approach is a good choice
to increase the accuracy of detecting COVID-19. Compared to the results of the learning
from scratch approach shown in Table 6, transfer learning shows superiority and represents
great improvement.

Furthermore, the proposed models based on transfer learning outperform the state-
of-the-art methods on the same LUS dataset as shown in Table 7, where we can see that
EfficientNet-B2 and even the other two models (gMLP and ViT) produce better results than
the other works.

In order to deploy the proposed model at the point of care, we can simply develop
a web-based application that is connected to a remote server where the model operates.
The technician at the point of care captures the LUS record and uploads it to the web-based
application to send it for analysis. The model then receives the record and the frames are
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extracted, preprocessed, and classified. Finally, the result (the class of the LUS record) is
sent back to the web-based application as shown in Figure 8.
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The deployment of such a system has no bad effect on the patients or the medical
teams and it is safe to be implemented and operated at the points of care. This is because
ultrasound is considered a safe medical imagery technique and is cost effective. Further-
more, the only tools required are one ultrasound device and a computer at each point of
care and one central computer for the model.

5. Conclusions

In this work, we propose a deep learning approach to detect COVID-19 patients
from ultrasound images. More specifically, we applied the transfer learning approach by
fine-tuning a model of the well-known family of EfficientNet models, i.e., EfficientNet-B2.
Moreover, we explored the performance of the model without using the transfer learning
approach, i.e., learning from scratch. Furthermore, we contrasted the performance of
EfficientNet-B2 with other well-known deep learning models (gMPL and ViT16) to classify
LUS images. The experimental results for EfficientNet-B2 with transfer learning show
exceptional performance, outperforming both gMPL and ViT16 models. EfficientNet-
B2 shows acceptable performance even when applying it with a learning from scratch
approach. Furthermore, our models outperform the models of the authors of the database,
which demonstrates the high performance of our model. One of the limitations of our
model (EfficientNet-B2) is the relative large number of parameters to learn. As for future
work, we are planning to develop an automatic system for detecting COVID-19 from
multimodal imagery, i.e., CT, CXR, and LUS.

Author Contributions: Data curation, R.M.J.; funding acquisition, M.Z. and Y.B.; investigation,
M.M.A.R. and F.M.; methodology, Y.B. and M.M.A.R.; project administration, Y.B.; writing—original
draft, Y.B., R.M.J. and M.M.A.R.; writing—review and editing, M.M.A.R. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the Deanship for Research and Innovation, Ministry of
Education, Saudi Arabia, the project number IFKSUDR_H157.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.



J. Pers. Med. 2022, 12, 1707 15 of 17

Acknowledgments: The authors extend their appreciation to the Deanship for Research and Innova-
tion, Ministry of Education, Saudi Arabia, for funding this research work through the project number
IFKSUDR_H157.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. WHO. Director-General’s Opening Remarks at the Media Briefing on COVID-19. 10 April 2020. Available online: https://www.

who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---10-april-2020 (ac-
cessed on 10 April 2020).

2. Raheja, R.; Brahmavar, M.; Joshi, D.; Raman, D. Application of Lung Ultrasound in Critical Care Setting: A Review. Cureus 2019,
11, e5233. [CrossRef] [PubMed]

3. Chatfield, K.; Simonyan, K.; Vedaldi, A.; Zisserman, A. Return of the Devil in the Details: Delving Deep into Convolutional Nets.
arXiv 2014, arXiv:1405.3531.

4. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556.
5. Shen, D.; Wu, G.; Suk, H.-I. Deep Learning in Medical Image Analysis. Annu. Rev. Biomed. Eng. 2017, 19, 221–248. [CrossRef]

[PubMed]
6. Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J.A.W.M.; van Ginneken, B.; Sánchez,

C.I. A Survey on Deep Learning in Medical Image Analysis. Med. Image Anal. 2017, 42, 60–88. [CrossRef] [PubMed]
7. Diaz-Escobar, J.; Ordóñez-Guillén, N.E.; Villarreal-Reyes, S.; Galaviz-Mosqueda, A.; Kober, V.; Rivera-Rodriguez, R.; Rizk, J.E.L.

Deep-Learning Based Detection of COVID-19 Using Lung Ultrasound Imagery. PLoS ONE 2021, 16, e0255886. [CrossRef]
8. Born, J.; Wiedemann, N.; Cossio, M.; Buhre, C.; Brändle, G.; Leidermann, K.; Aujayeb, A.; Moor, M.; Rieck, B.; Borgwardt, K.

