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Introduction

State of the art & open problems

The algebrization problem: state of the art. The description of geometric
objects in the simplest possible terms is one of the goals of geometry, particularly
real algebraic geometry. Indeed, the need to simplify the description of smooth
manifolds and even topological spaces with singularities, and to find increasingly
rich structures on them, has contributed significantly to the development of real
algebraic geometry.

In 1936, Whitney [Whi36] proved that every smooth manifold M of dimension d
can be smoothly embedded in R

2d+1 and every smooth embedding  : M ! R
2d+1

can be approximated by an arbitrarily close smooth embedding � : M ! R
2d+1

whose image M 0 := �(M) is a real analytic submanifold of R2d+1. It follows that
M can be described both globally and locally by means of real analytic equations
in some Euclidean space. Indeed, one first identifies M with M 0 ⇢ R

2d+1 via � and
then observes that M 0 is the set of solutions of finitely many global real analytic
equations defined on the whole R2d+1 (by Cartan’s Theorem B) and, locally at each
of its points, M 0 is the set of solutions of good real analytic equations, where “good”
means “with linearly independent gradients”. In particular, M has a real analytic
structure. At this point it is natural to ask whether M admits a real algebraic
structure obtained by requiring that the previous real analytic equations describing
M 0 are polynomial equations with coe�cients in R.

In his groundbreaking paper [Nas52] published in 1952, Nash proved that the
answer is a�rmative in the sense that, if the smooth manifold M is compact, then
we can assume that the real analytic submanifold M 0 ⇢ R

2d+1 approximating  (M)
is actually a union of nonsingular connected components of a real algebraic sub-
set of R2d+1. Nash conjectured that M 0 can be chosen to be a whole nonsingular
real algebraic subset of R2d+1, a so-called algebraic model of M . In 1957, Wallace
[Wal57] tried to verify Nash conjecture but his proof was not correct, so his main
improvement was is that M 0 ⇢ R

n can be chosen algebraic if M is the boundary
of a compact C1 manifold with boundary. However, his attempt was very impor-
tant: for the first time cobordism theory came into play. Finally, in 1973, Tognoli
[Tog73] proved this conjecture to be true by improving Nash approximation tech-
niques and deeply applying cobordism theory, in particular nonsingular algebraic
representatives of cobordism classes found by Milnor [Mil65]. Quoting from page 4
of [BCR98]:

“A systematic study of real algebraic varieties started seriously only in 1973
after Tognoli’s surprising discovery (based on earlier work of John Nash) that every
compact smooth manifold is di↵eomorphic to a nonsingular real algebraic set.”

1



2 CHAPTER 0. INTRODUCTION

The latter assertion is the so-called Nash-Tognoli theorem. For a detailed proof,
we refer the reader to [BCR98, Section 14.1]. See also the surveys [DL19, Section 1]
and [Kol17, Section 1] on Nash’s work, recently written by De Lellis and Kollár, for
other fine presentations of this crucial result.

There is a wide literature devoted to improvements and extensions of Nash-
Tognoli theorem. A remarkable result is a relative version with respect to a finite
set of smooth submanifolds in general position proved by Akbulut and King [AK81a].
For this topic, we refer the reader to the books [AK92, Chapter II], [BCR98, Chapter
14], [Man14, §6], the survey [Kol17, Section 2], the recent papers [Ben22; GT17;
Kuc11] and the numerous references therein.

The problem of making topological spaces algebraic has also been studied in the
singular case.

In 1981, Akbulut and King [AK81b] obtained a complete description of the
topology of real algebraic sets with isolated singularities. Their idea is to consider the
class T of compact topological spaces V that admits a topological desingularization
in the following sense: there exist a closed smooth manifold M , a finite family M =
{M1, . . . ,M`} of pairwise disjoint subsets ofM and a finite set S = {p1, . . . , pm} with
m � ` such that each Mi is a finite union of smooth hypersurfaces of M in general
position and the quotient topological space obtained from M t S by blowing down
each Mi to pi is homeomorphic to V . The topological data (M,M;S) represents a
topological desingularization of V . By Hironaka’s desingularization theorem [Hir64]
(see also [BM97; Vil89; Kol07]), the class T includes all the compact real algebraic
sets with isolated singularities. Now, the strategy of Akbulut and King is first
to make algebraic the topological data (M,M;S), obtaining real algebraic data
(M 0,M0;S) by mean of algebraic approximation techniques a là Nash-Tognoli, and
then to blow down these algebraic data obtaining a real algebraic set homeomorphic
to V . As Alexandrov’s compactification of a real algebraic set can be made algebraic,
it follows that a (not necessarily compact) topological space V is homeomorphic to
a real algebraic set with isolated singularities if and only if it can be obtained from
topological data (M,M;S) such as the above by considering M t S, blowing down
some of the Mi to points of S and removing the remaining Mi (see [AK81b, Section
4]). As a consequence, a noncompact smooth manifold admits an algebraic model
if and only if it is di↵eomorphic to the interior of a compact smooth manifold with
non-empty boundary (see [AK81b, Corollary 4.3]).

In addition to the case of isolated singularities, singular topological spaces ad-
mitting algebraic models have been deeply studied in small dimension, that is, in
dimension  3. In 1981, Benedetti and Dedò [BD81] completely characterized those
triangulable compact topological spaces of dimension 2 admitting algebraic mod-
els by means of a unique condition on a local invariant: the evenness of the Euler
characteristic of the link. Later on, in 1992, Akbulut and King [AK92] charac-
terized those triangulable compact topological spaces of dimension 3 admitting an
algebraic model by means of five independent local topological invariants at each
point, one of those is the evenness of the Euler characteristic of the link. For this
very remarkable characterization, the construction previously developed for the case
of isolated singularities in [AK81b] is deeply improved by the so-called “Resolution
Tower technique”. As one may expect, the study of triangulable compact topologi-
cal spaces becomes more and more di�cult as the dimension increases and already
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in dimension 4 a complete characterization seems unreachable. Indeed, in 2000,
McCrory and Parusiński [MP00] proved that there are at least 243 � 43 local in-
dependent characteristic numbers which vanish for algebraic sets of dimension 4.
Last result then directed the research on the characterization of those triangulable
topological spaces admitting an algebraic structure on the subclass of compact Nash
sets. In 2017, Ghiloni and Tancredi [GT17] proved that a compact Nash set is semi-
algebraically homeomorphic to an algebraic set if and only if it is asymmetrically
cobordant to a point, last condition is then conjectured by the authors to be always
satisfied.

Another classical topic of study is the algebrization of germs of analytic sets.
In 1986 Kucharz [Kuc86] proved that if (V, 0) ⇢ (Rn, 0) is the germ of a coherent
analytic set with an isolated singularity at 0, then (V, 0) is analytically equivalent to
an algebraic set germ (V 0, 0) ⇢ (Rn, 0). However, it is well known since [Whi65] that
in general germs of analytic sets are not even di↵eomorphic to germs of algebraic
sets. Nevertheless, by decreasing the expected regularity on the homeomorphism,
the situation is di↵erent. In 1984 Mostowski [Mos84] proved that every analytic set
germ (V, 0) ⇢ (Rn, 0) is homeomorphic to an algebraic set germ (V 0, 0) ⇢ (Rm, 0).
In the same year Bochnak and Kucharz [BK84] proved that the algebraic set germ
(V 0, 0) ⇢ (Rm, 0) can be chosen with m = n. A remarkable result used in the
proof of latter theorem, which is an improvement of Artin-Mazur theorem [AM65;
BCR98, Theorem 8.4.4], ensures that every Nash set germ (V, 0) ⇢ (Rn, 0) is Nash
di↵eomorphic to an algebraic set germ (V 0, 0) ⇢ (Rn, 0).

How to simplify the equations of algebraic sets? Results & open
problems. Now it is natural to ask whether the description of a geometric object
admitting a real algebraic structure can be further simplified by requiring that the
coe�cients of the describing polynomial equations belong to the smallest possible
subfield K of R. Here the final goal is K = Q, the field of rational numbers which
is the smallest subfield of R.

The answer is a�rmative if K is the field Q
r
of real algebraic numbers, the

smallest real closed field. This is due to three of the most important results in
semialgebraic and Nash geometry. Let V be a real algebraic subset of Rn. For short
we often omit the adjective “real”, saying that V is an algebraic subset of Rn or
V ⇢ R

n is an algebraic set. Choose a description of V :

V = {x 2 R
n : f1(a, x) = . . . = f`(a, x) = 0}

for some polynomials fi 2 Z[y1, . . . , ym, x1, . . . , xn], where a = (a1, . . . , am) 2 R
m.

Note that a 2 R
m is the vector of all coe�cients (ordered in some way) that appear

in a fixed polynomial system f1 = 0, . . . , f` = 0 in R
n whose set of solutions is V .

Define
X := {(b, x) 2 (Q

r
)m+n : f1(b, x) = . . . = f`(b, x) = 0}

and denote by ⇡ : X ! (Q
r
)m the projection (b, x) 7! b. By Hardt’s trivializa-

tion theorem [Har80], there exists a finite semialgebraic partition {Mi}pi=1 of (Q
r
)m

and, for each i 2 {1, . . . , p}, an algebraic subset Fi of (Q
r
)n and a semialgebraic

homeomorphism hi : Mi ⇥ Fi ! X \ ⇡�1(Mi) compatible with ⇡. By the Tarski-
Seidenberg principle [BCR98, Chapter 5], we can extend coe�cients from Q

r
to

R, obtaining a semialgebraic partition {(Mi)R}pi=1 of Rm and semialgebraic home-
omorphisms (hi)R : (Mi)R ⇥ (Fi)R ! XR \ ⇡�1

R
((Mi)R) compatible with ⇡R, where
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⇡R : Rm+n ! R
m is the projection (b, x) 7! b. It follows that a belongs to (Mj)R for

a unique j 2 {1, . . . , p}, and hence V is semialgebraically homeomorphic to (Fj)R.
Note that (Fj)R is an algebraic subset of Rn that admits a global description as
the set of solutions of finitely many polynomial equations with coe�cients in Q

r
.

In [CS92, Theorem A] Coste and Shiota proved a version of Hardt’s trivialization
theorem for Nash manifolds. As a consequence, if the algebraic set V ⇢ R

n is non-
singular, we can assume that the algebraic set Fj ⇢ (Q

r
)n is nonsingular and V is

Nash di↵eomorphic to (Fj)R. Now (Fj)R is a nonsingular algebraic subset of Rn

that, in addition to the above global description, admits local descriptions as the
sets of solutions of good polynomial equations with coe�cients in Q

r
.

Observe that in previous paragraph R can be safely substituted with any real
closed fieldR. This means that we always have a transfer principle, both for algebraic
sets and Nash manifolds, from any real closed field R to Q

r
, the smallest one which

is contained in any other real closed field.

An alternative positive answer in the case K is the field Q
r
is given by Parusiński

and Rond [PR20] by means of Zariski equisingularity, that is, they construct a
Zariski equisingular deformation a0 = (a01, . . . , a

0
m) 2 (Q

r
)m of the coe�cients a =

(a1, . . . , am) 2 R
m in the same strata Mi given by Hardt’s trivialization theorem

as above. As a consequence, they are able to find a subanalytic and arc-analytic
homeomorphism h : Rn ! R

n such that h(V ) = V 0 := {x 2 R
n : f1(a0, x) = . . . =

f`(a0, x) = 0}. In addition, Zariski equisingularity allows the authors to prove an
analogous result in the case of algebraic sets V ⇢ C

n with respect to the subfield
K = Q of algebraic numbers.

As Q is not a real closed field, none of the above results by Hardt, Tarski-
Seidenberg, Coste-Shiota and Parusiński-Rond are available in general in the case
K = Q. A partial answer is given by Parusiński and Rond in [PR20, Theorem 11 &
Remark 13], indeed they prove that if the field extension of Q obtained by adding
the coe�cients a1, . . . , am is purely transcendental, the above algebraic set V 0 ⇢
R
n, produced by a Zariski deformation of the coe�cients a = (a1, . . . , am) 2 R

m,
can be found in such a way that a0 = (a01, . . . , a

0
m) 2 Q

m. The reason why this
approach does not provide a complete solution of the case K = Q is that the above
Zariski equisingular deformation of the coe�cients a = (a1, . . . , am) preserves the
polynomial relations over Q satisfied by a1, . . . , am. In general, we have the following
open problem.

Open Problem 1 ([Par21, Open problem 1, p. 199]). Is every real algebraic set
homeomorphic to a real algebraic set defined by polynomial equations with rational
coe�cients?

Let us focus on the case of analytic set germs (V, 0) ⇢ (Rn, 0). By [Par21, The-
orem 4.4.5], which is a direct consequence of [BK84; Mos84], we may assume that
(V, 0) is an algebraic set germ. As in the case of algebraic sets, both Hardt’s trivi-
alization theorem and Zariski equisingularity led to positive answers with K = Q

r
.

In [Ron18], Rond constructs a Zariski equisingular deformation a0 = (a01, . . . , a
0
m) 2

(Q
r
)m of the coe�cients a = (a1, . . . , am) 2 R

m in such a way that the Q
r
-algebraic

set germ (V 0, 0) ⇢ (Rn, 0) is homeomorphic to the starting algebraic set germ
(V, 0) ⇢ (Rn, 0), as above. In particular, the homeomorphism can be found subana-
lytic and arc-analytic. As in the case of Zarisky deformations of algebraic sets, Rond
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proves an analogous theorem also for complex analytic singularities (V, 0) ⇢ (Cn, 0)
with respect to the subfield K = Q. A remarkable example by Teissier [Tei90] proves
that there are germs of algebraic singularities (V, 0) ⇢ (Cn, 0) (in his example de-
fined over Q(

p
5)) which are not Whitney equisingular to any algebraic singularity

(V 0, 0) ⇢ (Cn, 0) defined by polynomial equations with coe�cients in Q. The ob-
struction on existence of such algebraic singularities described by equations over
Q comes from the property of Whitney equisingularity to preserve the angles. In
general, we have the following open problem.

Open Problem 2 ([Par21, Open problem 2, p. 200]). Is every real analytic set
germ homeomorphic to a set germ defined by polynomial equations with rational
coe�cients?

Since Zariski equisingularity preserves algebraic relations over Q on coe�cients,
it seems to be too rigid to give general answers to [Par21, Open problems 1 & 2], thus
our starting idea was to go back to the algebraic approximation techniques developed
by Nash, Tognoli and Akbulut-King in order to adapt them to get algebraic sets
described by polynomial equations with rational coe�cients. The implementation
of this starting idea is not an easy task for several reasons. First, we have to decide
what meaning to give to the concept of real algebraic set “defined over Q”. Indeed,
unlike the complex case, this concept is rather subtle and lends itself to several
natural interpretations.

Main results

Algebraic geometry over subfields. Previous ambiguity on defining alge-
braic sets over subfields is deeply investigated in recent work [FG] by Fernando and
Ghiloni. Here we specify some of their results in order to present the main theorems
of [GS23; Sav23].

Let R be a real closed field. Fix n 2 N \ {0}. For short we denote the rings of
polynomials Q[x1, . . . , xn] and R[x1, . . . , xn] as Q[x] and R[x], respectively. Consider
Q[x] as a subset of R[x]. Let V be a subset of Rn. As in [FG], we say that V is a
Q-algebraic subset of Rn, or V ⇢ Rn is a Q-algebraic set, if there exist polynomials
p1, . . . , p` 2 Q[x] such that

V = {x 2 Rn : p1(x) = . . . = p`(x) = 0}.

If V ⇢ Rn is a Q-algebraic set then it is also a (real) algebraic set, so we can speak
about the dimension dim(V ) of V , the set Reg(V ) of regular points of V and the set
Sing(V ) = V \Reg(V ) of singular points of V . Moreover, as with all algebraic sets,
V ⇢ Rn is said to be nonsingular if Reg(V ) = V . Our standard reference for real
algebraic, semialgebraic and Nash geometry is [BCR98]. In particular, the reader
can find details on the dimension, regular points and singular points of algebraic
sets in [BCR98, Sections 2.8 & 3.3].

Observe that there are algebraic sets that are not Q-algebraic, as shown by
V := {

p
2} ⇢ R.

Pick a point a = (a1, . . . , an) 2 Rn and consider again the set V ⇢ Rn. We
denote by na the maximal ideal (x1�a1, . . . , xn�an)R[x] of R[x] and by IQ(V ) the
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vanishing ideal of V in Q[x], that is,

IQ(V ) := {p 2 Q[x] : p(x) = 0, 8x 2 V }.

The following notion of R|Q-regular point was defined in [FG] and corresponds
to Definition 1.5.1 below with the following substitutions “L”=“E”:= R and “K”=
Q.

Definition 1. Let V ⇢ Rn be a Q-algebraic set and let a 2 V . We define the

R|Q-local ring RR|Q
V,a

of V at a as

RR|Q
V,a

:= R[x]na/(IQ(V )R[x]na).

We say that a is a R|Q-regular point of V if RR|Q
V,a

is a regular local ring of dimension

dim(V ). We denote by RegR|Q(V ) the set of all R|Q-regular points of V .

As was shown in [FG], the set RegR|Q(V ) is a non-empty Zariski open subset of
Reg(V ). Moreover, the following R|Q-Jacobian criterion holds true: a point a of the
Q-algebraic set V ⇢ Rn is R|Q-nonsingular if and only if there exist an Euclidean
open neighborhood U of a in Rn and polynomials p1, . . . , pn�d 2 IQ(V ), where
d := dim(V ), such that V \ U = {x 2 U : p1(x) = . . . = pn�d(x) = 0} and the
gradients rp1(a), . . . ,rpn�d(a) are linearly independent.

It may happen that RegR|Q(V ) is strictly contained in Reg(V ). For instance,
the Q-algebraic line V := {x1 + 3

p
2x2 = 0} = {x31 + 2x32 = 0} ⇢ R2 is nonsingular

(as an algebraic set), but (0, 0) is not R|Q-nonsingular.

Let us introduce the concepts of Q-determined and Q-nonsingular Q-algebraic
sets that are the protagonists of the main results in [GS23; Sav23]. Next definition
corresponds to Definition 1.6.1 below with the following substitution “K”= Q.

Definition 2. Let V ⇢ Rn be a Q-algebraic set. We say that V is Q-determined
if RegR|Q(V ) = Reg(V ). If in addition V is nonsingular, that is, RegR|Q(V ) =
Reg(V ) = V , then we say that V is Q-nonsingular.

Nash-Tognoli theorem ‘over Q’. Here fix R, the field of real numbers, as the
ground real closed field. Equip each real vector space R

n with the usual Euclidean
topology, and each subset of Rn with the corresponding relative topology. Let N
be a subset of Rn. Denote by C 0

w(N,Rm) the set C 0(N,Rm) of all continuous maps
from N to R

m, equipped with the usual compact-open topology (also called weak
C 0 topology). Suppose now that N is a Nash submanifold of Rn. Let C1(N,Rm)
be the set of all C1 maps from N to R

m, and let N(N,Rm) be the subset of
C1(N,Rm) consisting of all Nash maps from N to R

m. Denote by C1
w (M,Rm) the

set C1(M,Rm) equipped with the usual weak C1 topology, see [Hir94, §2, Section
1]. Equip N(M,Rm) with the relative topology induced by C1

w (M,Rm), and denote
by Nw(M,Rm) the corresponding topological space.

Recall that the nonsingular locus Reg(V ) of an algebraic set V ⇢ R
n is a Nash

submanifold of Rn, and V ⇢ R
n is said to have isolated singularities if Sing(V ) is

finite.

Given a subset T of Rm, we define T (Q) as the intersection T \Q
m. If m � n,

we identify R
n with the real vector subspace R

n ⇥ {0} of Rn ⇥ R
m�n = R

m. Thus,
we can write R

n ⇢ R
m and a subset of Rn is also a subset of Rm.
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We gave a first answer to [Par21, Open problem 1, p. 199] in [GS23] in the case
of compact smooth manifolds, so in particular of compact nonsingular algebraic
sets, with the following version of Nash-Tognoli theorem. Next result corresponds
to a simplified version of Theorem 3.2.2 below after the application of Lemma 2.1.8
below.

Theorem 3 (Nash-Tognoli theorem ‘over Q’). Let M be a compact C1 subman-
ifold of Rn of dimension d. Set m := max{n, 2d+1}. Then, for every neighborhood
V of the inclusion map M ,! R

m in C1
w (M,Rm), there exists a C1 embedding

 : M ! R
m such that  2 V and  (M) is a Q-nonsingular Q-algebraic subset of

R
m.

A previous version of Theorem 3 can be found in [BT92, Theorem 0.1].

Relative Nash-Tognoli theorem ‘over Q’. A natural question is whether
relative versions of Theorem 3 and [Par21, Open problem 1, p. 199] hold for compact
smooth manifolds and nonsingular algebraic sets, respectively. Let us clarify what
we mean by ‘a relative version of [Par21, Open problem 1, p. 199]’.

Relative nonsingular Q-algebrization problem: Is every nonsingular real
algebraic set V , with nonsingular algebraic subsets {Vi}`i=1, in general position,
homeomorphic to a nonsingular algebraic set V 0, with nonsingular algebraic sub-
sets {V 0

i
}`
i=1, in general position, all defined by polynomial equations with rational

coe�cients such that the homeomorphism sends each Vi to V 0
i
?

Next result corresponds to the main Q-algebrization theorem of [Sav23] in the
compact case (see Theorem 4.1.4 below).

Theorem 4 (Relative Nash-Tognoli theorem ‘over Q’). Let M be a compact C1

submanifold of Rn of dimension d and let {Mi}`i=1 be a finite family of C1 subman-
ifolds of M in general position. Set m := max{n, 2d+1}. Then, for every neighbor-
hood U of the inclusion map ◆ : M ,! R

m in C1
w (M,Rm) and for every neighborhood

Ui of the inclusion map ◆|Mi : Mi ,! R
m in C1

w (Mi,Rm), for i 2 {1, . . . , `}, there
exist a Q-nonsingular Q-algebraic set M 0 ⇢ R

m, a family {M 0
i
}`
i=1 of Q-nonsingular

Q-algebraic subsets of M 0 in general position and a C1 di↵eomorphism h : M ! M 0

which simultaneously takes each Mi to M 0
i
such that, if | : M 0 ,! R

m denotes the
inclusion map, then | � h 2 U and | � h|Mi 2 Ui for i 2 {1, . . . , `}.

If in addition M and each Mi are compact Nash manifolds, then we can assume
h : M ! M 0 is a Nash di↵eomorphism and h extends to a semialgebraic homeomor-
phism from R

m to R
m.

A deep preparatory result used in the proof of Theorem 4 is the complete de-
scription ‘over Q’ of the Z/2Z-homology of real embedded Grasmannians obtained
by an explicit desingularization technique in [Sav23] inspired by Zelevinski paper
[Zel83] (see Theorems 2.3.4 & 2.4.10 below). In addition, by algebraic compactifi-
cation, resolution of singularities and our Akbulut-King blowing down lemma ‘over
Q’ (see Lemma 3.3.3 below) we have the following general answer to the Rela-

tive nonsingular Q-algebrization problem originally proved in [Sav23] (see
Theorem 4.1.6 below).

Theorem 5. Let V be a nonsingular algebraic subset of Rn of dimension d and
let {Vi}`i=1 be a finite family of nonsingular algebraic subsets of V in general position.
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Set m := n+2d+3. Then, for every neighborhood U of the inclusion map ◆ : V ,! R
m

in Nw(V,Rm) and for every neighborhood Ui of the inclusion map ◆|Vi : Vi ,! R
m in

Nw(Vi,Rm) for i 2 {1, . . . , `}, there exist a Q-nonsingular Q-algebraic set V 0 ⇢ R
m,

a family {V 0
i
}`
i=1 of Q-nonsingular Q-algebraic subsets of V 0 in general position and

a Nash di↵eomorphism h : V ! V 0 which simultaneously takes each Vi to V 0
i
such

that, if | : V 0 ,! R
m denotes the inclusion map, then | � h 2 U and | � h|Mi 2 Ui for

i 2 {1, . . . , `}. Moreover, h extends to a semialgebraic homeomorphism from R
m to

R
m.

Q-Algebrization of Nash manifolds over real closed fields. We provide
an answer to [Par21, Open problem 1, p. 199] also in case the ground field is any real
closed field R. Namely, we prove the following result (see Theorem 4.2.2 below).

Theorem 6. Let M ⇢ Rn be a Nash manifold of dimension d. Then, there exists
a Q-nonsingular Q-algebraic set M 0 ⇢ Rm and a Nash di↵eomorphism h : M ! M 0,
for some m 2 N with m � n. In particular, M 0 ⇢ Rm can be chosen in such a way
that dim(ZclRm(M 0(Q))) � d� 1.

Last result suggests that also other Q-algebrization results we proved over R in
[GS23; Sav23] may be extended to Nash manifolds and real algebraic sets over any
real closed field. This will be one of the topics of future investigations by the author
beyond this thesis.

Q-Algebrization of isolated singularities. Next theorem is the main result
of [GS23] (see Theorem 4.3.6 below). In the compact case (see Theorem 4.3.4 below),
there is an improvement on the estimate of m, indeed we may set m = n+ 2d+ 3.

Theorem 7. Let V ⇢ R
n be an algebraic set with isolated singularities. Then

there exist an algebraic set V 0 ⇢ R
m with isolated singularities and a semialgebraic

homeomorphism � : V ! V 0 with the following properties:

(i) V 0 ⇢ R
m is a Q-determined Q-algebraic set.

(ii) �(Reg(V )) = Reg(V 0) and �| : Reg(V ) ! Reg(V 0) is a Nash di↵eomor-
phism. In particular, V 0 is Q-nonsingular if V is nonsingular.

More precisely, the following is true. Denote by d the dimension of V and
set m := n + 2d + 4. Choose a neighborhood U of the inclusion map V ,! R

m in
C 0
w(V,R

m), and a neighborhood V of the inclusion map Reg(V ) ,! R
m in Nw(Reg(V ),

R
m). Then there exist an algebraic set V 0 ⇢ R

m with isolated singularities and a
semialgebraic homeomorphism � : V ! V 0 that have both the preceding properties
(i) and (ii) and the following:

(iii) The Zariski closure of V 0(Q) in R
m has dimension at least d� 1.

(iv) � extends to a semialgebraic homeomorphism from R
m to R

m.
(v) � fixes Sing(V ) \ Q

n, that is, �(x) = x for all x 2 Sing(V ) \ Q
n. In

particular, V 0(Q) contains Sing(V ) \Q
n.

(vi) If | : V 0 ,! R
m denotes the inclusion map, then |�� 2 U and (|��)|Reg(V ) 2

V.

If we are willing to lose properties (v) & (vi), we can find a Q-determined Q-
algebraic model V 0 of V with an improvement on the estimate of m, namely, we can
choose m = 2d+ 4.
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Theorem 8. Let V ⇢ R
n be an algebraic set with isolated singularities of dimen-

sion d. Set m := 2d + 4. Then there exist an algebraic set V 0 ⇢ R
m with isolated

singularities and a semialgebraic homeomorphism � : V ! V 0 having properties
(i)-(iv) of Theorem 7.

As above, if V is compact, the estimate of m in Theorem 8 can be further
improved to m = 2d+ 3.

Another consequence of Theorem 7 is the following Q-algebrization result of
germs of algebraic isolated singularities (see Theorem 4.4.1 below).

Theorem 9. Let (V, 0) ⇢ (Rn, 0) be the germ of an isolated algebraic singular-
ity. Then there exist a germ of an isolated algebraic singularity (V 0, 0) ⇢ (Rm, 0),
semialgebraic nieghborhoods U of 0 in R

n and U 0 of 0 in R
m and a semialgebraic

homeomorphism � : V \ U ! V 0 \ U 0, with the following properties:

(i) V 0 ⇢ R
m is a Q-determined Q-algebraic set.

(ii) �(Reg(V ) \ U) = Reg(V 0) \ U 0 and �| : Reg(V ) \ U ! Reg(V 0) \ U 0 is a
Nash di↵eomorphism.

Observe that Theorem 9 constitutes a general answer of [Par21, Open problem
2., p. 200] in the case of algebraic sets germs with an isolated singularity.

On the degree of global smoothing mappings. In 2018, Bierstone and
Parusiński [BP18] proved that every subanalytic set can be globally smoothed, both
in an embedded and a non-embedded way (see [BP18, Thms. 1.1 and 1.2]). In
Appendix B we introduce a evenness criterion for non-embedded global smoothings
of closed subanalytic sets only depending on the global topology of the set. The
criterion (see Theorem B.2.3 below) reads as follows:

Theorem 10 ([Sav22, Theorem 4]). Let X be a closed subanalytic subset of Rn,
let � := (X 0,', U) be a global smoothing section of X ⇢ R

n and let W be a connected
component of U . If W has a nonbounding equator in X then the degree of � over
W is even.

As a consequence, we have new examples of subanalytic sets (actually, semial-
gebraic sets) only admitting even-to-one global smoothing sections (see Examples
B.2.6 below).

Structure of the thesis

Here we briefly summarize the structure of the thesis. We recall that at the
beginning of each chapter and appendix the reader will find an abstract in which we
present the technical content section by section.

Chapter 1: Algebraic geometry over subfields. In this first chapter we
review the recent paper [FG] of Fernando and Ghiloni. We present the results in
full generality, as stated and proved in their work, both for sake of clarity with re-
spect to the reference and because we need in some particular points field extensions
other than R|Q, which is the main case of study of this thesis. Here we introduce
the general notions and properties we use in next chapters: we define K-algebraic
sets of Cn and Rn, where C denotes an algebraically closed field of characteristic
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zero, R a real closed field and K a subfield of C or R, respectively, and we study
the global algebraic and geometric properties via Galois theory and commutative
algebra. It is evident from Fernando and Ghiloni’s results that the really interesting
case of algebraic geometry over subfields is the one in which the ground field R is
closed real and K is not. Then we introduce and study new notions of regularity
for K-algebraic sets with respect to a subfield K of a real closed field R developed
by Fernando and Ghiloni. This notion leads to the definitions of K-determined and
K-nonsingular K-algebraic sets, which are the main characters of next chapters.
Latter notion of K-nonsingular K-algebraic set is in turn the right notion to ob-
tain K-generic projection results and to separate ‘K-algebraically’ the irreducible
components of K-nonsingular K-algebraic sets. Another fundamental result of [FG]
is the equivalence between their new notion of R|K-regularity with a K-version of
the Jacobian criterion. Up to Section 1.6 the author’s contribution reduces to or-
ganize those notions and results originally introduced in [FG] that are necessary to
next chapters and to add clarifying examples or remarks. In Section 1.6, the author
characterizes Q-determined Q-algebraic sets via Galois theory and introduces a new
class of Q-algebraic sets which is called “defined over Q in R(Rn)”, where R(Rn)
denotes the ring of regular functions of Rn, and studies the relations of this notion
with previous ones in full generality. Then, the author characterized the notion of
algebraic set defined over Q in R(Rn) in the case of nonsingular algebraic sets and
in the case of hypersurfaces. A general complete characterization via Galois theory
is still unknown but above particular cases suggest a possible answer to be verified
with further investigations beyond this thesis.

Chapter 2: Q-Nonsingular Q-algebraic sets. In this chapter we restrict to
the field extension R|Q and we study many properties described by Q-nonsingular Q-
algebraic sets. We extend classical notions as regular maps and projective closure of
real algebraic sets ‘over Q’ and we derive similar properties with respect to classical
ones. Then, we present fundamental examples of Q-nonsingular Q-algebraic sets,
as real embedded Grassmannians Gm,n ⇢ R

(m+n)2 and some classical bundles over
Grassmannians. The example of Gm,n is particularly interesting since, via an explicit
desingularization of embedded Schubert varieties, we are able to generate the Z/2Z-
homology group of Gm,n. The main consequence of these examples is that the
cobordism group of compact smooth manifolds is generated by Q-nonsingular Q-
algebraic sets. Then, we prove a variant ‘over Q’ of a the well known equivalence
between algebraic homology classes and algebraic bordism classes. Then, these
results exploit their role in constructing relative bordisms over Q à la Akbulut-King
that become crucial in the proof of above Theorem 4. The results of this chapter
are originally proved in [GS23; Sav23].

Chapter 3: Q-algebraic approximations à la Akbulut-King. In this chap-
ter we extend approximation techniques introduced by Nash, Tognoli and then
further improved by Akbulut and King. We introduce the notion of Q-nice and
Q-approximable pairs (P,L), with L ⇢ P , that are the most general classes of Q-
algebraic sets L ⇢ R

n for which we can approximate smooth functions vanishing on
P by polynomial ones with rational coe�cients vanishing on L. Latter result is the
so-called relative Weierstrass approximation theorem that we specify ‘over Q’. We
introduce fundamental examples of Q-nice Q-algebraic sets that play their role in
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our main results in Chapter 4. We further improve relative Weierstrass approxima-
tion theorem with Q-regular functions by controlling also the behaviour at infinity.
Then, the main Q-algebrization results of this chapter are versions ‘over Q’ of the
Nash-Tognoli theorem and a relative Nash-Tognoli theorem with respect to a finite
set of hypersurfaces in general position. Lastly, we develop a new version ‘over Q’
with approximation of the Akbulut-King blowing down lemma, that is, if we have
a Q-regular map p : A ! Y between Q-algebraic sets A,X ⇢ R

n and Y ⇢ R
m,

with A ⇢ X, then the topological adjunction space X [p Y is homeomorphic to a
Q-algebraic set. We can also preserve R|Q-regular points of X \ A. The results of
this chapters are originally proved in [GS23; Sav23].

Chapter 4: Q-Algebrization results. This chapter collects all the Q-algebri-
zation theorems already mentioned in section Main Results of this Introduction. We
present a version from the smooth category to the Nash one of Baro-Fernando-Ruiz
approximation results in [BFR14]. These theorems apply in the approximation of
relative di↵eomorphisms between Nash manifolds with Nash submanifolds in general
position with Nash di↵eomorphisms. Again, latter result applies as well in each of
the proof of main results in this chapter. We deeply discuss our answers of [Par21,
Open problems 1&2, pp. 199-200] originally proved in [GS23; Sav23]. We highlight
that our Q-determined and Q-nonsingular models can be produced with some control
on their rational points, indeed we prove that we can always find an “hypersurface
of rational points” contained in the nonsingular locus. One of the main future
challenges will be to extend our results in small dimension, that is, in dimension
 3, by finding Q-algebraic models with dense rational points.

Appendices A & B. In Appendix A we provide explicit proves of our versions
of Baro-Fernando-Ruiz approximation results introduced in Section 4.1 and origi-
nally proved in [GS23]. Appendix B corresponds integrally to [Sav22] in which we
prove an evenness criterion for the degree of global smoothings of subanalytic sets
only depending on the global topology of the set, as already mentioned in section
Main Results.





CHAPTER 1

Algebraic geometry over subfields

Abstract. In this chapter we develop the algebraic geometry over subfields, in
particular over subfiends of algebraically closed fields of characteristic zero and
real closed fields. Let L|K be a field extension. In section 1.1 we introduce and
study in general the notion of K-algebraic subset of Ln. In Sections 1.2 and 1.3
we study the geometry of K-algebraic subsets of Ln via Galois theory when L
is algebraically closed or real closed, respectively. In the remaining part of the
chapter, R is assumed to be a real closed field. In Section 1.4 we introduce and
characterize algebraic subsets of Rn defined over K: they are those K-algebraic
sets of Rn behaving like K-algebraic subsets of Ln, with L algebraically closed. In
Section 1.5 we introduce and characterize the notions of E|K-regular and E|K-
singular points of a K-algebraic subset of Rn, with respect to a field extension
R|E|K. In Section 1.6 we define and study the main class of K-algebraic subsets
of Rn that will appear in next chapters, that is, K-determined K-algebraic sets.
We investigate the relations between above notions for an algebraic subset of Rn

to be ‘defined over K’.
The main reference for this chapter is [FG], whereas Section 1.6 is a general-

ization of results originally proved in [GS23, Section 1].

1.1. K-Algebraic sets

Throughout this section L|K denotes a field extension.

Here we develop the basic notions of algebraic geometry in Ln defined by poly-
nomial equations whose coe�cients lie in K. We will specify later on interesting
cases of extensions of fields.

Let us fix some notation. Let n 2 N
⇤ := N\{0} and let L|K be a field extension.

Denote by L[x] := L[x1, . . . , xn] and K[x] := K[x1, . . . , xn] the polynomial rings in
n variables with coe�cients in L and K, respectively. Consider K[x] ⇢ L[x] and
Kn ⇢ Ln. Fix F ⇢ K[x] and S ⇢ Ln, define:

ZL(F ) := {x 2 Ln | f(x) = 0, 8f 2 F},
IK(S) := {f 2 K[x] | f(x) = 0, 8x 2 S}.

Observe that ZL(F ) is an algebraic subset of Ln and IK(S) is an ideal of K[x]
since it coincides with IL(S) \K[x], where IL(S) := {f 2 L[x] | f(x) = 0, 8x 2 S}
denotes the usual vanishing ideal of S in L[x]. To shorten the notations, if F =
{f1, . . . , fs} ⇢ L[x] for some s 2 N, we write ZL(F ) := ZL(f1, . . . , fs).

Let us introduce the main notion of this subsection.

