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Abstract 
 

Thanks to the revisit property of the Earth observation satellites, a huge amount of multitemporal (MT) 

images are now available in archives. Such kind of images allows us to monitor land surface changes in 

wide geographical areas according to both long term (e.g., yearly) and short term (e.g., daily) observations. 

Evolution on the acquisition sensor technology has resulted in the availability of MT and multispectral 

satellite images with: i) Very High spatial Resolution (VHR) (e.g., QuickBird, WorlView-2) and, ii) very 

high temporal and high spatial resolutions (e.g., Sentinel-2 (S2)). Images acquired by such sensors allow 

for a detailed geometrical and temporal analysis when compared to medium or high spatial and temporal 

resolution data. Nevertheless, factors like satellite revisit period, the possible competing orders of different 

users on the satellite pointing (for VHR images only), the limited life of a satellite mission, and weather 

conditions can lead to: i) lack of enough images acquired by a single sensor to perform MT analysis (VHR 

case), and ii) lack of regular and continuous Time Series (TS) to perform short term MT analysis (very high 

temporal and high spatial resolution sensors case) at the level of small objects. Both problems arise from 

the application requirements on temporal resolution and are being of particular interest in the last years. 

Two main solutions to the above mentioned problems can be considered: i) use of multisensor VHR optical 

images to replace the missing acquisitions when a single VHR sensor is considered and; ii) development 

of regression techniques to reconstruct regular and continuous TS from both high temporal and very high 

temporal resolution sensors. In the literature, most of the MT analysis techniques have been designed to 

work with: i) VHR images acquired by single sensors, and ii) multispectral images acquired by high spatial 

resolution sensors, but with low temporal resolution or very high temporal resolution, but with low spatial 

resolution. Therefore, the effectiveness of existing techniques when applied to the complex MT problems in 

both VHR multisensor and very high temporal resolution images is reduced. Accordingly, the goal of this 

thesis is to develop novel techniques for the automatic analysis of MT multispectral satellite images such 

that images acquired by multisensor VHR and very high temporal resolution sensors can be analyzed. 

The thesis provides four main novel contributions to the state-of-the-art. The first three contributions 

address the problems arising from the analysis of multisensor VHR multispectral images, whereas the 

fourth one deals with the problems faced while working with long TS acquired by sensors with high spatial 

and very high temporal resolutions. The first contribution presents an approach for unsupervised CD in 

multisensor MT VHR images, where the possible sources of noise/changes are studied in detail and a strat-

egy to mitigate them at the levels of pre-processing and feature extraction is presented. In the second con-

tribution, further attention is paid to the homogenization step and a method to generate homogeneous VHR 

TS focused on the homogenization of intrinsic spectral induced differences is presented. The third contri-

bution further focuses on the detection of multiple changes, while relaxing the knowledge on the statistical 

distribution of the classes. To this aim, a method based on iterative clustering and adaptive thresholding is 

implemented. Comprehensive qualitative and quantitative experimental results, with real VHR multisensor 

datasets, confirm the effectiveness of the proposed approaches and led to the development of 3 contributions 

that allow to perform unsupervised bi-temporal CD by means of MT multisensor VHR images. 

In the fourth contribution, an approach to handle images acquired by both high spatial and very high 

temporal resolution sensors is presented. To this aim, spectral, spatial and temporal information of S2 

satellite images TS is exploited in different phases and in a fully automatic way, allowing for the derivation 

of different relevant products in the precision agriculture field. Comprehensive qualitative and, to some 

extent, quantitative experimental results confirm the capacity of the method to automatically exploit TS 

containing both high spatial and very high temporal resolution information. The proposed method can be 

easily extrapolated for other applications and other sensors with similar characteristics to those of S2. 

 
Keywords. Remote Sensing, Multispectral Images, Multitemporal Images, Very High Spatial Resolution, 
Change Detection, Time Series, Multisensor, Homogenization, Very high temporal resolution. 
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Chapter 1 

 

1. Introduction 

 
In this chapter the basic concepts of remote sensing systems and multitemporal analysis in multispectral 

images are briefly overviewed. Two challenging problems in the context of multitemporal analysis are in-

troduced: i) performing change detection in multisensor multispectral Very High Resolution (VHR) images 

and ii) analysing long-dense-discontinuous high temporal resolution time series. Then, the main motiva-

tions, objectives and the novel contributions of this thesis are presented. Finally, the whole structure and 

organization of the thesis are described. 

1.1. Analysis of Multitemporal Multispectral Satellite Images 

In the last years, a strong interest has been devoted to the development of novel methodologies for mul-
titemporal information extraction and analysis. This is demonstrated by the sharp increase in the number of 
papers published in the major remote sensing journals, the increased number of sessions in international 
conferences and the increased number of projects related to multitemporal images and data. 

The main reasons for this are: i) the increased number of satellites with higher revisit period that allow 
the acquisition of either long time series or frequent bi-temporal images, ii) the increased number of satel-
lites acquiring images with Very High spatial Resolution (VHR) that allow for the study of changes at the 
level of small and single objects (e.g., IKONOS, QuickBird, GeoEye), iii) the new policy for data distribu-
tion of archive data that makes possible a retrospective analysis on large scale (e.g., the Landsat Thematic 
Mapper archive), and iv) the new policies for the distribution of new satellites data (e.g., ESA Sentinel). 

Multitemporal information extraction methodologies differ because of both the specific investigated ap-
plication and the kind of data available. Accordingly, different kinds of multitemporal products are more 
suitable to be considered in certain applications rather than others. The most widely addressed applications 
are related to products obtained through multitemporal classification (for change-detection analysis and 
detection of land-cover transitions) and trend analysis of temporal series of data (for change identification 
or forecasting/prediction). 

According to an information theory perspective, the information in multitemporal data is associated with 
the dynamic of the variables that are measured, which is linked with the changes occurred between succes-
sive acquisitions. Thus, the most interesting applications are related to the classification/integration of mul-
titemporal data/images for the detection of changes. We can distinguish among abrupt changes that occur 
in a short time (e.g., the ones caused by forest fires, floods and earthquakes) which can be appreciated by 
comparing bi-temporal images; or medium/long term changes, which can be appreciated only by comparing 
long time series of images (e.g., desertification, urban growth, vegetation monitoring). The above-men-
tioned applications can be addressed by using images acquired at different times by: i) the same sensor; ii) 
different sensors with similar properties (multi-sensor optical images); iii) different sensors with different 
properties (multi-sensor optical and radar images). 

Assuming a change-detection perspective, the main methodological approaches proposed in the literature 
for the analysis of changes in multi-temporal remote-sensing images can be categorized in relation to the 
use of bi-temporal data or time series. Accordingly, three groups of methods for multitemporal images 
analysis can be considered: i) Unsupervised bi-temporal data analysis methods; ii) Supervised/semi-super-
vised bi-temporal data analysis methods; and iii) Time series analysis methods. 

1. Unsupervised Bi-Temporal Data analysis: includes algorithms where multitemporal information is 
extracted by means of integration of multitemporal features/images. Multitemporal information is 
associated with differences in the spectral signatures of the land covers. After multitemporal 
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comparison the distinctions between changed and unchanged areas (i.e., each pixel is associated 
with one of two possible classes: the class of changed patterns or the class of unchanged patterns) 
is performed mainly by unsupervised decision approaches. Sometimes land-cover transitions can 
be distinguished, but without explicit labelling. 

2. Supervised/Semi-Supervised Bi-Temporal Data analysis: includes algorithms that elaborate the 
multitemporal signature performing classification at the level of decision. Approaches in this 
category are mainly supervised or semi-supervised. They explicitly identify land-cover classes in 
each considered time instant and land-cover transitions are labelled accordingly (these methods can 
also be used when there are no changes between images for generating land-cover maps). 

3. Time series analysis: the algorithms for time series analysis depend on the application perspective 
and the temporal scale. At very fine temporal resolution, changes such as the ones occurred on 
agricultural or urban areas become interesting and can be studied, whereas at lower temporal 
resolution, changes such as desertification/revegetation can be investigated. In both cases, a proper 
sampling of time series is required. Nevertheless, factors like atmospheric conditions or revisit 
period of the satellites can lead to the availability of irregular and non-continuous time series. 
Therefore, techniques that aim at building/studying adequate time series by means of gap filling 
and curve fitting methods, warping methods and by using multi-sensor and multi-source data can 
be found in the literature. Once proper time series are available, the analysis over different trends, 
at pixel or region levels, can lead to the classification/detection of intra-annual or seasonal changes 
and inter-annual changes. 

Within each category, sub-categories can be identified according to the strategy for extracting multitem-
poral information. Figure 1.1 shows the tree of multitemporal analysis approaches, for bi-temporal data and 
time series. It is worth noting that this is a possible categorization of the methods in the literature. However, 
alternative categorizations could be considered. 

 

Figure 1.1. Tree of multitemporal data analysis approaches. 

Methods in the tree should be implemented considering the characteristics of the kind of data. However, 
in general the overall block scheme of multitemporal analysis is the one in Figure 1.2. Multitemporal anal-
ysis for change-detection commonly assumes that images X1, …, XN acquired over the same geographical 
area at different times are accurately pre-processed in order to mitigate differences that do not depend on 
real changes occurred on the ground. In other words pre-processing aims at making multitemporal images 
as similar as possible to each other. Pre-processing usually includes radiometric corrections (absolute or 
relative normalization [1]–[6]), geometric corrections (co-registration, ortho-rectification, geo-referencing 
[7]–[10]), etc. 

The first pre-processing step aims at making the multitemporal images radiometrically comparable. Ide-
ally, a ground object should show the same brightness values if no change has occurred. In reality, measured 
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intensity values are sensitive to differences in acquisition geometry and environmental conditions (e.g., 
atmospheric conditions for optical passive systems). Radiometric conditions can be influenced by many 
factors such as imaging seasons, electromagnetic source incidence angles, meteorological conditions, etc. 
Acquisition geometry, such as sensor viewing angle, local incident angle, and solar orientation have strong 
effects on the acquired images. Atmospheric conditions have a serious impact on the measured intensity 
when using optical remotely sensed images. Absolute or relative normalization is often used to reduce this 
impact and make the multitemporal optical images comparable. Absolute normalization converts digital 
numbers to scaled surface reflectance and requires information about the atmospheric condition during 
image acquisition, which is not always easy to obtain. Relative normalization consists of the linear trans-
formation of the spectral characteristics of the image to be corrected to match those of a reference image. 

The second pre-processing step aims at making the multitemporal images geometrically comparable. This 
process ensures that corresponding pixels in the multitemporal images refer to the same geographic location 
on the ground and is referred to as geometric correction step. Geometric corrections are accomplished by 
image-to-image registration (co-registration) and/or image ortho-rectification in mountainous areas [11], 
and in urban areas for VHR images. Co-registration is often carried out by manually selecting ground con-
trol points. Automatic techniques, with different levels of success, also exist [12]–[17]. Co-registration is 
particularly difficult when the analysis involves high spatial resolution images, or when the images contain 
high frequency components (e.g., edges and linear features). Inaccurate co-registration is one of the main 
sources of errors in multitemporal analysis, and can lead to a significant degradation in accuracy [18]–[21]. 

 
Figure 1.2. Overall block scheme of multitemporal multispectral data analysis. 

Once pre-processing is completed, data analysis of multitemporal images can be conducted in different 
ways, resulting in different products (see Figure 1.2). Of particular interest is the use of unsupervised meth-
ods where, in general, the same approaches used for bi-temporal data can be used for multitemporal and 
time series data. Here, the aim is to identify changes and/or trends without the need of any ground reference 
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data. This is usually achieved by integrating multitemporal images and generating new features that high-
light multitemporal information. These features are often referred to as change or trend indices since they 
are employed to highlight changes occurred in image pairs (�" and �# acquired over the same area at dif-
ferent times 2" and 2#) or time series (�", ⋯ , �4 images acquired over the same area at different times 2", ⋯ , 24). Change/trend indices are the main input to unsupervised change-detection or time series analysis 
procedures that generate maps without the use of ground reference information. Figure 1.3 (a) and (b) sum-
marize the basic processing chain for multitemporal information integration and extraction (at both bi-
temporal and time series levels), where the high level process is basically the same with the exception of 
the amount of images used as input. Due to their unsupervised nature, this kind of approaches are widely 
employed since, at an operational level, multitemporal ground reference information is often not available 
(e.g., the user is interested to investigate a phenomenon occurred in the past for which no information was 
collected), costly (i.e., it requires in situ surveys by experts with proper equipment) or impossible (i.e., 
ground truth is required over a very large or difficult to access area) to be collected. 

Unsupervised change detection approaches mainly distinguish: i) between changed and unchanged pix-
els, for bi-temporal and time series data and; ii) between long term directional trend, seasonal and system-
atic movements; and additional irregular, unsystematic short term fluctuations, for time series data only. In 
the former case, some techniques allow identifying different kinds of changes as well. However, they do 
not give any explicit label to land-cover transitions. In the final map, each pixel is associated with one 
among the following classes: no-change (1�) or change (Ω�). In the case that land-cover transitions can be 
distinguished, the change class can be further detailed in K kinds of changes as Ω� 6 71�8 , 1�9 , … , 1�;< 
[22]. In the latter case, and depending on the research focus, rather the long term trend, seasonal, or short 
term fluctuations can be of special interest (or all three simultaneously) [23]. Climate scientists are espe-
cially interested in long term trends (e.g., land surface temperature, snow cover duration, sea level rise), but 
short term fluctuations are often relevant for an immediate response in managing natural resources (e.g., 
plant disease, fires). Such short term fluctuations (sometimes also called residuals) are the remaining com-
ponent if the trend and seasonal components are removed from a time series. 

Several mathematical operators can be applied to extract a change/trend index. The choice of the specific 
mathematical operator gives rise to different kinds of techniques [22]–[29]. Change/trend indices by 
bi/multi-temporal image comparison highlight information associated with changes in the spectral signa-
ture. In many occasions the limited availability of data forces the generation of a change/trend index by 
integrating/comparing an image pair or time series acquired with different spatial and spectral resolutions 
(multi-sensor data), or with different technologies, SAR and optical data (multi-source data). In order to 
extract the change/trend information after comparison, a proper unsupervised image analysis technique 
should be adopted. 

  
(a) (b) 

Figure 1.3. Block scheme of a standard change detection approach based on integration/extraction at feature level 
for (a) bi-temporal images and (b) multitemporal and time series images. 



Introduction 

 

 5

1.2. Motivation and Objectives of the Thesis 

For decades, Earth Observation (EO) satellites have provided a unique way to observe our living planet 
from space. Thanks to the revisit property of the EO satellites, a huge amount of multitemporal images are 
now available in archives and continue to be acquired. This allows us to monitor land surface changes in 
wide geographical areas according to both long term (e.g., yearly) and short term (e.g., daily) observations. 
A comprehensive understanding of the global change is necessary for sustainable development of human 
society. As one of the interesting subtopics in global change study, detection of anthropogenic and natural 
impacts on land surface is essential for environmental monitoring [30]. Change Detection (CD) and tem-
poral evolution investigation are among the hottest remote sensing application topics, which are continu-
ously attracting attention in remote sensing community. Due to the improvement of both acquisition sensor 
technology and data processing algorithms, it is possible to get an accurate and automatic identification and 
extraction of features for understanding the environmental changes occurring on the ground due to natural 
and anthropogenic interactions. 

The technological evolution has resulted in the availability of multitemporal and multispectral satellite 
images with: i) Very High spatial Resolution (VHR) at relatively low temporal resolution (e.g., QuickBird, 
WorlView-2, GeoEye, Pleiades), and ii) very high temporal resolution at high spatial resolution (e.g., Sen-
tinel-2). These images allow a detailed geometrical and temporal analysis when compared to medium or 
high spatial and temporal resolution data [31]–[34]. Such detailed geometrical and temporal information is 
of greatest relevance, especially in cases where: i) rapid and precise impact assessment after a catastrophic 
event is crucial for initiating effective emergency response actions, ii) detailed information, at single object 
level, is required to study the behavior of vegetation and, ii) highly frequent and detailed information is 
required to follow long time events with high speed of change. Nevertheless, factors like satellite revisit 
period, the possible competing orders of different users on the satellite pointing (for VHR images only), 
the limited life of a satellite mission, the weather conditions and the intrinsic characteristics of the satellite 
(for very high temporal resolution images only) can lead to: i) lack of enough images acquired by a single 
sensor to perform multitemporal analysis (in the case of VHR images) [35], [36], and ii) lack of regular and 
continuous time series to perform short term multitemporal analysis (in the case of very high temporal 
resolution images) [29], [37], [38]. The former issue has an impact from the application perspective, where 
no continuous analysis can be performed. The latter one has an impact from both the methodological and 
application perspectives. From the methodological part, state-of-the-art methods have focused on managing 
data with regular and continuous acquisitions (only) coming from very high temporal resolution images, 
with low spatial resolution. As a consequence, from the application part, data are usually analyzed as the 
sum of many small objects, but seldom at small/single object level. 

Regarding the lack of enough images acquired by a single VHR sensor to perform continuous multitem-
poral analysis, since a considerable number of satellites with VHR sensor on board, have been launched in 
the last decades, one possible solution could be to build time series (TS) by considering images acquired 
by different multispectral VHR sensors. The definition of such multisensor TS increases the probability to 
have sequences of multitemporal images with a proper time sampling (as per application requirements) but, 
at the same time, poses some challenges. In addition to real changes occurred on the ground, multisensor 
multitemporal images are affected by differences induced by the acquisition conditions (e.g., atmospheric 
conditions and acquisition system). Some of the differences in atmospheric conditions (e.g., cloud cover), 
and the differences in acquisition system (e.g., view angle and seasonal effects) affect single-sensor mul-
titemporal image processing as well [30]. Whereas the system induced differences due to the type of sensor 
and the sensor acquisition modes are specific issues posed by multisensor TS that result in spectral and 
geometric differences (additional to the ones expected from real changes occurring on the ground). There-
fore, such differences reduce the effectiveness of CD state-of-the-art methods where the assumption is that 
multitemporal images are acquired by the same sensor and under similar acquisition conditions. Thus, spec-
tral and geometric differences are only expected when real changes are present in the study area. Such 
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observations hold for both physical (reflectance) and non-physical (Digital Numbers (DN)) quantities, mak-
ing information non-homogeneous and thus non-comparable when using images acquired by different sen-
sors [39], thus also increasing CD error. An appropriate multitemporal image homogenization is therefore 
required to reduce both spectral and geometrical differences, and to ensure that differences in the multitem-
poral images can be associated to real changes occurred on the ground. Furthermore, definition of CD steps 
and methods that take into account the intrinsic characteristics of VHR images are also required. 

Regarding the lack of regular and continuous time series to perform short term multitemporal analysis, 
solutions to get algorithms suitable to handle irregular and non-continuous TS depend on the application 
itself. To give some examples, the perspective changes when the topic of study goes from: i) forest 
(big/large land cover with slightly small variability) to agriculture (small objects (crop field) with high 
variability) and; ii) snow (extensive land cover with constant and known variability) to fire (small or big 
event with unknown appearance or variability). Applications related to big/extensive land covers, can be 
easily addressed with TS acquired by sensors such MODIS or sometimes even Landsat series. Whereas the 
ones involving small objects are limited by the low spatial resolution offered by those sensors. Therefore, 
of particular interest, to contribute to state-of-the-art, are the applications involving small objects with very 
high variability, such as the agricultural monitoring [29], [37], [38], [40]. TS of vegetation indices derived 
from satellite spectral measurements are usually used to gain information on seasonal vegetation develop-
ment. Independently of the spatial resolution of data, TS of vegetation indices, such as the normalized 
difference vegetation index (NDVI), are known to be hindered by noise arising from varying atmospheric 
conditions and sun-sensor-surface viewing geometries [41]–[43]. Off-nadir viewing and low sun zenith 
angles can also cause a similar effect [42]. Such problems contribute to render the TS acquired by very high 
temporal resolution sensors even more irregular and discontinuous. The literature contains reference to a 
broad variety of strategies designed to reduce the impacts of both missing and noisy acquisitions, based on 
smoothing and gap filling algorithms [29], [37], [38], but none of them account for the study at the level of 
small objects nor for irregular acquisitions. Therefore, there is a clear need to develop and/or adapt state-
of-the-art methods: i) to render the very high temporal resolution acquisitions regular and continuous and; 
ii) to properly analyze long and dense TS with high spatial resolution. 

In summary, in this thesis, the main objective is to define advanced methods to solve the problems of CD 
in multitemporal multispectral images and TS analysis by focusing in two important questions: 

1. How to perform unsupervised CD by means of multitemporal multisensor VHR images?; 
2. How to automatically exploit the TS containing both high spatial and very high temporal resolu-

tions information?. 

1.3. Novel Contributions of the Thesis 

Based on the main motivations and objectives of the thesis, attention is focused on the development of 
advanced techniques for unsupervised and automatic analysis of multitemporal multispectral images. Re-
search activities are mainly carried out to develop novel and robust techniques for addressing the considered 
challenging problems while working with: i) multisensor VHR images and; ii) high spatial and very high 
temporal resolution images. The main contributions and novelties of the thesis are briefly reported in the 
next: 

i. An approach for unsupervised change detection in multitemporal VHR images acquired by differ-

ent multispectral sensors (multisensor optical images). 

Here, inspiration is taken from the framework for the design of CD systems for VHR images presented 
in [30]. From there, an approach for unsupervised CD in multisensor multitemporal VHR images is devel-
oped. The proposed approach exploits some of the concepts in [30] and use them to first analyze the sources 
of the non-homogeneous properties of multitemporal images acquired by different VHR multispectral sat-
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ellite systems in the context of CD. Then it extends and integrates these concepts with a strategy for miti-
gating the non-homogeneous properties effects at both pre-processing and feature extraction/change detec-
tion level. The main steps of the proposed approach are: i) mitigation of differences induced by the use of 
VHR multitemporal images acquired by different sensors; and ii) detection of multiple changes occurred 
on the ground by means of high level physical features. The first step is conducted by defining homogeni-
zation procedures that address radiometric, spectral and geometrical differences. Thus, multitemporal mul-
tisensor images become more comparable (i.e., more homogeneous) across time. Homogenization is further 
improved by extracting proper features from multisensor images that allow for an effective multitemporal 
comparison across sensors at a given level of abstraction. Features are designed to detect multiple changes 
relevant to the user. Although the approach is general, here we concentrated on the selection of high level 
features suitable to detect changes in vegetation and urban areas. Linear/Orthogonal transformation features 
were selected with no loss of general validity for the detection step. They are shown to be effective for 
representing the multisensor information in a coherent physical way versus the considered sensor, but other 
features can be considered as well. The second step is conducted by means of Change Vector Analysis 
(CVA) in spherical coordinates, where the changes are represented by magnitude and direction variables. 
Separation among the changes is carried out in an automatic way. In the case of the magnitude variable, 
changed and non-changed pixels are separated by means of a Bayesian decision rule [44]. Whereas along 
direction variables, an adaptation of the Two-Stage Multithreshold Otsu (TSMO) method [45] is used. 

ii. Generation of homogeneous VHR time series by non-parametric regression of multisensor mul-

titemporal images. 

Coming from the contributions presented in (i), it was seen that while working with multisensor mul-
titemporal VHR images, further attention should be paid to the homogenization step. In this contribution, 
a method for generating homogeneous VHR TS focused on the homogenization of intrinsic spectral differ-
ences was faced. It is based on non-parametric regression and aims at generating consistent multisensor TS 
showing a homogeneous spectral representation. To achieve this goal, a model that represents the spectral 
relationship between two sensors (�" and �#) is derived. For the derivation of that model, selection of in-
variant Radiometric Control Set Samples (RCSS) is required [36], [46], [47]. The proposed method jointly 
exploits the capabilities of Absolute Radiometric Normalization (ARN) [48] and Relative Radiometric Nor-
malization (RRN) [49] approaches, by adapting them to the complexity of multisensor and VHR images. 
In the first step, a multisensor homogenization is carried on by transforming DN to physical values (ARN) 
and by transforming the multisensor images into a common spatial resolution, by means of state-of-the-art 
methods [14], [15], [17], [35], [39]. The second homogenization step is based on RRN approaches and 
performs a non-parametric regression (prediction) by means of a model derived from invariant RCSS. The 
model itself is derived by means of a machine learning algorithm i.e., Artificial Neural Networks (ANN) 
or Support Vector Regression (SVR). Because of the lack of one-to-one correspondence among VHR mul-
tisensor bands, spectral information appears to be non-comparable. Thus, a fusion of �" and �# bands must 
take place during RRN step. Such fusion helps to guarantee the selection of radiometrically stable features 
(because of a one-to-one correspondence), which in turn results in an easier selection of RCSS. The selec-
tion of the reliable RCSS is based on a CD-driven approach that takes, as input, features derived from the 
fused bands and is fully automatic. To demonstrate the effectiveness of the homogenization procedure, 
multitemporal information is extracted, specifically by applying binary CD by means of CVA. 

iii. An approach to multiple change detection in VHR optical images based on iterative clustering and 

adaptive thresholding. 

In order to separate changed from unchanged samples, a magnitude-direction space (derived from CVA) 
is widely used in literature. In such space, sub-optimal solutions are often employed that identify decision 
thresholds along the magnitude and direction independently [50]–[52]. Such methods rely on a priori 
knowledge of both class statistical models and expected number of changes [50]–[52]. Furthermore, no-
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change class is usually assumed to be a single class [50], [53]–[56], whereas change class is assumed and 
modeled as multiple change classes [51], [57]. Two main limitations arise from the above-mentioned as-
sumptions. The first one is given by the definition of the threshold value along the magnitude, which is 
defined by considering all kinds of change as a single large metaclass [57]. This implies that the threshold 
along the magnitude is defined according to the average properties of the different kinds of change and does 
not gather the peculiarities of each kind. The second one is given by the definition of different thresholds 
along the direction variable, which is usually defined by assuming a known statistical distribution and num-
ber of classes (usually as a single class) [50]–[52]. Both hypothesis are usually satisfied when low and 
medium spatial resolution images are considered, but are hard to be when working with VHR optical im-
ages. Thus, we propose an approach to multiple CD, which jointly exploits the histogram distribution of 
the magnitude and direction variables in (hyper-) spherical coordinates. The approach is distribution free 
(for the change class) and uses adaptive thresholds in accordance with each kind of change in order to tune 
the no-change class. Thus, it is particularly suitable for VHR images. The proposed approach first performs 
an initial discrimination between unchanged and changed samples. Then, automatically identifies the sec-
tors associated to different kinds of change by iteratively performing density-based clustering and region 
growing ([58], [59]), while adding samples from around the peaks of the joint magnitude-direction histo-
gram. Finally, it tunes the magnitude threshold by adapting it according to the characteristics of different 
kinds of change. The method is unsupervised, application-independent and identifies the number of changes 
automatically. 

iv. Spatio-temporal evolution of crop fields in Sentinel-2 Satellite Image Time Series. 

The main goal of this contribution is to exploit the information contained in Satellite Image Time Series 
(SITS) acquired with both high spatial and very high temporal resolution. A clear example of such SITS, 
are the images acquired by the Sentinel-2 (S2) constellation, where opposite to up-to-date sensors, both 
characteristics are present. Such characteristics end up producing SITS with irregular, high frequency and 
high spatial resolution acquisitions, which are of particular interest in many applications (i.e., forest, snow, 
fire, sea level, and vegetation dynamics), but cannot be easily handled by state-of-the-art methods. Other 
sensors, such as MODIS or Landsat, have been traditionally used in literature to perform the study of such 
applications, but none of them is suitable when considering small objects like the fields in precision agri-
culture that show a high change frequency. Thus, here we focus on the agricultural analysis application. In 
the proposed approach, the S2-SITS images are processed in a number of automatic steps that lead to the 
derivation of different relevant products. In the first step, a crop field map is constructed that accounts for: 
i) fields/areas that have had vegetation at least once in a given period; and ii) the temporal evolution and 
rotation practices of the fields [60]. Here, spectral, spatial and temporal information are exploited. In a 
second step, regular and continuous S2-SITS are derived based on an adaptive non-parametric regression, 
opposite to state-of-the-art techniques, this process is performed at single crop field level [29], [37], [38], 
[61]. In a third step, and as a consequence of having a regular and continuous SITS, adaptation of state-of-
the-art methods is done in order to derive phenological parameters and to integrate rules allowing to differ-
entiate among objects corresponding to crop fields and those that not [29]. Additional products are derived 
(e.g., phenological maps, cumulative indices maps) that allow for the understanding of agricultural areas, 
and therefore are useful in precision agriculture. The proposed approach is fully automatic, can easily ac-
count for the new upcoming images, is able to deal with irregularly sampled SITS and can be extrapolated 
for other applications and other sensors with similar characteristics to S2. 

1.4. Structure of the Thesis 

This thesis is organized in seven chapters. The present chapter gives a brief introduction on the analysis 
of multitemporal multispectral satellite images and the main steps to be followed while extracting mul-
titemporal information. It presents the motivation and objectives of the thesis, it provides a brief summary 
of each novel contribution and describes the structure of the whole thesis. 
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Chapter 2 presents a review of the state-of-the-art on multitemporal analysis of remotely sensed images 
acquired by multispectral sensors. Attention is paid to: i) unsupervised bi-temporal image analysis, ii) 
(semi-)supervised bi-temporal image analysis; and iii) time series analysis. The first set of methods mainly 
exploits multitemporal image comparison techniques for the detection of presence/absence of changes. The 
second one relies on classification methods for detecting land-cover transitions. And the third one makes 
use of both unsupervised and supervised/semi-supervised methods for land-cover monitoring and trend 
analysis in long time series. 

Chapter 3 introduces a novel approach for unsupervised change detection in multitemporal VHR images 
acquired by different multispectral sensors. First, the challenges arising from the intrinsic characteristics of 
VHR images, plus the use of images acquired by different multispectral sensors are discussed, as well as 
the state-of-the-art techniques used to mitigate them. Second, traditional features extracted to separate 
changes of interest among the ones of no-interest along with their advantages and disadvantages are also 
analysed. Finally, a novel approach is presented that extracts higher-level physical features for both the 
mitigation of multisensor differences and the detection of multiple changes in the context of VHR images. 

Chapter 4 presents an approach for the generation of homogeneous VHR TS by means of a non-paramet-
ric regression of multisensor multitemporal images. To this aim, suitability of ARN and RRN methods, 
available in the literature, to perform homogenization of VHR multisensor images is studied. The proposed 
approach takes then advantage of both ARN and RRN methods to perform the homogenization, but intro-
duces a novel concept based on a non-parametric regression and CD-driven RRN. 

Chapter 5 describes an approach for multiple change detection in VHR optical images (single- and multi-
sensor) based on iterative clustering and adaptive thresholding. Problems arising from the most common 
assumptions on the number of classes (changed and unchanged) and their statistical distribution are first 
discussed. Then, state-of-the-art solutions are presented along with their critical characteristics. Finally, a 
solution is proposed that combines the best from the state-of-the-art methods and integrates it with a novel 
iterative clustering and adaptive thresholding. The proposed approach is automatic and based on 3 steps, 
and does not require a statistical model for the classes of change. 

Chapter 6 presents an approach for the analysis of images acquired with both high spatial and very high 
temporal resolutions. Spatio-temporal evolution of crop fields in S2-SITS is studied as an example of such 
images. Where first, a state-of-the-art review is made to show the relevance of developing new algorithms 
that account for the characteristics of sensors such as S2, as well as their importance for precision agricul-
ture applications. Then, S2-SITS spatial, spectral and temporal characteristics are jointly exploited to derive 
products suitable for the agricultural analysis. To this aim, the proposed approach is divided in different 
stages that work in an automatic way and without need of in-situ data. 

Chapter 7 draws the conclusions for this thesis. The remaining open issues and further developments of 
the research activities are also discussed.  
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Chapter 2 

 

2. State-of-the-art: Multitemporal Analysis of Remotely Sensed Im-

age Data1 

 
In this chapter, literature is reviewed about: i) unsupervised bi-temporal images analysis, ii) (semi-)super-

vised bi-temporal images analysis; and iii) time series analysis. The first set of methods mainly exploits 

multitemporal image comparison techniques for the detection of presence/absence of changes. The second 

one relies on classification methods for detecting land-cover transitions. The third one makes use of both 

unsupervised and supervised/semi-supervised methods for land-cover monitoring and trend analysis in 

long time series. Images acquired by multispectral optical systems at medium, high and very high spatial 

resolution are considered. 

2.1. Unsupervised bi-temporal data analysis 

Following the block scheme, for standard CD approach, presented in Figure 1.3.a., and in order to extract 
the change information, we follow two steps: i) comparison of an image pair, and ii) multitemporal infor-
mation extraction by a change index. The first step relies on the use of a comparison operator, e.g., univari-
ate image differencing, vegetation index differencing, regression, change vector analysis, etc [62]. Whereas 
the second step relies on CD methods that identify the changes according to the feature space created by 
the comparison operator. In this subsection, we focus the attention in unsupervised image analysis tech-
niques traditionally adopted for bi-temporal images. In the literature approaches have been developed in-
cluding pixel-based [22], [53], context-based [53], [63], single-scale [22], [24], [26], [28], [64]–[66] and 
multi-scale [63], [67]–[72] approaches. Among pixel-based techniques, the most widely used are based on 
the selection of a decision threshold that aims at separating changed from unchanged pixels. The decision 
threshold can be selected either with a manual trial-and-error procedure (according to the desired trade-off 
between false and missed alarms) or with automatic techniques (e.g., by analysing the statistical distribution 
of the image after comparison, by fixing the desired false alarm probability [73], [74], following a Bayesian 
minimum-error/cost decision rule [53], [75], using methods based on fuzzy theory [66], [76], etc.). Among 
context-based techniques there are the ones based on fixed size sliding windows [53], [77], and the ones 
based on adaptive segmentation [64], [78]. Among multi-scale techniques, three main strategies can be 
identified: adaptive multiscale techniques for SAR images [68], multilevel parcel-based technique suitable 
for very high resolution images [67], [78], and approaches based on the use of similarity measures [77], 
[79]. In the next, a further literature review is presented for the specific cases of single-sensor and multi-
sensor/source images. 