Accelerating Detection of Lung Pathologies with Explainable Ultrasound Image Analysis. Appl. Sci. 2021, 11, 672. [CrossRef]
9. Roy, S.; Menapace, W.; Oei, S.; Luijten, B.; Fini, E.; Saltori, C.; Huijben, I.; Chennakeshava, N.; Mento, F.; Sentelli, A.; et al. Deep

Learning for Classification and Localization of COVID-19 Markers in Point-of-Care Lung Ultrasound. IEEE Trans. Med. Imaging
2020, 39, 2676–2687. [CrossRef]

10. Awasthi, N.; Dayal, A.; Cenkeramaddi, L.R.; Yalavarthy, P.K. Mini-COVIDNet: Efficient Lightweight Deep Neural Network for
Ultrasound Based Point-of-Care Detection of COVID-19. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2021, 68, 2023–2037.
[CrossRef]

11. Born, J.; Wiedemann, N.; Cossio, M.; Buhre, C.; Brändle, G.; Leidermann, K.; Aujayeb, A. L2 Accelerating COVID-19 Differential
Diagnosis with Explainable Ultrasound Image Analysis: An AI Tool. Thorax 2021, 76, A230–A231. [CrossRef]

12. Born, J.; Brändle, G.; Cossio, M.; Disdier, M.; Goulet, J.; Roulin, J.; Wiedemann, N. POCOVID-Net: Automatic Detection of
COVID-19 From a New Lung Ultrasound Imaging Dataset (POCUS). arXiv 2020, arXiv:2004.12084.

13. La Salvia, M.; Secco, G.; Torti, E.; Florimbi, G.; Guido, L.; Lago, P.; Salinaro, F.; Perlini, S.; Leporati, F. Deep Learning and Lung
Ultrasound for Covid-19 Pneumonia Detection and Severity Classification. Comput. Biol. Med. 2021, 136, 104742. [CrossRef]
[PubMed]

14. Song, Y.; Zheng, S.; Li, L.; Zhang, X.; Zhang, X.; Huang, Z.; Chen, J.; Zhao, H.; Jie, Y.; Wang, R.; et al. Deep Learning Enables
Accurate Diagnosis of Novel Coronavirus (COVID-19) with CT Images. IEEE/ACM Trans. Comput. Biol. Bioinform. 2021,
18, 2775–2780. [CrossRef] [PubMed]

15. Wang, S.; Kang, B.; Ma, J.; Zeng, X.; Xiao, M.; Guo, J.; Cai, M.; Yang, J.; Li, Y.; Meng, X.; et al. A Deep Learning Algorithm Using
CT Images to Screen for Corona Virus Disease (COVID-19). Eur Radiol 2021, 31, 6096–6104. [CrossRef] [PubMed]

16. Wang, X.; Deng, X.; Fu, Q.; Zhou, Q.; Feng, J.; Ma, H.; Liu, W.; Zheng, C. A Weakly-Supervised Framework for COVID-19
Classification and Lesion Localization From Chest CT. IEEE Transactions on Medical Imaging 2020, 39, 2615–2625. [CrossRef]

17. Panwar, H.; Gupta, P.K.; Siddiqui, M.K.; Morales-Menendez, R.; Bhardwaj, P.; Singh, V. A Deep Learning and Grad-CAM Based
Color Visualization Approach for Fast Detection of COVID-19 Cases Using Chest X-Ray and CT-Scan Images. Chaos Solitons
Fractals 2020, 140, 110190. [CrossRef]

18. Li, L.; Qin, L.; Xu, Z.; Yin, Y.; Wang, X.; Kong, B.; Bai, J.; Lu, Y.; Fang, Z.; Song, Q. Artificial Intelligence Distinguishes COVID-19
from Community Acquired Pneumonia on Chest CT. Radiology 2020, 200905.

19. Chen, J.; Wu, L.; Zhang, J.; Zhang, L.; Gong, D.; Zhao, Y.; Hu, S.; Wang, Y.; Hu, X.; Zheng, B.; et al. Deep Learning-Based Model for
Detecting 2019 Novel Coronavirus Pneumonia on High-Resolution Computed Tomography: A Prospective Study. medRxiv 2020.
[CrossRef]

20. Chen, X.; Yao, L.; Zhang, Y. Residual Attention U-Net for Automated Multi-Class Segmentation of COVID-19 Chest CT Images.
arXiv 2020, arXiv:2004.05645.