13
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Definition 1.1.1. Let X be a subset of Ln. We say that X is a K-algebraic
subset of Ln, or equivalently X ⇢ Ln is a K-algebraic set, if X = ZL(F ) for some
F ⇢ K[x]. ⌅

Observe that, when K = L, the family of K-algebraic subsets of Ln coincides
with the family of algebraic subsets of Ln. More in general, for every extension L|K,
the family of all K-algebraic subsets of Ln constitutes a topology strictly coarser
than the usual Zariski topology of Ln. We will refer to this topology as the K-
Zariski topology of Ln. Being coarser that the Zariski topology of Ln, the K-Zariski
topology of Ln is Noetherian as well.

Remark 1.1.2. (i) Let X ⇢ Ln be a K-algebraic set. By Noetherian-
ity of the K-Zariski topology of Ln there are finitely many polynomials
f1, . . . , fs 2 K[x] such that X = ZL(f1, . . . , fs). If in addition the field L
is (formally) real, then X = ZL(f2

1 + · · ·+ f2
s ).

(ii) Consider the extension of fields L|H|K. Then, the K-Zariski topology of
Hn coincides with the relative topology of Hn induced by the K-Zariski
topology of Ln. ⌅

K-irreducibility and K-dimension. Let us introduce the notions ofK-irredu-
cibility and of K-irreducible components of a K-algebraic set.

Definition 1.1.3. Let X ⇢ Ln be a K-algebraic set. We say that X ⇢ Ln is
K-reducible if it is reducible with respect the K-Zariski topology of Ln, that is, if
there exist K-algebraic sets X1, X2 ⇢ Ln such that X1, X2 ( X and X1 [X2 = X.
We say that X ⇢ Ln is K-irreducible if it is not K-reducible. ⌅

We collect some fundamental properties ofK-irreducibility miming classical ones
of the usual Zariski topology.

Lemma 1.1.4. Let X ⇢ Ln be a K-algebraic set. The following properties hold:

(i) X is K-irreducible if and only if IK(X) is a prime ideal of K[x].
(ii) Let Y1, . . . , Yr ⇢ Ln be K-algebraic sets such that X ⇢

S
r

i=1 Yj. If X is
K-irreducible, then X ⇢ Yi for some j 2 {1, . . . , r}.

(iii) There are finitely many K-irreducible K-algebraic subsets X1, . . . , Xr of
Ln, uniquely determined by X, such that Xi 6⇢

S
j={1,...,r}\{i}Xj for every

i 2 {1, . . . , r} and X =
S

r

i=1Xi. The Xi’s are called the K-irreducible
components of X.

Proof. Standard arguments work.

(i) Suppose X is K-reducible, that is, there are K-algebraic sets X1, X2 ⇢ Ln

such that X = X1 [ X2 and Xi ( X for each i 2 {1, 2}. Then, there are fi 2
IK(Xi) \ IK(X) for i 2 {1, 2}, so that IK(X) is not prime since f1f2 2 IK(X). On
the other hand, suppose IK(X) is not prime, that is: there are f1, f2 2 K[x] such
that fi /2 IK(X) for i 2 {1, 2}, but f1f2 2 IK(X). Consider Xi = X \ ZL(fi) for
i 2 {1, 2}, then Xi ( X and X = X1 [X2.

(ii) Suppose X 6⇢ Yj for every j = {1, . . . , r}, in particular r � 2. Let s 2
{1, . . . , r} be the maximum j such that X 6⇢

S
j

i=1 Yi, thus X ⇢
S

s+1
i=1 Yi. Hence,

define X1 := X \ (
S

s

i=1 Yi) and X2 := X \ Ys+1. Observe that X1, X2 ( X, and
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X = X \ (
S

s+1
i=1 Yi) = (X \ (

S
s

i=1 Yi)) [ (X \ Ys+1) = X1 [X2, which is impossible
since X is K-irreducible.

(iii) Since the K-Zariski topology of Ln is Noetherian, we directly get the result
by [Har77, Proposition 1.5]. ⇤

If K = L, then K-irreducibility of a K-algebraic set X coincides with the usual
notion of irreducibility of X as an algebraic set. In the same way, if K = L, K-
irreducible components of a K-algebraic set X coincide with the usual irreducible
components of X.

Definition 1.1.5. Let S ⇢ Ln. We denote by ZclK
Ln(S) the K-Zariski closure

of S (in Ln), that is the closure of S with respect to the K-Zariski topology of Ln.
If K = L, we write ZclLn(S) instead of ZclL

Ln(S). ⌅

Usual properties of classical Zariski closure extend to K-Zariski closure, for in-
stance ZclK

Ln(S) = ZL(IK(S)). Hence, IK(S) ⇢ IL(S) implies ZclLn(S) ⇢ ZclK
Ln(S).

Thus, ZclK
Ln(ZclLn(S)) = ZclK

Ln(S) and IK(S) = IK(ZclLn(S)) = IK(ZclK
Ln(S)). As

above, if K = L, then ZclLn(S) is the usual Zariski closure of S in Ln.

Let us introduce the notion of (algebraic) K-dimension of a subset S of Ln.

Definition 1.1.6. Let S ⇢ Ln. We define the K-dimension dimK(S) of S (in
Ln) as the Krull dimension of the ring K[x]/IK(S). ⌅

Observe that dimK(S) = dimK(ZclK
Ln(S)) and, if K = L, then dimK(S) is

exactly the usual dimension of ZclLn(S) in Ln. Let us collect some other important
properties of K-dimension of K-algebraic sets.

Lemma 1.1.7. Let X,Y ⇢ Ln be K-algebraic sets. Suppose that Y ( X and X
is K-irreducible, then dimK(Y ) < dimK(X).

Proof. A standard argument works. Suppose Y ⇢ X, X is K-irreducible and
dimK(Y ) = dimK(X), let us prove that X = Y . Let p be a prime ideal such that
ht(IK(X)) = ht(IK(Y )) = ht(p). Since X is K-irreducible, IK(X) is prime, thus
IK(X) = IK(Y ) = p, that is X = ZL(IK(X)) = ZL(IK(Y )) = Y . ⇤

In what follows, L|H|K denotes an extension of fields.

Lemma 1.1.8. Let Y ⇢ Ln be a H-algebraic set and let X := ZclK
Ln(Y ) be the

K-Zariski closure of X in Ln. If Y is H-irreducible, then X is K-irreducible.

Proof. Observe that IK(X) = IK(Y ) = IH(Y )\K[x] is prime since IH(Y ) is
so. Thus, the thesis follows by Lemma 1.1.4(i). ⇤

Remark 1.1.9. The converse implication in Lemma 1.1.8 is false in general.
Consider the extension R|Q, where R denotes any real closed field. Let L = H = R
and K = Q. Consider the Q-algebraic subset X = Y := {�

p
2,
p
2} of R. Observe

that X is Q-irreducible, on the contrary, X is reducible as an algebraic subset of R.
⌅

Lemma 1.1.10. Let Y ⇢ Ln be a H-algebraic set and let Y1, . . . , Yr be its H-
irreducible components. Let X := ZclK

Ln(Y ) and Xi := ZclK
Ln(Yi) for every i 2

{1, . . . , r}. Then:
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(i) There exist a subset {i1, . . . , is} of {1, . . . , r} such that Xi1 , . . . , Xis are the
K-irreducible components of X.

(ii) If dimK(Xi) = dimK(Xj) for every i, j 2 {1, . . . , r}, then there exists a
surjective map ⌘ : {1, . . . , r} ! {i1, . . . , is} such that Xi = X⌘(i) for every
i 2 {1, . . . , r}.

Proof. As X = ZclK
Ln(
S

r

i=1 Yi) =
S

r

i=1 Zcl
K

Ln(Yi) =
S

r

i=1Xi, there exists a sub-
set {i1, . . . , is} of {1, . . . , r} of minimal cardinality such that

S
s

j=1Xij = X. Thus,
Lemmas 1.1.4(iii) & 1.1.8 ensure that Xi1 , . . . , Xis are the K-irreducible components
of X.

Suppose that dimK(Xi) = dimK(Xj) for every i, j 2 {1, . . . , r}. An application
of Lemmas 1.1.4(ii) & 1.1.7 ensures that for every i 2 {1, . . . , r} there exists j 2
{1, . . . , s} such that Xi = Xij . If Xi = Xik for some h 2 {1, . . . , s} \ {j}, then
Xij = Xik , which is impossible by minimality of {1, . . . , s} such that X =

S
s

j=1Xis .
Then, define the map ⌘ : {1, . . . , r} ! {i1, . . . , is} such that ⌘(i) is the (unique)
ij 2 {i1, . . . , is} such that Xi = Xij . Observe that ⌘(ij) = ij for every j 2 {1, . . . , s},
thus ⌘ is surjective. ⇤

Remark 1.1.11. The assumption ‘dimK(Xi) = dimK(Xj) for every i, j 2 {1, . . . ,
r}’ in Lemma 1.1.10(ii) can not be omitted. Indeed, we can produce a counterex-
ample as follows. Let L = H = R be any real closed field and K = Q. Consider
the algebraic set Y = Y1 [ Y2 ⇢ R2, where Y1 := {(�

p
2, 0)} and Y2 := {(x1, x2) 2

R2 |x1 =
p
2}. Observe that Y1 and Y2 are irreducible algebraic subsets of R2. Let

X1 := ZclQ
Ln(Y1) = {(�

p
2, 0), (

p
2, 0)} and X2 = ZclQ

Ln(Y2) = {(x1, x2) 2 R2 |x21 =

2}, thus X := ZclQ
Ln(Y ) = X1 [X2 = X2. Thus, X is Q-irreducible but X1 ( X2. ⌅

Field extension and extension of coe�cients. Let L|K be a field extension
and let B := {uj}j2J be a basis of L as aK-vector space. LetX ⇢ Ln be an algebraic
set, not necessarily K-algebraic. We call X(K) := X \Kn the K-locus of X. Now
we will focus on the relation between the K-locus X(K) of X as an algebraic subset
of Kn and the algebraic subset X of Ln. An interesting case of study will be when
X ⇢ Ln is K-algebraic.

Lemma 1.1.12. Let X ⇢ Ln be an algebraic set. Then, X(K) ⇢ Kn is an
algebraic set.

Proof. Let f1, . . . , fr 2 L[x] be such that X = ZL(f1, . . . , fr) ⇢ Ln. By
[FG, Lemma 2.2.1], each fi can be uniquely written as fi =

P
j2J ujfij , where

B := {uj}j2J is the chosen basis of L as a K-vector space, fij 2 K[x] for every j 2 J
and fij is non-null only for finitely many j 2 J . Observe that x 2 X(K) if and only
if 0 = fi(x) =

P
j2J ujfij(x) for every i 2 {1, . . . , r}. Thus, X(K) := X \ Kn =

ZK({fij}i2{1,...,r},j2J) is an algebraic subset of Kn. ⇤
Corollary 1.1.13. Let S ⇢ Kn. Then, ZclKn(S) ⇢ ZclLn(S) and ZclLn(S) =

ZclLn(ZclKn(S)).

Proof. Let X := ZclLn(S). By Lemma 1.1.12, X(K) = X \ Kn is a K-
algebraic set, thus ZclKn(S) ⇢ X(K) ⇢ X and X := ZclLn(S) ⇢ ZclLn(ZclKn(S)) ⇢
ZclLn(X) = X. ⇤
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LetX ⇢ Ln be aK-algebraic set. We focus on the comparison between dimK(X)
and dimL(X).

Lemma 1.1.14. Let X ⇢ Ln be a K-algebraic set such that IL(X) = IK(X)L[x].
Then, dimK(X) = dimL(X).

Proof. If IK(X) = (0), then X = Ln and dimK(X) = n = dimL(X). Sup-
pose IK(X) 6= (0) and let r := ht(IK(X)) � 1. Noether’s normalization theo-
rem (see [GP08, Theorem 3.4.1]) ensures the existence of monic polynomials fi 2
K[xi+1, . . . , xn][xi] \ IK(X) ⇢ L[xi+1, . . . , xn][xi] \ IL(X) for every i 2 {1, . . . , r}
and IK(X) \ K[xr+1, . . . , xn] = (0). Thus, IL(X)L[xr+1, . . . , xn] = (0) by [FG,
Lemma 2.2.5]. As a consequence, we have two finite injective homomorphisms:

K[xr+1, . . . , xn] ,! K[x]/IK(X),

L[xr+1, . . . , xn] ,! L[x]/IL(X).

Hence, by [Eis95, Axiom D3, p. 219], the following holds:

dimK(X) := dim(K[x]/IK(X)) = dim(K[xr+1, . . . , xn]) = n� r

=dim(L[xr+1, . . . , xn]) = dim(L[x]/IL(X)) =: dimL(X).

⇤
Proposition 1.1.15. Let Y ⇢ Kn be an algebraic set and let X := ZclLn(Y ) ⇢

Ln. The following properties are satisfied:

(i) IL(X) = IK(Y )L[x] and IK(X) = IK(Y ).
(ii) X(K) = Y .
(iii) Let Y1, . . . , Ys be the irreducible components of Y ⇢ Kn and let Xi :=

ZclLn(Yi) for every i 2 {1, . . . , s}. Then, X1, . . . , Xs are the irreducible
components of X ⇢ Ln. In particular, X ⇢ Ln is irreducible if and only if
Y is so.

(iv) dimL(X) = dimK(X) = dimK(Y ).

Proof. Let g1, . . . , gr 2 IK(X) such that IK(X) = (g1, . . . , gr). Since X =
ZclLn(Y ) we get that IK(Y )L[x] = (g1, . . . , gr)L[x] ⇢ IL(X). Let us prove the
converse inclusion. Let f 2 IL(X) and let B := {uj}j2J a basis of L as a K-
vector space. By [FG, Lemma 2.2.1], there are unique {fj}j2J ⇢ K[x] such that
f =

P
j2J ujfj and fj is nonzero only for finitely many j 2 J . Since Y ⇢ X,

the polynomial f 2 IL(Y ). In particular, 0 = f(x) =
P

j2J ujfj(x) for every
x 2 Y , thus fj 2 IK(Y ) for every j 2 J . This proves that IL(X) ⇢ IK(Y )L[x].
Since Y ⇢ X := ZclLn(Y ) ⇢ ZclK

Ln(Y ) we get that ZclK
Ln(X) = ZclLn(Y ), thus

IK(X) = IK(Y ). This proves (i).

Clearly, Y ⇢ X(K), let us prove the converse inclusion. Since Y ⇢ X(K) ⇢ X,
we have IK(X) ⇢ IK(X(K)) ⇢ IK(Y ). By (i), we also have that IK(Y ) = IK(X).
This proves that X(K) = ZK(IK(X(K))) = ZK(IK(Y )) = Y . This proves (ii).

Assume at first that Y is irreducible, let us prove that X is irreducible as well.
Suppose this is not the case, so there are algebraic sets Z1, Z2 ⇢ Ln such that
Z1, Z2 ( X and X = Z1 [ Z2. By (ii), Y = X \ Kn = (Z1 \ Kn) [ (Z2 \ Kn)
and by Lemma 1.1.12 Z1 \Kn and Z2 \Kn are algebraic subsets of Kn. Observe
that Z1 \ Kn, Z2 \ Kn

( Y , otherwise, if say Z1 \ Kn = Y , then ZclLn(Z1 \
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Kn) = ZclLn(Y ) =: X, which is not the case since Z1, Z2 ( X. This leads to the
contradiction that Y is reducible. Let us complete the proof of (iii). Let Y1, . . . , Ys
be the irreducible components of Y and let Xi := ZclLn(Yi) for every i 2 {1, . . . , s}.
We proved that Xi is irreducible since Yi is so, for every i 2 {1, . . . , s}. Observe that

X = ZclLn(Y ) = ZclLn(
s[

i=1

Yi) =
s[

i=1

ZclLn(Yi) =
s[

i=1

Xi

and Xi 6⇢
S

j 6=i
Xj since Yi 6⇢

S
j 6=i

Yj , for every i 2 {1, . . . , s}. Indeed, if Xi ⇢S
j 6=i

Xj for some i 2 {1, . . . , s}, then Yi = Xi \Kn ⇢ (
S

j 6=i
Xj) \Kn =

S
j 6=i

(Xj \
Kn) =

S
j 6=i

Yj by (ii), which is a contradiction.

By (i), an application of Lemma 1.1.14 gives exactly the equality in (iv). ⇤
Corollary 1.1.16. Let X ⇢ Ln be an algebraic set. Then:

(i) dimK(X(K))  dimL(X).
(ii) If X ⇢ Ln is irreducible and dimK(X(K)) = dimL(X), then X(K) ⇢ Kn

is irreducible and X = ZclLn(X(K)).

Proof. As X(K) ⇢ X, then ZclLn(X(K)) ⇢ X and

dimK(X(K)) = dimL(ZclLn(X(K)))  dimL(X).

By Proposition 1.1.15(iv), if dimK(X(K)) = dimL(X) we get that dimL(X) =
dimL(ZclLn(X(K))), thus X = ZclLn(X(K)) since X ⇢ Ln is irreducible. ⇤

Remark 1.1.17. In the statement of Corollary 1.1.16(i) the inequality can be
strict. Consider K to be a real closed field and L := K[i] be its algebraic closure,
then X := {x21 + · · ·+ x2n + 1 = 0} ⇢ Ln is an hypersurface but X(K) = ?. ⌅

Here we restrict to the case in which both L and K are either real closed fields
or algebraically closed fields in order to derive interactions between previous notions
and extension of coe�cients. The reason why we restrict to those cases is the
property of the theories of real closed fields and algebraically closed fields to be model
complete. For more details about extension of coe�cients and model theoretical
properties of those theories we refer to [BCR98, §5] and [Mar02, §3] for real closed
fields and algebrically closed fields, respectively.

Definition 1.1.18. Suppose that both L and K are either real closed fields or
algebraically closed fields. Let Y ⇢ Kn be an algebraic set and let f1, . . . , fr 2 K[x]
such that Y = ZK(f1, . . . , fr). We say that YL := ZL(f1, . . . , fr) ⇢ Ln is the
extension of coe�cients of Y to L. ⌅

Observe that, by model completeness of the theory of real closed fields and
algebraically closed fields, the algebraic set YL in Definition 1.1.18 only depends on
Y , so the definition is well posed.

Proposition 1.1.19. Suppose that both L and K are either real closed fields or
algebraically closed fields. Let Y ⇢ Kn be an algebraic set and let YL ⇢ Ln be the
extension of coe�cients of Y to L. The following properties are satisfied:

(i) YL = ZclLn(Y ) = ZclK
Ln(Y ).

(ii) IL(YL) = IK(Y )L[x], IK(YL) = IK(Y ) and YL(K) := YL \Kn = Y .
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(iii) The family of irreducible components of YL ⇢ Ln coincides with the family
of K-irreducible components of YL. In particular, YL ⇢ Ln is irreducible if
and only if YL is K-irreducible, or equivalently if Y ⇢ Kn is irreducible.

(iv) dimL(YL) = dimK(YL) = dimK(Y ).

Proof. Let X := ZclLn(Y ) and let g1, . . . , gr 2 K[x] such that IK(Y ) =
(g1, . . . , gr). By Proposition 1.1.15(i), IL(X) = (g1, . . . , gr)L[x], hence we have
X = ZL(g1, . . . , gr) = (ZK(g1, . . . , gr))L = YL. Moreover,

YL = X := ZclLn(Y ) ⇢ ZclKLn(Y ) = ZL(IK(Y )) = (ZK(IK(Y )))L = YL.

Thus, YL = ZclLn(Y ) = ZclK
Ln(Y ), and (i) is proved.

Observe that (ii) & (iv) directly derive from (i) and Proposition 1.1.15(i)(ii)(iv).

Let Y1, . . . , Ys be the irreducible components of Y ⇢ Kn and let Xi := ZclLn(Yi),
for every i 2 {1, . . . , s}. By (i) and Proposition 1.1.15(iii) X1, . . . ,
Xs are the irreducible components of YL = ZclLn(Y ) ⇢ Ln. Recall that Xi :=
ZclLn(Yi) = (Yi)L by (i), for every i 2 {1, . . . , s}. Hence, by Lemma 1.1.10(i), up
to reordering, there is t 2 {1, . . . , s} such that X1, . . . , Xt are the K-irreducible
components of YL. Since YL(K) = Y =

S
s

i=1 Yi and Yi = (Yi)L(K) = Xi(K) by (ii),
we get that t = s, as desired. ⇤

Corollary 1.1.20. Suppose that both L and K are either real closed fields
or algebraically closed fields. Let X ⇢ Ln be a K-algebraic set and recall that
X(K) := X \Kn. The following properties are satisfied:

(i) X = ZclLn(X(K)) = ZclK
Ln(X(K)).

(ii) IL(X) = IK(X(K))L[x], IK(X) = IK(X(K)) and X = (X(K))L.
(iii) Let X1, . . . , Xs be the irreducible components of X ⇢ Ln. Then X1, . . . , Xs

are the K-irreducible components of X and X1(K), . . . , Xs(K) are the ir-
reducible components of X(K) ⇢ Kn. In particular, X ⇢ Ln is irreducible
if and only if X ⇢ Ln is K-irreducible, or equivalently if X(K) ⇢ Kn is
irreducible.

(iv) dimL(X) = dimK(X) = dimK(X(K)).

Proof. Since X ⇢ Ln is K-algebraic it su�ces to apply Proposition 1.1.19 to
Y := X(K). ⇤

Remark 1.1.21. We saw that the assumption of both K and L to be real closed
fields or algebraically closed fields was crucial to define (uniquely) the extension YL
of an algebraic set Y ⇢ Kn. However, even though we do not require this definition
to be unique, so to depend on the choice of the equations defining Y , we see that
previous Corollary 1.1.20 is false in general. Suppose L is any real closed field and
K = Q, then Fermat’s Last Theorem implies that the Q-algebraic curve Fk ⇢ L2

described by the polynomial equation x2k1 +x2k2 = 2k has no rational points for k � 3,
whereas Fk is a curve in L2. In other words, Fk(Q) = ? but ZclL2(Fk(Q)) = ?  Fk,
for k � 3, contradicting every item of Corollary 1.1.20. ⌅
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1.2. Galois completion & complex K-algebraic sets

Along this section C|K|K denotes an extension of fields in which C is alge-
braically closed, K is the algebraic closure of K (in C) and G denotes the Galois
group G(C : K). Observe that, as K is the algebraic closure of K, the full Galois
group G(K : K) of K is isomorphic to G(C : K)/G(C : K).

Complex Galois completion. Here we study the K-Zariski closure of an al-
gebraic set X ⇢ Cn. Next lemma highlights that X should be (at least) K-algebraic
to obtain meaningful results on its K-Zariski closure.

Lemma 1.2.1. Let X ⇢ Cn be an irreducible algebraic set and let T := ZclK
Cn(X).

If X is not a K-algebraic subset of Cn, then dimC(T ) < dimC(X).

Proof. Let Z := ZclK
Cn(X). Since X is not K-algebraic, we have that X  

Z ⇢ T . Observe that I
K
(Z) = I

K
(X) = IC(X) \K[x], thus I

K
(Z) is prime since

IC(X) is so. This proves that Z ⇢ Cn is a K-irreducible K-algebraic set. By
Corollary 1.1.20(iii), Z ⇢ Cn is also irreducible and, by Lemma 1.1.7, we have that
dimC(X) < dimC(Z)  dimC(T ), as desired. ⇤

From now on we focus on the K-Zariski closure of K-algebraic subsets of Cn.
More in detail, we characterize the K-Zariski closure of a K-algebraic set X ⇢ Cn

by means of the Galois group G and we provide an algorithm to compute them
involving precise (finite) Galois subextensions of K|K.

Let us fix some notation. Let  : C ! C be an automorphism of fields. Denote
by  n : Cn ! Cn the isomorphism of (Q-vector spaces) and b : C[x] ! C[x] the
isomorphism of rings defined by

 n(z1, . . . , zn) := ( (z1), . . . , (zn)),

b (
X

⌫

a⌫x
⌫) :=

X

⌫

 (a⌫)x
⌫ .

Definition 1.2.2. Let S ⇢ Cn. We say that
S
 2G  n(S) ⇢ Cn is the Galois

completion of S ⇢ Cn (with respect to the field extension C|K). ⌅

Algorithm 1.2.3. The algorithm works as follows:

(0) Input: Fix a K-algebraic set X ⇢ Cn.
(1) Choose g1, . . . , gr 2 K[x] such that X = ZC(g1, . . . , gr).
(2) Choose any finite Galois subextension E|K of K|K such that E contains

all the coe�cients of the polynomials g1, . . . , gr. Set G0 := G(E : K).
(3) For every � 2 G0, let �� : C ! C be an automorphism of fields extending �,

that is ��|E = �. Define g�
i
:= b��(gi) 2 E[x] and Z� := ZC(g�1 , . . . , g

�
r ) ⇢

Cn.
(4) Output: Consider the K-algebraic set T :=

S
�2G0 Z�.

Remark 1.2.4. In Algorithm 1.2.3(3), an extension  � of � always exists, for
every � 2 G0, by [FG, Lemma 2.2.15]. Observe that the choices in Algorithm
1.2.3(1)(2)(3) imply that, in principle, the K-algebraic set T ⇢ Cn obtained as the
output of the algorithm is not uniquely determined by X. ⌅
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Next result shows that the output T :=
S
�2G0 Z� of Algorithm 1.2.3 is actually

the K-Zariski closure of the K-algebraic set X ⇢ Cn chosen as the input. Further-
more, it provides a procedure to compute generators of IK(T ) from a finite set of
polynomials in K[x] whose common solution set is X.

Theorem 1.2.5 (Galois completion & K-Zariski closure). Let X ⇢ Cn be a K-
algebraic set and let T ⇢ Cn be a K-algebraic set obtained as an output of Algorithm
1.2.3. The following properties hold:

(i)  n(X) = ZC( b (g1), . . . , b (gr)) and IC( n(X)) = b (IC(X)), for every  2
G. In particular, Z� = ��,n(X) and IC(Z�) = b��(IC(X)), for every
� 2 G0, where ��,n := (��)n.

(ii) { b (gi) 2 E[x] | 2 G} = {b��(gi) 2 E[x] |� 2 G0} for every i 2 {1, . . . , r}
and T =

S
�2G0 ��,n(X) =

S
 2G  n(X) is a K-algebraic subset of Cn. In

particular, T is the Galois completion of X ⇢ Cn.
(iii) Let H ⇢ (g1, . . . , gr)K[x] be the set of all products of the form

Q
�2G0 h�,

where h� 2 {g�1 , . . . , g�r } for every � 2 G0. Then, T = ZC(H) and b (H) =
H, for every  2 G.

(iv) Denote by d the order of G0. For every h 2 H, define

Ph(t) :=
Y

⌧2G0

(t� h⌧ ) = td +
dX

j=1

(�1)jqhjt
d�j 2 E[x][t],

for some qhj 2 E[x], for every j 2 {1, . . . , d}. Then, B := {qhj 2 E[x] |h 2
H, j 2 {1, . . . , d}} ⇢ K[x] and T = ZC(B). In particular, T is a K-
algebraic set.

(v) T = ZclK
Cn(X) = ZC((g1, . . . , gr)K[x] \K[x]).

(vi) IK(T ) = IK(X) =
p
BK[x], IC(T ) = IK(X)C[x] and

dimC(X) = dimC(T ) = dimK(T ) = dimK(X).

Proof. (i) Observe that  (gi(x)) = b (gi)( n(x)) for every x 2 Cn and i 2
{1, . . . , r}. Thus  n(x) 2 ZC( b (g1), . . . , b (gr)) if and only if x 2 ZC(g1, . . . , gr) =
X. In addition, by Hilbert’s Nullstellensatz,

IC( n(X)) = IC(ZC( b (g1), . . . , b (gr))) =
q
( b (g1), . . . , b (gr))C[x]

= b (
p

(g1, . . . , gr)C[x]) = b (IC(ZC(g1, . . . , gr))) = b (IC(X)),

since b : C[x] ! C[x] is an automorphism. Second part of (i) follows by substituting
 with ��.

(ii) Since E|K is a Galois extension, each automorphism  2 G restricts to
an automorphism � :=  |E 2 G0, conversely, by [FG, Lemma 2.2.15], each � 2
G0 extends to an automorphism  � 2 G such that  �|E = �. This proves that
{ b (gi) 2 E[x] | 2 G} = {b��(gi) 2 E[x] |� 2 G0} = {g�

i
2 E[x] |� 2 G0}, for every

i 2 {1, . . . , r}. Observe that { n(X) ⇢ Cn | 2 G} = {��,n(X) ⇢ Cn |� 2 G0}
is a finite set by (i), thus T =

S
�2G0 Z� =

S
�2G0 ��,n(X) =

S
 2G  n(X) is a

K-algebraic subset of Cn.
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(iii) Since Z� = ZC(g�1 , . . . , g
�
r ) = ZC((g�1 , . . . , g

�
r )K[x]), we have

T =
[

�2G0

Z� =
[

�2G0

ZC((g
�

1 , . . . , g
�

r )K[x]) = ZC(
Y

�2G0

(g�1 , . . . , g
�

r )K[x]).

Observe that H generates the ideal
Q
�2G0(g�1 , . . . , g

�
r )K[x] of K[x], thus T = ZC(H).

Let us prove that  (H) = H for every  2 G. Let e 2 G0 be the identity automor-
phism of E, thus ge

i
= gi for every i 2 {1, . . . , r} and

Q
�2G0 h� 2 (g1, . . . , gr)K[x].

Moreover, by the considerations of (ii), we observe that for every  2 G and � 2 G0

there is some ⌧ := ( � ��)|E 2 G0 such that b (g�
i
) = ( b � b��)(gi) = g⌧

i
for every

i 2 {1, . . . , r}. This proves that b (H) = H fir every � 2 G.

(iv) Fix � 2 G0. Denote by �⇤ the unique automorphism of E[x, t] extending �
satisfying �⇤(t) = t and �⇤(xi) = xi for every i 2 {1, . . . , n}.

Let us prove that �⇤(Ph) = Ph for every h 2 H. Since the composition by �
produces an automorphism of G0, that is the map ⌧ 7! � � ⌧ , we have that

�⇤(Ph) =
Y

⌧2G0

(t� �⇤(h⌧ )) =
Y

⌧2G0

(t� h��⌧ ) = Ph.

As a consequence, Ph =
Q
⌧2G0(t� h⌧ ) 2 K[x][t], for every h 2 H.

Observe that the coe�cients of Ph with respect to the terms td�j belongs to
the ideal HK[x], with j 2 {1, . . . , d}, thus the (finite) set B ⇢ HK[x] \ K[x] ⇢
(g1, . . . , gr)K[x] \K[x]. In addition, since Ph(h) = 0, we get that hd 2 BK[x], for
every h 2 H. Thus, we conclude that T = ZC(H) = ZC(B) ⇢ Cn is a K-algebraic
set.

(v) First we prove that T = ZclK
Cn(X). Observe that we only have to prove T ⇢

ZclK
Cn(X), indeed the converse inclusion follows by observing that X is contained in

the K-algebraic set T . Let f1, . . . , fs 2 K[x] such that ZclK
Cn(X) = ZC(f1, . . . , fs).

If x 2 X, then 0 =  (fj(x)) = fj( n(x)), for every  2 G and j 2 {1, . . . , s}. Thus,
T =

S
 2G  (X) ⇢ ZclK

Cn(X).

Let us prove that T = ZC((g1, . . . , gr)K[x] \ K[x]). Since g1, . . . , gr 2 I
K
(X)

and B ⇢ (g1, . . . , gr)K[x] \K[x], we deduce that

T = ZclKCn(X) = ZC(IK(X)) = ZC(IK(X) \K[x])

= ZC((g1, . . . , gr)K[x] \K[x]) ⇢ ZC(B) = T,

as desired.

(vi) By (v) we have that T = ZclK
Cn(X), thus IK(T ) = IK(X). Define a :=p

BK[x]. By [Bou03, §V, Section 15, Proposition 5] and Hilbert’s Nullstellensatz,
since T = ZC(B) = ZC(a), we have that IC(T ) = aC[x]. By [FG, Corollary 2.2.2],
we have that

IK(T ) = IC(T ) \K[x] = aC[x] \K[x] = a.

As a consequence,

IC(T ) = aC[x] = IK(T )C[x] = IK(X)C[x].

Thus, by (i), (ii) and Lemma 1.1.14, we obtain that dimC(X) = dimC(T ) =
dimK(T ) = dimK(X), as required. ⇤
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Let us collect some direct consequences of Theorem 1.2.5. Let X ⇢ Cn be a
K-algebraic set. We say that X is G-invariant if  n(X) = X, for every  2 G.

Corollary 1.2.6. Let X ⇢ Cn be a K-algebraic set. Then, X is K-algebraic
if and only if X is G-invariant.

Corollary 1.2.7. Let X ⇢ Cn be a K-algebraic set. Apply Algorithm 1.2.3 with
input X and denote by {Z�}�2G0 a family of K-algebraic subsets of Cn obtained in
Algorithm 1.2.3(3). Then, for every � 2 G0, the following properties are satisfied:

(i) dimC(Z�) = dimC(X).
(ii) Z� ⇢ Cn is irreducible if and only if X ⇢ Cn is so.

Proof. Since IC(Z�) = b��(IC(X)), by Theorem1.2.5(i), and b�� is an isomor-
phism of rings, we deduce that C[x]/IC(Z�) and C[x]/b��(IC(X)) are isomorphic
and IC(Z�) is prime if and only if IC(X) is so. Thus, both (i) & (ii) follow. ⇤

Corollary 1.2.8. Let X ⇢ Cn be a K-algebraic set. Then, dimC(X) =
dim

K
(X) = dimK(X).

Proof. Apply Corollary 1.1.20(iv) and Theorem 1.2.5(vi). ⇤
Corollary 1.2.9. Let L|H be an algebraic extension of fields and let X ⇢ Ln

be an algebraic set. Then, dimL(X) = dimH(X).

Proof. Since L|H be an algebraic extension, we have that H = L. Let Z :=
Zcl

L
n(X) = Zcl

H
n(X). By Proposition 1.1.15(iv), we have that dimL(X) = dim

H
(Z).

As Z ⇢ H
n
is H-algebraic, Corollary 1.2.8 ensures that dim

H
(Z) = dimH(Z). Since

IH(Z) = IH(X), also dimH(Z) = dimH(X), thus we conclude that dimL(X) =
dim

H
(Z) = dimH(Z) = dimH(X), as desired. ⇤

Simultaneous Galois completion. Observe that, if needed, Algorithm 1.2.3
can be applied also for finite families of K-algebraic sets. Let us write down the
explicit algorithm.

Algorithm 1.2.10. The algorithm for finite families works as follows:

(0) Input: Fix a finite family of K-algebraic subsets X1, . . . , Xs of Cn. Let
X :=

S
s

i=1Xi.
(1) Choose gi1, . . . , giri 2 K[x] such that Zi = ZC(gi1, . . . , giri), for every i 2

{1, . . . , s}.
(2) Choose any finite Galois subextension E|K of K|K such that E contains

all the coe�cients of the polynomials gi1, . . . , giri for every i 2 {1, . . . , s}.
Set G0 := G(E : K).

(3) For every � 2 G0, let �� : C ! C be an automorphism of fields ex-
tending �, that is ��|E = �. Define g�

ij
:= b��(gij) 2 E[x] and Z�

i
:=

ZC(g�i1, . . . , g
�

iri
) ⇢ Cn for every i 2 {1, . . . , s} and j 2 {1, . . . , ri}.

(4) Output: Consider the finite family of K-algebraic (actually K-algebraic by
Theorem 1.2.5(iv)) subsets T1, . . . , Ts of Cn defined as Ti :=

S
�2G0 Z�i . Let

T :=
S

s

i=1 Ti.
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Remark 1.2.11. Observe that an output T =
S

s

i=1 Ti ⇢ Cn of Algorithm 1.2.10
with input X1, . . . , Xs coincides with an output of Algorithm 1.2.3 with input X =S

s

i=1Xi. If, in particular, X1, . . . , Xs are the K-irreducible components of X ⇢ Cn

and Ti 6⇢ Ti for every i, j 2 {1, . . . , s} with i  j, then T1, . . . , Ts are the K-
irreducible components of T . ⌅

Galois presentation of a ‘complex’ K-algebraic set. Let X ⇢ Cn be a K-
algebraic set. Our aim is to detect a minimal algebraic set Y ⇢ Cn whose K-closure
is X. Such algebraic subset Y of X generating a Galois presentation of X is, in
general, non unique, as explained below.

Lemma 1.2.12. Let X ⇢ Cn be a K-irreducible K-algebraic set and let Y ⇢ Cn

be an irreducible component of X. Then:

(i) Y ⇢ Cn is a K-irreducible component of X.
(ii) Let G0 be a finite Galois group and let {Z�}�2G0 be a family of algebraic

subsets of Cn such that T :=
S
�2G0 Z� is an output of Algorithm 1.2.3 with

input Y ⇢ Cn. Then, X = T .
(iii) The family {Z�}�2G0 coincides with the family of irreducible components

of X. In particular, all the irreducible components of X have the same
dimension.