2.1.1 Comparison approaches for single-sensor bi-temporal analysis 

When dealing with single-sensor optical data acquired by passive sensors, image comparison mainly re-
lies on the difference operator. This is because the noise model in optical images is additive and the natural 
classes have a Gaussian distribution. Thus, the difference operator results to be the most effective one. 

The simplest way to apply the difference operator is to consider the same spectral band for �" and �# and 
perform subtraction pixel-by-pixel. This technique is referred to as Univariate Image Differencing (UID) 
[22], [24], [25], [27]. The follow up of this approach leads to the use of multiple spectral bands [22]. This 

                                                
1 Part of the contents in this chapter is taken from: 
Book Chapter: F. Bovolo, L. Bruzzone, and Y. T. Solano-Correa, “Multitemporal Analysis of Remotely Sensed Image 
Data,” in Comprehensive Remote Sensing, 1st Edition, Elsevier, vol. 2, pp. 156-185, Nov. 2017. 
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technique takes the name of Change Vector Analysis (CVA) because the result of differencing is a multi-
dimensional Spectral Change Vector (SCV) [30], [48], [50], [51], [55], [80]–[85]. Under the assumption of 
Gaussian distributed natural classes and being the difference a linear operator, classes of change and no-
change in the SCV feature space result to be Gaussian distributed as well (if low-medium spatial resolution 
images are considered) [30], [56], [86]. However when non-linear features are extracted from SCVs, the 
analysis becomes more complex. In fact, in order to better characterize the properties of changes it is com-
mon to compute the magnitude and the directions of SCVs by applying Cartesian to Spherical coordinates 
transformation [30], [48], [50], [51], [55], [81], [83]–[85]. The magnitude image is such that pixels associ-
ated with land-cover changes present values significantly higher than those of pixels associated to un-
changed areas [22], [50]. Both change and no-change classes are often assumed to follow a Gaussian [55] 
or nearly Gaussian [80] statistical distribution. However, in [50] and later on in [56] it has been demon-
strated that, under some reasonable assumptions, they are better approximated by one or more Rayleigh 
and Rice distributions, respectively. Direction variables carry less information about unchanged samples 
since they result to be uniformly distributed [50]. They become highly relevant when analysing the classes 
of change instead, since they characterize different kinds of change. Changes assume preferred directions 
depending on their kind. Examples can be found in the literature where the direction information is used in 
the change detection process [22], [50], [51], [55], [83], [84]. Figure 2.1 gives an example of a change 
detection problem in multispectral optical images and of the change index after comparison by CVA. Nev-
ertheless, the detection is performed without following a specific statistical distribution of the data. A de-
tailed analytical derivation of class statistical distribution in the magnitude-direction domain can be found 
in [50], [56], but only the unchanged class is further analyze. The above mentioned methods were developed 
under the assumption that multitemporal images are well co-registered and radiometrically corrected. If the 
assumptions on image pre-processing are not satisfied, the statistical distribution of spectral change vectors 
becomes more complex and the change-detection process rather difficult and less effective. This points out 
the importance of a proper pre-processing [50]. Cartesian to Spherical coordinates transformation preserves 
the dimensionality problem. Sometimes this can be a drawback since it hampers the visualization of the 
feature space when the dimensionality becomes higher than three. A possible alternative is to use Com-
pressed Change Vector Analysis (C2VA) [51]. C2VA compresses the information present in SCVs by com-
puting the direction as the angular distance between the multispectral difference vector and a reference 
vector. If combined with the magnitude we obtain a 2-dimensional feature space that can be easily visual-
ized and where no information is neglected. Both characteristics become highly interesting and are success-
fully applied when multitemporal hyperspectral images are considered [83]–[85]. A limitation of this ap-
proach is that the lossy compression of the direction information may result in recognizing some classes of 
change as a single class. Figure 2.2 gives an example of a change detection problem in hyperspectral optical 
images and C2VA features. 

  
(a) (b) 
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(c) (d) 

Figure 2.1. Example of image comparison in bi-temporal optical images. RGB true colour composition of Landsat-8 
images acquired in: (a) July 2013, and (b) August 2013. (c) Magnitude and (d) direction images computed according 
to CVA. The area of interest is located close to the Lake Omodeo in Sardinia Island (Italy). Changes occurred between 
acquisition dates are associate to a forest fire (left-top) and the increase of the lake surface (center-top). 

    
(a) (b) (c) (d) 

Figure 2.2. Example of image comparison in bi-temporal optical images. RGB true colour composition of Hyperion 
EO-1 images acquired in: (a) 1st May 2004, and (b) 1st May 2007 (images downloaded from Geological Survey 
(USGS) website http://earthexplorer.usgs.gov/). (c) Magnitude and (d) direction images computed according to C2VA. 
The area of interest is located close to Hermiston city in Umatilla County, U.S. The study area is an agricultural land 
and changes are mainly associated to crops. 

CVA and difference operator have been mainly applied to the original image feature space. However 
examples can be found where they are applied to the posterior probability space [87] as well as to vegetation 
indices (Vegetation Index Differencing) [22], [28] or other linear (e.g., Tasselled Cap Transformation [28], 
Multivariate Alteration Detection [88]–[91]) or non-linear combinations of spectral bands. Transformation-
based techniques like Multivariate Alteration Detection (MAD) [91] have been widely investigated result-
ing in several subsequent ameliorations like the Iteratively Reweighted (IR)-MAD [88], [90] combined 
with Maximum Autocorrelation Factor (MAF) transformation to find maximum change areas and its kernel 
version [89]. In the transformed feature space and after differencing, similar to CVA, unchanged and 
changed areas will show significantly different values. MNF (Maximum Noise Fraction)/MAD [89] has 
been employed for change detection in multisensor multitemporal images as well (for low and medium 
spatial resolution images only). The main characteristics that make the MNF/MAD suitable for multisensor 
change detection are: i) random variables associated to the acquisitions before and after the event of change 
should not necessarily have same dimension (i.e., multitemporal images are not required to have the same 
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number of spectral channels); ii) the MNF/MAD method is invariant to linear transformations, which im-
plies that the impact of missing radiometric normalization and rectification is lower than for other change-
detection approaches. Nevertheless, MNF/MAD method lacks from the detailed statistical and formal anal-
ysis on how to separate among changed and unchanged samples that CVA like methods have. An alternative 
approach based on transformations is to use Principal Component Analysis (PCA). PCA can be applied 
separately to the feature space at single time image [22], [26], [27] or jointly to the stacked image features 
[92], [93]. In the first case, comparison should be performed in the transformed feature space before per-
forming change detection; in the second case, the minor components of the transformed feature space con-
tain change information. Other linear transformations have been used such as Tasselled Cap Transformation 
(TCT), and Gram-Schmidt orthogonalization [35], [94], [95], all of them when considering low and medium 
spatial resolution images. 

More recently, the multiscale/resolution concept has been introduced in the multitemporal image analysis 
literature. The first works were devoted to SAR data because of their complexity. However, their use re-
sulted to be effective in optical images as well. As an example the Wavelet decomposition was used in [63], 
[70], [96], and the Contourlet transform was used in [97]. Such transformations have been applied either 
before or after image comparison. Multiresolution profiles for multitemporal images have been elaborated 
by using features extracted from multiresolution segmentation [67], [98], morphological profiles and their 
improvements [80], [82], and methods based on scale-invariant feature transform (SIFT) [99]. More so-
phisticated approaches to the representation of multiresolution information have been developed when 
VHR images are considered (Figure 2.3 shows an example of a change detection problem in VHR optical 
images). Such approaches aim at modelling the high level semantic information available in VHR images 
effectively [30]. Though no single method exists in literature that can deal with the whole complexity added 
by working with VHR images from-to end. 

  
(a) (b) 

Figure 2.3. Example of change detection problem in VHR optical images. True colour composition of QuickBird 
pansharpened images acquired in: (a) October 2005, and (b) July 2006. The area of interest is a sub-urban area located 
close to Trento (Italy). Changes are mainly associated to buildings (see white circles in the right image). 

From the whole literature presented in this subsection, it is clear that a lot of attention has been devoted 
to the development of methods for multitemporal analysis in the context of low and medium multispectral 
images. But less or few attention has been devoted to the same type of analysis when considering VHR 
images. This is in part a consequence of the sensors evolution, and thus image availability, but also a con-
sequence of the complexity added while working with VHR images. 
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2.1.2 Comparison approaches for multi-sensor and multi-source bi-temporal analysis 

As a complement to the use of single-sensor optical data for multitemporal analysis, one may consider 
the use of multi-sensor (multitemporal images acquired by different sensors, either passive or active) and 
multi-source data (multitemporal images acquired by different sensors or modes and ancillary data) to en-
hance the final product or to integrate missing temporal data due to atmospheric conditions (i.e., presence 
of clouds). Methods able to process/compare this kind of data fall in the category of remote sensing image 
fusion. Where image fusion can be seen as: i) fusion methods for images from the same sensor to increase 
the spatial and spectral information (also known as pansharpening), or ii) comparison of images from dif-
ferent sensors. Here we concentrate our attention on the latter one, where different kind of images, i.e., 
images with different spatial or spectral resolutions (e.g., Landsat vs MODIS), or, in many cases, images 
with different acquisition technologies (e.g., SAR and optical images), are used. Of particular interest is the 
case where images with different spatial or spectral resolutions are considered. Since up to few years ago, 
this was referred only to the integration of sensors having rather big (10-20 times bigger) differences in 
spectral, spatial and temporal resolutions. Nowadays, similar approaches can be found while talking about 
VHR optical images, where the spatial and spectral resolutions differences occur at a different scale. Yet, 
fusion of multisensor VHR images result in a problem given the complexity added by their intrinsic char-
acteristics. Few approaches can be found in the literature that use multisensor VHR images as a solution to 
mitigate the missing temporal data [6], [35], [95], [100]–[104]. 

In change detection, the fusion of SAR and optical data is important from two perspectives. First, on 
many occasions the limited availability of data forces the generation of a change indicator through the 
comparison of images acquired over the same area, but with different technologies. Although the images 
were acquired with sensors that have different technologies, they are two different representations of the 
same physical reality and consequently can be compared [105]. Recently, similarity measures have played 
an essential role in performing such image comparison. Mercier et al. [79], successfully used Kullback-
Leibler divergence to compare an ERS SAR image with a SPOT image. Liu et al. [106] proposed a multi-
dimensional evidential reasoning approach to extract change information from heterogeneous multitem-
poral images. Second, single-source multitemporal images (i.e., optical or SAR) do not provide exhaustive 
documentation of changes since they do not capture all the available information. Unlike optical, SAR 
images are immune to atmospheric problems, such as cloud presence, which increases the probability of 
acquiring images suitable for change detection. The existence of speckle, however, impedes the accurate 
identification of shapes and edges. Optical images show more details and allow the detection of sharp edges 
and region boundaries [107]. Change detection can benefit from the complementary nature of the change 
information represented by each type of data. 

In the case of catastrophic events, the availability of pre and post event images acquired as closer as 
possible, in time, to the event becomes necessary. Nevertheless, the probability of having such images, 
acquired by the same technology sensor is reduced because of atmospheric conditions (in the case of optical 
data) or because of the revisit period of the sensors. Thus, the possibility of having an optical and SAR 
images as pre-event and post-event acquisition becomes an interesting option for satisfying operational 
time constraints. Information on the impact of an event can be then derived from suitable imagery by com-
paring data from a chosen reference before the event to imagery acquired shortly after the event. Optical 
VHR sensors availability has increased a lot in the last decade as well as their frequently updated image 
archives, making this kind of data well suited as the pre-event reference data source. If post-event VHR 
optical data are also available, it can be used to investigate the impact of the event. If no VHR optical data 
are available, then SAR one become the suitable option as post-event data. In this case, approaches must 
be considered to analyze, detect and extract the change information. Brunner et al. [108] presented a novel 
method that detects buildings destroyed in an earthquake using pre-event VHR optical imagery (QuickBird 
and WorldView-1) and post-event VHR SAR imagery (TerraSAR-X and COSMO-SkyMed). Figure 2.4 
shows an example of the pre-event and post-event VHR optical and SAR images, where the complexity 
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and challenges of using this kind of data for change detection can be seen. The method operates at the level 
of individual buildings and assumes that they have a rectangular footprint and are isolated. Building pa-
rameters are estimated from the pre-event optical imagery, and used to predict the expected signature of the 
building in a simulated post-event SAR scene. The similarity between the predicted image and the actual 
SAR image is analyzed. If the similarity is high, the building is likely to be still intact, whereas a low 
similarity indicates that the building is destroyed. 

  
(a) (b) 

Figure 2.4. Image subsets of optical and SAR images over the area in Yingxiu with Earthquake occurred on May 12 
of 2008. (a) Pre-QB image acquired on June 26 of 2005 and (b) Post-TSX image acquired on June 07 of 2008, with 
viewing direction from left to right [108]. 

Fusion in remote sensing analysis is not restricted to images acquired with different resolution or tech-
nologies; it is also extended to include the fusion of different kinds of information extracted from the same 
source. In an attempt to improve the quality of the binary change detection, Bruzzone and Fernández-Prieto 
[109] proposed an unsupervised change detection approach that uses consensus theory to integrate several 
change variables. Ban et al. [110] demonstrated that the fusion of both optical and SAR data could improve 
change detection. In this research, a multidimensional change image was constructed by combining SAR 
and optical change variables. An iterative classification strategy is then adopted to separate changed and 
unchanged classes. Mishra and Susaki [111] demonstrated the improvement of change detection while us-
ing SAR and optical data when compared to the result obtained by using a single pair of SAR or optical 
images. The change detection was carried out by using the Normalized Difference Ratio (NDR) for SAR 
image and the Normalized Difference Vegetation Index (NDVI) for the optical one, and applying the dif-
ference operator. Authors proved a correlation between the increase/decrease of backscattering and the 
increase/decrease of NDVI values that was used to separate between change and non-change. Comparison 
with the results obtained by using NDR and NDVI in single source change detection proved the effective-
ness of the approach. Gong et al. [71] improved the quality of the final change indicator through the fusion 
of different change variables extracted from the same multitemporal dataset by using different comparison 
operators: i) the mean-ratio image that emphasizes changed areas in the scene; and ii) the log-ratio image 
that reflects more the background information, i.e., no-change. The fusion of the change variables is per-
formed in the wavelet domain, where different rules were developed for the low- and high-frequency com-
ponents. The same wavelet-based fusion approach was adopted by Ma et al. [112], but with different fusion 
rules. In a similar way, Hou et al. [72] fused two change images using the Gauss log-ratio and log-ratio 
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comparison operators. In contrast, in Du et al. [113] each band of a multispectral image was used to generate 
a change map and fusion performed at decision level. 

2.1.3 Multitemporal information extraction 

In order to effectively extract information after image comparison, the change index should be analyzed. 
Depending on the comparison operator, changes can be identified in different positions of the feature space. 
Methods for detection available in the literature can be classified into: i) empirical methods; ii) methods 
based on the Bayesian decision theory; iii) methods based on the optimization of an objective function; iv) 
methods based on fuzzy theory; and v) methods based on the use of spatial-context information. 

In empirical methods, changes are identified/classified by thresholding a change index. The threshold 
identification can be performed according to empirical strategies [114] that often employ manual trial-and-
error procedures, which significantly affect the reliability and accuracy of the final change-detection map. 
The basic assumption when applying empirical strategies is that changed pixels are few and show values 
significantly different from the unchanged ones. Thus, changed pixels are those far from the mode of the 
density function associated to the change index. A simple strategy consists in fixing the decision threshold 
as => + @, being > and @ the mean and the standard deviation of the considered change index, respectively, 
and = is a real number derived by a trial-and-error procedure. In this context, the selection of the parameter = strongly depends on the end-user’s subjective criteria, which may lead to unreliable change-detection 
results. In addition, such a selection usually requires several trials and hence a non-negligible computation 
time. It is worth noting that these approaches are not fully automatic and objective from an application point 
of view, as they depend on the user sensitivity in constraint definition with respect to the considered kind 
of change. These properties may represent a critical limitation. 

An interesting alternative consists in formulating the change-detection problem in the framework of the 
Bayesian decision theory in order to optimize the separation between changed and unchanged pixels in an 
unsupervised way. The main problem to be solved for the application of the Bayes decision theory consists 
in the estimation of the statistical terms associated to the classes of change and no-change (i.e., their prior 
probabilities and probability density functions) [53], [75] without any ground-truth information (i.e., with-
out any training set). The starting point of methodologies based on the Bayesian decision theory is the 
hypothesis that the statistical distribution of pixels in the change index can be modelled as a mixture of 
densities. Mixture components are associated to changed and unchanged pixels. In the literature, explicit 
estimation of class statistical parameters has been addressed with the Expectation-Maximization (EM) al-
gorithm which is an iterative approach to maximum-likelihood (ML) estimation for incomplete data prob-
lems [115]. The iterative equations that characterize the EM algorithm are different according to the statis-
tical model adopted for the distributions of the classes. The most suitable statistical model varies according 
to the kind of data. If optical passive sensor data are considered, the most common statistical models are: i) 
Gaussian [27], [116]–[118]; ii) mixture of Gaussians [55]; iii) Rayleigh or mixture of Rayleigh (for the 
magnitude of unchanged samples computed according to CVA) [50], [56]; iv) Rice (for the magnitude of 
changed samples computed according to CVA) [50], [86]; v) Uniform (for the direction of unchanged sam-
ples computed according to CVA) [50]; and vi) Non-uniform (for the direction of changed samples com-
puted according to CVA) [50]. The iterative equations needed for performing EM parameter optimization 
under the Gaussian, mixture of Gaussian and Generalized Gaussian class models can be found in [75], [78], 
[80], respectively, whereas more details on the validity of the Rayleigh and Rice models can be found in 
[50]. 

Once the statistical parameters are computed, pixel-based or context-based decision rules from the pattern 
recognition literature can be applied. Here we recall the most widely used approaches in the context of 
change detection. Concerning pixel-based methods, we can mention: i) Bayes rule for minimum error [50], 
[75], [80], [116]; ii) Bayes rule for minimum cost [116]; and iii) Neyman-Pearson criterion [116]. The 
Bayes rule for minimum cost and the Neyman-Pearson criterion allow considering the costs of false and/or 
missed alarms in the decision process. Bayesian decision theory can be used also in multisensor change 



State-of-the-art: Multitemporal Analysis of Remotely Sensed Image Data 

 

 18 

detection [109]. Here integration is carried out according to the consensus theory by integrating the esti-
mates of statistical terms over different sensors. In the integration step, a weight is associated to each source 
according to its expected reliability. Within the Bayesian decision theory framework, different techniques 
for reducing the effects of the residual registration noise between multitemporal images have been inte-
grated [18], [20], [119]. 

Another set of methods is based on the optimization of objective (cost) functions. The fact that, generally, 
the change index is one-dimensional makes this process easy. The choice of the cost function plays a fun-
damental role in the accuracy of the results. In the change detection literature, several objective functions 
have been employed based on: i) discriminant analysis and inter- and intra-class measures [120]; ii) Bayes 
decision rule for minimum error [121]; and iii) distribution free fuzzy entropy measure [122]. The optimi-
zation of objective functions leads to an implicit estimation of the class statistical parameters [121], [123]–
[130]. According to the kind of data, different assumptions on the statistical distribution of classes can be 
made. As an example, the Kittler and Illingworth criterion has been used under both the Gaussian [127] 
and the Generalized Gaussian [75], [131] assumptions for the statistical distribution of classes. In addition, 
methods based on Machine Learning and clustering that minimize a cost function can be listed in this cat-
egory. In the literature examples can be found based on Support Vector Machine [123], [128], clustering 
and kernel-based clustering [124], [130], [132], and neural networks [125], [133]. 

The use of fuzzy theory is another possibility. These kinds of techniques rely on the assumption that some 
ambiguity exists that arises from the overlapping nature of classes or image properties [66], [76]. The am-
biguity of an image can be expressed in terms of radiometry (e.g., fuzzy entropy, hybrid entropy, correla-
tion, etc.) or geometry (e.g., compactness, high and width, length and breadth, index of area coverage, 
degree of adjacency, etc.). The decision threshold is selected as the value where the membership function 
shows a global minimum or maximum depending on the selected ambiguity measure [66], [76]. Fuzzy 
clustering approaches belongs to this group as well [71]. 

Some approaches involve spatial-context information in the decision process. This is justified by the 
reasonable assumption that changes are large if compared with the spatial resolution of the sensor. Thus, a 
pixel is likely to be surrounded by pixels of the same class. The use of inter-pixel dependence may yield to 
more reliable and accurate change-detection results. A fully automatic approach to the unsupervised anal-
ysis of the change index, which exploits the spatial contextual information to reduce the effect of noise in 
the detection procedure, has been proposed in [75], [80]. The solution is developed in the context of Bayes-
ian decision theory, where the spatial context of each pixel is modelled by Markov Random Fields. More 
advanced methods perform a context-sensitive analysis by considering adaptive neighborhoods modeled 
by multitemporal parcels, i.e., small homogeneous regions shared by both original images [67], [78]. The 
adaptive nature of parcels allows spatial-contextual information to be exploited so that noise may be re-
duced without damaging the boundaries of the changed areas. On the other hand, they better capture the 
spatial correlation information present in the scene and become particularly promising for VHR images 
showing complex objects (e.g., buildings and other manmade structures). In order to effectively model 
objects in the images at different scales, some of the concepts employed in the previously mentioned papers 
such as morphological filters, multitemporal parcels, and even Markov random fields can be adapted and 
used in multiscale/multilevel analysis [63], [67], [80], [134], [135], together with specific multiscale/mul-
tilevel representation tools such as wavelet transform [70], [96], [136]. 

2.2. (Semi-)Supervised bi-temporal data analysis 

As opposed to unsupervised change detection, a set of multitemporal image techniques can be found that 
aims at multitemporal analysis by using some ground reference information. Methods belonging to this 
category mainly rely on supervised or semi/partially-supervised/unsupervised classification. The terms par-
tially supervised classification and partially unsupervised classification have been used in the literature for 
defining change detection solutions for bi-temporal images where reference data (and thus a training set) 
are available only for one of the two images. The two terms refer to the same concept considered from the 
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initial perspective either of supervised or unsupervised classification. It is worth noting that most recently 
similar problems in the context of multitemporal classification have been defined as domain adaptation in 
the framework of transfer learning. The term semi-supervised refers in general to the use of labelled and 
unlabeled data in the learning phase of a classifier. Partially supervised and unsupervised methods (as well 
as domain adaptation methods) exploit semi-supervised techniques implemented across two domains (as-
sociated with the two images). After this clarification, for avoiding confusion, here we refer to all these 
approaches with the terms which they have been presented in the literature. Such kind of approaches do not 
only highlight the changes, they explicitly identify the pair of classes (i.e., land-cover transition) associated 
with each detected change. Note that they can be successfully applied to bi-temporal images both when 
changes exist or not. However, in the following we concentrate our attention to their use in the context of 
change detection applications. The (semi)supervised nature of these kind of approaches reduces the sensi-
tivity to radiometric differences. The use of fully or partially supervised methods depends on the availability 
of ground truth information. On the one hand, if multitemporal ground truth information is available super-
vised techniques can be applied. This information is used in the learning phase of supervised data classifi-
cation for modelling the kind of land-cover transitions. On the other hand, if ground truth is available for 
one or some of the images in the multitemporal sequence, partially-supervised techniques should be con-
sidered. If no ground truth is available, unsupervised clustering techniques should be used. 

Three main general approaches to integration at decision level can be found in the literature: Post-Clas-
sification Comparison [22], Supervised Direct Multidate Classification [22], [137] and Compound Classi-
fication [138]–[141]. In the literature, many different classifiers have been used in the context of the anal-
ysis of temporal series of remote sensing images. Among the others, we recall the Maximum Likelihood 
classifier [139], Neural Networks [142], Fuzzy Classifiers [142], Support Vector Machines [143], [144], 
and Deep Learning [145], [146], which are either the most widely used or the most effective ones. The 
reader is referred to the literature for more details on the behavior and mathematical details of each single 
classifier.  

The use of supervised classification is in general more accurate than unsupervised approaches. Neverthe-
less, it is less appealing in operational applications. This is due to the difficulties in collecting proper 
ground-truth information (necessary for supervised techniques), which is a complex, time consuming and 
expensive process (in many cases this is not consistent with the application constraints). It becomes even 
more complex since there is a need of multitemporal information. Semi-supervised approaches represent a 
trade-off between the two above-mentioned conditions. It is worth noting that all the techniques based on 
classifiers cited in this section are intrinsically suitable to be used with different kind of data and also with 
multisensor, multisource and multiresolution information. 

The post-classification comparison (PCC) (also referred to as delta classification [22]) is the simplest 
technique among supervised approaches. It performs change detection by comparing the classification maps 
obtained by classifying independently the bi-temporal images. For each change, the land-cover transition 
is obtained in an explicit way. The main advantage of delta classification lies in the fact that multitemporal 
images are classified independently, thereby minimizing the problem of radiometric calibration. Although 
PCC has been extensively used in several applications, its performance strongly depends on the classifica-
tion accuracies of single date classification. After comparison the accuracy is close to the product of the 
accuracies yielded by the independent classifiers [22], [140], making the approach often unsatisfactory 
[147]. This is a direct result of the fact that PCC does not take into account the temporal correlation. How-
ever, it has been widely employed in the literature both at pixel and region level [148]–[151]. Attempts to 
increase PCC accuracy have been done by using more than two images in the integration step [152]. 

Supervised direct multidate classification (DMC) [22], [140], [153], unlike PCC, takes into account the 
dependence existing between multitemporal images. The main idea is to characterize pixels by stacking the 
feature vectors related to the images acquired at the two different times. Then the identification of the land-
cover transitions is carried out by considering each transition as a single class and by training a classifier to 
recognize such transitions. It is worth noting that a complex constraint to satisfy for using this technique is 
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to have a training set composed of training pixels related to the same points on the ground at the two times. 
In addition, training pixels should represent accurately the proportions of all the transitions in the whole 
area of interest. This represents a serious drawback as, in real applications, it is difficult to obtain training 
sets with such characteristics. In [154] it is remarked that, since spectral and temporal features have equal 
status in the combined data set, they cannot be easily separated in the pattern recognition process. Therefore, 
class labelling may be difficult if relatively simple classification algorithms are considered. In [153], DMC 
has been adapted to the use in VHR images. 

A more realistic approach is compound classification (CC) [140]. Similarly, to the DMC, also in this case 
the objective is to perform the classification of pixels of the two images according to the maximization of 
the posterior joint probability of classes. Conditional probabilities of classes can be estimated according to 
different techniques and under different assumption on their statistical distribution. On the one hand, with 
respect to the PCC, the CC technique allows the temporal correlation between images to be considered in 
the change-detection process. On the other hand, with respect to the DMC method, the CC technique allows 
the constraints related to the training sets to be relaxed [140]. In particular, training pixels should not nec-
essarily be related to the same area on the ground [138], [140]. 

In real problems, it may happen that given a series of multi-temporal images, a ground truth is not avail-
able for all the items of the series. In such realistic cases, supervised approaches cannot be employed. In 
[155], an ensemble of non-parametric multitemporal partially-supervised classifiers was defined and inte-
grated in the context of a multiple classifier system. Each multitemporal classifier was developed in the 
framework of the compound classification decision rule. In [138], a partially supervised methodology was 
proposed able to update the parameters of an already trained parametric maximum-likelihood (ML) classi-
fier whenever a new image lacking the corresponding ground truth has to be analyzed. The updating is 
performed by means of the EM algorithm [115] that allows tuning the parameters of the trained ML classi-
fier on the basis of the distribution of the new image. In this way, it is possible to classify multi-temporal 
data of a given area (and hence to derive land-cover transition maps) without relying on a multi-temporal 
ground truth. These methods have been recently referred to as Domain Adaptation (DA) methods. In [156], 
a partially unsupervised technique based on Markov Random Fields is proposed for the identification of 
the land cover transitions of interest for the end-user only, by exploiting training samples belonging exclu-
sively to the land covers involved in the specific kind of changes to be mapped. In [157], an advanced 
context-sensitive classification technique that exploits a temporal series of remote sensing images for a 
regular updating of land-cover maps is proposed. The authors introduced a classifier which is based on an 
iterative partially supervised algorithm that jointly estimates the class-conditional densities and the prior 
model for the class labels on the image to be classified by accounting for spatial-context information. 

All the aforementioned supervised and partially (semi) supervised methods based on classification are 
intrinsically suitable to process also multisensor/multisource data. In fact, if proper distribution-free non-
parametric classifiers are used for the analysis of the images, data acquired from different sensors (e.g., 
multispectral images and SAR images) can be processed to produce the map of land-cover transitions. 
Under the assumption that the considered images are re-sampled at the same geometrical resolution, it is 
also possible to employ (semi)supervised approaches with different sensors at the two dates: in fact, the 
comparison process is carried out at a classification-map level. This property is very important as it allows: 
i) to produce land-cover transition maps related to large temporal differences (large temporal differences 
involve the availability of data acquired by different sensors of different generation); and ii) to obtain land-
cover transition maps also when data acquired from a specific sensor at the first date are not available at 
the second date (e.g., multispectral images at the second date might be not available depending on atmos-
pheric conditions. In these cases, SAR images could be compared with multispectral images). In [158] the 
authors describe both neuro-fuzzy and statistical approaches to the exploitation of the contextual infor-
mation and the classification, and different schemes for the multisensor fusion. The presented technique 
fuses the information of active and passive sensors and results in a good change-detection precision and in 
the best possible classification accuracy. 
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Due to the complexity in constructing ground truth information for the training of classifiers, integration 
at decision level methods have been less used. Recently a novel interest from the scientific community was 
devoted to these methods because of the methodological developments in the context of domain adaptation 
(DA) and active learning (AL) context. As mentioned above, DA approaches allow to take advantage of 
the ground truth information available for one acquisition (i.e., the source domain) and to adapt it to images 
for which ground truth is not available (i.e., the target domain). The adaptation mechanism can be signifi-
cantly improved by AL approaches that guarantee a minimum amount of new labelled data for the target 
domain. Thus, they handle in a better way the possible significant differences between statistical distribu-
tions of the source and target domains. Examples of such approaches to multitemporal image classification 
can be found in [159]–[161]. However, in this thesis we focus our attention on unsupervised methods only. 
This is because of two main reasons: i) the complexity given by managing multisensor VHR images and; 
ii) the lack of any ground truth for applying a (semi)-supervised method. 

2.3. Time Series analysis 

In this section, we move from the extraction of change information from bi-temporal images to the anal-
ysis of long time series trends. Where the same block scheme presented in Figure 1.3.b., is followed, and 
derivation of a trend-index is required. Time series represent a huge information source for Earth Observa-
tion (EO) purposes. The extraction of information on the temporal behaviors of imaged ground areas re-
quires the definition of ad hoc features being able to capture land-cover trends over time. The starting point 
of such kind of analysis is the temporal signature of pixels. Each element of this signature corresponds to a 
spectral reflectance value. From the temporal signature, several features can be extracted to highlight tem-
poral behaviors. Features can be computed on each single element in the temporal signature (i.e., for each 
image) in order to generate new temporal signatures associated to the time evolution of the specific features. 
Other features can be computed by involving all (or some) elements of the temporal signature in the calcu-
lation. This allows one to capture the time periodicity of events. 

When dealing with time series of optical images, the temporal signature can be built based on indices 
such as the original reflectance, or more complex features such as NDVI [162]–[166]. More complex indi-
ces can be designed to model other physical phenomena. For example temporal statistics, i.e., statistics 
computed along time rather than in the spatial domain (e.g., mean, standard deviation, normalized standard 
deviation, saturation, maximum-minimum ratio) [167] or by arithmetic operations (such as the difference) 
applied to the spectral signature or other features of subsequent pairs of images [166]. They can be obtained 
by involving both spatial and temporal information, as it happens for multitemporal filters or isochronous 
information [40]. 