21. Soares, E.; Angelov, P.; Biaso, S.; Froes, M.H.; Abe, D.K. SARS-CoV-2 CT-Scan Dataset: A Large Dataset of Real Patients CT Scans
for SARS-CoV-2 Identification. medRxiv 2020. [CrossRef]

22. Liang, L.; Ma, L.; Qian, L.; Chen, J. An Algorithm to Attack Neural Network Encoder-Based Out-Of-Distribution Sample Detector.
arXiv 2020, arXiv:2009.08016.

23. Li, X.; Li, C.; Zhu, D. COVID-MobileXpert: On-Device COVID-19 Screening Using Snapshots of Chest X-ray. arXiv 2020,
arXiv:2004.03042.

https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---10-april-2020
https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---10-april-2020
http://doi.org/10.7759/cureus.5233
http://www.ncbi.nlm.nih.gov/pubmed/31565634
http://doi.org/10.1146/annurev-bioeng-071516-044442
http://www.ncbi.nlm.nih.gov/pubmed/28301734
http://doi.org/10.1016/j.media.2017.07.005
http://www.ncbi.nlm.nih.gov/pubmed/28778026
http://doi.org/10.1371/journal.pone.0255886
http://doi.org/10.3390/app11020672
http://doi.org/10.1109/TMI.2020.2994459
http://doi.org/10.1109/TUFFC.2021.3068190
http://doi.org/10.1136/thorax-2020-BTSabstracts.404
http://doi.org/10.1016/j.compbiomed.2021.104742
http://www.ncbi.nlm.nih.gov/pubmed/34388462
http://doi.org/10.1109/TCBB.2021.3065361
http://www.ncbi.nlm.nih.gov/pubmed/33705321
http://doi.org/10.1007/s00330-021-07715-1
http://www.ncbi.nlm.nih.gov/pubmed/33629156
http://doi.org/10.1109/TMI.2020.2995965
http://doi.org/10.1016/j.chaos.2020.110190
http://doi.org/10.1101/2020.02.25.20021568
http://doi.org/10.1101/2020.04.24.20078584


J. Pers. Med. 2022, 12, 1707 16 of 17

24. Wang, L.; Wong, A. COVID-Net: A Tailored Deep Convolutional Neural Network Design for Detection of COVID-19 Cases from
Chest X-ray Images. Sci. Rep. 2020, 10, 19549. [CrossRef]

25. Hemdan, E.E.-D.; Shouman, M.A.; Karar, M.E. Covidx-Net: A Framework of Deep Learning Classifiers to Diagnose Covid-19 in
x-Ray Images. arXiv 2020, arXiv:2003.11055.

26. Apostolopoulos, I.D.; Mpesiana, T.A. COVID-19: Automatic Detection from x-Ray Images Utilizing Transfer Learning with
Convolutional Neural Networks. Phys. Eng. Sci. Med. 2020, 43, 635–640. [CrossRef] [PubMed]

27. Sethy, P.K.; Behera, S.K.; Ratha, P.K.; Biswas, P. Detection of Coronavirus Disease (COVID-19) Based on Deep Features and
Support Vector Machine. Preprints 2020, 2020030300. [CrossRef]

28. Narin, A.; Kaya, C.; Pamuk, Z. Automatic Detection of Coronavirus Disease (COVID-19) Using X-ray Images and Deep
Convolutional Neural Networks. arXiv 2020, arXiv:2003.10849. [CrossRef]

29. Farooq, M.; Hafeez, A. Covid-Resnet: A Deep Learning Framework for Screening of COVID19 from Radiographs. arXiv 2020,
arXiv:2003.14395.

30. Chowdhury, M.E.H.; Rahman, T.; Khandakar, A.; Mazhar, R.; Kadir, M.A.; Mahbub, Z.B.; Islam, K.R.; Khan, M.S.; Iqbal, A.;
Al-Emadi, N.; et al. Can AI Help in Screening Viral and COVID-19 Pneumonia? arXiv 2020, arXiv:2003.13145. [CrossRef]

31. Ucar, F.; Korkmaz, D. COVIDiagnosis-Net: Deep Bayes-SqueezeNet Based Diagnosis of the Coronavirus Disease 2019 (COVID-19)
from X-Ray Images. Med. Hypotheses 2020, 140, 109761. [CrossRef]

32. Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the 36th
International Conference on Machine Learning, ICML 2019, Long Beach, CA, USA, 9–15 June 2019; Chaudhuri, K., Salakhutdinov,
R., Eds.; PMLR, 2019. Volume 97, pp. 6105–6114.