Proof. As X ⇢ Cn is a K-algebraic set, in particular X ⇢ Cn is a K-algebraic
set, thus Corollary 1.1.20(iii) ensures that Y ⇢ Cn is a K-irreducible K-algebraic
set. This proves (i). Let Y1 ⇢ Cn be an irreducible component of X of dimension
d := dimC(X). By (i), Y1 ⇢ Cn is a K-algebraic set, thus let G0

1 be a finite
Galois group and let {Z�1 }�2G0

1
be a family of algebraic subsets of Cn such that

T1 :=
S
�2G0

1
Z�1 is an output of Algorithm 1.2.3 with input Y1 ⇢ Cn. Recall that,

by Theorem 1.2.5(iv)(vi), T1 ⇢ Cn is K-algebraic and dimC(T1) = dimK(T1) =
dimK(Y1) = dimC(Y1) = d. Moreover, X ⇢ Cn is a K-irreducible K-algebraic set of
dimension dimK(X) = dimC(X) = d, by Corollary 1.2.8. As Y1 ⇢ X, by Theorem
1.2.5(v), T1 ⇢ X, that is X = T1. This implies that there exists � 2 G0

1 such that
Y = Z�1 , thus, by Corollary 1.2.7(i), we get that Y ⇢ Cn has dimension d and we
can apply again Algorithm 1.2.3 with input Y . This proves both (ii) & (iii). ⇤

Preceding lemma allows us to introduce the definition of a Galois presentation
of a K-algebraic subset of Cn.

Definition 1.2.13. Let X ⇢ Cn be a K-algebraic set. Let (X1, . . . , Xs) be
the K-irreducible components of X listed in some order. Let Yi ⇢ Cn be an
irreducible component of Xi for every i 2 {1, . . . , s}. Let G0 be a finite Ga-
lois group and {Z�

i
}�2G0 be a family of algebraic subsets of Cn such that X1 =S

�2G0 Z�1 , . . . , Xs =
S
�2G0 Z�s and let X =

S
s

i=1Xi are outputs of Algorithm 1.2.10
with input Y1, . . . , Ys ⇢ Cn. We call the tuple

(Y1, . . . , Ys;G
0; {Z�1 }�2G0 , . . . , {Z�s }�2G0)

a Galois presentation of X ⇢ Cn and (Y1, . . . , Ys) the start of the presentation. To
shorten the notation we will refer to X =

S
s

i=1

S
�2G0 Z�i as a Galois presentation of

X ⇢ Cn with start (Y1, . . . , Ys) := (Ze

1 , . . . , Z
e
s ), where e 2 G0 denotes the identity.

⌅



1.2. GALOIS COMPLETION & COMPLEX K-ALGEBRAIC SETS 25

Complexification. Throughout this subsection, R is a real closed field, i :=p
�1 and C := R[i] is the algebraic closure of R. Observe that the extension C|R is

algebraic of degree 2, thus the Galois group G(C : R) has order 2 and is generated
by the conjugation involution ' which fixes R pointwise and maps i to �i. That is,
' : C ! C is defined as '(x + iy) := x � iy. As above, define 'n : Cn ! Cn such
that

'n(x1 + iy1, . . . , xn + iyn) := ('(x1 + iy1), . . . ,'(xn + iyn))

= (x1 � iy1, . . . , xn � iyn).

Now we see that the application of Algorithm 1.2.3, specialized to the field extension
C|R, concides with the usual complexification of algebraic subsets of Rn.

Lemma 1.2.14. If a is an ideal of C[x], then

ZC(a \R[x]) = ZC(a) [ 'n(ZC(a)), (1.2.1)

ZR(a \R[x]) = ZC(a) \Rn. (1.2.2)

Proof. Equality (1.2.1) derives from Theorem 1.2.5(ii)(v). In addition, apply-
ing (1.2.1) we get

ZR(a \R[x]) = ZC(a \R[x]) \Rn = (ZC(a) [ 'n(ZC(a))) \Rn =

= (ZC(a) \Rn) [ ('n(ZC(a) \Rn)) = ZC(a) \Rn,

as required in (1.2.2). ⇤

Let S ⇢ Rn be an algebraic set. The Zariski closure ZclCn(S) of S in Cn is
called the complexification of S. Let T ⇢ Cn be an algebraic set. Recall that, as
a consequence of Lemma 1.1.12, T (R) := T \ Rn is an algebraic subset of Rn. In
addition, by Proposition 1.1.15(ii), we have that (ZclCn(S))(R) := ZclCn(S)\Rn =
S for every algebraic set S ⇢ Rn.

Proposition 1.2.15. Let T ⇢ Cn be an algebraic set and let S := T (R) ⇢ Rn.
The following are equivalent:

(i) T is the complexification of S.
(ii) IC(T ) = IR(S)C[x].
(iii) IR(T ) = IR(S).
(iv) IR(T ) is a real ideal of R[x].

Moreover, if T ⇢ Cn is irreducible, preceding conditions are equivalent to the follow-
ing one:

(v) dimC(T ) = dimR(S).

Proof. Implications (i)=) (ii) and (ii)=) (iii) follow by Proposition 1.1.15(i)
and [FG, Corollary 2.2.2], respectively.

(iii)() (iv) Since T ⇢ Cn is algebraic and IR(T ) = IC(T )\R[x], then equation
(1.2.1) ensures that ZR(IR(T )) = S. Thus, by the Real Nullstellensatz (see [BCR98,
Theorem 4.1.4]), the ideal IR(T ) is real if and only if it coincides with IR(S).

(iv)=) (ii) Assume that IR(T ) is real, that is assume that IR(T ) = IR(S). Let
g1, . . . , gr 2 C[x] such that (g1, . . . , gr) = IC(T ). Write uniquely each polynomial
as gj := aj + ibj , with aj , bj 2 R[x] and define the polynomial gj := aj � ibj ,
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for every j 2 {1, . . . , r}. Observe that gjgj = a2
j
+ b2

j
2 IC(T ) \ R[x] = IR(T )

for every j 2 {1, . . . , r}, so aj , bj 2 IR(T ) for every j 2 {1, . . . , r}, since IR(T )
is real. Thus, (a1, b1, . . . , ar, br)C[x] = IC(T ) and IC(T ) ⇢ IR(S)C[x]. On the
other hand, IR(S) = IR(T ) ⇢ IC(T ), thus IR(S)C[x] ⇢ IC(T ). This proves that
IR(S)C[x] = IC(T ).

(ii)=) (i) By Proposition 1.1.15(i), we have that ZclCn(S) = ZC(IR(S)). By
assumption, IC(T ) = IR(S)C[x], thus T = ZC(IC(T )) = ZC(IR(S)) = ZclCn(S).

(i)=) (v) This follows directly from Proposition 1.1.15(iv), even when T ⇢ Cn

is reducible.

(v) =) (i) Assume in addition that T ⇢ Cn is irreducible. By assumption
dimC(T ) = dimR(S). Let Z := ZclCn(S), then Z ⇢ T because S ⇢ T . Observe that
Proposition 1.1.15(iv) ensures that dimC(Z) = dimR(S), so dimC(T ) = dimC(Z).
As T is supposed to be irreducible, Z ⇢ T and dimC(T ) = dimC(Z) imply that
Z = T , as desired. ⇤

Corollary 1.2.16. Let T ⇢ Cn be an algebraic set and let S := T (R) ⇢ Rn.
Then:

(i) ZR(IR(T )) = ZR(IR(S)) = S.
(ii) If the ideal IR(T ) of R[x] is real, then IR(T ) = IR(S) and dimR(S) =

dimC(T ).
(iii) If the ideal IR(T ) of R[x] is non-real, then IR(T ) ( IR(S). If in addition

T ⇢ Cn is irreducible, then dimR(S) < dimC(T ).

Proof. Since IR(T ) = IC(T ) \ R[x], T ⇢ Cn is an algebraic set and S =
T (R) ⇢ Rn is an algebraic set, (i) follows directly from equation (1.2.2) of Lemma
1.2.14. Observe that equivalence (iii)() (iv) of Proposition 1.2.15 ensures that,
if the ideal IR(T ) of R[x] is real, then IR(T ) = IR(S) and, on the contrary, if
IR(T ) of R[x] is non-real, then IR(T ) ( IR(S). If IR(T ) = IR(S), then T is
the complexification of S and dimC(T ) = dimR(S) by equivalences of Proposition
1.2.15. If T ⇢ Cn is irreducible and IR(T ) ( IR(S), then Corollary 1.1.16(i) and
equivalence (iv)() (v) of Proposition 1.2.15 ensure that dimR(S) < dimC(T ), as
required. ⇤

1.3. Galois completions & real K-algebraic sets

Throughout this section R denotes a real closed field, i =
p
�1 and C := R[i]

the algebraic closure of R. Let R|K be an extension of fields and endow K with the
order  induced by R. Denote by K the algebraic closure of K, thus C|K|K is an
extension of fields. Denote by K

r
:= K\R the real closure of K, thus R|Kr|K is an

extension of fields as well. The crucial case of study for next chapters is K = Q. In
that case Q denotes the field of algebraic numbers and Q

r
the field of real algebraic

numbers.

By Definition 1.1.1, Y ⇢ Rn is a K-algebraic set if Y = ZR(F ) for some F ⇢
K[x].
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Dimension and subfields. Let Y ⇢ Rn be a K-algebraic set, here we prove
that dimR(Y ) = dimK(Y ). Thus, when the ground field is real closed, the subfield
K does not play any role in our notions of dimension of Y ⇢ Rn. Recall that
we already proved a similar result when the ground field is algebraically closed in
Corollary 1.2.8.

Theorem 1.3.1. Let Y ⇢ Rn be a K-algebraic set. Then, dimR(Y ) = dimK(Y ).

Proof. By Corollary 1.1.20(iv), we have

dimR(Y ) = dim
K

r(Y ) = dim
K

r(Y (K
r
)).

By Corollary 1.2.9, we also have that dim
K

r(Y (K
r
)) = dimK(Y (K

r
)). In addition,

I
K

r(Y ) = I
K

r(Y (K
r
)), by Corollary 1.1.20(ii). Thus:

IK(Y ) = I
K

r(Y ) \K[x] = I
K

r(Y (K
r
)) \K[x] = IK(Y (K

r
)),

that is, dimK(Y ) = dimK(Y (K
r
)). Thus, we conclude that

dimR(Y ) = dim
K

r(Y ) = dim
K

r(Y (K
r
)) = dimK(Y (K

r
)) = dimK(Y ),

as desired. ⇤
Notation 1.3.2. Let Y ⇢ Rn be a K-algebraic set. By Theorem 1.3.1, we

have that dimR(Y ) = dimK(Y ), thus in this section we will denote by dim(Y ) :=
dimR(Y ) = dimK(Y ). ⌅

Real and complex Galois completions. Let Y ⇢ Rn be a K
r
-algebraic set

and let Z := ZclCn(Y ) ⇢ Cn be its complexification. By Corollary 1.1.20(ii) and
Proposition 1.2.15(ii), we have that IR(Y ) = I

K
r(Y )R[x] and IC(Z) = IR(Y )C[x] =

(I
K

r(Y )R[x])C[x] = I
K

r(Y )C[x]. Thus,

IC(Z) = I
K

r(Y )C[x], (1.3.1)

Z ⇢ Cn is K-algebraic and we can consider the Galois completion of Z as in Defi-
nition 1.2.2.

Definition 1.3.3. Let Y ⇢ Rn be a K
r
-algebraic set and let Z := ZclCn(Y ) ⇢

Cn be its complexification. Denote by T ⇢ Cn the Galois completion of Z and
T (R) := T \ Rn. We call T ⇢ Cn the complex Galois completion of Y ⇢ Rn and
T (R) ⇢ Rn the real Galois completion of Y ⇢ Rn (with respect to the field extension
C|K). ⌅

In next theorem we deduce, as for the complex case (see Theorem 1.2.5), the
relations between Galois completions, both real and complex, and K-Zariski closures
of Y ⇢ Rn and Z ⇢ Cn, respectively. Here we apply Algorithm 1.2.3 to X = Z and
we refer to previous notations of Section 1.2. Let G := G(C : K).

Theorem 1.3.4 (Galois completions & K-Zariski closures). Let Y ⇢ Rn be a
K

r
-algebraic set and let Z := ZclCn(Y ) ⇢ Cn be the Zariski closure of Y in Cn. Let

T ⇢ Cn and T (R) ⇢ Rn be the complex and real Galois completions of Y ⇢ Rn,
respectively. Let E|K be a finite Galois extension that contains all the coe�cients
of polynomials g1, . . . , gr 2 K[x] such that Z = ZC(g1, . . . , gr). Observe that we
can actually choose g1, . . . , gr 2 K

r
[x] such that (g1, . . . , gr) = I

K
r(Y ) by (1.3.1).

Denote by G0 := G(E : K). Then:
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(i) T =
S
 2G  n(Z), IC( n(Z)) = b (IC(Z)), T (R) =

S
 2G( n(Z)\Rn) and

dim( n(Z) \Rn)  dimC( n(Z)) = dimC(Z) = dim(Y )

for every  2 G.
(ii) T =

S
 2G Z�, IC(Z�) = b��(IC(Z)), T (R) =

S
 2G Z�(R) and

dim(Z�(R))  dimC(Z
�) = dimC(Z) = dim(Y )

for every � 2 G0. Let e 2 G0 denote the identity automorphism. Since
Ze = Z and Ze(R) = Z(R) = Y , then dimC(T ) = dimC(Z) = dim(Y ) =
dim(T (R)).

(iii) Let H ⇢ (g1, . . . , gr)K[x] be the set of all products of the form
Q
�2G0 h�,

where h� 2 {g�1 , . . . , g�r } for every � 2 G0. Denote by d the order of G0.
For every h 2 H, define

Ph(t) :=
Y

⌧2G0

(t� h⌧ ) = td +
dX

j=1

(�1)jqhjt
d�j 2 E[x][t]

for some qhj 2 E[x], for every j 2 {1, . . . , d}. Then, B := {qhj 2 E[x] |h 2
H, j 2 {1, . . . , s}} ⇢ K[x] and T = ZC(B).

(iv) T = ZclK
Cn(Y ) and T (R) = ZclK

Rn(Y ). In particular, T ⇢ Cn and T (R) ⇢
Rn are K-algebraic sets.

(v) IK(T ) = IK(T (R)) = IK(Y ) =
p

BK[x], IC(T ) = IK(Y )C[x] and

IR(T (R)) = r
p
IK(Y )R[x].

(vi) ZclCn(T (R)) ⇢ T and IR(T ) = IK(T (R))R[x] = IR(T (R)) \ b, where b

denotes the intersection of all the non-real ideals IR(Z�) of R[x] such that
� 2 G0 and dim(Z�(R)) < dimC(Z�). In particular, b is a radical ideal of
R[x], ZR(b) ( T (R) and dim(ZR(b)) < dim(T (R)) = dim(Y ).

Proof. (i)&(ii) By Definition 1.2.2 and Theorem 1.2.5(i), we directly obtain
that T =

S
 2G  n(Z) and IC( n(Z)) = b (IC(Z)) for every  2 G. In particular,

T (R) := T \ Rn =
S
 2G( n(Z) \ Rn). By Proposition 1.1.15(iv) and Corollary

1.1.16(i), we have that dim(Y ) = dimC(Z) and dim( n(Z) \ Rn)  dimC( n(Z))
for every  2 G. In addition, by Theorem 1.2.5(i), we have that dimC(Z) =
dimC( n(Z)) for every  2 G. Hence:

dim( n(Z \Rn))  dimC( n(Z)) = dimC(Z) = dim(Y ).

Since every automorphism � 2 G0 extends to an automorphism �� 2 G, by [FG,
Lemma 2.2.15], we have that T =

S
�2G0 Z�, IC(Z�) = b��(IC(Z)) for every � 2 G0,

T (R) =
S
 2G Z�(R) and dim(Z�(R))  dimC(Z�) = dimC(Z) = dim(Y ). Let

e 2 G0 be the identity automorphism. By Proposition 1.1.15(ii), we have that
Ze(R) = Z(R) = Y . Hence,

dimC(T ) = max
�2G0

{dimC(Z
�)} = dimC(Z) = dim(Y )

= max
�2G0

{dimC(Z
�(R))} = dim(T (R)).

(iii) Follows directly from Theorem 1.2.5(iii)(iv).

(iv) By Theorem 1.2.5(v), we obtain that

T = ZclKCn(Z) = ZclKCn(ZclCn(Y )) = ZclKCn(Y ).
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In addition, since T = ZC(IK(Y )), then:

T (R) := T \Rn = ZC(IK(Y )) \Rn = ZR(IK(Y )) = ZclKRn(Y ).

(v) Since T = ZclK
Cn(Z) = ZclK

Cn(Y ), we have IK(T ) = IK(Z) = IK(Y ). Since
T (R) = ZclK

Rn(Y ), then IK(T (R)) = IK(Y ). By Theorem 1.2.5(vi), we have that
IC(T ) = IK(Z)C[x] = IK(Y )C[x]. In addition, since T (R) = ZR(IK(Y )), the Real
Nullstellensatz ensures that IR(T (R)) = r

p
IK(Y )R[x].

(vi) As T (R) ⇢ T , we have ZclCn(T (R)) ⇢ ZclCn(T ) = T . In addition, by (v)
and [FG, Corollary 2.2.2], we have

IR(T ) = IC(T ) \R[x] = (IK(Y )C[x]) \R[x] = (IK(Y )R[x]C[x]) \R[x]

= IK(Y )R[x] = IK(T (R))R[x].

Denote by G0⇤ := {� 2 G0 | dim(Z�(R)) < dimC(Z�) = dimC(T )} and b :=T
�2G0⇤ IR(Z�) if G0⇤ 6= ?, or b = R[x] if G0⇤ = ?. The ideal b of R[x] is

radical since IR(Z�) is so for every � 2 G0, indeed
p
b =

pT
�2G0⇤ IR(Z�) =T

�2G0⇤
p
IR(Z�) =

T
�2G0⇤ IR(Z�) = b. By Corollary 1.2.16, the ideal IR(Z�) is

non real, IR(Z�)  IR(Z�(R)), for every � 2 G0⇤, and IR(Z�) = IR(Z�(R)) for
every � 2 G0 \G0⇤. Then:

ZR(b) = ZR

⇣ \

�2G0⇤

IR(Z�)
⌘
=

[

�2G0⇤

ZR(IR(Z�(R)))

=
[

�2G0⇤

Z�(R) ⇢ T (R) ⇢ T.

Thus, dim(ZR(b)) = max�2G0⇤{dim(Z�(R))} < dimC(T ) = dim(T (R)), so
ZR(b)  T (R), and

IR(T (R)) \ b = b \ IR
� [

�2G0

Z�(R)
�
= b \

⇣ \

�2G0

IR(Z�(R))
⌘

=
\

�2G0⇤

IR(Z�) \
⇣ \

�2G0⇤

IR(Z�(R)) \
\

�2G0\G0⇤

IR(Z�(R))
⌘

=
⇣ \

�2G0⇤

IR(Z�) \
\

�2G0⇤

IR(Z�(R))
⌘
\

\

�2G0\G0⇤

IR(Z�(R))

=
\

�2G0⇤

IR(Z�) \
\

�2G0\G0⇤

IR(Z�)

=
\

�2G0

IR(Z�) = IR
⇣ [

�2G0

Z�
⌘
= IR(T ),

as required. ⇤

Observe that the inclusion ZclCn(T r) ⇢ T of Theorem 1.3.4(iv) may be a strict
inclusion, as explained by next example.

Example 1.3.5. Consider the field K := Q. Let Y ⇢ R be the Q
r
-algebraic

set 4
p
2. Consider the finite Galois extension E := Q(i, 4

p
2) of Q, observe that

deg(E : Q) = deg(Q( 4
p
2) : Q)·deg(Q(i) : Q) = 4·2 = 8. Observe that G := G(E : Q)

is completely determined by all the possible choices of permutations of the (complex)
roots of x4 � 2 which are compatible with the field operations of E. Then, an
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application of Algorithm 1.2.3 with input Z := ZclCn(Y ) gives the Q-algebraic set
T := { 4

p
2,� 4

p
2, i 4

p
2,�i 4

p
2} = {x 2 C |x4 � 2 = 0} ⇢ C as an output. Then,

T (R) = {x 2 C |x4 � 2 = 0} \ R = { 4
p
2,� 4

p
2} = {x 2 R |x2 �

p
2 = 0} and

ZclCn(T (R)) = {x 2 C |x2 �
p
2 = 0} = T (R)  T . ⌅

Simultaneous Galois completion. Let (Y1, . . . , Ys) such that Yi ⇢ Rn is
a K

r
-algebraic set for every i 2 {1, . . . , s}. We associate to (Y1, . . . , Ys) the s-

tuple (Z1, . . . , Zs) such that Zi ⇢ Cn is the Zariski closure of Yi in Cn for ev-
ery i 2 {1, . . . , s}. Observe that each Zi is a K

r
-algebraic subset of Cn, thus

in particular it is a K-algebraic subset of Cn. For every i 2 {1, . . . , s}, choose
gi1, . . . , giri 2 K[x] such that Zi = ZC(gi1, . . . , giri). Observe that, by Propo-
sitions 1.1.19(ii) & 1.2.15(ii), we can actually choose gi1, . . . , giri 2 K

r
[x] such

that Zi = ZC(gi1, . . . , giri). Choose any finite Galois subextension E|K of K|K
such that E contains all the coe�cients of the polynomials gi1, . . . , giri for every
i 2 {1, . . . , s}. Set G0 := G(E : K). Then, an application of Algorithm 1.2.10
with input (Z1, . . . , Zs) gives an output (T1, . . . , Ts), here Ti ⇢ Cn is the K-Zariski
closure of Zi in Cn. Since Zi := ZclCn(Yi), we have that Ti ⇢ Cn is the complex
Galois completion of Yi ⇢ Rn for every i 2 {1, . . . , s}. Let Ti(R) := Ti \ Rn ⇢ Rn

be the real Galois completion of Yi ⇢ Rn for every i 2 {1, . . . , s}. Consider the
s-tuples (T1, . . . , Ts) and (T1(R), . . . , Ts(R)). We call (T1, . . . , Ts) the complex Ga-
lois completion of (Y1, . . . , Ys) and (T1(R), . . . , Ts(R)) the real Galois completion of
(Y1, . . . , Ys) (with respect to the field extension C|K).

Galois presentation of a ‘real’ K-algebraic set and bad points. Let
X ⇢ Rn be a K-algebraic set. As in Section 1.2, our aim is to detect a minimal
algebraic set Y ⇢ Rn whose K-closure is X ⇢ R

n. Such algebraic subset Y of X
generating a Galois presentation of X is, in general, non unique, as explained below.
With respect to the complex case, the possible lack of dimension of the irreducible
components of the K-Zariski closure ZclK

Cn(X) ⇢ Cn of X ⇢ Rn when intersected
with Rn (see Theorem 1.3.4) forces us to develop a more sophisticated description.

Lemma 1.3.6. Let X ⇢ Rn be a K-irreducible K-algebraic set of dimension d
and let Y ⇢ Rn be an irreducible component of X of dimension d. Then:

(i) Y ⇢ Rn is a K
r
-irreducible component of X.

(ii) Let Z ⇢ Cn be the complexification of Y . Let G0 be a finite Galois group
and let {Z�}�2G0 be a family of algebraic subsets of Cn such that T :=S
�2G0 Z� is an output of Algorithm 1.2.3 with input Z ⇢ Cn. Thus, T and

T (R) are the complex and real Galois completion of Y , respectively. Then:
T (R) =

S
�2G0 Z�(R) = ZclK

Rn(Y ) = X and T =
S
�2G0 Z� = ZclK

Cn(X).
(iii) The family {Z�}�2G0 coincides with the family of all irreducible components

of T = ZclK
Cn(X). In particular, all the irreducible components of T have

dimension d.
(iv) Z� ⇢ Cn is a K-algebraic set and Z�(R) ⇢ Rn is a K

r
-algebraic set, for

every � 2 G0.

Proof. (i) As X ⇢ Rn is a K-algebraic set and Y is one of its irreducible
components, Corollary 1.1.20(iii) ensures that Y ⇢ Rn is aK-irreducibleK-algebraic
set.
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(ii) By Theorem 1.3.4(ii)(iv), we have T (R) = ZclK
Rn(Y ) ⇢ X and dim(T (R)) =

dim(Y ) = d. Thus, Theorem 1.3.1 ensures that dimK(T (R)) = dim(T (R)) =
d = dim(X) = dimK(X) and T (R) = X by Lemma 1.1.7. Again, by Theorem
1.3.4(ii)(iv) we have that T =

S
�2G0 Z� = ZclK

Cn(Y ). In addition, ZclK
Cn(Y ) =

ZclK
Cn(ZclRn(Y )) = ZclK

Cn(X), thus T = ZclK
Cn(X).

(iii) Since Y is irreducible, then Z := ZclCn(Y ) is irreducible as well by Propo-
sition 1.1.15(iii). Since T =

S
�2G0 Z�, Corollary 1.2.7(ii) ensures that {Z�}�2G0 is

the family of the irreducible components of T .

(iv) Let � 2 G := G(E : K). By Theorem 1.3.4(ii), Z� is a K-algebraic subset
of Cn. By Corollary 1.1.13, Z�(R) := Z� \ Rn is an algebraic subset of Rn. Let
us check that it is actually a K

r
-algebraic subset of Rn. Let h1, . . . , hs 2 K[x] such

that ZC(h1, . . . , hs) = Z�. Write hj := aj + ibj , for some aj , bj 2 K
r
[x], for every

j 2 {1, . . . , s}. Then Z�(R) = ZR(a1, b1, . . . , as, bs), as desired. ⇤

Preceding lemma allows us to introduce the definition of a Galois presentation
of a K-algebraic subset of Rn.

Definition 1.3.7. Let X ⇢ Rn be a K-algebraic set. Let (X1, . . . , Xs) be the
K-irreducible components of X listed in some order and let di := dim(Xi) for every
i 2 {1, . . . , s}. Let Yi ⇢ Rn be an irreducible component of Xi of dimension di and
denote by Zi ⇢ Cn the complexification of Yi ⇢ Rn, for every i 2 {1, . . . , s}. Let
G0 be a finite Galois group and let {Z�

i
}�2G0 be a family of algebraic subsets of

Rn such that X1 =
S
�2G0 Z�1 , . . . , Xs =

S
�2G0 Z�s and X =

S
s

i=1Xi are outputs of
Algorithm 1.2.10 with input Z1, . . . , Zs ⇢ Cn. We call the tuple

(Y1, . . . , Ys;G
0; {Z�1 }�2G0 , . . . , {Z�s }�2G0)

a Galois presentation of X ⇢ Rn and (Y1, . . . , Ys) the start of the presentation. To
shorten the notation we will refer to X =

S
s

i=1

S
�2G0 Z�i (R) as a Galois presentation

of X ⇢ Rn with start (Y1, . . . , Ys) := (Ze

1(R), . . . , Ze
s (R)), where e 2 G0 denotes the

identity. ⌅

Let us introduce the notion of K-bad point of a K-algebraic set X ⇢ Rn. This
concept will be useful in Section 1.5 in order to characterize what we will call ‘R|K-
regular and R|K-singular points’ of X ⇢ Rn.

Definition 1.3.8. Let X ⇢ Rn be a K-algebraic set of dimension d and let
X1, . . . , Xs be the K-irreducible components of X. Denote by di := dim(Xi), Ti :=
ZclK

Cn(Xi), {Ti1, . . . , Tisi} the family of irreducible components of Ti ⇢ Cn and
Ji := {j 2 {1, . . . , si} | dim(Tij(R)) < di}, for every i = 1, . . . , s. Define:

BK(Xi) :=
[

j2Ji

Tij(R) and BK(X) :=
s[

i=1

BK(Xi) =
s[

i=1

[

j2Ji

Tij(R).

We say that a point x 2 BK(Xi) is a K-bad point of Xi and BK(Xi) is the K-bad
set of Xi. Analogously, we say that a point x 2 BK(X) is a K-bad point of X and
BK(X) is the K-bad set of X. ⌅

Remark 1.3.9. Suppose K is a real closed field, X ⇢ Rn be a K-algebraic set of
dimension d and X1, . . . , Xs are the K-irreducible components of X. Since K is real
closed, by Corollary 1.1.20(ii), we have IR(Xi) = IK(Xi)R[x] = (fi1, . . . , fisi)R[x]
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for some fi1, . . . , fisi 2 K[x] and for every i 2 {1, . . . , s}. Observe that K :=
K[i] is a finite extension of K containing all the coe�cients of the polynomials
{fij}i2{1,...,s}, j2{1,...,si}, thus we can fix G := {e,�}, where e is the identity auto-

morphism and � : K ! K denotes the conjugation �(a + ib) := a � ib, for every
x = a + ib 2 K := K[i]. Denote by �� : C ! C an automoprhism extending �.
Let f 2 K[x], then there are a, b 2 K[x] such that f = a+ ib, then b��(f) = a� ib.
Hence:

Z�i (R) = ZC(b��(fi1), . . . , b��(fisi)) \Rn = ZC(fi1, . . . , fisi) \Rn

= ZR(fi1, . . . , fisi) = Xi

for every i 2 {1, . . . , s} and j 2 {1, . . . , si}. Then, dim(Z�
i
(R)) = dim(Xi) for every

i = {1, . . . , s}, BK(Xi) = ? for every i 2 {1, . . . , s} and BK(X) = ?. ⌅

1.4. Algebraic sets defined over K

Let R be a real closed field, let K be a (formally) real field and denote by  its
ordering. Denote by C := R[i] the algebraic closure of R. We say that R contains
K if R|K is an extension of fields and the ordering of R extends .

The aim of this section is to study and characterize those K-algebraic subsets of
Rn that behave as K-algebraic subsets of Cn. Recall that, by [Bou03, §V, Section
15, Proposition 5] and Hilbert’s Nullstellensatz, for every radical ideal a of K[x] the
following zero property in Cn is satisfied:

IC(ZC(a)) = aC[x].

In particular, if X ⇢ Cn is a K-algebraic set, then IK(X) is radical, so it has the
zero property in Cn. On the contrary, if X ⇢ Rn is a K-algebraic set, it is non
always guaranteed that IR(ZR(IK(X))) = IK(X)R[x].

Example 1.4.1. Consider K = Q, R be any real closed field and X := { 3
p
2} ⇢

R. Observe that X is a Q-algebraic set, indeed X = { 3
p
2} = {x3 = 2}. However,

IQ(X) = (x3�2), since x3�2 it is the minimal polynomial of 3
p
2, IR(X) = (x� 3

p
2),

by [BCR98, Theorem 4.5.1], but IQ(X)R[x] = (x3 � 2)R[x]  (x� 3
p
2) = IR(X). ⌅

In order to characterize those ideals a of K[x] having the zero property in Rn,
that is satisfying IR(ZR(a)) = aR[x], we start by introducing the concept of reliable
family of polynomials in K[x]. Observe that

Definition 1.4.2. Let {f1, . . . , fr} ⇢ K[x]. We say that the family of polyno-
mials {f1, . . . , fr} in K[x] is K-reliable if

IR(ZR(f1, . . . , fr)) = (f1, . . . , fr)R[x]

for every real closed field R containing K. If K = Q and {f1, . . . , fr} in Q[x] is
Q-reliable, we will say for short that {f1, . . . , fr} is reliable. ⌅

Lemma 1.4.3. Let {f1, . . . , fr} ⇢ K[x]. The following conditions are equivalent:

(i) The family {f1, . . . , fr} is K-reliable.
(ii) There exists a real closed field R containing K such that:

IR(ZR(f1, . . . , fr)) = (f1, . . . , fr)R[x].
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(iii) For each real closed field R containing K the ideal (f1, . . . , fr)R[x] is real.
(iv) There exists a real closed field R containing K such that (f1, . . . , fr)R[x] is

a real ideal of R[x].

Proof. Recall that an ideal a ⇢ R[x] is real if and only if IR(ZR(a)) = a

by Real Nullstellensatz [BCR98, Theorem 4.1.4], thus equivalences (i)() (iii) and
(ii)() (iv) are clear. Also implication (i)=) (ii) is clear, let us prove the converse
implication.

(ii)=) (i) As K is contained in R, we deduce that R|Kr|K is an extension of
fields. We first show that

I
K

r(Z
K

r(f1, . . . , fr)) = (f1, . . . , fr)K
r
[x]. (1.4.1)

Since the inclusion ‘�’ is always satisfied, we are only left to verify the converse
inclusion ‘⇢’. Let f 2 I

K
r(Z

K
r(f1, . . . , fr)), that is ZK

r(f1, . . . , fr) ⇢ Z
K

r(f). By
extending the coe�cients to R we get that

ZR(f1, . . . , fr) = (Z
K

r(f1, . . . , fr))R ⇢ (Z
K

r(f))R = ZR(f),

that is, f 2 IR(ZR(f1, . . . , fr)) = (f1, . . . , fr)R[x], by (ii). Thus, by [FG, Corollary
2.2.2], we have that f 2 (f1, . . . , fk)K

r
[x]. This concludes the proof of (1.4.1).

Let R1 be a real closed field that contains K. Let us check that

IR1(ZR1(f1, . . . , fr)) = (f1, . . . , fr)R1[x]. (1.4.2)

Denote by C1 := R1[i] the algebraic closure of R1. Observe that C|K|K is a field
extension, thus Corollary 1.1.13 and (1.4.1) ensure that

ZclCn
1
(Z

K
r(f1, . . . , fr)) = ZclCn

1
(Zcl

K
n(Z

K
r(f1, . . . , fr)))

= ZclCn
1
(Z

K
(f1, . . . , fr))

= (Z
K
(f1, . . . , fr))C1

= ZC1(f1, . . . , fr). (1.4.3)

In addition, we have

IC1(ZK
(f1, . . . , fr)) = (f1, . . . , fr)C1[x]. (1.4.4)

Indeed, by (1.4.1), (f1, . . . , fr)K
r
[x] is a radical ideal ofK

r
[x], so [Bou03, §V, Section

15, Proposition 5], Hilbert’s Nullstellensatz and (1.4.2) ensure that

IC1(ZK
(f1, . . . , fr)) = IC1(ZC1(f1, . . . , fr)) = (f1, . . . , fr)K

r
[x]C1[x]

= (f1, . . . , fr)C1[x].

Let f 2 IR1(ZR1(f1, . . . , fr)), then

Z
K

r(f1, . . . , fr) ⇢ (Z
K

r(f1, . . . , fr))R1 = ZR1(f1, . . . , fr)

⇢ ZR1(f) ⇢ ZC1(f).

Hence, (1.4.3) ensures that ZC1(f1, . . . , fr) ⇢ ZC1(f), that is,

f 2 IC1(ZC1(f1, . . . , fr)).

By (1.4.4) and Hilbert’s Nullstellensatz, the ideal (f1, . . . , fr)C1[x] of C1[x] is radical
and f 2

p
(f1, . . . , fr)C1[x] = (f1, . . . , fr)C1[x]. Hence, by [FG, Corollary 2.2.2], we

deduce that f 2 (f1, . . . , fr)R1[x], that is,

IR1(ZR1(f1, . . . , fr)) = (f1, . . . , fr)R1[x].
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This proves that the family {f1, . . . , fr} of K[x] is K-reliable. ⇤

Let us introduce the notion of real algebraic sets defined over K.

Definition 1.4.4. Let R be a real closed field that contains K and let X ⇢ Rn

be an algebraic set. We say that X is defined over K if there are polynomials
f1, . . . , fr 2 K[x] such that IR(X) = (f1, . . . , fr)R[x]. ⌅

Remark 1.4.5. Let X ⇢ Rn be an algebraic set defined over K, that is there are
polynomials f1, . . . , fr 2 K[x] such that IR(X) = (f1, . . . , fr)R[x], so in particular
X is K-algebraic since X = ZR(f1, . . . , fr). On the other hand, Example 1.4.1 shows
that K-algebraic subsets of Rn are not defined over K in general. ⌅

Next result characterizes algebraic subsets X of Rn which are defined over K.

Theorem 1.4.6. Let R be a real closed field that contains K and let X ⇢ Rn be
a K-algebraic set. The following conditions are equivalent:

(i) X ⇢ Rn is defined over K.
(ii) IR(X) = IK(X)R[x].
(iii) The complex Galois completion T of X ⇢ Rn coincides with the complexi-

fixation of X ⇢ Rn, that is ZclK
Cn(X) = ZclCn(X).

(iv) IR(X) = IR(T ).
(v) There exists a K-reliable family {f1, . . . , fr} ⇢ K[x] such that X = ZR(f1,

. . . , fr).
(vi) X(K

r
) ⇢ (K

r
)n is defined over K.

Proof. (i)() (ii) Implication (ii)=) (i) follows by choosing f1, . . . , fr 2 K[x]
such that (f1, . . . , fr) = IK(X). Let us prove the converse implication (i)=) (ii).
Let {f1, . . . , fr} ⇢ K[x] be a such that IR(X) = (f1, . . . , fr)R[x], then IK(X) =
(f1, . . . , fr)R[x] \K[x] = (f1, . . . , fr), thus (ii) follows.

(ii)() (iii)() (iv) Let T (R) := T \Rn be the real Galois completion of X ⇢
Rn. By Theorem 1.3.4(iv)(vi) we have that T (R) = ZclK

Rn(X) = X and IR(T ) =
IK(T (R))R[x] = IK(X)R[x]. By Proposition 1.2.15, T is the complexification of
T (R) if and only if IR(X) = IR(T ). Thus, IR(X) = IK(X)R[x] if and only if
IR(X) = IR(T ), or equivalently if and only if T = ZclCn(X).

(i)() (v) Implication (i)=) (v) follows directly from (iv)=) (i) of Lemma
1.4.3. Let us prove the converse implication (v)=) (i). Assume X = ZR(f1, . . . , fr)
for some K-reliable family {f1, . . . , fr} ⇢ K[x], then IR(X) = IR(ZR(f1, . . . , fr)) =
(f1, . . . , fr)R[x], that is, X is defined over K.