More complex features can be obtained by applying data transformation to spectral reflectance or to one 
among the above mentioned features. These transforms are applied along the time dimension and include 
Principal Component Analysis (PCA) [168], Fourier Transform [169] and Wavelet Transform [170], em-
pirical mode decomposition and Hilbert spectrum [171]. Except PCA, the mentioned methods locate spe-
cific behaviors in the frequency spectrum. The first two methods mainly locate such components that show 
a time periodicity, whereas the last two characterize non-stationary behavior of time-series in the frequency 
domain. Such features capture the temporal behaviors of specific phenomena, and have been employed for 
analyzing trends and seasonal changes, and separate them from other kind of changes [23], [38]. Available 
works mainly concentrate on specific applications such as vegetation [172], floods [173], forest fires [174], 
etc. Methods rely on state-of-the-art classifiers and/or information extraction tools sometimes only re-
adapted and not specifically developed for handling the time dimension. Methods are often only semi-
automatic. Moreover, they deal with dense time series of low spatial resolution images (e.g., MODIS time 
series) or with less-dense time series of high resolution images (e.g., Landsat, SPOT). New generation 
sensors, such as the S2, acquire dense time series with high spatial resolution and in several spectral bands, 
allowing for new applications and introducing new challenges that require development or adaptation of 
new approaches to account for these kind of characteristics [60], [175]–[178]. 
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In addition to the exploitation of both the temporal inter-correlation among images in the same series and 
the temporal correlation between two series, in practical applications sub-optimal solutions can be consid-
ered. Semantic products can be obtained over long series by combining the results obtained by techniques 
based on the processing of pairs of temporal images. At application level this strategy allows a theoretical 
(and computational) simplification of the problem of time series analysis at the cost of sub-optimal (but 
often acceptable at an operative perspective) solutions. In this context, it is possible to combine the behav-
iours of: 

• Binary change detection maps obtained by applying unsupervised change detection techniques to 
neighbouring couple of images for identifying the temporal trend of abrupt (or relatively “fast”) 
changes (e.g., deforestation) [179]; 

• Binary change detection maps obtained with different kinds of sensors (i.e., active or passive) for 
a joint analysis of different effects related to the same phenomenon (e.g., tsunami and earthquakes 
damage assessment); 

• Maps of land-cover transitions obtained by supervised, semi-supervised or unsupervised techniques 
applied to neighbouring couple of images for identifying temporal patterns related to land-use 
and/or land cover and analyse their temporal dynamic (e.g., crop rotation, weather changes that can 
indirectly cause avalanches, desertification, etc) [180], [181]; 

• Phenomena inherent results achieved by applying techniques for trend analysis to pairs of temporal 
series extracted from a long set of temporal series for identifying the annual trend of changes (e.g., 
vegetation health monitoring, desertification monitoring, glaciers monitoring); 

• Specific phenomena by integrating the products of multitemporal analysis on pairs of neighbouring 
images with other ancillary data and prior knowledge (e.g., risk assessment and analysis); 

• Short term trend analyses together with long term trend analysis (and study of past events) to per-
form more robust and reliable short-term forecasts of catastrophic events and hazard maps (e.g., 
volcanoes eruption, tsunamis and avalanches monitoring and prediction, activity planning in risky 
areas); 

In the scientific literature, it is possible to find many examples of these derivate products that can be 
obtained by integrating the dynamic change information extracted from remote sensing images with prior 
information and other data coming from different information sources [168], [182]–[185]. Many other ap-
proaches that aim at analysing the available time series, from the temporal perspective, are also available 
in the literature. However, some constraints arising from the technological and thus methodological evolu-
tion, result in the lack of regular data in time and in periodicity. Therefore, attention has first been oriented 
to the construction of regular and dense time series by means of methods based on gap filling or curve 
fitting. And then to the extraction of temporal information and derivation of relevant products (according 
to the application itself).Once regular and dense time series are available, analysis can be carried on both 
at pixel and context based levels. 

2.3.1 Building regular/dense time series 

With almost 40 years of data from the National Oceanic and Atmospheric Advanced Very High Resolu-
tion Radiometer (NOAA AVHRR), more than 15 years of data from the Moderate Resolution Imaging 
Spectroradiometer (MODIS), more than 40 years of data from Landsat program, nearly 3 years of data from 
Sentinel-1 and Sentinel-2, and many new time-series products being developed, there is a need for efficient 
and practical methods for handling these data. However, given the large influence of noise on the satellite-
derived measurements, the direct use of the data is often difficult. Cloud conditions and hazy atmosphere 
are the primary causes of noise in optical satellite sensor data, although other factors (e.g., directional ef-
fects, geometric inaccuracies, and sensor disturbances) also contribute to the noise in the final products 
[186]. While several highly processed data sets exist, they are usually far from being noise free. This noise 



State-of-the-art: Multitemporal Analysis of Remotely Sensed Image Data 

 

 23 

severely affects the possibility to estimate accurate land surface parameters, particularly during the rainy 
parts of the season (which is year-round in many humid tropical areas), leading to the availability of in-
complete or irregular time series. Before the launch of S2 satellite, there were two main situations where 
the time series could be considered as irregular: 

• When no image exists for a given time: This situation arises from the satellite acquisition schema, 
which can lead to periods of time where no image was taken, because of satellite programming 
constraints or because cloud percentage is that high to make images useless. In this case, the prob-
lem is to build an intermediate image that should be a good approximation of what could have been 
acquired. The interest of this approximation resides in the ability to provide a regularly sampled 
time series for trend analysis.  

• When pixels are unknown in an image at a given time sample: This situation arises when clouds 
partially occlude the scene, or when there have been acquisition problems on some lines or columns 
of the image, or because the footprint of the image does not cover pixels covered by other images 
in the time series. There is an interest of finding a good approximate of these missing pixels to fill 
the holes in the image. 

Nevertheless, S2 sensor possess a particular orbiting characteristic that, combined with its high spatial 
resolution, adds an extra situation in which irregular time series could be acquired. In order to cope for 
possible missing pixels in the proximity of observations acquired by different orbits, but over continuous 
physical/geographical areas, an overlap of those orbits was introduced in S2 [175]. This similar concept 
exists for other sensors such as Landsat, but the overlap is much smaller than for S2. This plus the S2 high 
spatial resolution results in the possibility of mapping some areas: i) with double frequency than initially 
expected and, in turn, ii) at an irregular frequency. Such situation does not always occur, but introduces a 
new definition to the concept of irregularity that did not exist in literature before. The closest irregularity 
situation to that of S2 is the one where no image exists for a given time. 

In this subsection we concentrate our attention on state-of-the-art-methods for mitigating the situations 
where no images is usable due to conditions such as the atmospheric ones. Early methods are relatively 
simple, e.g., the use of maximum-value compositing or Moving Average Window (MAW) [187], [188]. 
These method relies on the ability of the NDVI to minimize noise when it assumes the highest value during 
a specific time-period. The principle of selecting the highest value is also the basis for the Best Index Slope 
Extraction (BISE) [189]. Though simple and generally effective in removing many disturbances, these 
methods ignore the fact that also positively biased noise may be present in the NDVI series, and they are 
limited to NDVI or similar vegetation indices in which noise is negatively biased. For more general noise 
reduction, several mathematical filters, which use either temporal or spatial information, have been pro-
posed for remotely sensed data and produce temporally smoothed and spatially continuous products [43], 
[186], [190], [191]. 

Spatial filters using pixel-level or regional ecosystem statistical data include geostatistical and regression 
methods [192]–[194]. Nevertheless, spatial filters may fail in the case of physical products (e.g., Leaf Area 
Index –LAI) derived from coarse resolution satellites to represent the complexity of real landscapes mainly 
over mixed pixels where the pixel value may vary within a short distance widely. To overcome this limita-
tion, some studies tried to combine both temporal and spatial information by using historical high-quality 
data and temporal curves from neighboring pixels. Fang et al. [195] proposed a temporal spatial filtering 
algorithm for MODIS LAI data applying an improved ecosystem curve fitting method based on the MODIS 
vegetation continuous fields product. This product imposes regional dependent phenological behavior onto 
each target pixel temporal data in order to maintain pixel-level spatial and temporal integrity. Gao et al. 
[196] proposed using preferentially a seasonal-variation curve within a small window around the pixel of 
the MODIS LAI product and an ancillary seasonal curve within the tile when high-quality data are unavail-
able within the defined maximum distance. 
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Temporal filters include a broad variety of strategies such as the well-known Maximum Value Compo-
siting (MVC) [187], BISE [189], Fourier-based fitting methods [185], wavelet decomposition [197], asym-
metric Gaussian filtering [198], Savitzky-Golay filtering [199], logistic function fitting [200] or curve-fit-
ting procedure [38]. The choice of the smoothing gap filling or compositing method may have a large 
impact on the accuracy of the phenology extracted from the reconstructed time series [37], [201]. In the 
case of Fourier series, the periodic annual fluctuations in data is utilized [185], [191], [202], [203]. Though 
the parameters of these harmonic functions contain information about the timing of the seasons, the method 
is generally too inflexible for remotely sensed time series data, in which the timing of seasons can vary 
considerably between different years. An example is shown in Figure 2.5, where the Harmonic ANalysis 
of Times Series (HANTS) method proposed by Roerink et al. [185] is applied over a S2 NDVI time series 
in order to reconstruct a continuous time series. HANTS uses the predefined most significant frequencies 
expected in a time series profile and harmonic components to apply a least-squares function-fitting proce-
dure to the data. Unlike standard Fourier analyses, this technique does not require observations to be equi-
distant in time, and is therefore more flexible in its application, but it involves the setting of several param-
eters and more time for processing, resulting in a non-fully suitable method. 

 
Figure 2.5. NDVI and NDVI HANTS reconstruction for a single crop field in a Sentinel-2 time series. 

More recent methods are generally based on fitting mathematical functions to the time-series data. Quan-
titative comparisons of alternative temporal filters are relatively rare. Chen et al. [190] showed the effec-
tiveness of a modified Savitzky–Golay filter in comparison to the BISE algorithm and fast Fourier trans-
form technique for reconstructing SPOT VEGETATION high-quality NDVI time-series. Later, Hird and 
McDermid [201] revealed the general superiority of the Beck et al. [204] double logistic and Jönsson and 
Eklundh [198] asymmetric Gaussian function fitting methods over more simple local filtering methods. It 
is however still difficult to identify the potentials and limitations associated with different methods since 
most of these studies focus on a small sample of global conditions and they have been applied to NDVI 
rather than on a true biophysical variable such as LAI, with few exceptions [195], [196], [205], [206]. 
Additional methods exist that combine high temporal/low spatial resolution data (e.g., MODIS) with low 
temporal/high spatial resolution (e.g., Landsat) in order to integrate/obtain time series that account for high 
temporal/high spatial resolution sequences [207]–[211]. Both approaches to filling of missing data allow to 
build higher temporal frequency time series with temporal limitations given by the highest temporal reso-
lution of the employed images. Still the high temporal resolution time series suffers from atmospheric con-
ditions issues. 
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2.3.2 Land Cover Monitoring 

In land-cover monitoring, trend detection and forecasting are of special interest. For this kind of monitoring, 
a long-time span of data is needed and the number of observations must be large and dense enough in 
accordance with the kind of phenomena to be monitored and the targeted area. Land-cover monitoring 
requires the comparison of temporal development curves, also called time trajectories or time profiles, of 
relevant indicators. This is used as a reference for successive growing seasons, for agricultural areas mon-
itoring, or for successive years for forest or vegetation monitoring in general. The inherent high temporal 
frequency in data acquisition not only expedites the detection of ecosystem modifications, but also facili-
tates the characterization of phenological variations in ecosystem status. If we consider a given pixel in a 
temporal series, we can observe the temporal evolution of its radiometry information along the time. These 
evolutions are specific of the phenomena that affects the underlying object and can be used to characterize 
it. The example given in Figure 2.6, shows the mean NDVI value of a single crop field in an agricultural 
area over 16 months in a time series built by using S2 images (time series acquired from July 5th, 2015 to 
November 30th, 2016). NDVI values have been scaled by 100 for visualization clarity. Starting on the left 
from early-October 2015, vegetation starts to grow until it reaches its maximum value by mid-March. Dur-
ing the beginning of October 2016, a new increase of the vegetation can be seen, but with a faster speed. 
Such a difference in the growing speed can be an indicator of many things, among them: the environmental 
conditions, the plantation of a new crop type, the last grow of remaining vegetation, etc. 

 

Figure 2.6. Mean NDVI temporal behavior for a single crop field in a S2 time series. Vertical axis corresponds to 100 
times the NDVI value. 

Such kind of curves can be used to extract several information. However, this interpretation can be done 
when the nature of the underlying object in the scene is known. Temporal signature analysis is affected by 
the possible presence of temporal outliers, like a cloud or haze. These phenomena behave as randomly 
spread noise on the temporal behavior of a pixel/crop and could lead to the impossibility to interpret its 
behavior correctly over time. These effects affect time series even after temporal frequency improvement 
(section 2.3.1). Therefore, effective models should be designed able to model the behavior of time series in 
a small number of parameters, thus filtering the remaining outliers. Such parameters should be rich enough 
to preserve the essence of the temporal behavior. Such a model should be able to: 

• Adapt itself to the different object behaviors in the scene. Objects obey different evolution laws. 
e.g., i) vegetated pixels will be subject to weather conditions like sun exposure, rain, dryness and 
also to seasonal variations; and be different depending on the species/land cover; ii) water pixels 
will be affected by weather conditions too, but in a very different way than the vegetated pixels: 
after a heavy rainfall, the rivers turn brighter, and if there is wind, the surface wavelets may impact 
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on the reflectance or backscattering; and iii) urban pixels will be less subject to weather conditions, 
but will depend on societal conditions like construction, destruction, growing, among others. 

• Avoid the possible temporal outliers like clouds which may be present in some parts of the scene 
at some moment. This condition can be fulfilled by detecting such outliers and by discarding them, 
or even by interpolating the corrupted samples with the methods shown in Section 2.3.1. 

• Represent the pixel evolution in a small number of coefficients, in order to make a compact de-
scription of the behaviors. 

A first attempt to extract all the characteristics of interest, while considering most of the problems men-
tioned above, was made by Jönsson and Eklundh in [198]. The whole method was integrated in a software 
called TIMESAT and is based on fitting asymmetric Gaussian functions to time series. The fitted functions 
were used to portray the seasonal growth and decline of curves of the land vegetation, and to estimate 
phenological parameters. In the newest version of TIMESAT [29], the function fitting can be achieved by 
means of Savitsky-Golay filter, asymmetric Gaussian or double logistic smooth functions. Three steps are 
followed to extract the parameters of interest: i) the number of seasons and their approximate timing is 
defined; ii) data are filtered or fitted by smooth functions; and iii) the seasonality parameters are computed 
and written to output files. In order to get the seasonality parameters, NDVI time series coming from 
AVHRR or MODIS are considered. Nevertheless, the program does not fully account for new generation 
sensors, which spatial resolution is higher. Neither does it account for irregularly sampled time series. This 
leads to the need of new adaptations or new methods to analyze such data. 

2.3.3 Trend Analysis 

Two general approaches to trend analysis can be identified in the literature: i) pixel based; and ii) context-
based. As for bi-temporal change detection, also for trend analysis, standardized PCA of time series can be 
used. In particular, it has proved to be a powerful technique to separate changes that took place at different 
time frequencies, e.g., decadal time-scale changes in productivity, seasonal changes or sensor-related value 
drifts [168]. In [212], a neural-network based methodology was developed for the detection of burned areas 
from time series of SPOT-VGT data. In particular, the use of a Multi-Layer Perceptron (MLP) neural net-
work allows one to exploit not only the spectral information of the observed targets, but also the spatial and 
temporal relationship of the phenomenon. Also the Vegetation Cover Conversion (VCC) product of 
MODIS detects changes in the land-cover by analyzing the movement and trajectory of pixels within a time 
series [213]. In particular, the red and near-infrared channels are considered. In [214], a preliminary work 
for time series analysis based on the use of the Kalman filter [215] was proposed. In [216], long-term 
change-detection was addressed by using a regression technique based on a tree algorithm. In [217], stand-
ardized principal components analysis (SPCA) was performed on a NDVI time series to monitor global 
vegetation dynamics. NDVI was used also in [218] and [219] on a time series of three images, change-
detection was performed by manually labeling classes after clustering and thresholding the three NDVI 
images according to methods based on statistical models. In [220] and [221] authors proposed a method 
that considers a number of time series made for instance of subsequent = pixels. The method can detect 
linear relations between the pixel values. NDVI has also been used together with albedo [222]–[224] to 
analyze long-term trends in vegetation productivity (integrated NDVI) and albedo (mean anniversaries an-
nual values from the same period). 

Attempts to compare or contrast two times series are reported in [225] and [226]. In [225], the image data 
were compared with the output of a temperature accumulation model to identify critical plant phenological 
parameters driven by temperature. In [226], a number of local plant growth models were compared with 
image data to investigate the extendibility of the models to larger areas. Other works compare two or more 
time series in order to consider the natural behavior of land covers. Such behaviors result in varying yearly 
time series, because of the high land cover variability. Therefore, methods have been developed in order to 
cluster similar temporal behaviors of pixels or objects: e.g., K-means clustering with Euclidean distance 
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[227], [228] or dynamic time warping (DTW) [181]. The latter is a more suitable measure for time series 
similarity since DTW measures the cost of alignment between two temporal sequences considering nonlin-
ear warping in the time domain. 

One of the most widely studied application of trend analysis is the seasonal development of vegetation 
canopies in medium and coarse resolution optical data such as NOAA/AVHRR data (e.g., [229]–[232]), 
SPOT/VGT data (e.g., [233], [234]), and MODIS data [204]. In addition, Landsat data has been also used 
[235]. Many of these studies concentrated on precise timing of spring greening up, progress of autumn 
colors and the snowmelt and springtime greening up. Figure 2.7 shows an example of the snow cover evo-
lution in the Trentino region (North of Italy) from 2006-2017 [236], [237]. The method takes advantage of 
the multiple resolution bands of MODIS and integrates them by multi-resolution fusion in order to have 
250 m resolution images. A SVM classifier is used in conjunction with ancillary data and indices such as 
NDVI and Normalized Difference Snow Index (NDSI) for calculating snow cover. A comparison with the 
historical average snow cover (red line) is carried on over the time series to understand the snow cover 
trend. 

 

Figure 2.7. Evolution of the snow cover in the Trentino region (North of Italy) from 2006 until 2017. The information 
is generated by means of MODIS data [237]. 

Although NDVI is perhaps the most widely recognized optically-based vegetation index, other indices 
can be linked with crop/vegetation condition, and offer some advantages over NDVI. The Soil Adjusted 
Vegetation Index (SAVI) is of interest for multitemporal monitoring of crop condition as this index is linked 
directly with LAI [238], [239]. SAVI has an advantage over other optical indices like NDVI since SAVI 
minimizes soil effects. Other applications can be also found in the literature, i.e., urban expansion monitor-
ing [170], [183], [240], Land Surface Temperature (LST) and Lake Surface Temperature Monitoring 
(LSWT) [241]–[245], among others. 

Spatial context information has been also considered in trend analysis. In [40] a method was proposed 
where a pixel is represented with a set of complex features that captures temporal behaviors with both pixel- 
and spatial-context-based information. The set of features includes: i) pixel-based features such as spectral 
information; ii) spatial-context features that capture the information from neighboring pixels like probabil-
ity of belonging to a given class based on kriging indicator; and iii) temporal correlation information like 
class conditional transition probabilities. The integration of this complex information results in an accurate 
change-detection map able to identify: when, where, and what land-cover changes occurred. An alternate 
approach, which also considers spatio-context information, is presented in [246]. The unsupervised change-
detection method is based on a three-dimensional clustering performed by means of segmentation tech-
nique. Any type of temporal change is detected as a boundary perpendicular to the time axis and sequential 
application of a supervised algorithm provides an efficient and accurate change analysis. In [184] a tech-
nique is presented that compares or contrasts two time series considering spatial correlation between neigh-
boring pixels. Complex spatio–temporal patterns present in two long time series of data are compared for 
studying the seasonal cycles of vegetation in a large part of the global land surface. 
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Chapter 3 

 

3. An Approach for Unsupervised Change Detection in Multitem-

poral VHR Images Acquired by Different Multispectral Sensors2 

 
This chapter proposes an approach for the detection of changes in multitemporal VHR optical images 

acquired by different multispectral sensors. The proposed approach, which is inspired by a recent frame-

work developed to support the design of change-detection systems for single-sensor VHR remote sensing 

images, addresses and integrates in the general approach a strategy to effectively deal with multisensor 

information, i.e., to perform change detection between VHR images acquired by different multispectral 

sensors at two dates. This is achieved by the definition of procedures for the homogenization of radiometric, 

spectral and geometric image properties. These procedures map images into a common feature space 

where the information acquired by different multispectral sensors becomes comparable across time. Alt-

hough the approach is general, here we optimize it for the detection of changes in vegetation and urban 

areas by employing features based on linear transformations (Tasseled Caps and Orthogonal Equations), 

which are shown to be effective for representing the multisensor information in a homogeneous physical 

way irrespectively of the considered sensor. Experiments on multitemporal images acquired by different 

VHR satellite systems (i.e., QuickBird, WorldView-2 and GeoEye-1) confirm the effectiveness of the pro-

posed approach. 

3.1. Introduction 

The use of Remote Sensing (RS) in the analysis and evaluation of environmental processes evolution is 
a valuable tool which relevance increased in conjunction with the use of digital image processing tech-
niques. Due to the improvement of both acquisition sensor technology and data processing algorithms, it is 
possible to get an accurate and automatic identification and extraction of features for understanding the 
environmental changes occurring on the ground due to natural and anthropic interactions. The technological 
evolution resulted in the availability of multitemporal and multispectral satellite images with Very High 
spatial Resolution (VHR) acquired by passive sensors (e.g., QuickBird, WorlView-2, GeoEye, Pleiades). 
These images allow a detailed geometrical analysis when compared to medium or high spatial resolution 
data [31]–[34]. When considering VHR satellite systems, it is difficult to define Time Series (TS) made of 
images from one single sensor that satisfy the application temporal resolution constraints and show homo-
geneous acquisition conditions characteristics (e.g., similar light conditions, similar acquisition angle). This 
is mainly due to the satellite revisit period, the possible competing orders of different users on the satellite 
pointing, the limited life of a satellite mission, and weather conditions. However, a considerable number of 
satellites have been launched in the last decades, thus, to mitigate the abovementioned limitations, it is 
possible to build TS by considering images acquired by different multispectral VHR sensors. 

The definition of multisensor TS increases the probability to have sequences of multitemporal images 
with a proper time sampling but poses some challenges. In addition to real changes occurred on the ground, 
multisensor multitemporal images are affected by differences induced by the acquisition conditions (e.g., 
atmospheric conditions and acquisition system). On the one hand, some of the differences in atmospheric 

                                                
2 Part of this chapter appears in: 
Journal paper: Y. T. Solano-Correa, F. Bovolo, and L. Bruzzone, “An approach for unsupervised change detection in 
multitemporal VHR images acquired by different multispectral sensors,” under revision in Remote Sensing, MDPI. 
Conference paper: Y. T. Solano-Correa, F. Bovolo, and L. Bruzzone, “Change detection in Very High Resolution 
multisensor optical images,” 2014, vol. 9244, pp. 924410-924410–13. 
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conditions (e.g., cloud cover), and the differences in acquisition system (e.g., view angle and seasonal ef-
fects) affect single-sensor multitemporal image processing as well [30]. On the other hand, multisensor TS 
poses the big challenge of having system induced differences due to the type of sensor and the sensor 
acquisition modes. They result in spectral and geometric differences. Such differences make change detec-
tion state-of-the-art methods less effective since they usually assume that multitemporal images are ac-
quired by the same sensor and under similar acquisition conditions. Similar observations hold for the use 
of quantities like Digital Numbers (DN) that become non-comparable, thus their use may increase Change 
Detection (CD) error. Moreover, standard methods for converting DN in reflectance can be insufficient 
when using images acquired by different sensors [39]. 

An appropriate multitemporal image homogenization is therefore required to reduce both spectral and 
geometrical differences, and to ensure that differences in the multitemporal images can be associated to 
real changes occurred on the ground. In the literature, multitemporal image homogenization methods are 
available for medium and low geometrical resolution data [247]–[252]. However, their adaptation to VHR 
images is still an open issue because of the higher within-class spectral variability induced by the very high 
spatial resolution, when compared to lower spatial resolution sensors. In [49] and [36], authors made a first 
attempt to adapt existing methods to radiometric homogenization of a pair of VHR images (IKONOS and 
QuickBird). Spatial resolution differences were mitigated by resampling to the images with the lowest spa-
tial resolution [36], [49]. Other works transform DNs to physical information [39], [47], [48]. Pacifici et al. 
[39] showed the importance of working with physical quantities that are homogenous across time when 
using VHR optical images acquired by the same sensor. They pointed out the improvement achieved while 
increasing the level of information abstraction in the feature space, and its consequence for the final image 
homogenization. However, despite some work on adaptation of homogenization methods has been done in 
the literature, and as per the best knowledge of the authors, no formal approach exists that properly accounts 
for the complexity of data acquired by similar, yet different VHR multispectral sensors [47], [48], [253], 
[254], and guide the user from data pre-processing until the final CD process. 

In the literature, methods are available for multitemporal VHR optical images information extraction in 
the context of CD [30], [255]–[257]. Both supervised and unsupervised CD techniques have been widely 
used in several RS applications (e.g., flood detection, damage assessment, environmental monitoring). The 
main drawback of supervised methods lies in the need of collecting and constructing ground reference data 
for the system-training phase. However, they lead in general to more accurate results. On the other hand, 
unsupervised techniques have the advantage of not requiring any ground reference information. This mainly 
results in a faster and more operational processing, but lower accuracy in part due to the use of non-homog-
enous features. Accordingly, in the literature a large attention has been devoted to improve the accuracy of 
unsupervised approaches [30], [39], [50], [256]–[258]. Among CD techniques, the most widely used are 
the ones based on Principal Component Analysis (PCA), Iteratively Reweighted MAD and Change Vector 
Analysis (CVA) [52], [90], [256], [259]. 

CVA has been widely applied to the original spectral bands of multitemporal images from low to very 
high spatial resolution [50], [258], [260]–[262]. Other authors used CVA on the vegetation index or the 
Tasseled Cap (TC) feature space, but with low and medium spatial resolution images only, and/or for the 
detection of specific/single vegetation changes [261], [262]. In the case of VHR images, original spectral 
bands are traditionally used, and the CD mainly focuses on the separation of change and no change classes, 
or the identification of a single kind of change, without considering the nature (kind) of the changes [30], 
[100], [102]–[104]. In low, medium, high and VHR cases, features are mostly selected according to the 
possible changes occurred on the ground. But less attention is devoted to explicitly mitigate the differences 
induced by the acquisition system, both from the homogenization and feature selection perspectives [100], 
[102]–[104], which in turn would lead to an improvement on the CD accuracy. In the specific case of 
Iteratively Reweighted MAD, little attention is devoted to the possibility of using these features for CD in 
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multisensor images [102]. Mostly qualitative visual analysis about the possibility to detect changes is con-
ducted, but no quantitative change information extraction approach is provided [90]. In this context, the 
need arises of defining proper techniques and operational strategies for homogenization of multitemporal 
images acquired by different VHR multispectral sensors that mitigates differences in both atmospheric 
conditions and acquisition system parameters, thus reducing their impact on the multitemporal information 
extraction, and on the CD accuracy. The technique should also be able to extract changes automatically and 
distinguish among different kinds. 

This chapter presents an approach for unsupervised CD in multitemporal VHR images acquired by dif-
ferent multispectral sensors, which is inspired from the framework for the design of CD systems for VHR 
images presented in [30]. The proposed approach exploits some of the concepts in [30] and extends and 
integrates them with a strategy for mitigating the effects of the non-homogeneous properties of multitem-
poral images acquired by different VHR multispectral satellite systems at both pre-processing and feature 
extraction/change detection level. The main steps of the proposed approach are: i) mitigation of differences 
induced by the use of VHR multitemporal images acquired by different sensors; and ii) detection of multiple 
changes occurred on the ground by means of high level physical features. The first step is conducted by 
defining homogenization procedures that address radiometric, spectral and geometrical differences. Thus, 
multitemporal multisensor images become more comparable (i.e., more homogeneous) across time. Ho-
mogenization is further improved by extracting proper features from multisensor images that allow for an 
effective multitemporal comparison across sensors at a given level of abstraction. Features are designed to 
detect multiple changes relevant to the user. Although the approach is general, here we concentrate on the 
selection of high level features suitable to detect changes in vegetation and urban areas. Linear/Orthogonal 
transformation features are selected with no loss of general validity for the detection step. They are shown 
to be effective for representing the multisensor information in a coherent physical way versus the consid-
ered sensor, but other features can be considered as well. The second step is conducted by means of CVA 
in spherical coordinates, where the changes are represented by magnitude and direction variables. Separa-
tion among the changes is carried out in an automatic way. In the case of the magnitude variable, changed 
and non-changed pixels are separated by means of a Bayesian decision rule [44]. Whereas along direction 
variables, an adaptation of the Two-Stage Multithreshold Otsu (TSMO) method [45] is used. Experiments 
carried out on multitemporal VHR image pairs acquired by different sensors confirm the effectiveness of 
the proposed approach. 

The remainder of this chapter is structured as follows. Section 3.2 presents an overview and an analysis 
of the properties of a CD system for VHR RS images. Section 3.3 illustrates the proposed approach for the 
mitigation of differences induced by the use of VHR multisensor multitemporal images and the CD process. 
Section 3.4 introduces the multisensor datasets, describes the design of experiments and illustrates the ex-
perimental results. Finally, Section 3.5 draws the conclusions and future works. 

3.2. CD Systems for VHR Remote Sensing Images 

When considering VHR RS images, the CD problem becomes complex due to the heterogeneous spatial 
and spectral characteristics. Further, standard CD techniques often do not account for the semantic meaning 
of changes of interest. Standard CD methods often assume that unchanged pixels have similar signatures at 
the two dates, whereas changed ones do not. Unfortunately, this assumption is often not satisfied when we 
consider multitemporal VHR images, since additional differences may appear due to spectral and spatial 
heterogeneity. This becomes more critical when multisensor images are considered [20], [30]. In accord-
ance with [30], a proper definition and modeling of the concept of change is fundamental for the develop-
ment of effective techniques that can mitigate the intrinsic differences in multitemporal VHR data, and 
accurately detect multiple changes. Further, most of the current methods for CD in VHR images focus on: 
i) handling images acquired by the same sensor [263], [264], or ii) detecting specific kind of changes by 
using multisensor images (i.e., deforestation, burned areas, buildings detection) [100], [102]–[104]. Thus, 
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their applicability to CD in multisensor image pairs is limited. Thus, their applicability to CD in multisensor 
image pairs is limited. 

 

Figure 3.1. Flowchart of the procedure for the definition of novel CD methods [30]. 

In this chapter, we aim at developing a CD approach for multisensor VHR optical images. To this pur-
pose, the framework in [30] is used as a baseline. Figure 3.1 presents the general flowchart proposed in [30] 
that consists of two main steps: i) definition of the tree of radiometric changes and; ii) detection of changes, 
which can be conducted by two different strategies. In the first step, possible classes of radiometric changes, 
are analyzed and their taxonomy is defined. The resulting tree of radiometric changes is specific for the 
considered CD problem. To this end, a categorization of the different possible radiometric changes that 
may be present in a multitemporal VHR dataset is required. 

Figure 3.2 shows a tree that models radiometric changes for a generic CD problem in multitemporal 
multisensor VHR images. According to [30], two main kinds of radiometric changes A� %BC originate be-
cause of the complexity of VHR images: i) changes due to acquisition conditions (���D) and; ii) changes 

occurred on the ground 	A�EFBC. The former corresponds usually to changes of no interest for the end user. 
The latter includes the changes relevant from the user’s viewpoint. ���D 	 changes are the ones associated 

to differences in atmospheric conditions A��GHC and in the acquisition system A�(I�C. The latter results in 
the appearance of undesired change patterns, differences in the geometry and in shadows, and thus errors 
in the final CD map. �(I� changes, such as the ones due to the type of sensor (�(��), can be mitigated by 
working with proper homogeneous features. 

Among �(��, we find changes due to differences in the spectral resolution (�(��) and spatial resolution 

(�(�%). �(I�  includes changes due to the sensor view angle (���-) or the solar rays incidence angle (�(J�). ���- can be related to the topography (��K�) and the relief (� ��). For example, they may generate changes 

in shadows. Whereas �(J� refers to effects such the ones induced by seasonal variations of the solar ray 
incidence angle, which generates shadows differences that are not associated to changes on the ground. On 
the other hand, �EFB changes can be divided into four main categories: natural disasters A�L� – e.g., earth-
quake damages), vegetation phenology A�)�-- e.g., leaves lost during winter), environmental conditions A�M�, – e.g., variation in soil moisture levels) and anthropogenic activities A���G – e.g., harvested crop 
fields, new buildings). The tree structure illustrated in Figure 3.2 has a wide validity and fits to most of the 
CD problems. However, depending on the specific CD problem, the tree can be adapted and optimized. On 
the one hand, some leaves/nodes might be irrelevant and thus can be removed. On the other hand, some 
leaves may require to be further specified in accordance with the specific study case (see Sec. 3.4 for an 
example of how to define the tree of radiometric changes for a concrete CD problem). To extract the 
changes of interest, it is necessary to select effective features and to count on prior knowledge about the 
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problem. 

 

Figure 3.2. General tree of radiometric changes for the multisensor VHR images case [30]. 

The second step detects the kind of changes identified in the previous step, by selecting the strategy for 
the design of the CD method. According to Figure 3.1, two possible strategies can be adopted based on: i) 
direct extraction of the radiometric changes of interest, or ii) detection by cancellation of non-interesting 
radiometric changes. Most of the current available CD methods for VHR RS images make use of the direct 
extraction strategy since their goal is to extract a specific kind of change. Nevertheless, sometimes it is 
easier to detect the radiometric changes that are of no-interest, and therefore to detect relevant changes by 
cancellation. 

3.3. Proposed Approach to Unsupervised CD in VHR Multispectral Images Acquired by Dif-

ferent Sensors 

 

Figure 3.3. Block scheme of the proposed approach to CD in multitemporal multisensor VHR optical images. 

In this section, details on the proposed approach to solve the CD problem in VHR multisensor optical 
images are given. For handling the problem, we focus on two issues: i) mitigation of multisensory induced 
changes �(I�  by the homogenization of multispectral data acquired by different VHR sensors and; ii) de-

tection of �EFB  changes by mitigation of residual �(I� at the level of feature extraction. Figure 3.3 depicts 

the block scheme of the proposed approach. In order to accomplish the �(I� mitigation, two main steps are 
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considered: 1) spectral and; 2) geometric differences mitigation. �EFB  detection is accomplished in two 
steps: 3) multisensor feature extraction and; 4) change detection. 

Let us consider two VHR optical images, �",% and �#,N, acquired by different sensors �" and �# , where O 6 1,2,… , Q and R 6 1,2, … , S represent the multispectral bands for �" and �#. The number Q and S of 
spectral channels in �" and �# can be equal or different depending on the sensor. Given the use of different 
VHR sensors, �",% and �#,N are likely to show different number of acquisition bands with slightly different 
bandwidth and spatial resolution, and/or different view angle. In other words, different spectral and geo-
metrical properties. Let us assume that �",% and �#,N sizes are T" U V" and T# U V#, respectively, and that the 
images are acquired over the same geographical area at different times 2" and 2#. 