33. Liu, H.; Dai, Z.; So, D.R.; Le, Q.V. Pay attention to mlps. Adv. Neural Inf. Process Syst. 2021, 34, 9204–9215.
34. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need.

Adv. Neural Inf. Processing Syst. 2017, 30, 5998–6008.
35. Silva, P.; Luz, E.; Silva, G.; Moreira, G.; Silva, R.; Lucio, D.; Menotti, D. COVID-19 Detection in CT Images with Deep Learning: A

Voting-Based Scheme and Cross-Datasets Analysis. Inform. Med. Unlocked 2020, 20, 100427. [CrossRef] [PubMed]
36. Pathak, Y.; Shukla, P.K.; Arya, K.V. Deep Bidirectional Classification Model for COVID-19 Disease Infected Patients. IEEE/ACM

Trans. Comput. Biol. Bioinform. 2020, 18, 1234–1241. [CrossRef]
37. Wang, Z.; Liu, Q.; Dou, Q. Contrastive Cross-Site Learning With Redesigned Net for COVID-19 CT Classification. IEEE J. Biomed.

Health Inform. 2020, 24, 2806–2813. [CrossRef] [PubMed]
38. Rahhal, M.M.A.; Bazi, Y.; Jomaa, R.M.; Zuair, M.; Ajlan, N.A. Deep Learning Approach for COVID-19 Detection in Computed

Tomography Images. Comput. Mater. Contin. 2021, 67, 2093–2110. [CrossRef]
39. Zhou, L.; Li, Z.; Zhou, J.; Li, H.; Chen, Y.; Huang, Y.; Xie, D.; Zhao, L.; Fan, M.; Hashmi, S.; et al. A Rapid, Accurate and

Machine-Agnostic Segmentation and Quantification Method for CT-Based COVID-19 Diagnosis. IEEE Trans. Med. Imaging 2020,
39, 2638–2652. [CrossRef]

40. Sun, L.; Mo, Z.; Yan, F.; Xia, L.; Shan, F.; Ding, Z.; Song, B.; Gao, W.; Shao, W.; Shi, F.; et al. Adaptive Feature Selection Guided
Deep Forest for COVID-19 Classification With Chest CT. IEEE J. Biomed. Health Inform. 2020, 24, 2798–2805. [CrossRef]

41. Al Rahhal, M.M.; Bazi, Y.; Jomaa, R.M.; AlShibli, A.; Alajlan, N.; Mekhalfi, M.L.; Melgani, F. COVID-19 Detection in CT/X-ray
Imagery Using Vision Transformers. J. Pers. Med. 2022, 12, 310. [CrossRef]

42. Arias-Londoño, J.D.; Gómez-García, J.A.; Moro-Velázquez, L.; Godino-Llorente, J.I. Artificial Intelligence Applied to Chest X-Ray
Images for the Automatic Detection of COVID-19. A Thoughtful Evaluation Approach. IEEE Access 2020, 8, 226811–226827.
[CrossRef]

43. Ohata, E.F.; Bezerra, G.M.; Chagas, J.V.S.d.; Neto, A.V.L.; Albuquerque, A.B.; Albuquerque, V.H.C.d.; Filho, P.P.R. Automatic
Detection of COVID-19 Infection Using Chest X-Ray Images through Transfer Learning. IEEE/CAA J. Autom. Sin. 2021, 8, 239–248.
[CrossRef]

44. Abbas, A.; Abdelsamea, M.M.; Gaber, M.M. Classification of COVID-19 in Chest X-Ray Images Using DeTraC Deep Convolutional
Neural Network. Appl. Intell. 2021, 51, 854–864. [CrossRef] [PubMed]

45. Afshar, P.; Heidarian, S.; Naderkhani, F.; Oikonomou, A.; Plataniotis, K.N.; Mohammadi, A. COVID-CAPS: A Capsule Network-
Based Framework for Identification of COVID-19 Cases from X-Ray Images. Pattern Recognit. Lett. 2020, 138, 638–643. [CrossRef]
[PubMed]

