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Abstract

Context: Regression testing is an important activity that allows ensuring the

correct behavior of a system after changes. As the system grows, the time and

resources to perform regression testing increase. Test Suite Reduction (TSR)

approaches aim to speed up regression testing by removing obsolete or redun-

dant test cases. These approaches can be classi�ed as adequate or inadequate.

Adequate TSR approaches reduce test suites and completely preserve test re-

quirements (e.g., covered statements) of the original test suites. Inadequate

TSR approaches do not preserve test requirements. The percentage of satis�ed

test requirements indicates the inadequacy level.

Objective: We compare some state-of-the-art adequate and inadequate TSR ap-

proaches with respect to the size of reduced test suites and their fault-detection

capability. We aim to increase our body of knowledge on TSR approaches by

comparing: (i) well-known traditional adequate TSR approaches; (ii) their in-

adequate variants; and (iii) several variants of a novel Clustering-Based (CB)

approach for (adequate and inadequate) TSR.

Method: We conducted an experiment to compare adequate and inadequate
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TSR approaches. This comparison is founded on a public dataset containing

information on real faults.

Results: The most important �ndings from our experiment can be summarized

as follows: (i) there is not an inadequate TSR approach that outperforms the

others; (ii) some inadequate variants of the CB approach, and few traditional

inadequate approaches, outperform the adequate ones in terms of reduction in

test suite size with a negligible e�ect on fault-detection capability; and (iii) the

CB approach is less sensitive than the other inadequate approaches, that is,

variations in the inadequacy level have small e�ect on reduction in test suite

size and on loss in fault-detection capability.

Conclusions: These �ndings imply that inadequate TSR approaches and es-

pecially the CB approach might be appealing because they lead to a greater

reduction in test suite size (with respect to the adequate ones) at the expense

of a small loss in fault-detection capability.

Keywords: Adequate Test Suite Reduction, Clustering, Inadequate Test Suite

Reduction, Regression Testing, Test Suite Reduction

1. Introduction

Regression testing is conducted after changes are made to a given System

Under Test (SUT) to ensure that these changes do not alter its observed behavior

with respect to the expected one [1]. The simplest regression testing strategy,

named Retest-all, consists in re-executing, on the changed version of the SUT,

the entire Test Suite (TS) [2]. However, as a system evolves, its TS tends to

grow in size. Therefore, Retest-all might not be a viable option because it might

require too much time and/or too many resources (e.g., hardware) [3]. To deal

with this problem, a number of approaches have been proposed; they can be

divided into three main classes: (i) Test Suite Reduction (TSR); (ii) regression

test case selection; and (iii) test case prioritization [1]. Both TSR and regression

test case selection approaches reduce the size of a TS, but in a di�erent way

and with a di�erent aim. In particular, TSR approaches allow reducing the TS
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size by removing redundant or obsolete test cases [2], instead a regression test

case selection approach re-runs a subset of the TS that executes changed parts

(or parts a�ected by changes) of the SUT [4, 5]. Test case selection approaches

also di�er from TSR approaches because they need information on the past

changes developers implemented in the source code. TSR is sometimes called

TS minimization when the elimination of test cases is not permanent; however,

these two concepts are often used in an interchangeable way [1]. Finally, test case

prioritization approaches sort test cases according to some criteria (e.g., those

test cases covering more source code statements are placed before) [6, 7]. The

assumption of availability of some a-priori knowledge about the SUT and its TS

(e.g., code covered by the TS) is common to these three classes of approaches.

TSR approaches can be classi�ed as adequate or inadequate/non-adequate [8].

Adequate TSR approaches reduce the TS so that the new TS still satis�es the

test requirements of the original TS. For instance, let statement coverage be the

kind of test requirement, an adequate TSR approach produces a reduced TS

covering the same statements of the original TS. A TSR approach is inadequate

when the reduced TS does not preserve the test requirements of the original TS.

Shi et al. proposed such a kind of approach for the �rst time in [8], where the

inadequacy level indicates the percentage of the test requirements that must be

satis�ed by the reduced TS. It is easy to grasp that adequate TSR approaches

are characterized by an inadequacy level equal to 100% since they reduce TSs so

that the new TSs must satisfy all the test requirements. Inadequate approaches

are appealing if they lead to a greater reduction in TS size at the expense of a

negligible (or even better null) loss in fault-detection capability. The potential

of such a kind of approaches has been scarcely studied so far [8, 9, 10]. In fact,

a greater reduction in the size of TSs could sensibly a�ect the fault-detection

capability of the reduced TSs. Then, empirical evidence is needed to increase

our body of knowledge on the use of inadequate approaches to deal with TSR.

In this paper, we present the results of an empirical study (i.e., an ex-

periment) aimed at comparing: (i) well-known traditional adequate TSR ap-

proaches; (ii) their inadequate variants; and (iii) a Clustering-Based (CB) TSR
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approach in its adequate and inadequate variants. In particular, we studied

the following traditional adequate TSR approaches: Harrold-Gupta-So�a [11],

Greedy [12], Delayed Greedy [13], 2-Optimal [12], GE [14], GRE [14], and

ILP [15]. For these approaches, except for the last one, we also studied their

inadequate variants. To transform an adequate approach into its inadequate

variant, we applied the general approach proposed by Shi et al. [8]. The CB ap-

proach shares the same underlying idea as the approach presented by Coviello et

al. [9]. That is, test cases that are redundant with respect to a given kind of

test requirement (i.e., statement coverage in this paper) are grouped into the

same cluster. Similar test cases are considered redundant if they cover nearly

the same statements. To estimate test cases redundancy, we compute the sim-

ilarity among test cases through a number of di�erent measures. The use of

one of these measures (seven, in total) in the CB approach identi�es an in-

stance of that approach (or simply CB instance from here onwards). In other

words, the CB approach is general and we consider seven di�erent instances of

that approach, each of which is characterized by a di�erent measure to estimate

test case redundancy. A given CB instance identi�es a reduced TS so that it

contains a test case for each identi�ed cluster, namely the most representative

test case of that cluster, which is the test case covering the largest number of

statements in the cluster. Such a choice for the most representative test case

relies on the postulation that the statements covered by this test case include

all (or nearly) the statements that the other test cases in the cluster cover. To

some extent, we should be guaranteed that the fault-detection capability of the

most representative test case of a cluster is the same as all the test cases in

that cluster.

The empirical validation presented in this paper was performed on 19 exper-

imental objects from a public dataset, i.e., SIR (Software-artifact Infrastructure

Repository) [16]. We compared and contrasted the di�erent approaches in terms

of reduction of the original TS size versus their loss in fault-detection capability.

Summarizing, this paper with respect to that by Coviello et al. [9] makes

the following new contributions:
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� The CB approach studied in this paper produces reduced TSs based on

a given inadequacy level, rather than on a tuning value of the cluster-

ing algorithm as done in [9]. Although this di�erence could appear not

overly surprising, it has a number of implications. For example, it al-

lows: (i) comparing our solution with the above-mentioned inadequate

approaches; (ii) the practitioner to take a more informed decision when

reducing a TS because she is aware of the amount of test requirements

the new TS does not satisfy; and (iii) the CB approach to behave in an

adequate manner by choosing an inadequacy level equal to 100%.

� A more extensive comparison among inadequate TSR approaches in terms

of reduction in TS size and loss in fault-detection capability. That is, we

took into account the inadequate variants of Harrold-Gupta-So�a, Greedy,

Delayed Greedy, 2-Optimal, GE, and GRE.

� A comparison between the best inadequate TSR approach/es with the

following adequate approaches: Harrold-Gupta-So�a, Greedy, Delayed

Greedy, 2-Optimal, GE, GRE, ILP and the adequate variants of the CB

approach. This comparison is important to understand if and when inade-

quate TSR approaches might be competitive with respect to their adequate

counterparts.

� An analysis to investigate the e�ects of the inadequacy levels on TS re-

ductions (i.e., a sensitive analysis). The goal of this analysis is to identify

the TSR approaches less sensitive to the inadequacy level. The lower the

sensitiveness, the better the approach is, because variations in the inade-

quacy level slight a�ect the reduction in both TS size and fault-detection

capability of reduced TSs.

Paper Structure. In Section 2, we highlight related work and background

information. We describe the CB approach in Section 3. The design of our in-

vestigation and the results are provided in Section 4 and Section 5, respectively.

Final remarks conclude the paper in Section 6.
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2. Related Work and Background

In the following of this section, we �rst provide the formal de�nition of the

TSR problem by Rothermel et al. [2] and then highlight research related to

this problem for both its variants: adequate and inadequate. We then discuss

approaches that apply clustering to deal with regression testing and conclude

by providing background information to understand our proposal.

2.1. Test suite reduction

According to Rothermel et al. [2] the TSR problem can be stated as follows:

Given: A TS named T , a set of test requirements r1, ..., rn, which must be

satis�ed to provide the desired test coverage of the program, and subsets of T ,

T1, ..., Tn, one associated with each of the ris such that any one of the test cases

tj belonging to Ti can be used to test requirement ri.

Problem: Find a representative set, T ′, of test cases from T that satis�es all

of the ris.

Many TSR approaches have been proposed in the literature (e.g., [11, 12, 13,

17, 18, 19, 20, 21]). Traditional approaches are based on the aforementioned

de�nition and aim to reduce the size of TSs satisfying all the test requirements.

Such kind of approaches is called adequate [8]. Researchers have also proposed

TSR approaches that relax the constraint of satisfying all the test requirements

and have named them inadequate [8].

2.1.1. Adequate TSR Approaches

Many of the TSR approaches proposed in the literature [1] use heuristics to

identify and discard redundant test cases. If a test case satis�es a subset of the

test requirements of another test case, it is considered as redundant. Traditional

approaches tend to focus on one kind of test requirement (e.g., code coverage).

For example, Harrold et al. [11] proposed a heuristic-based approach to identify

a representative set of the original TS that satis�es all the test requirements.

This approach was named Harrold-Gupta-So�a (HGS). HGS �rst analyzes sets

of test cases of cardinality one and then chooses the set that satis�es more
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test requirements. Then, sets of test cases of cardinality two are analyzed and

the set that satis�es more requirements is chosen. This process is iteratively

performed until all the test requirements are satis�ed. Li et al. [12] proposed

Greedy (GRD), an approach based on a greedy algorithm to prioritize test cases.

It was also applied to reduce TSs [22]. GRD selects each time a test case, among

those available, that satis�es the higher number of test requirements that are yet

unsatis�ed. The selection process concludes when the selected test cases satisfy

all the test requirements. The pseudo-code of the Greedy algorithm is shown

in Algorithm 1. Li et al. [12] also introduced the 2-Optimal (2OPT) approach.