3.3.1 WXYZ Differences Mitigation 

When dealing with multitemporal images acquired by different sensors �" and �#, one of the critical 
issues is to identify and remove acquisition system induced changes (�(I�). Handling the differences due 

to �(I�, contributes to mitigate issues on the left side of the tree of radiometric changes (Figure 3.2). In 

single sensor VHR images, �(I�  are mainly due to differences given by the sensor view angle (���-), and 

are accentuated by the topography (��K�) and relief (� ��). All of them contribute to the geometrical dif-
ferences and result in radiometric distortions. When multisensor VHR images are considered, additional 
problems arise due to the type of sensor (�(��) and thus the differences in the spectral (�(��) and spatial 

(�(�%) resolution. �(�� can be mitigated by performing a radiometric normalization of the images. Whereas �(�% should be managed by means of geometric corrections, since they contribute to geometric differences. 

 

Figure 3.4. Block scheme for mitigation of [X\] in multisensor VHR images. 

To mitigate �(�� , two macro-categories of normalization methods exist in the literature: absolute and 
relative methods. The former involves the conversion of the DN values into the corresponding ground re-
flectance ones [39]. While the latter performs image-to-image adaptation in the histogram feature space 
[36], [49], [249]–[252]. When data from two different sensors �" and �# are considered, the spectral infor-
mation in the multisensor images is not comparable. Thus, absolute normalization is preferred with respect 
to the relative one, though not limited. 

Absolute normalization estimates surface reflectance values providing information at physical level and 
mitigating spectral differences. The steps for spectral differences mitigation are shown in Figure 3.4, where �",% and �#,N are converted from DN to surface reflectance (���� [unitless]) images, �",%�  and �#,N�  (where � stands for spectrally corrected). Although this step might result obvious in the CD process, several works 
can be found in the literature that use DN in the comparison step. Further, the mitigation of �(�� becomes 

more critical when multisensor data are considered. To get	����, the digitalization process performed at 
the sensor during image formation must be inverted [39]. Parameters such as the mean exoatmospheric 
solar irradiance, solar zenith angle, Earth-Sun distance, radiance value and others are required. They can 
be retrieved from the metadata or from user guides, and are specific for each satellite. The resulting �",%�  

and �#,N�  have the same physical meaning. However, some differences cannot be mitigated. Thus, in addi-
tion to physical driven strategies, some data driven ones (feature extraction) are required (see next section). 
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Figure 3.5. Block scheme followed for the mitigation of geometric differences in multisensor VHR images. 

Satellites carrying on-board VHR sensors have the capability to acquire images with different view an-
gles; this increases the probability of having multitemporal images with the required time resolution and 
cloud free on a given area. However, when multitemporal images are considered, differences in the acqui-
sition view angle can induce misalignments because of the impact of topography (��K�), small changes in 

relief of the terrain or the presence of buildings (� ��) [265]–[268]. Further, when �",% and �#,N are acquired 
by different VHR sensors, small differences in the spatial resolution (�(�%) are also expected. To achieve 
the geometric differences mitigation (step 2, Figure 3.3), the block scheme shown in Figure 3.5 is followed. �",%�  and �#,N�  are the input images and �",%�,- and �#,N�,- are the spectrally and geometrically mitigated ones (^ 

stands for geometrically corrected). 
Geometric distortions due to the joint effect of topography, relief and sensor view angle, are mitigated by 

applying orthorectification with a high resolution Digital Elevation Model (DEM). In this way, most of the 
misalignments between multitemporal images due to ��K� and � �� are corrected. However, additional 
issues remain because of differences in spatial resolutions, thus co-registration should be applied so that 
pixels with the same coordinates in the images may be associated with the same area on the ground. This 
step is very critical since a poor co-registration may result in an unreliable final CD map [15]. On the other 
hand, it is important to clarify that neither orthorectification, nor co-registration solve the problems derived 
by the presence of vertical structures. This kind of changes are usually considered as sources of noise and 
are not of interest, thus they can be removed/mitigated by some feature extraction strategy applied during 
the CD stage (e.g., shadow detection and removal). 

Pansharpening (PS) could be applied between orthorectification and co-registration as an optional step. 
It is meant to improve the spatial information by integrating the high spectral and low spatial resolution 
bands with the high spatial and low spectral resolution panchromatic band. Several PS methods exist in the 
literature, e.g., Intensity-Hue-Saturation (IHS), PCA, wavelets and Gram-Schmidt [269]. While co-regis-
tering, a resampling of the image with highest spatial resolution is performed in order to get the same 
common spatial resolution of the one with lower spatial resolution. The spatial resolution of VHR images 
is metric to sub-metric. Looking at existing satellite missions, the spatial resolution of VHR optical images 
ranges from the 0.3m of WV-3 and 4 to the 1m of Kompsat-2 in the panchromatic channel. Thus, when 
considering VHR multisensor image pairs the maximum resolution difference may rise up to about 0.7m. 
Therefore, VHR images spatial resolutions are different yet similar and comparable. The outputs are mul-
tisensor VHR images, �",%�,- and �#,N�,-, showing the same spatial resolution and the same physical infor-

mation, where �(I� have been mitigated. 

3.3.2 W_`a detection 

Once the �(I�  have been mitigated, the proposed approach performs �EFB detection. It extracts the 
changes of interest by selecting and extracting significant features for specific changes present in the study 
area. Standard CD approaches like Univariate Difference Image (UID) [53] and CVA [270] perform mul-
titemporal comparison by means of the difference operator. The multispectral (or single spectral, in the case 
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of UID) difference image � is composed by Spectral Change Vectors (SCV). 
The rationale behind the use of the difference operator is that unchanged samples show similar spectral 

signatures and thus result in SCVs with almost all zero components, whereas changed samples show SCVs 
with components far from zero. However, when multisensor images are considered, such an assumption is 
seldom satisfied, even after �(I�  mitigation. Thus, further homogenization is required in order to satisfy 
the a priori assumption for a successful employment of simple methods like UID and CVA. When multi-
sensor images are considered, a proper feature space should be explicitly identified where pixel based com-
parison is meaningful. Here we propose the use of higher-level physical features, derived from the ���� 
ones. While reducing residual sensor-induced differences in the unchanged areas, thus improving the ho-
mogenization level, a better highlightening of the changes of interest is achieved. In other words, working 
with higher-level physical quantities improves the level of abstraction while increasing the probability to 
detect the changes of interest and reducing the number of false alarms [39]. 

Since the proposed approach is general, any feature with high-level physical meaning can be used (e.g., 
radiometric indices). Further, since the approach is designed for VHR images, it may benefit from the use 
of spatial context information [30], [67]. However here we are interested in understanding the performance 
of the approach for CD and thus of the multisensor homogenization procedure in mitigating the effects of 
sensor differences on the CD map. Accordingly, pixel-based features are considered such as radiometric 
indices. As an example, if changes due to vegetation phenology (�)�-) are present, a radiometric index to 

detect vegetation can be used. In the case of natural disasters (�L�) in urban areas, a building index plus 
vegetation or soil index could be considered. Radiometric indices suitable to detect most of the relevant 
kind of changes can be found in the literature. 

Selection of a proper index becomes more and more complex when the �EFB are coming from different 
sources. Since here we focus on vegetation and urban changes, we select features based on linear transfor-
mations such as TC or Orthogonal Equations (OrE) among the others [271], [272]. TC features were de-
signed originally as a linear transformation for the agricultural analysis on single date images [271], but 
they were further analyzed and used for CD analysis in multitemporal images. The literature works mainly 
used TCs in medium resolution and single sensor images (e.g., Landsat) [261], [262]. Three main TCs have 
been studied (i.e., Brightness, Greenness and Wetness) because of their ability to detect and monitor soil 
content or transitions, vegetation and canopy moisture. Since TC is an invariant transformation in the phys-
ical feature space, its features are consistent between different scenes in a multitemporal time series [271] 
and therefore could be invariant between multisensor multitemporal images. Similarly, the OrE were de-
rived following the TC philosophy and highlight information on crops, vegetation and soil. Additionally, 
OrE were designed as a substitution for the sensors which TC coefficients have not been derived in the 
literature, yet. 

Given the above discussion, we use TC or OrE for the �EFB detection process. These transformations 
compute a linear combination of the spectral bands. The number of features derived from TC is the same 
as the number of input features (in our case Q and S, respectively), but only 3 TCs are generally used for 
CD. In the case of OrE, only 3 features are derived. Equation (3.1) shows the general equation to calculate 
TC or OrE features (b), where c represents each of the b features and de,% are the coefficients calculated 

for each �e�. The same equation applies for TC and OrE, though only the red, blue, green and NIR bands 

of the sensors are used for the latter. The following analysis applies for both TC and OrE. 

 �e� 6 fde,%�",%�,-�
%g"  (3.1) 

Once physical level features have been extracted from different sensors, step 4 (Figure 3.3) applies CD. 
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As mentioned above, CVA is employed. Since three features are considered, a 3-D representation is ob-
tained [273]. Each SCV of �� is defined as in equation (3.2). 

 �� 6 �#� h �"�  (3.2) 

Each SCV component captures the multitemporal behavior of the corresponding feature (either TC or 
OrE). SCV components tend to assume small values when no change occurred. Whereas if changes oc-
curred, components assume large values (either negative or positive) depending on the kind of change. This 
is true, even if single date features may have different ranges across each other since the difference operator 
(3.2) is applied to corresponding features computed at t1 and t2 showing similar range. To effectively per-
form CD in the multidimensional space defined by ��, the information in �� vector is represented in spher-
ical coordinates by computing its magnitude (�), azimuth angle (i), and elevation angle (j). The relation-
ship between �� in Cartesian coordinates and Spherical coordinates is described by equations (3.3)-(3.5). 

 � 6 k�,"� # + �,#� # + �,�� #
 (3.3) 

 i 6 O2O=2 lmn,9omn,8o p3 (3.4) 

 j 6 O�qr� s�,��� t (3.5) 

 

 

Figure 3.6. Regions of interest for CVA in spherical coordinates: domain D of SCVs in �� , sphere �� of no-changes, 
spherical shell ��  including changes and solid truncated cone ��  associated to a generic change k [273]. 

In the spherical representation, unchanged samples having small values in all the �� components assume 
small magnitude (�) values; whereas changed samples assume large values in one or more �� components 

thus showing a large magnitude (�) and a direction along i and j variables that depends on the ratios 
among values of the �� components (i.e., on the kind of change). Therefore, the magnitude variable carries 
information about the presence/absence of changes, whereas the direction variables carry information about 
the possible kind of changes [50], [270], [273]. According to these observations, a magnitude-direction 
domain (D) (Figure 3.6) can be defined as in equation (3.6) that includes all SCVs. 

 u 6 v� ∈ x0, �H%yz, i ∈ x0,2{C	O=�	j ∈ x0, {C| (3.6) 

                                                
3 O2O=2 is a common variation on the O�q2O= function that solves the problem of O�q2O= to distinguish between 
diametrically opposite directions. O2O=2 range is confined in the interval Ah{, {z. 
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�H%y is the maximum magnitude of ��� . 
Three subsets of D are of interest. i) the sphere (��) that includes unchanged pixels, i.e. the ones with 

small magnitude values; and ii) the spherical shell (��) that includes changed pixels, i.e., the ones with large 
magnitude values. �� and �� are complementary, the radius T of �� is the inner radius of ��, and their union 
provides D. T separates changed from unchanged samples along the magnitude. Since the magnitude is a 
compressed 1-dimensional representation of the change problem, T is obtained as a trade-off among the 
effects of the kinds of change. Yet, the definition of T along the magnitude only is a simple and effective 
solution [50], [273]; and iii) truncated cone sectors (��) of changed pixels associated to preferred directions 
(i�, j�) in �� (gray shaded truncated cone in Figure 3.6). Each preferred direction is associated to a specific 
kind of change �EFB  (see Figure 3.2). The volume �� associated with the k-th change is defined as: 

 �� 6 7�, i, j: 	 ~ � � �H%y , i�8 ~ 	i � i�9 , j�8 ~ 	j � j�9< (3.7) 

The upper and lower bounds i�8 ,	i�9,	j�8 and j�9, as well as T, can be calculated manually or automat-

ically [117]. Once the angular thresholds have been estimated, the magnitude threshold T can be refined for �� to account for the behavior of each specific kind of change [57]. Finally, the change detection map 

(duH%�) is built by including the following labels Ω 6 v1� , ΩEFB|, with ΩEFB 6
7ΩL�, Ω)�- , ΩM�, , … , Ω��G<, where 1� refers to unchanged areas. As last step, non-relevant changes (e.g., 
misregistration, shadows), usually associated with the left side of the tree of radiometric changes shown in 

Figure 3.2, are removed from the duH%�. 

3.4. Experimental Results 

3.4.1 Dataset Description and Design of Experiments 

The proposed approach was validated over different areas located in the Trentino region in the north of 
Italy between 45°57’45.21”- 46°07’28.04”N and 10°58’35.37”-11°14’29.27”E (Figure 3.7). These areas 
show interesting properties from the point of view of orographic conformation and environmental variety. 
Over a relatively small region it is possible to find: i) flat regions including precious apple and vineyard 
fields, and urban, sub-urban and industrial areas with different density and structure; and ii) hill and moun-
tain environments with a variety of tree species. 

 

Figure 3.7. Area of interest, Trentino region in the North of Italy. 

Three multitemporal data sets made up of a QuickBird (QB), two Worldview-2 (WV-2) and one GeoEye-



An Approach for Unsupervised Change Detection in Multitemporal VHR Images Acquired by 

Different Multispectral Sensors 

 

 39 

1 (GE-1) images were constructed over the sample areas (yellow squares in Figure 3.7). The three datasets 
were selected such that different kinds of change are represented. Therefore, dataset 1 shows the transition 
from forest area to several kinds of vegetation, dataset 2 shows transitions among different phenological 
states of crop areas; and dataset 3 shows transitions from vegetation and bare soil (and vice versa) and 
changes in roofs and roads around an urban area. These datasets allow us to evaluate the complexity of 
working with multisensor VHR optical images. For datasets 1 and 2, �" is a QB image, acquired in July 
2006 with 14.1° off-nadir angle. Whereas �# is a WV-2 image acquired in August 2010 with 19.3° off-
nadir angle. For dataset 3, �" is a WV-2 image, acquired in May 2011 with 7.8° off-nadir angle. Whereas �# is a GE-1 image acquired in September 2011 with a 14.4° off-nadir angle. The three satellites show 
some remarkable differences due to differences in the view angle, the spectral resolution, the number of 
bands and the spatial resolution. 

Table 3.1. Main characteristics of QuickBird, WorldView-2 and GeoEye-1 optical sensors [274]. 

Satellite QuickBird WorldView-2 GeoEye-1 

Bands (nm) 

445-900 (pan) 450-800 (pan) 450-800 (pan) 

 400-450 (coastal)  

450-520 (blue) 450-510 (blue) 450-510 (blue) 

520-600 (green) 510-580 (green) 510-580 (green) 

 585-626 (yellow)  

630-690 (red) 630-690 (red) 655-690 (red) 

 705-745 (red edge)  

760-900 (NIR) 
770-895 (NIR 1) 

780-920 (NIR) 
860-1040 (NIR 2) 

Spatial 

Resolution (m) 

0.61 
2.44 

0.46 
1.84 

0.41 
1.65 

The QB and GE-1 images have four multispectral bands, whereas WV-2 has eight. The spatial resolution 
of the QB image is 0.6m for the panchromatic band and 2.4m for multispectral bands, whereas WV-2 and 
GE-1 offer a higher spatial resolution in both panchromatic and multispectral bands with 0.5m and 2m, 
respectively. Table 3.1 summarizes the characteristics of QB, WV-2 and GE-1 images from the spectral 
and spatial point of view. The spatial resolution differences imply that the sizes T" × V" and T# × V# of �" 
and �# images, respectively, are different despite they cover the same surface. The size of QB image in 
Figure 3.7 is 8674×6300 pixels, whereas the size of WV-2 and GE-1 images is 10297×7139 pixels. Thus, 
pixel-by-pixel comparison cannot be directly applied since the same pixel coordinates in the two images 
do not correspond to the same position on the ground. Concerning spectral resolution, we can observe that 
the four primary multi-spectral bands of QB, GE-1 and WV-2 are acquired over similar spectral ranges 
(e.g., red), but not fully identical (e.g., blue). Similar considerations hold for green and NIR bands. 

In order to apply the proposed approach, we define the tree of radiometric changes (� %B) specific for 
the considered study areas (one single joint tree is provided for the three datasets), apply mitigation, extract 
suitable features and perform �EFB detection. As a first step, we define the specific tree of radiometric 
changes (� %B) for the considered problem by starting from the general tree given in Figure 3.2 [30]. The 
three datasets show changes due to acquisition conditions (Ω��D) and changes occurred on the ground 

(ΩEFB). With regard to ΩEFB , there are changes in the phenological state of the vegetation (Ω)�-) (e.g., 

radiometry of some crops yards, trees, small roads between crop yards (Ω�FK), re-vegetation) and changes 
due to anthropic activities (Ω��G) (e.g., changes in road Ω K%, deforestation Ω��, roofs Ω�JL and crop 
planting). It is important to clarify that even though the kinds of changes can be visually separated by 
photointerpretation, we do not have enough information to give a precise “from-to” label to them. 
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Concerning Ω��D , both atmospheric conditions (��GH) and acquisition system ��(I�� effects are present. ��GH is mitigated by means of atmospheric corrections [39]. �(I�  is related to the type of sensor (Ω(��) 

and to the sensor view angle (Ω��-). The Ω��- changes generate small differences in the appearance of 
objects, leading to geometric distortions, thus to residual misregistration even after proper alignment of 
images, and to spectral differences when tall buildings are present. We can also see some differences in 
shadows, which become more critical when high buildings, structures or reliefs are present. Ω��- and Ω(�� 
changes are non-relevant from the application viewpoint. Therefore, they are explicitly handled before pro-
ceeding to detect �EFB and tuning the final CD map. �(I� such as the ones due to sensor acquisition mode 

(��KB) are not considered since we are working with passive sensors. �EFB  like the ones due to natural 
disasters (�L�) or environmental conditions (�M�,) are neglected, since such events did not occur in the 
considered study area. According to this analysis and to the general taxonomy in Section 3.2, the tree of 
radiometric changes for the considered problem becomes the one in Figure 3.8. 

 

Figure 3.8. Tree of radiometric changes for the considered problem. 

Once the radiometric tree was defined, we performed spectral and geometric differences mitigation. All 
images were provided by DigitalGlobe Foundation in the context of the “MS-TS – Analysis of Multisensor 
VHR image Time Series” project [275]. Conversion from DNs to surface reflectance (TOA) was conducted 
before delivery by means of the Atmospheric Compensation (AComp) algorithm [39], [276], [277]. Given 
the orography of the study area and the possible distortions, we applied orthorectification by using a DEM 
obtained from LiDAR data [278]. Further distortions appear in dataset 1, since it is located in mountain 
area, and dataset 3 because of the presence of buildings. Additional pixel-to-pixel problems are also ob-
served due to Ω��-, and co-registration should be applied. 

In order to achieve a better co-registration, PS was applied by means of the Gram-Schmidt method. Here 
ENVI software package was employed [279]. After PS, the spatial resolution for QB is 0.6m, and 0.5m for 
GE-1 and WV-2 multispectral bands. Co-registration was carried out over the QB - WV-2 and WV-2 - GE-
1 pairs, covering the whole study area in Figure 3.7, by using a polynomial function of second order. For 
the QB 2006 and WV-2 2010 couple, 79 uniformly distributed Ground Control Points (GCP) were selected. 
Whereas 68 uniformly distributed GCP were selected for the WV-2 2011 and GE-1 2011 couple. The WV-
2 2010 image was resampled during co-registration. Resampling was performed by means of the nearest 
neighbor interpolation. Figure 3.9 shows the pansharpened multisensor VHR QB, GE-1 and WV-2 images 
after applying spectral and geometric mitigation in the first and second column, respectively. 

Datasets 1 and 2 show a common spatial resolution of 0.6m and a size of 640x640 pixels. Whereas dataset 
3 shows a common spatial resolution of 0.5m and a size of 1800x1800 pixels. Datasets 1, 2 and 3 appear in 
first, second and third row of Figure 3.9, respectively. In order to perform qualitative and quantitative anal-
ysis, a reference map for datasets 1 and 2 was defined by photointerpretation and exploiting prior knowledge 
on the scene as no ground truth was available (see Figure 3.9 (c) and (f), showing 332414 and 280928 
unchanged pixels (white color) and 77186 and 128672 changed pixels (different colors), respectively). For 
dataset 3, considering the extent of the area and the fact that we have no complete knowledge of the changes 
occurred on the ground, it was not possible to derive a complete reference map. Thus, quantitative analysis 
was based on 62808 pixels marked as changed, and 6263 as unchanged, selected by photointerpretation. 
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For comparison purposes, a false color composition of the two acquisitions is provided, green and fuchsia 
areas represent changes (Figure 3.9 (i)). Changed pixels in the reference map include ΩEFB , only. For da-
taset 1, changes from i) forest to bare soil, ii) forest to grass, iii) base soil to grass and iv) bare soil to some 
road are identified. For dataset 2, changes from i) dense vegetation to sparse or light vegetation and vice 
versa, and ii) bare soil to vegetation are present. And for dataset 3 changes are from i) bare soil to vegetation, 
both dense and sparse, ii) one to another color of the roofs, and iii) old to new roads. 

 
 

   
 (a) (b)  (c) 
 

   
 (d)  (e)  (f) 
 

   
 (g) (h) (i) 

Figure 3.9. True color composition of the pansharpened multispectral multisensor VHR datasets: (a), (d) QB image 
acquired in July 2006; (b), (e) WV-2 image acquired in August 2010, (g) WV-2 image acquired in May 2011 and; (h) 
GE-1 image acquired in September 2011. (c) and (f) Reference maps and; (i) false color composition for dataset 3 
(magenta and green shades highlight changes). 

Once spectral and geometric mitigation was achieved, mitigation of residual �(I�  was performed at the 

level of feature extraction. The selection of the features is therefore designed to detect the residual �(I�  and 

the �EFB . According to the tree of radiometric changes (Figure 3.8), residual �(I�  might be related to ���-, 

resulting in possible shadows and/or registration noise, whereas �EFB includes three kind of changes: ��FK,� K% and ���. Residual �(I�  due to shadows, due to vegetation or buildings, were detected by means of 
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the method in [280], whereas �(I�  due to registration noise are negligible. �EFB  were detected by employ-
ing TC and OrE features. 

Three main TCs (i.e., Brightness, Greenness and Wetness) and three OrE (Crop mark, Vegetation and 
Soil) have been studied because of their sensibility to soil content or transitions from-to soil, vegetation, 
canopy moisture and anthropogenic activities have been studied. Thus, we expect them to properly detect 
the different changes in the study area, with the exception of some transitions between green areas that do 
not show up in TC features. These are the cases of datasets 1 and 3, where transitions from forest to grass 
and crop to grass are misdetected. This is due to the fact that the difference is more in texture rather than in 
TC features. In order to evaluate and compare the proposed approach, experiments carried on features such 
as TOA, are also conducted. The detection of changes is obtained by applying CVA to a 3D TC and OrE 
feature space. However, other features such as IR-MAD [90] could be also used, despite no approaches for 
automatic detection with these features in multisensor VHR images exist yet. The drawback with IR-MAD 
is that it requires an end-user interaction to select the most specific components that represent the specific 
change of interest and to separate among changed and un-changed samples. This is time consuming and 
makes the approach not fully automatic. 

Two experiments were designed: i) experiment 1 (exp. 1) applies CVA to the transformed TOA bands 
features; and ii) experiment 2 (exp. 2) applies CVA to TC (for datasets 1 and 2) or OrE (for dataset 3 which 
has a large presence or urban areas) features. In exp. 1, the first two selected bands are the Near-IR (NIR) 
and Red (R) given their high spectral sensibility in the analysis of vegetation and anthropic activities. The 
R bands of QB, GE-1 and WV-2 have quite similar spectral range, whereas the NIR ones do not (see Table 
3.1). Therefore, between NIR1 and NIR2 WV-2 bands, NIR1 (770-995nm) was selected given that its spec-
tral range better matches to the QB NIR (760-900nm) and GE-1 NIR (757-853nm) band spectral range. 
Another TOA feature to be selected could be the Green or Blue band. Empirical experiments showed a 
slightly improvement in the final CD accuracy while using Green band instead of Blue one. Therefore, 
Green band was selected as third feature. In exp. 2, for datasets 1 and 2, TC features were selected based 
on: i) the maximum number of TC features that can be derived for each specific sensor, ii) the radiometric 
tree of changes; and iii) the possibility to compare between multisensor TC features. Thus, 4 TC features 
were derived, bounded by QB properties. In accordance with the radiometric tree, features should be se-
lected that are able to highlight Ω)�- and Ω��G. Based on the level of comparison between the multisensor 

TC coefficients, and according to the state-of-the-art, only the first three TC features of each sensor show 
similar physical meaning. For dataset 3, only three OrE features exist in the literature and are derived by 
means of the 4 main spectral bands of the sensors. 

TC and OrE features were derived directly from the spectrally mitigated data and by using the coefficients 
in Table 3.2, Table 3.3 and Table 3.4. For TC, only coefficients corresponding to the first three TC feature 
are present. Here the set of coefficients in [281] was applied to the QB image. The coefficients are derived 
from the DN feature space (Table 3.2). There are no TC coefficients derived from TOA values for QB 
images in the literature. Thus, we applied the QB TC coefficients over the QB DN features, and compared 
the derived TC features as a higher level primitive. For the WV-2 image, coefficients are applied as given 
in [282]. They are derived for the TOA features (Table 3.3). The OrE features were derived by means of 
the coefficients shown in Table 3.4 and as per equation (3.1). 

Table 3.2. TC coefficients for QuickBird DN values [281]. 
Bands Brightness (TC1) Greenness (TC2) Wetness (TC3) 

B1 0.319 -0.121 0.652 
B2 0.542 -0.331 0.375 
B3 0.490 -0.517 -0.639 
B4 0.604 0.780 -0.163 
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Table 3.3. TC coefficients for WorldView-2 TOA values [282]. 

Bands 
Brightness  

(TC1) 

Greenness  

(TC2) 

Wetness and  

shadows (TC3) 

B1 -0.060436 -0.140191 -0.270951 
B2 0.012147 -0.206224 -0.315708 
B3 0.125846 -0.215854 -0.317263 
B4 0.313039 -0.314441 -0.242544 
B5 0.412175 -0.410892 -0.256463 
B6 0.482758 0.095786 -0.096550 
B7 -0.160654 0.600549 -0.742535 
B8 0.673510 0.503672 0.202430 

Table 3.4. Orthogonal coefficients for WorldView-2 and GeoEye-1 [272]. 

Orthogonal Component Blue Green Red NIR 

WV-2 

Crop Mark -0.38 -0.71 0.20 -0.56 
Vegetation -0.37 -0.39 -0.67 0.52 

Soil 0.09 0.27 -0.71 -0.65 

GE-1 

Crop Mark -0.39 -0.73 0.17 -0.54 
Vegetation -0.35 -0.37 -0.68 0.54 

Soil 0.08 0.27 -0.71 -0.65 

3.4.2 Experimental Results 

In order to assess the effectiveness of the �(I� mitigation and the �EFB  detection approach based on 
higher-level physical features, CVA was applied by considering the 3D feature space defined above and by 
means of equations (3.2)-(3.5). We first extracted all the areas that correspond to radiometric changes in 
the image, by thresholding the magnitude variable. The selection of a threshold T over � showed to be a 
simple and fast way to separate among changed and non-changed pixels. A good separation, among the 
three dimensions of CVA was guaranteed in average. T was automatically selected by applying a Bayesian 
decision rule [44]. The T values for each of the datasets in the two experiments are shown in Table 3.5. 

Table 3.5. Magnitude (	) threshold values for the three datasets in Exp.1 and 2. 

Dataset Exp. � 

1 
1 0.060 
2 0.080 

2 
1 0.025 
2 0.030 

3 
1 0.090 
2 0.060 

Figure 3.10 shows the multispectral difference image 3D histogram for the dataset 1. In Figure 3.10 (a) 
and (c), it is possible to see how ���� and ���  are distributed in a coplanar and sparse way, respectively. 
This kind of distribution leads to an easier visual interpretation of the ��� , if compared to ����. In fact, 
from the 3D histograms in Figure 3.10, we can see that the coplanar distribution of TOA features does not 
allow good separation between changes of interest and changes of no-interest. A similar behavior is ob-
served between the TOA and OrE features. Right column of Figure 3.10, presents the changed samples 
after removing the unchanged ones. Different clusters fit to different �� sectors and are associated with 
different changes. As we move from ���� to ��� , or ���� to ��FM , it becomes evident how different 
clusters locate around preferred directions and how the number of clusters increases, making their detection 
and separation more effective. Separation among different clusters can be performed by automatic or man-
ual methods. 
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(a) (b) 

  
(c) (d) 

 
Figure 3.10. Histogram in spherical coordinates of (a) ����, (c) ��� , and changed samples after thresholding � for 
(b) TOA and (d) TC features. 
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 (g) (h) (i) 

Figure 3.11. Change detection maps obtained by CVA in 3D applied to the three datasets in: (a), (d), (g) TOA features; 
(b), (e) TC features; and (h) Orthogonal features. (c), (f) Reference map; and (i) false color composition for dataset 3 
(magenta and green shades highlight changes). 

Last step builds the multiple duH%� by means of the extraction by cancellation strategy. To this end, 
selection of each of the clusters in the changed region was conducted automatically by means of an adap-
tation of the TSMO proposed in [45]. Final multiple CD maps were built by cancelling the remaining �(I�  
and the �EFB that are out of interest (e.g., cars in road and parking areas, Figure 3.11). As expected, some 
vegetation changes that affect more texture rather than TC features are misdetected in datasets 1 and 3. In 
other words, the selected higher-level physical features are not optimized for those changes, but different 
higher-level physical features could be selected to properly model most of the kinds of changes. 

In order to perform a quantitative analysis, a comparison of the CD maps with their reference maps (for 
datasets 1 and 2) and the set of points collected by photointerpretation (dataset 3) was carried out. The 
comparison pointed out the improvement achieved when working with higher-level physical quantities, 
specifically for transitions from and to bare soil and different types of crops. This is confirmed when we 
analyze dataset 1 where changes are mainly from-to vegetation and bare soil. TC features outperform the 
results obtained when using TOA features (Table 3.6). As expected, both TC and TOA features have similar 
problems to identify the change from forest to vegetation. An analogous situation occurs on dataset 2, with 
changes from-to different types of crops. In this case, TC outperforms TOA being able to separate among 
changes C2 and C3 (which cannot be discriminated when using TOA features - see Figure 3.11 (d), (e) and 
(f)). 

For datasets 1 and 2, the major improvement is related to the decrease of False Alarms (FA) (see Table 
3.6 and Table 3.7). In dataset 1, the FA correspond to the main road passing through the area and to some 
of the remaining shadows generated by the tree lines. Even though an index was used to remove the shad-
ows, a small percentage of them remained. In dataset 2, the FA correspond mainly to the linear structures 
like roads in between the different crops. Moreover, it is possible to observe improvements in terms of 
detection and separation of the different kinds of changes. The number of Missed Alarms (MA) decreased 
as well when working with TC, leading to a better detection of changes, especially when a higher number 
of changes exist, such as the case of dataset 2. From the quantitative viewpoint, the reduction in both FA 
and MA reflects in the Overall Accuracy (OA) that increases of about 5% and 7% for dataset 1 and 2, 
respectively (see Table 3.6 and Table 3.7). 

In the case of dataset 3, on the one hand, we can see how TOA features have problems to properly separate 
among C3 and C4 classes that correspond to transitions from bare soil to sparse and dense vegetation, 
respectively. On the other hand, the number of MA for the class C3 by TOA features is clearly larger than 
for OrE features (see Table 3.8). Moreover, OrE features are able to better detect the classes C2 and C7 
than TOA features. C2 and C7 correspond to changes occurred on building roofs and roads renewed in the 
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studied period. Finally, TOA features do not detect class C8 (change in roof color of a building), whereas 
OrE features do. Other transitions from-to vegetation and bare soil can be seen in the change classes with 
less MA and FA when the OrE features are used. It is worth noting that changes due to cars on roads or in 
parking areas were considered as non-relevant for this study and thus neglected. From the quantitative 
perspective, the OA obtained by OrE features increased the overall accuracy of about 2% over that of TOA 
features. This improvement can be considered relevant given the complexity of the scene with the presence 
of more kinds of changes. Proper higher-level physical features, such as some radiometric indexes or texture 
features, would provide better results. Table 3.6, Table 3.7 and Table 3.8 show the confusion matrices 
obtained for each dataset in the two experiments. 

Table 3.6. Confusion matrices for dataset 1 in Exp. 1 and Exp. 2. 

Exp. 
Changes 
Found 

Actual Changes 

C1 C2 C3 C4 C5 Reliability 

1 

C1 39775 596 91 0 2129 93.38% 

C2 2206 9500 1501 44 28428 22.79% 

C3 9 5 2427 128 2077 52.24% 

C4 0 0 0 0 0 0.00% 

C5 3765 13090 2718 1327 299780 93.48% 

Accuracy 86.93% 40.96% 36.02% 0.00% 90.18%  

Overall Accuracy 85.81% 
  

2 

C1 36558 250 92 0 910 96.69% 

C2 2412 8153 1355 94 6571 43.87% 

C3 0 2 1464 42 1152 55.03% 

C4 0 0 0 0 0 0.00% 

C5 6785 14786 3829 1363 323781 92.36% 

Accuracy 79.9% 35.15% 21.72% 0.00% 97.40%  

Overall Accuracy 90.32% 

Table 3.7. Confusion matrices for dataset 2 in Exp. 1 and Exp. 2. 