46. Tabik, S.; Gómez-Ríos, A.; Martín-Rodríguez, J.L.; Sevillano-García, I.; Rey-Area, M.; Charte, D.; Guirado, E.; Suárez, J.L.; Luengo,
J.; Valero-González, M.A.; et al. COVIDGR Dataset and COVID-SDNet Methodology for Predicting COVID-19 Based on Chest
X-Ray Images. IEEE J. Biomed. Health Inform. 2020, 24, 3595–3605. [CrossRef]

47. Heidari, M.; Mirniaharikandehei, S.; Khuzani, A.Z.; Danala, G.; Qiu, Y.; Zheng, B. Improving the Performance of CNN to Predict
the Likelihood of COVID-19 Using Chest X-Ray Images with Preprocessing Algorithms. Int. J. Med. Inform. 2020, 144, 104284.
[CrossRef]

48. Soldati, G.; Smargiassi, A.; Inchingolo, R.; Buonsenso, D.; Perrone, T.; Briganti, D.F.; Perlini, S.; Torri, E.; Mariani, A.; Mossolani,
E.E.; et al. Is There a Role for Lung Ultrasound During the COVID-19 Pandemic? J. Ultrasound Med. 2020, 39, 1459–1462.
[CrossRef]

49. Lichtenstein, D.A. Lung Ultrasound in the Critically Ill. Ann. Intensive Care 2014, 4, 1. [CrossRef]

http://doi.org/10.1038/s41598-020-76550-z
http://doi.org/10.1007/s13246-020-00865-4
http://www.ncbi.nlm.nih.gov/pubmed/32524445
http://doi.org/10.33889/IJMEMS.2020.5.4.052
http://doi.org/10.1007/s10044-021-00984-y
http://doi.org/10.1109/ACCESS.2020.3010287
http://doi.org/10.1016/j.mehy.2020.109761
http://doi.org/10.1016/j.imu.2020.100427
http://www.ncbi.nlm.nih.gov/pubmed/32953971
http://doi.org/10.1109/TCBB.2020.3009859
http://doi.org/10.1109/JBHI.2020.3023246
http://www.ncbi.nlm.nih.gov/pubmed/32915751
http://doi.org/10.32604/cmc.2021.014956
http://doi.org/10.1109/TMI.2020.3001810
http://doi.org/10.1109/JBHI.2020.3019505
http://doi.org/10.3390/jpm12020310
http://doi.org/10.1109/ACCESS.2020.3044858
http://doi.org/10.1109/JAS.2020.1003393
http://doi.org/10.1007/s10489-020-01829-7
http://www.ncbi.nlm.nih.gov/pubmed/34764548
http://doi.org/10.1016/j.patrec.2020.09.010
http://www.ncbi.nlm.nih.gov/pubmed/32958971
http://doi.org/10.1109/JBHI.2020.3037127
http://doi.org/10.1016/j.ijmedinf.2020.104284
http://doi.org/10.1002/jum.15284
http://doi.org/10.1186/2110-5820-4-1


J. Pers. Med. 2022, 12, 1707 17 of 17

50. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of
the Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems
2012, Lake Tahoe, NV, USA, 3–6 December 2012; Bartlett, P.L., Pereira, F.C.N., Burges, C.J.C., Bottou, L., Weinberger, K.Q., Eds.;
pp. 1106–1114.

51. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.E.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with
Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA,
USA, 7–12 June 2015; pp. 1–9.

52. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

53. Huang, Y.; Cheng, Y.; Bapna, A.; Firat, O.; Chen, D.; Chen, M.X.; Lee, H.; Ngiam, J.; Le, Q.V.; Wu, Y.; et al. GPipe: Efficient Training
of Giant Neural Networks Using Pipeline Parallelism. In Proceedings of the Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, Vancouver, BC, Canada, 8–14 December
2019; Wallach, H.M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E.B., Garnett, R., Eds.; pp. 103–112.

54. Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. BERT: Pre-Training of Deep Bidirectional Transformers for Language Under-
standing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers); Association for Computational Linguistics: Minneapolis, MN, USA, 2019;
pp. 4171–4186.

55. Hendrycks, D.; Gimpel, K. Gaussian Error Linear Units (GELUs). arXiv 2020, arXiv:1606.08415.
56. Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning; Springer: New York, NY, USA, 2009; ISBN 978-0-387-84857-0.
57. Berrar, D. Cross-Validation. In Encyclopedia of Bioinformatics and Computational Biology; Ranganathan, S., Gribskov, M., Nakai, K.,

Schönbach, C., Eds.; Academic Press: Oxford, UK, 2019; pp. 542–545. ISBN 978-0-12-811432-2.
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