It is based on the 2-Optimal algorithm, which represents an instance of the

K-Optimal algorithm with K = 2. 2OPT selects the �rst two test cases that

together satisfy the largest number of test requirements. Tallam and Gupta [13]

proposed a variant of GRD, named Delayed Greedy (DGR). It is based on the

following two steps: (i) if a set of test requirements satis�ed by a test case ti

is a super-set of a set of requirements satis�ed by another test case tj , then tj

is removed from the TS; and (ii) if a set of test cases satisfying a requirement

ri is a subset of a set of test cases satisfying rj , then ri is removed from the

unsatis�ed requirements. Chen and Lau [14] introduced two heuristic-based

approaches, GE and GRE, which both represent a variant of GRD. The authors

de�ned the opposite of the redundant test case as the essential test case: if

a test requirement ri can be satis�ed by only one test case ti, then ti is an

essential test case. GE and GRE can be summarized as follows [1]: GE �rst

selects all essential test cases in the TS, then it applies the greedy algorithm for

the unsatis�ed test requirements; while GRE �rst removes all redundant test

cases in the TS, then applies GE on the reduced TS. Black et al. [23] by using a

binary ILP representation of the TS minimization problem, developed a model

able to compute optimal minimized TS. The formulation of the model follows:

Minimize:
∑|TS|

j=1 xj

Subject to:
∑|TS|

j=1 aijxj ≥ 1, i = 1, ..., |S|

xj binary for j = 1, ..., |TS|

7



Algorithm 1 Adequate Greedy algorithm

1: procedure AdequateGreedyTSR

2: Input :

3: T← The set of test cases of the SUT

4: R← The set of test requirements in the SUT

5: S← S ={(t, r) | t satis�es r, t ∈ T , r ∈ R}

6: Output :

7: T ′ ← The representative set T

8: begin:

9: T ′ = ∅

10: loop:

11: while R ̸= ∅ do

12: t = the test case that satis�es the maximum number of requirements.

13: T ′ = T ′ ∪ {t}.

14: T = T − {t}.

15: R = R− {r | (t, r) ∈ S}.

16: end

17: end procedure

where S represents the set of test requirements to cover. Each element aij of

the constraint coe�cient matrix is equal to 1 if the test case j covers the test

requirement i, 0 otherwise. This model allows reducing the TS if two (or more)

test cases cover the same subset of test requirements. Thus, all but one will be

eliminated because they are redundant. The authors also proposed a bi-criteria

binary ILP model in order to take into account the ability of each test case to

reveal faults.

2.1.2. Inadequate TSR Approaches

Shi et al. [8] presented a study on traditional adequate TSR approaches

(e.g., HGS or GRD) and their inadequate variants to verify the bene�ts that

can be achieved when relaxing the constraint of covering test requirements. The
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Algorithm 2 Inadequate Greedy algorithm

1: procedure InadequateGreedyTSR

2: Input :

3: T← The set of test cases of the SUT

4: R← The set of test requirements in the SUT

5: S← S ={(t, r) | t satis�es r, t ∈ T , r ∈ R}

6: l← The inadequacy level

7: Output :

8: T ′ ← The representative set T

9: begin:

10: T ′ = ∅

11: Threshold =| R | − |R|×l
100

12: loop:

13: while | R |> Threshold do

14: t = the test case that satis�es the maximum number of requirements.

15: T ′ = T ′ ∪ {t}.

16: T = T − {t}.

17: R = R− {r | (t, r) ∈ S}.

18: end

19: end procedure

studied inadequate variants, instead of producing reduced TSs that satisfy 100%

of the test requirements, produce reductions satisfying a �xed percentage of the

test requirements. More formally, an inadequate TSR approach can be de�ned

as an algorithm that requires three inputs: (i) a function that returns the set

of satis�ed requirements for a given TS; (ii) the original TS denoted by T ; and

(iii) the inadequacy level, namely the percentage 0 ≤ l ≤ 100 of requirements

that must be satis�ed [8]. The algorithm returns a reduced TS, T ′ ⊆ T , that

satis�es (at least) l% of the requirements satis�ed by T . In case l = 100%, the

approach is adequate. By way of example, the pseudo-code of the inadequate

variant of GRD is shown in Algorithm 2. It is easy to observe that the only
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instruction changed with respect to Algorithm 1 is the while loop condition (i.e.,

line 11 in Algorithm 1 and line 13 in Algorithm 2). In Algorithm 2, given as input

the inadequacy level (in percentage), the while loop goes on until the number

of unsatis�ed test requirements is greater than the desired threshold. Similarly,

the other traditional adequate approaches are turned into inadequate ones. Shi

et al. [8] observed that for the adequate approaches, the size of the reduced TSs

is (median of) 62.9% of the size of original TSs. Moreover, by dropping down

to 95% of the test requirements (i.e., losing 5% of the covered statements), the

reduction in the size of the reduced TSs can increase of 17.14%. Several are

the di�erences between the work by Shi et al. [8] and that presented in this

paper. We summarize the most important ones as follows: (i) our approach

uses a clustering algorithm and several measures to compare test cases in terms

of covered statements and (ii) the experimental assessment is founded on SIR.

Coviello et al. [9] proposed a clustering-based approach for inadequate TSR,

whose underlying process had been instantiated six times. To identify clusters

and then reduce the original TS, these instances take as input a parameter of

the used clustering algorithm (i.e., the cut level of the dendrogram) and not

the inadequacy level. This implies that, given two SUTs and the same cut

level, the approach can identify two reduced TSs with a di�erent inadequacy

level. That is, there is not a direct correlation between the cut level and the

inadequacy level. Coviello et al. compared well-known traditional adequate

TSR approaches with the CB approach. In their experiment, they found that

the CB approach reduces more the size of the TSs than the traditional adequate

approaches. The main di�erences with the paper by Coviello et al. can be

summarized as follows: (i) the identi�cation of the reduced TSs is guided by

the inadequacy level, rather than a tuning parameter of the clustering algorithm;

(ii) an investigation of a new instance based on new measure to compare test

cases; (iii) a comparison between adequate and inadequate variants of well-

known traditional TSR approaches; and (iv) an analysis of the sensitiveness of

inadequate approaches.

More recently, Coviello et al. [10] investigated the use of three kinds of test
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requirements (i.e., statement, method, and class coverages) when reducing TSs

by means of adequate and inadequate TSR approaches. The results suggest

that inadequate approaches behave similarly when considering statement and

method coverages as the test requirements (also the adequate approaches per-

form similarly when considering these two kinds of test requirements). Indeed,

the use of statement coverage as kind of test requirement allows obtaining a

slightly better trade-o� between reduction in TS size and loss in fault-detection

capability. The use of class coverage as kind of test requirement allows TSR

approaches to reduce more the size of the TSs. However, there could be a price

to pay in terms of loss in fault-detection capability of the reduced TSs. On

the basis of these outcomes, we consider in this paper the statement coverage

(rather than method or class coverage) as the kind of test requirement.

From here onwards, to distinguish between an adequate TSR approach and

its inadequate variant, we associate the subscript A and I, respectively, to the

label identifying that approach. For example, HGSA refers to the traditional

(adequate) Harrold-Gupta-So�a approach, while HGSI indicates its inadequate

variant.

2.2. Clustering and Regression Testing

In the regression testing �eld, clustering has been used to group similar test

cases leveraging di�erent kinds of test requirements (e.g., code coverage and

execution cost) [24, 25, 26, 27, 28, 29]. Similar test cases within a cluster are

considered redundant. TSs are obtained by selecting one (or more) test case per

cluster. For example, Parsa et al. [24] and Khalilian and Parsa [25] proposed

an approach to group test cases based on the similarity of their execution pro-

�les. They applied a heuristic for sampling test cases from clusters by ensuring

the same coverage of the original TS. That is, this approach can be classi�ed

as adequate. To cluster test cases the approach uses the CLOPE clustering

algorithm [30].

Carlson et al. [28] proposed a prioritization approach based on hierarchical

agglomerative clustering with the average-link criterion. The similarity between
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test cases is based on four kinds of test requirements considered separately: code

coverage, code complexity, fault history, and combination of code complexity

and fault history. They used the Euclidean distance to compute the similarity

among test cases for each kind of test requirements. The use of code complexity

seemed to produce better prioritization of test cases. Di�erently, Arafeen and

Do [29] used three types of information to prioritize test cases: functional re-

quirements, code complexity, and importance of functional requirement. Prasad

et al. [27] designed an approach based on a method coverage matrix; it groups

test cases with a hierarchical clustering algorithm using Hamming distance.

Each cluster is then analyzed to identify subsets of redundant test cases. Redun-

dant test cases are identi�ed by analyzing the similarity among: (i) functional

�ows, (ii) line coverage, and (iii) branch coverage. The approach is adequate

since it does not relax test requirements constraint.

The main di�erences between our research and the above-mentioned ap-

proaches are related to the empirical assessment and the approach. As for the

assessment, our primary goal was to increase the body of knowledge on the ef-

fectiveness of inadequate approaches to deal with TSR. As for the clustering of

test cases, the main di�erence can be summarized as follows: the CB approach

can use di�erent measures (e.g., Euclidean distance or Cosine dissimilarity) to

estimate the similarity among the test cases and it can be con�gured to ful�ll

the desired inadequacy level, where inadequacy level equal to 100% allow it to

behave like an adequate approach.

2.3. Clustering and Dissimilarity/Distance Measures

Clustering algorithms group entities into clusters (i.e., groups) so that enti-

ties within a cluster are similar. Entities between di�erent clusters are as much

as possible dissimilar [31]. Therefore, in addition to a clustering algorithm,

a distance/dissimilarity measure has to be chosen. This measure in�uences

clustering results because it estimates the extent to which two entities are simi-

lar/dissimilar [31]. Di�erent kinds of clustering algorithms have been proposed

in the literature. Hierarchical Agglomerative Clustering (HAC) is a kind of

12



Figure 1: A sample dendrogram.

clustering algorithm that treats each entity as a singleton cluster at the outset

and then successively merges (or agglomerates) pairs of clusters until all clus-

ters are merged into a single cluster. At each step the most similar clusters are

merged. There are di�erent criteria to compute the similarity of two clusters.

The average-link criterion evaluates the similarity of two clusters based on all

the similarities between the entities in these clusters. That is, the pair of clus-

ters with the highest inter-cluster cohesion (e.g., it could be computed as the

average similarity of all the pairs of entities in the two clusters) is merged at each

iteration. This avoids the pitfalls of the single-link (the similarity of two clusters

is the similarity of their most similar entities) and complete-link (the similarity

of two clusters is the similarity of their most dissimilar entities) criteria that

equate cluster similarity with the similarity of a single pair of entities [31].

The arrangement of the clusters produced by a HAC algorithm can be visu-

alized as a tree structure named dendrogram (see Figure 1). A HAC algorithm

does not require a pre-speci�ed number of clusters [31]. However, in some appli-

cations, we want a partition of disjoint clusters. In these cases, the dendrogram

needs to be cut at some level. This is called cut level of the dendrogram and

clearly in�uences clustering results. In Figure 1, �ve di�erent cut levels are

shown as well as the obtained clusters. For example, choosing three as cut level,

the algorithm identi�es two clusters containing two entities each and one sin-

gleton cluster: (A,B), (C,D), and (E). The higher the cut levels, the greater
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the number of clusters is. HAC is preferred in several applications because its

output is deterministic.

Several distance and similarity measures are amenable for the use in clus-

tering. In the following, we report and brie�y describe the de�nition of the

measures used to create the di�erent instances of the CB approach presented in

this research work.

Euclidean Distance. Let x⃗ = (x1, x2, ..., xn) and y⃗ = (y1, y2, ..., yn) be two

vectors, the Euclidean distance between them is de�ned as:

d(x⃗, y⃗) =

√√√√ n∑
i=1

(yi − xi)2 (1)

Cosine (Dis)similarity. Let x⃗ and y⃗ be two vectors, the Cosine (dis)similarity

between them is de�ned as:

d(x⃗, y⃗) = 1− x⃗ · y⃗
∥x⃗∥∥y⃗∥

(2)

Jaccard-Based Dissimilarity. Let A and B be two sets, the Jaccard-based

dissimilarity between them is equal to one minus the Jaccard coe�cient:

d(A,B) = 1− |A ∩B|
|A ∪B|

(3)

Hamming Distance. Let x⃗ and y⃗ be two vectors of the same length, the

Hamming distance between them is the number of elements in which they di�er.