Exp. 
Changes 
Found 

Actual Changes 

C1 C2 C3 C4 C5 C6 Reliability 

1 

C1 5381 6 1 10387 12286 16408 12.10% 

C2 142 40242 19330 3560 4 47406 36.35% 

C3 0 0 0 0 0 0 0.00% 

C4 18 0 50 9472 10 2688 77.40% 

C5 0 0 0 0 0 0 0.00% 

C6 1198 7973 3643 13800 1169 214426 88.53% 

Accuracy 79.85% 83.45% 0.00% 25.48% 0.00% 76.33%  

Overall Accuracy 65.80% 
  

2 

C1 3269 8 3 10447 12423 12197 8.52% 

C2 66 37971 291 0 22 29301 56.13% 

C3 116 773 19534 3713 2 15080 49.81% 

C4 59 3 196 15476 51 4156 77.61% 

C5 0 0 0 0 0 0 0.00% 

C6 3229 9466 3000 7583 971 220194 90.08% 

Accuracy 48.51% 78.74% 84.84% 41.58% 0.00% 78.38%  

Overall Accuracy 72.37% 
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Table 3.8. Confusion matrices for dataset 3 in Exp. 1 and Exp. 2. 

Exp. 
Changes 
Found 

Actual Changes 

C1 C2 C3 C4 C5 C6 C7 C8 C9 Reliability 

1 

C1 905 0 0 0 0 0 0 0 0 100% 

C2 0 206 0 0 0 0 0 0 0 100% 

C3 0 0 1642 334 0 0 0 0 11 82.64% 

C4 0 0 27 450 0 0 16 0 0 91.28% 

C5 0 0 0 0 240 0 0 0 0 100% 

C6 0 0 0 0 0 400 0 0 12 97.09% 

C7 3 0 0 68 0 0 195 0 0 73.31% 

C8 0 0 0 0 0 0 0 0 0 0.0% 

C9 725 0 203 392 0 198 89 213 62785 97.18% 

Accuracy 55.42% 100% 87.71% 36.17% 100% 66.89% 65.00% 0.00% 99.96%  

Overall Accuracy 96.75% 
  

2 

C1 1294 0 0 0 0 0 0 0 91 93.43% 

C2 0 206 0 0 0 0 0 0 0 100% 

C3 0 0 1792 134 0 0 0 0 22 91.99% 

C4 0 0 27 1052 0 0 16 0 0 96.07% 

C5 0 0 0 0 240 0 0 0 0 100% 

C6 0 0 0 0 0 582 0 0 143 80.27% 

C7 0 0 0 0 0 0 158 0 205 43.53% 

C8 0 0 0 0 0 0 0 66 0 100% 

C9 339 0 26 58 0 16 110 147 62347 98.90% 

Accuracy 79.24% 100% 97.13% 84.57% 100% 97.32% 55.63% 30.98% 99.27%  

Overall Accuracy 98.07% 

3.5. Conclusion 

In this chapter, an approach for CD in VHR multispectral multisensor optical images has been proposed. 
The proposed approach aims at defining and illustrating a data flow for effectively handling differences 
due to acquisition sensors. It is based on a general framework for the design of CD systems for VHR mul-
titemporal images presented in [30]. In order to deal with multispectral and multitemporal images acquired 
by different sensors, it integrates in the general approach the following two concepts: i) spectral, radiometric 
and geometric homogenization between images acquired by different sensors; and ii) detection of multiple 
changes by means of features that guarantees homogeneity over time and across sensors. Experimental 
results on real datasets, made-up of VHR bi-temporal and multisensor optical images, confirmed the effec-
tiveness of the proposed block scheme and the improvement achieved by the use of higher-level physical 
features (i.e., TC and OrE) over the traditional features (i.e., TOA). A major improvement is observed when 
changes from-to vegetation and bare soil, and different types of crops are considered since TC were selected 
to highlight such kind of changes. The use of OrE for the detection of changes described above, as well as 
for changes from-to vegetation and bare soil (i.e., forest to grass, crop to grass, bare soil to grass/forest) and 
small changes on roads and roofs, resulted in better CD accuracy than that obtained by using TOA. In 
general, both TC and OrE features allow a better separation and interpretation of �EFB by guaranteeing that 
these changes are distributed in compact and well separated clusters. These improvements are related to 
two facts: i) the magnitude of the differences present between the two multisensor images and, ii) the ro-
bustness of the proposed method to the size of the changed areas in the scene. It is clear that when higher 
magnitude differences are present, the proposed method works better. We can also see that independently 
of the size of changed areas (~ 19% for dataset 1 and ~32% for dataset 2), the proposed methods, by using 
higher-level physical features, outperforms the cases where traditional features are used. 

Further analysis should be carried out to determine which cluster is representing a specific kind of change, 
and to define appropriate features for other kind of changes. For the mitigation of remaining �(I� and the 
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better detection of the �EFB , the use of additional features, either in the physical feature space or in the 
spatial feature space, could help to make the separation and distinction better, thus improving the final OA. 
Additional improvements from the �(I�mitigation process point of view in both, spectral and geometric 
perspective should be considered. For the spectral differences, and given that some of the VHR multisensor 
optical images have different number of bands and different spectral ranges, the use of regression methods 
for predicting bands that match from the spectral viewpoint could be considered. For the geometric differ-
ences, improvements on the co-registration process by the use of co-registration methods designed for mul-
tisensor images could be also explored. Improvements on the detection of building changes could be also 
integrated. 
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Chapter 4 

 

4. Generation of Homogeneous VHR Time Series by non-Parametric 

Regression of Multisensor Multitemporal Images4 

 
This chapter presents an approach for the generation of homogeneous VHR TS by means of a non-para-

metric regression of multisensor multitemporal images. Advantages and disadvantages of using ARN and 

RRN methods, available in the literature, to perform homogenization of VHR multisensor images are pre-

sented. The proposed approach takes advantage of both ARN and RRN methods to perform the homogeni-

zation, but introduces a novel RRN method based on a non-parametric regression and CD-driven approach. 

By focusing on the spectral domain, the proposed approach transforms a VHR image from a multisensor 

TS into the spectral domain of another image in the same multisensor TS, but acquired by a different sensor. 

To this end, a prediction-based approach relying on a non-parametric regression method is employed to 

mitigate sensor-dependent spectral differences. The impact of possible changes occurred on the ground is 

mitigated by training the prediction model on un-changed samples, only. Experimental results obtained on 

VHR optical multisensor images confirm the effectiveness of the proposed approach.  

4.1. Introduction 

A generation of satellite sensors (e.g., IKONOS, QuickBird, GeoEye, WorldView-2, Pleiades) exists able 
to acquire multitemporal images with Very High spatial Resolution (VHR). Such sensors open to a large 
set of new applications in the field of Multi-Temporal (MT) analysis (e.g., Change Detection (CD)) that 
require spatial detail information. Nevertheless, when a single VHR optical passive sensor is considered, 
Time Series (TS) are likely to show a poor temporal resolution and to include images with non-homogene-
ous acquisition conditions (e.g., lack of similar light conditions, different acquisition angle). This is mainly 
due to the satellite revisit period, the possible competing orders of different users on the satellite pointing, 
the limited life of a satellite mission, and weather conditions [30], [35], [39]. In order to mitigate the above-
mentioned limitations and to have TS showing a (very) high resolution, in both space and time, multisensor 
optical acquisitions can be considered for TS construction. In this way, the probability of having frequent 
and good images over the same geographical area of interest increases. However, the use of multisensor 
multitemporal images shows several issues. The main one is related to images homogeneity or consistency. 
Lack of consistency in MT images applications impacts on the outcomes accuracy and reliability [39]. On 
the one side, images in multisensor TS are affected by differences induced by the acquisition conditions 
(e.g., atmospheric conditions and acquisition system). Some of the differences in atmospheric conditions 
(e.g., cloud cover), and acquisition system (e.g., view angle and seasonal effects) affect single-sensor mul-
titemporal image as well [30], [35], [39]. On the other side, multisensor TS poses the big challenge of 
having system intrinsic differences due to the type of sensor and the sensor acquisition modes. The above-
mentioned issues are mainly related to differences in: i) the geometrical resolution; ii) the radiometric res-
olution; and iii) the spectral resolution, range and bandwidth of the sensors [35], [48], [49]. In conclusion, 
among the various aspects of image pre-processing for CD when considering multisensor heterogeneous 

                                                
4 Part of this chapter appears in: 
Journal paper: Y. T. Solano-Correa, F. Bovolo, and L. Bruzzone, “Generation of homogeneous VHR time series by 
non-parametric regression of multisensor multitemporal images,” ready to be submitted to IEEE J. Sel. Top. Appl. 

Earth Obs. Remote Sens.. 
Conference paper: Y. T. Solano-Correa, F. Bovolo, and L. Bruzzone, “VHR time-series generation by prediction and 
fusion of multi-sensor images,” in 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 
2015, pp. 3298–3301. 
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images, there are two outstanding requirements: i) geometric homogenization and, ii) spectral homogeni-
zation. 

The issues related to geometric homogenization have been widely studied in the literature for low to VHR 
images and for multisensor images as well [14], [15], [17], [35], [283]–[285]. Whereas the issues arising in 
the spectral domain are less investigated. VHR available sensors may show significant differences in this 
domain since sensors are available acquiring images over different spectral ranges (e.g., IKONOS acquires 
bands in the range 445-853nm, while Pleiades acquires in the range 430-950nm [274]). In the case where 
similar spectral ranges are considered, the number of bands and/or their width may differ (e.g., QuickBird 
has 4 bands whereas WorldView-2 has 8 bands over the same range). Thus, the effective usage of multi-
sensor TS poses the issue of how to perform multisensor data spectral homogenization. In the literature, 
two kinds of approaches have been proposed for addressing radiometric differences in single-sensor: i) 
Absolute Radiometric Normalization (ARN) [48] and; ii) Relative Radiometric Normalization (RRN) [49]. 
ARN refers to the use of physical parameters and makes it possible to relate the Digital Number (DN) with 
the radiance and reflectance at the Earth surface. A considerable amount of work has been carried out in 
the literature to design ARN correction methods and specifically to perform the atmospheric corrections 
[90], [251], [252], [286]–[288]. Other works have shown the importance of working with physical quanti-
ties for improving the CD accuracy [39], [289], [290]. Nevertheless, the use of ARN methods is not that 
common, even for single-sensor images, since their application requires knowledge of both the sensor spec-
tral profile and atmospheric conditions at the time of acquisition. When data from two sensors �" and �# 
are considered, their spectral information is less comparable from the physical viewpoint with respect to 
data acquired from the same sensor. Thus, requiring the ARN methods application [35], [39]. Regarding 
RRN, it refers to transformations at pixel level for image-to-image adaptation. RRN methods use one image 
as a reference and adjust the radiometric properties of the other image to match the reference [48], [248], 
[288]. Thus, normalized images appear as being acquired with the reference image sensor and under similar 
atmospheric and illumination conditions [248]. However, RRN methods do not remove the differences 
introduced by atmospheric conditions in MT images, whereas ARN ones do. A variety of RRN methods 
have been developed in the literature for single-sensor images. Hall et al [248] developed a radiometric 
rectification technique that corrects or rectifies images of the same area by using landscape elements which 
reflectance is nearly constant over time. Others have used similar procedures [287], [291], [292]. The draw-
back of these kind of approaches is that the landscape elements are selected by visual inspection, which 
could result in a subjective radiometric normalization. Thus, further methods perform the correction by 
scene-to-scene histogram normalization [24], [49], [250], scene-to-scene correction using dark and bright 
targets [248] or Pseudo Invariant Features (PIF) [247]. Most RRN methods assume that a linear relationship 
exists among times 2" and 2#. Thus, the mathematical model describing standard RRN for MT images 
involves a linear regression [90]. Such regression models are built according to invariant samples or target 
points known as Radiometric Control Set Samples (RCSS). Burns and Joyce [293], and Singh [294] devel-
oped different techniques to select RCSS; however, those techniques still lead to low accuracy. Heo and 
Fitzhugh [295] suggested a method for obtaining the optimal linear equation with a given set of target 
points, but the results depend on the subjective selection of RCSS. Many other RRN methods, based on a 
linear relationship, can be found in the literature [36], [47], [90], [251], [252], [288], [296], [297]. Most of 
them assume images with the same spectral and geometric characteristics (single-sensor), and acquired by 
medium or high spatial resolution sensors, devoting poor attention to multisensor and VHR optical images 
[36], [48], [49]. This linear relation influences the normalization results and is usually assumed because of 
simplification of modeling [297]. However, and as shown in Figure 4.1, when multisensor VHR images are 
considered, the assumption of a linear model is seldom satisfied, leading to critical limitations. In fact, a 
non-linear non-parametric regression model would better adjust to the multisensor VHR problem. The 
problem remains how to automatically select the proper RCSS to derive the model itself. Thus allowing to 
perform the homogenization process among multisensor MT VHR images. Therefore, development of new 
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homogenization methods suitable for multisensor MT VHR images, become of great relevance where VHR 
intrinsic characteristics are considered, and both ARN and non-parametric RRN methods are combined to 
exploit their advantages and reduce their drawbacks. 

    

Figure 4.1. Band by band scatterograms of QuickBird 2006 versus WorldView-2 2010 images in unchanged pixels. 

This chapter presents a novel method for the generation of homogeneous VHR TS focused on the miti-
gation of intrinsic spectral induced differences. It is based on non-parametric regression and aims at gener-
ating consistent multisensor TS showing a homogeneous spectral representation. The proposed method 
jointly exploits the capabilities of ARN and RRN approaches, by adapting them to the complexity of mul-
tisensor and VHR images. A first homogenization is carried on by transforming DN to physical values 
(ARN) and by transforming the multisensor images into a common spatial resolution, by means of state-
of-the-art methods [14], [15], [17], [35], [39], [285]. The second homogenization step is based on RRN 
approaches and performs a non-parametric regression (prediction) to derive a model that represents the 
relationship between �" and �#. The model is derived by means of a machine learning algorithm, i.e., Arti-
ficial Neural Networks (ANN) or Support Vector Regression (SVR), and by introducing a novel approach 
for the RCSS selection. The selection of reliable RCSS is based on a novel CD-driven approach that takes 
as input invariant features. Because of the lack of one-to-one correspondence among VHR multisensor 
bands, invariant features cannot be directly derived from �" and �# bands. Therefore, a fusion of �" and �# 
bands is conducted. Such fusion guarantees the selection of radiometrically reliable/invariant features (de-
rived from the fused bands), which in turn will result in an easier selection of RCSS. To demonstrate the 
effectiveness of the homogenization procedure, MT information is extracted, specifically by applying CD 
by means of Change Vector Analysis (CVA) [50]. Experiments were carried out on MT multisensor VHR 
image pairs, including images acquired by 2 sensors. 

The remainder of this chapter is structured as follows. Section 4.2 presents an overview of the most 
common radiometric normalization methods for remote sensing images. Section 4.3 illustrates the proposed 
method for generation of homogeneous VHR TS by non-parametric regression of multisensor MT images. 
Sections 4.4 and 4.5 explain in detail the steps of the proposed approach. Section 4.6 presents the MT 
information extraction as an evaluation mean. Section 4.7 introduces the multisensor datasets used in the 
experiments, describes the design of experiments and illustrates the experimental results. Finally, Section 
4.8 draws the conclusions and future works. 

4.2. Radiometric Normalization Methods for Remote Sensing Images 

There are several reasons why a sensor response to a given target varies over the time. Among the more 
relevant ones, we have: i) changes in satellite sensor calibration, ii) differences in illumination and viewing 
angle, iii) variation in atmospheric effects, and iv) real changes on the ground [30], [35]. The goal of radi-
ometric normalization methods is to remove or compensate for the above-mentioned effects, but the actual 
changes on the ground. In other words, the goal is to normalize the DN of images acquired under different 
conditions and report them to a common scale. Two radiometric normalization approaches can be found in 
the literature, ARN and RRN. The former refers to compensation by means of physical parameters, whereas 
the latter refers to compensation by adaptation at radiometric values level. Rather ARN or RRN methods 
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are generally used in the literature to perform normalization [14], [15], [17], [35], [283]–[285], but they are 
seldom used in combination to get the best from the two [35], [297]. Since ARN methods have been widely 
standardized in the literature, in this section we focus the attention on the description of RRN ones. RRN 
methods can be divided into three categories: i) statistical methods (e.g., standard deviation based method), 
ii) histogram matching methods and, iii) regression methods [49], [288]. Given the image-to-image rela-
tionship complexity, RRN methods mostly used in the literature are based on regression, and are the ones 
described in here. RRN regression methods are based on 3 steps: i) selection of the model, ii) selection of 
RCSS and iii) estimation of normalization coefficients. For the model, literature mostly rely on linear re-
gression due to its simplicity [297]. The assumption is that linear effects on data are greater than nonlinear 
effects. Casseles and Garcia [287] showed that for low spatial resolution and single-sensor images, the 
relationship between the reference and subject image can be linear: 

 �H = qH�H + �H (4.1) 

where �H is the observed response in a given band of the reference image �, �H is the corresponding vector 
of observed predictors of the subject image � and, qH and �H are the normalization coefficients. Thus, in 
equation (4.1), the subject image � is normalized by the reference image � by means of a linear regression. 
Nevertheless, the assumptions for applying a linear regression are seldom satisfied (especially if we con-
sider multisensor VHR images) and the specific regression model is often unknown. A non-parametric re-
gression analysis relaxes the assumptions of linearity, substituting it by a weaker assumption of a smooth 
population regression function of the form: 

 �H = �(�H) + �H (4.2) 

where � ∈ ℱ, ℱ is some class of regression functions, and � is the additive error with zero mean and con-
stant variance. The main advantage here is that ℱ is a rich enough class such as it is possible to approximate 
a very large set of regression functions. The cost of relaxing the linearity assumption implies higher com-
putation burden, but with the gain of a more accurate estimate of the regression function. Examples of non-
parametric regression methods are ANN [298] and SVR [299]. The second step is the selection of ideal 
RCSS. Ideal RCSS should be [49], [300]: i) preferably at the same elevation, ii) contain minimal amount 
of vegetation (when possible), iii) invariant over the acquisition time, and iv) distributed over the spectrum 
such as the regression model can be reliable. Several methods have been introduced in the literature for the 
selection of RCSS [247]–[249]. In the next, some of the state of the art methods for selection of RCSS and 
further estimation of normalization coefficients, in low/medium resolution images, are briefly described 
together with their limits. 

• Simple Regression (SR) [249]: Uses all pixels in both images to calculate normalization coefficients 
throughout least-squares. Because of this, it works well only when the considered images are stable 
over time, which is seldom satisfied in VHR images. 

• Pseudo Invariant Features (PIF) [247]: Elements such as concrete, asphalt and rooftops are assumed 
statistically stable between the acquisition dates. Differences in the gray-level distribution of invar-
iant objects are assumed to be linear and are corrected statistically to perform the normalization. It 
needs human intervention to extract the PIF set. Both linear assumption and human intervention are 
difficult while working with VHR images. 

• Dark-Bright (DB) [248]: the average of a set of dark and bright pixels, extracted from the subject 
and reference image through Tasseled-Cap (TC) greenness-brightness transformation, is used to de-
rive the normalization coefficients. Appropriate threshold values are required to obtain the dark and 
bright pixel sets. However, it is difficult to obtain them automatically. No TC coefficients are avail-
able for all VHR sensors. 

• No Change set (NC) [249]: locates the statistical centers for stable land and stable water data clusters 
using the near-infrared (NIR) date 1 versus date 2 scatterograms to establish an initial regression 
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line. At these wavelengths a distinct axis of ‘‘no-change’’ can be observed. Pixels falling within the 
NC region are used in the regression analysis of each band to compute normalization coefficients. 
Some limitations are: i) presence of both land and water areas is required and ii) two NIR bands are 
necessary. The latter issue is critical in VHR images, since often one NIR channel is available. 

• Iteratively Re-weighted Multivariate Alteration Detection (IR-MAD) [252]: uses MAD transfor-
mation to select no-change pixels in bi-temporal images by assuming a Gaussian distribution of the 
difference image. It is based on the linear combination of the DN of all the bands in the images, 
where the normalization coefficients are determined by applying standard Canonical Correlation 
Analysis (CCA). The final normalization is carried out by means of orthogonal linear regression. As 
it has already been pointed out, multisensor MT VHR images do not follow a linear relationship, 
neither does the difference image follow a Gaussian distribution [56]. 

If single sensor VHR MT images are considered, few of the above methods can be applied [247], [252]. 
For multisensor VHR images, none of the existing methods can be applied for normalization without mod-
ifications on: i) the regression model and/or ii) the selection of RCSS. This is due to the fact that multisensor 
VHR image pairs may show stronger radiometric dissimilarities than single-sensor ones, even if change did 
not occur. This results in a lower number of spectrally invariant objects [14]. 

4.3. Proposed Method for Generation of Homogeneous VHR TS by Non-parametric Regres-

sion of Multisensor MT Images 

When a single VHR optical passive sensor is considered, TS are likely to show a poor temporal resolution 
and to include images with non-homogeneous acquisition conditions. In order to have TS showing a (very) 
high resolution, in both space and time, multisensor optical acquisitions can be considered. Despite increas-
ing the probability of having frequent and good images over the same geographical area, the use of multi-
sensor MT images for information extraction requires reliable homogenization methods. Thus, we propose 
a method to generate homogeneous TS from multisensor MT VHR images by jointly exploiting the ad-
vantage of ARN and RRN methods. First, normalization of multisensor optical data by means of ARN and 
geometric normalization is applied. Second, RRN is conducted by means of the non-parametric regression 
of already absolutely corrected VHR multisensor images. The former step guarantees the multisensor com-
parison from both physical and geometrical view point [35]. Whereas the latter guarantees the comparison 
from the spectral view point at pixel level. The method is based on non-parametric regression and uses the 
information provided by image at time 2# acquired by sensor �# to effectively predict how spectral bands 
of the image acquired at 2" by sensor �" would behave if acquired at 2# by sensor �". Figure 4.2 depicts the 
block scheme of the proposed method. 

Let us consider two VHR optical images, acquired by sensors �" and �# over the same geographical area, 
at times 2" and 2# and with sizes T" × V" and T# × V#, respectively. Let a (O = 1,2,… , Q) and b (R =1,2,… , S) represent the generic multispectral bands of �" and �#, respectively. Given the use of different 
sensors, the two images are likely to show different bandwidths, spatial resolutions and/or view angles. In 
other words, we assume that �" and �# may show: i) slightly different spatial resolution, ii) the same spectral 
range, iii) a different number of spectral bands Q and S, with S > Q, and iv) different spectral resolution. 
Thus, images acquired by the two sensors are similar, but not homogenous, and therefore not fully equiva-
lent in the context of MT information extraction. Nevertheless, given the acquisition of images over the 
same spectral range, more than one band from �# acquires information over the same range of a single band 
from �". Because of this, more than one band from �# can be used to predict the corresponding bands of �", deriving the homogenization process. 
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Figure 4.2. Block scheme of the proposed method for generation of homogeneous VHR TS from multisensor MT 
images. 

4.4. Multisensor Normalization 

A preliminary homogenization process is carried on over the VHR multisensor images in order to mitigate 
differences induced by the use of multisensor acquisitions that result in both spectral and geometrical dis-
tortions [30]. In doing this, we guarantee a similarity, from the physical and geometrical viewpoints. To 
achieve this goal, two main steps are followed: i) ARN mitigation and ii) geometric normalization (see 
Figure 4.2). 

 

Figure 4.3. Block scheme for ARN mitigation process. 

ARN mitigation process is shown in Figure 4.3. The original VHR images are first converted from DN 
to radiance values and then to Top Of Atmosphere (TOA) reflectance, known as at-surface reflectance. 
This is achieved by applying atmospheric corrections, resulting in images with the same physical meaning 
(further details can be found in [35] and [39]). At the end of this step, some of the radiometrical differences 
among multisensor MT VHR images are corrected. Nevertheless, some differences remain that cannot be 
corrected or mitigated by ARN. Thus, a data-driven mechanism is later used to compensate for them. 

 

Figure 4.4. Block scheme for the geometric normalization of multisensor VHR images. 
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Concerning geometrical differences, two kinds of sources can be identified: i) differences in the acquisi-
tion view angle, and ii) differences in the type of sensor because of multisensor acquisitions. The former 
can induce differences in the images when there are small changes in the topography and relief of the 
terrain. Whereas the latter results in differences in the spatial resolution and therefore in the correspondence 
of the same spatial position in the images. To achieve the geometric normalization, the block scheme shown 
in Figure 4.4 is followed. Once again, this process does not fully correct for all the possible geometrical 
differences, but does help to mitigate for them. Surface reflectance images coming from both sensors are 
used as the input images for this step. They are orthorectified separately and then co-registered in order to 
guarantee a correspondence of each position on the ground in the MT images. The preliminary homoge-
nized images are �",% and �#,N. Further details can be found in [35]. 

4.5. Relative Radiometric Normalization 

With the preliminary homogenization step, we guarantee that �",% and �#,N have common: i) spatial res-
olution, ii) image size T × V, and iii) radiometric representation from the physical viewpoint. Yet, sensor 
induced differences in terms of radiometry and number of bands remain. To mitigate for these issues we 
perform further normalization by means of a novel RRN, based on a non-parametric regression that guar-
antees the finding of a model suitable for multisensor VHR images. This model jointly accounts for the 
number of issues arising and remaining from the spectral, radiometrical and geometrical differences. To 
find the model, we need stable RCSS that ensure the modeling of the complex relationship existing between �" and �#. Opposite to state-of-the-art methods, RCSS are automatically selected. To this aim, a CD-driven 
approach is considered. 

The block scheme for the proposed RRN approach is based on 4 steps (Figure 4.5): i) selection of invar-
iant features from �",% and �#,N; ii) selection of unchanged samples, iii) sub-sample of unchanged samples; 
and iv) non-parametric regression based on prediction and fusion with two phases, training and recalling. 
Most of these steps have been separately used in literature for single-sensor and low resolution images. But 
they have been used in a different way. 

 
Figure 4.5. Block scheme followed for the proposed RRN process. 

4.5.1 Selection of Invariant Features 

In order to properly model the radiometric relationship between �" and �#, only un-changed (radiometri-
cally invariant) samples should be considered. To select them, spectral information is commonly used in 
literature. Nevertheless, the higher spatial details given by the use of VHR images, makes spectral infor-
mation alone not enough to decide if a change has occurred or not. Spatial correlation should be used as 
well to decide is a pixel has indeed changed or not. In order to extract the spectral and spatial information, 
invariant spectral and spatial features are considered. The decision about which sample has changed or not 
can rely on a CD approach, where a pixel-by-pixel comparison is applied. Nevertheless, given that �",% and �#,N show different spectral behaviors, S > Q, the correspondence between the Oth and Rth bands is not 
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one-to-one. However, since �" and �# acquire images over the same spectral range, L couples of bands (�",� 
and �#,�) can be identified that show the most similar central wavelength and bandwidth, with � ~ Q � S. 
From this set of most similar bands, a set of invariant features are derived for unchanged samples detection. 
Even though atmospheric corrections have been applied, residual differences exist among spectral channels. 
This results in L bands histogram shape difference and relative shift (see Figure 4.6), even in case of no-
change. Thus, compensation of spectral differences is carried out on the L pairs in terms of shift. This 
pushes the peak values (
H%y�8  and 
H%y�9) to the same position in the spectral domain. The shift value is 

extracted as 
 = �
H%y�9 h 
H%y�8�. The set of spectral (���) invariant features is then extracted from the 

histogram compensated bands �",�,��� and 	�#,�,���, with � ∈ 	 x1, �z. 

 

Figure 4.6. Example of histogram shift of a pair of most similar bands in two different VHR sensors. 

The high spatial variability of spectral signatures in VHR images, results in the increase of single date 
image interclass variability and thus in the variability of both change and no change classes. This phenom-
enon is enhanced by the temporal spectral variability induced by the use of multisensor VHR images. This 
results in a higher complexity in finding un-changed training samples. The effect can be mitigated by using 
other features that exploit the spatial details offered by the VHR images. In the proposed method, textural 
features extracted from the L most similar bands are employed as a complement to select the invariant 
training samples. Thus, a spatial invariant features set is defined by the textural (2�2) features extracted 
from the L most similar bands as �",�,GyG and 	�#,�,GyG, where � ∈ 	 x1, �z. 
4.5.2 Unchanged Samples Selection 

In order to model the temporal and spectral relationship between �",% and �#,N, we select samples that 
are i) likely unchanged (1�) and ii) as much as possible representative of the spectral variability of un-
changed information over the bands. The reliability of these samples is guaranteed by a CD-driven approach 
based on Univariate Image Difference (UID) and a conservative threshold. UID is applied to each pair of 
invariant features (�",� ,�#,�) as: 

 �� = ��#,� h �",��, � = 1,… ,2� (4.3) 

where ��  is the absolute difference image anb �",� = v�",�,��� , �",�,GyG| and �#,� = v�#,�,��� , �#,�,GyG|. The most 
reliable unchanged samples are selected as the ones showing a small difference value, i.e., below a certain 
threshold value 	�. For each pair of invariant features, a different 	� is calculated. The selection criteria for 
the threshold should account for the greater spectral variability of the 1� class. Thus, a proper threshold 
selection requires the relaxation of the criteria of the state-of-the-art methods. In greater detail, 	� should 
be selected in order to guarantee the presence of unchanged pixels covering the whole spectral range of 
samples from the study area. To this end, a combination of two stages is used: i) calculation of a reliable 
threshold value by means of a state-of-the-art method, and ii) definition of a more relaxed threshold. First, 
the optimal decision threshold (T  � ) according to the Bayesian decision theory is applied, considering a 
Rayleigh-Rice (RR) model [56], for each �th most similar band in the feature space. Where RR model is a 
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good approximation. Samples in ��  close to T  �  (see Figure 4.7) are uncertain. Whereas pure unchanged 
pixels are needed to model the spectral relationship between �",% and �#,N properly. Therefore, T  �  is re-
fined to limit the presence of changed samples. The refinement process is conducted to satisfy the tradeoff 
between removing unchanged samples (small threshold values) and preserving the spectral variability (large 
threshold values) as: 

 	� = �O��n� h T  �2 , � = 1,… ,2� (4.4) 

where �O��n�  is the first maximum peak on the left of T  �  in the invariant feature space. Once 	�  is selected, ��  is thresholded to get a map of candidate unchanged samples for the training set. 

 

Figure 4.7. Example of a ���  histogram with the selection of thresholds ����  and ��. 
4.5.3 Unchanged Samples Sub-sampling 

In order to avoid over-fitting and overload while performing the non-parametric regression, detected un-
changed samples are sub-sampled by following two guidelines: i) select unchanged samples common to 
both spectral and textural features, and ii) select samples by preserving their statistical distribution. The 
previous guidelines are applied separately to each pair of invariant features. The sets of unchanged samples 
represent the variety of spectral relationships existing among the L most similar bands from the spectral 
and textural viewpoint. The first guideline assures that samples are unchanged both from the spectral and 
textural point of view. Nevertheless, the number of training samples remains high. Thus, the second guide-
line aims at further reducing this number by preserving the spatial distribution of the samples over the scene 
uniform, as well as the statistical distribution of the original �",% and �#,N. For each pair of invariant fea-
tures, the entire image is first divided into small blocks of size � × �, with � � T � V. Then a fraction of 
samples from each block is selected. On top of these samples, a maximum number of pixels (�), over all 
possible spectral values, are selected. 

4.5.4 Non-parametric Regression 

The last step of the proposed RRN approach is the non-parametric regression. Where the exact form of 
the nonlinear function � in equation (4.1) does not need to be known explicitly prior to model training. In 
order to perform the non-parametric regression, sets of training samples 	��  (� = 1,⋯ , �) must be defined 
for each spectral channel to be predicted. Each of the 	��  sample sets is built by considering the positions 
given by the sub-sample step (previous section), but in this case invariant features are extracted from all 
the channels in �" and �#. This given the fact that several bands in �#,N may contribute to the spectral 
information in each of the bands in �",%. Accordingly, our set of both spectral and spatial invariant features 

is defined as �" = v�",%,��� , �",%,GyG| and �# = v�#,N,��� , �#,N,GyG|. 
Given the sets of 	��, as described above, and the sets of features �" and �#, we model the temporal and 

spectral relationship between each �",% and �#. �# represents the input (also known as predictor or feature) 
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and �",% the target (also known as output or response). The complexity of the relationship between �",% and �# is captured by estimating � with a non-parametric regression method. Possible choices are ANN or SVR, 
however any other method can be used. Here we propose a configuration for the input and target training 
samples for predicting �$",% (image acquired at 2# by �"). �$",% contains only spectral channels, though tex-
tural information is also available, but not predicted in the proposed configuration. A total of Q non-para-
metric regression models have to be trained, one for each of the L most similar bands, between �" and �#. 
The target for each regression model is one of the spectral bands �",%,��� to be predicted. Since several 

bands in �#,N contribute to the spectral information in each of the bands in �",%, all the bands in �#,N are 
used as input for the Q regression models, i.e., �#,N,��� . As per the selection of training samples, the use of 

spectral information alone (�#,N,���) is not enough to model the relationship among �",% and �#,N. Thus, 

textural features are also used, where �#,N,GyG are extracted from �#,N,��� . Thus, a total of 2 × S inputs are 

finally used for the derivation of the Q regression models. These inputs are always the same, whereas the 
target varies. Equation (4.5) shows the non-parametric regression model used for the training process in the 
case of ANN. In (4.5), H and O stand for hidden and output layers, respectively. j�(∙) and j�(∙) represent 
the activation functions. �Ne and �e� represent the weights of the network connection in the hidden and 

output layers, respectively. And �� and �� represent the bias introduced to the transfer functions. Once the 
model has been obtained, all the channels in �$",% are predicted. 