(ii) =) (vi) Assume that IR(X) = IK(X)R[x]. By Proposition 1.1.19(i), we
have that X = ZclRn(X(K

r
)) = ZclK

Rn(X(K
r
)), thus

X = ZclRn(X(K
r
)) ⇢ ZclK

r

Rn (X(K
r
)) ⇢ ZclKRn(X(K

r
)) = X.

Hence, we get X = ZclK
r

Rn (X(K
r
)). By Proposition 1.1.19(ii) we also have that

I
K

r(X) = I
K

r(X(K
r
)), thus IK(X(K

r
)) = I

K
r(X(K

r
))\K[x] = I

K
r(X)\K[x] =

IK(X). By [FG, Corollary 2.2.2], we have

I
K

r(X(K
r
)) = I

K
r(X) = IR(X) \K

r
[x] = IK(X)R[x] \K

r
[x]

= IK(X)K
r
[x] = IK(X(K

r
))K

r
[x],



1.4. ALGEBRAIC SETS DEFINED OVER K 35

so, by (ii)=) (i) applied to R := K
r
, we get that X(K

r
) ⇢ (K

r
)n is defined over

K.

(vi)=) (i) Assume that X(K
r
) ⇢ (K

r
)n is defined over K, that is, there are

{f1, . . . , fr} ⇢ K[x] such that I
K

r(X(K
r
)) = (f1, . . . , fr)K

r
[x]. By Proposition

1.1.19 (ii), we have that

IR(X) = I
K

r(X(K
r
))R[x] = ((f1, . . . , fr)K

r
[x])R[x] = (f1, . . . , fr)R[x],

as desired. ⇤
Corollary 1.4.7. Let {f1, . . . , fr} ⇢ K[x] be a K-reliable family and let R be

a real closed field that contains K. Then,

ZC(f1, . . . , fr) = ZclCn(ZR(f1, . . . , fr)) = ZclKCn(ZR(f1, . . . , fr)).

Proof. Since {f1, . . . , fr} ⇢ K[x] is a K-reliable family, Propositions 1.1.15(i)
& 1.2.15(ii) ensure that:

IK(ZR(f1, . . . , fr))C[x] = IC(ZclCn(ZR(f1, . . . , fr)))

= IR(ZR(f1, . . . , fr))C[x]

= ((f1, . . . , fr)R[x])C[x] = (f1, . . . , fr)C[x].

Hence the thesis follows. ⇤

Real K-algebraic sets vs real algebraic sets defined over K. The aim
of this subsection is to produce a way of determining whether a K-algebraic set
X ⇢ Rn is actually defined over K. Next result produces some equivalences for a
K-irreducible K-algebraic set X ⇢ Rn to be defined over K.

Theorem 1.4.8. Let X ⇢ Rn be a K-irreducible K-algebraic set of dimension d
and let X =

S
�2G0 Z�(R) be a Galois presentation of X (see Definition 1.3.7). The

following conditions are equivalent:

(i) X ⇢ Rn is defined over K.
(ii) IR(Z�) is a real ideal of R[x] for every � 2 G0.
(iii) Z� ⇢ Cn is the complexification of Z�(R) for every � 2 G0.
(iv) dim(Z�(R)) = d for every � 2 G0.

Proof. Let Y be the start of the Galois presentation X =
S
�2G0 Z�(R) of X,

let T :=
S
�2G0 Z� be the complex Galois completion for Y ⇢ Rn and let T (R) be

the real Galois completion of Y ⇢ Rn. Recall that, by Lemma 1.3.6, we have that
T = ZclK

Cn(X) and T (R) = X.

(i)=) (ii) Assume that X ⇢ Rn is defined over K. Theorem 1.4.6 ensures that
IR(X) = IR(T ) and T ⇢ Cn is the complexification of X, that is T = ZclK

Cn(X) =
ZclCn(X). Since Y ⇢ Rn is irreducible, its complexification Z = ZclCn(Y ) ⇢ Cn

is irreducible as well by Proposition 1.2.15(iii), that is, the ideal IC(Z) of C[x] is
prime. As a consequence, by Theorem 1.3.4(ii), we have that IC(Z�) is prime for
every � 2 G0, thus IR(Z�) = IC(Z�)\R[x] is a prime ideal of R[x] for every � 2 G0.
Since T :=

S
�2G0 Z� and IR(X) = IR(T ), we have that IC(T ) =

T
�2G0 IC(Z�)
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and

IR(X) = IR(T ) = (
\

�2G0

IC(Z�)) \R[x]

=
\

�2G0

(IC(Z�) \R[x]) =
\

�2G0

IR(Z�). (1.4.5)

Thus, (1.4.5) and [AM69, Proposition 1.11], the minimal prime ideas of IR(X) in
R[x] is a subfamily of {IR(Z�)}�2G0 . As IR(X) is a real ideal of R[x], each minimal
prime ideal associated to IR(X) is real as well by [BCR98, Lemma 4.1.5]. Define

F0 := {� 2 G0 | IR(Z�) is a real ideal ofR[x]}
and choose a subset F of F0 such that {IR(Z�)}�2F = {IR(Z�)}�2F0 but IR(Z�) 6=
IR(Z⌧ ) for every �, ⌧ 2 F with � 6= ⌧ . In particular,

IR(X) =
\

�2F
IR(Z�).

Now we prove that F0 = G0. Suppose that there is some ⌧ 2 G0 \ F0, that is,
there is some ⌧ 2 G0 such that IR(Z⌧ ) is not a real ideal of R[x]. Then, a fortiori,
IR(Z⌧ ) is not a minimal prime ideal of IR(X) and

T
�2F IR(Z�) ⇢ IR(Z⌧ ). By

[AM69, Proposition 1.11], there exists � 2 F such that IR(Z�) ⇢ IR(Z⌧ ). Thus,
Proposition 1.2.15 ensures that

IC(Z�) = IR(Z�)C[x] ⇢ IR(Z⌧ )C[x] ⇢ IC(Z⌧ ),
so Z⌧ ⇢ Z�. By Theorem 1.2.5(i) we have that dimC(Z�) = d = dimC(Z⌧ ), that
is, Z� = Z⌧ , since Z� ⇢ Cn is irreducible. This leads to the contradiction that
IR(Z⌧ ) = IR(Z�) is a real ideal of R[x]. This proves that F0 = G0, as desired.

(ii)() (iii)() (iv) Since Z� is irreducible and dimC(Z�) = d for every � 2 G0,
previous equivalences follow directly from equivalences of Proposition 1.2.15 and
Corollary 1.2.16(ii)(iii).

(iv)=) (i) Assume that dim(Z�(R)) = d = dimC(Z�) for every � 2 G0. By
Proposition 1.2.15, we have that IR(Z�(R)) = IR(Z�), for every � 2 G0. Since
X = T (R) =

S
�2G0 Z�(R), we have that

IR(X) = IR(T (R)) = IR(
[

�2G0

Z�(R))

=
\

�2G0

IR(Z�(R)) =
\

�2G0

IR(Z�) = IR(T ).

Hence, Theorem 1.2.5(vi) ensures that IR(T ) = IK(T (R))R[x] = IK(X)R[x], so
we get that IR(X) = IK(X)R[x]. By equivalence (i)() (ii) of Theorem 1.4.6 we
conclude that X is defined over K. ⇤

Next result reduces the problem of understanding whether a K-algebraic set
X ⇢ Rn is defined over K by looking at its K-irreducible components.

Theorem 1.4.9. Let X ⇢ Rn be a K-algebraic set and let X1, . . . , Xs be the
K-irreducible components of X. Then, X ⇢ Rn is defined over K if and only if
Xi ⇢ Rn is defined over K for every i 2 {1, . . . , s}.
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Proof. Suppose that Xi ⇢ Rn is defined over K for every i 2 {1, . . . , s}.
By Theorem 1.4.6 we have that IR(Xi) = IK(Xi)R[x] = IK(Xi) ⌦K R for every
i 2 {1, . . . , s}, then

IR(X) =
\

�2G0

IR(Xi)R[x] =
\

�2G0

(IK(Xi)⌦K R) =

=
⇣ \

�2G0

(IK(Xi)
⌘
⌦K R = IK(X)⌦K R = IK(X)R[x].

Let us prove the converse implication. Here we adapt the technique adopted
in the proof of implication (i)=) (ii) of Theorem 1.4.8 to the K-reducible setting.
Assume that X ⇢ Rn is defined over K, that is, IR(X) = IK(X)R[x]. Let Yi be an
irreducible component of Xi of dimension dim(Xi) and let Zi := ZclCn(Yi), for every
i 2 {1, . . . , s}. Let X =

S
s

i=1

S
�2G0 Z�(R) be a Galois presentation of X ⇢ Rn with

start (Y1, . . . , Ys) (see Definition 1.3.7). By Theorem 1.3.4 for every � 2 G0 there is
a ring automorphism b�� : C[x] ! C[x] such that b��(IC(Zi)) = IC(Z�i ) for every
i 2 {1, . . . , s}. In particular, if T and T (R) denotes the complex and real Galois
completions of

S
s

i=1 Yi ⇢ Rn, respectively, then

T = ZclKCn(
s[

i=1

Yi) =
s[

i=1

ZclKCn(Yi) =
s[

i=1

Ti =
s[

i=1

[

�2G0

Z�i ,

T (R) = ZclKRn(
s[

i=1

Yi) =
s[

i=1

ZclKRn(Yi) =
s[

i=1

Ti(R) =
s[

i=1

Xi = X,

where Ti and Ti(R) denote the complex and real Galois completions of Yi ⇢ Rn,
respectively, for every i 2 {1, . . . , s}. By Theorem 1.3.4(vi), we have that IR(T ) =
IK(T r)R[x] = IK(X)R[x]. In addition, IR(X) = IR(T ) since IR(X) = IK(X)R[x],
thus

IR(X) =
s\

i=1

\

�2G0

IR(Z�i ).

Since Yi ⇢ Rn is irreducible, Z�
i

⇢ Cn is irreducible as well, that is, IC(Z�i )
is a prime ideal of C[x], thus IR(Z�i ) = IC(Z�i ) \ R[x] is prime as well, for every
i 2 {1, . . . , s} and � 2 G0. Since IR(X) is a real ideal of R[x], each minimal prime
ideal associated to IR(X) is a real ideal of R[x]. Define

F0 := {(i,�) 2 {1, . . . , s}⇥G0 | IR(Z�i ) is a real ideal ofR[x]}
and choose a subset F of F0 such that {IR(Z�i )}(i,�)2F = {IR(Z�i )}(i,�)2F0

and
IR(Z�i ) 6= IR(Z⌧j ), for every (i,�), (j, ⌧) 2 F with (i,�) 6= (j, ⌧). In particular,

IR(X) =
\

(i,�)2F

IR(Z�i ).

Here we prove that F0 = {1, . . . , s}⇥G0. Suppose that there is (j, ⌧) 2 {1, . . . , s}⇥G0

such that IR(Z⌧j ) is not a real ideal of R[x], then it is not a minimal ideal of IR(X)
and \

(i,�)2F

IR(Z�i ) ⇢ IR(Z⌧j ).
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Thus, there is some (i,�) 2 F such that IR(Z�i ) ⇢ IR(Z⌧j ) and Proposition 1.2.15
ensures that

IC(Z�i ) = IR(Z�i )C[x] ⇢ IR(Z⌧j )C[x] ⇢ IC(Z⌧j ).
Observe that i 6= j. Otherwise, since Z⌧

i
⇢ Z�

i
, Z�

i
is irreducible and dimC(Z�i ) =

dim(Xi) = dimC(Z⌧i ), we get that Z⌧
i
= Z�

i
, but this leads to a contradiction since

IR(Z�i ) is a real ideal of R[x], whereas IR(Z⌧i ) is not. So, assume i 6= j. Set
⌫ := ⌧�1 � � 2 G0, then

IC(Z⌫i ) = e�⌧�1(IC(Z�i )) ⇢ e�⌧�1(IC(Z⌧j )) = IC(Zj),

so Zj ⇢ Z⌫
i
and Yj = Zj(R) ⇢ Z⌫

i
(R) ⇢ Ti(R) = Xi. Thus, by Lemma 1.3.6, we

have that Xj = ZclK
Rn(Yi) ⇢ Xi, which is impossible.

This completes the proof that F0 = {1, . . . , s} ⇥ G0, that is, IR(Z�i ) is a prime
ideal of R[x] for every (i,�) 2 {1, . . . , s} ⇥ G0. Hence, implication (ii)=) (i) of
Theorem 1.4.8 ensures that Xi ⇢ Rn is defined over K for every i 2 {1, . . . , s}. ⇤

Latter two theorems have the following direct consequence.

Corollary 1.4.10. Let X ⇢ Rn be a K-algebraic set, let X1, . . . , Xs be the K-
irreducible components of X and let X =

S
s

i=1

S
�2G0 Z�(R) be a Galois presentation

of X ⇢ Rn. The following conditions are equivalent:

(i) X ⇢ Rn is defined over K.
(ii) IR(Z�i ) is a real ideal of R[x] for every i 2 {1, . . . , s} and � 2 G0.
(iii) Z�

i
is the complexification of Z�

i
(R) for every i 2 {1, . . . , s} and � 2 G0.

(iv) dim(Z�
i
(R)) = dim(Xi) for every i 2 {1, . . . , s} and � 2 G0.

In particular, if X ⇢ Rn is defined over K, then BK(X) = ?.

1.5. Regular and singular points of K-algebraic sets

Throughout this section, L|E|K denotes a field extension in which L is either
real closed or algebraically closed. Denote by E

•
the algebraic closure of E in L,

thus if L is algebraically closed, then E
•
= E, otherwise if L is real closed, then

E
•
= E

r
. We will frequently use Corollary 1.2.8 and Theorem 1.3.1 without explicit

mentions.

Let a := (a1, . . . , an) 2 Ln, let eva : E[x] ! L defined as eva(f) := f(a) be
the evaluation homomorphism and let nE,a := {f 2 E[x] | f(a) = 0} be the kernel
of eva. Then, nE,a is a prime ideal of E[x] and nE,a = (0) if and only if a1, . . . , an
are algebraically independent over E. In addition, nE,a is maximal if and only if
E[a1, . . . , an] = eva(E[x])/nE,a has dimension 0. By [Mat80, (14G) Corollary 1,
p. 91], we have that the latter condition is equivalent to the fact that a1, . . . , an are
algebraic over E, that is:

nE,a is a maximal ideal of E[x] if and only if a 2 (E
•
)n.

Latter condition shows that a definition of local dimension of a K-algebraic set of
X ⇢ Ln at a 2 X with respect to the field extension E|K will be defined only at a
point a 2 X(E

•
) := X \ (E

•
)n.

Let us introduce the fundamental definition of E|K-regular points.
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Definition 1.5.1 (E|K-regular points). Let X ⇢ Ln be a K-algebraic set and

let a 2 X(E
•
). We define the E|K-local ring RE|K

X,a
of X at a as

RE|K
X,a

:= E[x]nE,a/(IK(X)E[x]nE,a),

where nE,a := {f 2 E[x] | f(a) = 0} denotes the maximal ideal of polynomials
in E[x] vanishing at a 2 (E

•
)n. We say that a is a E|K-regular point of X of

dimension e if RE|K
X,a

is a regular local ring of dimension e. If a is a E|K-regular
point of X of dimension d := dimK(X), we say that a is a E|K-regular point of
X. We denote by RegE|K(X, e) the set of E|K-regular point of X of dimension e
and by RegE|K(X) := RegE|K(X, d) the set of E|K-regular point of X. We define
SingE|K(X) := X(E

•
) \ RegE|K(X) and we say that a 2 SingE|K(X) is an E|K-

singular point of X.

If E = K, we simplify the notations by omitting ‘E’, that is:

RK

X,a := RK|K
Xa

= K[x]nK,a/IK(X)K[x]nK,a

is the K-local ring of X at a, a K-regular point of X (of dimension e) is a K|K-
regular point of X (of dimension e), RegK(X, e) := RegK|K(X, e), RegK(X) :=
RegK|K(X), SingK(X) := SingK|K(X) and a K-singular point of X is a K|K-
singular point of X. ⌅

Remark 1.5.2. Let X ⇢ Ln be a K-algebraic set of dimension d.

(i) If L = E = K, the notions of Definition 1.5.1 reduces to the classical
ones. Indeed, for every a 2 (E

•
)n = Ln, we have that RK

X,a
= RL

X,a
=

RX,a, thus a L-regular point of X (of dimension e) is a regular point of
X (of dimension e), a L-singular point of X is a L-singular point of X,
RegL(X, e) = Reg(X, e), RegL(X) = Reg(X) and SingK(X) = Sing(X)
are the usual sets of regular and singular points of an algebraic set X ⇢ Ln.
For explicit definitions of those classical objects we refer to [BCR98, Section
3.3].

(ii) Observe that, for every field extension L|E|K, we have the usual inclusion
of regular points of X ⇢ Ln of dimension e < d := dimK(X) in the set of
singular ones, that is, RegE|K(X, e) ⇢ SingE|K(X) for every e < d. ⌅

An important case of study is E = K. Localizations of the ring K[x], completion
of the residue field K[x]nK,a and a K-Jacobian criterion are useful tools developed
in [FG, Sections 4.1& 4.2] in order to study properties of K-regular points of a
K-algebraic set X ⇢ Ln and their relations with global properties of X ⇢ Ln.
An important result which clarifies the relation between K-regular points and K-
irreducible components of a K-algebraic set X ⇢ Ln is [FG, Corollary 4.2.2]. In
Section 1.6 we prove a similar statement in the case E = L which will be crucial in
next chapters.

Regular and R|K-regular points. Let X ⇢ Ln be a K-algebraic set. The
question we are going to answer is whether the polynomial ringK[x]/IK(X) provides
enough information to understand the properties of X also as a L-algebraic set. If
L is algebraically closed we know that IL(X) = IK(X)L[x], thus the ideal IK(X)
provides full information about regular and singular points of X. On the other hand,
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if L is real closed, we saw that equality IL(X) = IK(X)L[x] holds true if and only
if X is defined over K (see Theorem 1.4.6), thus we can not expect in general that
the ideal IK(X) provides full information about regular and singular points of X.
The aim of this section is to study the set of those regular points of X ⇢ Ln that are
described by the ideal IK(X). Thus, throughout this section L = R is a real closed
field containing K and C := R[i] denotes the algebraic closure of R.

Let us specify some notations introduced in Definition 1.5.1 to the case L = E =
R. For every a = (a1, . . . , an) 2 Rn := (E

r
)n denote by

na := nR,a = {f 2 R[x] | f(a) = 0} = (x� a1, . . . , x� an).

Observe that the latter equality holds since L = R = E. Then, as explained in
Remark 1.5.2, we denote by:

RX,a := RR

X,a = R[x]na/IR(X)R[x]na ,

Reg(X) := RegR(X),

Sing(X) := SingR(X) = X \ Reg(X).

In addition, let us shorten the notation of R|K-local ring, R|K-regular and R|K-
singular points as follows:

R⇤
X,a := RR|K

X,a
= R[x]na/IK(X)R[x]na ,

Reg⇤(X) := RegR|K(X),

Sing⇤(X) := SingR|K(X) = X \ Reg⇤(X).

Let X1, . . . , Xs be the K-irreducible components of X and let X1, . . . , Xr be
those K-irreducible components of X of maximal dimension, that is dim(Xi) =
dim(X), for every i 2 {1, . . . , r}, and dim(Xi) < dim(X), for every i 2 r + 1, . . . , s.
Since regular rings are in particular integral domains and the dimensions of local-
izations of a Noetherian ring is smaller than or equal to the dimension of the ring,
we get that:

Sing(X) =
r[

i=1

Sing(Xi) [
⇣ [

i,j2{1,...,r}, i 6=j

(Xi \Xj)
⌘
[

s[

j=r+1

Xj , (1.5.1)

Sing⇤(X) =
r[

i=1

Sing⇤(Xi) [
⇣ [

i,j2{1,...,r}, i 6=j

(Xi \Xj)
⌘
[

s[

j=r+1

Xj , (1.5.2)

where
S

s

j=r+1Xi = ? if r = s. Thus, to compare Sing(X) and Sing⇤(X) we can
assume that X is K-irreducible. In next result we see how the set of bad points
BK(X) (see Definition 1.3.8) comes into play.

Theorem 1.5.3. Let X ⇢ Rn be a K-irreducible K-algebraic set of dimension
d. Then:

(i) Reg⇤(X) is a non-empty Zariski open subset of X, Reg⇤(X) ⇢ Reg(X) and

Reg⇤(X) = {a 2 X |R⇤
X,a is a regular local ring}.

(ii) Sing⇤(X) is an algebraic subset of Rn of dimension < d. In addition,
Sing⇤(X) = Sing(X) [ BK(X) and both Sing⇤(X) and BK(X) are K

r
-

algebraic subsets of Rn.
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Proof. We divide the proof into several steps for sake of clarity.

STEP I. Galois presentation of X. Let X =
S
�2G0 Z�(R) be a Galois presenta-

tion of X ⇢ Rn with start Y ⇢ Rn. Denote by T :=
S
�2G0 Z� ⇢ Cn and T (R) ⇢ Rn

the complex and the real Galois completions of Y , respectively. By Lemma 1.3.6(ii),
we have that X = T (R).

STEP II. Construction of the set S of ‘all bad points’. Choose a subset F of G0

such that {Z�}�2F = {Z�}�2G0 and Z� 6= Z⌧ for every �, ⌧ 2 F with � 6= ⌧ . By
Theorem 1.3.4(iv)(v)(vi), we know that IR(T ) = IK(T (R))R[x] = IK(X)R[x], thus

IK(X)R[x] =
\

�2F
IR(Z�), (1.5.3)

IR(X) =
\

�2F
IR(Z�(R)). (1.5.4)

Recall that, by Lemma 1.3.6(iii)(iv), Z� ⇢ Cn is an irreducible K-algebraic set and
Z�(R) ⇢ Rn is K

r
-algebraic for every � 2 G0. In particular, the complexification

Z := ZclCn(Y ) = Ze of Y is irreducible, where e 2 G0 denotes the identity, and
IC(Z�) is a prime ideal of C[x] for every � 2 G0. Hence, the ideal IR(Z�) =
IC(Z�) \R[x] of R[x] is prime as well for every � 2 G0.

Define F ⇤ := {� 2 F | dim(Z�(R)) < dimC(Z�)(= dim(X))}. Then, IR(Z�)  
IR(Z�(R)), for every � 2 F ⇤. On the other hand, if � 2 F \ F ⇤, then

dim(Z�(R)) = dimC(Z
�) = dimC(Z) = dim(Y ) = d,

thus, Corollary 1.1.16 and Proposition 1.2.15 ensure that Z�(R) ⇢ Rn is an irre-
ducible algebraic set of dimension d such that Z� = ZclC(Z�(R)) and IR(Z�) =
IR(Z�(R)). In particular, Z�(R) 6= Z⌧ (R) for every �, ⌧ 2 F \ F ⇤ with � 6= ⌧ .
As X =

S
�2G0 Z�(R) and dim(Z�(R)) < dim(Z�) = d for every � 2 F ⇤, Lemmas

1.1.4(ii) & 1.1.7 ensure that {Z�(R)}�2F\F ⇤ is the set of all irreducible components
of X ⇢ Rn of dimension d.

Define:

S0 := BK(X) =
[

�2F ⇤

Z�(R),

S1 :=
[

�,⌧2F\F ⇤,� 6=⌧

(Z� \ Z⌧ )(R),

S := S0 [ S1.

Observe that S0, S1, S ⇢ Rn are K
r
-algebraic sets.

STEP III. The local rings R⇤
X,a

and RX,a are not regular for every a 2 S1. Let

a 2 S1 and let �, ⌧ 2 F \ F ⇤, with � 6= ⌧ , be such that a 2 (Z� \ Z⌧ )(R) =
Z�(R) \ Z⌧ (R). Choose f 2 R[x] so that ZR(f) = Z�(R). We construct g 2
(
S
⇠2F\{�} IR(Z⇠)) \ IR(Z�). Let x 2 Z�(R) \

S
⇠2F\{�} Z

⇠(R). By Corollary

1.2.16(i), for every ⇠ 2 F \ {�} there is g⇠ 2 IR(Z⇠) such that g⇠(x) 6= 0. De-
fine g :=

Q
⇠2F\{�} g⇠.

Since Z�(R) = ZR(f) and Z⌧ are distinct irreducible components of X of the
same dimension d and Z⌧ (R) ⇢ ZR(g), we deduce that f /2 IR(Z⌧ (R)) = IR(Z⌧ )
and g /2 IR(Z�(R)) = IR(Z�). Thus, f, g /2 IR(X) and f, g /2 IK(X)R[x]. Then,
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(1.5.3) & (1.5.4) ensure that f

1 ,
g

1 /2 IR(X)R[x]na and f

1 ,
g

1 /2 IK(X)R[x]na . However,
fg 2 IR(X)R[x]na and fg 2 IK(X)R[x]na , thus both RX,a and R⇤

X,a
are not integral

domains, hence, a fortiori, they are not regular local rings.

As a consequence, S1 ⇢ Sing(X) \ Sing⇤(X).

STEP IV. The local ring R⇤
X,a

is not regular for every a 2 S0 = BK(X). Let
a = (a1, . . . , an) 2 S0 and suppose that R⇤

X,a
is a regular local ring. Let � 2 F ⇤ so

that a 2 Z�(R). Since dim(Z�(R)) < dimC(Z�), Proposition 1.2.15 ensures that
the ideal IR(Z�) ⇢ na of R[x] is non-real, so the prime ideal IR(Z�)R[x]na of R[x]na
is non-real as well. As R⇤

X,a
:= R[x]na/IK(X)R[x]na is a regular local ring, R⇤

X,a
is

in particular an integral domain, thus the ideal IK(X)R[x]na of R[x]na is prime. As
a consequence, there is a unique prime ideal p of R[x] associated to IK(X)R[x] that
is contained in na, thus

IK(X)R[x]na = pR[x]na .

Let q1, . . . , qs ⇢ R[x] be the minimal prime ideals associated to r
p
p. By [BCR98,

Lemma 4.1.5], qk is a real ideal of R[x] for every k 2 {1, . . . , s}, r
p
p is a radical ideal

and r
p
p =

T
s

k=1 qk. Up to reorder the ideals q1, . . . , qs ⇢ R[x], let t 2 {1, . . . , s}
such that exactly q1, . . . , qt ⇢ na and ht(

T
t

k=1 qk) = ht(q1). Then, the prime ideal
qkR[x]na is real and ht(

T
t

k=1 qkR[x]na) = ht(qk) for every k 2 {1, . . . , t}. Moreover,
r
p
pR[x]na =

T
t

k=1 qkR[x]na and ht( r
p
pR[x]na) = ht(q1R[x]na) = ht(q1). In particu-

lar, the Zariski open neighborhood U := Rn \
S

s

k=t+1ZR(qk) of a in Rn satisfies

ZR( r
p
p) \ U = ZR(

t\

k=1

qk) \ U. (1.5.5)

Since R⇤
X,a

is a regular local ring, [ZS75, Theorem 26, p. 303] ensures that there
is a system of generators {f1, . . . , f`} of IK(X)R[x]na in R[x]na whose classes modulo
n
2
a are linearly independent and ` = ht(IK(X)R[x]na) = ht(pR[x]na). We may also

assume that

det
⇣ @fi
@xj

(a)
⌘

i,j2{1,...,`}
6= 0,

so the K-polynomial map Rn ! Rn defined by

x := (x1, . . . , xn) 7! (f1(x), . . . , f`(x), x`+1 � a`+1, . . . , xn � an)

defines, by the inverse function theorem [BCR98, Proposition 2.9.7], a Nash dif-
feomorphism ' : V ! U 0 between semialgebraic open neighborhoods V ⇢ Rn and
U 0 ⇢ Rn of the origin of Rn and of a in Rn, respectively. Up to shrink V and U 0 if
necessary, we may suppose that U 0 ⇢ U ,

'(({0}⇥Rn�`) \ V ) = ZR(f1, . . . , f`) \ U 0 = ZR( r
p
p) \ U 0

and n � ` = dim(ZR(f1, . . . , f`) \ U 0) = dim(ZR( r
p
p) \ U 0). In addition, (1.5.5)

implies that

n� ht(pR[x]na) = n� ` = dim(ZR( r
p
p) \ U 0)  dim(ZR( r

p
p) \ U)

= dim(ZR(
t\

k=1

qk) \ U) = dim(ZR(
t\

k=1

qk))
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= n� ht(
t\

k=1

qk) = n� ht(q1) = n� ht(q1R[x]na)

= n� ht( r
p
pR[x]na)  n� ht(pR[x]na),

that is, ht(pR[x]na) = ht(q1R[x]na) and IK(X)R[x]na = pR[x]na = q1R[x]na is a
prime ideal of R[x]na . As

T
⌧2F IR(Z⌧ )R[x]na = IK(X)R[x]na , there exists ⌧0 2

F \ {�} so that IR(Z⌧0)R[x]na = IK(X)R[x]na . In addition, since IR(Z�)R[x]na is a
non-real ideal of R[x]na , we get that IR(Z⌧0)R[x]na  IR(Z�)R[x]na , so in particular
IR(Z⌧0)  IR(Z�). Recall that IR(Z⌧0) is a prime ideal of R[x], thus Proposition
1.2.15 ensures that

IC(Z⌧0) = IR(Z⌧0)C[x] ⇢ IR(Z�)C[x] ⇢ IC(Z�),
that is, Z� ⇢ Z⌧0 . Recall that, by Lemma 1.2.12(iii), dimC(Z�) = d = dimC(Z⌧0),
thus, being Z� irreducible, we deduce that Z� = Z⌧0 . This leads into a contradiction
since IR(Z⌧0) is a real ideal of R[x], whereas IR(Z�) is not. We conclude that R⇤

X,a

is not regular.

STEP V. The local rings R⇤
X,a

and RX,a coincide and are regular of dimension d
for every a 2 X \S. Let a 2 X \S. By definition of S0, S1 and S := S0[S1, we have
that a 2 X \S0 ⇢

S
�2F\F ⇤ Z�(R) and a 2 X \S1, thus there is a unique � 2 F \F ⇤

such that a 2 Z�(R) \ S. In particular, IR(Z�) = IR(Z�(R)). Let ⌧ 2 F \ {�}.
As a /2 Z⌧ (R), there exists a polynomial h 2 IC(Z⌧ ) such that h(a) 6= 0. Let
h1, h2 2 R[x] so that h = h1 + ih2 and consider h0 := h1 � ih2 2 C[x]. As a 2 Rn,
also h0(a) 6= 0, thus hh0(a) 6= 0 and hh0 2 IR(Z⌧ ). Latter properties prove that
IR(Z⌧ ) 6⇢ na. As a consequence, also IR(Z⌧ (R)) 6⇢ na, for every ⌧ 2 F \ {�}. In
addition, by (1.5.3) & (1.5.4) we have that

IK(X)R[x]na = IR(Z�)R[x]na = IR(Z�(R))R[x]na = IR(X)R[x]na ,

that is, R⇤
X,a

= RX,a.

Since � 2 F \ F ⇤, we have that Z�(R) ⇢ Rn is an irreducible algebraic set of
dimension d, thus the ideal IR(Z�(R))R[x]na = IR(Z�)R[x]na of R[x]na is prime.
Thus, by [AM69, Corollary 3.13], we have ht(IR(Z�(R))) = ht(IR(Z�(R)))R[x]na
and

d = dim(Z�(R)) = dim(R[x]/IR(Z�(R))) = n� ht(IR(Z�(R)))

= n� ht(IR(Z�(R))R[x]na) = n� ht(IR(X)R[x]na) = dim(RX,a).

STEP VI. Proof of statements (i) & (ii). Evidently, we have

Reg⇤(X) ⇢ {a 2 X |R⇤
X,a is a regular local ring}

and, by STEP V, also X \ S ⇢ Reg⇤(X). Let a 2 X so that R⇤
X,a

is a regular
local ring. By STEPS III & IV, a 2 X \ S, and then by STEP V again the ring
R⇤

X,a
has dimension d, that is, a 2 Reg⇤(X) if and only if a 2 Reg(X). This

proves that Reg⇤(X) = {a 2 X |R⇤
X,a

is a regular local ring} = Reg(X)\S = X \S.
As a consequence, Sing⇤(X) = Sing(X) [ S and, since S1 ⇢ Sing(X), we have that
Sing⇤(X) = Sing(X)[S0 = Sing(X)[BK(X). Observe that X ⇢ Rn is K-algebraic
set thus, Proposition 1.1.19 ensures that IR(X) = I

K
r(X)R[x]. As a consequence,

Sing(X) ⇢ Rn is a K
r
-algebraic set by [BCR98, Proposition 3.3.10]. Recall that, by

STEP II, S ⇢ Rn is a K
r
-algebraic set, thus also Sing⇤(X) ⇢ Rn is a K

r
-algebraic
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set. We are only left to prove that Reg⇤(X) is non-empty. This follows since both
S and Sing(X) are K

r
-algebraic subsets of Rn of dimension < d. ⇤

Last theorem is sharp, that is, there are K-algebraic subsets X of Rn such that
Sing(X)  Sing⇤(X), as explained by next example.

Example 1.5.4. Consider the field extension R|Q, where R is any real closed
field. Denote by C := R[i] the algebraic closure of R. LetX ⇢ R2 be the nonsingular
Q-algebraic set defined as X := {(x1, x2) 2 R2 |x32 � 2x31 = 0}. Observe that
IR(X) = (x2 � 3

p
2x1), by [BCR98, Theorem 4.5.1], thus X ⇢ R2 is irreducible and

in particular it is also Q-irreducible. Let Z := ZclCn(X) ⇢ C2. By Proposition
1.1.19, we have that IC(Z) = IR(X)C[x] = (x2 � 3

p
2x1)C[x], thus Z = {(x1, x2) 2

C2 |x2 � 3
p
2x1 = 0}. Let E be a finite Galois extension of Q containing 3

p
2. For

instance, fix E := Q( 3
p
2,!), where ! 2 C \R is a solution of the polynomial z3 = 1.

Observe that deg(Q( 3
p
2,!)|Q) = deg(Q( 3

p
2,!)|Q( 3

p
2)) · deg(Q( 3

p
2)|Q) = 2 · 3 = 6

and G0 := G(Q( 3
p
2,!)|Q) coincides with the symmetric group S3 of order 6.

Then, an application of Algorithm 1.2.3 with input Z ⇢ C2 gives as an output
the complex and real Galois completions of X, respectively:

T =
2[

k=0

{(x, y) 2 C2 | y � 3
p
2!k = 0} = {(x, y) 2 C2 | y3 � 2x3 = 0},

T (R) =
2[

k=0

{(x, y) 2 R2 | y � 3
p
2!k = 0} = X [ {(0, 0)} [ {(0, 0)}

Observe that in above definitions of T and T (R) we omitted the repetitions occurring
by the action of G0. This proves that BQ(X) = {(0, 0)}, thus by Theorem 1.5.3(ii),
we have that

Sing(X) = ?  {(0, 0)} = BK(X) = BK(X) [ Sing(X) = Sing⇤(X). ⌅

1.6. K-Determined K-algebraic sets

Throughout this section R|K denotes a field extension in which R is a real closed
field containing K. In this section we study those K-algebraic subsets X ⇢ Rn such
that Reg⇤(X) = Reg(X) or, equivalently, Sing⇤(X) = Sing(X). Those K-algebraic
sets are particularly interesting when considering the field extension R|Q in next
chapters.

Definition 1.6.1. Let X ⇢ Rn be a K-algebraic set. We say that X is K-
determined if Reg⇤(X) = Reg(X) or, equivalently, Sing⇤(X) = Sing(X). If in
addition X is nonsingular, that is, Reg⇤(X) = Reg(X) = X, then we say that X is
K-nonsingular. ⌅

Remark 1.6.2. Let X ⇢ Rn be a K-algebraic set. By Theorem 1.5.3(ii), we
have that Sing⇤(X) = Sing(X)[BK(X), thus X ⇢ Rn is K-determined if and only
if BK(X) ⇢ Sing(X). In particular, by Corollary 1.4.10, if X ⇢ Rn is defined over
K, then X is K-determined. In particular, if K is real closed, Remark 1.3.9 enures
that X ⇢ Rn is also K-determined. ⌅
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First we relate the property of a K-algebraic set X ⇢ Rn to be K-determined
with properties of its irreducible components. As we will see, K-determinacy of
X ⇢ Rn does not reduce to K-determinacy of its K-irreducible components.

Lemma 1.6.3. Let X ⇢ Rn be a K-algebraic set of dimension d. Let X1, . . . , Xs

be the K-irreducible components of X. Let X1, . . . , Xr be the K-irreducible compo-
nents of X of dimension d. Then the following are equivalent:

(i) X is K-determined;
(ii) Reg(X) ⇢

S
r

i=1Reg
⇤(Xi).