For example, given x⃗ = (1, 1, 0,1) and y⃗ = (0, 1, 0,0) their Hamming distance

is two.

Levenshtein Edit Distance. Let a and b be two sequences of characters (i.e.,

two strings), the Levenshtein edit distance (or simply Levenshtein distance)

between them is the minimum number of operations required to transform a

into b. The operations that can be performed on a sequence are: (i) add a new

character; (ii) delete a character; and (iii) substitute a character with another.

K-Based Dissimilarity. The K-based dissimilarity, namely Cohen's Kappa

index, measures the degree of agreement between two raters, who classify items

over two or more categories. Let po be the observed proportion of agreement and

14



pe the agreement expected just by chance, the K-based dissimilarity is de�ned

as follows:

k = 1− po − pe
1− pe

(4)

String Kernels-Based Dissimilarity. The kernel is a function that computes

the inner product between two vectors in their space [32]. In the machine

learning �eld, a string kernel is a particular type of kernel, which operates on

strings to measure the similarity between them. Giving two strings a and b, the

standard formula to compute the string kernel function is:

k(a, b) =
∑
s∈A+

nums(a) nums(b) λs (5)

where A+ represents the set of non-empty substrings; λs is a chosen weight or

decay factor; and nums(x) is the number of the substring s occurrences in x

(where x is either a or b). In our work, we consider the bounded-range kernel

instantiation of the kernel function, where λs = 0 for all |s| > n and n is

�xed. This means that, only matching substrings of length less or equal n are

considered. The string kernels-based dissimilarity between two strings a and b

is computed as follows:

d(a, b) = 1− k∗(a, b) (6)

where k∗(a, b) is the normalized string kernel function that returns values in be-

tween 0 and 1. In our work, we consider the normalized version of the bounded-

range kernel.

3. Clustering-based Approach

In this section, we describe the process underlying the CB approach. We

conclude with a running example to show how the CB approach works.

3.1. Process

The UML activity diagram with object �ow in Figure 2 shows the process

underlying the CB approach. Rounded rectangles represent the phases of the

15



1) ComputingDissimilarity

2) Clustering

3) ReducingTestSuite

:CoverageInformation

:DissimilarityMatrix

:ReducedTestSuite

:InadequacyLevel

:Dendrogram

Figure 2: Process underlying the CB approach for TSR.

process, while rectangles are the objects produced/consumed in these phases.

In a nutshell, the CB approach �rst computes the dissimilarity between pairs

of test cases based on a given distance/dissimilarity measure. Test cases that

are more similar one another (i.e., they can be considered redundant since they

satisfy nearly the same test requirements) are grouped into the same cluster

through a HAC algorithm. The reduced TS will contain a test case for each

cluster that represent the most representative test case of the cluster. The test

case satisfying the highest number of test requirements in a cluster is the most

representative of that cluster. A description of the phases of the process follows:

1. ComputingDissimilarity. This phase computes the distance/dissimilarity

(simply dissimilarity from here onwards) between all the pairs of test cases

and produces a DissimilarityMatrix. This matrix is m x m, where m

is the number of test cases in the TS. Each entry of the matrix contains

the value of the dissimilarity between the corresponding pair of test cases.

To use the dissimilarity measures mentioned in Section 2.3 and to com-

pute the dissimilarity among test cases, it is needed to encode the test

requirements that each test case satis�es. As for Euclidean distance, co-

sine (dis)similarity, and Hamming distance, we computed a binary vector
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x⃗i for each test case ti. The length of the binary vector is equal to the

number of test requirements (the number of statements covered by the

entire TS). Each entry of x⃗i is associated to a test requirement rj�an

entry equal to 1 means that ti satis�es that test requirement rj ; an entry

equal to 0 means that ti does not satisfy rj .

The encoding for the K-based dissimilarity passes from binary vectors as

well. However, a further step is needed to obtain pe and po. In particular,

for each pair of test cases t1 and t2, we build the joined binary vector ⃗x1,2

(i.e., the concatenation of x⃗1 and x⃗2). Then we computed pone and pzero

(i.e., the total number of ones and zeros in ⃗x1,2 divided by the length of

⃗x1,2, respectively) to obtain pe according to the following formula:

pe = p2one + p2zero (7)

On the other hand, po is computed as the number of test requirements

that both t1 and t2 satisfy plus the number of the requirements that both

t1 and t2 do not satisfy by the length of ⃗x1,2.

As for the Jaccard-based dissimilarity, we represent the test requirements

that a test case ti satis�es as a set A⃗i. That is, if ti satis�es the requirement

rj , then rj ∈ A⃗i.

Finally, for the Levenshtein distance and String Kernels-based dissimi-

larity, the test requirements satis�ed by a test case ti are encoded in a

string si. That is, each statement rj can be seen as unique character.1

2. Clustering. Test cases are grouped using a clustering algorithm. We

opted for the HAC algorithm with the average-link criterion (the motiva-

tions behind this decision are those sketched in Section 2.3). The adopted

1In the implementation of our tool prototype, we had to deal with encoding issues because

the number of characters is limited and this number depends on the char-set used for the

encoding. To deal with this limitation, we encode the covered statements of a test case each

time it is compared with another test case.
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clustering algorithm builds a Dendrogram using the DissimilarityMatrix

produced in the previous phase.

3. ReducingTestSuite. Given the Dendrogram, a cut level produces a set

of clusters. For each cluster, we select the most representative test case.

We retain the test case that satis�es the largest number of test require-

ments as the most representative of the cluster. The rationale behind the

choice of the most representative test case relies on the postulation that

the requirements that a representative test case satis�es are roughly a su-

perset of the requirements that the other test cases in the cluster satisfy.

That is, we postulate that the fault-detection capability of the most rep-

resentative test case is the same as the fault-detection capability of the

test cases in that cluster. If more than one test case satis�es the same

number of test requirements, we randomly select one among them. The

set of most representative test cases composes the reduced TS. Once a

cut level is selected, we obtain a reduced TS that is characterized by an

inadequacy level. If that TS does not satisfy all the test requirements

of the original TS the inadequacy level is less than 100%. To achieve a

reduction with the desired inadequacy level (i.e., one of the input of the

process), we consider all the possible cut levels and choose the one that

allows obtaining the desired inadequacy level. This is done via the algo-

rithm shown in Algorithm 3, where l is the desired inadequacy level, D is

the dendrogram, lowerLevel is the minimum (in the �rst iteration) level of

the dendrogram and higherLevel is the maximum (in the �rst iteration)

level of the dendrogram. The computational complexity of this algorithm

is logarithmic with respect to the height of the dendrogram. For l equals

to 100% the CB approach behaves like an adequate TSR approach. On the

other hand, if l is equals to 0% it means that the approach selects the test

case of the TS of the SUT that covers the largest number of statements.

The CB approach was implemented in a prototype of a supporting tool

named CUTER. It is an Eclipse plug-in that allows reducing (JUnit) TS of
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Algorithm 3 TS Reduction algorithm

1: procedure CBReduction

2: Input :

3: l← The �xed inadequacy level

4: D← The dendrogram

5: lowerLevel← The lower level of the dendrogram to be analyzed

6: higherLevel← The higher level of the dendrogram to be analyzed

7: Output :

8: Th ← Reduced TS

9: begin:

10: h← ⌈(higherLevel − lowerLevel)/2⌉

11: lTh ← The inadequacy level of Th by cutting D at level h

12: start :

13: if (lTh == l OR h == lowerLevel OR h == higherLevel) then return

Th

14: else if lTh > l then

15: return CBReduction(l,D, lowerLevel, h− 1)

16: else

17: return CBReduction(l,D, h+ 1, higherLevel)

18: end procedure

software systems written in Java. Further information on CUTER can be found

in the paper by Coviello et al. [33]. CUTER is also available for download.2

3.2. Running example of the approach application

Let T = {t1, t2, t3} be the TS of a SUT and let r1, r2, and r3 be the test

requirements, we show in the matrix of Table 1 the test requirements satis�ed

by each test case in T (e.g., the test cases t1 and t2 satisfy the requirements r1

and r2, but they do not satisfy r3). To encode the test requirements that each

2www2.unibas.it/sromano/CUTER.html
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test case satis�es, we applied the following strategies:

� As for the Euclidean distance, cosine (dis)similarity, Hamming distance,

and K-based dissimilarity, we build the binary vectors for t1, t2, and t3,

namely: x⃗1 = x⃗2 = (1, 1, 0) and x⃗3 = (0, 0, 1).

� The K-based dissimilarity requires a further encoding, namely a joined

binary vector for each pair of test cases (e.g., ⃗x1,2 = (1, 1, 0, 1, 1, 0) is the

joined binary vector of x⃗1 and x⃗2). Then we compute pone = 4/6 and

pzero = 2/6 (i.e., the number of ones and zeros by the length of ⃗x1,2,

respectively) to obtain pe = 0.5. (i.e., the expected probability of the

agreement just by chance). On the other hand, po (i.e., the number of

agreement by the test requirements) is equal to 1.

� As for the Jaccard-based dissimilarity, we build the sets of test require-

ments that t1, t2, and t3 satisfy: A⃗1 = A⃗2 = {r1, r2}, A⃗3 = {r3}.

� As for the String Kernels-Based dissimilarity and Levenshtein edit dis-

tance, each test requirement is encoded as a unique character (i.e., r1 = A,

r2 = B, and r3 = C). Then, for each test case, the satis�ed requirements

are represented as a string obtained by concatenating these characters:

s1 = s2 = AB and s3 = C.

Since the running-example is illustrative, we will focus on the instance based

on the Levenshtein edit distance. The other instances of the CB approach work

in a similar fashion. In Table 2, we report the Dissimilarity Matrix obtained

from Table 1 by computing the Levenshtein edit distance (e.g., the distance

between t1 and t3 is 3). The dendrogram D in Figure 3 is built from that

matrix. To obtain a reduction of the TS with 66% as the inadequacy level, we

run Algorithm 3 with the following input data: l = 66%; D; lowerLevel = 1;

higherLevel = 3. Since Algorithm 3 cuts the D dendrogram at level 1, the

reduced TS contains a single test case randomly chosen between t1 and t2,

i.e., the test cases satisfying the highest number of test requirements. The

inadequacy level of the reduced TS could assume a value di�erent from that
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Table 1: Sample matrix showing the test requirements (i.e., r1, r2, and r3) each test case

(i.e., t1, t2, and t3) satis�es.

r1 r2 r3

t1 • •

t2 • •

t3 •

Table 2: Dissimilarity matrix built by using the Levenshtein edit distance based on the infor-

mation on test requirements shown in Table 1.

t1 t2 t3

t1 0 0 3

t2 0 0 3

t3 3 3 0

speci�ed as the input. Our approach identi�es a TS reduction whose inadequacy

level is as the closest as possible to the desired one.

4. Empirical Study

We followed the guidelines by Wohlin et al. [34] to plan and conduct our ex-

periment. The planning of this experiment is shown in the following subsections.

The used template is based on that proposed by Wohlin et al. [34].

4.1. De�nition and Context

The goal of our experiment, using the GQM (Goal Question Metrics) tem-

plate by Basili et al. [35], was de�ned as follows:

Analyze adequate and inadequate TSR approaches

for the purpose of comparing them

with respect to reduction in TS size and loss in fault-detection

capability of the reduced TS

from the point of view of the researcher and the practitioner
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Figure 3: Dendrogram built by using a HAC algorithm with average-link criterion based on

the dissimilarity matrix reported in Table 2.

in the context of open-source object-oriented software systems

implemented in Java.