 �",% = j�(�� +f�e� 
eg" (j�(�� +f�Ne�##�

Ng" ))e) (4.5) 

4.6. Multitemporal Information Extraction 

Several methods for MT information extraction can be found in the literature that may benefit of the 
proposed approach for the generation of homogeneous TS from MT multisensor VHR images. The selec-
tion of the method to derive MT information depends on the application itself. However, here we consider 
CD as an option to demonstrate the effectiveness of the proposed approach. According to the-state-of-the-
art, the CVA technique in a polar domain framework as proposed in [50] is used. To this end, the multi-
spectral difference images � is computed as: 

 � = �$",% h �",% (4.6) 

where � is the magnitude of the change vectors. � ∈ x0, �H%yz (eq. (4.7)) carries information about pres-
ence/absence of changes. Small magnitude values are associated to no changes, whereas large values are 
associated to change. A threshold 	 is commonly applied to separates changed from unchanged samples 
[50]. Here, the optimal 	 is obtained according to the Bayesian decision theory by considering a Rayleigh-
Rice (RR) model [56]. 

 � = ¡f(�,%)#�
%g"  (4.7) 

4.7. Experimental Results 

4.7.1 Dataset Description and Multisensor Normalization 

In order to validate the proposed approach, pairs of VHR optical images acquired over an area located in 
the Trentino region in the north of Italy (Figure 4.8), were selected. This area shows interesting properties 
from the point of view of its orographic conformation and environmental variety. Over a relatively small 
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area it is possible to find: i) precious apple and vineyard fields; and ii) urban, sub-urban and industrial areas 
with different density and structure. Two multitemporal data sets made up of two QuickBird (QB) and one 
Worldview-2 (WV-2) images, were built over the sample area in Figure 4.8 (orange and blue squares). The 
datasets were selected such that: i) different kinds of land covers and changes are represented and ii) the 
performance of the proposed approach is demonstrated under constrained situations. Therefore, the datasets 
show a small amount of water (dataset 1 only) from the river passing nearby, transitions among different 
phenological states in crop areas and transitions from vegetation to bare soil and to new man-made objects 
(i.e., construction of a new road and a new building). Details about the 2 datasets are given in Table 4.1. 
Dataset 2 falls inside the area of dataset 1, but 2" image is acquired in 2005 instead of 2006. The reasons to 
make such selection are to show the robustness of the method: i) when less spectral information is available 
and ii) when the images are acquired in different seasons. The former decreases the probability to model 
the relationship between 2" and 2#. And the latter increases the spectral variability among images. 

 
Figure 4.8. Area of interest, Trentino region in the North of Italy. 

Table 4.1. Dataset Description. 

 
Dataset 1 Dataset 2 ¢£ ¢¤ ¢£ ¢¤ 

Sensor QB WV-2 QB WV-2 

Acquisition 

date 

July 
2006 

August 
2010 

October 
2005 

August 
2010 

Off-nadir 

angle 
14.1° 19.3° 9.8° 19.3° 

Table 4.2. Main characteristics of QuickBird and WorldView-2 optical sensors [274]. 

Satellite QuickBird WorldView-2 

Bands (nm) 

445-900 (pan) 450-800 (pan) 

 400-450 (coastal) 

450-520 (blue) 450-510 (blue) 

520-600 (green) 510-580 (green) 

 585-626 (yellow) 

630-690 (red) 630-690 (red) 

 705-745 (red edge) 

760-900 (NIR) 
770-895 (NIR 1) 

860-1040 (NIR 2) 

Spatial 

Resolution (m) 

0.61 
2.44 

0.46 
1.84 

The QB image has four multispectral bands (Q = 4), whereas WV-2 has eight bands (S = 8). The spatial 
resolution of the QB image is 0.6m for the panchromatic band and 2.4m for multispectral bands, whereas 
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WV-2 offers a higher spatial resolution in both panchromatic and multispectral bands with 0.5m and 2m, 
respectively. Table 4.2 summarizes the characteristics of QB and WV-2 images from the spectral and spatial 
point of view. The spatial resolution differences imply that the sizes T" × V" and T# × V# of QB and WV-2 
images, respectively, are different despite they cover the same surface. Thus, pixel-by-pixel comparison 
cannot be directly applied since the same pixel coordinates in the two images do not correspond to the same 
position on the ground. Concerning spectral domain, we can observe that the four primary multi-spectral 
bands of QB and WV-2 are acquired over similar spectral ranges (e.g., red), but not identical (e.g., blue). 
Similar considerations hold for bands green and NIR. Given that bands for both sensors fall into the same 
ranges, they can be compared and used to perform the regression. In order to apply the proposed method 
for generation of homogeneous VHR TS, multisensor homogenization and RRN were applied. 

 

   
 (a) (b)  (c) 
 

   
 (d) (e) (f) 

Figure 4.9. True color composition of the pansharpened multispectral multisensor VHR datasets: (a) QB image ac-
quired in July 2006 and (d) October 2005 and; (b), (e) WV-2 image acquired in August 2010. (c), (f) Reference maps. 

Multisensor homogenization was performed by: i) absolute radiometric normalization and ii) geometric 
normalization. For ARN step, all images were provided by DigitalGlobe Foundation in the context of the 
“MS-TS – Analysis of Multisensor VHR image Time Series” project [275]. Conversion from DNs to TOA 
was conducted before delivery by means of their Atmospheric Compensation (AComp) algorithm, which 
corrects for the scattering and absorption effects in the atmosphere [30], [276], [277]. Given the orography 
of the study area and the possible distortions, we applied orthorectification by using a DEM (1m) obtained 
from LiDAR data [278]. Additional pixel-to-pixel problems are also observed due to differences in the view 
angle, and co-registration should be applied. In order to achieve a better co-registration, PanSharpening 
(PS) was applied by means of the Gram-Schmidt method. Here ENVI software package was employed 
[279]. After PS, the spatial resolution for QB and WV-2 multispectral bands is 0.6m and 0.5m, respectively. 
Co-registration of the two QB and WV-2 pairs, covering the whole study area in Figure 4.8 was conducted 
by using a polynomial function of second order. For the QB 2006 and WV-2 2010 couple (dataset 1), 79 
uniformly distributed Ground Control Points (GCP) were selected. Whereas 51 uniformly distributed GCP 
were selected for the QB 2005 and WV-2 2010 couple (dataset 2). The WV-2 image was resampled during 
co-registration in order to be able to extract MT information. Resampling was performed by means of the 
nearest neighbor interpolation. Figure 4.9 shows the pansharpened multisensor VHR QB and WV-2 images 
after preliminary normalization. Both datasets show a common spatial resolution of 0.6m, but dataset 1 is 
larger (1024x1024 pixels) than dataset 2 (640x640 pixels). In order to perform qualitative and quantitative 
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analysis, a reference map, for each dataset, was defined by photointerpretation and a priori knowledge on 
the scene (Figure 4.9 third column), showing 706364 and 357630 unchanged pixels (black color) and 
334469 and 51970 changed pixels (white color), respectively. 

4.7.2 Relative Radiometric Normalization and Design of Experiments 

Once normalization is achieved, we move to the proposed RRN. The first step is to select invariant fea-
tures among the two sensors. To this end, a total of � = 4 most similar bands among �" and �# are first 
identified (see Table III). Then, spectral and textural features are extracted. For spectral features, the �=4 

pairs of most similar bands were compensated based on histogram shift value 
 (see Table 4.3). WV-2 
image is compensated to QB one in each dataset. In the case of textural features, well-known state-of-the-
art features, such as Gray Level Co-occurrence Matrix (GLCM) [301] and Gabor ones [302], were tested 
under different configurations. GLCM-contrast showed the best results in terms of normalization and CD 
results, and was thus selected as the invariant feature. 

Table 4.3. Pair of most similar bands for QB and WV-2 and histogram compensation value (
) for datasets 1 and 2. 

QB (nm) WV-2 (nm) Dataset 1 Dataset 2 

450-520 (B1) 450-510 (B2) 0.020 0.023 
520-600 (B2) 510-580 (B3) 0.016 0.016 
630-690 (B3) 630-690 (B5) 0.023 0.020 
760-900 (B4) 770-895 (B7) 0.145 0.090 

The next steps are the selection of unchanged samples and their sub-sampling. The first step applies the 
absolute UID as in (4.3), and then 	� is calculated as in (4.4). The 	� values for each invariant features 

(spectral and textural), as well as the number of training samples before (��� � 	��) and after (|	��|) the 
sub-sampling step are given in Table 4.4 for both datasets. The size of the blocks for the spatial reduction 
was � = 64, with a fraction of training samples of 30% in both datasets. When no samples are found in the 
block, no operation is carried on. A maximum of � = 100 samples per reflectance value (with a precision 
of 3), over the whole spectral range were selected. The selection of these parameters is related to: i) the 
computational power and ii) the conservation of spectral variability to model the relationship between �" 
and �#. Bigger numbers result in the selection of more samples, which in turn results in a higher computa-
tional power and a higher probability of overfitting while applying the non-parametric regression. Lower 
numbers result in the selection of less samples, which in turn results in lower computational power and 
lower spectral representation to model the �" and �# relationship. 

Table 4.4. Threshold value (	�) and number of training samples before (��� � 	��) and after (|	��|) sub-sampling 
step. 

Band Feature 
Dataset 1 Dataset 2 �� ���� � ��� |�`�| �� �©�,� � ��� |�`�| 

Blue 
Spectral 0.012 616739 

4998 
0.015 258524 

4151 
Texture 0.040 242034 0.040 112858 

Green 
Spectral 0.013 560094 

5436 
0.019 255086 

5323 
Texture 0.030 158496 0.038 113545 

Red 
Spectral 0.014 528475 

6155 
0.015 227125 

6196 
Texture 0.030 161157 0.038 113635 

NIR 
Spectral 0.025 265267 

8980 
0.021 56017 

5280 
Texture 0.030 157491 0.039 112884 

The last step of the proposed RRN is the non-parametric regression, which was carried on by means of 
two methods, ANN and SVR. A total of 4 regression models were derived, one for each couple of most 
similar bands. The input data corresponded to the spectral and textural features of the WV-2 images, for a 
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total of 16 input variables, whereas the target corresponded to the specific spectral band to be predicted. 
Final configuration for ANN and SVR were the same for both datasets. 

1. For ANN, i) one input layer with 16 neurons (one for each WV-2 spectral and textural bands), ii) 
three hidden layers with 15, 8 and 10 neurons having tan-sigmoid, log-sigmoid and pure-line acti-
vation functions, respectively, and iii) one output layer with one neuron having a linear activation 
function, were used. The number of neurons in the input and output layers are the same as the 
number of input and output features. The best configuration for the number of hidden layers and 
their neurons was selected based on the Mean Squared Error (MSE). Number of hidden layers 
varied from 1 to 5, whereas the number of neurons varied from 8-20. 

2. For SVR, a similar configuration as for ANN was held, with 16 variables for the input and one 
variable for the target. An RBF kernel was used and the corresponding parameters for the training 
process were gotten by cross-validation process. Ranges for the parameters were: d = x10,500z, ^O��O = x0.1,3.0z and ��� = x0.01,0.1z. 

The final MSE and computational times, calculated between the QB image �",%(2") and the predicted 

QB �$",%(2#) by the 4 ANNs and the 4 SVRs, are provided in Table 4.5. In the specific case of SVR, the 
training time includes both training and cross-validation. The computational times were obtained by using 
MATLAB® on a standard workstation with hardware Intel(R) Xeon(R) CPU @3.40 GHz, 16.00 GB RAM. 
The MSE is quite similar for the two non-parametric regression methods, but the time required for the 
training process differs significantly. In the case of SVR, it depends on the number of training samples. 
Comparing |	��| shown in Table 4.4 with the training times in Table 4.5, we can easily conclude that the 
training time increases with |	��| in a nonlinear way. 

Table 4.5. Final MSE and computational time of ANN and SVR for datasets 1 and 2. 

Spectral 
Band 

Dataset 1 Dataset 2 

ANN SVR ANN SVR 

MSE (10-5) Time MSE (10-5) Time MSE (10-5) Time MSE (10-5) Time 

Blue 2.2190  

1-4 s 

3.6822 0.073 h 6.0812 

1-4 s 

6.4367 1.099 h 
Green 3.2567 4.5511 0.452 h 8.9224 10.3898 2.811 h 
Red 4.9059 6.0398 1.446 h 12.4701 13.9383 4.076 h 
NIR 15.192 16.721 9.006 h 7.1271 7.4896 2.474 h 

The performance of the proposed approach was evaluated by qualitative and quantitative analysis. In the 
qualitative case, visual comparison of the original and predicted images was carried on and histograms were 
extracted over unchanged areas to assess the similarity of original (�",%) and predicted (�$",%) images. In the 
quantitative case, two approaches are used: i) calculation of Kullback-Leibler (KL) distance between the 
histograms of unchanged areas [303] and; ii) MT information extraction, change detection by means of 
CVA-magnitude thresholding. In the KL distance, we expect histograms from the predicted images (�$",%) 

to be closer to those of the QB ones (�",%). For the CD based validation, three experiments were designed: 
i) experiment 1 (exp. 1) applies CVA to the preliminary normalized images (�",% and �#,N), ii) experiment 

2 (exp. 2) applies CVA to the original image (�",%) and predicted image obtained with ANN (�$",%&''); and 

iii) experiment 3 (exp. 3) applies CVA to the original image (�",%) and predicted image obtained with SVR 

(�$",%�®). In exp. 2 and 3, the four spectral bands are used for computing the magnitude variable (see eq. 

(4.7)). Whereas in the case of exp. 1 the most similar bands are used. 

4.7.3 MT Information Extraction and Experimental Results 

For the qualitative assessment, the original QB images are first compared, to the ANN and SVR predicted 
ones for 2010. Figure 4.10 shows true color composition of the original QB ((a) and (d)) and the predicted 
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QB images by ANN ((b) and (e)) and SVR ((c) and (f)). The comparison between the predicted QB image 
and the original QB one, points out that they like each other (except for changed areas). On the other hand, 
and despite changed areas are not represented in the training sets, a visual comparison of the predicted 
images (�$",%) with the original WV-2 image (�#,N), shows that the proposed approach allows for a proper 
prediction the latter ones. Even though atmospheric corrections are applied, some small areas show less 
similarity due to the saturation induced by highly reflective surfaces, present in the original images. 

 

   
 (a) (b) (c) 
 

   
 (d) (e) (f) 

Figure 4.10. True color composition of (a) QB 2006 and (d) QB 2005 images; and QB 2010 predicted images by (b), 
(e) ANN; and (c), (f) SVR for datasets 1 and 2, respectively. 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 4.11. Histograms of unchanged areas for �",�, �#,�  and �$",%&'' for datasets 1 (top) and 2 (bottom). 

In order to further corroborate the previous observation, histograms of unchanged areas were compared. 
It is expected that after prediction, �$",% histograms become closer to �",% than to �#,N, both in shape and 
position. On the other hand, we also expect to have a better performance in the case of dataset 1, since it 
has less seasonal differences. The histograms in Figure 4.11 and Figure 4.12 confirm this, as well as the 
goodness of the proposed method. As expected, for each most similar spectral pair, the histograms of the 
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�$",% spectral bands predicted from the WV-2 image by ANN and SVR (dashed black lines in Figure 4.11 
and Figure 4.12) have behaviors more similar to the original QB images (red line in Figure 4.11 and Figure 
4.12) rather than to the WV-2 ones (blue line in Figure 4.11 and Figure 4.12). 

The above is quantitatively corroborated by the KL distance shown in Table 4.6. In the specific case of 
ANN histograms, they are more similar to the original QB images, both in shape and position, with the 
exception of NIR band in dataset 2. In the case of SVR histograms, one can see that the predicted images 
have changed their histogram in shape and position, but not as much as in the ANN case. The problem with 
NIR band in dataset 2 remains as for ANN case. The main difference between ANN and SVR results relies 
in the fact that SVR is not fully able to model the shape of the histogram, which remains still more similar 
to that of the original WV-2 image. Even though the proposed approach is able to mitigate for most of the 
intrinsic differences introduced by the complexity of working with MT multisensor VHR images itself, 
some differences in shape and position can be still seen. Regarding the dataset 2, Table 4.6 allows us to see 
how similar the results between ANN and SVR are. As expected from the beginning, the use of images 
acquired at different seasons introduces further spectral variability among the images resulting in the lack 
of spectral information to model the relationship between the two sensors. This is reflected in the poor 
performance of the NIR band that has a higher response to vegetation. 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 4.12. Histograms of unchanged areas for �",�, �#,�  and �$",%�®  for datasets 1 (top) and 2 (bottom). 

Table 4.6. KL distance between the histograms of unchanged areas for datasets 1 and 2. 

Spectral 
Band 

Dataset 1 Dataset 2 �$",%&''  �$",%�®  �$",%&'' �$",%�®  �",� �#,� �",� �#,� �",� �#,� �",� �#,� 
Blue 2.65 83.43 11.87 69.05 0.75 18.14 1.64 17.82 

Green 3.73 79.76 9.55 55.20 1.70 9.18 1.66 11.24 
Red 3.36 81.66 3.44 77.94 1.43 8.39 1.67 7.80 
NIR 3.78 63.26 5.16 62.50 7.41 14.41 7.42 14.40 

For the qualitative analysis, CD maps are derived by means of CVA and as defined in exp. 1, 2 and 3, by 
means of equation (4.7). Areas corresponding to radiometric changes were extracted by thresholding the 
magnitude variable. T was automatically selected by applying the method in [56]. The T values for exp. 1, 
2 and 3 for dataset 1 were 0.1350, 0.0939 and 0.1260, and for dataset 2 where 0.0826, 0.1220 and 0.1294, 
respectively. A comparison of the CD maps with the reference maps (see Figure 4.13 and Figure 4.14) 
pointed out the improvement achieved when working with the proposed approach, both in ANN and SVR 
regression cases, specifically on the reduction of False Alarms (FA) and Missed Alarms (MA) for dataset 
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1 and the reduction of MA for dataset 2. In the case of dataset 1, these improvements are related to the 
identification of the two specific changes located in the central part of the study area, which were not iden-
tified by exp. 1. Whereas in the case of dataset 2, the improvements are related to a better detection of the 
change due to the new road. 

Table 4.7 shows the detailed results, where for dataset 1 the number of FA identified by exp. 1 decreased 
almost of 67% when ANN predicted image was used and about 61% when SVR one was used. These results 
are reflected in the OA, where exp. 2 gained about 11% over exp. 1 and 1% over exp. 3; and exp. 3 gained 
about 10% over exp. 1. For dataset 2 the number of FA decreased of about 67% in exp. 2 and 71% in exp. 
3. This results in the increase of the OA for both experiments in about 2%. Here the OA increase from exp.1 
to exp. 2 and 3 is lower than in dataset 1 due to differences in the seasonal acquisition. Yet the proposed 
approach is able to improve the CD results. The previous results prove the effectiveness of the proposed 
approach for the two non-parametric regression methods used to derive the models for the homogenization 
of multisensor MT VHR images. Furthermore, based on the qualitative and quantitative analysis, as well 
as the time required for the training process in both datasets, we can see that for the considered images it is 
slightly better to use ANN as the non-parametric regression method. However, other regression methods 
can be considered. 

  
(a) (b) 

  
(c) (d) 

Figure 4.13. Binary CD maps obtained by CVA for a) exp. 1, b) exp. 2 and c) exp. 3. d) Reference map (dataset 1). 

  
(a) (b) 
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(c) (d) 

Figure 4.14. Binary CD maps obtained by CVA for a) exp. 1, b) exp. 2 and c) exp. 3. d) Reference map (dataset 2). 

Table 4.7. False Alarms (FA), Missed Alarms (MA), Overall Error (OE) And Overall Accuracy (OA) for the pro-
posed approach over the three experiments (datasets 1 and 2). 

Exp. 
Dataset 1 Dataset 2 

FA MA OE OA (%) FA MA OE OA (%) 

1 145477 68659 214136 79.58 4432 12339 16771 95.90 
2 47210 52046 99256 90.53 1536 6713 8249 97.99 
3 56383 57454 113837 89.14 1394 8645 10039 97.55 

4.8. Conclusion 

In this chapter, a method for generation of homogenous VHR TS based on non-parametric regression of 
multisensor MT optical images has been proposed. The proposed method achieves the goal while effec-
tively normalizing the multisensor images by combining a preliminary normalization (based on ARN) with 
a proposed RRN method. The proposed RRN method is based on a CD-driven approach and a non-para-
metric regression model. In RRN, a prediction is achieved by deriving single band models with non-para-
metric regressions (ANN and SVR) that allows to capture the spatial/spectral variability of VHR multisen-
sor images. The models allowed us to predict all the spectral bands for the �",% image, as if they would 
have been acquired at 2#, based on the original �#,N image bands and the reference un-changed pixels. The 
proposed CD-driven approach for training samples selection showed to be effective from the MSE view 
point, as well as from the MT information extraction one. Experimental results on real datasets, made-up 
of VHR bi-temporal and multisensor optical images, confirmed the effectiveness of the proposed approach 
and the improvement in multitemporal analysis that can be achieved by using the predicted images over the 
preliminary normalized ones. A major improvement is observed when ANN predicted image is used, but a 
high improvement is visible while using SVR predicted one as well. The previously mention improvements 
are independent of the size of the changed areas in the scene. In fact, dataset 1 shows a 32% of changed 
areas against a 13% in dataset 2. Yet, improvements on the CD process can be seen in both cases, showing 
the robustness of the proposed approach. 

The selection of other spectral and/or textural features for the training stage could be considered to further 
improve the current CD OA. Future works consider the use of more VHR multisensor optical pairs with 
more complex scenarios. A further analysis can be carried on by using Deep Neural Network non-paramet-
ric regression to achieve both the normalization and CD processes at the same time. A possible extension 
of the proposed approach to generate homogeneous multisensor VHR time series is foreseeing. Here, the 
reference image remains the one acquired at 2", whereas each subject image is the one acquired at a given 
time 2� with = = 1,… ,¯. Since the same combination of multisensor pairs may happen several times over 
the whole time series, this information should be saved in order to used such points to improve the training 
process. This will also help in the cases where certain land covers are not present from one time to the other. 
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Chapter 5 

 

5. An Approach to Multiple Change Detection in VHR Optical Im-

ages Based on Iterative Clustering and Adaptive Thresholding5 

 
This chapter describes an approach for multiple change detection in VHR optical images (single- and multi-

sensor) based on iterative clustering and adaptive thresholding. Problems arising from assumptions on the 

number of classes and their distribution are discussed. The proposed approach is developed in 3 steps: (1) 

separation among changes and no-changes by means of a threshold, (2) detection of multiple changes by 

means of an iterative clustering and, (3) tuning of the separation of changes and no-changes by tuning the 

threshold for each type of change found in the step 2. The step 2 is distribution free and the whole method 

is automatic. 

5.1. Introduction 

When dealing with VHR optical images, one of the most common approaches to multiple Change Detec-
tion (CD) is the computation of the multispectral difference image by means of Change Vector Analysis 
(CVA) [50], [52], [273]. CVA uses two or more spectral channels to map both the magnitude and the 
direction of change. To do this, samples statistical distribution is usually analyzed in (hyper-) spherical 
coordinates where, in the simplest case, the magnitude is represented by � and the direction by i [50], [52], 
[273]. Figure 5.1 shows a 2D-CVA toy example, where the main characteristics of changed and unchanged 
samples in a polar domain (magnitude and direction) can be observed: 

• Un-changed samples tend to cluster near the origin (light gray circle); 
• Pixels of the same kind of change tend to cluster and pixels of different kind of changes tend to 

locate in different portions of the polar domain (colored clusters); 
• Different kinds of change may show stronger or weaker magnitude (green vs red cluster); 
• Different kinds of change may overlap (orange and blue clusters). 

 

Figure 5.1. 2D-CVA toy example representation of a difference image in polar coordinates. 

                                                
5 Part of this chapter appears in: 
Journal paper: Y. T. Solano-Correa, F. Bovolo, and L. Bruzzone, “An approach to multiple change detection in VHR 
optical images based on iterative clustering and adaptive thresholding,” under revision in IEEE Geosci. Remote Sens. 

Lett.. 
Conference paper: Y. T. Solano-Correa, F. Bovolo, and L. Bruzzone, “An approach to multiple Change Detection in 
multisensor VHR optical images based on iterative clustering,” in 2016 IEEE International Geoscience and Remote 
Sensing Symposium (IGARSS), 2016, pp. 5149–5152. 
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In order to separate changed from unchanged samples, sub-optimal solutions are often employed that 
identify decision thresholds along the magnitude and direction variables independently [50]–[52]. A thresh-
old over the magnitude variable provides separation between changed and unchanged samples. Whereas 
multiple thresholds along the direction variable provide separation among different kinds of change. How-
ever, such thresholds are complex to define. The accuracy of these sub-optimal methods depends on the a 
priori knowledge of both class statistical models and expected number of changes in order to define the 
thresholds [50]–[52]. Moreover, when the number of dimensions increases, sub-optimal solutions become 
less effective as they do not fully exploit the correlation among variables. Two main limitations arise from 
the above-mentioned assumptions. The first one is given by the definition of the threshold value along the 
magnitude, which is defined by considering all kinds of change as a single large metaclass [50], [53]–[57]. 
This implies that the threshold along the magnitude is defined according to the average properties of the 
different kinds of change and does not gather the peculiarities of each of them. The second one is given by 
the definition of different thresholds along the direction variable, which is usually defined by assuming a 
known statistical distribution and number of classes [50]–[52]. 

In order to overcome the two main limitations, methods based on adaptive thresholding or clustering have 
been designed [52], [57], [58], [95], [124], [304], [305]. According to the literature, and under the simpli-
fying assumption of independence between magnitude and direction variables, two main steps are usually 
applied [50], [56]. The first step aims at distinguishing changed from unchanged pixels by defining a single 
threshold value along the magnitude variable. The second one separates different kinds of change from 
each other by defining threshold values along the direction(s). Both steps can be addressed by using thresh-
olding techniques available in the literature [52], but specific solutions are required depending on the type 
of data (e.g., optical, SAR) and application (e.g., bi-temporal or multitemporal analysis, short or long term 
analysis). Sometimes [57], a third step is considered that adapts the threshold along the magnitude to the 
characteristics of different kinds of change identified in step 2. Nevertheless, the problem remains about 
how to properly detect the number of different kinds of change and how to separate them without prior 
information on their number and statistical distribution. 

To overcome these problems, methods based on clustering can be considered [54], [95], [124], [304]. 
There are mainly two kinds of clustering algorithms [305]: i) partitioning; and ii) hierarchical methods. The 
former rely on the centroid-based model and partition the data into k clusters (e.g., k-means). Such methods 
often exploit a predefined statistical model for the classes and assume the knowledge of the number of 
clusters. Thus, they show similar drawbacks to the sub-optimal thresholding solutions. Whereas the latter 
(e.g., Density Based Spatial Clustering of Applications with Noise (DBSCAN) [306]) build a cluster hier-
archy based on a tree structure. Tree construction may follow: i) bottom-up; or ii) top-down paradigms. 
The top-down approach requires at every step the identification of which clusters to split and how to do it. 
The bottom-up approach requires the definition of a cluster similarity measure for merging. Hierarchical 
clustering is able to identify clusters with different size and densities, and is sensitive to outliers.  

One of the most well-known hierarchical clustering is the Ordering Points to Identify the Clustering 
Structure (OPTICS) [307]. OPTICS was proposed in the literature in order to overcome two specific draw-
backs: i) to allow to search for clusters with different densities among the same set of points; and ii) to be 
able to deal with sparse data. OPTICS performs well when there are large differences in cluster densities 
and therefore is able to deal with sparse data. Accordingly, the use of OPTICS for solving the problem of 
multiple CD in VHR images in the (hyper-) spherical domain is promising. However, the overlapping of 
change clusters reduces OPTICS performance and increases computational time. This leads to the need of 
defining novel efficient methods in which threshold values (in the magnitude domain) and change sectors 
(in the direction domain) are adaptively defined. 

In this chapter we propose an approach to multiple CD that jointly exploits the histogram distribution of 
the magnitude and direction variables in (hyper-) spherical coordinates. The approach is distribution free 
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(in the direction domain) and thus particularly suitable for VHR images. It first performs a rough discrim-
ination between unchanged and changed samples according to the properties of the magnitude variable. 
Then, it automatically identifies the sectors along direction variables associated to different kinds of change 
by iteratively performing density-based clustering and region growing [58], [59], while adding samples 
from around the joint magnitude-directions histogram peaks. Finally, it tunes the magnitude threshold by 
adapting it according to the characteristics of different kinds of change. CD is achieved in an unsupervised 
and application-independent way. 

The rest of this chapter is organized as follows. Section 5.2 describes the proposed method giving details 
on each of its three steps. Section 5.3 presents the datasets and experimental results. Finally, Section 5.4 
draws the conclusions and future developments of this work. 

5.2. Proposed Method for Multiple Change Detection by Iterative Clustering and Adaptive 

Thresholding 

Let us consider two VHR optical images, �" and �#, acquired over the same geographical area by sensors �" and �# at time t1 and t2, respectively. �" and �# can be the same or different sensors (e.g., GeoEye, 
QuickBird, WorldView, Pleiades). Let �",% and �#,N be the images associated to spectral bands O (O =1,2,… , Q) and R (R 6 1,2,… , S) for �" and �#. a and b may be associated to the same wavelength or not 
depending on the sensor properties. Let T" U V" and T# U V# be the size of �" and �#, respectively. Let � 
be the multispectral difference image obtained by subtracting on a pixel base the spectral feature vectors. 
Let 1� be the class of unchanged pixels and �� 6 v1�8 , 1�9 , … , 1�;| the metaclass of ° possible kinds of 

change. Thus, Ω 6 1� ∪ �� is the set of classes to be identified by the proposed approach. 

 
Figure 5.2. Block scheme of the proposed approach to multiple CD in VHR images. 

Figure 5.2 depicts the block scheme of the proposed approach to multiple CD in VHR images based on 
iterative clustering and adaptive thresholding. The pre-processing step includes radiometric and geometric 
corrections to mitigate differences among the images not related to changes [5], [39], [62]. This step is 
particularly critical if multisensor optical sensors are considered. Feature extraction is then carried out in 
order to improve the representation and the separation of the multiple changes present in the study area [5]. 
The well-known CVA is used to highlight the presence/absence of changes. For sake of simplicity and 
visualization purposes, CVA is often applied to a 2D space [50], [56]. Employing a higher number of di-
mensions increases the change representation capabilities, but also the complexity due to density and spar-
sity of clusters. Here we consider a 3D problem; however, the extension to a higher number of dimensions 
is straightforward. The representation of � in spherical coordinates is given by equations (5.1)-(5.3) [273]. 

 � 6 k�,"# + �,## + �,�#  (5.1) 
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 i 6 O2O=2 lmn,9mn,8p6 (5.2) 

 j 6 O�qr� l�,�� p 
(5.3) 

where � represents the magnitude variable, and i and j the direction variables (the number of direction 
variables increases as the space dimensionality does). Once the (hyper-) spherical space is defined, 3 steps 
are considered (see Figure 5.3). Step 1 separates unchanged from changed samples by means of the mag-
nitude variable (binary CD). Step 2 iteratively identifies multiple changes by means of a hierarchical algo-
rithm applied to the direction variables (iterative multiple CD). And step 3 adaptively adjust the magnitude 
threshold values by considering each change class separately (adaptive magnitude thresholding). 

step 1 step 2 step 3 

Figure 5.3. Illustration of the 3-step procedure for the detection of multiple changes in a CVA polar coordinate system 
(zenithal view of the azimuth and magnitude variables) [57]. 

5.2.1 Step 1: Binary CD 

In order to distinguish among different kinds of change, unchanged samples must be first removed. In the 
literature, it has been demonstrated that in a (hyper-) spherical domain unchanged pixels tend to cluster 
around the origin of the coordinate system, i.e., they show a small magnitude � ~ 	, where T is a decision 
threshold separating changed from unchanged samples [50]. T can be calculated by means of the Bayesian 
decision theory by estimating class statistical parameters using the Expectation-Maximization (EM) algo-
rithm [308]. This can be done by following a Gaussian ([53], [308]), Rayleigh-Rice ([56]) or a compound 
multiclass statistical model ([309]). In step 1, the statistical distribution of � is exploited to separate the 
feature space of multispectral change vectors in two portions (see Figure 5.3, step 1): 1) the circle of un-
changed samples (d�) and 2) the annulus of changed samples (Q�). 

5.2.2 Step 2: Iterative Multiple CD 

In step 2, we focus on Q� , where: i) changed pixels are located far from the origin, ii) different kinds of 
change may show stronger or weaker magnitude (�) and specific preferred direction (i, j); and iii) pixels 
affected by the same kind of change tend to cluster. Thus for each kind of change a cluster exists with a 
peak surrounded by a spread and irregular cloud of points. Change clusters may overlap. In order to distin-
guish among cluster corresponding to a change, an iterative clustering is applied. 

The proposed method jointly exploits the capabilities of OPTICS and the well-known region growing 
algorithm [59] in an iterative configuration, such as that drawbacks are addressed. In the specific case of 
OPTICS, main problems are related to the overlap of different clusters in a cloud of points. Region growing 
requires the definition of seed points (from the user) in order to determine whether a neighbor pixel belongs 
to a given region. Once the seeds are defined, it starts to add samples from surrounding pixels in the cloud 

                                                
6 O2O=2 is a common variation on the O�q2O= function that solves the problem of O�q2O= to distinguish between 
diametrically opposite directions. O2O=2 range is confined in the interval Ah{, {z. 
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of points, which results in problems with overlapping clusters. Here our set of cloud points is defined by 
the �, i, j histogram resulted from the CVA (hyper-) spherical representation of the feature space (see 
Figure 5.4 (a)). In our iterative clustering, instead of applying the OPTICS/region growing directly to the 
whole cloud of points (as traditionally done in the literature), we exploit the different frequency levels (= – 
see Figure 5.4 (b)) of the magnitude-direction variables. This configuration allows us to reduce the compu-
tational time, by starting from a reduced number of samples (green dots/line in Figure 5.4), and adding 
them as we move to lower frequency levels (pink, blue and purple dots/lines in Figure 5.4). 