Proof. By equations (1.5.1) & (1.5.2), we have that Sing⇤(X) = Sing(X) if
and only if

Sing⇤(Xi) ⇢ Sing(Xi) [
⇣ [

j2{1,...,r}\{i}

(Xi \Xj)
⌘
[

s[

j=r+1

Xj

for every i 2 {1, . . . , r}. In addition, the latter inclusion is equivalent to the follow-
ing:

Reg⇤(Xi) � Reg(Xi) \
⇣ [

j2{1,...,r}\{i}

(Xi \Xj) [
s[

j=r+1

Xj

⌘

= Reg(Xi) \ Sing(X)

for every i 2 {1, . . . , r}. By (1.5.1) & (1.5.2), latter inclusion satisfied for every
i 2 {1, . . . , r} is equivalent to

Reg(X) =
⇣ r[

i=1

Reg(Xi)
⌘
\ Sing(X)

=
r[

i=1

(Reg(Xi) \ Sing(X)) ⇢
r[

i=1

Reg⇤(Xi),

as required. ⇤

Previous lemma is sharp, in the sense that there are K-reducible K-determined
K-algebraic sets X ⇢ Rn having some K-irreducible components which are not
K-determined.

Example 1.6.4. Consider the field extension R|Q, in which R is a real closed
field. Let X = X1 [ X2 ⇢ R2 be the Q-algebraic set defined as the union of the
Q-irreducible Q-algebraic sets X1 := {(x1, x2) 2 R2 |x1 = 0} and X2 := {(x1, x2) 2
R2 |x32 + 2x31 = 0}. Observe that X1 ⇢ R2 is defined over Q, indeed IR(X1) =
(x1)R[x], thus is Q-determined by Remark 1.6.2. Recall that, by Example 1.5.4,
X2 ⇢ R2 is not Q-determined. However,

Sing⇤(X) = Sing⇤(X1) [ Sing⇤(X2) [ (X1 \X2) = ? [ {(0, 0)} [ {(0, 0)}
= {(0, 0)} = Sing(X),

that is, X is Q-determined, whereas X2 is not. ⌅
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1.6.1. Nash manifold structure of K-determined algebraic sets. Here
we give some equivalent descriptions of the concept of K-determined K-algebraic
set X ⇢ Rn we introduced in Definition 1.6.1.

Let U be a Zariski open subset of Rn and let S be a subset of U . Denote by
R(U) the ring of regular functions on U and by Ir

U
(S) the ideal of regular functions

on U vanishing on S. Next results establish some conditions equivalent of being
K-determined via a R|K-jacobian criterion.

Theorem 1.6.5. Let X ⇢ Rn be a K-algebraic set of dimension d and let
X1, . . . , Xs be the K-irreducible components of X. Let U be a Zariski open neighbor-
hood of Reg(X) in Rn such that Reg(X) = X \U (for instance U = Rn \ Sing(V )).
The following assertions are equivalent:

(i) X is K-determined.
(ii) BK(X) ⇢ Sing(X), that is, if Yi ⇢ Rn is an irreducible component of

Xi ⇢ Rn of dimension dim(Xi), for every i 2 {1, . . . , s}, E is a finite
Galois extension of K containing all the coe�cients of the equations of each
Yi, G0 := G(E|K) and X =

S
s

i=1

S
�2G0 Z�i (R) is a Galois presentation of

X ⇢ Rn with start (Y1, . . . , Ys), then

Z�i (R) ⇢ Sing(X),

for every � 2 G0 and i 2 {1, . . . , s} such that dim(Z�
i
) < dim(Xi).

(iii) For every a 2 Reg(X), there exist an Euclidean open neighborhood ⌦ of
a in Rn and polynomials f1, . . . , fn�d 2 IK(X) such that the gradients
rf1(a), . . . ,rfn�d(a) are linearly independent over R and

X \ ⌦ = ZR(f1, . . . , fn�d) \ ⌦.
(iv) For every a 2 Reg(X) there are f1, . . . , fn�d 2 IK(X) and a Zariski open

neighborhood Ua of a in Rn such that

Ir

Ua
(Reg(X) \ Ua) = (f1, . . . , fn�d)R(Ua).

(v) Ir

U
(Reg(X)) = IK(X)R(U).

Proof. (i) () (ii) Follows from Remark 1.6.2 and by definition of BK(X) :=S
s

i=1

S
�2Ji Z

�

i
(R), where Ji := {� 2 G0 | dim(Z�

i
(R)) < dim(Xi)}.

(i) =) (iii). We follow the proof of implication (i) =) (ii) in [FG, Theorem
4.1.10]. Assume that Reg(X) = Reg⇤(X), that is: for every a 2 Reg(X) the local
ring R⇤

X,a
:= R[x]na/IK(X)R[x]na is regular of dimension d. By [ZS75, Theorem 26,

p. 303], there exists a system of generators f1, . . . , f` of IK(X)R[x]na in R[x]na whose
classes modulo n

2
a are linearly independent and ht(IK(X)R[x]na) = `. In particular,

we may assume that f1, . . . , fr 2 IK(X) and

det

✓
@fi
@xj

(a)

◆

i,j=1,...,`

6= 0,

so the polynomial map Rn ! Rn defined by

x := (x1, . . . , xn) 7! (f1(x), . . . , f`(x), x`+1 � a`+1, . . . , xn � an)

provides a Nash di↵eomorphism ' : U0 ! Ua between an open semialgebraic neigh-
borhood U0 ⇢ Rn of the origin and an open semialgebraic neighborhood Ua ⇢ Rn
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of a, by the inverse function theorem [BCR98, Proposition 2.9.7]. Shrinking U0 and
Ua if necessary, we can assume that

'(({0}⇥Rn�`) \ U0) = ZR(f1, . . . , f`) \ Ua.

Hence, we deduce that ` = n� d. Set ⌦ := Ua and we are done.

(iii) =) (i). We follow the proof of implication (ii0) =) (i) in [FG, Theorem
4.1.10]. Let a 2 Reg(X) and f1, . . . , fn�d 2 IK(X) satisfying (iii). Since a 2
Reg(X), the local ring RX,a coincides with R[x]na/((f1, . . . , fn�d)R[x]na), so it is
regular of dimension d. In addition, by [ZS75, Theorem 26, p. 303], the local ring
R[x]na/((f1, . . . , fn�d)R[x]na) is regular of dimension d. Thus, since (f1, . . . , fn�d) ⇢
IK(X) ⇢ IR(X), we deduce that R⇤

X,a
is regular of dimension d as well by [ZS75,

Theorem 26, p. 303]. As previous property holds for every a 2 Reg(X), we conclude
that X ⇢ Rn is K-determined.

(iii)() (iv) Assertion (iv) =) (iii) is evident. The converse implication (iii) =)
(iv) follows directly by [AK92, Proposition 2.2.11], indeed in the proof of mentioned
result any transcendental argument is applied, so [AK92, Proposition 2.2.11] holds
true for every real closed field R.

(iv) () (v) Assertion (v) =) (iv) is evident by [AK92, Proposition 2.2.11].
Let us prove implication (iv) =) (v). Since X is K-algebraic and R contains K,
there is f 2 IK(X) such that ZK(f) = X. By (iv), for each a 2 Reg(X), there
are polynomials fa,1, . . . , fa,n�d 2 IK(X) and a Zariski open neighborhood Ua of
a in U such that Ir

Ua
(Reg(X) \ Ua) = (fa,1, . . . , fa,n�d)R(Ua). The set Reg(X)

is compact with respect to the Zariski topology, so there is k 2 N and there are
a1, . . . , ak 2 Reg(X) such that Reg(X) ⇢

S
k

j=1 Uaj . Let g be an arbitrary element
of Ir

U
(Reg(X)). There exist ↵,� 2 R[x] such that g = ↵

�
on U and ZR(�) = Rn \U .

Define the polynomials ↵0,�0 2 R[x] by ↵0 := ↵�f and �0 := �2f2. Notice that
�0 � 0 on Rn, ZR(�0) = X [ (Rn \U) and �0g = ↵0f on U . For each j 2 {1, . . . , k},
there exist polynomials ↵j,1, . . . ,↵j,n�d,�j 2 R[x] such that g =

P
n�d

i=1
↵j,i

�j
fj,i on

Uj and ZR(�j) = Rn \ Uj , where fj,i := faj ,i and Uj := Uaj . Replacing each
↵j,i with ↵j,i�j and �j with �2

j
, we can also assume that �j � 0 on Rn. Since

�0g = ↵0f and �jg =
P

n�d

i=1 ↵j,ifj,i on the whole U for all j 2 {1, . . . , k}, it follows
that (

P
k

j=0 �j)g = ↵0f +
P

k

j=1

P
n�d

i=1 ↵j,ifj,i on the whole U . On the other hand,

the polynomial � :=
P

k

j=0 �j � 0 on Rn and ZR(�) =
T

k

j=0ZR(�j) = (X [ (Rn \
U)) \

S
k

j=1 Uxj = (X \
S

k

j=1 Uxj ) [ (Rn \ U) = Rn \ U . As a consequence, � is
invertible in R(U). Thus Ir

U
(Reg(X) \ U) ⇢ IK(X)R(U), as desired. ⇤

As an immediate consequence, we have:

Corollary 1.6.6. Let X ⇢ Rn be a nonsingular K-algebraic set of dimension
d. The following assertions are equivalent:

(i) X is K-determined.
(ii) BK(X) = ?, that is, if Yi ⇢ Rn is an irreducible component of Xi ⇢ Rn,

for every i 2 {1, . . . , s}, E is a finite Galois extension of K containing all
the coe�cients of the equations of each Yi and X =

S
s

i=1

S
�2G0 Z�i (R) is a

Galois presentation of X ⇢ Rn with start (Y1, . . . , Ys), then

Z�i (R) = ?
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for every � 2 G0 and i 2 {1, . . . , s} such that dim(Z�
i
) < dim(Xi).

(iii) For every a 2 X, there exist an Euclidean open neighborhood ⌦ of a in Rn

and f1, . . . , fn�d 2 IK(X) such that the gradients rf1(a), . . . ,rfn�d(a) are
linearly independent over R and

X \ ⌦ = ZR(f1, . . . , fn�d) \ ⌦.
(iv) For every a 2 X there are f1, . . . , fn�d 2 IK(X) and a Zariski open neigh-

borhood Ua of a in Rn such that

Ir

Ua
(X \ Ua) = (f1, . . . , fn�d)R(Ua).

(v) Ir

Rn(X) = IK(X)R(Rn).

Algebraic sets defined over K in R(Rn). Corollary 1.6.6(v) suggests another
variant of the concept of algebraic set X ⇢ Rn to be ‘defined over K’. In this
subsection we introduce and study properties of algebraic sets X ⇢ Rn ‘defined over
K in R(Rn)’.

Definition 1.6.7. Let X ⇢ Rn be an algebraic set. We say that X ⇢ Rn is
defined over K in R(Rn) if Ir

Rn(X) = IK(X)R(Rn). ⌅

Remark 1.6.8. Every algebraic set X ⇢ Rn defined over K in R(Rn) is K-
algebraic, indeed if IK(X) = (f1, . . . , fs), the equality Ir

Rn(X) = IK(X)R(Rn)
ensures that X = ZR(

P
s

i=1 f
2
i
). ⌅

Observe that Corollary 1.6.6(v) ensures that a nonsingular K-algebraic set X ⇢
Rn is defined over K in R(Rn) if and only if it is K-nonsingular. Let us further
investigate in general the relations of Definition 1.6.7 with other properties we have
already introduced.

Lemma 1.6.9. Let X ⇢ Rn be an algebraic set. Then the following assertions
hold:

(i) If X ⇢ Rn is defined over K, then X ⇢ Rn is defined over K in R(Rn).
(ii) If X ⇢ Rn is defined over K in R(Rn), then X ⇢ Rn is a K-determined

K-algebraic set.

Proof. If IR(X) = IK(X)R[x], then a fortiori Ir

Rn(X) = IR(X)R(Rn) =
(IK(X)R[x])R(Rn) = IK(X)R(Rn). This proves (i). Assume X is defined over
K in R(Rn), then Remark 1.6.2 ensures that X is K-algebraic. In addition, since
Ir

Rn(X) = IK(X)R(Rn), for every a 2 Reg(X) there are f1, . . . , fn�d 2 IK(X)
satisfying Theorem 1.6.5(iii), that is X is K-determined. This proves (ii). ⇤

Observe that, in general, implications of Lemma 1.6.9 can not be reversed.

Example 1.6.10. Consider the field extension R|Q in which R is a real closed
field. Denote by C := R[i] the algebraic closure of R.

(i) Let X := { 3
p
2} = {x 2 R |x3 � 2 = 0} ⇢ R. Observe that Ir

R
(X) =

IR(X)R(R) = (x � 3
p
2)R(R) and IQ(X) = (x3 � 2)Q[x]. As x3 � 2 =

(x� 3
p
2)(x2 + 3

p
2x+ 3

p
4) and ZR(x2 +

3
p
2x+ 3

p
4) = ?, we also have that

Ir

R
(X) = (x3 � 2)R(R). Thus, Ir

R
(X) = IQ(X)R(R), so X is defined over

Q in R(R). On the other hand, x� 3
p
2 2 IR(X) \ IQ(X)R[x], so X is not

defined over Q.
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(ii) Let X := {x 2 R2 |x62� 2x91 = 0} ⇢ R2 with x = (x1, x2). Let f(x) := x22�
3
p
2x31 2 R[x] and g(x) := x62 � 2x91 2 Q[x]. As X = ZR(f), f is irreducible

in R[x] and changes sign, by [BCR98, Theorem 4.5.1], IR(X) = (f)R[x],
so Ir

R2(X) = (f)R(R2) and Sing(X) = {x 2 X : rf(x) = 0} = {(0, 0)}.
Observe that

X = ZR(f) [ ZR(x
2
2 �

3
p
2!x31) [ ZR(x

2
2 +

3
p
2!x31)

= X [ {(0, 0)} [ {(0, 0)}
is a real Galois presentation of X with start X = Y := ZR(f), where ! 2
C \R denotes a solution of the polynomial z3 � 1. So BQ(X) = {(0, 0)} =
Sing(X), hence Theorem 1.6.5 ensures that X ⇢ R2 is a Q-determined Q-
algebraic set. In addition, by Theorem 1.3.4(iv), we have that IQ(X) =

IQ(ZclQCn(X)) = IQ(ZC(g)) = IC(ZC(g)) \ Q[x] = (g)C[x] \ Q[x] = (g).
Define f 0(x) := x42 + 3

p
2x22x

3
1 + 3

p
4x61 2 R[x]. As g(x) = f(x)f 0(x) and

ZR(f 0) = {(0, 0)} ⇢ X, we have that f 62 (g)R(R2) = IQ(X)R(R2) so
f 2 Ir

R2(X) \ IQ(X)R(R2). This proves that X is not defined over Q in
R(R2). ⌅

Two complete characterizations via real Galois completion. The aim of
this subsection is to develop two special cases in which we can provide a complete
characterization of a K-algebraic set X ⇢ Rn to be K-determined or defined over K
in R(Rn) or defined over K via properties of the real Galois completion of X ⇢ Rn.
Those special cases are nonsingular K-algebraic sets and K-algebraic hypersurfaces
X ⇢ Rn.

Nonsingular K-algebraic sets. As a direct consequence of Theorem 1.4.8 and
Corollary 1.6.6 we get the following result. Recall that a nonsingular K-determined
K-algebraic set X ⇢ Rn is called K-nonsingular.

Corollary 1.6.11. Let X ⇢ Rn be a nonsingular K-algebraic set of dimension
d, let X1, . . . , Xs ⇢ Rn be the K-irreducible components of X and let Yi be an
irreducible component of Xi, for every i 2 {1, . . . , s}. Let X =

S
s

i=1

S
�2G0 Z�i (R)

be a Galois presentation of X ⇢ Rn with start (Y1, . . . , Ys). Then:

(i) X ⇢ Rn is K-nonsingular if and only if X ⇢ Rn is defined over K in
R(Rn). In particular, X ⇢ Rn is K-nonsingular if and only if Z�

i
(R) ⇢

Sing(X) = ? for every � 2 G0 and i 2 {1, . . . , s} such that dim(Z�
i
(R)) <

d.
(ii) X ⇢ Rn is defined over K if and only if dim(Z�

i
(R)) = d for every � 2 G0

and i 2 {1, . . . , s}.

K-geometric hypersurfaces. The case of K-geometric hypersurfaces X ⇢ Rn is
very interesting, indeed K-determined K-geometric hypersurfaces, K-geometric hy-
persurfaces defined over K in R(Rn) and K-geometric hypersurfaces defined over K
are distinct concepts that can be characterized by means of the real Galois comple-
tion of X ⇢ Rn. Let us start by recalling the notion of K-geometric hypersurface
originally introduced in [FG, Definition 3.1.8].

Definition 1.6.12. Let f 2 K[x]. We say that f is K-geometric in Rn if
IK(ZR(f)) = (f)K[x]. If a polynomial f 2 R[x] is R-geometric in Rn we say for
short that f is geometric in Rn.
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A set X ⇢ Rn is a K-geometric (algebraic) hypersurface of Rn if X = ZR(f) for
some K-geometric polynomial f in Rn. If a set X ⇢ Rn is a R-geometric hypersur-
face of Rn we say for short that X ⇢ Rn is a geometric (algebraic) hypersurface of
Rn. ⌅

As every ideal of zeros is radical, we get that, if f 2 K[x] is K-geometric in
Rn, then f is square-free. In addition, a K-geometric hypersurface X ⇢ Rn is K-
irreducible if and only if there is a K-geometric polynomial f 2 K[x] in Rn such
that f is irreducible in K[x] and ZR(f) = X. As a consequence, if g 2 K[x] is
K-geometric in Rn and ZR(f) = ZR(g), then f and g are associated. For more
details about K-geometric polynomials in Rn and K-geometric hypersurfaces of Rn

we refer to [FG, Sections 3&4].

Following result is our characterization of di↵erent notions of being ‘defined over
K’ for a K-geometric hypersurface X ⇢ Rn by means of real Galois completion.

Theorem 1.6.13. Let X ⇢ Rn be a K-geometric hypersurface, let X1, . . . , Xs ⇢
Rn be the K-irreducible components of X and let Yi be an irreducible component of
Xi for every i 2 {1, . . . , s}. Let X =

S
s

i=1

S
�2G0 Z�i (R) be a Galois presentation of

X ⇢ Rn with start (Y1, . . . , Ys). Then:

(i) X ⇢ Rn is K-determined if and only if Z�
i
(R) ⇢ Sing(X) for every � 2 G0

and i 2 {1, . . . , s} such that dim(Z�
i
(R)) < n� 1.

(ii) X ⇢ Rn is defined over K in R(Rn) if and only if Z�
i
(R) = ? for every

� 2 G0 and i 2 {1, . . . , s} such that dim(Z�
i
(R)) < n� 1.

(iii) X ⇢ Rn is defined over K if and only if dim(Z�
i
(R)) = n � 1 for every

� 2 G0 and i 2 {1, . . . , s}.

Proof. Observe that (i) & (iii) derive directly from Theorems 1.6.5 & 1.4.8 and
[FG, Proposition 3.1.10].

Let us prove (ii). Let f 2 K[x] be a K-geometric polynomial in Rn such that
X = ZR(f) and let f = f1 . . . fs 2 K[x] be its factorization in K[x]. By [FG,
Proposition 3.1.10], we have that f is K-geometric in Rn if and only if fi is so for
every i 2 {1, . . . , s}. Then, since IK(X) = (f)K[x] =

T
s

i=1(fi)K[x] and Ir

Rn(X) =T
s

i=1 Ir

Rn(ZR(fi)), we may reduce to the case s = 1 with f a K-irreducible K-
geometric polynomial in Rn such that X = ZR(f).

So, assume f is a K-irreducible K-geometric polynomial in Rn such that X =
ZR(f) and let X =

S
�2G0 Z�(R) be a Galois presentation of X ⇢ Rn. We prove

that X ⇢ Rn is defined over K in R(Rn) if and only if Z�(R) = ? for every � 2 G0

such that dim(Z�
i
(R)) < n� 1.

Let f = f1 . . . fs be the irreducible decomposition of f in R[x] (actually in
K

r
[x]). Observe that fi is not associated to any fj for every i, j 2 {1, . . . , r} with

i 6= j. Indeed, assume there is fi which is associated to fj for some i, j 2 {1, . . . , r}
and i 6= j. Then, rf(x) = 0 for every x 2 ZR(fi) = ZR(fj), that is, ZR(fi) ⇢
Sing⇤(X) by Theorem 1.6.5 since IK(X) = (f)K[x]. This leads to a contradiction
because fi is K-geometric, thus dim(ZR(fi)) = n�1 by [FG, Proposition 3.1.10], but
dim(Sing⇤(X)) < dim(X) = n � 1 by Theorem 1.5.3(ii). On the other hand, [FG,
Proposition 3.1.10], we also have that dim(ZR(fi)) < n�1 for every i 2 {r+1, . . . , s}.
This means that, if we choose Y = ZR(f1) as the start of above Galois presentation
of X ⇢ R

n we have that Ze(R) = ZR(f1), dim(Z�(R)) = n � 1 if and only if
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Z�(R) = ZR(fi) fir some i 2 {1, . . . , r} and dim(Z�(R)) < n � 1 if and only if
Z�(R) ⇢ ZR(fi) for some i 2 {r + 1, . . . , s}. Let us prove above implications.

Assume Z�(R) = ? for every � 2 G0 such that dim(Z�
i
(R)) < n � 1, that is,

ZR(fj) = ? for every j 2 {r + 1, . . . , s}. Then, we have f1 · · · fr = f · 1
fr+1···fs 2

R(Rn). Since each fi with i 2 {1, . . . , r} is geometric, we also have IR(X) =
(f1 · · · fr)R[x], thus

Ir

Rn(X) = (IR(X)R[x])R(Rn) = ((f1 · · · fr)R[x])R(Rn) = (f1 · · · fr)R(Rn)

= (f)R(Rn) = IK(X)R(Rn).

On the other hand, assume X is defined over K in R(Rn), that is, Ir

Rn(X) =
IK(X)R(Rn) = (f)R(Rn). LetX1, . . . , X` with `  s be the irreducible components
of X, we prove that X is an algebraic hypersurface of Rn. Let i 2 {1, . . . , `} and
Xi be of dimension e  n � 1. Let a 2 Reg(Xi) \

�S
k2{1,...,`}\{i}Xk

�
and let

h1, . . . , hn�e 2 IR(Xi) be such that rh1(a), . . . ,rhn�e(a) are linearly independent
over R. Observe that, up to multiply each hj by a polynomial h 2 R[x] such that
ZR(h) =

S
k2{1,...,`}\{i}Xk, we may suppose that above polynomials h1, . . . , hn�e 2

IR(X). Being Ir

Rn(X) = IK(X)R(Rn), we deduce that each rhj(a) is a multiple of
rf(a), that is, e = n�1 and Xi is an algebraic hipersurface for every i 2 {1, . . . , `}.
Let g1, . . . , g` 2 R[x] be irreducible polynomials such that IR(Xi) = (gi)R[x] for
every i 2 {1, . . . , `}, then IR(X) = (g1 · · · g`)R[x] and Ir

Rn(X) = (g1 · · · g`)R(Rn) =
(f)R(Rn). Then, there are h, k 2 R[x] such that ZR(k) = ? and f = f1 · · · fs =
g1 · · · g` · h

k
, that is, f1 · · · fs · k = g1 · · · g` · h. Since ZR(k) = ?, we have that any of

the g1, . . . , g` divides k, thus up to the order, we get that `  r and gi is associated
to fi in R[x] for every i 2 {1, . . . , `}. On the other way round, we also have that
there are h0, k0 2 R[x] such that ZR(k0) = ? and h

0

k0 · f1 · · · fs = g1 · · · g`, that is,
f1 · · · fs · h0 = g1 · · · g` · k0. Since ZR(k0) = ? and fi is associated with gi for every
i 2 {1, . . . , `}, we have that h00f`+1 · · · fs = k0 for some h00 2 R[x]. Since ZR(k) = ?,
any of the f`+1, . . . , fr divides k0, thus we get that ` = r and fi is invertible in R(Rn)
for every i 2 {r + 1, . . . , s}, that is, ZR(fi) = ? for every i 2 {r + 1, . . . , s}. As
explained above, last condition is equivalent to the property that Z�(R) = ? for
every � 2 G0 such that dim(Z�(R)) < n� 1. ⇤

K-Nonsingular K-algebraic sets & K-irreducible components. We con-
clude this section with a consequence of Corollary 1.6.6 that will prove of crucial
importance later on in the proof of Nash-Tognoli theorem and its relative version
‘over Q’ in Sections 3.2 & 4.1, respectively. We outline that next result is a version
with respect to the notion of R|K-nonsingularity of [FG, Corollary 4.2.2].

Lemma 1.6.14. Let X ⇢ Rn and Z ⇢ Rn be two K-nonsingular K-algebraic sets
of the same dimension d such that Z  X. Then X \ Z ⇢ Rn is a K-nonsingular
K-algebraic set of dimension d as well.

Proof. If Z = ?, then X \ Z = X. Suppose Z 6= ?. Let X1, . . . , Xs be the
K-irreducible components of X. Denote by Zi the K-algebraic set Z \Xi for every
i 2 {1, . . . , s}, and denote by I the set of indices i such that Zi 6= ?. Let i 2 I. We
have to show that Zi = Xi. Since Z ⇢ X = Reg⇤(X), the local ring R⇤

X,a
is regular,

so it is an integral domain. It follows that Zi\Xj = ? for all j 2 {1, . . . , s}\{i}, and
Zi = Z \

S
j2{1,...,s}\{i}Xj . By Corollary 1.6.6, Zi is a K-nonsingular K-algebraic
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set of dimension d. As dimK(Zi) = d = dimK(Xi) and Xi ⇢ Rn is K-irreducible,
Lemma 1.1.4(i) ensures that Zi = Xi, as required. ⇤



CHAPTER 2

Q-Nonsingular Q-algebraic sets

Abstract. In this chapter we study Q-nonsingular Q-algebraic subsets of Rn.
In Section 2.1 we extend classical properties of algebraic sets and regular maps
to the case of Q-algebraic subsets of R

n and Q-regular maps. The remaining
part of the chapter is devoted to study Q-nonsingular Q-algebraic representa-
tives of particular C 1 manifolds and algebraic sets. In Section 2.2 we study
(real) Grassmannians, classical algebraic bundles over Grasmannians and unori-
ented cobordism classes of compact C 1 manifolds. In Section 2.3 we provide
an explicit desingularization procedure for real Schubert varieties, thus we rep-
resent every Z/2Z-homology class of each Grassmannian as the pushforward of
the fundamental class of a compact Q-nonsingular Q-algebraic set. In section 2.4
we study the relations between Q-algebraic homology and unoriented Q-bordism
classes. Finally, in Section 2.5 we provide relative Q-bordisms of smooth maps
with respect to C 1 submanifolds in general position.

The main references for this chapter are [GS23] and [Sav23].

In this chapter we specialize notions and results of Chapter 1 to the case of the
field extension R|Q.

2.1. Q-Regular maps & projectively Q-closure

The aim of this section is to extend some classical properties of algebraic subsets
of Rn and regular maps between algebraic sets to Q-nonsingular algebraic subsets
of Rn and the subclass of regular maps between Q-algebraic sets that we will call
‘Q-regular maps’.

2.1.1. Q-regular maps. Let us start by introducing the notion of Q-regular
map we have already mentioned.

Definition 2.1.1. Let S ⇢ R
n be a set and let f : S ! R be a function. We say

that f is Q-regular if there exist p, q 2 Q[x] such that ZR(q)\S = ? and f(x) = p(x)
q(x)

for all x 2 S. We denote by RQ(S) the set of Q-regular functions on S, equipped
with the ring structure induced by the usual pointwise addition and multiplication.

Let T ⇢ R
h be a set ad let g : S ! T be a map. We say that g is Q-regular

if there exist g1, . . . , gh 2 RQ(S) such that g(x) = (g1(x), . . . , gh(x)) for all x 2 S.
We denote by RQ(S, T ) the set of Q-regular maps from S to T . We say that the
map g : S ! T is a Q-biregular isomorphism if g is bijective and both g and g�1

are Q-regular. If there exists such a Q-biregular isomorphism, we say that S is
Q-biregularly isomorphic to T . ⌅

53
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The notion of Q-regular function is local in the sense specified by next result.

Lemma 2.1.2. Let S be a subset of Rn and let f : S ! R be a function. The
following assertions are equivalent:

(i) f 2 RQ(S).
(ii) For each a 2 S, there exist pa, qa 2 Q[x] such that qa(a) 6= 0 and f(x) =

pa(x)
qa(x)

for all x 2 S \ ZR(qa).

Proof. A standard argument works. Implication (i) =) (ii) is evident. Let us
prove the converse implication (ii) =) (i). Suppose (ii) is satisfied. Let ⌃ be the
family of all subsets T of Rn with the following property: S 6⇢ T and there exist
pT , qT 2 Q[x] such that ZR(qT ) = T and f(x) = pT (x)

qT (x) for all x 2 S \ T . By (ii),

we have S \
T

T2⌃ T = ?. Let us show that ⌃ is stable under finite intersections.
Let T, T 0 2 ⌃ and let pT , qT , pT 0 and qT 0 be polynomials in Q[x] with the above
property. Define p, q 2 Q[x] by p := pT qT + pT 0qT 0 and q := q2

T
+ q2

T 0 . Note that

S 6⇢ T \ T 0 = ZR(q) and f(x) = p(x)
q(x) for all x 2 (S \ T ) [ (S \ T 0) = S \ (T \ T 0).

This proves the mentioned stability of ⌃. By noetherianity,
T

T2⌃ T 2 ⌃ and we are
done. ⇤

The next lemma collects some basic properties of Q-nonsingular Q-algebraic sets
and Q-regular maps.

Lemma 2.1.3. Let V ⇢ R
n and V 0 ⇢ R

n be Q-nonsingular Q-algebraic sets of
the same dimension d such that V \ V 0 = ?, let W ⇢ R

k be a Q-algebraic set and
let f 2 RQ(V,W ) and f 0 2 RQ(V 0,W ). The following assertions hold.

(i) There exists F 2 RQ(Rn,Rk) such that F (x) = f(x) for all x 2 V .
(ii) V t V 0 is a Q-nonsingular Q-algebraic subset of Rn.
(iii) The map f t f 0 : V t V 0 ! W , defined as (f t f 0)(x) := f(x) if x 2 V and

(f t f 0)(x) := f 0(x) if x 2 V 0, is Q-regular.
(iv) The graph �f = {(x, y) 2 V ⇥ W | y = f(x)} of f is a Q-nonsingular

Q-algebraic subset of Rn+k = R
n ⇥ R

k.
(v) If T ⇢ R

h is a set and g 2 RQ(W,T ), then g � f 2 RQ(V, T ).
(vi) If V and W are Q-nonsingular, then V ⇥W ⇢ R

n+k is Q-nonsingular.

Proof. Let p, p1, . . . , pk, q, p0, p01, . . . , p
0
k
, q0 2 Q[x] such that ZR(p) = V , ZR(q)\

V = ?, f(x) =
�
p1(x)
q(x) , . . . ,

pk(x)
q(x)

�
for all x 2 V , ZR(p0) = V 0, ZR(q0) \ V 0 = ? and

f 0(x) =
�
p
0
1(x)
q0(x) , . . . ,

p
0
k(x)
q0(x)

�
for all x 2 V 0. The regular map F : Rn ! R

k, defined by

F (x) :=
�

p1(x)q(x)
p(x)2+q(x)2 , . . . ,

pk(x)q(x)
p(x)2+q(x)2

�

for all x 2 R
n, proves (i). Consequently, we can assume that the preceding poly-

nomials q and q0 never vanish on R
n. Define the polynomials u1, . . . , uk, v 2 Q[x]

by

ui(x) := pi(x)p
0(x)2q0(x) + p0i(x)p(x)

2q(x),

v(x) := (p(x)2 + p0(x)2)q(x)q0(x),

for every i 2 {1, . . . , k}. As v never vanishes on R
n and (ftf 0)(x) =

�
u1(x)
v(x) , . . . ,

uk(x)
v(x)

�

for all x 2 V t V 0, (iii) is proved.
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The zero set of the polynomial pp0 2 Q[x] is V t V 0. Let d = dim(V t V 0) =
max(dim(V ), dim(V 0)) and a 2 Reg(V t V 0) = Reg(V ) t Reg(V 0). We can assume
that a 2 Reg(V ). Since R⇤

V,a
is a regular local ring by assumption and V \ V 0 = ?

we deduce that R⇤
V tV 0,a

⇠= R⇤
V,a

is a regular local ring of dimension d as well. This
proves (ii).

Let us prove (iv). The graph �f of f is the zero set in R
n+k of the polynomial

p(x)2+
P

k

i=1(q(x)yi�pi(x))2 2 Q[x, y1, . . . , yk], so �f is Q-algebraic. The Q-regular
function g 2 RQ(V,�f ) defined by g(x) := (x, f(x)) is a Q-biregular isomorphism,
so �f is Q-nonsingular.

Let ⇠1, . . . , ⇠h+1 2 Q[y1, . . . , yk] be such that ZR(⇠h+1) \ W = ? and g(y) =�
⇠1(y)
⇠h+1(y)

, . . . , ⇠h(y)
⇠h+1(y)

�
for all y 2 W . For each ↵ 2 {1, . . . , h + 1}, write ⇠↵ as

follows: ⇠↵ =
P

c↵
j=0 ⇠↵,j , where c↵ is the degree of ⇠↵ and each ⇠↵,j is a ho-

mogeneous polynomial of degree j. Let c := max{c1, . . . , ch+1} and, for each
↵ 2 {1, . . . , h + 1}, let ⇠⇤↵ 2 Q[x] be the polynomial ⇠⇤↵(x) := q(x)c⇠↵(f(x)) =P

c↵
j=0 q(x)

c�j⇠↵,j(p1(x), . . . , ph(x)). By construction, we have ZR(⇠⇤h+1) \ V = ?

and (g � f)(x) =
�
⇠
⇤
1(x)

⇠
⇤
h+1(x)

, . . . ,
⇠
⇤
h(x)

⇠
⇤
h+1(x)

�
for all x 2 V . Thus, g � f 2 RQ(V, T ). Item

(v) is proved.

Item (vi) follows immediately from Corollary 1.6.6. ⇤
Remark 2.1.4. Preceding proof ensures that Lemma 2.1.3(i)(iii)(v) continue to

hold when V ⇢ R
n and V 0 ⇢ R

n are Q-algebraic sets. ⌅

The next result deals with transversality of Q-regular maps.

Lemma 2.1.5. Let V ⇢ R
n, W ⇢ R

k and Z ⇢ R
k be Q-nonsingular Q-algebraic

sets with Z ⇢ W , and let f 2 RQ(V,W ) be a Q-regular map transverse to Z in W .
Then, f�1(Z) ⇢ R

n is a Q-nonsingular Q-algebraic set such that

dim(f�1(Z)) = dim(V )� (dim(W )� dim(Z)). (2.1.1)

Proof. By classical results about transversality, f�1(Z) is a nonsingular Q-
algebraic subset of R

n satisfying (2.1.1). We are left to prove that f�1(Z) =
Reg⇤(f�1(Z)). Let a 2 f�1(Z) and b = f(a) 2 Z. Let s1, . . . , sk, t 2 Q[x] such

that ZR(t) \ V = ? and f(x) =
�
s1(x)
t(x) , . . . ,

sk(x)
t(x)

�
for all x 2 V . Since W and

Z are Q-nonsingular, by Corollary 1.6.6 there exist an Euclidean open Ub of b in
R
k and p1, . . . , pk�m1 2 Q[y] such that rp1(b), . . . ,rpk�m1(b) are linearly indepen-

dent in R
k, Ub \W = Ub \ ZR(p1, . . . , pk�m2) and Ub \ Z = Ub \ Z(p1, . . . , pk�m1),

with m1 := dim(Z) and m2 := dim(W ). Again, since V is Q-nonsingular, by
Corollary 1.6.6 there exist an euclidean open neighborhood Ua of a in R

n and
q1, . . . , qn�dim(V ) 2 Q[x] such that rq1(a), . . . ,rqn�dim(V )(a) are linearly indepen-
dent in R

n and Ua\V = Ua\ZR(q1, . . . , qn�dim(V )). Define the polynomials ri(x) :=

t(x)deg(pk�m2+i)pk�m2+i(f(x)) 2 Q[x] for every i 2 {1, . . . , dim(W ) � dim(Z) =
m2 �m1}, and the polynomial map P : Rn ! R

n�dim(V )+dim(W )�dim(Z) as

P := (q1, . . . , qn�dim(V ), r1, . . . , rdim(W )�dim(Z)).

Transversality of f to W in Z implies that

rk(JP (a)) = n� dim(V ) + dim(W )� dim(Z).
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Consequently, an application of Corollary 1.6.6 gives that a 2 Reg⇤(f�1(Z)), as
desired. ⇤

Let us recall the definitions of overt polynomial and projectively closed real
algebraic set, introduced in [AK81b, p. 427]. Let p 2 R[x] be a nonconstant poly-
nomial. Write p as follows: p =

P
d

i=0 pi, where d is the degree of p and each
polynomial pi is homogeneous of degree i. The polynomial p 2 R[x] is said to
be overt if ZR(pd) = {0}. An algebraic set V ⇢ R

n is called projectively closed
if there exists an overt polynomial p 2 R[x] such that V = ZR(p). This notion
has a simple geometric interpretation. Let ✓ : R

n ! P
n(R) be the a�ne chart

✓(x1, . . . , xn) := [1, x1, . . . , xn]. By elementary considerations concerning homoge-
nization of polynomials, it is immediate to verify that the algebraic set V ⇢ R

n is
projectively closed if and only if ✓(V ) is Zariski closed in P

n(R). As a consequence,
if V is projectively closed, then it is compact in R

n.