Given the experiment goal, we formulated and investigated the following Re-

search Questions (RQs):

RQ1 - Is there an inadequate TSR approach that outperforms the

other (inadequate) TSR approaches?

GOAL - We aim to study inadequate approaches in terms of their ca-

pability to reduce TSs and the capability of the reduced TSs to reveal

faults. The best approach is the one that reduces more the TSs without a

signi�cant e�ect on the fault-detection capability of the reduced TSs. To

perform a fair comparison among inadequate TSR approaches, the same

inadequacy level was used and the obtained TSs were compared with re-

spect to the size of the reduced TSs and their fault-detection capability.

We �xed the inadequacy level at 95%. We chose this value because it

allows reducing the size of the TSs with the smallest loss in their fault-

detection capability. Further details can be found in Appendix A, where

the results obtained by applying inadequacy levels in between 60% and

90% are shown and discussed.

RQ2 - Does the best inadequate TSR approach(es) outperform ade-

quate approaches, in terms of reductions in TS size at the cost of

a negligible e�ect on the reduction of fault-detection capability?
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GOAL - We de�ned this RQ to investigate if the best inadequate TSR

approach(es) might represent a viable alternative to the adequate ones.

The best inadequate approach is identi�ed in the answer to RQ1. Inad-

equate approach/es could be considered a viable alternative to adequate

ones when they lead to a greater reduction in TS size at the cost of a

negligible e�ect on fault-detection capability.

RQ3 - Which is the inadequate TSR approach less sensitive to inad-

equacy level variations?

GOAL - We aimed to help a more informed decision in the choice of an

inadequacy level while using an inadequate TSR approach. The lower

the sensitiveness of an inadequate approach to the inadequacy level, the

better the approach is. It means that small variations in the inadequacy

level slightly a�ect reduced TSs in terms of both their size and their fault-

detection capability. That is, the practitioner can be aware that small

variations in the inadequacy level cause at least a small loss in fault-

detection capability and gain in the size of the reduced TSs.

The experimental objects considered in this study are 19 versions of four

Java software systems: eight versions for Ant, three versions for JTopas, �ve

versions for JMeter, and three versions for XMLSecurity. These experimental

objects were the same as Zhang et al. [36] used in their study. In Table 3,

we show basic information of the experimental objects: name, version, size (in

terms of LOC), number of test cases (#Test Cases), number of statements the

TS covers (#Covered Statements), number of faults the TS reveals (#Faults),

and fault density (#Faults
LOC ).

All the artifacts were downloaded from SIR,3 a public repository whose goal

is to support rigorous experiments on regression testing [16]. The downloaded

artifacts are documented with all the details (e.g., faults) needed to compute the

loss in fault-detection capability and thus to compare di�erent TSR approaches.

3sir.unl.edu
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Table 3: Information on the experimental objects.

System Version LOC #Test Cases #Covered Statements #Faults Fault Density

Ant

v1 (1.3) 23,796 133 3,701 3 1.26e-4

v2 (1.4) 37,478 212 6,824 1 2.66e-5

v3 (1.4.1) 37,554 217 6,950 2 5.32e-5

v4 (1.5) 64,445 533 16,401 8 1.24e-4

v5 (1.5.2) 66,085 539 16,746 7 1.05e-4

v6 (1.5.3-1) 66,144 570 16,932 1 1.51e-5

v7 (1.6beta) 88,414 842 24,386 10 1.13e-4

v8 (1.6beta2) 88,449 845 24,383 2 2.26e-5

JTopas

v1 (0.4) 4,276 26 2,018 5 0.0011

v2 (0.5.1) 4,520 28 2,122 4 8.8e-4

v3 (0.6) 10,117 56 5,454 5 4.9e-4

JMeter

v1 (1.8) 33,620 51 2,388 4 1.18e-4

v2 (1.8.1) 33,290 63 4,054 3 9e-5

v3 (1.9.RC1) 37,474 78 4,933 8 2.13e-4

v4 (1.9.RC2) 38,613 78 5,023 2 5.18e-4

v5 (1.9) 40,989 91 4,942 2 4.87e-5

XMLSecurity

v1 (1.0.4) 21,601 94 4,730 5 2.13e-4

v2 (1.0.5D2) 27,990 94 4,887 6 2.14e-4

v3 (1.0.71) 19,731 84 4,668 3 1.52e-4

Mean 39,188.73 243.8 8,502.21 4.2 1.07e-4

4.2. Planning

We studied seven instances of the CB approach. Each instance di�ers on the

basis of the chosen dissimilarity measure, that is: Euclidean distance (Eucl);

cosine (dis)similarity (Cos); Jaccard-based dissimilarity (Jacc); Hamming dis-

tance (Hamm); Levenshtein distance (Lev); K-based dissimilarity (K); and

string kernels-based dissimilarity (SK). To distinguish among the CB instances,

we use the notation CBX, where X denotes the chosen dissimilarity measure. For

example, CBCos indicates the CB instance based on the cosine (dis)similarity.

We took into account in our experiment both the adequate and inadequate

variants of the CB instances. By �xing the inadequacy level equal to 100%, the

CB approach (and its instances) is adequate; for lower values of the inadequacy

level, the CB approach is inadequate. To further distinguish between the ade-

quate and inadequate variants of each CB instance, we act as for the traditional
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TSR approaches, i.e., we use the subscript A and I, respectively. For example,

CBCos A indicates the adequate variant of the CB instance based on the cosine

(dis)similarity, while CBCos I indicates the inadequate variant.

The CB instances were compared against the following well-known tradi-

tional TSR approaches in their adequate variant (see Section 2.1.1): HGSA,

GRDA, DGRA, 2OPTA, GEA, GREA, and ILPA. We also studied the in-

adequate variants of the above-mentioned approaches: HGSI, GRDI, DGRI,

2OPTI, GEI, and GREI. To obtain these inadequate variants, we applied the

strategy by Shi et al. [8] highlighted in Section 2.1.2.

We chose these traditional approaches (both adequate and inadequate) be-

cause they are quite common in experiments on TSR (e.g., [8, 22]). Besides, we

considered the CB approach, which is based on that presented by Coviello et

al. [9]�it is one of the most recent research contributions and then it might be

considered one of the state-of-the-art approaches in the context of TSR.

4.3. Independent and Dependent Variables

In this experiment, we have one independent variable, which indicates the

studied TSR approach. We named this (nominal) variable as Method. It

assumes as values: CBCos A, CBCos I, GRDA, GRDI, and so on.

In prior empirical investigations, TSR approaches have been evaluated on

the basis of the size of the reduced TSs and their capability to identify faults.

Two metrics have been largely used as dependent variables (e.g., [1, 2, 19, 37]) to

estimate these constructs: Reduction in TS Size (RS) and Reduction in Fault-

detection capability (RF). RS is computed as follows:

RS =
|T | − |T ′|
|T |

× 100 (8)

where |T | and |T ′| are the size of the original and reduced TSs, respectively.

RS, that assume values between 0% and 100%, re�ects the number of test cases

within the original TS that are not present in the reduced one. From a practical

perspective, a value equal to 0% means that the original TS has not been reduced

at all. Thus, a high value for RS is desirable.
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As for RF, it is computed via the following formula:

RF =
F − F ′

F
× 100 (9)

where F is the number of faults detected by the original TS and F ′ is the number

of faults detected by the reduced TS. RF assumes values between 0% and 100%.

In particular, RF indicates the percentage of faults that a reduced TS does not

detect with respect to the faults detected by the original TS. From a practical

perspective, a RF value equal to 0% means that reduced TS has preserved the

same capability of detecting faults as the original TS. Thus, a value equal to

0% is desirable.

To identify the inadequate TSR approach less sensitive to the inadequacy

level, we used the Sensitiveness Measure (SM). To compute this measure, given

an experimental object and TSR approach, we used the values of RS and RF

at inadequacy levels ranging in between 5% and 100% with an increment of

5%. The use of a smaller increment in the inadequacy level would produce

more accurate SM values, but it should not a�ect the comparison among the

inadequate TSR approaches. We do not consider 0% because it would imply a

reduction without test cases or at the most one test case for the CB approach. By

plotting RS and RF values for each considered inadequacy level, we obtain a line

(see for example Figure 4). It is worth noting that as RS increases, RF grows or

remains the same (in the best case scenario). The SM value is computed as the

area under this broken line. We compute this area by applying the trapezoidal

rule. Therefore, SM can assume values in between 0 and 10,000. The smaller

the SM value, the better it is. This means that if the RS value increases we

have a small increment of the RF value while varying the inadequacy level. In

other words, the lower the SM value, the lower the sensitiveness of the approach

is. From a practical perspective, a less sensitive approach is better because the

practitioner can lower the inadequacy level being con�dent that the reduction

in fault-detection capability and in TS size slowly gets worse and improves,

respectively.
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Figure 4: An example of SM value, i.e.,, the SM value computed for 2OPTI on AntV1.

4.4. Hypotheses Formulation

To study RQ1, we formulated the following (parametrized) null hypothesis:

NH1Z - There is no statistically signi�cant di�erence in the values of the de-

pendent variable Z (i.e., either RS or RF) computed by applying inade-

quate TSR approaches.

On the other hand, we used the following (parametrized) null hypothesis to

study RQ2:

NH2Z - There is no statistically signi�cant di�erence in the values of the de-

pendent variable Z (i.e., either RS or RF) computed by applying the best

inadequate TSR approach/es (if any) and those computed by applying

adequate approaches.

Finally, we used the following null hypothesis for RQ3:

NH3SM - There is no statistically signi�cant di�erence in the values of SM

when applying the inadequate TSR approaches.

4.5. Data Analysis

For each approach, we computed some descriptive statistics, which sum-

marize the distributions of the RS, RF, and SM values. We also graphically
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represented these distributions by means of boxplots. To test the null hypothe-

ses, we planned to use Linear Mixed Model (LMM) analysis methods. If the

assumptions behind these methods (i.e., normality of residuals and mean of

residuals approximately equals to 0) were not veri�ed (neither by applying data

transformations), we planned to use the Friedman test [38]. For each statistical

test, we decided to accept (as it is customary) a probability of 5% of committing

Type-I-error (i.e., α = 0.05).

4.6. Instrumentation

For most of the adequate approaches, we exploited RAISE. It is a Java tool

that implements HGSA, GRDA, 2OPTA, DGRA. RAISE is available on the

web4 and has been used in previous empirical studies (e.g., [22, 39]). To imple-

ment ILPA, we used IBM's CPLEX Optimizer solver (version 12.7.1). As for the

CB instances (in their adequate and inadequate variants), we used CUTER [33]

(see Section 3.1). For the missing TSR approaches (e.g., GEA or GEI), we im-

plemented a Java prototype of supporting tool. Code coverage information was

collected by means of JaCoCo.5

4.7. Threats to Validity

To understand strengths and limitations of our experiment, we discuss here

threats that could a�ect the validity of the results.

� Construct validity threats concern the relationship between theory and

observation. In our experiment, a possible threat to this this kind of

validity concerns the use of single measure to assess constructs. In the

literature, RS and RF are widely adopted to quantify the reductions in

TS size and fault-detection capability, respectively. That is, they represent

the standard for the assessment of TSR approaches (e.g., [2, 19, 37]). On

the other hand, SM has been newly de�ned in our research. We de�ned it

4code.google.com/archive/p/raise
5www.jacoco.org
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because in the literature there are not measures conceived for this purpose.

The use of SM, however, represents a possible threat to the validity of the

results observed for all the studied approaches.