  
(a) (b) 

Figure 5.4. Illustration of (a) the cloud points histogram in a CVA polar coordinate system (zenithal view of the azi-
muth and magnitude variables) and (b) its corresponding azimuth histogram. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 5.5. Illustration of how the proposed step-2 works (zenithal view of the azimuth and magnitude variables). 

Let M be the maximum number of samples in a bin of the histogram in the (hyper-) spherical domain. 
First, iterative clustering finds a set of bins showing a number of samples higher than M-n (= 6 1,… ,²). 
In this way at least one cloud of samples can be defined which is dense and isolated enough to be considered 
as a cluster. Whether the cluster is dense enough or not is decided by the initial conditions of the density-
based clustering algorithm. Let us assume that these conditions are reached at the level n of the histogram 
(where 0 � = � ²), and that k=3 (³ ´ 1) clusters are differentiated (Figure 5.5 (a)). Each of the clusters 
is expected to represent a different kind of change. The most populated bins are used to apply the OPTICS 
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density-based algorithm (Figure 5.5 (b)). OPTICS requires some initial parameters: i) the minimum number 
of points (MinPts) to form a cluster, and ii) the reachability (Eps), i.e., the maximum distance (radius) to 
which a point can be considered of the same cluster. Once the first k clusters are found, the algorithm 
evolves to the next frequency level (level n-1), i.e., to histogram bins with less number of samples (see 
Figure 5.4 (b)). Thus, new samples are added (black dots in Figure 5.5 (c)). Each of the existing k clusters 
is grown by means of the region growing [58], [59] (Figure 5.5 (d)). In order to apply the region growing 
algorithm, the number of cycles and the neighborhood connectivity need to be defined. Then the OPTICS 
algorithm is applied (with the same parameters) to search for new possible clusters (Figure 5.5 (e)). The 
same process is iterated until the algorithm reaches the level 1 and all the histogram bins are processed 
(k=5, Figure 5.5 (f)). At the end, the optimal clusters are found, each of them corresponding to one specific 
kind of change, together with outliers. �� sectors are defined according to the region associated to the kth 
cluster (Figure 5.3 , step 2). Figure 5.5 (a)-(f) illustrates the working process of the proposed step 2 by 
considering a 2D zenithal view of the spherical space. Given the nature of the proposed iterative multiple 
CD step, we name it as Growing OPTICS (GO). 

5.2.3 Step 3: Adaptive Magnitude Thresholding 

In step 1 a single global threshold value 	 along � is computed that exploits the properties of the meta-
class Ω� . However, each 1�µ ∈ Ω� may have a different overlapping grade with the distribution of 1�. 

Thus, the optimal threshold 	� along the magnitude variable that separates a given kind of change 1�µ from 1� might be different from the global threshold 	 defined in step 1. Thresholds 	� (³ 6 1,… , °) can be 
different from each other. To properly exploit the peculiarities of each 1�µ, the last step tunes the threshold 

value along � by considering only the pixels in each sector ��, ³ 6 1,… , °. Therefore, ° binary problems 
are defined that differ from the problem described in step 1 because of the different balance between change 
and no-change class prior probabilities and conditional distributions. Each optimal threshold value 	� can 
be computed by applying the same methods as for step 1. The residual gray light area in Figure 5.3, step 3 
is associated to unchanged pixels, whereas the sectors �", �#, ��, �*, … , �� are associated to changed areas. 

5.3. Experimental Results 

5.3.1 Dataset Description and Design of Experiments 

In order to validate the proposed approach, two datasets made up of both single-sensor and multisensor 
VHR optical images were selected. The study area is located in the Trentino region in the north of Italy. 
For dataset 1, images were acquired by the QuickBird (QB) and the WorldView-2 (WV-2) satellites in 2006 
and 2010, respectively. Whereas for dataset 2, images were acquired by the QB satellite in 2005 and 2006. 
The images were pre-processed by absolute radiometric and geometric corrections and integration, as per 
[5]. Pre-processed images (Figure 5.6) show the same spatial resolution (i.e., 0.6m) and size (i.e., 640×640 
pixels). 

The selected areas of interest contain mainly agricultural fields, plus a new road for dataset 2 (Figure 
5.6). In order to properly highlight these kinds of change, Tasseled-Cap (TC) features were extracted [5]. 
CVA is applied to the brightness, wetness and greenness features and the information is represented in 
spherical coordinates [5], [273]. A reference map of each study area was built by photointerpretation (Fig-
ure 5.6 (c) and (f)), and 5 and 3 kinds of change were found for datasets 1 and 2, respectively. Table 5.1 (a) 
and (b) show the number of pixels for each of the 5 and 3 change classes (d","-d",+ and d#,"-d#,�) and no 
change class (d",¶ and d",*) for both datasets. 

In order to validate the accuracy of the proposed approach, performance of GO is compared to that of 
OPTICS in the 3-step configuration. 
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Table 5.1. Number of changed and unchanged pixels for (a) dataset 1 and (b) dataset 2. 

(a)  (b) 

 d"," d",# d",� d",* d",+ d",¶ 

Dataset 1 6739 48221 23024 37219 13469 280928 
 

  d#," d#,# d#,� d#,* 

Dataset 2 27542 23781 647 357630 
 

 

 

   
 (a) (b) (c) 
 

   
 (d) (e) (f) 

Figure 5.6. True color composition of dataset 1: (a) QB 2006 and (b) WV-2 2010 images; and dataset 2: (d) QB 2005 
and (e) QB 2006 images. (c) and (f) Reference maps. 

5.3.2 Experimental Results 

Once pre-processing and feature selection have been carried out, we proceed with the multiple CD. In 
step 1 the threshold T is calculated by means of [56]. Results are reported in Table II for both datasets. Step 
2 is applied only after masking unchanged samples. For both datasets, the minimum number of clusters k 
for the initial step of GO was set to 2, based on the density of the clusters and the initial parameters of 
OPTICS. MinPts was set to 20 and the number of iterations of the region growing algorithm was set to 5 
with a neighborhood of connectivity equal to 26. The selection of these parameters is critical for the per-
formance of the standard and proposed approaches, but are easy to be fixed. In this set up GO was able to 
detect all the changes in 11.9s for dataset 1 and 8.8s for datasets 2, using MATLAB® on a standard work-
station. Hardware is Intel(R) Core(TM) i7-3630QM CPU @2.40 GHz, 16.00GB RAM. Whereas the stand-
ard OPTICS algorithm required 140s for dataset 1 and 125s for dataset 2. Step 3 identifies 	�  values (Table 
5.2). As expected 	� threshold values are different among them and from T. 

Table 5.2. Magnitude threshold values for Datasets 1 and 2. 

Dataset � �£ �¤ �· �¸ �¹ 

1 0.030 0.027 0.035 0.047 0.032 0.026 

2 0.090 0.088 0.097 0.079 - - 
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The CD maps obtained are shown in Figure 5.7. It is possible to see that the proposed approach was able 
to properly detect all the kinds of change. A visual comparison of the two CD maps with the reference map 
(Figure 5.7 (c) and (f)), points out the improvement achieved while working with the GO algorithm. In 
dataset 1, GO algorithm detects d"," and d",* properly, whereas OPTICS tends to confuse those classes with 

other changes, resulting in several false alarms. In both experiments, one part of d"," is misdetected, maybe 
because of TC features. GO is further able to detect and separate class d",+ from d"," (which correspond to 
overlapped clusters in the spherical domain), whereas OPTICS confuses it with class d",". Concerning d",# 

and d",� the proposed approach results in a slightly better detection (Table 5.3). In dataset 2, improvements 
are mainly achieved in the better detection of d#,#, as well as the reduction of false alarms with a better 
detection of unchanged samples (Table 5.4). In this specific dataset, no overlapping clusters were present. 
The proposed approach outperforms the standard one of about 7% and 2% for datasets 1 and 2, respectively, 
without using any prior knowledge about the number of changes. 

Table 5.3. Confusion matrix for standard OPTICS and proposed GO in dataset 1. 
 Changes 

Found 
Actual Changes d"," d",# d",� d",* d",+ d",¶ 

Standard 
OPTICS 

d"," 3243 8 3 10249 11976 8143 d",# 24 41087 291 0 12 4023 d",� 102 1011 21300 4782 2 5445 d",* 39 3 196 18069 41 1569 d",+ 0 0 0 0 0 0 d",¶ 3331 6112 1234 4119 1438 261748 

Overall Accuracy 84.34% 

  

Proposed 
GO 

d"," 3893 23 3 995 60 8754 d",# 24 44671 83 0 10 12 d",� 5 358 16992 480 0 11 d",* 41 6 658 29885 1034 1480 d",+ 0 0 0 781 11242 660 d",¶ 2776 3163 5288 5078 1123 270011 

Overall Accuracy 91.97% 

Table 5.4. Confusion matrix for standard OPTICS and proposed GO in dataset 2. 

 Changes 
Found 

Actual Changes d#," d#,# d#,� d#,* 

Standard 
OPTICS 

d#," 24870 0 4 1139 d#,# 0 14769 0 1641 d#,� 49 0 429 896 d#,* 2623 8981 214 342860 

Overall Accuracy 96.10% 

  

Proposed 
GO 

d#," 24827 0 6 981 d#,# 0 22413 0 3218 d#,� 80 0 480 165 d#,* 2635 1368 161 353266 

Overall Accuracy 97.90% 
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 (a) (b) (c) 
 

 
 

   
 (d) (e) (f) 

Figure 5.7. CD maps obtained by applying the step 2 with: (a) and (d) standard OPTICS approach; (b) and (e) proposed 
GO approach; and (c) and (f) Reference Maps. 

5.4. Conclusions 

In this chapter, an approach to multiple CD in VHR optical images based on iterative clustering and 
adaptive thresholding has been proposed. The adaptive GO works in (hyper-) spherical coordinates, is dis-
tribution free (in the direction domain), unsupervised and automatically identifies the number of changes. 
The effectiveness of the adaptive GO, with respect to standard thresholding methods, has been validated in 
two pairs of VHR single-sensor and multi-sensor images. Such datasets showed complex and noisy set-ups. 
GO demonstrated to be robust in handling noisy samples and overlapping clusters and required a reduced 
computational time when compared to OPTICS. The adaptive thresholding improved the overall accuracy, 
especially in the case of dataset 1, because of overlapping clusters. Open issues regarding the selection of 
initial clustering algorithm parameters remain (for both OPTICS and region growing). Though the param-
eters are easy to setup (correlated to data spatial resolution and density of cloud points), they are no fixed 
in an automatic way. Future works will consider the applicability and adaptation of the method for CD in 
images with lower spatial resolution as well as possible extensions to other applications (e.g., classifica-
tion). 
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Chapter 6 

 

6. Spatio-temporal evolution of crop fields in Sentinel-2 Satellite Im-

age Time Series7 

 
This chapter introduces an approach for the spatio-temporal evolution of crop fields in Sentinel-2 satellite 

image time series. A state-of-the-art review is made to show the relevance of developing new algorithms 

that account for the characteristics of sensors such as S2, as well as the importance for agricultural appli-

cations. The approach is divided in different stages that work in an automatic way and without need of in-

situ data. Spatial, spectral and temporal information are jointly exploited to derive products of interest in 

the agricultural analysis. 

6.1. Introduction 

As the Earth population and the demand for food continue to increase, the need for precise and timely 
information about the properties and dynamics of global agricultural systems is becoming increasingly im-
portant. Since decades, Earth Observation (EO) satellites provide a unique way to observe our living planet 
from space. Thanks to the revisit property of the EO satellites, a huge amount of multitemporal images are 
now available in archives and continue to be acquired. The spectral, temporal, and spatial information con-
tained in such satellite image time series offers unique opportunities for monitoring and managing land 
cover dynamics from local to global spatial scales [310]. Satellite image time series provides temporal and 
spatial consistent spectral measurements of Earth surface that correlate directly with annual/inter-annual 
cycles of vegetation growth (i.e., phenology). Therefore SITS offers a significant insight into the response 
of vegetation at short and long terms, which is suitable for precision agriculture [38], [310], [311]. Never-
theless, high spatial/temporal resolution cropland cover maps are not available yet that provide information 
regarding: i) geographic distribution, ii) areal extent, iii) cropping intensity; and iv) crops state.  

Mapping such information from remote sensing is challenging, especially for areas with high density of 
small crop fields, where in turn only aggregated analysis is usually provided. In order to create such 
cropland cover maps, some requirements must be fulfilled. Among them, the most critical ones are to have: 
i) continuous and regular acquisitions that allow for the derivation of phenological parameters and the map-
ping of agricultural areas, ii) Satellite Image Time Series (SITS) with a temporal resolution high enough to 
follow the fast evolution of crops (which can vary from few weeks to few months); and iii) an updated map 
containing the field boundaries and the fields that accurately separates single/small fields and thus allows 
the monitoring of single agricultural units. Regarding the first requirement, state-of-the-art methods are 
able to generate continuous SITS, but require to have regular acquisitions in time [29], [38], [198], [312], 
[313]. In the second requirement, unlike other kinds of vegetation, crops often reach canopy maturation 
quickly after plantation and have a relatively short growing period [60], [314], [315]. Up to date, data from 
a single satellite sensor were not capable of simultaneously capturing the fast-changing agricultural activi-
ties on the ground in terms of both spatial and temporal resolutions [316]. The third requirement is difficult 

                                                
7 Part of this chapter appears in: 
Journal paper: Y. T. Solano-Correa, F. Bovolo, L. Bruzzone, and D. Fernández-Prieto, “Spatio-temporal evolution 
of crop fields in Sentinel-2 Satellite Image Time Series,” ready to be submitted to Remote Sens. of Env.. 
Conference paper 1: Y. T. Solano-Correa, F. Bovolo, L. Bruzzone, and D. Fernández-Prieto, “Spatio-temporal evo-
lution of crop fields in Sentinel-2 Satellite Image Time Series,” in 2017 9th International Workshop on the Analysis 
of Multitemporal Remote Sensing Images (MultiTemp), 2017, pp. 1–4. 
Conference paper 2: Y. T. Solano-Correa, F. Bovolo, L. Bruzzone, and D. Fernández-Prieto, “Derivation of cropland 
phenological parameters by NDVI smoothing of Sentinel-2 Satellite Image Time Series,” accepted in 2018 IEEE 
International Geoscience and Remote Sensing Symposium (IGARSS-2018). 
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to handle and is indeed a recurrent problem in Remote Sensing applications (RS) [60], [317], [318]. Agri-
cultural areas usually contain small fields [317], [319], when compared to the sensor spatial resolution (e.g., 
MODIS, Landsat) and thus they are difficult to characterize [60]. In essence, producing detailed cropland 
cover maps requires SITS with high temporal and spatial resolutions acquired with regular time spacing. 

The spatial and temporal resolutions of up to date satellite sensors are compromised. High spatial resolu-
tion sensors like Landsat do not have enough temporal resolution, whereas coarse spatial resolution sensors 
like MODIS have high temporal resolution [316]. Since 2015, both high temporal and high spatial resolu-
tion SITS became available within the European Space Agency (ESA) Copernicus program, more specifi-
cally due to the Sentinel-2 (S2) constellation. S2 constellation is made up of two twin satellites named: S2A 
(launched in 2015) and S2B (launched in 2017). Combining both satellites gives the capacity to cover Earth 
every five days (at the Equator) with 10m to 60m resolution and 13 spectral bands. As per Landsat constel-
lation, the revisit period of a single S2 satellite increases as we move from the Equator to the North hemi-
sphere as a result of overlapping orbits [317], [320]–[322]. The overlapping orbits together with the high 
temporal resolution and the width swath of S2 (290Km), result in a clear increase of the number of acqui-
sitions over a specific geographical area (which satisfies the first requirement). At the same time, this results 
in a higher probability of acquiring free cloud images, but tends to generate irregularly sample data in time. 
By considering two overlapping orbits, we have that: i) for Landsat, we move from a regular acquisition of 
16 days to an irregular acquisition in a sequence of 7-8-7-8 days, ii) for a single S2 satellite, we move from 
a regular acquisition of 10 days, to an irregular acquisition in a sequence of 3-7-3-7 days; and iii) for the 
two S2, we move from a regular acquisition of 5 days, to an irregular acquisition in a sequence of 2-3-2-3 
days. Thus, S2-SITS makes it possible to generate products with a better compromise in terms of spatial 
and temporal resolutions, allowing for the analysis at single crop field level (highly relevant in precision 
agriculture). But S2-SITS also introduce the challenge of dealing with irregularly acquired data. 

Identifying each single crop field in a given agricultural area, allows for the temporal analysis at individ-
ual field level, whereas the widespread practice is to perform an analysis over several aggregated fields. 
This is because the availability of crop field boundary maps is uncommon. In the literature, the crop fields 
boundaries are mostly obtained by segmentation applied to the original spectral bands or to some vegetation 
indices extracted from one or few multitemporal remote sensing images [61]. Thus, they account only for 
crops in a single or few stages of the vegetative cycle. However, given the crop phenology and the presence 
of several types of crop, it is expected that each crop shows different maturation instants in the vegetative 
cycle. This means that at a certain time, crops will be at various phenological stages (i.e., some will be at 
the last stage of the vegetation cycle, whereas others will not). Thus, single or few dates analysis tends to 
underestimate crop fields since the ones in non-vegetative stage are likely to be not identified. Thus, creat-
ing a crop field map that accounts for every single field at distinct stages of the vegetative cycle is relevant. 
Dense SITS can be used to reduce the impacts of ambiguities due to the phenological stage and the spatial 
arrangement of field boundaries (irrigation ditches, tracks and roads, fences and hedges, weed and grass 
swards, trees and shrubs) that in single date satellite images may not be spectrally separable from field 
interiors [60], [323]–[325]. Further, and importantly, dense time series reduce the influence of missing, 
shadowed and atmospherically contaminated observations [317], [318], [326] and enables specific crop and 
non-crop phenologies to be considered as part of the algorithm implementation. Therefore, in this chapter 
we exploit the temporal evolution of the spectral and spatial information in dense S2-SITS to build a mul-
titemporal crop field map. 

Once a multitemporal map of single crop fields and their boundaries is available, temporal analysis can 
be carried out at field level. Nonetheless, to effectively track continuous intra-annual dynamics, such as 
vegetation phenology, noise-free remotely sensed data acquired at appropriate time instants is required. S2-
SITS correspond to discrete non-uniformly and irregularly sampled measurements of spectral variations, 
which, moreover, can be corrupted by atmospheric, geometric, and radiometric disturbances [327]. There-
fore, to increase accuracy in phenological parameters estimation, we resort to denoising procedures and fill 
the gaps between satellite image acquisition dates with a pertinent continuous interpolating function [327]. 
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The literature contains reference to a broad variety of strategies designed to reduce the impacts of missing 
(noisy) data, based on smoothing and function-fitting algorithms [29], [37], [38], [313], [315], [328], but: 
i) none of them considers irregular sample data, and ii) data are assumed to show a harmonic behavior, 
given by one (or two) cropping cycles. These algorithms increase the spatial and temporal consistency of 
SITS used to derive phenological parameters [204], but are not suitable when referred to S2-SITS. This is 
due to the fact that up-to date, analysis were performed at an aggregated level (e.g., forest, grass), where a 
single harmonic behavior was assumed over the year. When a single crop field is analyzed, more than one 
harmonic is expected, especially if an intensively cultivated area is observed. Furthermore, these algorithms 
are also used to implicitly derive phenological parameters such as the number of cropping cycles, length of 
season, middle of season and maximum value. Since this is achieved by relying on the assumption of a 
single harmonic behavior of the data, it results in poor estimation when applied to S2-SITS. Other methods 
derive the phenological parameters independently from the SITS smoothing, but require user defined 
thresholds [29], [313]. Therefore, there is a clear need to develop and/or adapt state-of-the-art algo-
rithms/methods to the analysis of dense and irregularly sampled S2-SITS in the context of precision agri-
culture. 

In this chapter, we propose an approach for spatio-temporal evolution of crop fields in S2-SITS. The 
approach automatically: i) identifies and separates all the crop fields cultivated at least once over a given 
area, ii) reconstructs continuous and regular sampled S2-SITS by means of an adaptive non-parametric 
regression model; and iii) extracts spatio-temporal information from the previous derived data. The pro-
posed approach is automatic, can easily account for the new upcoming images and is able to deal with 
irregularly sampled SITS. 

The reminder of this chapter is structured as follows. Section 6.2 presents the proposed approach for the 
spatio-temporal evolution of crop fields in S2-SITS in detail. Section 6.3 describes the dataset used to val-
idate the proposed approach, presents the results for its different stages and compares the results with state-
of-the-art methods. Finally, Section 6.4 draws the conclusions and illustrates future works. 

6.2. Proposed Approach for Spatio-Temporal Evolution of Crop Fields in S2-SITS 

In this section, details of the proposed approach for studying the spatio-temporal evolution of crop fields 
through the use of S2-SITS are given. To study the spatio-temporal evolution, we jointly exploit the spec-
tral, spatial and temporal information in the S2-SITS, and perform a detailed analysis at the level of single 
crop field. Figure 6.1 depicts the block scheme of the proposed approach that is based on four main steps: 
i) time series pre-processing, ii) spatio-temporal fusion, iii) daily time series reconstruction and; iv) spatio-
temporal information extraction. First, the S2 time series is pre-processed in order to guarantee similar 
spectral and spatial characteristics among images and to filter out cloudy images. Second, a multitemporal 
vegetation map is built by fusing spectral, spatial and temporal evolution of NDVI time series. Third, the 
multitemporal vegetation map is used as a mask in order to build regular and continuous NDVI time series 
at the level of single objects/crop fields. Finally, the multitemporal vegetation map and the daily NDVI-TS 
are used to extract spatio-temporal information through the analysis of different radiometric indices. Of 
particular interest is the derivation of products such as phenological parameters and cumulative indices 
which are later used to map the area and perform statistical analysis. 

Let us consider a dense sampled time series, �T	� 6 v�", �#, ��, … , �4|, acquired by S2 over the same 
agricultural area in a period x2", 24z. Let us assume that the area is observed by two S2 orbits, such that 
images are acquired with non-uniform time sampling (irregularly). Let �� (� ∈ x1, bz) be the set of F ex-

isting fields in ��. ��  corresponds to crop fields that have been cultivated and to crop fields left to rest 

(fallow). Let us finally assume that different crop fields in �� (= ∈ x1,¯z), are cultivated with different 
types of crops, thus they show different phenological cycles, and that intensive crop rotation is practiced in 
the area (i.e., some fields are cultivated with different crops over the seasons). 
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Figure 6.1. Block scheme of the proposed approach for spatio-temporal evolution of crop fields in S2-SITS. 

6.2.1 Pre-processing 

The pre-processing phase seeks to prepare the S2-SITS images for the next steps. First, the images are 
atmospherically corrected (converted from L1C to L2A level) by using the sen2cor tool provided by ESA 
[329]. Second, the 6 bands at 20m are up-scaled to 10m by means of an optimized High Pass Filter (HPF) 
[330]. Band 4 is used as panchromatic band for bands 5, 11 and 12, whereas band 8 is used for bands 6, 7 
and 8A. The three 60m bands are not up-scaled since they do not provide relevant information regarding 
vegetation. Thus, here they are used for atmospheric correction and cloud screening by sen2cor, only. Third, 
each image in the S2-TS is cut to the size of the study area. This is performed only when the study area is 
smaller/bigger than a S2 tile size. When the study area is smaller than a tile, this stage may help to increase 
the number of free cloud images in the TS, given that clouds do not necessarily cover the whole tile [331]. 
Fourth, images with high cloud percentage are filtered out from the SITS by means of the SLC map obtained 
after applying the sen2cor correction. At this stage of the approach, all the images containing any pixel 
marked as: cloud shadows, cloud low probability, cloud medium probability, cloud high probability and 
thin cirrus are removed. Finally, images acquired by overlapping orbit swaths are co-registered. As shown 
by [321], overlapping S2 swaths have been found to be mis-registered by typically 10m up to 100m (de-
pending on the study area). Such issue is highly critical in time series analysis and even more in the spatio-
temporal evolution of crop fields where spatial variability is high. To perform the co-registration, here we 
use as reference image the one acquired at first in the whole time series. Whereas target image/s will be the 
one/s acquired after. Any state-of-the-art method can be considered to perform the co-registration. Here we 
consider the area-based least squares matching approach that provides sub-pixel precision suitable for the 
S2 spatial resolution and the task of crop fields analysis [332]. 
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6.2.2 Spatio-Temporal Fusion 

The spatio-temporal fusion takes advantage of both the availability of S2-SITS and the dynamic vegeta-
tive cycle of the crops, to detect and separate the F crop fields in �� by considering their multitemporal 
evolution. Figure 6.2 depicts the block scheme of the proposed approach, where the NDVI is first extracted 
from each of the images in S2-SITS. Then, spectral and spatial analyses are carried on over the S2 NDVI-
SITS to get a multitemporal object mask. Depending on the study area, these objects may correspond only 
to crop fields (��), or to other kinds of vegetation (1K,) such as forest or wetlands (which may have single 
date NDVI response similar to that of a crop, but shows different temporal evolution in SITS). In the last 
step, a connected component labeling is applied to build a multitemporal vegetation map, such that each 
possible crop field can be later analyzed separately. The multitemporal vegetation map is represented by v1, , 1�, , 1�|. Here 1, represents the areas that have had vegetation at least once over the studied period, 
with 1, 6 v�� , 1K,|. �� 6 v1", 1#, … ,1�| are the different crop fields (cultivated and fallow) labeled 

separately; and 1K,  represents other vegetation areas such as forest or grass. Finally, 1�, represents all the 
pixels that never showed vegetation, such as buildings and roads; and 1� represents the crop field borders. 
In order to separate among 1, in the multitemporal vegetation map, the map is filter out in a latter step. In 
literature, this is usually done by considering a land cover map containing the class “agricultural areas” (if 
available). The problem of this strategy is that maps are usually generated by considering one (or few) 
acquisition dates. Thus, crop multitemporal variability is not fully captured. Because of this, it is difficult 
to rely on them. Finally, considering the worldwide average minimum size of a crop field and the S2 spatial 
resolution, only crop fields with areas bigger than 1ha are considered in the process [317], [319]. 

 
Figure 6.2. Block scheme of the proposed approach to spatio-temporal fusion. 

6.2.2.1 NDVI Extraction 

In the literature, the separation or classification of different crops or land covers is carried out by using 
features such as the original spectral bands, radiometric indices, etc. The selection of each feature is deter-
mined by its ability in highlighting certain land covers over the others (i.e. ensure separability of the differ-
ent classes in the feature space). In remote sensing, many radiometric indices have been developed in the 
literature that allow to highlight different properties of vegetation. These radiometric indices exploit the 
spectral information acquired by the different sensor bands and analyze their physical response in order to 
measure biomass or vigor of vegetation. Table 6.1 shows the list of the most common radiometric indices 
used in remote sensing. Here the spectral bands are shown as per S2 numbering [333]. 
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In the specific case of vegetation and agricultural fields, the NDVI is widely used [61], [197], [334]. 
NDVI takes advantage of the contrast between the Red and Near-InfraRed (NIR) spectra to assess whether 
an area contains green vegetation or not. NDVI equation is given in (6.1), where the NIR and Red bands of �� are used to get �4)º» . Equation (6.1) is applied over the entire S2-SITS and a NDVI-SITS is obtained. 

Each NDVI image ranges from -1 to 1. 

 �4)º» 6 �4º » h � �B»�4º » + � �B» (6.1) 

Generally, healthy green vegetation absorbs most of the visible light, and reflects a large portion of the 
NIR light, thus NDVI tends to assume large positive values. Unhealthy or sparse vegetation and water 
behave in the opposite way, thus NDVI tends to assume extreme negative values. Bare soil reflects moder-
ately in both the Red and NIR, thus NDVI is close to zero. 

Table 6.1. List of the most common radiometric indices used in remote sensing [333]. 
Index Equation 

Normalized Difference Vegetation Index ¯u¼T 6 S8O h S4S8O + S4 

Normalized Difference Water Index ¯u½T 6 S12 h S4S12 + S4 

Normalized Difference IR Index ¯uTT 6 S8 h S11S8 + S11 

Soil Adjusted Total Vegetation Index �Q	¼T 6 1.5 ∙ l S11 h S4S11 + S4 + 0.5p h lS122 p 

Plant Senescence Reflectance Index 
��T 6 S4 h S3S6  

Cellulose Absorption Index dQT 6 S12S11 

6.2.2.2 Spectral Analysis 

According to the NDVI characteristics, a threshold 0 � 	 � 1 is applied to �4)º»  (= ∈ x1,¯z) to iden-

tify areas with vegetation. This is done for each available image in the NDVI-SITS. Once vegetation is 
identified for each acquisition, multitemporal analysis is conducted to select the areas that have had vege-
tation at least once over the studied period. This is obtained, by defining a multitemporal binary spectral 
mask �(���GF%�./¾µ based on NDVI response as in (6.2). Since all the images available in the NDVI-SITS 

are considered, the high multitemporal variability of the different crop fields is mapped in �(���GF%�./¾µ. 

When a new �4¿" image is acquired, the current �(���GF%�./¾µ  can be easily updated by including �4)º'À8 

in (6.2). 

 �(���GF%�./¾µ 6 Á1, , Â� Ã f (�4)º» > 	)
�g4

�g"
Ä ≥ 1

1�, ,                                       r2ℎ���Â��
 (6.2) 

�(���GF%�./¾µ  will contain all the areas with vegetation (1,) and the areas with non-vegetation (1�,) over 

the time, 1,  inlcudes crop field (��) and other vegetation (1K,) as well. Finally, �(���GF%�./¾µ does not 

provide spatial distinction among vegetation. In other words, if neighboring fields show the same NDVI 
behavior over time, they cannot be distinguished from each other. Neither does �(���GF%�./¾µ  provide spec-

tral distinction with other vegetation classes such as forest or grass. Thus, to help in the separation among 
different types of vegetation, spatial analysis is required. Whereas to help in the separation among crop 
fields and other vegetation, other strategies are implemented. 
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6.2.2.3 Spatial Analysis 

To achieve the spatial separation among the areas with vegetation (1,) present in �(���GF%�./¾µ, we take 

advantage of the spatial information in the NDVI-SITS. Because of the phenological behavior of the crops, 
there exist a time 2�K( representing the mature stage in the vegetative cycle. MoS stands for Middle of 
Season and 2�K( ∈ x2", 2�z. Since 2�K( varies crop by crop and thus field by field, a gradient exists such 
that we can employ it to separate the vegetated areas identified in the previous step according to the phe-
nological behaviors. Edges of mature crops can be detected for each �� in NDVI-SITS (��B-��») and used 

as a reference for separating the crop fields. The accuracy of this step depends on whether two neighboring 
crop fields have different 2�K( or not. An edge is defined as the locality of connected components where 
the image intensity varies rapidly. The gradient is commonly used in the literature to extract edges (e.g., 
Laplacian and Sobel operators) [335]. The edge detection can be applied to NDVI or other spectral feature 
able to highlight the vegetative stages of a crop. Single date edge maps are jointly used to detect areas with 
edges (1�) and separate them from no edges (1��). To ensure the selection of edges that possibly corre-
spond to a specific crop field, only areas where strong edges exist are considered as being reliable. A strong 
edge is defined if an edge has been detected at least twice over the NDVI-SITS (6.3). Therefore, �MB-��./¾µ  

contains the boundaries between the areas with vegetation (1,). A low probability exists that some areas 

corresponding to other vegetation (1K,) exhibit strong gradients in different times of the year resulting in 
strong edges. �MB-��./¾µ  can be easily updated as for �(���GF%�./¾µ. 

 �MB-��./¾µ = Á1� , Â� Ã f ��B-��»
�g4

�g"
Ä > 1

1�� ,                            r2ℎ���Â��
 (6.3) 

6.2.2.4 Spectral and Spatial Fusion 

By combining the �(���GF%�./¾µ and �MB-��./¾µ  as in (6.4), we ensure that all the areas in which there 

was vegetation at least once in the NDVI-SITS, are identified and separated. Thus, �H%�� is a binary mask 
where “0” values represent the areas with no vegetation and the crop field borders, whereas “1” corresponds 
to the areas with vegetation. The borders identified by �MB-��./¾µ  are separated from to the class of vege-

tation because they contain mixed pixels between vegetation and bare soil. 

 �H%�� 6 �(���GF%�./¾µ ∙ �MB-��./¾µ  (6.4) 

6.2.2.5 Connected-component Labeling �H%�� accounts for all the regions in which there was vegetation at least once. Now labeling is required 
such that each area is unambiguous. To this aim, the well-known connected-component labeling method is 
used [336]. This method is used in computer vision to detect connected regions in binary images, although 
color images and data with higher dimensionality can be processed. To decide if two pixels or regions are 
connected, 4-connected or 8-connected medium image graphs are used. As a result, we get a multitemporal 
vegetation map �,�-./0 that is built by considering the spectral, spatial and temporal evolution of a NDVI-

TS. Pixels in this map are labelled as v�� , ��ÆÆÆÆ|, with ��ÆÆÆÆ = v1K, , 1�, , 1�|. From �,�-./0 , we can now 

perform TS analysis at the single object level. 

6.2.3 Daily Time Series Reconstruction 

To analyze the spatio-temporal evolution of agricultural areas, modelling the presence of the vegetation 
cycles among different crops is usually done in literature. To this end, continuous and regularly spaced 
SITS are needed. To obtain SITS with such characteristics, we propose a novel approach for daily TS 
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reconstruction that makes use of a non-parametric regression model derived from NDVI-SITS. The recon-
struction is performed at single object level, by means of �,�-./0 , is automatic and is able to deal with 

irregularly sampled images. One of the many problems with state-of-the-art methods is the proper recon-
struction of the starting and end day of the given SITS. This is traditionally solved by: i) including extra 
images acquired before and after the considered period; or ii) by replacing the before and after acquisitions 
with the first and last images available in the SITS [29], [337]. This becomes an extra constrain for S2, 
since up to date only 3 years of acquisitions are available. Thus, the proposed approach is developed without 
such constrain. Three main steps are followed: i) definition and extraction of NDVI-SITS sets, ii) building 
regularly sampled TS; and iii) adaptive non-parametric regression of NDVI-SITS. 