Note that a nonconstant overt polynomial function p : Rn ! R is proper. Indeed,
if we write p =

P
d

i=0 pi as above, then there exists a real constant C > 0 such that
|pd(x)| � 2C|x|dn for all x 2 R

n. Thus, |p(x)| � C|x|dn for all x 2 R
n with |x|n

su�ciently large.

2.1.2. Projectively Q-closure. Let us specialize ‘over Q’ the notion of pro-
jectively closed (real) algebraic set as follows.

Definition 2.1.6. We say that a Q-algebraic set V ⇢ R
n is projectively Q-closed

if there exists an overt polynomial p 2 Q[x] such that V = ZR(p).

Some basic properties of projectively Q-closed Q-algebraic sets are as follows.

Lemma 2.1.7. Let V ⇢ R
n be a projectively Q-closed Q-algebraic set. Then it

hold:

(i) If V 0 ⇢ R
n is another projectively Q-closed Q-algebraic set, V [V 0 ⇢ R

n is
also a projectively Q-closed Q-algebraic set.

(ii) If Z ⇢ R
n is a Q-algebraic set, V \ Z ⇢ R

n is a projectively Q-closed
Q-algebraic set.

(iii) Given any v 2 Q
n, the translated set V + v := {x+ v 2 R

n : x 2 V } ⇢ R
n

is projectively Q-closed Q-algebraic.
(iv) If W ⇢ R

k is a projectively Q-closed Q-algebraic set, then the product
V ⇥W ⇢ R

n+k is also a projectively Q-closed Q-algebraic set. In particular,
for each m 2 N with m > n, the set V ⇥ {0} ⇢ R

n ⇥ R
m�n = R

m is
projectively Q-closed Q-algebraic.

Proof. Let p, p0 2 Q[x] and s 2 Q[y] be overt polynomials such that V = ZR(p),
V 0 = ZR(p0) and W = ZR(s). Let d, e 2 N

⇤ be the degrees of p and s, respectively.
Then pp0 2 Q[x] and p2e + s2d 2 Q[x, y] are overt polynomials, whose zero sets
are V [ V 0 and V ⇥ W , respectively. If m 2 N with m > n, then {0} ⇢ R

m�n is
projectively Q-closed Q-algebraic. Thus, V ⇥{0} ⇢ R

m is also projectively Q-closed
Q-algebraic. Let q 2 Q[x] be such that Z = ZR(q) and let ` be the degree of q. It
follows that p2`+2 + q2 2 Q[x] is overt and its zero set is V \ Z. Given any v 2 Q

n,
the polynomial p(x� v) 2 Q[x] is overt and its zero set is V + v. ⇤
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2.1.3. R|Q-Generic projection. We also have the following variant ‘over Q’
of a classical generic projection lemma by preserving the R|Q-regularity at any point.
Here we only remind the result and we refer to [FG] for a complete proof.

Theorem 2.1.8. Let V ⇢ R
n be a projectively Q-closed Q-nonsingular Q-algebra-

ic set of dimension d. If n > 2d + 1, then V is Q-biregularly isomorphic to a
projectively Q-closed Q-nonsingular Q-algebraic set V 0 ⇢ R

2d+1 .

2.2. Q-algebraic embeddings of some special manifolds

Throughout this section, m and n denote two fixed positive natural numbers. The
elements x of Rm+n are considered as column vectors. Thus, if x1, . . . , xm+n are the
entries of x, we write x = (x1, . . . , xm+n)T , where the superscript ‘ T ’ denotes the
transpose operator.

Let Gm,n denote the (real) Grassmannian manifold of m-dimensional vector

subspaces of Rm+n. Identify R
(m+n)2 with the set of (m+n)⇥(m+n) real matrices.

It is well known, see [BCR98, Theorem 3.4.4], that Grassmannians are biregular
isomorphic to the following algebraic subsets of R(m+n)2 :

Gm,n =
�
X 2 R

(m+n)2 : XT = X,X2 = X, tr(X) = m
 
. (2.2.1)

The biregular map assigns to each point p of the Grassmannian, corresponding to
a m-dimensional vector subspace Vp of R

m+n, the matrix Xp 2 R
(m+n)2 of the

orthogonal projection of Rm+n onto Vp with respect to the canonical basis of Rm+n.

Lemma 2.2.1. Each Grassmannian Gm,n ⇢ R
(m+n)2 is a projectively Q-closed

Q-nonsingular Q-algebraic set.

Proof. Let � : R(m+n)2 ! R
(m+n)2 ⇥R

(m+n)2 be the polynomial map �(X) :=
(XT �X,X2 �X). We prove that the polynomial tr(X) �m and the polynomial
components of � su�ce to describe nonsingular points of Gm,n in R

(m+n)2 via the
Q-jacobian criterion of Theorem 1.6.5. Since these polynomials have coe�cients in
Q and their common zero set is Gm,n, bearing in mind that Gm,n has dimension
mn, it su�ces to show that, for each A 2 Gm,n, the rank of the jacobian matrix
J�(A) of � at A is greater than or equal to (and hence equal to) (m+n)2 �mn, i.e.
rnk J�(A) � (m+ n)2 �mn for all A 2 Gm,n.

First, we prove that rnk J�(Dm) � (m+ n)2 �mn if Dm is the diagonal matrix

in R
(m+n)2 having 1 in the first m diagonal positions and 0 otherwise. For each

i, j 2 {1, . . . ,m + n}, define the polynomial functions fij : R(m+n)2 ! R and gij :

R
(m+n)2 ! R by

fij(X) := xij � xji and gij(X) :=
�P

m+n

`=1 xi`x`j
�
� xij

for all X = (xij)i,j 2 R
(m+n)2 . Hence, �(X) = ((fij(X))i,j , (gij(X))i,j). Define:

S1 := {(i, j) 2 {1, . . . ,m+ n}2 | i < j},
S2 := {(i, j) 2 {1, . . . ,m+ n}2 | i  j  m},
S3 := {(i, j) 2 {1, . . . ,m+ n}2 |m < i  j}.
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Notice that the sum of the cardinalities of S1, S2 and S3 is equal to

(m+ n� 1)(m+ n)

2
+

m(m+ 1)

2
+

n(n+ 1)

2
= (m+ n)2 �mn.

By a direct computation, we see that

rfij(Dm) = Eij � Eji if (i, j) 2 S1,
rgij(Dm) = Eij if (i, j) 2 S2,
rgij(Dm) = �Eij if (i, j) 2 S3,

where Eij is the matrix in R
(m+n)2 whose (i, j)-coe�cient is equal to 1 and 0 oth-

erwise. Consequently, we have that rnk J�(Dm) � (m + n)2 � mn. Let A 2 Gm,n

and let G 2 O(m + n) be such that Dm = GTAG. Define the linear automor-
phism  : R

(m+n)2 ! R
(m+n)2 by  (X) := GTXG. Since  (A) = Dm and

( ⇥  ) � � = � �  , we have that J ⇥ (�(A))J�(A) = J�(Dm)J (A). Bear-
ing in mind that both matrices J ⇥ (�(A)) and J (A) are invertible, it follows
that rnk J�(A) = rnk J�(Dm) � (m + n)2 � mn, as desired. Finally, we note

that tr(AAT ) equals the squared Euclidean norm of A in R
(m+n)2 and it holds

tr(AAT ) = tr(GTAATG) = tr(DmDT
m) = tr(Dm) = m. Since Gm,n ⇢ R

(m+n)2 is
the zero set of the polynomial |�(X)|2(m+n)2 + (tr(X) �m)2 2 Q[(xij)i,j ] and Gm,n

is contained in the projectively Q-closed sphere {tr(XXT ) � m = 0} of R(m+n)2 ,
Lemma 2.1.7(ii) ensures that Gm,n is projectively Q-closed in R

(m+n)2 as well. ⇤

Consider the special case m = 1, thus G1,n ⇢ R
(n+1)2 is a Q-algebraic embedding

of the projective space P
n(R). Given a vector x = (x1, . . . , xn+1)T 2 R

n+1 \ {0}, we
denote by [x] = [x1, . . . , xn+1] the corresponding element of Pn(R). We indicate by
µn : Pn(R) ! G1,n the C1 di↵eomorphism given by

µn([x]) := xxT |x|�2 = (xixj |x|�2)i,j . (2.2.2)

Note that, given any x 2 R
n+1 \ {0}, xxT |x|�2 is the matrix associated to the

orthogonal projection of Rn+1 onto the vector line generated by x w.r.t. the canonical
vector basis of Rn+1.

Let n0 2 N
⇤ with n  n0. Given x = (x1, . . . , xn+1)T 2 R

n+1 and y =
(y1, . . . , yn0+1)T 2 R

n
0+1, we define hx, yi :=

P
n+1
i=1 xiyi. Denote by Hn,n0 the non-

singular (real) algebraic hypersurface of Pn(R)⇥ P
n
0
(R) defined by

Hn,n0 :=
�
([x], [y]) 2 P

n(R)⇥ P
n
0
(R)

�� hx, yi = 0
 

(2.2.3)

and the C1 hypersurface Hn,n0 of G1,n ⇥G1,n0 by

Hn,n0 := (µn ⇥ µn0)(Hn,n0). (2.2.4)

Lemma 2.2.2. Each Hn,n0 ⇢ R
(n+1)2+(n0+1)2 is a projectively Q-closed Q-nonsin-

gular Q-algebraic set.

Proof. For every k 2 {1, . . . , n+ 1}, define the sets Un,k and ⌦n,k by

Un,k := {[x1, . . . , xn+1] 2 P
n(R) |xk 6= 0},

⌦n,k := {X 2 G1,n |xkk 6= 0},
and the map ⇠n,k : ⌦n,k ! Un,k by

⇠n,k(X) := [x1k, . . . , xn+1,k].
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It is immediate to verify that

µn(Un,k) = ⌦n,k and µ�1
n (X) = ⇠n,k(X) for all X 2 ⌦n,k. (2.2.5)

Since
S

n+1
k=1 Un,k = P

n(R), the family {⌦n,k}n+1
k=1 is a Zariski open cover of G1,n.

As a consequence, the family {⌦n,k ⇥⌦n0,h}k2{1,...,n+1},h2{1,...,n0+1} is a Zariski open
cover of G1,n ⇥G1,n0 .

Let k 2 {1, . . . , n+1}, h 2 {1, . . . , n0+1} and pk,h 2 Q[X,Y ] be the polynomial
defined by

pk,h(X,Y ) :=
P

n+1
i=1 xikyih.

Let us show that

Hn,n0 \ (⌦n,k ⇥ ⌦n0,h) = ZR(pk,h) \ (⌦n,k ⇥ ⌦n0,h). (2.2.6)

Indeed, given (X,Y ) = ((xij)i,j , (yij)i,j) 2 ⌦n,k ⇥ ⌦n0,h, by (2.2.5), we have
that (X,Y ) 2 Hn,n0 if, and only if, (⇠n,k(X), ⇠n0,h(Y )) 2 Hn,n0 . Since ⇠n,k(X) =
[x1k, . . . , xn+1,k] and ⇠n0,h(Y ) = [y1h, . . . , yn0+1,h], by definition (2.2.3) of Hn,n0 , the
latter condition is in turn equivalent to assert that pk,h(X,Y ) = 0. This proves
(2.2.6). We claim that

Hn,n0 =
T

n
0+1

h=1

T
n+1
k=1 ZR(pk,h) \ (G1,n ⇥G1,n0). (2.2.7)

We can prove this equality as follows. Let (X,Y ) 2
T

n
0+1

h=1

T
n+1
k=1 ZR(pk,h) \ (G1,n ⇥

G1,n0). Since (X,Y ) 2 ⌦n,k⇥⌦n0,h for some k 2 {1, . . . , n+1} and h 2 {1, . . . , n0+1},
it follows that (X,Y ) 2 ZR(pk,h) \ (⌦n,k ⇥ ⌦n0,h). By (2.2.6), we deduce that
(X,Y ) 2 Hn,n0 \ (⌦n,k⇥⌦n0,h) ⇢ Hn,n0 . Consider now (X,Y ) 2 Hn,n0 . Let x 2 R

n+1

and y 2 R
n
0+1 be such that ([x], [y]) 2 Hn,n0 , X = xxT |x|�2 and Y = yyT |y|�2. For

every k 2 {1, . . . , n+ 1} and h 2 {1, . . . , n0 + 1}, we have:

pk,h(X,Y ) =
P

n+1
i=1 (xixk|x|�2)(yiyh|y|�2) = xkyh|x|�2|y|�2hx, yi = 0.

This proves equality (2.2.7). By Lemmas 2.1.3(v) and 2.2.1, we know that G1,n ⇥
G1,n0 is a Q-nonsingular Q-algebraic subset of R(n+1)2+(n0+1)2 = R

(n+1)2 ⇥ R
(n0+1)2 .

Since Hn,n0 is a C1 hypersurface of G1,n ⇥ G1,n0 , in order to prove that Hn,n0 is
a Q-nonsingular Q-algebraic set it su�ces to show that, for each (X0, Y0) 2 Hn,n0 ,
there exist k 2 {1, . . . , n+ 1} and h 2 {1, . . . , n0 + 1} such that rpk,h(X0, Y0) is not

orthogonal to the tangent space of G1,n⇥G1,n0 at (X0, Y0) in R
(n+1)2 ⇥R

(n0+1)2 , i.e.

rpk,h(X0, Y0) 62 T(X0,Y0)(G1,n ⇥G1,n0)?. (2.2.8)

Fix (X0, Y0) 2 Hn,n0 . Choose k 2 {1, . . . , n+1} and h 2 {1, . . . , n0+1} in such a way
that (X0, Y0) 2 ⌦n,k ⇥⌦n0,h. Consider the coordinates x0 = (x1, . . . , xk�1, xk+1, . . . ,
xn+1) in R

n and y0 = (y1, . . . , yh�1, yh+1, . . . , yn0+1) in R
n
0
. Set x00 = (x1, . . . , xk�1, 1,

xk+1, . . . , xn+1) 2 R
n+1 and y00 = (y1, . . . , yh�1, 1, yh+1, . . . , yn0+1) 2 R

n
0+1. Define

the C1 di↵eomorphism �k,h : Rn ⇥ R
n
0 ! Un,k ⇥ Un0,h and the C1 embedding

µk,h : Un,k ⇥ Un0,h ! R
(n+1)2 ⇥ R

(n0+1)2 by

�k,h(x
0, y0) := ([x00], [y00]) and µk,h([x], [y]) := (µn,k([x]), µn0,h([y])),

and the regular function qk,h : Rn ⇥ R
n
0 ! R by

qk,h(x0, y0) := (pk,h � µk,h � �k,h)(x0, y0) = (1 + |x0|2)�1(1 + |y0|2)�1hx00, y00i.
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Let (x00, y
0
0) be the unique point in R

n ⇥ R
n
0
such that (X0, Y0) = (µk,h �

�k,h)(x00, y
0
0). Since d(x0

0,y
0
0)
(µk,h � �k,h) maps isomorphically T(x0

0,y
0
0)
(Rn ⇥ R

n
0
) onto

T(X0,Y0)(G1,n ⇥G1,n0), condition (2.2.8) is equivalent to the following:

rqk,h(x
0
0, y

0
0) 6= 0. (2.2.9)

Notice that qk,h = rs, where r(x0, y0) := (1+ |x0|2)�1(1+ |y0|2)�1 and s(x0, y0) :=
hx00, y00i. Since qk,h(x00, y

0
0) = 0, r(x00, y

0
0) 6= 0 and rqk,h = srr + rrs, we deduce

that s(x00, y
0
0) = 0 and rqk,h(x00, y

0
0) = r(x00, y

0
0)rs(x00, y

0
0). Hence we have to prove

that rs(x00, y
0
0) 6= 0. It holds:

rs(x00, y
0
0) = (y01, . . . , y

0
k�1, y

0
k+1, . . . , y

0
n+1, x

0
1, . . . , x

0
h�1, x

0
h+1, . . . , x

0
n+1),

with x00 = (x01, . . . , x
0
k�1, x

0
k+1, . . . , x

0
n+1), y

0
0 = (y01, . . . , y

0
h�1, y

0
h+1, . . . , y

0
n0+1), x

0
k
:=

1 and y0
h
:= 1. If k 6= h, then one of the components of rs(x00, y

0
0) is x0

k
= 1, so

rs(x00, y
0
0) 6= 0. Suppose that k = h. In this case, rs(x0, y0) = 0 implies that x0 = 0

and y0 = 0. Consequently, s(x0, y0) = hx0, y0i+ 1 = 1. Since s(x00, y
0
0) = 0, it follows

that rs(x00, y
0
0) 6= 0. This proves (2.2.9).

By Lemmas 2.1.7(iv) and 2.2.1, we have that G1,n⇥G1,n0 is projectively Q-closed

in R
(n+1)2+(n0+1)2 . By (2.2.7), we have that Hn,n0 = ZR(p) \ (G1,n ⇥ G1,n0), where

p :=
P

n
0+1

h=1

P
n+1
k=1 p

2
k,h

2 Q[X,Y ]. Lemma 2.1.7(ii) ensures that Hn,n0 is projectively

Q-closed in R
(n+1)2+(n0+1)2 . This completes the proof. ⇤

Let Em,n denote the (total space of the) universal vector bundle over Gm,n as

the following algebraic subsets of R(m+n)2+m+n = R
(m+n)2 ⇥ R

m+n:

Em,n := {(X, y) 2 Gm,n ⇥ R
m+n : Xy = y}.

It is well-known that Em,n is a connected C1 submanifold of R(m+n)2+m+n of di-
mension m(n+ 1).

Lemma 2.2.3. Each universal vector bundle Em,n ⇢ R
(m+n)2+m+n over Gm,n is

a Q-nonsingular projectively Q-closed algebraic set.

Proof. Let � : R(m+n)2⇥R
m+n ! R

(m+n)2⇥R
(m+n)2⇥R

m+n be the polynomial
map defined by

�(X, y) := (XT �X,X2 �X,Xy � y).

We prove that the polynomial tr(X) � m and the polynomial components of � do
su�ce to describe nonsingular points of Em,n ⇢ R

m+n
2 ⇥ R

m+n via the Q-jacobian
criterion of Theorem 1.6.5. As in the proof of Lemma 2.2.1, it su�ces to show that
rnk J�(A, b) � (m+n)2+m+n�m(n+1) = (m+n)2�mn+n for all (A, b) 2 Em,n.

First, we prove that rnk J�(Dm, v) � (m + n)2 �mn + n if Dm is the diagonal

matrix in R
(m+n)2 having 1 in the first m diagonal positions and 0 otherwise, and

v = (v1, . . . , vm+n)T is a vector of R
m+n such that (Dm, v) 2 Em,n. For each

` 2 {1, . . . ,m+ n}, define the polynomial functions h` : R(m+n)2 ⇥ R
(m+n) ! R by

h`(X, y) :=
�P

m+n

j=1 x`jyj
�
� y`

for all X = (xij)i,j 2 R
(m+n)2 and y = (y1, . . . , ym+n)T 2 R

m+n. Thus, with
the same notation used in the proof of Lemma 2.2.1, it follows that �(X, y) =
((fij(X))i,j , (gij(X))i,j , (h`(X, y))`). Thanks to the proof of the mentioned Lemma
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2.2.1, we already know that the rank of the jacobian matrix at (Dm, v) of the map
X 7! ((fij(X))i,j , (gij(X))i,j) is � (m + n)2 � mn. Thus, we only have to look at
the components (h`(X, y))`. By a direct computation we see that

rh`(Dm, v) =
�P

n

j=1 vjE`j ,�e`
�
2 R

(m+n)2 ⇥ R
m+n,

if ` 2 {m+1, . . . ,m+n},where E`j is the matrix in R
(m+n)2 whose (`, j)-coe�cient

is equal to 1 and 0 otherwise, and {e1, . . . , em+n} is the canonical vector basis of
R
m+n. Consequently, we obtain that rnk J�(Dm, v) � (m+ n)2 �mn+ n for every

v 2 R
m+n such that (Dm, v) 2 Em,n.

Let us complete the proof. Let (A, b) 2 Em,n, let G 2 O(m + n) be such that
Dm = GTAG and let v := GT b. Note that Dmv = GTAGGT b = GTAb = GT b = v,
i.e., (Dm, v) 2 Em,n. Define the linear automorphisms  : R(m+n)2 ! R

(m+n)2 and
⌧ : Rm+n ! R

m+n by  (X) := GTXG and ⌧(y) = GT y. Since ( ⇥ ⌧)(A, b) =
(Dm, v) and ( ⇥  ⇥ ⌧) � � = � � ( ⇥ ⌧), we have that J ⇥ ⇥⌧ (�(A, b))J�(A, b) =
J�(Dm, v)J ⇥⌧ (A, b). Bearing in mind that both matrices J ⇥ ⇥⌧ (�(A, b)) and
J ⇥⌧ (A, b) are invertible, it follows that rnk J�(A, b) = rnk J�(Dm, d) � (m+ n)2 �
mn + n, as desired. Finally, we note that Em,n ⇢ R

(m+n)2 is the zero set of the
polynomial |�(X, y)|2(m+n)2 + (tr(X)�m)2 2 Q[(xij)i,j , (yk)k], thus we deduce that

Em,n ⇢ R
(m+n)2 is Q-algebraic. ⇤

Let E
⇤
m,n denote the (total space of the) universal sphere bundle over Gm,n as

the following real algebraic subset of R(m+n)2+m+n+1 := R
(m+n)2 ⇥ R

m+n ⇥ R:

E
⇤
m,n = {(X, y, t) 2 Gm,n ⇥ R

m+n ⇥ R |Xy = y, |y|2n + t2 = t}.

It is well-known that E⇤
m,n is a connected C1 submanifold of R(m+n)2 ⇥ R

m+n ⇥ R

of dimension m(n+ 1).

Lemma 2.2.4. Each universal sphere bundle E
⇤
m,n ⇢ R

(m+n)2+m+n+1 is a pro-
jectively Q-closed Q-nonsingular Q-algebraic set.

Proof. Let � : R(m+n)2 ⇥R
m+n ⇥R ! R

(m+n)2 ⇥R
(m+n)2 ⇥R

m+n ⇥R be the
polynomial map defined by

�(X, y, t) := (XT �X,X2 �X,Xy � y, |y|2m+n + t2 � t).

We prove that the polynomial tr(X) � m and the polynomial components of � do
su�ce to describe nonsingular points of E⇤

m,n ⇢ R
(m+n)2 ⇥ R

m+n ⇥ R via the Q-
jacobian criterion of Theorem 1.6.5. As in the proof of Lemma 2.2.1, it su�ces to
show that rnk J�(A, b, c) � (m+n)2+m+n+1�m(n+1)�1 = (m+n)2�mn+n
for all (A, b, c) 2 E

⇤
m,n.

First, we prove that rnk J�(Dm, v, c) � (m+ n)2 �mn+ n if D is the diagonal

matrix in R
(m+n)2 having 1 in the first m diagonal positions and 0 otherwise, v =

(v1, . . . , vm+n)T is a vector of Rm+n and c 2 R such that (Dm, v, c) 2 E
⇤
m,n. For each

` 2 {1, . . . ,m+n+1}, define the polynomial functions h` : R(m+n)2⇥R
(m+n)⇥R ! R
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by

h`(X, y, t) :=
⇣m+nX

j=1

x`jyj
⌘
� y` if ` 6= m+ n+ 1

hm+n+1(X, y, t) := |y|2m+n + t2 � t,

for all X = (xij)i,j 2 R
(m+n)2 , y = (y1, . . . , ym+n) 2 R

m+n and t 2 R. Thus,
with the same notation of the proof of Lemma 2.2.3, it follows that �(X, y, t) =
((fij(X))i,j , (gij(X))i,j , (h`(X, y, t))`). Thanks to the proof of mentioned Lemma
2.2.3, we already know that the rank of the jacobian matrix at (Dm, v, c) of the map

(X, y, t) 7! ((fij(X))i,j , (gij(X))i,j , (h`(X, y, t))`)

is � (m+ n)2 �mn+ n. Thus, we only have to look at the components (h`(X, y))`
in order to prove that hm+n+1 always produces an additional independent gradient
with respect to the gradients of (h`(X, y)) 6̀=m+n+1. By a direct computation we see
that

rh`(Dm, v, c) =
⇣m+nX

j=1

vjE`j ,�e`, 0
⌘

if ` 2 {m+ 1, . . . ,m+ n},

rhm+n+1(Dm, v, c) =
�
0, 2v, 2c� 1

�

where E`j is the matrix in R
(m+n)2 whose (`, j)-coe�cient is equal to 1 and 0

otherwise, and {e1, . . . , em+n} is the canonical vector basis of R
m+n. Observe

that rhm+n+1(Dm, v, c) is linearly independent with respect to (rh`(X, y))`6=m+n+1

when c 6= 1/2, otherwise, if c = 1/2, then

rhm+n+1(Dm, v, c) = (0, 2v, 0),

so it is contained in the m-plane satisfying Dmv = v, hence it is linearly indepen-
dent with respect to (rh`(X, y))`6=m+n+1 as well. Consequently, we obtain that
rnk J�(Dm, v, c) � (m + n)2 � mn + n for every v 2 R

n and c 2 R such that
(Dm, v, c) 2 E

⇤
m,n.

Let us complete the proof. Let (A, b, c) 2 E
⇤
m,n, let G 2 O(m+ n) be such that

Dm = GTAG and let v := GT b. By the choice ofG we see that |v|2m+n = |GT v|2m+n =
|b|2m+n, hence c satisfies |v|2m+n+ c2� c = 0 as well. Note that Dmv = GTAGGT b =
GTAb = GT b = v, i.e., (Dm, v, c) 2 E

⇤
m,n. Define the linear automorphisms  :

R
(m+n)2 ! R

(m+n)2 and ⌧ : Rm+n ! R
m+n by  (X) := GTXG and ⌧(y) = GT y.

Since ( ⇥⌧⇥idR)(A, b, c) = (Dm, v, c) and ( ⇥ ⇥⌧⇥idR)�� = ��( ⇥⌧⇥idR), we
have that J ⇥ ⇥⌧⇥idR(�(A, b, c))J�(A, b) = J�(Dm, v, c)J ⇥⌧⇥idR(A, b, c). Bearing in
mind that both matrices J ⇥ ⇥⌧⇥idR(�(A, b, c)) and J ⇥⌧⇥idR(A, b, c) are invertible,
it follows that rnk J�(A, b, c) = rnk J�(Dm, v, c) � (m+n)2�mn+n+1, as desired.

Let S
m+n ⇢ R

m+n+1 be the standard unit sphere. Since E
⇤
m,n ⇢ R

(m+n)2 ⇥
R
m+n ⇥ R is the zero set of |�(X, y, t)|2(m+n)2 + (tr(X) � m)2 2 Q[(xij)i,j , (yk)k, t]

and E
⇤
m,n ⇢ Gm,n ⇥ S

m+n, which is a projectively Q-closed Q-algebraic subset of

R
(m+n)2 ⇥R

m+n⇥R by Lemmas 2.2.1 & 2.1.7(iv), we have that E⇤
m,n is projectively

Q-closed in R
k ⇥ R

m+n ⇥ R as well by Lemma 2.1.7(ii). ⇤
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In Section 2.5 and later on in Chapter 3 we will also need the following refinement
of a well known result.

Lemma 2.2.5. Let V ⇢ R
k be a Q-nonsingular Q-algebraic set of dimension d,

and let � : V ! Gk�d,d be the normal bundle map of V in R
k (also called the Gauss

mapping of V in R
k). Then � 2 RQ(V,Gk�d,k).

Proof. By Lemma 2.1.2, it su�ces to show that, for each a 2 V , there exist
polynomials pi,j 2 Q[x] for every i, j 2 {1, . . . , k} and q 2 Q[x] such that q(a) 6= 0

and �(x) = P (x)
q(x) for all x 2 V \ ZR(q), where P : Rk ! R

k
2
is defined by P (x) :=

(pi,j(x))i,j . In order to prove this, we follow the argument used in the proof of [AK92,
Proposition 2.4.3]. Let a 2 V . By Corollary 1.6.6, there are p1, . . . , pk�d 2 IQ(V )
whose gradients at a are linearly independent in R

k. Let A : Rk ! R
k(k�d) and

M : R
k ! R

(k�d)2 be the polynomial maps defined as follows: given x 2 R
k,

A(x) is the k ⇥ (k � d)-matrix whose columns are the gradients of p1, . . . , pk�d at x
and M(x) is the (k � d) ⇥ (k � d)-matrix defined by M(x) := A(x)TA(x). Define
q(x) := det(M(x)) 2 Q[x]. Note that A(x) and M(x) have the same rank for
all x 2 R

k. Thus, q(x) 6= 0 if and only if the rank of A(x) is k � d. It follows
that q(a) 6= 0. By elementary considerations from linear algebra, we have that
�(x) = A(x)M(x)�1A(x)T for all x 2 V \ ZR(q). Since all the entries of M are
polynomials in Q[x], by Cramer’s rule, there is a map C = (cij)i,j : Rk ! R

(k�d)2

such that each entry cij 2 Q[x] and M(x)�1 = C(x)
q(x) for all x 2 R

k \ZR(q). The map

P : Rk ! R
k
2
, defined by P (x) := A(x)C(x)A(x)T , has the desired properties. ⇤

Let W be a nonsingular algebraic subset of R
k of dimension d. Let G :=Q

`

i=1Gmi,ni , let E
⇤ :=

Q
`

i=1 E
⇤
mi,ni

and le µ : W ! G be a regular map. Let
⇡i := G ! Gmi,ni be the projection onto the i-th factor and let µi : W ! Gmi,ni be
defined as µi := ⇡i�µ for every i 2 {1, . . . , `}. We define the pull-back sphere bundle
µ⇤(E⇤) overW of E⇤ via µ as the following algebraic subset of Rk⇥

Q
`

i=1(R
mi+ni⇥R):

µ⇤(E⇤) := {(x, y1, t1, . . . , y`, t`) 2 W ⇥
`Y

i=1

(Rmi+ni ⇥ R) |

µi(x)y
i = yi, |yi|2m+n + t2i = ti for i = 1, . . . , `}.

It is well-known that µ⇤(E⇤) is a compact C1 submanifold of Rk ⇥ (Rm+n ⇥R)` of
dimension d+

P
`

i=1mi.

Lemma 2.2.6. Let W be a projectively Q-closed Q-nonsingular Q-algebraic subset
of R

k of dimension d. Let µ : W ! G be a Q-regular map. Then µ⇤(E⇤) ⇢
R
k ⇥

Q
`

i=1(R
mi+ni ⇥ R) is a projectively Q-closed Q-nonsingular Q-algebraic set.

Proof. For simplifying the notation we only prove the case ` = 1, in the general
case the proof works in the same way. Let ` = 1, G = Gm,n and E = E

⇤
m,n. There

are s 2 N
⇤ and p1, . . . , ps 2 Q[x] = Q[x1, . . . , xk] such that IRk(W ) = (p1, . . . , ps).

Let � : Rk ⇥ R
m+n ⇥ R ! R

s ⇥ R
m+n ⇥ R be the regular map defined by

�(x, y, t) := (p1(x), . . . , ps(x),µ(x)y � y, |y|2m+n + t2 � t),

where µ(x) 2 G ⇢ R
(m+n)2 is in matrix form. We prove that the polynomial

components of � do su�ce to describe nonsingular points of µ⇤(E⇤) ⇢ R
k⇥R

m+n⇥R
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via the Q-jacobian criterion of Theorem 1.6.5. As in the proves of previous lemmas,
it su�ces to show that rnk J�(a, b, c) � k � d+ n+ 1 for all (a, b, c) 2 µ⇤(E⇤).

As in the proof of Lemma 2.2.4, for every r 2 {1, . . . ,m + n + 1}, define the
polynomial functions hr : R(m+n)2 ⇥ R

m+n ⇥ R ! R by

hr(X, y, t) :=
⇣m+nX

j=1

xrjyj
⌘
� ys if r 6= m+ n+ 1

hm+n+1(X, y, t) := |y|2m+n + t2 � t,

for all X = (xij)ij 2 R
(m+n)2 , y = (y1, . . . , ym+n) 2 R

m+n and t 2 R. Thus, with
the same notation of the proof of Lemma 2.2.4, it follows that

�(x, y, t) = (p1(x), . . . , ps(x), h1(µ(x), y, t), . . . , hm+n+1(µ(x), y, t)).

Let ⌫ : Rk ! G, defined as ⌫(x) := (⌫(x)ij)ij , be any regular function such that
Dm 2 ⌫(W ). Define h0r : R

k⇥R
m+n⇥R ! R as h0r := hr�(⌫⇥idRm+n ⇥ idR) for every

r 2 {1, . . . ,m+n+1}. Thanks to the proof of Lemma 2.2.3 and beingW nonsingular
of dimension d, we get that the rank of the jacobian matrix of the map (x, y, t) 7!
(p1(x), . . . , ps(x), h01(x, y, t), . . . , h

0
m+n+1(x, y, t)) at every (a, v, c) 2 ⌫⇤(E⇤) such that

⌫(a) = Dm is � k � d + n + 1, hence equal to k � d + n + 1. Indeed, denote by
⌫r : Rm+n ! R be the regular map defined as ⌫r(x) := (⌫r1(x), . . . , ⌫rm+n(x)), that
is, the map associated to the r-th row of ⌫. Then we have:

rpi(a, v, c) = (rpi(a), 0, 0) for every i = 1, . . . , s;

rh0r(a, v, c) =
⇣
r⌫r(a) · vT ,�er, 0

⌘
if r 2 {m+ 1, . . . ,m+ n},

rhm+n+1(a, v, c) =
�
0, 2v, 2c� 1

�
,

where x = (x1, . . . , xk) and {e1, . . . , em+n} denotes the canonical vector basis of
R
m+n.

Let us complete the proof. Let (a, b, c) 2 µ⇤(E⇤), let G 2 O(m + n) be such
that Dm = GTµ(a)G and let v := GT b. By the choice of G we see that |v|2m+n =
|GT v|2m+n = |b|2m+n, hence c satisfies |v|2m+n + c2 � c = 0 as well. Note that Dmv =
GTAGGT b = GTAb = GT b = v, i.e., (Dm, v, c) 2 ⌫⇤(E⇤) with ⌫ : W ! G defined as
⌫(a) := GTµ(a)G. Define the regular function  : Rk⇥R

m+n⇥R ! R
s⇥R

m+n⇥R

by
 (x, y, t) := (p1(x), . . . , ps(x), ⌫(x)y � y, |y|2m+n + t2 � t),

and the linear automorphism ⌧ : Rm+n ! R
m+n by ⌧(y) = GT y. Since (idRk ⇥⌧ ⇥

idR)(a, b, c) = (a, v, c) and (idRs ⇥⌧ ⇥ idR) � � = � � (idRk ⇥⌧ ⇥ idR) we have that
JidRs ⇥⌧⇥idR(�(a, b, c))J�(a, b, c) = J (a, v, c)JidRk ⇥⌧⇥idR(a, b, c). Since both matri-
ces JidRs ⇥⌧⇥idR(�(a, v, c)) and JidRk ⇥⌧⇥idR(a, b, c) are invertible and ⌫(a) = Dm, it
follows that rnk J�(a, b, c) = rnk J (a, v, c) = k � d+ n+ 1, as desired.

Since µ⇤(E⇤) ⇢ R
k ⇥ R

m+n ⇥ R is the zero set of |�(x, y, t)|2
s+m+n+1 2 Q[x, y, t]

and µ⇤(E⇤) is contained in W ⇥ Sm+n, which is a projectively Q-closed algebraic
subset of R

k ⇥ R
m+n ⇥ R by Lemmas 2.2.1 & 2.1.7(iv), we have that µ⇤(E⇤) is

projectively Q-closed in R
k ⇥ R

m+n ⇥ R as well by Lemma 2.1.7(ii). ⇤
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2.3. Q-Desingularization of real embedded Schubert varieties

As in Section 2.2, in what follows m and n denote two fixed positive natural
numbers. The elements x of R

m+n are considered as column vectors. Thus, if
x1, . . . , xm+n are the entries of x, we write x = (x1, . . . , xm+n)T , where the super-
script ‘ T ’ denotes the transpose operator.

2.3.1. Embedded Schubert varieties. Let Gm,n ⇢ R
(m+n)2 be the embed-

ded Grassmannian manifold of m-planes in R
m+n. Let us construct an embedded

version of Schubert varieties inducing a cellular decomposition of Gm,n. Consider
the complete flag of Rm+n consisting of the strictly increasing sequence of each R

k,
with k  m + n, spanned by the first k elements of the canonical basis of Rm+n.
That is:

0 ⇢ R ⇢ · · · ⇢ R
i ⇢ · · · ⇢ R

m+n.

We will refer to the previous complete flag as the canonical complete flag of Rm+n.
Let us define the Schubert varieties of Gm,n with respect to the above complete flag
by following the convention in [Man01, §3]. Define a partition � = (�1, . . . ,�m)
as a decreasing sequence of integers such that n � �1 � · · · � �m � 0. Hence, �
corresponds uniquely to a Young diagram in a (m ⇥ n)-rectangle. Denote by D`

the (m + n)2 matrix associated to the orthogonal projection R
m+n ! R

` sending
(x1, . . . , xm+n) 7! (x1, . . . , x`) with respect to the canonical basis of Rm+n for every
` 2 {1, . . . ,m + n}. Hence, D` is the diagonal matrix in R

(m+n)2 having 1 in the
first ` diagonal positions and 0 otherwise. Define the Schubert open cell of Gm,n

associated to � with respect to the canonical complete flag as

⌦� :=
�
X 2 Gm,n | rnk(XD`) = k if n+ k � �k  `  n+ k � �k+1

 
.