� Internal validity threats concern factors internal to the investigation. How

the approaches were implemented might threaten the validity of the re-

sults. For example, the presence of bugs might a�ect the results in an

unexpected way. To mitigate this threat, we tested any prototype we

used.

� Conclusion validity threats concern the relationship between the depen-

dent and independent variables. Statistical tests used to analyze the col-

lected data might threaten conclusion validity. To mitigate the e�ect of

this kind of threat, we planned to apply robust and sensitive statistical

tests that are well-known and widely adopted in several research �elds.

The fact that inadequate approaches identify reductions that approxi-

matively satisfy the �xed inadequacy level represents another threat to

conclusion validity. The reliability of the used measures might also a�ect

conclusion validity. To deal with this kind of threat, we opted for mea-

sures that did not require any subjective evaluation to be computed. As

for SM, the use of the increment of 5% for inadequacy level represents

another possible threat to conclusion validity. However, the use of such

an increment would equally a�ect the computation of SM for each inade-

quate TSR approach. How the used dataset (i.e., SIR) has been created

represents another threat. It is worth mentioning that SIR was created by

external researchers [16] and used in several studies on regression testing

(e.g., [40, 41, 42]).

� External validity threats concern the possibility of generalizing results.

Although in our investigation we considered software systems previously

used in other studies and these applications cover di�erent application

domains, we cannot guarantee that our �ndings can be generalized to the
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universe of Java systems. Future work is needed to verify to what extent

our �ndings hold for other experimental objects (e.g., commercial ones).

� Reliability validity threats concern the capability of external researchers

to replicate our study. We mitigate this kind of threat by making available

on web the replication package that comprises, for example, the raw data.6

5. Results and Discussion

In this section, we present and discuss the results of our experiment according

to the de�ned RQs; then we highlighting possible implications for these results

and future directions for our research.

5.1. RQ1� Is there an inadequate TSR approach outperforming the others?

Descriptive Statistics and Exploratory Analysis. Figure 5 shows the

boxplots of the RS values for the inadequate approaches at 95% of inadequacy

level.

By looking at the boxplots in Figure 5, we can observe that the approaches

are mostly comparable one another. Indeed, two of them (i.e., HGSI and DGRI)

seem to be worse than the others�the boxplots for HGSI and DGRI are lower.

We can also observe that there are boxplots less skewed than others. This is

the case of the CB instances with the only exception of CBSK I.

Table 4 reports the descriptive statistics�median, mean, Standard Devia-

tion (SD), and Con�dence Interval (CI)�for inadequate approaches. As for RS,

the descriptive statistics con�rm that there is not a huge di�erence among in-

adequate approaches, with only two exceptions: HGSI and DGRI (their median

and mean values for RS are the lowest).

Table 4 also reports the RF values and we can notice no major di�erence

among the studied TSR approaches. That is, the loss in fault-detection capa-

bility is very similar, the average values for RF ranges between 0% and 0.88%,

6www2.unibas.it/gscanniello/IST/RawData.zip
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Figure 5: Boxplots of the RS values of each inadequate TSR approach with (inadequacy level

= 95%).

with a median always equal to 0%. We can also observe that two approaches

(i.e., 2OPTI and GEI) have no loss in fault-detection capability�their mean

and SD values for RF are equal to 0%.

We further investigated the di�erences among the reduced TSs the inad-

equate TSR approaches identi�ed. To this end, we applied the strategy by

Marchetto et al. [21] to quantify the diversity of the reduced TSs produced by

two TSR approaches. The authors de�ned a construct�Diversity�, which rep-

resents the di�erence among a pair of TSs (S1 and S2.) with respect to the test

cases they contain. To quantify such a construct, they de�ned the Div measure,

which is computed as the number of test cases shared between S1 and S2 out of

the number of test cases of the original TS. The higher Div(S1, S2), the lower

the diversity between S1 and S2 is. That is, a high value of Div(S1, S2) means

that S1 and S2 have a high number of test cases in common and share nearly

the same test cases of the original TS. Div assumes values in between 0 and 1,
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Table 4: Some descriptive statistics for RS and RF for each inadequate TSR approach (inad-

equacy level = 95%).

RS (%) RF (%)

Approach median mean SD CI median mean SD CI

2OPTI 25.27 29.66 13.25 [23.27;36.04] 0 0 0 [0;0]

DGRI 14.29 15.48 8.18 [11.54;19.42] 0 0.75 3.28 [-0.83;2.33]

GEI 26.37 29.17 13.82 [22.51;35.83] 0 0 0 [0;0]

GREI 24.47 28.98 13.94 [22.26;35.7] 0 0.87 2.67 [-0.42;2.15]

GRDI 26.37 29.57 13.52 [23.06;36.09] 0 0.88 2.71 [-0.43;2.19]

HGSI 11.93 14.26 7.78 [10.51;18.01] 0 0.75 3.28 [-0.83;2.33]

CBCos I 28.39 30.6 7 [27.22;33.97] 0 0.66 2.87 [-0.72;2.04]

CBEucl I 29.5 27.99 8.12 [24.08;31.91] 0 0.75 3.28 [-0.83;2.33]

CBJacc I 28.62 29.26 8.08 [25.36;33.16] 0 0.66 2.87 [-0.72;2.04]

CBSK I 23.01 22.7 10.44 [17.66;27.73] 0 0.75 3.28 [-0.83;2.33]

CBHamm I 28.71 29.34 7.48 [25.74;32.94] 0 0.75 3.28 [-0.83;2.33

CBLev I 25.6 23.73 9.05 [19.37;28.09] 0 0.75 3.28 [-0.83;2.33]

CBK I 27.08 27.12 5.93 [24.27;29.98] 0 0.75 3.28 [-0.83;2.33]

Mean 24.5 25.7 9.73 - 0 0.64 2.6 -

where 0 indicates that two reduce TSs are completely di�erent.

In Table 5, we report some descriptive statistics (i.e., median, mean, and SD)

for the Div measure computed for each pair of inadequate TSR approach. The

mean values ofDiv(2OPT I, CBHamm I),Div(DGRI, HGSI),Div(CBEucl I, CBHamm I),

Div(CBEucl I, CBK I), and Div(CBHamm I, CBK I) are close to 1. This in-

dicates that there is a high number of test cases in common between the

reduced TSs that these pairs of approaches identi�ed. The SD values are

low, thus suggesting that the reduced t are generally very similar one an-

other. In general, the results of this further analysis con�rm that the ap-

proaches that produced worse results in terms of RS (i.e., DGRI and HGSI)

identi�ed similar reduced TSs. This outcome does not hold for the better ap-

proaches, namely those that reduced more the TSs. For example, the mean

values of the Div(2OPT I, CBCos I), Div(GEI, CBCos I), Div(GREI, CBCos I),

Div(GRDI, CBCos I) are low despite these approaches allowed obtaining an ap-

preciable reduction of the original TSs with a negligible e�ect on fault-detection

capability. Finally, we can observe that the reduced TSs of the traditional ap-

proaches are di�erent one another, while the reduced TSs of the CB instances
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are not so di�erent one another. Indeed, CBCos I behaves slightly di�erent (in

terms of the diversity of the reduced TSs) from the other CB instances as the

descriptive statistics suggest; the mean values of Div range in between 0.46 and

0.48, while the SD values are higher than the others. We can then postulate

that the e�ect of the similarity measures to compare test cases slight a�ect the

reduced TSs, while the clustering algorithm could make a di�erence. We devise

this latter point as a possible future direction for our research.

Hypotheses Testing. To test the e�ect of Method on RS and RF (i.e., NH1RS

and NH1RF ), we ran the Friedman test since the assumptions to apply LMM

analysis methods were not veri�ed. In particular, the residuals were not nor-

mally distributed even after applying data transformations. The Friedman test

allowed us to reject NH1RS (the returned p-value was equal to 4.92e-10). In

other words, there is a statistically signi�cant di�erence in RS. However, we

could not reject NH1RF (p-value equal to 0.9265). This means that, from a

statistical point of view, the studied inadequate approaches are not signi�cantly

di�erent with respect to RF.

Since NH1RS was rejected, we performed a post-hoc analysis, namely pair-

wise comparisons among the inadequate TSR approaches. To this end, we

applied a two-sided Wilcoxon rank-sum test (also known as Mann-Whitney U

test) [34]. Through this test, we veri�ed the following null hypothesis: there

is no statistically signi�cant di�erence in the RS values computed by applying

Method1 and Method2, where Method1 and Method2 are two inadequate TSR

approaches. In case of a statistically signi�cant di�erence, we quanti�ed the

magnitude of such a di�erence using the Cli�'s δ e�ect size.7 This kind of

e�ect size is used in case data are not normally distributed or the normality

assumption is discarded [44].

The results of the post-hoc analysis for RQ1 are summarized in Table 6;

p-values are reported in bold only when signi�cant. We can observe that all the

7The Cli�'s δ e�ect size is considered: Negligible (N) if |δ| < 0.147; Small (S) if 0.147

≤ |δ| < 0.33; Medium (M) if 0.33 ≤ |δ| < 0.474; or Large (L) otherwise [43].
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Table 5: Some descriptive statistics for the Div measure computed for each pair of inadequate

TSR approach (inadequacy level = 95%). This matrix is symmetric and, therefore, we reported

only the Div values above the main diagonal.

Approach 2OPTI DGRI GEI GREI GRDI HGSI CBCos I CBEucl I CBJacc I CBSK I CBHamm I CBLev I CBK I

median

2OPTI

0.45 0.56 0.56 0.53 0.45 0.39 0.45 0.45 0.46 0.71 0.43 0.45

mean 0.5 0.59 0.59 0.52 0.51 0.36 0.49 0.48 0.51 0.71 0.49 0.49

SD 0.09 0.09 0.09 0.16 0.1 0.14 0.09 0.08 0.1 0.07 0.1 0.09

median

DGRI

0.56 0.45 0.45 0.82 0.45 0.61 0.56 0.58 0.6 0.64 0.64

mean 0.49 0.49 0.49 0.79 0.46 0.59 0.57 0.62 0.57 0.63 0.59

SD 0.09 0.09 0.09 0.11 0.16 0.11 0.09 0.12 0.09 0.12 0.09

median

GEI

0.56 0.56 0.45 0.38 0.45 0.44 0.46 0.44 0.43 0.45

mean 0.59 0.59 0.5 0.36 0.48 0.47 0.5 0.48 0.49 0.49

SD 0.09 0.09 0.09 0.14 0.09 0.08 0.1 0.09 0.1 0.09

median

GREI

0.56 0.45 0.38 0.47 0.44 0.46 0.44 0.45 0.46

mean 0.59 0.5 0.36 0.48 0.47 0.51 0.48 0.49 0.49

SD 0.09 0.09 0.14 0.08 0.08 0.1 0.09 0.1 0.09

median

GRDI

0.45 0.38 0.45 0.44 0.46 0.44 0.43 0.45

mean 0.5 0.36 0.48 0.47 0.5 0.48 0.49 0.49

SD 0.09 0.14 0.09 0.08 0.1 0.09 0.1 0.09

median

HGSI

0.46 0.61 0.56 0.59 0.6 0.64 0.64

mean 0.46 0.6 0.58 0.63 0.59 0.64 0.6

SD 0.16 0.11 0.09 0.13 0.09 0.12 0.09

median

CBCos I

0.58 0.6 0.55 0.56 0.57 0.56

mean 0.46 0.48 0.46 0.46 0.47 0.46

SD 0.21 0.23 0.2 0.2 0.2 0.2

median

CBEucl I

0.64 0.59 0.69 0.68 0.71

mean 0.65 0.61 0.7 0.69 0.71

SD 0.06 0.07 0.07 0.08 0.06

median

CBJacc I

0.59 0.64 0.65 0.64

mean 0.62 0.64 0.65 0.65

SD 0.1 0.07 0.08 0.07

median

CBSK I

0.59 0.61 0.6

mean 0.6 0.64 0.62

SD 0.08 0.08 0.08

median

CBHamm I

0.67 0.71

mean 0.68 0.71

SD 0.07 0.07

median

CBLev I

0.69

mean 0.69

SD 0.07

median

CBK Imean

SD
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Table 6: Results from the pairwise comparisons between the inadequate TSR approach for

RS. We report in bold p-values less than 0.003 (i.e., α value normalized by applying the

Bonferroni correction). The reported matrix is symmetrical except for the sign of the Cli�'s

δ e�ect size.