6.2.3.1 Definition and Extraction of NDVI-SITS Sets 

In order to perform the TS reconstruction, a set of NDVI training samples is required. Given that no crop 
field maps are usually available in literature the selection of these training samples is performed for every 
single pixel available in an image (including no-crop ones). Once the selection process has been carried out 
for all the images in the SITS, areas or pixels of interest (where the user is sure to find a crop field) are 
selected to be further analyzed. In the proposed method the sets are extracted from the original NDVI-SITS 
acquisitions and for each of the 1,  in �,�-./0. In order to mitigate for noisy components the mean NDVI 

value of each 1,  in �,�-./0  is used as training samples. Even though we partly reduce the effects of noisy 

data, issues remain due to the irregularly acquired data and the missing acquisitions due to presence of 
clouds. 

6.2.3.2 Building Regularly Sampled NDVI-SITS 

The acquisition of data with two overlapping orbits, results in irregularly sampled data in time, inde-
pendently of the presence of clouds. This adds an extra level of complexity to the derivation of phenological 
parameters, where equally spaced data (in time) and regular shapes (bell like) are usually assumed. Thus, 
the irregularity of data needs to be handled before applying any further step. In other words, a preliminary 
symmetrical and uniformly sampled NDVI-SITS needs to be guaranteed. To this aim, the simplest approach 
in literature is to replace each data value in the TS by a linear combination of nearby values in a window 
[29]. We propose an alternative approach, where a smoothed time series is simulated generating daily ac-
quisitions by applying a cubic interpolation. Then, we further smooth the smallest noisy samples by means 
of a low pass filter with a given window width �. Both, the interpolation degree and the window width, 
determine the degree of smoothing, but also affect the ability of the method to follow rapid NDVI evolution 
[29]. 

6.2.3.3 Adaptive Non-parametric Regression of NDVI-SITS 

Because of the annual phenologies of vegetation, state-of-the-art methods for smoothing NDVI-SITS 
usually make two assumptions: i) a crop field is cultivated once, maximum twice, per year (showing one, 
maximum two peaks) and; ii) the temporal behavior of crops can be considered as a single harmonic. As a 
consequence of the above mentioned assumptions, harmonic functions are used with an a priori user defined 
number of cropping cycles. Thus, simple harmonic oscillators and Fourier series are among the most com-
monly used models to fit satellite image time series [184], [311]. However, simple harmonic oscillators fail 
at reproducing more than one harmonic and Fourier series approaches assume regularly spaced TS and 
underlying components that are truly harmonic [184], [198], [311]. Thus, methods are not fully automatic 
and do not account for cultivations with number of cycles greater than two, neither can they account for the 
variability introduced by crop rotation practices. To overcome these limitations, the derivation of a function 
by means of a non-parametric regression is proposed. Opposite to literature, where the process is done at 
pixel level, this process is carried out at single object level, and for each of the 1,  object in �,�-./0 . This 

characteristic gives an advantage to the method, which is able to model the behavior of each object (crop 



Spatio-temporal evolution of crop fields in Sentinel-2 Satellite Image Time Series 

 

 85 

field) in a separate and homogeneous way. Here, we use a MLP-NN with one hidden layer to perform the 
non-parametric regression. A novel adaptive configuration is introduced for better performance. The num-
ber of neurons in the hidden layer (=�ÇÈ) is determined in accordance with a Mean Square Error (MSE) 

threshold (	�(M). A given =�ÇÈ = =�Ç8 (lower bound) is first established by the user to train the MLP-NN. 

After the first iteration (Â = 1), if the MSE is lower than 	�(M , then =�Ç8  is kept as well as the generated 
model (6.5). Otherwise, the MLP-NN is re-trained in a second iteration with an increased number of neu-
rons. =�Ç8  is increased by 1. The process is repeated until the condition on MSE is satisfied (²�É ~ 	�(M) 
or until the number of iterations reaches a pre-defined upper bound. When the upper bound is reached, the 
MLP-NN stops increasing =�ÇÈ  in the hidden layer and gives a warning of non-convergence. 

 =�ÇÈ 6 Ê =�Ç8                                                             =�ÇÈË8 + 1,          Â� ²�É > 	�(M  O=� Â < T (6.5) 

6.2.4 Spatio-Temporal Information Extraction 

In the last step, we focus the attention on the extraction of relevant information that effectively exploits 
the spectral, spatial and temporal characteristics of S2-SITS. This information is further used to build a 
multitemporal crop field map (��FK�./0 6 v�� , ��ÆÆÆÆ|) where �� is finally separated from 1K,.To this aim, 

we use both the �,�-./0  and the continuous and regularly sample NDVI-SITS. Spatio-temporal information 

is then extracted to: i) estimate and build phenological parameter maps; ii) apply a set of rules to separate ��  from 1K,; and iii) study the cumulative behavior of different radiometric indices for each �� in ��FK�./0 . 

6.2.4.1 Estimating Phenological Parameters 

Traditional ground truth measures of phenology involve the observation of individual plants or groups of 
plants of one species to identify specific events such as budburst, leaf-out, or flowering. Similar measure-
ments can be derived by means of satellite imagery and by studying the NDVI temporal evolution. The 
precision of this derivation increases as the accuracy of the NDVI-SITS regression increases and is tradi-
tionally performed in a semi-automatic way. In this work, the phenological parameters listed below (but 
others can be considered as well) are estimated in an automatic way and from the NDVI-SITS profiles after 
regression: 

 

Figure 6.3. Block Phenological parameters: (a) beginning of season, (b) end of season, (c) length of season, (d) base 
value, (e) time of middle of season, (f) maximum value and (g) amplitude (modified from [29]). 

- Beginning of Season (BoS - Figure 6.3 point a): is calculated by means of the second derivative, where 
the descendent point of inflexion corresponds to the BoS. 
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- End of Season (EoS - Figure 6.3 point b): is calculated by means of the second derivative, where the 
ascendant point of inflexion corresponds to the EoS. 

- Length of Season (LoS - Figure 6.3 point c): is the time from BoS to EoS and is calculated by subtracting 
(b) and (a). 

- Base Value (BV - Figure 6.3 point d): is calculated by finding the minimum values, from the first deriv-
ative, located just before and after the maximum value. 

- Middle of Season (MoS - Figure 6.3 point e): is located where the maximum value of the season is 
found. 

- Maximum Value (MV - Figure 6.3 point f): is calculated by finding the maximum values, from the first 
derivative, that are between the BoS and EoS. 

- Amplitude (Figure 6.3 point g): is calculated by subtracting the maximum and base value. 
- Number of cropping cycles: corresponds to the number of times that a set of BoS, EoS and MoS metrics 

are found. 

Once the phenological parameters have been derived, we can proceed to build out multitemporal crop 
field map, where crop fields (��) are finally separated from other type of vegetation (1K, – grass and forest). 

Inside ��  we find cultivated crop fields and fallow crop fields. The latter ones areas are not considered to 

generate further products. 1K,  are assigned to ��ÆÆÆÆ. According to literature, a cultivated area presents a NDVI 
profile similar to that of a bell, with values that go from 0 to 100 (for a scaled NDVI). Non-cultivated ones 
(fallowed area) can present a similar bell behavior as a cultivated one, but with a NDVI value lower than a 
given threshold [315]. If a set of BoS, EoS and MoS falls below the fallow threshold, then the field is not 
considered for further analysis and the number of cropping cycles is set to zero. A further rule is considered 
in order to separate grass and forest from crop fields. Grass and forest might show bell shape profile similar 
to crop ones, but the LoS parameter will be larger than 3 months. Thus, 1, with a LoS>3 months are 
assigned to ��ÆÆÆÆ. In this way, we build our multitemporal crop field map (��FK�./0) where areas correspond-

ing to crop fields (cultivated and fallow) are separated from other classes. Finally, different crop parameter 
maps can be built: i) winter/summer crop maps; and ii) detailed phenology retrieval maps. 

6.2.4.2 Cumulative Radiometric Indices Analysis 

Starting from ��FK�./0 , other information can be extracted. A cumulative index is thus computed from 

the entire S2-SITS as follows: 

 � = f(� %BLKH�GFL� º�B�y» )
4

�g"
 (6.6) 

The information in � can be analyzed according to different ranges of the radiometric index. For exam-
ple, NDWI ranges in [0, 1] and is used for understanding water content in crop fields. The NDWI works in 
a similar way to the NDVI, but uses the Short Wave Infra-Red (SWIR) band instead of the NIR for the 
detection of water content. In this case, and according to literature, we define ranges as: i) 0 � � � 0.25, 
ii) 0.25 ~ � � 0.5, iii) 0.5 ~ � � 0.75; and 0.75 ~ � � 1. The higher the value of �, the higher the 
content of water. If different indices are studied, the meaning of the cumulative index changes. Here, the 
short list of radiometric indices shown in Table 6.1 is considered. Once the different cumulative indices 
have been computed, statistical analyses is carried out for crop fields that might exhibit a particular problem. 
This decision must be taken by an expert. 
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6.3. Results and Discussion 

6.3.1 Dataset Description, Pre-processing and Ground Truth 

To validate the proposed approach, a SITS acquired by S2A over the area of Barrax in the South-East 
part of Spain was selected. Barrax area falls in the tile T30SWJ that is acquired by two overlapping swath 
S2A orbits: orbit 094 and orbit 051. If a given tile is acquired by a single orbit, a single S2 satellite and 
under clear sky conditions, we expect an image every 10 days. By considering two orbits, we expect an 
image every 3-7-3-7 days. The above conditions increase the probability of having cloud free images and 
guarantee denser SITS for agricultural analysis, but provides irregular samples in time. By using the two 
orbits, and from the starting acquisition date of S2A until November 30, 2016, 76 images were acquired. 
Following the steps in section 6.2.1, we first carried out atmospheric corrections by means of sen2cor [329]. 
After this, bands at 20m were up-scaled to 10m by means of a modified HPF (see sec. 6.2.1) and later on 
cut to the area of interest. In the Barrax area, a total of 49 images were found to be cloud free. The selection 
of the cloud free images is carried out by means of the cloud mask generated from sen2cor. The temporal 
distribution of the free cloud images is shown in Figure 6.4, where red dots represent images acquired on 
orbit 051 and blue dots the ones on orbit 094. By considering the two orbits, we can see that there is at least 
one free cloud image per month. For October there were no images provided by ESA. The reference image 
to perform co-registration was acquired in the orbit 051. 

 

Figure 6.4. Cloud free images timelines for 2015 and 2016 (red: orbit 051 and blue: orbit 094). 

The area around Barrax (Figure 6.5) has been used intensively for agricultural research since many years 
given: i) the different rotation practices, ii) the presence of crops with more than one crop cycle per year, 
iii) the presence of crops such as the Alfalfa which is harvested several times per year because of its fast 
growing rate, and iv) the presence of same type of crop under irrigated and non-irrigated conditions [338]. 
This area locates in an arid terrain with low annual precipitation and requires artificial irrigation. Figure 6.5 
shows the location of the Barrax area in Spain, as well as a true color composition of a S2A image acquired 
on April 14, 2016. Images evaluated for this chapter have a common size of 726px by 954px. 

 

Figure 6.5. Study area location in Barrax, Spain. 

In order to validate the proposed approach, two kinds of reference information are used in this chapter: 
i) a land cover map available for the study area and built by considering a single date acquisition; and ii) 
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cropping cycles information collected by a survey carried on by experts. In the case of the study area, the 
most updated land cover map available (up to the date in which we have started the study) is from 2015-
2016, and covers a smaller area only (see Figure 6.6). This cadastral map is built yearly and by considering 
the information reported by farmers at a given date of the year. To build the reference information about 
the cropping cycles, a survey was implemented by using the original NDVI-SITS and asking to different 
experts to identify the number of cropping cycles. This was done for all the crop fields in ��FK�./0 . 

 

Figure 6.6. Land cover map of 2015-2016 falling inside the study area in Barrax, Spain. 

6.3.2 Multitemporal Vegetation Map 

Once the S2A-SITS has been defined and pre-processed, we create a NDVI-SITS based on equation (6.1). 
Then, we built the �(���GF%�./¾µ by setting 	 6  0.1 in equation (6.2). �MB-��./¾µ  was computed by apply-

ing a Sobel filter to each of the images in the NDVI-SITS [335] and as indicated by equation (6.3). The 
equation (6.4) was used to combine �(���GF%�./¾µ  and �MB-��./¾µ  and get �H%��. Finally, a connected-

component labeling [336] was applied with a connectivity 8, allowing us to obtain the multitemporal veg-
etation map. Figure 6.7 shows �,�-./0 , with a total of 307 objects. Black color represents the areas with 

no-vegetation and edges, and the other colors represent the vegetated areas. From a qualitative analysis to 
Figure 6.5, the accuracy of the result is good. 

 

 
Figure 6.7. Multitemporal vegetation map obtained after applying the spatio-temporal fusion step. Vegetated areas are 
colored randomly to illustrate that they are separate objects. 
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Full validation of the proposed spatio-temporal fusion step cannot be performed at this stage due to the 
lack of similar vegetation maps, built by considering the multitemporal information and the rotation prac-
tices. Thus, qualitative comparison is carried out between the multitemporal vegetation map obtained from 
the spatio-temporal fusion step and the cadastral map shown in Figure 6.6. Administrative boundaries were 
extracted from this map to help for a better visualization. Figure 6.8 shows (a) the 2015-2016 ground truth 
(closer look of the cadastral map shown in Figure 6.6) and (d) the �,�-./0 for the same area. As a further 

comparison with the proposed approach, vegetation maps were computed by using one single image at 2" 
and 2*+ (Figure 6.8 (b) and (c)). When a single image is used, underestimation occurs: by using 2" few areas 
are detected, and while using 2*+ many areas are detected as a single one (e.g., light green and blue ones). 
Similar situations can be seen for other images in the NDVI-SITS, but when the proposed spatio-temporal 
fusion step is considered, detection and separation of the areas is accurate. Some issues are found when 
neighboring crops have a similar vegetation cycle over the whole period (e.g., areas enclosed in the magenta 
box in Figure 6.8 (a) and (d)), resulting in a poor separation of the areas. Other differences can be seen 
while looking at other areas, where the shape and use of some of the areas is different to that indicated by 
the administrative boundaries and the ground truth (e.g., light-green boxes in Figure 6.8 (d)). This is because 
the administrative boundaries do not account for the real way in which the fields/areas are used over the 
time. Thus, the relevance of the proposed approach in creating a multitemporal crop field map where the 
different crop fields are automatically detected and separated, while accounting for rotation practices, be-
comes clear. 

 

    
(a) (b) (c) (d) 

Figure 6.8. (a) 2015-2016 ground truth, vegetation map of (b) ©£ and (c) ©¸¹; and (b) ©Í]ÎÏÐ\ . 

6.3.3 NDVI-SITS Reconstruction 

The NDVI-SITS are reconstructed with the result of having continuous and regular acquisitions in time. 
Here the accuracy assessment is performed at both quantitative (based on Mean Square Error - MSE) and 
qualitative levels and at single object level. In literature, one of the methods giving the best performance 
for NDVI-SITS smoothing is based on Fourier series algorithms and known as Harmonic ANalysis of Time 
Series (HANTS) [185]. HANTS expects: i) a harmonic behavior from the data, ii) a known number of 
cropping cycles and iii) regularly sampled data. Here, it was modified from its original setup in order to 
assume a near-daily acquisition of the data and render it comparable with our proposed approach. One 
important parameter to be setup for HANTS is the number of frequencies. This number is usually defined 
by the user and is related to the number of expected cropping cycles in the study area. Since 2 cropping 
cycles are usually expected, it is traditionally setup as 3. In our case, and since no a priori information about 
the rotation practices is available, and given the heterogeneous characteristics of the area, only a trade-off 
value can be selected. Following some trial and error tests, the number of frequencies in HANTS was setup 
to 4 for all the crop fields. In the case of the proposed approach, a couple of trials were enough to establish 
the setup parameters as: � 6 20, =�Ç8 6 12, 	�(M 6 0.01 and T 6 100. The computational time for both 

methods is low and similar and the average MSE value among the 307 objects in �,�-./0  was of 9.7 U
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10�� for HANTS and 3.6 U 10�� for the proposed approach. From the average MSE value, we can see that 
the proposed approach performs better than HANTS. If we take a closer look to the MSE value for each 1,  
in �,�-./0  (Figure 6.9), we can see the improvement in a more clear way. As shown by the box plot in 

Figure 6.9, the MSE of HANTS never overpasses that of the proposed approach and its variability is also 
higher. 

Figure 6.10 shows the smoothed result from HANTS and the proposed approach for two of the objects 
in 1, (NDVI values have been scaled by 100 for visualization purposes). Where it is possible to appreciate: 
i) the complexity and variability of one object with respect to the other (one cropping cycle against four), 
and ii) how the harmonic characteristic of HANTS makes it fail in reconstructing the real behavior of the 
vegetation. More in detail, the harmonic behavior of HANTS allows it to work relatively well when the 
object shows only one cropping cycle (Figure 6.10 (a)), but it tends to fail as the number of cropping cycles 
increases (Figure 6.10 (b)). This kind of behavior affects the derivation of phenological parameters since it 
depends on the smoothing step precision. 

 

Figure 6.9. Box plot of the MSE values for HANTS and the proposed approach for each ÒÍ in ©Í]ÎÏÐ\ . 

6.3.4 Phenological Parameters Maps 

Once the NDVI-SITS has been reconstructed on a daily basis, spatio-temporal information can be ex-
tracted. Here we present the results for phenological parameters derivation. No prior information was avail-
able to perform a complete accuracy assessment of all the phenological parameters. Nevertheless, given 
that the number of cropping cycles can be easily identified by visual inspection, a survey was carried out 
by considering this parameter. The number of cropping cycles of 10 crop fields was selected for evaluation. 
These crop fields were selected as representative of the whole study area. It was found that the proposed 
approach correctly detected the number of cycles for all of them, whereas HANTS was only able to detect 
them well in 6 out of 10 cases. Table 6.2 shows the detailed results for these 10 crop fields (the two first 
lines refer to the examples in Figure 6.10). The MSE for the reconstruction step is also shown. We can see 
how the proposed approach outperforms HANTS. The improvement is larger when more than one cropping 
cycle was present. 
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(a) 

 
(b) 

Figure 6.10. Smoothed NDVI by HANTS and proposed approach for two different crop fields: (a) single cropping 
cycle field; and (b) 4-cropping cycle field. 

Table 6.2. MSE (10��) and detected # of cycles for HANTS and the proposed approach 

# of 
cycles 

Detection 
by HANTS  

Detection 
by proposed 

approach 

HANTS
MSE 

Proposed 
approach 

MSE 

1 1 1 2.7 0.7 
4 3 4 45.7 3.2 
1 1 1 8.1 4.9 
2 2 2 12.3 1.8 
3 4 3 18.2 3.6 
2 2 2 15.9 4.4 
3 4 3 14.4 11.1 
1 1 1 2.9 1.4 
3 3 3 8.9 2.2 
2 4 2 14.7 3.9 

Once the phenological parameters are estimated for all the objects in �,�-./0 , we proceed to analyze the 

LoS parameter in order to separate crop fields from other types of vegetation and to build ��FK�./0 . Such 

was the case of the large light blue area in Figure 6.7. By exploring the S2-SITS, it was possible to see that 
most of the time this area had a low NDVI value. Occasionally, vegetation was seen appearing and disap-
pearing from one image to the other. Finally, the phenological parameter maps are built by color-coding 
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the different crop fields in accordance with the time (day, week or month) of phenological events. In the 
specific case of MV, the crop fields are color-coded in different NDVI ranges. Examples for BoS, MoS and 
EoS for a period of 12 months and coded per month (July 2015–June 2016) are shown in Figure 6.11. 

 
 

(a) 

  
(b) (c) 

Figure 6.11. Phenology estimation maps over 12 months period for (a) BoS, (b) MoS; and (c) EoS. 

 

 

Figure 6.12. Winter-Summer map for the Barrax area in the period October 2015 to September 2016. 

Another interesting map is the one showing the separation among winter and summer crops (Figure 6.12). 
Winter crops are defined as the ones with BoS, MoS and EoS in the period October-2015 to March-2016. 
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If the same metrics fall inside the period April to September (2016), the crops are considered as summer 
ones. Crop fields showing cycles in both periods are considered as winter and summer ones. The crop label 
in the 2 periods might or might not be the same. 

6.3.5 Cumulative Indices Maps 

In here we performed the spatio-temporal information extraction by means of a cumulative index (defined 
in (6.6)) applied over different radiometric indices. We applied all the radiometric indices described in 
Table 6.1, but a detailed analysis is only provided for two of them (NDVI and NDWI). The reason is that 
NDVI and NDWI are of easier interpretation given the great amount of studies available in literature [197], 
[334], [339], [340]. Therefore, let us analyze the intensity of crop field use over time. This is achieved by 
analyzing: i) the presence of vegetation, and ii) the content of water. The former is studied by accumulating 
the number of times that a certain field had vegetation (i.e., when �'nÓ > 0.5 [334]). The latter by accu-

mulating the number of times that �'nÔÓ > 0.5. Cumulative indices can be studied at pixel level or at crop 

level by extracting the mean cumulative value for each crop field. Figure 6.13 (a) and (b), show the mean 
cumulative NDVI and NDWI over the available S2-SITS. Dark blue areas show NDVI and NDWI lower 
than 0.5 on every 2� (= 6 1,… ,49C. Whereas blue and red shaded areas represent the fields with a higher 
vegetation greenness and thus more intensive use. When analyzing the results across crop fields, non-uni-
form response in time and space can be seen. Furthermore, it seems there is no direct correlation between 
frequently vegetated and frequently irrigated areas. In other words, fields with similar values on mean cu-
mulative NDVI, do not show similar values of mean cumulative NDWI. 

If we take a closer look to the crop fields in the magenta rectangle in Figure 6.13, we can see that they 
have a similar red and blue shade in the mean cumulative NDVI (i.e., they were vegetated for a similar 
number of days during the period), but they have a different behavior in the mean cumulative NDWI. Vice-
versa, crop fields in the green rectangle show similar light blue shades for the NDWI, but different NDVI. 
This kind of information can become relevant for the identification of lack of irrigation, or the lack of any 
nutrient, etc. On the other hand, it can also be an indicator of different types of crops being cultivated in the 
area, though used with the same intensity. A proper validation and interpretation would require ground truth 
and agricultural expert analysis. 

 

  

(a) (b) 

Figure 6.13. Mean cumulative (a) NDVI and (b) NDWI with a value higher than 0.5. 

Let us take a closer look to the blue shade crop fields inside the magenta square by extracting some 
statistical information such as minimum, maximum and mean values for the NDVI and NDWI SITS. For 
understanding purposes, let us define the largest crop field as crop 1 and the smallest one as crop 2. Figure 
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6.14 shows the temporal evolution of each statistical parameter for the two crop fields for NDVI (Figure 
6.14 (a) and (c)) and NDWI (Figure 6.14 (b) and (d)). By observing Figure 6.14 (a) and (c), we can conclude 
that crop 1 and crop 2 most probably correspond to two types of crops. Since they show very similar inten-
sity in terms of the mean cumulative NDVI, the difference of the mean cumulative NDWI and the temporal 
evolution of NDVI and NDWI may be associated to the fact that different types of crop have different 
irrigation requirements. 

  

 

  
 (a) (b) 

 

  
 (c) (d) 

Figure 6.14. Statistical NDVI ((a) and (c)) and NDWI ((b) and (d)) analysis for crop fields 1 and 2. 

6.4. Conclusions 

An approach to study the spatio-temporal evolution of crop fields by jointly exploiting the spectral, spatial 
and temporal information of S2-SITS has been presented in this chapter. The proposed approach is com-
posed by four main steps: i) pre-processing of S2-SITS, ii) spatio-temporal fusion, iii) daily time series 
reconstruction; and iv) spatio-temporal information extraction. The combination of these steps resulted in 
an important tool which is relevant and suitable for precision agriculture. In the pre-processing step, state-
of-the-art methods were used to render the S2-SITS homogeneous and suitable for information extraction. 
In the second step, an approach to crop field mapping that detects, separates and labels the crop fields that 
have been cultivated at least once in a given period was proposed. The relevance of this step is in the 
capability to build a multitemporal crop field map that accounts for the temporal evolution of crops, but 
also for the dynamic change that a single crop field can experience from one year to the other. This step 
was validated by qualitatively comparing the results with a portion of ground truth available for the study 
area. This analysis pointed out the relevance of considering both the spatial and temporal information. 
Because of the same reason, the approach allows the possibility to update the multitemporal crop field map 
when a new acquisition is available. In the third step, a novel approach for daily S2 NDVI-SITS recon-
struction was proposed. The approach is fully automatic and is able to deal with data acquired with irregular 
temporal spacing. To deal with irregularly sample data, the proposed approach introduces two novel stages: 
i) preliminary smoothing and construction of daily acquisitions and ii) a novel adaptive non-parametric 
regression for irregular temporal behavior at single crop field level. The results of the reconstruction were 
compared to those of HANTS, showing better performance both from the quantitative and qualitative view-
points. Finally, in the fourth step, spatio-temporal information was extracted by deriving phenological pa-
rameters and by means of a cumulative radiometric index. For the phenological parameters, the number of 
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cropping cycles for a number of selected crop fields was verified and different thematic maps were built. 
From the cumulative radiometric index, the temporal evolution and behavior of different crop fields in 
terms of a specific radiometric index were mapped. Examples were shown for the specific cases of NDVI 
and NDWI indices, were a statistical analysis was performed for two crop fields. As future developments, 
we consider the use of other radiometric indices, as well as the integration of other edge and shape detection 
methods for the spatio-temporal fusion step. Possibility to include a land cover map containing information 
regarding agricultural areas will be also considered. Other radiometric indices will be also considered in 
the spatio-temporal evolution analysis step in order to improve the derivation of phenological parameters 
and to account for extra information relevant in the understanding of precision agriculture. 
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Chapter 7 

 

7. Conclusions 

 
This chapter draws the conclusions of the thesis by presenting a general discussion of the work and by 

providing a summary of the novel contributions illustrated along the document. The remaining open issues 

and further developments of the research activities are also discussed. 

Summary and Discussion 

In this thesis we have presented novel methods for unsupervised and automatic analysis of multitemporal 
multispectral satellite images. In particular, we focused the attention on data acquired by rather: i) multi-
sensor VHR images (e.g., IKONOS, QuickBird, GeoEye, WorldView); or ii) high spatial and very high 
temporal resolution sensors (e.g., Sentinel-2). The proposed methods represent a valuable contribution to 
the state-of-the-art, where most of the multitemporal analysis techniques have been designed to work with: 
i) multitemporal VHR images acquired by single sensors, and ii) multispectral images acquired by high 
spatial resolution sensors, but with low temporal resolution or very high temporal resolution, but low spatial 
resolution. This reduces the effectiveness of existing techniques when applied to the complex multitemporal 
problems in both VHR multisensor and high spatial and very high temporal resolution images. 

An intensive review of the literature in multitemporal analysis of remotely sensed image data was pre-
sented that allowed us to highlight the different open issues in the topic. From there, the two main problems 
described above were identified and addressed. Accordingly, four main novel contributions to the state-of-
the-art were presented in this thesis. The first three contributions addressed the problems arising from the 
analysis of multisensor VHR multispectral images and were explored in detail. Whereas the fourth one 
dealt with the problems faced while working with dense long time series acquired by sensors with high 
spatial and very high temporal resolutions. The fourth one represents a starting point for further develop-
ments. Nevertheless, the contribution is relevant to the literature. 

The first contribution presents an approach for unsupervised CD in multisensor multitemporal VHR im-
ages, where the possible sources of noise/changes were studied in detail and a strategy to mitigate them at 
the level of pre-processing and feature extraction was presented. The proposed approach defined and illus-
trated a data flow for effectively handling differences due to acquisition sensors. In order to deal with mul-
tispectral and multitemporal images acquired by different sensors, it integrates in the general approach the 
following two concepts: i) spectral, radiometric and geometric homogenization between images acquired 
by different sensors; and ii) detection of multiple changes by means of higher-level physical features that 
guarantee homogeneity over time and across sensors. Experimental results obtained on real datasets, con-
firmed the effectiveness of the proposed block scheme and the improvement achieved by the use of higher-
level physical features (i.e., Tasseled Caps (TC) and Orthogonal Equations (OrE)) over the traditional fea-
tures (i.e., TOA). In general, both TC and OrE features allowed a better separation and interpretation of 
changes on the ground (�EFB) by guaranteeing that these changes were distributed in compact and well 
separated clusters. 

In the second contribution, further attention was paid to the homogenization step and a method to generate 
homogeneous VHR time series focused on the homogenization of intrinsic spectral induced differences was 
presented. The method is based on the generation of homogenous VHR TS by means of a non-parametric 
regression of multisensor MT optical images. The goal was achieved while effectively normalizing the 
multisensor images by combining a preliminary normalization (based on ARN) with a proposed RRN 
method. The proposed RRN method is based on a CD-driven approach and a non-parametric regression 
model. In RRN, a prediction is achieved by deriving single band models with non-parametric regressions 
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(ANN and SVR) that allows to capture the spatial/spectral variability of VHR multisensor images. The 
models allowed us to predict all the spectral bands for the �" image, as if it would have been acquired at 2#, based on the original �# image and the reference un-changed pixels. Experimental results on real da-
tasets confirmed the effectiveness of the proposed approach and the improvement in multitemporal analysis 
that can be achieved by using the predicted images over the preliminary normalized ones. 

The third contribution further focuses on the detection of multiple changes, while relaxing the hypothesis 
on the knowledge of the statistical distribution of the classes. To this aim, a method to multiple CD in VHR 
optical images based on iterative clustering and adaptive thresholding was implemented. The iterative clus-
tering was achieved by combining two hierarchical methods: OPTICS and region growing. Because of this 
and the nature of the method, it was named as Growing OPTICS (GO). The adaptive GO works in (hyper-
) spherical coordinates, is distribution free (in the direction domain), unsupervised and automatically iden-
tifies the number of changes. The effectiveness of the adaptive GO, with respect to standard thresholding 
methods, was validated on 2 pairs of VHR single-sensor and multi-sensor images. Such datasets showed 
complex and noisy set-ups. GO demonstrated to be robust in handling noisy samples and overlapping clus-
ters and reduced the computational time, when compared to OPTICS. The adaptive thresholding improved 
the overall accuracy, especially in the case were overlapping clusters were present in the data.  

In the fourth contribution, an approach to handle images acquired by both high spatial and very high 
temporal resolution sensors was presented. To this aim, spectral, spatial and temporal information of Sen-
tinel-2 satellite images time series was exploited in four different phases: i) pre-processing of S2-SITS, ii) 
spatio-temporal fusion, iii) daily time series reconstruction; and iv) spatio-temporal information extraction. 
The combination of these steps resulted in an important tool which is fully automatic and allows for the 
derivation of different relevant products in the precision agriculture field. In the pre-processing step, well-
known state-of-the-art methods were used to render the S2-SITS homogeneous and suitable for information 
extraction. In the second step, an approach to crop field mapping that detects, separates and labels the crop 
fields that have been cultivated at least once in a given period was proposed. In the third step, a novel 
approach for daily S2 NDVI-SITS reconstruction was proposed. The approach is fully automatic and is 
able to deal with data acquired with irregularly temporal spacing. Finally, in the fourth step, spatio-temporal 
information was extracted by deriving phenological parameters and by means of a cumulative radiometric 
index. In both cases, different thematic maps were built. 

Future Developments 

In the different research activities, we defined and developed methods suitable for addressing the chal-
lenging problems emerging while working with: i) multisensor VHR images; and ii) high spatial and very 
high temporal resolution images. On the basis of the developed methods, the analysis and the experimental 
results carried out in the framework of this thesis, we identified some interesting direction of research as 
future developments. 

Regarding the CD problem in multisensor multispectral VHR images, two main areas remain open to be 
further explored: i) mitigation of remaining �(I�; and ii) detection of the �EFB . In the former, selection of 
other spectral and/or textural features for the training stage of the homogenization process based on non-
parametric regression should be considered. In this same area, future works should consider the use of more 
VHR multisensor optical pairs with more complex scenarios, to make the approach fully independent of 
the non-parametric regression configuration. Integration of ARN and harmonization methods should be 
also considered. In the latter case, open issues regarding the selection of initial clustering algorithm param-
eters in GO remain. Thus, a detailed analysis should be carried out in accordance with the spatial resolution 
of the sensors and the density of cloud points in the different feature spaces, to help for an easier and 
intuitive selection of the parameters. Future works could also consider the applicability and adaptation of 
the GO method for CD in images with lower spatial resolution as well as possible extensions to other 
applications (e.g., classification). A further analysis can be carried out by using Deep Neural Network 
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(DNN) non-parametric regression to achieve both the normalization and CD processes at the same time. 
Finally, DNN can be also used to determine which cluster is representing a specific kind of change, and to 
define appropriate features to identify different kinds of change along multisensors. 

Regarding the exploitation of spectral, spatial and temporal information acquired by sensors with high 
spatial and very high temporal resolutions, the future developments are wide and not even fully known. 
Nevertheless, of particular attention would be the applications derived from the daily TS reconstruction 
method. In a first scenario, it could be applied to all the spectral bands and to all the pixels in the study area, 
such as that a whole TS reconstruction is achieved and analysis such as classification or CD can be per-
formed. On a second scenario, it could be adapted as a gap-filling method where few clouds or noisy pixels 
are present in a given image of the TS. Finally, it can be used in the context of classification, where a crop 
classification map that considers multitemporal variability could be built. Such classification together with 
phenological parameters can be used to accurately map agricultural areas over a semester, year or decades. 
Interaction with agricultural experts should be considered for the design of other products relevant in agri-
culture precision. 
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