Define the Schubert variety of Gm,n associated to the partition � with respect to the
canonical complete flag as

�� :=
�
X 2 Gm,n | rnk(XDn+k��k) � k, for k = 1, . . . ,m

 
. (2.3.1)

The partition � is uniquely determined and determinates uniquely a sequence of
incidence conditions with respect to the above canonical complete flag of Rm+n. In
addition, the matrix XD` = (x0

ij
)i,j 2 R

(m+n)2 satisfies the following relations with

respect to X = (xij)i,j 2 R
(m+n)2 :

x0ij = xij if j  ` and x0ij = 0 otherwise.

Here we summarize some general properties of Schubert varieties translated in
our embedded construction. For more details see [MS74, §6] and [Man01, Section
3.2].

Lemma 2.3.1. Let Gm,n ⇢ R
(m+n)2 be an embedded Grassmannian manifold and

let � be a partition of the (m⇥ n)-rectangle. Let �� be the Schubert variety in Gm,n

defined by the incidence conditions prescribed by � with respect to the canonical
complete flag of Rm+n. Then:

(i) �� is an algebraic subset of R(m+n)2 and ⌦� ⇢ Reg(��).
(ii) ⌦� is biregular isomorphic to R

mn�|�|, where |�| :=
P

m

k=1 �k.
(iii) �� coincides with the Euclidean closure of ⌦�.
(iv) �� =

S
µ��⌦µ, where µ � � if and only if µk � �k for every k 2 {1, . . . ,m}.
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(v) �� � �µ if and only if �  µ, where �  µ means �i  µi for every
i 2 {1, . . . ,m}.

The choice of the canonical complete flag allows as to obtain Q-algebraic equa-
tions of Schubert varieties, as explained by next result.

Lemma 2.3.2. Let Gm,n ⇢ R
(m+n)2 be a Grassmannian manifold and let � be

a partition of the rectangle m ⇥ n. Then the Schubert variety �� defined by the
incidence conditions prescribed by � with respect to the canonical flag of Rm+n is a
projectively Q-closed algebraic subset of R(m+n)2.

Proof. We want to prove that �� is Q-algebraic, namely we prove that con-
ditions in (2.3.1) are Q-algebraic. Recall that X 2 Gm,n is the matrix of the or-
thogonal projection of Rm+n onto an m-dimensional subspace W of Rm+n, hence
ker(X � idRm+n) = W . This means that upper conditions on rnk(XD`) correspond
to lower conditions on rnk((X � idRm+n)D`), in particular for every k 2 {1, . . . ,m}
the following hold:

rnk(XDn+k��k) � k if and only if rnk((X � idRm+n)Dn+k��k)  n� �k.

The latter condition is algebraic since it corresponds to the vanishing of the determi-
nant of all (n��k+1)⇥ (n��k+1)-minors of the matrix (X� idRm+n)Dn+k��k . In

particular, since Gm,n ⇢ R
(m+n)2 is Q-algebraic, idRm+n and Dn+k��k are matrices

with rational coe�cients and the determinant is a polynomial with rational coe�-
cients with respect to the entries of the matrix X, the algebraic set �� is Q-algebraic.
In addition, since Gm,n is projectively Q-closed, �� is projectively Q-closed as well
by Lemma 2.1.7(ii). ⇤

2.3.2. Q-Desingularization procedure. Let us introduce the notion of Q-
desingularization of a Q-algebraic set V ⇢ R

n.

Definition 2.3.3. Let V ⇢ R
m be a Q-algebraic set of dimension d. We say

that V 0 ⇢ R
m⇥R

n, for some n 2 N, is a desingularization of V if V 0 is a nonsingular
algebraic subset of Rm+n of dimension d and ⇡|V 0 : V 0 ! V is a birational map,
where ⇡ : Rm ⇥ R

n ! R
m is the projection onto the first factor. If, in addition, V 0

is a Q-nonsingular projectively Q-closed algebraic subset of Rm+n we say that V 0 is
a Q-desingularization of V . ⌅

The goal of this subsection is to find Q-desingularizations of embedded Schu-
bert’s varieties defined by incidence conditions with respect to the canonical com-
plete flag of R(m+n)2 , that is, to prove next result.

Theorem 2.3.4. Let Gm,n ⇢ R
(m+n)2 be a Grassmannian manifold and let �� be

any Schubert variety of Gm,n defined by incidence conditions, prescribed by �, with
respect to the canonical complete flag of Rm+n, that is

0 ⇢ R ⇢ R
2 ⇢ · · · ⇢ R

m+n.

Then, �� admits a Q-desingularization.

Previous desingularization theorem will play a crucial role in Section 2.4 and
then in Section 3.2.1 for the proof of the relative Nash-Tognoli theorem ‘over Q’.
Let us provide a complete proof of Theorem 2.3.4.
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Let m,n 2 N
⇤ := N \ {0}. Let � = (�1, . . . ,�m) be a partition together with

its associated Young diagram in a (m ⇥ n)-rectangle. Then, there are c 2 N
⇤,

a1, . . . , ac�1 2 N
⇤, ac, b0 2 N and b1, . . . , bc�1 2 N

⇤, uniquely determined by �, such
that:

(a) a1 + · · ·+ ac = m and b0 + · · ·+ bc�1 = n,
(b) �j =

P
c

k=i
bk for every j  ai and for every i = 1, . . . , c.

The interpretation of the previous integers with respect to the Young diagram asso-
ciated to the partition � is explained in Figure 2.3.1.

b0
a1b1

a2

bi�1

ai

ac
bc�1

m

n

Figure 2.3.1. Disposition of the ai’s and bi’s with respect to the
partition �.

Remark 2.3.5. Let m0, n0 2 N such that m0  m and n0  n. Consider the
Schubert variety of Gm,n associated to the partition � = (�1, . . . ,�m) where:

�k =

(
n if k  m�m0;

n� n0 if k > m�m0.

If m = m0 and n = n0 the Schubert variety �� corresponds to the whole Gm,n,
otherwise �� is given by the equations:

�� = {X 2 Gm,n | rnk(XDm�m0) = m�m0, rnk(XDm+n0) = m}.
Clearly �� is biregular isomorphic to Gm0,n0 . In our embedded version the Q-
biregular isomorphism ' : Gm0,n0 ! �� ⇢ Gm,n can be defined as follows: let
X 0 := (x0

ij
)i,j=1,...,m0+n0 , then '(X 0) = (xi,j)i,j=1,...,m+n is defined as

xij =

8
><

>:

1 if i = j and i  m�m0;

x0st if m�m0 < i, j < m+ n0 and s = i�m+m0, t = j �m+m0;

0 otherwise.

Recall that Gm0,n0 ⇢ R
(m0+n

0)2 is a projectively Q-closed Q-nonsingular Q-algebraic
set. Let graph(') ⇢ Gm0,n0 ⇥ Gm,n be the graph of '. Then, we have that

graph(') ⇢ R
(m0+n

0)2+(m+n)2 is a Q-algebraic set contained in Gm0,n0 ⇥Gm,n, hence
projectively Q-closed by Lemma 2.1.7(ii) and Q-nonsingular since ' is a Q-biregular
isomorphism. Thus, graph(') ⇢ R

(m0+n
0)2+(m+n)2 is a Q-desingularization of ��. ⌅
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By the above Remark 2.3.5 we are left to find Q-desingularizations of Schubert
varieties �� of Gm,n defined by incidence conditions with respect to the canonical
complete flag such that ac and b0 are non-null. Indeed, if � is a partition with ac, b0 =
0, then �� is Q-biregularly isomorphic to a Schubert variety �µ of Gm�a1,n�bc�1 with
µi := �i+a1 � bc�1 for every i 2 {1, . . . ,m � a1}. Hence, µ1 := �1+a1 � bc�1 =
n� b1 � bc�1 < n� bc�1 and µm�a1 := bc�1 � bc�1 = 0, as desired.

We define the depressions of the partition �, with ac, b0 > 0, as the elements of
the Young diagram whose coordinates, with respect to the upper corner on the left,
are:

(a1 + · · ·+ ai + 1, bi + · · ·+ bc�1 + 1), i = 1, . . . , c� 1.

Here we provide an inductive desingularization of the Schubert variety �� with
respect to the number c� 1 2 N of depressions of the partition �.

In next result we adapt to our real embedded setting a desingularization tech-
nique developed by Zelevinsky in [Zel83].

Lemma 2.3.6. Let � be a partition of the (m⇥ n)-rectangle such that ac and b0
are non-null. Let �� be the Schubert variety of Gm,n defined by incidence conditions,

prescribed by �, with respect to the canonical complete flag of R(m+n)2. Let mk :=P
k

i=1 ai, nk := m+ n�mk and dk := mk +
P

k

i=1 bi�1 for every k = 1, . . . , c.

Then the algebraic set:

Z� := {(X,Yc�1, . . . , Y1) 2 Gm,n ⇥Gmc�1,nc�1 ⇥ · · ·⇥Gm1,n1 |
YiDdi = Yi, for every i = 1, . . . , c� 1,

Yi+1Yi = Yi, for every i = 1, . . . , c� 2,

XYc�1 = Yc�1}.
is a desingularization of ��.

Proof. Let us prove by induction on c 2 N
⇤ := N \ {0}. Let c = 1, that is

a1, b0 > 0 and � has no depressions, so � is the null partition. Thus, �� = Gm,n ⇢
R
(m+n)2 , which is a nonsingular algebraic set, thus there is nothing to prove.

Let c > 1 and � be a partition with c�1 depressions such that ac, b0 > 0. Recall
that the Schubert variety �� defined by the incidence conditions, prescribed by �,
with respect to the canonical complete flag of Rm+n is defined as:

�� = {X 2 Gm,n | rnk(XDdk
) � mk for k = 1, . . . , c.}

Consider the algebraic set Z� ⇢ Gm,n⇥Gmc�1,nc�1 ⇥ · · ·⇥Gm1,n1 as in the statement
of Lemma 2.3.6. Define ⇡i : Z� ! Gmc�i,nc�i for i 2 {1, . . . , c} be the restriction
over Z� of the projection from Gm,n⇥Gmc�1,nc�1 ⇥ · · ·⇥Gm1,n1 onto the (c� i+1)-
component.

Observe ⇡1(Z�) = {Y1 2 Gm1,n1 |Y1Dd1 = Y1} is biregular isomorphic toGa1,b0 =
Gm1,d1�m1 . Let µ be a partition of the

�
(m � m1) ⇥ n

�
-rectangle defined as:

µ = (µ1, . . . , µm�a1) with

µk = �k+a1 for every k = 1, . . . ,m� a1.

Then, for every B1 2 ⇡1(Z�), we observe that ⇡
�1
1 (B1) is biregular isomorphic to the

set Zµ. Indeed, define the biregular isomorphism � : Zµ ! (⇡1)�1(Dm1) as follows:
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let (A,Bc�1, . . . , B2) 2 Zµ then define

�(A,Bc�1, . . . , B2) := ('(A),'(Bc�1), . . . ,'(B2), Dm1),

where ' : R(m�m1+n)2 ! R
(m+n)2 is defined as '((xij)ij) = (x0

ij
), with

x0ij :=

8
><

>:

1 if i = j and i  m1,

xst if m�m1 < i, j, with s = i�m+m1 and t = j �m+m� 1,

0 otherwise.

Moreover, for every B1 2 ⇡1(Z�), then (⇡1)�1(B1) is biregularly isomorphic to
(⇡1)�1(Dm1), indeed it su�ces to chose G 2 O(m + n) such that Dm1 = GTB1G
and apply G to every factor of (⇡1)�1(Dm1) to produce the wondered isomorphism.
Observe that the partition µ has exactly (c�2)-depressions, indeed it is constructed
by erasing the first depression (a1+1, n� b0+1) of �, thus by inductive assumption
the algebraic set Zµ is a desingularization of �µ. In particular:

dim(Zµ) = dim(�µ) = dim(��)� a1b0.

Hence, ⇡1 : Z� ! Ga1,b0 is an algebraic fibre bundle of dimension dim(��), thus Z�
is a nonsingular algebraic subset of R(m+n)2c of dimension dim(��). Moreover, Z� is
a desingularization of �� indeed, if A 2 ⌦�, then (A,Bc�1, . . . , B1) 2 Z� if and only
if Bi = ADdi for every i 2 {1, . . . , c� 1}. Hence, the map ⇡c : Z� ! �� is birational
by Lemma 2.3.1(i). ⇤

By Remark 2.3.5, in order to prove Theorem 2.3.4 we are only left to prove next
result.

Lemma 2.3.7. Each algebraic fibre bundle Z� ⇢ R
(m+n)2c as in Lemma 2.3.6 is

a projectively Q-closed Q-nonsingular Q-algebraic set.

Proof. By definition, Z� is a Q-algebraic subset of R(m+n)2c defined by the fol-

lowing equations in the variables X := (xi,j)i,j=1,...,m+n and Yk := (y(k)
i,j

)i,j=1,...,m+n,
for k = 1, . . . , c� 1:

X = XT , X2 = X, tr(X) = m;

Yk = Y T

k
, Y 2

k
= Yk, tr(Yk) = mk for every k = 1, . . . , c� 1;

YkDdk
= Yk for every k = 1, . . . , c� 1;

Yk+1Yk = Yk for every k = 1, . . . , c� 2;

XYc�1 = Yc�1.

Let 'k : R(m+n)2c ! R
(m+n)2⇥R

(m+n)2⇥R
(m+n)2⇥R

(m+n)2 , for every k = 1, . . . , c�
2, 'c�1 : R(m+n)2c ! R

(m+n)2 ⇥ R
(m+n)2 ⇥ R

(m+n)2 ⇥ R
(m+n)2 and 'c : R(m+n)2c !

R
(m+n)2 ⇥ R

(m+n)2 be defined as:

'k(X,Yc�1, . . . , Y1) := (Yk � Y T

k
, Y 2

k
� Yk, YkDdk

� Yk, Yk+1Yk � Yk)

'c�1(X,Yc�1, . . . , Y1) := (Yc�1 � Y T

c�1, Y
2
c�1 � Yc�1, Yc�1Ddc�1 � Yc�1,

XYc�1 � Yc�1)

'c(X,Yc�1, . . . , Y1) := (X �XT , X2 �X).
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Define � : R(m+n)2c ! (R(m+n)2 ⇥ R
(m+n)2 ⇥ R

(m+n)2 ⇥ R
(m+n)2)c�1 ⇥ R

(m+n)2 ⇥
R
(m+n)2 be the polynomial map:

�(X,Yc�1, . . . , Y1) := ('1(X,Yc�1, . . . , Y1), . . . ,'c�1(X,Yc�1, . . . , Y1),

'c(X,Yc�1, . . . , Y1)).

We prove that the polynomials tr(X)�m, tr(Y k)�mk, for every k = 1, . . . , c� 1,
and the polynomial components of � do su�ce to describe the local structure of
nonsingular points of Z� in R

(m+n)2c. Since these polynomials have coe�cients in
Q and their common zero set is Z�, bearing in mind that

dim(Z�) =
cX

k=1

dim(G
ak,n�

Pc�1
i=k bk

) =
cX

k=1

ak

 
n�

c�1X

i=k

bk

!
= dim(��),

it su�ces to show that, for each (A,Bc�1, . . . , B1) 2 Z�, the rank of the jacobian
matrix J�(A,Bc�1, . . . , B1) of � at (A,Bc�1, . . . , B1) is greater than or equal to (and
hence equal to)

c(m+ n)2 � dim(��) =
cX

k=1

(m+ n)2 � dim(G
ak,n�

Pc�1
i=k bk

)

=
cX

k=1

(m+ n)2 � ak(dk �mk),

i.e. rnk J�(A,Bc�1, . . . , B1) � c(m+ n)2 �
P

c

k=1 ak(dk �mk) for all (A,Bc�1,
. . . , B1) 2 Z�.

First, we prove that rnk J�(Dm, Dmc�1 , . . . , Dm1) � c(m+n)2�dim(��) if Dm =

Dmc and Dmk are the diagonal matrices in R
(m+n)2 having 1 in the first mk diagonal

positions and 0 otherwise, for every k = 1, . . . , c. Observe that (Dm, Dmc�1 , . . . , Dm1)
2 Z� since Dmk+1Dmk = Dmk , for every k = 1, . . . , c� 1.

For each i, j 2 {1, . . . ,m+n} and k 2 {1, . . . , c}, define the polynomial functions

f (k)
ij

, g(k)
ij

, p(k)
ij

, q(k)
ij

: R(m+n)2 ⇥ R
(m+n)2 ! R by

f (c)
ij

(X,Yc�1, . . . , Y1) := xij � xji,

g(c)
ij

(X,Yc�1, . . . , Y1) :=
�P

n

`=1 xi`x`j
�
� xij ,

f (k)
ij

(X,Yc�1, . . . , Y1) := y(k)
ij

� y(k)
ji

,

g(k)
ij

(X,Yc�1, . . . , Y1) :=
�P

n

`=1 y
(k)
i`

y(k)
`j

�
� yk

ij
,

p(k)
ij

(X,Yc�1, . . . , Y1) :=

(
0 if i, j  dk =

P
k

`=1(a` + b`�1);

�y(k)
ij

otherwise,

q(c)
ij

(X,Yc�1, . . . , Y1) := y(c�1)
ij

�
m+nX

`=1

xi`y
(c�1)
`j

,

q(k)
ij

(X,Yc�1, . . . , Y1) := y(k)
ij

�
m+nX

`=1

y(k+1)
i`

y(k)
`j

with k 6= 1, c.
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for all (X,Yc�1, . . . , Y1) = ((xij)i,j , (y
(c�1)
ij

)i,j , . . . , (y
(1)
ij

)i,j) 2 R
(m+n)2c. It follows

that

�(X,Yc�1, . . . , Y1) =
⇣
(f (1)

ij
(X,Yc�1, . . . , Y1))i,j , (g

(1)
ij

(X,Yc�1, . . . , Y1))i,j ,

(p(1)
ij

(X,Yc�1, . . . , Y1))i,j , (q
(2)
ij

(X,Yc�1, . . . , Y1))i,j ,

. . . ,

(f (c�1)
ij

(X,Yc�1, . . . , Y1))i,j , (g
(c�1)
ij

(X,Yc�1, . . . , Y1))i,j ,

(p(c�1)
ij

(X,Yc�1, . . . , Y1))i,j , (q
(c)
ij

(X,Yc�1, . . . , Y1))i,j ,

(f (c)
ij

(X,Yc�1, . . . , Y1))i,j , (g
(c)
ij

(X,Yc�1, . . . , Y1))i,j
⌘
.

Define, for every k 2 {1, . . . , c}:

S(k)
1 := {(i, j) 2 {1, . . . ,m+ n}2 | i < j  dk},

S(k)
2 := {(i, j) 2 {1, . . . ,m+ n}2 | i  j  mk},

S(k)
3 := {(i, j) 2 {1, . . . ,m+ n}2 |mk < i  j  dk},

S(k)
4 := {(i, j) 2 {1, . . . ,m+ n}2 | dk < i or dk < j},

T (1) := ?,

T (k) := {(i, j) 2 {1, . . . ,m+ n}2 |mk < i  dk, j  mk�1}.

Notice that the sum of the cardinalities of S(k)
1 , S(k)

2 , S(k)
3 and S(k)

4 equals

(dk � 1)dk
2

+
mk(mk + 1)

2
+
(dk �mk)(dk �mk + 1)

2
+ (m+ n)2 � d2

k

= (m+ n)2 �mk(dk �mk),

for every k 2 {1, . . . , c}. In particular, the sum of the cardinalities of S(1)
1 , S(1)

2 , S(1)
3

and S(1)
4 is equal to a1b0. In addition, the cardinality of T (k) is equal to mk�1(dk �

mk), for every k 2 {2, . . . , c}. Hence the sum of the cardinalities of S(k)
1 , S(k)

2 , S(k)
3 ,

S(k)
4 and T (k) equals (m+ n)2 � ak(dk �mk), for every k 2 {2, . . . , c}.

By a direct computation, we see that

rf (1)
ij

(Dm, Dmc�1 , . . . , Dm1) = (0, . . . , 0, E(1)
ij

� E(1)
ji

) if (i, j) 2 S(1)
1 ,

rg(1)
ij

(Dm, Dmc�1 , . . . , Dm1) = (0, . . . , 0, E(1)
ij

) if (i, j) 2 S(1)
2 ,

rg(1)
ij

(Dm, Dmc�1 , . . . , Dm1) = (0, . . . , 0,�E(1)
ij

) if (i, j) 2 S(1)
3 ,

rp(1)
ij

(Dm, Dmc�1 , . . . , Dm1) = (0, . . . , 0, E(1)
ij

) if (i, j) 2 S(1)
4 ,

and, for every k 2 {2, . . . , c}

rf (k)
ij

(Dm, Dmc�1 , . . . , Dm1) = (0, . . . , 0, E(k)
ij

� E(k)
ji

, 0, . . . , 0) if (i, j) 2 S(k)
1 ,

rg(k)
ij

(Dm, Dmc�1 , . . . , Dm1) = (0, . . . , 0, E(k)
ij

, 0, . . . , 0) if (i, j) 2 S(k)
2 ,

rg(k)
ij

(Dm, Dmc�1 , . . . , Dm1) = (0, . . . , 0,�E(k)
ij

, 0, . . . , 0) if (i, j) 2 S(k)
3 ,

rp(k)
ij

(Dm, Dmc�1 , . . . , Dm1) = (0, . . . , 0, E(k)
ij

, 0, . . . , 0) if (i, j) 2 S(k)
4 ,

rq(k)
ij

(Dm, Dmc�1 , . . . , Dm1) = (0, . . . , 0,�E(k)
ij

, 0, . . . , 0) if (i, j) 2 T (k),
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where E(k)
ij

is the matrix in R
(m+n)2 whose (i, j)-coe�cient equals 1 and the other

coe�cients are 0 holding the (c � k + 1)-position in the vector (X,Yc�1, . . . , Y1) 2
R
(m+n)2c, for every k 2 {1, . . . , c}. Consequently, we have that

rnk J�(Dm, Dmc�1 , . . . , Dm1) �
cX

k=1

((m+ n)2 � ak(dk �mk))

= c(m+ n)2 � dim(��).

Let (A,Bc�1, . . . , B1) 2 Z� and let G 2 O(m + n) be such that Dm = GTAG and
Dmk = GTBkG, for every k 2 {1, . . . , c � 1}. Define the linear automorphisms

 : R
(m+n)2 ! R

(m+n)2 by  (X) := GTXG and  ⇥k : R
(m+n)2k ! R

(m+n)2k

by  ⇥k(X1, . . . , Xk) := ( (X1), . . . , (Xk)), for k 2 N
⇤. Since  (A) = Dm and

( ⇥(4c�2)) � � = � � ( ⇥c), we have that

J
 ⇥(4c�2)(�(A,Bc�1, . . . , B1))J�(A,Bc�1, . . . , B1) =

J�(Dm, Dmc�1 , . . . , Dm1)J ⇥c(A,Bc�1, . . . , B1).

Bearing in mind that both matrices J
 ⇥(4c�2)(�(A,Bc�1, . . . , B1)) and J ⇥c(

A,Bc�1, . . . , B1) are invertible, it follows that

rnk J�(A,Bc�1, . . . , B1) = rnk J�(Dm, Dmc�1 , . . . , Dm1)

� c(m+ n)2 � dim(��),

as desired. Since Z� ⇢ R
(m+n)2c isQ-algebraic and is contained in the projectivelyQ-

closed Q-algebraic set Gm,n⇥Gmc�1,nc�1 ⇥ · · ·⇥Gm1,n1 ⇢ R
(m+n)2c, Lemma 2.1.7(ii)

ensures that Z� ⇢ R
(m+n)2c is a projectively Q-closed Q-algebraic set as well. This

proves that Z� ⇢ R
(m+n)2c is a projectively Q-closed Q-nonsingular Q-algebraic set,

as desired. ⇤

A combination of Remark 2.3.5 and Lemmas 2.3.6 & 2.3.7 provides a complete
proof of Theorem 2.3.4.

2.4. Unoriented (co)bordism and homology over Q

In this section we introduce the notions of Q-algebraic unoriented bordism and
Q-algebraic homology, thus we study their deep interplay.

Let W ⇢ R
k be a set. Given a compact C1 manifold P and a C1 map

f : P ! W , we say that the unoriented bordism class of f is projectively Q-algebraic
if there exist a compact C1 manifold T with boundary, a projectively Q-closed Q-
nonsingular Q-algebraic set Y ⇢ R

h, a C1 di↵eomorphism  : P t Y ! @T and a
C1 map F : T ! W such that F � | � ( |P ) = f and F � | � ( |Y ) is a Q-regular
map, where | : @T ,! T is the inclusion map.

Definition 2.4.1. Given d 2 N, we say that W has projectively Q-algebraic
unoriented bordism if, for all p 2 N, for all p-dimensional compact C1 manifold P
and for all C1 map f : P ! W , the unoriented bordism class of f is projectively
Q-algebraic. ⌅
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Let Z be a subset of Rh. For every k  h, denote by Hk(Z,Z/2Z) the k-th
homology group of V with coe�cients in Z/2Z. It is well known that, if Z ⇢ R

h is a
compact algebraic set of dimension d, the fundamental class [Z] of Z in Hd(Z,Z/2Z)
is a non trivial homology class. More details about fundamental classes of algebraic
sets can be found in [BCR98, §11, Section 3] via triangulations. In an alternative way,
the existence of fundamental classes of compact real algebraic sets is a consequence
of Hironaka’s desingularization theorem and the existence of fundamental classes for
compact C1 manifolds.

Let W ⇢ R
k be a set. Given p 2 N and ↵ 2 Hp(W,Z/2Z), we say that ↵

is projectively Q-algebraic if there exist a p-dimensional projectively Q-closed Q-
nonsingular Q-algebraic set Z ⇢ R

h and a Q-regular map g : Z ! W such that
g⇤([Z]) = ↵, where [Z] is the fundamental class of Z in Hp(Z,Z/2Z).

Definition 2.4.2. Given d 2 N, we say that W has projectively Q-algebraic
homology if, for all p 2 {0, . . . , d} and for all ↵ 2 Hp(W,Z/2Z), the homology class
↵ is projectively Q-algebraic. ⌅

In [Mil65] Milnor proved that the unoriented cobordism group N⇤ =
L

d2NNd

is generated by disjoint unions of compact C1 manifolds of the form Y = P
n1(R)⇥

· · · ⇥ P
n↵(R) ⇥Ha1,b1 ⇥ · · · ⇥Ha� ,b�

, where Y = Ha1,b1 ⇥ · · · ⇥Ha� ,b�
if ↵ = 0 and

� > 0, Y = P
n1(R) ⇥ · · · ⇥ P

n↵(R) if ↵ > 0 and � = 0 and Y is a singleton if
↵ = � = 0.

We need the following version of this remarkable result of Milnor.

Theorem 2.4.3. For each d 2 N, the unoriented cobordism group Nd of d-
dimensional compact C1 manifolds is generated by projectively Q-closed Q-nonsin-
gular Q-algebraic subset of R(2d+1)2, obtained as the finite disjoint union of projec-
tively Q-closed Q-nonsingular Q-algebraic sets of the form Y + v ⇢ R

(2d+1)2, where
v belongs to Q

(2d+1)2 and

Y = Gn1+1,1 ⇥ . . .⇥Gn↵+1,1 ⇥Ha1,b1 ⇥ . . .⇥Ha� ,b�
(2.4.1)

for some ↵,� 2 N and n1, . . . , n↵, a1, b1, . . . , a� , b� 2 N
⇤.

Before giving the proof of this result, we observe that,it is immediate to prove
the following inequality:
P

k

s=1(cs + 1)2 
�
1 +

P
k

s=1 cs
�2

for all k 2 N
⇤ and (c1, . . . , ck) 2 (N⇤)k. (2.4.2)

Proof of Theorem 2.4.3. Let M be a compact C1 manifold of dimension
d. Combining the above result of Milnor with Lemmas 2.1.3(c)(e), 2.1.7(i)(iii)(iv),
2.2.1 & 2.2.2, we have that M is unoriented cobordant to the disjoint union

F
`

h=1 Yh,
where {Yh}`h=1 is a finite family of projectively Q-closed Q-nonsingular Q-algebraic
sets of the form

Yh = Gnh,1+1,1 ⇥ · · ·⇥Gnh,↵h
+1,1 ⇥Hah,1,bh,1

⇥ · · ·⇥Hah,�h
,bh,�h

for some ↵h,�h 2 N and nh,1, . . . , nh,↵h
, ah,1, bh,1, . . . , ah,�h , bh,�h 2 N

⇤. Note thatP
↵h
i=1 nh,i +

P
�h
j=1(ah,j + bh,j � 1) = d and Yh is contained in R

Nh , where

Nh =
P

↵h
i=1(nh,i + 1)2 +

P
�h
j=1((ah,j + 1)2 + (bh,j + 1)2).
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Thanks to (2.4.2), we have

Nh 
�
1 +

P
↵h
i=1 nh,i +

P
�h
j=1(ah,j + bh,j)

�2
= (1 + d+ �h)2  (2d+ 1)2.

As a consequence, if we set N := (2d + 1)2, then each Yh is a projectively Q-
closed Q-nonsingular Q-algebraic subset of RN . For each h 2 {1, . . . , `}, choose a
vector vh 2 Q

N such that the sets {Yh + vh}`h=1 are pairwise disjoint. It follows

that
F
`

h=1(Yh + vh) ⇢ R
N is a projectively Q-closed Q-nonsingular Q-algebraic set,

which is unoriented cobordant to M . ⇤

As a consequence of Lemma 2.1.8, we have the following corollary of Theorem
2.4.3.

Corollary 2.4.4. For each d 2 N, the unoriented cobordism group Nd of
compact C1 manifolds of dimension d is generated by projectively Q-closed Q-
nonsingular Q-algebraic subsets of R2d+1.

Let us explain the interplay between the properties of having projectively Q-
algebraic unoriented bordism and having projectively Q-algebraic homology forW ⇢
R
k.

Theorem 2.4.5. Let W ⇢ R
k be a Q-nonsingular Q-algebraic set. The following

assertions are equivalent.

(i) W has projectively Q-algebraic unoriented bordism.
(ii) W has projectively Q-algebraic homology.

Proof. We adapt the argument used in [AK92, Lemma 2.7.1] to the present
situation.

Let N⇤(W ) be the unoriented bordism group of W and let ev : N⇤(W ) !
H⇤(W,Z/2Z) be the evaluation map defined by ev([f : P ! W ]) := f⇤([P ]). Since ev
is surjective by [Tho54], implication (i) =) (ii) follows immediately from Definitions
2.4.1 & 2.4.2.

Let us prove implication (ii) =) (i). Suppose that (ii) holds. Let {Yi ⇢ R
Di}i2I

be the generators of N⇤ described in (2.4.1), where Di is a su�ciently large natural
number. Let {Zj ⇢ R

hj}j2J be projectively Q-closed Q-nonsingular Q-algebraic
sets and let {gj : Zj ! W}j2J be Q-regular maps such that J is finite and the
homology classes {ev([gj : Zj ! W ]) = (gj)⇤([Zj ])}j2J generate H⇤(W,Z/2Z). Let
D := maxi2I Di and let h := maxj2J hj . Note that each Yi is contained in R

D and
each Zj in R

h; in particular, each Zj ⇥ Yi is contained in R
D+h = R

D ⇥R
h. Choose

vectors vij 2 Q
D+h in such a way that the translated sets {(Zj⇥Yi)+vij}i2I,j2J are

pairwise disjoint. For each i 2 I and j 2 J , denote by ⇡ij : (Zj ⇥ Yi) + vij ! Zj the
(translated) projection onto the first factor, sending (z, y)+vij to z. Note that ⇡ij is
a Q-regular map. By Lemmas 2.1.3(v)(vi) & 2.1.7(iv), we know that each translated
product (Zj⇥Yi)+vij ⇢ R

D+h is a projectively Q-closed Q-nonsingular Q-algebraic
set and each composition gj � ⇡ij : (Zj ⇥ Yi) + vij ! W is a Q-regular map. By
[Tho54] and [CF64], the maps gj � ⇡ij generate N⇤(W ). This proves (i). ⇤

Remark 2.4.6. Observe that, by Lemma 2.1.8, in previous proof we may fix
Di := 2 dim(Yi) + 1 for every i 2 I. ⌅

We have the following result as a direct consequence of Künneth formula.
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Lemma 2.4.7. Let ` 2 N
⇤, let W1 ⇢ R

k1 , . . . ,W` ⇢ R
k` and let W := W1 ⇥ . . .⇥

W` ⇢ R
k1 ,⇥ · · ·⇥ R

k
`
. If Wi ⇢ R

ki has projectively Q-algebraic homology for every
i 2 {1, . . . , `}, then W has projectively Q-algebraic homology.

2.4.1. Real embedded Grassmannians have totally Q-algebraic homol-
ogy. Let us fix some notation about CW complexes. Let X be a topological space
endowed by a finite CW complex structure S of dimension d. We denote by S(k)

the set of open k-cells of S, for every k 2 {0, . . . , d}. Denote by Xk :=
S

⌦2S(k) ⌦
the k-skeleton of X for every

k 2 {0, . . . , d}
, and X�1 := ?. Define Ck(S,Z/2Z) := Hk(Xk, Xk�1) the group of unoriented cel-
lular k-chains of S for every k 2 {1, . . . , d}. Let @S

k
: Ck(S,Z/2Z) ! Ck�1(S,Z/2Z)

denote the boundary operator in cellular homology for every k 2 {1, . . . , d}. Define
the k-cellular homology group of X (with coe�cients in Z/2Z) as Hk(S,Z/2Z) :=
ker(@S

k
)/ im(@S

k+1). For more details about CW complexes and their homological
theory we refer to [LW69].

Lemma 2.4.8. Let W ⇢ R
n be a compact algebraic subset of dimension d. Sup-

pose that W admits a finite CW complex structure S such that the closure of each
open cell ⌦ 2 S(k) is algebraic for every k 2 {0, . . . , d}. Then,

Hk(W,Z/2Z) = Span
�
{[⌦] 2 Hk(W,Z/2Z) |⌦ 2 S(k)}

�
.

and {[⌦] 2 Hk(W,Z/2Z) |⌦ 2 S(k)} is a basis of Hk(W,Z/2Z) for every k 2
{0, . . . , d}.

Proof. By classical arguments about cellular and simplicial homology, {[⌦]
2 Hk(S,Z/2Z) |⌦ 2 S(k)} constitutes a system of generators of Hk(S,Z/2Z), for
every k = 0, . . . , d. We are only left to prove that {[⌦] 2 Hk(S,Z/2Z) |⌦ 2 S(k)} is
linearly independent over Z/2Z. Since ⌦ is algebraic for every open cell ⌦ 2 S(k) for
every k 2 {0, . . . , d}, the fundamental class [⌦] of ⌦ is a well defined homology class

inHk(W,Z/2Z). Suppose ⌦ 2 S(k), then for every ⌦0 2 S(k+1) we have @S
k+1(⌦

0
) = 0,

since ⌦
0
is algebraic as well. Hence, we get that [⌦] 2 Hk(S,Z/2Z) is non-null

and linearly independent with respect to {[⌦0
] 2 Hk(S,Z/2Z) |⌦0 2 S(k) and⌦0 6=

⌦} for every choice of ⌦ 2 S(k) and k 2 {0, . . . , d}. This proves that {[⌦] 2
Hk(S,Z/2Z) |⌦ 2 S(k)} is a basis of Hk(S,Z/2Z), then {[⌦] 2 Hk(W,Z/2Z) |⌦ 2
S(k)} it is also a basis of Hk(W,Z/2Z), as desired. ⇤

Following the notation of Section 2.3 we refer to embedded Schubert varieties ��
of Gm,n ⇢ R

(m+n)2 defined by incidence conditions, prescribed by �, with respect to
the canonical complete flag of Rm+n. Denote by |�| :=

P
m

i=1 �i.

Corollary 2.4.9. Let Gm,n ⇢ R
(m+n)2. Then:

Hk(Gm,n,Z/2Z) = Span({[��] 2 Hk(Gm,n,Z/2Z) | |�| = mn� k})
for every k 2 {0, . . . ,mn}, where � is a partition of the (m⇥ n)-rectangle, �� is the
Schubert variety of Gm,n defined by the incidence conditions, prescribed by �, with
respect to the canonical complete flag.

In particular, {[��] 2 Hk(Gm,n,Z/2Z) | |�| = mn � k} as above is a basis of
Hk(Gm,n,Z/2Z) for every k 2 {1, . . . ,mn}.
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Proof. By Lemma 2.3.1 the family of ⌦� such that � is a partition of the
(m ⇥ n)-rectangle constitutes the cells of a finite CW-complex whose underlying
topological space is Gm,n such that �� = ⌦� is algebraic for every partition � of the
(m⇥ n)-rectangle. Hence, the thesis follows by Lemma 2.4.8. ⇤

Theorem 2.4.10. Each Gm,n ⇢ R
(m+n)2 is a projectively Q-closed Q-nonsingular

Q-algebraic set having projectively Q-algebraic homology.