2OPTI DGRI GEI GREI GRDI HGSI CBCos I CBEucl I CBJacc I CBSK I CBHamm I CBLev I CBK I

2OPTI -
0.0013 0.9185 0.9883 0.8038 0.0004 0.2734 0.5206 0.4389 0.1609 0.5206 0.397 0.8839

L (0.6122) L (0.6787)

DGRI

0.0013
-

0.0024 0.0028 0.0016 0.5492 2.02E-02 0.0002 9.13E-02 0.0265 6.33E-02 0.0086 0.0002

L (-0.6122) L (-0.5789) L (-0.5706) L (-0.6012) L (-0.8116) L (-0.7063) L (-0.7452) L (-0.7618) L (-0.7119)

GEI

0.9185 0.0024
-

0.9417 0.9767 0.0005 0.2488 0.5206 0.3576 0.2312 0.4478 0.5018 0.7815

L (0.5789) L (0.662)

GREI

0.9883 0.0028 0.9417
-

0.9185 0.0006 0.2255 0.5018 0.3278 0.2547 0.4304 0.5592 0.7591

L (0.5706) L (0.651)

GRDI

0.8038 0.0016 0.9767 0.9185
-

0.0003 0.2735 0.5791 0.3889 0.1699 0.5206 0.4136 0.9186

L (0.6012) L (0.6842)

HGSI
0.0004 0.5492 0.0005 0.0006 0.0003 - 5.23E-03 8.08E-02 2.61E-02 0.0093 2.29E-02 0.0029 3.83E-02

L (-0.6787) L (-0.662) L (-0.651) L (-0.6842) L (-0.867) L (-0.7506) L (-0.8005) L (-0.8061) L (-0.5679) L (-0.7839)

CBCos I
0.2734 2.02E-02 0.2488 0.2255 0.2735 5.23E-03 - 0.5992 0.9767 0.0245 0.726 0.0147 0.161

L (0.8116) L (0.867)

CBEucl I

0.5206 0.0002 0.5206 0.5018 0.5791 8.08E-02 0.5992
-

0.9651 0.0539 0.8954 0.0902 0.4653

L (0.7063) L (0.7506)

CBJacc I

0.4389 9.13E-02 0.3576 0.3278 0.3889 2.61E-02 0.9767 0.9651
-

0.042 1 0.0439 0.3068

L (0.7452) L (0.8005)

CBSK I

0.1609 0.0265 0.2312 0.2547 0.1699 0.0093 0.0245 0.0539 0.042
-

0.0318 0.748 0.1289

CBHamm I

0.5206 6.33E-02 0.4478 0.4304 0.5206 2.29E-02 0.726 0.8954 1 0.0318
-

0.0616 0.3653

L (0.7618) L (0.8061)

CBLev I

0.397 0.0086 0.5018 0.5592 0.4136 0.0029 0.0147 0.0902 0.0439 0.748 0.0616
-

0.2931

L (0.5679)

CBK I

0.8839 0.0002 0.7815 0.7591 0.9186 3.83E-02 0.161 0.4653 0.3068 0.1289 0.3653 0.2931 -

L (0.7119) L (0.7839)

approaches (except CBSK I and CBLev I) reduce more than DGRI and HGSI.

The e�ect size is large (label L).

Summary. Given a �xed inadequacy level (i.e., 95%), we are not able to

identify a single inadequate TSR approach performs the best in terms of high

reduction in TS size and low loss in fault-detection capability. However, there

are several approaches that achieved comparable results in terms of RS and RF.

DGRI and HGSI seem to perform worse than the other inadequate approaches

studied in our experiment because they reduce signi�cantly less the size of re-

duced TSs with a very similar loss in fault-detection capability. Results also

suggest that the CB instances are less a�ected by the experimental objects (i.e.,

the boxes in Figure 5 are less skewed) and the median values for RS are generally

higher than those obtained by applying the other inadequate TSR approaches
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Figure 6: Boxplots of the RS values of each adequate TSR approach.

(it is not completely true for CBSK I and CBLev I). To conclude, even if 2OPTI

and GEI tend to perform slightly better than other approaches in terms of RF,

we did not observe a single clear winner among the studied inadequate TSR

approaches, rather there is a set of approaches that behave similarly and that

can be successfully applied: 2OPTI, GEI, GREI, GRDI, CBCos I, CBEucl I,

CBJacc I, CBHamm I, and CBK I.

5.2. RQ2�Do the best inadequate TSR approaches outperform adequate ones?

Descriptive Statistics and Exploratory Analysis. In Figure 6, we show

the RS boxplots for the studied adequate TSR approaches. The boxplots for the

well-known traditional adequate approaches seem to suggest that they reduce

more than the instances of the CB approach. Indeed, the CB instances did

not reduce the TSs for all the experimental objects with the only exception of

JMeter v5 (the outliers in Figure 6) on which a reduction of 1.1% was obtained.

As for the traditional approaches, the outliers are JMeter v5, Ant v4 and Ant
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v6. On JMeter v5, the traditional approaches allowed reducing the TS size of

13.19% (except for 2OPTA that reduced the original TS of 12.09%). These

approaches reduced the original TS of Ant v4 of 4.32%, while they reduced the

original TS of Ant v6 of 4.04% (with the only exception of 2OPTA that allowed

reducing the TS of Ant v6 of 3.86%). We can speculate that the outliers are

due to the redundancy, in terms of code coverage, of some test cases in the TSs.

These �ndings from the boxplots were corroborated with stronger evidence

by the descriptive statistics for RS shown in Table 7. This table also reports

the descriptive statistics for RF. Median, mean, SD, and CI values for RF are

all equal to 0% so indicating that the reduction in TS sizes (if any) does not

a�ect fault-detection capability.

The best inadequate approaches were not able to achieve the same results

on RF (see Table 4). Only 2OPTI and GEI behaved like traditional adequate

approaches on RF (the values for the median, mean, and SD are equal to 0).

Nevertheless, the mean values on RF, for all the inadequate approaches, are

always less than one. On the other hand, all the inadequate approaches outper-

form adequate ones in terms of RS.

Hypotheses Testing. We applied the Friedman test to verify the e�ect of

Method (i.e., adequate TSR approaches and the best inadequate ones) in RS

and RF, i.e., to test NH2RS and NH2RF , respectively. The result of the

Friedman test showed that there was a statistically signi�cant di�erence on RS

(p-value was 2.20e-16). That is, we could reject NH2RS . On the other hand, we

could not reject NH2RF (p-value was 0.4424). Note that we did not apply LMM

analysis methods because the assumptions were not veri�ed (i.e., residuals were

not normally distributed).

Since we rejected NH2RS , we further investigated on RS. In particular, we

performed pairwise comparisons (post-hoc analysis) among TSR approaches.

Similarly to RQ1, we applied a two-sided Wilcoxon rank-sum test. The obtained

results are summarized in Table 8 together with the Cli�'s δ e�ect size values.

We can note that the inadequate approaches reduce signi�cantly more than

adequate approaches and the e�ect size is always large (L).
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Table 7: Some descriptive statistics for RS and RF for each adequate TSR approach.

RS (%) RF (%)

Approach median mean SD CI median mean SD CI

2OPTA 0 1.25 2.93 [-0.17;2.66] 0 0 0 [0;0]

DGRA 0 1.42 3.15 [ -0.1;2.94] 0 0 0 [0;0]

GEA 0 1.4 3.15 [-0.12;2.91] 0 0 0 [0;0]

GREA 0 1.4 3.15 [-0.12;2.91] 0 0 0 [0;0]

GRDA 0 1.4 3.15 [-0.12;2.91] 0 0 0 [0;0]

HGSA 0 1.42 3.15 [-0.1;2.94] 0 0 0 [0;0]

ILPA 0 1.42 3.15 [-0.1;2.94] 0 0 0 [0;0]

CBCos A 0 0.06 0.25 [-0.06;0.18] 0 0 0 [0;0]

CBEucl A 0 0.06 0.25 [-0.06;0.18] 0 0 0 [0;0]

CBJacc A 0 0.06 0.25 [-0.06;0.18] 0 0 0 [0;0]

CBSK A 0 0.06 0.25 [-0.06;0.18] 0 0 0 [0;0]

CBHamm A 0 0.06 0.25 [-0.06;0.18] 0 0 0 [0;0]

CBLev A 0 0.06 0.25 [-0.06;0.18] 0 0 0 [0;0]

CBK A 0 0.06 0.25 [-0.06;0.18] 0 0 0 [0;0]

Mean 0 0.72 1.68 - 0 0 0 -

Summary. The obtained results allow us to positively answer RQ2. In par-

ticular, we can conclude that the best inadequate TSR approaches outperform

adequate ones in terms of reduction in TS size with a negligible e�ect on fault-

detection capability. Adequate approaches seem to be viable competitors of

inadequate ones only in case of the test cases in a given TS are redundant in

terms of code coverage. We also noted that when the CB approach is used in

its adequate variant, it reduces less than the other adequate approaches. It is

worth mentioning that when the CB approach is used as inadequate its instances

perform better than traditional adequate ones (i.e., they reduce the TSs more

with a small e�ect on the fault-detection capability).

5.3. RQ3�Which is the less sensitive inadequate TSR approach?

Descriptive Statistics and Exploratory Analysis. Figure 7 reports the

boxplots for SM. CB instances give rise to less skewed distributions with lower

median values. This is an evidence that CB instances are less sensitive to the

inadequacy level. Among the CB instances, CBCos I and CBJacc I exhibit the

smallest interquartile range, while their median values are slightly worse than
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Table 8: Results from the pairwise comparisons between the best TSR inadequate approaches

and each adequate approach on RS. All the p-values are less than 0.002 (i.e., α value normal-

ized by applying the Bonferroni correction).

2OPTA DGRA GEA GREA GRDA HGSA ILPA CBCos A CBEucl A CBJacc A CBSK A CBHamm A CBLev A CBK A

2OPTI

9.57E-08 1.09E-07 1.09E-07 1.09E-07 1.09E-07 1.09E-07 1.09E-07 2.70E-08 2.70E-08 2.70E-08 2.70E-08 2.70E-08 2.70E-08 2.70E-08

L (0.9944) L (0.9944) L (0.9944) L (0.9944) L (0.9944) L (0.9944) L (0.9944) L (1) L (1) L (1) L (1) L (1) L (1) L (1)

GEI

8.17E-08 1.10E-07 1.10E-07 1.10E-07 1.10E-07 1.10E-07 1.10E-07 2.72E-08 2.72E-08 2.72E-08 2.72E-08 2.72E-08 2.72E-08 2.72E-08

L (1) L (0.9944) L (0.9944) L (0.9944) L (0.9944) L (0.9944) L (0.9944) L (1) L (1) L (1) L (1) L (1) L (1) L (1)

GREI

8.13E-08 1.09E-07 1.09E-07 1.09E-07 1.09E-07 1.09E-07 1.09E-07 2.71E-08 2.71E-08 2.71E-08 2.71E-08 2.71E-08 2.71E-08 2.71E-08

L (1) L (0.9944) L (0.9944) L (0.9944) L (0.9944) L (0.9944) L (0.9945) L (1) L (1) L (1) L (1) L (1) L (1) L (1)

GRDI

8.17E-08 1.10E-07 1.10E-07 1.10E-07 1.10E-07 1.10E-07 1.10E-07 2.72E-08 2.72E-08 2.72E-08 2.72E-08 2.72E-08 2.72E-08 2.72E-08

L (1) L (0.9944) L (0.9944) L (0.9944) L (0.9944) L (0.9944) L (0.9944) L (1) L (1) L (1) L (1) L (1) L (1) L (1)

CBCos I
8.17E-08 9.32E-08 9.32E-08 9.32E-08 9.32E-08 9.32E-08 9.32E-08 2.72E-08 2.72E-08 2.72E-08 2.72E-08 2.72E-08 2.72E-08 2.72E-08

L (1) L (1) L (1) L (1) L (1) L (1) L (1) L (1) L (1) L (1) L (1) L (1) L (1) L (1)

CBEucl I

9.64E-08 1.10E-07 1.10E-07 1.10E-07 1.10E-07 1.10E-07 1.10E-07 2.72E-08 2.72E-08 2.72E-08 2.72E-08 2.72E-08 2.72E-08 2.72E-08

L (0.9944) L (0.9944) L (0.9944) L (0.9944) L (0.9944) L (0.9944) L (0.9944) L (1) L (1) L (1) L (1) L (1) L (1) L (1)

CBJacc I

8.17E-08 9.32E-08 9.32E-08 9.32E-08 9.32E-08 9.32E-08 9.32E-08 2.72E-08 2.72E-08 2.72E-08 2.72E-08 2.72E-08 2.72E-08 2.72E-08

L (1) L (1) L (1) L (1) L (1) L (1) L (1) L (1) L (1) L (1) L (1) L (1) L (1) L (1)

CBHamm I

8.17E-08 9.32E-08 9.32E-08 9.32E-08 9.32E-08 9.32E-08 9.32E-08 2.72E-08 2.72E-08 2.72E-08 2.72E-08 2.72E-08 2.72E-08 2.72E-08

L (1) L (1) L (1) L (1) L (1) L (1) L (1) L (1) L (1) L (1) L (1) L (1) L (1) L (1)

CBK I

8.15E-08 9.29E-08 9.29E-08 9.29E-08 9.29E-08 9.29E-08 9.29E-08 2.71E-08 2.72E-08 2.72E-08 2.72E-08 2.72E-08 2.72E-08 2.72E-08

L (1) L (1) L (1) L (1) L (1) L (1) L (1) L (1) L (1) L (1) L (1) L (1) L (1) L (1)
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Figure 7: Boxplots of the SM values of each inadequate TSR approach.
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Table 9: Some descriptive statistics for SM for each inadequate TSR approach.

SM

Approach median mean SD CI

2OPTI 1,532.54 1,881.68 1,396.78 [1208.45;2554.9]

DGRI 2,972.76 3,402.89 2,276.01 [ 2305.89;4499.89]

GEI 1,523.67 1,892.66 1,452.36 [1192.64;2592.67]

GREI 1,482.25 1,832.32 1,501.46 [1108.64;2556]

GRDI 1,523.67 1,940.81 1,551.37 [1193.07;2688.55]

HGSI 2,972.76 3,473.5 2,269.73 [ 2379.53;4567.48]

CBCos I 977.96 1,068.76 798.35 [ 683.96;1453.55]

CBEucl I 929.93 967.31 861.68 [551.99;1382.63]

CBJacc I 1,160.72 1,188.65 849.22 [784;1602.7]

CBSK I 1,410.26 1,600.57 1,400.23 [925.68;2275.45]

CBHamm I 1,121.73 962.16 851.52 [547.73;1367.19]

CBLev I 804.63 1,000.26 895.8 [568.5;1432.02]

CBK I 1,494.83 1,460.93 1,015.08 [971.67;1950.18]

Mean 1,531.36 1,744.04 1,316.89 -

the median values of CBEucl I and CBLev I. To complete data exploration, we

report some descriptive statistics in Table 9 (mean, median, SD, and CI) for

SM. The reported statistics con�rm the visual inspection.

Hypotheses Testing. We applied the Friedman test to studyNH3SM . We ex-

ploited this non-parametric test because the assumptions to apply linear mixed

model analysis methods were not veri�ed (i.e., residuals were not normally dis-

tributed also by applying data transformations). The results of the Friedman

test allowed us to reject NH3SM since the p-value was equal to 5.04e-11. That

is, the test revealed the presence of a statistically signi�cant di�erence for SM

among the studied inadequate TSR approaches. This outcome justi�es a post-

hoc analysis, i.e., pairwise comparisons among the distributions for SM attained

by applying these approaches to the experimental objects. The obtained results

are reported in Table 10. In particular, the results of the two-sided Wilcoxon

rank-sum test suggest that there is not a statistically signi�cant di�erence among

the CB instances. The results of the post-hoc analysis also indicate a statisti-

cally signi�cant di�erence between the CB instances and DGRI and HGSI. The

e�ect size is large (i.e., L) in all the cases and sign is negative so suggesting that

such a di�erence is in favor of the CB approach. It is also possible to note that
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Figure 8: Linear plots for each inadequate TSR approach built with the mean values for RS

and RF for inadequacy levels ranging in between 5% and 100%. Note that the instances of

the CB approach select, by de�nition, at least one test case and this is why they cannot reach

RS equal to 100%.

HGSI is also signi�cantly worse than the inadequate variants of the traditional

adequate TSR approaches. The e�ect size in these cases is medium (i.e., M).

We further investigate the sensitiveness of the studied inadequate TSR ap-

proaches by using the line-plot in Figure 8. Each line represents the mean

values for RS and RF of each approach on all the experimental objects for in-

adequacy levels ranging in between 5% and 100%. The area underlying each

line�computed by applying the trapezoidal rule�provides an indication on the

average trend of a given approach with respect to its sensitiveness. The lower

the area, the better the approach is. This means that the approach is not very

a�ected by the inadequacy level. From a practical perspective, the tester can

be aware that an approach less sensitive to inadequacy levels slightly a�ects the

size of the reduced TSs with a small negative e�ect (if any) on fault-detection
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Table 10: Results from the pairwise comparisons between inadequate TSR approaches on

SM. We report in bold p-values less than 0.0385 (i.e., α value normalized by applying the

Bonferroni correction).

2OPTI DGRI GEI GREI GRDI HGSI CBCos I CBEucl I CBJacc I CBSK I CBHamm I CBLev I CBK I

2OPTI -
0.041 0.8724 0.6935 0.8267 0.0286 0.0798 0.0327 0.1364 0.4654 0.0352 0.0381 0.4655

M (0.4072) M (0.4017) M (0.3961)

DGRI

0.041
-

0.0382 0.0331 0.041 0.7927 0.0006 0.0003 0.001 0.0086 0.0002 0.0004 0.0086

M (0.3961) M (0.4072) L (0.651) L (0.6953) L (0.6288) L (0.5014) L (0.7064) L (0.6731) L (0.5014)

GEI

0.8724 0.0382
-

0.8609 1 0.0286 0.0903 0.0352 0.1525 0.4478 0.0378 0.0503 0.4478

M (0.3961) M (-0.4183) M (0.4017) M (0.3961)

GREI

0.6935 0.0331 0.8609
-

0.8724 0.0246 0.161 0.05 0.2312 0.5398 0.05 0.0797 0.6197

M (0.4072) M (-0.4294)

GRDI

0.8267 0.041 1 0.8724
-

0.0331 0.0903 0.0352 0.1525 0.4478 0.0378 0.0503 0.4655

M (-0.4072) M (0.4017) M (0.3961)

HGSI
0.0286 0.7927 0.0286 0.0246 0.0331

-
0.0004 0.0002 0.0008 0.0066 0.0002 0.0003 0.0055

M (0.4183) M (0.4294) M (0.4072) L (0.6787) L (0.7175) L (0.6399) L (0.518) L (0.7119) L (0.6898) L (0.5291)

CBCos I
0.0798 0.0006 0.0903 0.161 0.0903 0.0004

-
0.7024 0.6087 0.1607 0.7801 0.8148 0.2548

L (-0.651) L (-0.6787)

CBEucl I

0.0327 0.0003 0.0352 0.05 0.0352 0.0002 0.7024
-

0.4898 0.1347 0.9882 0.8829 0.0955

M (-0.4072) L (-0.6953) M (-0.4017) M (-0.4017) L (-0.7175)

CBJacc I

0.1364 0.001 0.1525 0.2312 0.1525 0.0008 0.6087 0.4898
-

0.3497 0.4625 0.5581 0.4654

L (-0.6288) L (-0.6399)

CBSK I

0.4654 0.0086 0.4478 0.5398 0.4478 0.0066 0.1607 0.1347 0.3497
-

0.1272 0.1832 0.9534

L (-0.5014) L (-0.518)

CBHamm I

0.0352 0.0002 0.0378 0.05 0.0378 0.0002 0.7801 0.9882 0.4625 0.1272
-

0.8829 0.1077

M (-0.4017) L (-0.7064) M (-0.3961) M (-0.3961) L (-0.7119)

CBLev I

0.0381 0.0004 0.0503 0.0797 0.0503 0.0003 0.8148 0.8829 0.5581 0.1832 0.8829
-

0.1216

M (-0.3961) L (-0.6731) L (-0.6898)

CBK I

0.4655 0.0086 0.4478 0.6197 0.4655 0.0055 0.2548 0.0955 0.4654 0.9534 0.1077 0.1216
-

L (-0.5014) L (-0.5291)
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capability. In Table 11, we summarize the results of the area under the line

for a given approach. Each entry of this table indicates the area under the line

for an approach �xed an inadequacy level range. Analyzing the entries for each

approach, we have indications on the inadequacy level that does not produce

increment in the area under the line. This means that by choosing lower in-

adequacy levels, a greater reduction of the TSs could be obtained that do not

negatively a�ect fault-detection capability. The plots in Figure 8 and the re-

sults shown in Table 11 suggest that CBHamm I and CBLev I are the approaches

that allow obtaining a reduction of the TSs of about 80% when choosing an

inadequacy level ranging from 5% to 40%. In this case, these approaches had

fault-detection capability less than 40%. That is, they reduce more than other

approaches and compared with them they lose a lower number of faults. As

for CBEucl I, similar considerations can be done. With regards to this further

analysis, we can observe that the worse approaches are: DGRI, HGSI, and

GRDI.

Summary. The results suggest that the CB approach is less sensitive to in-

adequacy level variations with respect to the other approaches studied in our

experiment. Indeed, the best CB instances in terms of sensitiveness seem to be

CBEucl I, CBHamm I, and CBLev I. Among the inadequate variants of the tra-

ditional adequate TSR approaches, we observed that HGSI and DGRI perform

worse than the others.

5.4. Implications and Future Extensions

There are several foreseeable future directions for our research. Tradition-

ally, adequate approaches have been preferred due to the intrinsic ability to

preserve the test requirements of the original TSs8 (i.e., statement coverage in

our experiment). However, the ever-increasing demand for fast development

and deployment cycles challenges the adequate TSR superiority from the prac-

8Notice that, satisfying all the test requirements does not mean that the fault-detection

capability of the original TS is preserved.
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Table 11: Area values under the line obtained by computed for each TSR approach the mean

values for RS and RF according to di�erent inadequacy level ranges.

Approach

inadequacy level range 2OPTI DGRI GEI GREI GRDI HGSI CBCos I CBEucl I CBJacc I CBSK I CBHamm I CBLev I CBK I

100-95 144.1 111.19 145.92 143.58 141.81 109.43 9.77 10.82 9.49 7.99 10.49 23.71 10

100-90 301.52 276.09 317.72 315.02 314.18 286.24 21.5 34.58 18.17 49.01 34.55 66.31 35.2

100-85 419.44 461.32 446.78 444.39 445.28 466.3 69.2 102.36 57.74 128.18 102.82 127.74 76.78

100-80 575.29 652.12 593.9 598.26 611.05 643.81 151.39 171.94 161.66 204.32 183.34 236.94 133.83

100-75 738.1 873.87 758.99 782.61 778.79 860.64 252.54 366.87 255.99 287 378.57 394.41 317.78

100-70 851.97 1,111.25 895.11 949.97 951.4 1,042.49 320.31 497.67 357.44 383.66 497.7 535.41 425.38

100-65 1,046.47 1,348.27 1,062.79 1,046.86 1,083.71 1,307.14 449.4 661.12 358.01 488.2 653.67 695.26 600.42

100-60 1,143.62 1,599.25 1,062.79 1,130.7 1,240.61 1,555.59 540.34 746.22 596.3 632.13 750.49 766 712.12

100-55 1,246.1 1,911.97 1,281.7 1,254.7 1,305.7 1,822.92 540.34 747.24 596.3 632.13 750.49 766 863.16

100-50 1,344.52 2,252.84 1,369.11 1,340.38 1,402.66 2,152.61 767.34 747.24 807.22 916.12 872.92 883.39 995.91

100-45 1,400.68 2,411.32 1,471.54 1,438.5 1,530.78 2,232.1 811.8 875.66 853.13 1,074.1 889.57 895.82 1,172.62

100-40 1,505.99 2,627.37 1,539.7 1,498.69 1,598.94 2,434.79 850.17 892.3 903.11 1,256.24 910.7 919.9 1,251.768

100-35 1,596.03 2,907.55 1,612.25 1,573.79 1,671.49 2,699.34 916.1 913.44 960.71 1,359.79 910.7 919.9 1,312.93

100-30 1,614.5 3,073.79 1,653.63 1,608.7 1,712.86 2,856.63 937.84 913.44 994.92 1,451.23 910.7 919.9 1,379.08

100-25 1,638.32 3,258.67 1,707.43 1,660.83 1,766.66 3,029.47 972.07 913.44 1,064.4 1,523.83 910.7 919.9 1,405.32

100-20 1,640.42 3,373.64 1,730.28 1,683.14 1,789.51 3,136.06 972.65 913.44 1,082.23 1,559.19 910.7 919.9 1,418.94

100-15 1,640.42 3,437.33 1,739.77 1,692.35 1,799.01 3,195.37 975.73 913.44 1,082.23 1,559.19 910.7 919.9 1,420.54

100-10 1,640.42 3,507.76 1,739.77 1,692.35 1,799.01 3,260.69 975.73 913.44 1,082.23 1,559.19 910.7 919.9 1,420.54

100-5 1,640.42 3,565.37 1,739.77 1,701.87 1,799.01 3,314.28 975.73 913.44 1,082.23 1,559.19 910.7 919.9 1,420.54

tical standpoint. In the following, we summarize our point-of-view and discuss

implications for our results.

- Inadequate TSR approaches can be considered competitors of adequate ones

although they relax constraints on test requirements (i.e., statement coverage).

This is relevant for the researcher interested in further studying this point, but

it is even more relevant for the practitioner. In fact, the practitioner can adopt

inadequate TSR approaches being conscious that they will substantially gain in

reduction in TS size with a small e�ect on fault-detection capability.

- The results of our experiment help a more informed decision on the approaches

to be chosen to perform TSR during regression testing. The practitioner might

be interested in our results because she can choose the approach being conscious

of the e�ects that the CB approach and those traditional have on size, code

coverage, and fault-detection capability of the reduced TSs. In this regard, we

also performed an analysis of the time these approaches need to be executed

(see Appendix B). For example, if the practitioner is interested in reducing the

44



time to execute TSR, as well as regression testing, at the cost of a small loss

in fault-detection capability, CBCos might be the choice. On the other hand,

if the practitioner is interested in maximizing fault-detection capability and

reducing the time to execute a TSR approach, then ILPA and CBK A might be

the right option.

- Among the inadequate TSR approaches (�xing an inadequacy level at 95%)

the CB instances (except CBSK I and CBLev I) and 2OPTI and GEI reach a

good compromise between reduction in fault-detection capability and reduction

in the size of the original TS. These approaches reduce about 30% (on average)

the original TS with a negligible e�ect on the fault-detection capability. This

outcome is relevant for the practitioner because she can reduce the time to

perform regression testing with a small e�ect on fault-detection capability. This

is also interesting for the researcher in studying how to reduce more TS size

without a�ecting fault-detection capability. For example, the researcher could

be interested in studying di�erent clustering algorithms to group test cases and

di�erent test requirements and possibly their combination. Our results seem to

justify further research on this point.

- We observed that the experimental objects a�ect less the reduction in fault-

detection capability in the case of CB instances (with the only exceptions of

CBSK I and CBLev I). This outcome is clearly relevant for the practitioner be-

cause it seems that CB instances are less sensitive to the systems and their TSs.

The researcher could be interested in studying why some dissimilarity measures

perform better than the other (e.g., Hamming distance vs. Levenshtein dis-

tance). A �rst step in this direction has been performed analyzing the diversity

of the reduced TSs produced by the inadequate approaches. However, further

research is needed on this matter.

- CB instances are less sensitive to the inadequacy level. That is, small varia-

tions in the inadequacy levels slightly a�ect the reduction in both TS size and

fault-detection capability. This result is clearly relevant for the practitioner

because she can be aware that small inadequacy level variations could reduce
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the time to perform regression testing with a slight e�ect on the fault-detection

capability of the reduced TSs. This outcome is also relevant for the researcher

interested in further studying approaches less sensitive to inadequacy level. In

fact, our study justi�es further research on the relation between sensitiveness

and the goodness of inadequate TSR approaches.

- The use of the studied approaches does not require a complete and radical

change process within a software company. This is relevant for the practitioner.

In fact, the di�usion of a new technology/method is made easier when empirical

evaluations are performed and their results show that such a technology/method

solves actual issues [45]. This is why the results of our study could promote the

transferring of the developed technology to the software industry. This is of

particular interest for the practitioner, while the researcher could be interested

in identifying opportunities (e.g., industrial case studies and experiments) to

speed up this process.

6. Final Remarks

We investigate several instances of the CB approach and also compare them

with well-known traditional adequate TSR approaches and their inadequate

variants. The CB approach groups test cases that are similar. Test cases are

similar if they cover nearly the same statements, namely, they satisfy nearly

the same test requirements. To estimate such a similarity, we considered several

measures. A hierarchical agglomerative clustering is applied to group test cases.

A reduced TS will contain a test case for each of the identi�ed clusters. For

each cluster, the approach chooses the test case that covers the largest number

of statements. We founded our investigation on a public dataset. The most

important take-away results are: (i) there is not an inadequate TSR approach

that performs the best when �xing an inadequacy level even if the CB instances

seem more promising; (ii) the CB instances and a few traditional inadequate

approaches outperform adequate ones in terms of reductions in TS size with

a negligible e�ect on their capability in the fault-detection; and (iii) the CB
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instances are less sensitive than other inadequate TSR approaches to inadequacy

level.

Appendix A. Further Analysis on Reduction in Test Suite Size and

Reduction in Fault-detection Capability at Di�erent In-

adequacy Levels

In Figures A.9 and A.10, we show the boxplots of the RS and RF values

of each inadequate TSR approach when varying inadequacy levels from 60%

to 95%. As for RF, we can observe that using 95% as inadequacy level all

the approaches allow detecting nearly the same faults as the original TSs�all

the boxes are lines crossing the zero. This inadequacy level allows obtaining a

good average reduction of the original TSs equal to 25.7% (see Table 4). When

lowering the inadequacy level, the reduction in TS size improves at the cost of a

loss in fault-detection capability that is even more clear for the traditional TSR

approaches (see Figure A.9 and Figure A.10, respectively). For example, if we

consider an inadequacy level equal to 90%, we can observe that, while the TSR

approaches reduce the size of TSs more as compared with an inadequacy level

equal to 95%, their reduction in fault-detection capability gets worse. Summing

up, 95% inadequacy level allows obtaining a good reduction of the TSs with a

fault-detection capability very close to that of the original TS.

Appendix B. Further Analysis on Execution Time

In Table B.12, we report some descriptive statistics (i.e., median, mean, SD,

and CI) about the time needed to apply the adequate TSR approaches to the

experimental objects. We focused on the adequate variants because given an

approach its inadequate variant is less computation expensive than its adequate

counterpart. Considering only adequate approaches allows us to include also

ILPA in the analysis presented in this section. To compute the time needed to

reduce a TS does not include the time to gather coverage information because it

is the same for each TSR approach studied. The experiment has been conducted
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Figure A.9: Boxplots of the RS values of each inadequate TSR approach when varying inad-

equacy levels from 60% to 95%.
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Figure A.10: Boxplots of the RF values of each inadequate TSR approach when varying

inadequacy levels from 60% to 95%.
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Table B.12: Some descriptive statistics for the execution time (expressed in milliseconds) of

each adequate TSR approach.

Execution Time

Approach median mean SD CI

2OPTA 826 19,469.74 39,897.74 [239.64;38,699.83]

DGRA 546 4,067.42 6,941.87 [721.55;7,413.29]

GEA 525 5,798.95 10,805.93 [590.65;11,007.24]

GREA 564 5,886.84 11,010.65 [579.88;11,193.81]

GRDA 504 5,781.42 10,762.39 [594.11;10,968.73]

HGSA 349 2,815.11 4,704.79 [547.47;5,082.74]

ILPA 72 176.74 196.58 [81.99;271.49]

CBCos A 102 362.58 450.36 [145.51;579.64]

CBEucl A 126 335.88 384.69 [150.44;521.27]

CBJacc A 36,197 70,090.68 86,374.88 [28,459.33;111,722.04]

CBSK A 68,999 157,796.79 194,949.13 [63,834.32;251,759.26]

CBHamm A 86 343.3 436.18 [133.06;553.53]

CBLev A 13,918 24,843.53 29,529.42 [10,610.8;39,076.25]

CBK A 109 271.74 305.59 [124.45;419.03]

Mean 8,780.21 21,288.62 28,339.3 -

with a PC equipped with 2.40 GHz Intel Core i7 as CPU, 12 GB of RAM, and

Windows 10 (64-bit) as the operating system.

Descriptive statistics suggest that one of the faster approaches is ILPA. How-

ever, we can observe a small di�erence among this approach and four out seven

instances of the CB approach: CBCos A, CBEucl A, CBHamm A, and CBK A.

Among these instances, the best instance seems to be CBK A because the me-

dian and mean values and CI are lower. The remaining CB instances (i.e.,

CBJacc A, CBSK A, and CBLev A) are also slower than the studied traditional

TSR approaches. It is also worth mentioning that the traditional approaches are

all comparable to one another with the only exception of 2OPTA that exhibits

higher values for median and mean. Also, the CI is worse for 2OPTA.
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