Proof. By Corollary 2.4.9, for every k 2 {0, . . . ,mn}:
Hk(Gm,n,Z/2Z) = h{[��] 2 Hk(Gm,n,Z/2Z) | |�| = mn� k}i,

where each �� is a Schubert variety of Gm,n defined by the incidence conditions,
prescribed by �, with respect to the canonical complete flag of Rm+n. By Theorem
2.3.4, each Schubert variety �� as above admits a Q-desingularization, that is: there
exists a projectively Q-closed Q-nonsingular Q-algebraic set Z� ⇢ R

(m+n)2 ⇥ R
p of

dimension dim(��), for some p 2 N, such that ⇡1 : Z� ! �� is a birational map.
Observe that, since ⇡1 : Z� ! �� is surjective, injective onto the Zariski open subset
⌦� such that ⌦� = �� and dim(Z�) = dim(��), we get that ⇡1⇤([Z�]) = [��], as
desired. ⇤

2.5. Unoriented relative bordisms over Q

Let us specify ‘over Q’ the construction of the algebraic unoriented relative
bordisms by Akbulut and King in [AK81a, Lemma 4.1].

Lemma 2.5.1. Let M be a compact C1 submanifold of Rn of dimension d and let
Mi, for i = 1, . . . , `, be closed C1 submanifolds of M of codimension ci in general
position. Then there are a compact C1 manifold with boundary T and proper C1

submanifolds with boundary Ti, for i = 1, . . . , `, in general position, a projectively
Q-closed Q-nonsingular Q-algebraic subset Y of R

h for some h 2 N, and a C1

di↵eomorphism  : M t Y ! @T such that:

(i) Y is the disjoint union of projectively Q-closed Q-nonsingular Q-algebraic
sets Y ↵ ⇢ R

h for every ↵ ⇢ {1, . . . , `} such that
T

i2↵Mi 6= ?.
(ii) @T \Ti = @Ti,  (M)\Ti =  (Mi) and  (Y ↵)\Ti =  (Y ↵

i
) where Y ↵

i
, for

i = 1, . . . , `, are projectively Q-closed Q-nonsingular Q-algebraic subsets of
Y ↵ in general position with Y ↵

i
= ? whenever i /2 ↵.

(iii) For every ↵ ⇢ {1, . . . , `} and i 2 ↵, there is a Q-regular function µ↵
i
: Y ↵

i
!

Gci,n�ci such that

Y ↵ = (µ↵i )
⇤(E⇤

ci,n�ci
).

In particular, µ↵
i
is the Gauss mapping of Y ↵

i
in Y ↵.

Proof. For every ↵ ⇢ {1, . . . , `} we denote by M↵ :=
T

i2↵Mi, if ↵ 6= ?, and
M? := M . We argue by induction on the subsets ↵ of {1, . . . , `} so that M↵ 6= ?.
The case in which all M↵ = ?, for every ↵ ⇢ {1, . . . , `}, means that M = M? = ?,
thus the theorem follows by taking T = ?. Suppose the set of ↵ ⇢ {1, . . . , `} so
that M↵ 6= ? is non-empty. Let ↵ be such that M↵ 6= ? and M↵0 = ? for every
↵0 ⇢ {1, . . . , `} so that ↵  ↵0. Let �i : Mi ! Gci,n�ci be the Gauss mapping of
Mi in M for every i 2 ↵. Let G↵ :=

Q
i2↵Gci,n�ci . By Theorem 2.4.10 and Lemma
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2.4.7, G↵ ⇢ R
n
2|↵| is a projectively Q-closed Q-nonsingular Q-algebraic set having

projectivelyQ-algebraic homology. Let �↵ : M↵ ! G↵ be the C1 function defined as
�↵ :=

Q
i2↵ �i. Thus, Theorem 2.4.5 ensures the existence of k↵ 2 N, a compact C1

manifold with boundary T↵, a projectively Q-closed Q-nonsingular Q-algebraic set
Y↵ ⇢ R

k↵ , a C1 di↵eomorphism  ↵ : M↵tY↵ ! @T↵ and a C1 map µ↵ : T↵ ! G↵

such that µ↵ � |↵ � ( ↵|M↵) = �↵ and g↵ := µ↵ � |↵ � ( ↵|Y ) 2 RQ(Y,G↵), that is,
g↵ is Q-regular, where |↵ : @T↵ ,! T↵ denotes the inclusion map.

Let E
⇤
↵ :=

Q
i2↵ E

⇤
ci,n�ci

. Define the pullback bundle of E
⇤
↵ via µ↵ as S↵ :=

(µ↵)⇤(E⇤
↵) and the C1 submanifolds S↵

i
of S↵ as follows

S↵ := {(x, y1, t1, . . . , y|↵|, t|↵|) 2 T↵ ⇥ (Rn ⇥ R)|↵| |
(µ↵(x), y1, t1, . . . , y|↵|, t|↵|) 2 E

⇤
↵}

S↵i := {(x, y1, t1, . . . , y|↵|, t|↵|) 2 S↵ | yi = 0, ti = 0},
for every i 2 ↵. By definition, the S↵

i
, for i 2 ↵, are in general position andT

i2↵ S
↵

i
= T↵ ⇥ {0} ⇢ T↵ ⇥ (Rn ⇥ R)|↵|. In addition, considering the projections

⇡i0 : S↵
i

! T↵ and ⇡i : G↵ ! Gci,n�ci , we define µ↵
i

: S↵
i

! Gci,n�ci as µ↵
i

=
⇡i � µ↵ � ⇡i0. Thus, we deduce that S↵ is the pullback sphere bundle of E⇤

ci,n�ci
by

µ↵
i
, i.e. S↵ = (µ↵

i
)⇤(E⇤

ci,n�ci
), where

(µ↵i )
⇤(E⇤

ci,n�ci
) := {(x, y1, t1, . . . , y`, t`, y`+1, t`+1) 2 S↵i ⇥ R

n ⇥ R |
(µ↵i (x), y|↵|+1, t|↵|+1) 2 E

⇤
ci,n�ci

}.
Thus, S↵ and the S↵

i
, for every i 2 ↵, are C1 manifolds with boundary satisfying

@S↵
i
⇢ @S↵. Define:

M↵ := �⇤↵(E
⇤
↵) = (µ↵ � |↵ �  ↵)|⇤M↵

(E⇤
↵) ⇢ M↵ ⇥ R

(n+1)|↵|,

Y ↵ := g⇤↵(E
⇤
↵) = (µ↵ � |↵ �  ↵)|⇤Y↵

(E⇤
↵) ⇢ R

k↵ ⇥ R
(n+1)|↵|.

Observe that, by Lemma 2.2.6, we deduce that Y ↵ ⇢ R
k↵⇥R

(n+1)|↵| is a projectively
Q-closed Q-nonsingular Q-algebraic set. Since  ↵ : M↵ t Y↵ ! @T↵ is a di↵eomor-
phism, we deduce that  ↵ : M↵ t Y ↵ ! @S↵ defined as  ↵(x, y1, t1, . . . , y|↵|, t|↵|) =
( ↵(x), y1, t1, . . . , y|↵|, t|↵|) is a di↵eomorphism as well. Hence, define

Y ↵

i := Y ↵ \ �1
↵ (@S↵i )

for every i 2 ↵. Observe that Y ↵

i
= ((µ↵

↵\{i} �  ↵)|Y↵)
⇤(E⇤

↵\{i}), where µ↵
↵\{i} :

T↵ ! Gc1,n�c1 ⇥ · · ·⇥Gci�1,n�ci�1 ⇥ {0}⇥Gci+1,n�ci+1 ⇥ · · ·⇥Gc|↵|,n�c|↵| defined as
µ↵
↵\{i}(x) := (µ↵1 (x), . . . , µ

↵

i�1(x), 0, µ
↵

i+1(x), . . . , µ
↵

|↵|(x)) and

E
⇤
↵\{i} := {(y1, t1, . . . , y|↵|, t|↵|) 2 E

⇤
↵ | yi = 0, ti = 0}, (2.5.1)

which is a projectively Q-closed Q-nonsingular Q-algebraic sphere bundle by Lemma
2.2.4. Observe that (µ↵

↵\{i} �  ↵)|Y↵ is Q-regular since (µ↵ �  ↵)|Y↵ is so. Thus,

Y ↵

i
⇢ R

k↵ ⇥ R
(n+1)|↵| is a projectively Q-closed Q-nonsingular Q-algebraic set by

Lemma 2.2.6, for every i 2 ↵.

Since µ↵|M↵ is the Gauss mapping ofM↵ in eachMi with i 2 ↵, we can select two
su�ciently small closed tubular neighborhoods U↵ and V↵ of M↵ in M↵ and in M ,
respectively, which are di↵eomorphic via a di↵eomorphism h↵ : U↵ ! V↵ satisfying
h↵(U↵\S↵

i
) = V↵\Mi, for every i 2 ↵. Consider the C1 manifold with boundary S

defined as S↵[(M⇥ [0, 1]) identifying U↵ and V↵⇥{1} via h↵⇥{1} : U↵ ! V↵⇥{1}
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defined as (h↵⇥{1})(a) = (h↵(a), 1), after smoothing corners. In the same way define
the C1 submanifolds with boundary Si as S↵

i
[ (Mi ⇥ [0, 1]) identifying U↵ \ S↵

i

with (V↵\Mi)⇥ {1} via h↵⇥ {1}. Observe that the C1 submanifolds Si of S, with
i 2 ↵, are in general position.

M

M↵

M ⇥ [0, 1]

M↵ ⇥ [0, 1]

Y↵

Y ↵

M↵

M↵

T↵

S↵

N

Y 0

S [ T

T

Figure 2.5.1. Inductive step constructing a relative bordism.

Define the C1 manifold N with C1 submanifolds in general position Ni, for
every i 2 {1, . . . , `}, as follows:

N := (M↵ \ Int(U↵)) [h↵ (M \ Int(V↵)),

Ni :=

(
N \ Si if i 2 ↵,

Mi ⇥ {1} otherwise.

Observe that, by construction, @(S↵ [h↵ (M ⇥ [0, 1])) = N t Y ↵ t M , with M
identified with M ⇥ {0}, @(S↵

i
[h↵ (Mi⇥ [0, 1])) = Ni tY ↵

i
tMi for every i 2 ↵, and

@(Mi⇥[0, 1]) = NitMi for every i /2 ↵. In particular, it holds that N↵ :=
T

i2↵Ni =
?. By Whitney C1 embedding theorem, there is a C1 manifold M 0 ⇢ R

2d+1 with
C1 submanifolds M 0

i
of codimension ci in general position for i 2 {1, . . . , `}, which

is di↵eomorphic to N via a di↵eomorphism ' : M 0 ! N such that '(M 0
i
) = Ni for

every i 2 {1, . . . , `}. Thus, by inductive assumption on M 0 ⇢ R
2d+1, there exist

k0 2 N, a C1 manifold with boundary T 0 and C1 submanifolds with boundary
T 0
i
for every i 2 {1, . . . , `}, with transverse intersection, a projectively Q-closed Q-

nonsingular Q-algebraic subset Y 0 of Rk
0
for some k0 2 N, a C1 di↵eomorphism

 0 : M 0 t Y 0 ! @T 0 (without lost of generality we can assume  0(M 0) = N and
 0(M 0

i
) = Ni) such that:

(i0) Y 0 is the disjoint union of a projectively Q-closed Q-nonsingular Q-algebraic
sets Y

0
↵ ⇢ R

n ⇥ R
k
0
, for every ↵ ⇢ {1, . . . , `} such that

T
i2↵M

0
i
6= ?.

(ii0) @T 0 \ T 0
i
= @T 0

i
, N \ T 0

i
=  0(M 0) \ T 0

i
=  (M 0

i
) = Ni and  0(Y

0
↵) \

T 0
i
=  0(Y

0
↵

i
) where Y

0
↵

i
, for i 2 {1, . . . , `}, are projectively Q-closed Q-

nonsingular Q-algebraic subsets of Y
0
↵ transverse to each other with Y

0
↵

i
=

? whenever i /2 ↵.
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(iii0) For every ↵ ⇢ {1, . . . , `} and i 2 ↵, there is a Q-regular function µ
0
↵

i
:

Y
0
↵

i
! Gci,2d+1�ci such that

Y
0
↵ = (µ

0
↵

i )⇤(E⇤
ci,2d+1�ci

).

In particular, µ
0
↵

i
is the Gauss mapping of Y i

↵ in Yi.

Define T := S [ T 0 and Ti := Si [ T 0
i
, after smoothing corners. Let k :=

max(k↵, k0) and consider ◆↵ : Rk↵ ! R
k and ◆0 : Rk

0 ! R
k be the inclusion mappings.

Then, after a translation of a rational factor v 2 Q
k if necessary, we may assume

that (◆0(Y 0)+v)\ ◆↵(Y ↵) = ?, thus Y := ◆↵(Y ↵)t (◆0(Y 0)+v) ⇢ R
k is a projectively

Q-closed Q-nonsingular Q-algebraic set by Lemmas 2.1.3(ii) & 2.1.7(i)(iii). Let
 : M t Y ! @T defined as follows  |M :=  ↵|M ,  |◆↵(Y↵)(x) :=  ↵(◆�1

↵ (x)) and
 |◆0(Y 0)+v(x) :=  0((◆0)�1(x� v)). ⇤

Here we provide an embedded version of Lemma 2.5.1 and we ‘double the relative
bordism over Q’ following the strategy used by Tognoli in [Tog73, § b), pp. 176-177].

Theorem 2.5.2. Let M be a compact C1 submanifold of Rn of dimension d,
let Mi for i = 1, . . . , `, be C1 submanifolds of M of codimension ci in general
position. Then there exist s 2 N with s � n, a projectively Q-closed Q-nonsingular
Q-algebraic set Y ⇢ R

s = R
n ⇥ R

s�n of dimension d, Q-nonsingular Q-algebraic
subsets Yi, for i 2 {1, . . . , `}, of Y in general position, a compact C1 submanifold
S of Rs+1 = R

s ⇥ R of dimension d + 1 and compact C1 submanifolds Si of S of
codimension ci, for i = 1, . . . , `, in general position with the following properties:

(i) M \ Y = ?.
(ii) S \ (Rs ⇥ (�1, 1)) = (M t Y ) ⇥ (�1, 1) and Si \ (Rs ⇥ (�1, 1)) = (Mi t

Yi)⇥ (�1, 1), for every i 2 {1, . . . , `}.
(iii) Y is the finite disjoint union

F
↵2A(Y

↵ + v↵) of projectively Q-closed Q-
nonsingular Q-algebraic sets of the form Y ↵ + v↵ ⇢ R

s, where v↵ belongs
to Q

s, Y ↵ is inductively defined as in the proof of Lemma 2.5.1 and

A :=
n
↵ ⇢ {1, . . . , `} |

\

j2↵
Mj 6= ?

o
.

In addition, there are projectively Q-closed Q-nonsingular Q-algebraic sub-
set Y↵ ⇢ R

s and Q-regular functions µ↵ : Y↵ ! G
⇤
↵ such that Y ↵ := µ⇤

↵(E
⇤
↵),

with G
⇤
↵ :=

Q
i2↵G

⇤
ci,n�ci

and E
⇤
↵ :=

Q
i2↵ E

⇤
ci,n�ci

.
(iv) Let i 2 {1, . . . , `}. Then, Yi is the finite disjoint union

F
↵2Ai

(Y ↵

i
+ v↵) of

projectively Q-closed Q-nonsingular Q-algebraic sets of the form Y ↵

i
+v↵ ⇢

R
s, where v↵ belongs to Q

s as above, Y ↵

i
is inductively defined as in the

proof of Lemma 2.5.1 and

Ai := {↵ 2 A | i 2 ↵}.
In addition, there is a Q-regular map µ↵

i
: Y ↵

i
! Gci,n�ci such that, if �i :

Si ! Gci,n�ci denotes the Gauss mapping of Si in S, then �i|Yi =
F
↵2Ai

µ↵
i

is a Q-regular map.

Proof. Thanks to the proof of Lemma 2.5.1, for s � n su�ciently large, we
know that there exist a projectively Q-closed Q-nonsingular Q-algebraic set Y =F
↵2A(Y

↵+v↵) ⇢ R
s and Q-nonsingular Q-algebraic subsets Yi =

F
↵2Ai

(Y ↵

i
+v↵) ⇢
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R
s, with i 2 {1, . . . , `}, in general position with above properties (i) (changing the

vectors v↵ 2 Q
s if necessary), (ii) & (iii), compact C1 manifolds T and Ti with

boundary @T and @Ti so that Ti ⇢ T and @Ti ⇢ @T , for every i = 1, . . . , `.

Let us construct the desired compact C1 submanifold S of Rs+1 = R
s ⇥ R,

following the strategy used by Tognoli in [Tog73, § b), pp. 176-177]. By the collaring
theorem (see [Hir94, Theorem 6.1, p. 113]), there exist an open neighborhood U of
@T in T and a C1 di↵eomorphism �0 : U ! @T ⇥ [0, 1) such that �0(t) = (t, 0)
for all t 2 @T and �0|Ti\U : Ti \ U ! @Ti ⇥ [0, 1) is a di↵eomorphism as well,
for every i = 1, . . . , `. Let � : U ! (M t Y ) ⇥ [0, 1) be the C1 di↵eomorphism
� := ( �1⇥ id[0,1))��0. Note that �(t) = ( �1(t), 0) for all t 2 @T . Set A := T \@T ,
B := ��1((M tY )⇥ (0, 12 ]) ⇢ A, N := R

s ⇥ (0,+1) and define the map ✓ : B ! N
by ✓(x, xs+1) := �(x, xs+1). Since we can safely assume s+1 � 2(d+1)+1, Tietze’s
theorem ensures the existence of a continuous extension of ✓ from the whole A to
N , we can apply to ✓ the extension theorem [Whi36, Theorem 5(f)] of Whitney,
obtaining a C1 embedding ⇥ : A ! N extending ✓. Let R : Rs+1 = R

s⇥R ! R
s+1

be the reflection R(x, xs+1) := (x,�xs+1) and let S0 and S0
i
be the compact C1

submanifolds ⇥(A)t ((M tY )⇥{0})tR(⇥(A)) and ⇥(A\Ti)t ((MitYi)⇥{0})t
R(⇥(A\Ti)) of Rs+1, for every i = 1, . . . , `, respectively. Thanks to the compactness
of T and of each Ti, there exists ✏ > 0 such that S0\(Rs⇥(�✏, ✏)) = (MtY )⇥(�✏, ✏)
and S0

i
\ (Rs ⇥ (�✏, ✏)) = (Mi t Yi) ⇥ (�✏, ✏). Let L : Rs+1 ! R

s+1 be the linear
isomorphism L(x, xs+1) := (x, ✏�1xs+1). The compact C1 submanifold S := L(S0)
with C1 submanifolds Si := L(S0

i
), for every i = 1, . . . , `, in general position of

R
s+1 have the desired properties (ii) & (iv). ⇤



CHAPTER 3

Q-algebraic approximations à la Akbulut-King

Abstract. In this chapter we extend ‘over Q’ classical approximation techniques
developed by Nash, Tognoli, Akbulut and King. The notion of R|Q-regularity of
Q-algebraic sets proves its importance here. In section 3.1 introduce the concept
of approximable pair ‘over Q’ and we give results on the relative approximation
of C 1 functions vanishing on Q-approximable pairs. In Section 3.2 we extend
‘over Q’ some Akbulut-King algebraic approximation results. In particular, we
prove a relative version ‘over Q’ (with respect to a finite set of C 1 hypersurfaces
in general position) of Nash-Tognoli theorem. Finally, in Section 3.3 we prove a
version ‘over Q’ with approximation of Akbulut-King blowing down lemma.

The main reference for this chapter is [GS23].

Throughout this chapter we consider R
n endowed with the euclidean topology.

3.1. Q-Approximable pairs

The aim of this section is to generalize ‘over Q’ the notions of nice algebraic set
and approximable pair (see [AK92, §8, Definition p. 57-58]) and to produce useful
examples. Let P ⇢ R

n. We denote by intRn(P ) the interior of P in R
n and by

I1
Rn(P ) the ideal in C1(Rn) of those smooth functions vanishing on P .

Definition 3.1.1. Let L ⇢ R
n be a Q-algebraic set and let P be a subset of Rn

containing L. We say that the pair (P,L) is a Q-approximable pair of Rn if for each
a 2 L \ intRn(P ), there exists an open neighborhood Ua of a in R

n such that

I1
Rn(P )C1(Ua) ⇢ IQ(L)C1(Ua), (3.1.1)

i.e., for each f 2 I1
Rn(P ), we have f |Ua =

P
`

i=1 ui·pi|Ua for some u1, . . . , u` 2 C1(Ua)
and p1, . . . , p` generators of IQ(L).

If (L,L) is a Q-approximable pair, then we say that L is Q-nice. ⌅

The reader observes that condition (3.1.1) remains valid if we replace Ua with
a smaller open neighborhood of a in R

n. In addition, it is evident that the disjoint
union of finitely many Q-nice algebraic subsets of Rn is again a Q-nice algebraic
subset of Rn.

Let us give some su�cient conditions to have a Q-approximable pair.

Lemma 3.1.2. Let L ⇢ R
n be a Q-algebraic set of dimension d < n, let R(L) :=F

d

e=0Reg
⇤(L, e) (see Definition 1.5.1) and let P be a subset of Rn such that L ⇢ P

and L \ intRn(P ) ⇢ R(L). Then, (P,L) is a Q-approximable pair.

81
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Proof. Let p1, . . . , pn�d 2 Q[x] be generators of IQ(L). By Theorem 1.6.5, for
every a 2 L\intRn(P ) there exists a subset Ia of {1, . . . , `} of cardinality n�dima(L)
such that the vectors {rpi(a)}i2Ia of Rn are linearly independent over R. By [AK92,
Lemma 2.5.4], the existence of a subset Ia of cardinality n� dima(L) such that the
vectors {rpi(a)}i2Ia of Rn are linearly independent over R implies property (3.1.1)
at a. ⇤

As an immediate consequence, we obtain:

Corollary 3.1.3. Every disjoint union of finitely many Q-nonsingular Q-alge-
braic subsets of Rn (of possibly di↵erent dimensions) is Q-nice.

Another useful result is the following.

Lemma 3.1.4. Let L ⇢ R
n be a Q-nice Q-algebraic set and let h 2 N

⇤. Then
L⇥ {0} is a Q-nice algebraic subset of Rn+h = R

n ⇥ R
h.

Proof. Let R[x, y] be the polynomial ring of Rn+h. Since L is Q-algebraic, we
deduce that L⇥ {0} = ZR(IQ(L) + (y1, . . . , yh)Q[x]), thus L⇥ {0} is Q-algebraic as
well. Since L⇥ {0} is a product we have that

I1
Rn+h(L⇥ {0}) = I1

Rn(L)C1(Rn+h) + I1
Rn+h(R

n ⇥ {0})
= I1

Rn(L)C1(Rn+h) + (y1, . . . , yh)C
1(Rn+h).

Since L is Q-nice, for every a 2 L there is a neighborhood Ua of a in L such that
I1
Rn(L)C1(Ua) ⇢ IQ(L)C1(Ua), hence by fixing the neighborhood Ua⇥R

h of (a, 0)
in R

n+h we get that:

I1
Rn+h(L⇥ {0})C1(Ua ⇥ R

h) = I1
Rn(L)C1(Ua ⇥ R

h) + I1
Ua⇥Rh(Ua ⇥ {0})

⇢ IQ(L)C1(Ua ⇥ R
h) + (y1, . . . , yh)C

1(Ua ⇥ R
h)

⇢ IQ(L⇥ {0})C1(Ua ⇥ R
h).

⇤

Let M ⇢ R
n be a C1 manifold of dimension d. We say that Y ⇢ M is an alge-

braic hypersurface of M if Y ⇢ R
n is an algebraic set whose irreducuble components

have dimension d � 1. We say that Y ⇢ M is a Q-algebraic hypersurface of M if
Y ⇢ R

n is a Q-algebraic set which is an algebraic hypersurface of M . Next lemma
will play a crucial role in the proof of a relative version of Nash-Tognoli theorem
‘over Q’ in Section 3.2.1.

Lemma 3.1.5. Let M ⇢ R
n be a compact C1 manifold of dimension d. Let

X ⇢ M be a Q-nonsingular Q-algebraic subset of R
n of codimension c and let

Y ⇢ M be a Q-nonsingular Q-algebraic hypersurface of M . If the germ (M,X [ Y )
of M at X[Y is the germ of a Q-nonsingular Q-algebraic set, then X[Y is Q-nice.

Proof. Without lost of generality we may assume that none of the irreducible
components of X is contained in Y . Let a 2 (X [ Y ) \ (X \ Y ) = (X \ Y ) t
(Y \ X). Since both X ⇢ R

n and Y ⇢ R
n are Q-nonsingular Q-algebraic sets,

up to shrink the neighborhood Ua, we deduce property (3.1.1) by Corollary 1.6.6.
Let a 2 X \ Y and let f 2 I1

Rn(X [ Y ). Let V ⇢ R
n be a Q-nonsingular Q-

algebraic set such that the germ (M,X [ Y ) of M at X [ Y coincides to the germ
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(V,X [ Y ) of V at X [ Y . Since Y is a Q-nonsingular Q-algebraic hypersurface
of V ⇢ R

n there are p1, . . . , pn�d 2 IQ(V ) and p 2 IQ(Y ) whose gradients at a
are linearly independent over R and there is a neighborhood Ua of a in R

n such
that Y \ Ua = V \ ZRn(p) \ Ua = ZRn(p, p1, . . . , pn�d) \ Ua. Hence, by [AK92,
Lemma 2.5.4], there are u, u1, . . . , un�d 2 C1(Ua) such that f |Ua = u · p|Ua +P

n�d

i=1 ui · pi|Ua , up to shrink the neighborhood Ua of a in R
n if necessary. Since

none of the irreducible components of X is contained in Y , we deduce that Y \
Ua = V \ ZRn(p) \ Ua  (X [ Y ) \ Ua. Thus ZRn(p) \ Ua \ X ⇢ Y , up to
shrink the neighborhood Ua of a in R

n if necessary. In addition, since f |Ua =
u · p|Ua +

P
n�d

i=1 ui · pi|Ua , p1, . . . , pn�d 2 IQ(V ) and ZRn(p) \ Ua \ X ⇢ Y , we
deduce that X \ Ua ⇢ ZRn(u). Now, let U 0

a ⇢ Ua be a neighborhood of a in R
n

such that U 0
a  Ua. An explicit construction via partitions of unity subordinated

to the open cover {Ua, X \ U 0
a} of Rn ensures the existence of g 2 C1(Rn) such

that g|U 0
a
= u|U 0

a
and g 2 I1

Rn(X). Since X ⇢ R
n is a Q-nonsingular Q-algebraic

set of codimension c in V ⇢ R
n, which is a Q-nonsingular Q-algebraic set as well,

there are q1, . . . , qc 2 IQ(X) such that rp1(a), . . . ,rpn�d(a),rq1(a), . . . ,rqc(a) are
linearly independent over R and there exists a neighborhood Va of a in R

n such that
X\Va = ZRn(p1, . . . , pn�d, q1, . . . , qc)\Va. Thus, by [AK92, Lemma 2.5.4], there are
u01, . . . , u

0
n�d

, v1, . . . , vc 2 C1(Va) such that g|Va =
P

c

i=1 vi · qi|Va +
P

n�d

i=1 u0
i
· pi|Va ,

up to shrink the neighborhood Va of a in R
n if necessary. Thus, fixing V 0

a := U 0
a\Va,

we have:

f |V 0
a
= g|V 0

a
· p|V 0

a
+

n�dX

i=1

ui|V 0
a
· pi|V 0

a

=

 
cX

i=1

vi|V 0
a
· qi|V 0

a
+

n�dX

i=1

u0i|V 0
a
· pi|V 0

a

!
· p|V 0

a
+

n�dX

i=1

ui|V 0
a
· pi|V 0

a
.

=
cX

i=1

vi|V 0
a
· (p · qi)|V 0

a
+

n�dX

i=1

�
ui|V 0

a
+ u0i|V 0

a
· p|V 0

a

�
· pi|V 0

a
,

where p1, . . . , pn�d, p · q1, . . . , p · qc 2 IQ(X [ Y ), as desired. ⇤

Next lemma will prove its importance in the proof of Theorem 4.1.6, namely, in
the proof of the relative Q-algebrization of nonsingular algebraic sets of Section 4.1.

Lemma 3.1.6. Let X ⇢ R
n be a Q-nonsingular Q-algebraic set of dimension

d and let {Xi}`i=1 be a family of Q-nonsingular Q-algebraic hypersurfaces of X in

general position, then
S
`

i=1Xi is Q-nice.

Proof. Let a 2
S
`

i=1Xi. At first, let us prove the following Claim:

Claim: Denote by Ja := {j 2 {1, . . . , `} | a 2 Xj}. Let p1, . . . , pn�d 2 IQ(X)
and fj 2 IQ(Xj), for every j 2 Ja, such that rp1(a), . . . ,rpn�d(a),
{rfj(a)}j2Ja are linearly independent over R. Then, there are a neighborhood

Ua of a in R
n such that, for every f 2 I1

Rn(
S
`

i=1Xi), there are C1 functions
u1, . . . , un�d, v 2 C1(Ua), such that

f |Ua =
n�dX

i=1

uipi|Ua + v ·
Y

j2Ja

qj |Ua .
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Let us prove the Claim by induction on |J | 2 N
⇤. The case |J | = ` = 1 follows

by Corollary 3.1.3. Fix j0 2 Ja. By inductive assumption on a 2
S
`

i=1, i 6=j0
Xi ⇢ X

there is a neighborhood U 0
a of a in R

n such that, for every f 0 2 I1
Rn(
S
`

i=1, i 6=j0
Xi),

there are u01, . . . , u
0
n�d

, v0 2 C1(Va) such that

f 0|U 0
a
=

n�dX

i=1

u0ipi|U 0
a
+ v0 ·

Y

j2Ja\{j0}

qj |U 0
a
. (3.1.2)

Since f 2 I1
Rn(
S
`

i=1Xi) ⇢ I1
Rn(
S
`

i=1, i 6=j0
Xi), we have above local structure (3.1.2)

with ‘f 0|U 0
a
’:=f |U 0

a
. However, since f 2 I1

Rn(Xj0) and {rqj(a)}j2Ja are linearly
independent over R, it follows that

ZR(qj0) \ U 0
a 6⇢

[

j2Ja\{J0}

ZR(qj) \ U 0
a.

Thus, (3.1.2) implies that v0 2 I1
U 0
a
(Xj0 \ U 0

a). Let Ua ⇢ U 0
a be a neighborhood of a

in R
n such that Ua ⇢ U 0

a. By a partition of unity argument, there is g 2 C1(Rn)
such that g 2 I1

Rn(Xj0) and g|Ua = v0|Ua . Then, there are u001, . . . , u
00
2, v

00 2 C1(Ua)
such that:

v0|Ua = g|Ua = v00qj0 |Ua +
n�dX

i=1

u00i pi|Ua . (3.1.3)

Then, (3.1.2) & (3.1.3) imply that:

f |Ua =
n�dX

i=1

u0i|Uapi|Ua + v0|Ua ·
Y

j2Ja\{j0}

qj |Ua

=
n�dX

i=1

u0i|Uapi|Ua +
⇣
v00qj0 |Ua +

n�dX

i=1

u00i pi|Ua

⌘
·

Y

j2Ja\{j0}

qj |Ua

=
n�dX

i=1

⇣
u0i|Ua + u00i ·

Y

j2Ja

qj |Ua

⌘
pi|Ua + v00 ·

Y

j2Ja

qj |Ua .

Thus, to conclude the proof of theClaim it su�ces to fix ‘ui’:=u0
i
|Ua+u00

i
·
Q

j2Ja qj |Ua ,
for every i 2 {1, . . . , n� d}, and ‘v’:=v00. ⌅

To actually conclude the proof of Lemma 3.1.6 it su�ces to observe that, up
to shrink the neighborhood Ua of a in R

n, we may suppose that Xj \ Ua = ?, for
every j 2 {1, . . . , `} \ Ja. Thus, for every j 2 {1, . . . , `} \ Ja, there is a polynomial
qj 2 IQ(Xj) such that ZR(qj) \ Ua = ?. Thus, for every f 2 I1

Rn(
S
`

i=1Xi), by the
Claim we have:

f |Ua =
n�dX

i=1

uipi|Ua + v ·
Y

j2Ja

qj |Ua

=
n�dX

i=1

uipi|Ua +
vQ

j /2Ja qj |Ua

·
`Y

j=1

qj |Ua ,

as required by Definition 3.1.1. ⇤
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The importance of the concept of Q-approximable pair is described by the next
elementary, but crucial, result.

Lemma 3.1.7. If (P,L) is a Q-approximable pair of Rn, then

I1
Rn(P ) ⇢ IQ(L)C1(Rn), (3.1.4)

that is, for every f 2 I1
Rn(P ), there are u1, . . . , u` 2 C1(Rn) and p1, . . . , p` genera-

tors of IQ(L) such that f =
P

`

i=1 ui · pi.

Proof. Similarly to the proof of [AK92, Assertions 2.8.1.1& 2.8.1.2, pp. 58-59],
it su�ces to proceed as follows: first, construct the ui’s locally as in Definition 3.1.1;
then, define the ui’s globally via a C1 partition of unity. ⇤

Given ↵ = (↵1, . . . ,↵n) 2 N
n, we set |↵| :=

P
n

i=1 ↵i and we denote by D↵ the
partial derivative operator @|↵|/@x↵1

1 · · · @x↵n
n .

Lemma 3.1.8. Let L ⇢ R
n be a compact Q-algebraic set and let P be a subset of

R
n such that (P,L) is a Q-approximable pair of Rn. Let K be a compact neighborhood

of L in R
n and let f 2 I1

Rn(P ). Then, for each fixed " > 0 and h 2 N, there exists
a polynomial s 2 IQ(L) such that

maxx2K |D↵f(x)�D↵s(x)| < " for all ↵ 2 N
n with |↵|  h. (3.1.5)

Proof. Let p1, . . . , p` 2 Q[x] be generators of IQ(L). Thanks to Lemma 3.1.7,

there exist u1 . . . , u` 2 C1(Rn) such that f =
P

`

i=1 uipi on R
n. By the Weierstrass

approximation theorem, for each i 2 {1, . . . , `}, there exists vi 2 R[x] arbitrarily C1
w

close to ui. Thus, if s 2 R[x] is the polynomial s :=
P

`

i=1 vipi, then we can assume
that (3.1.5) holds. Since Q is dense in R, we can slightly modify the coe�cients
of the vi’s in such a way that each vi belongs to Q[x] and (3.1.5) holds as well.
Evidently, s 2 IQ(L). ⇤

Recall that |x|n denotes the Euclidean norm of a vector x of Rn, and we identify
R
n with the vector subspace R

n ⇥ {0} of Rn+k = R
n ⇥ R

k. We denote C ⌫
w(R

n) the
set C ⌫(Rn) equipped with the usual weak C1 topology.

Lemma 3.1.9. Let L ⇢ R
n be compact Q-nice Q-algebraic set, let K be a compact

neighborhood of L in R
n and let f 2 I1

Rn(L [ (Rn \K)). Then, for each fixed " > 0
and h 2 N, there exists a Q-regular function g 2 RQ(Rn) with the following four
properties:

(i) There exist e 2 N and p 2 Q[x] such that deg(p)  2e and g(x) = p(x)(1 +
|x|2n)�e for all x 2 R

n.
(ii) g 2 IQ(L).
(iii) supx2Rn |f(x)� g(x)| < ".
(iv) maxx2K |D↵f(x)�D↵g(x)| < " for all ↵ 2 N

n with |↵|  h.

Proof. Let us assume L 6= ?. Otherwise, next proof, suitably simplified, con-
tinues to work also in the case L = ?. We adapt the strategy used in [AK92, Lemma
2.8.1] to the present situation. Let Sn be the standard unit sphere of Rn+1 = R

n⇥R,
let N = (0, . . . , 0, 1) be its north pole and let ✓ : Sn \ {N} ! R

n be its stereographic

projection from N . Recall that ✓(x, xn+1) =
x

1�xn+1
and ✓�1(x) =

�
2x

1+|x|2n
, |x|

2
n�1

1+|x|2n

�
.
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Set d := dim(L). Note that d < n, because L is compact and hence L 6=
R
n. Since the Q-algebraic set L ⇢ R

n is Q-nice, for each a 2 L there is an open
neighborhood Ua of a in R

n such that I1
Rn(L)C1(Ua) ⇢ IQ(L)C1(Ua). Choose

generators p1, . . . , p` of IQ(L) and let i 2 {1, . . . , `}. Write pi as follows: pi =P
di
j=0 pi,j , where pi,j is a homogeneous polynomial in Q[x] of degree j, and di is

the degree of pi. Since L 6= ?, we can assume that each di is positive. Define the
polynomial Pi 2 Q[x, xn+1] by Pi(x, xn+1) :=

P
di
j=0(1� xn+1)di�jpi,j(x). Note that

Pi(N) = pi,di(0) = 0, (3.1.6)

(pi � ✓)(x, xn+1) = (1� xn+1)
�diPi(x, xn+1), (3.1.7)

for every (x, xn+1) 2 S
n \ {N}.

Let ⇢ : Rn+1\{0} ! S
n be the standard retraction ⇢(x, xn+1) := (x, xn+1)(|x|2n+

x2
n+1)

�1/2. Choose a C1 function  : R ! R such that  � 0 on R, the support of
 is contained in

⇥
1
2 ,

3
2

⇤
and  (1) = 1. Let N+ be the half line {tN 2 R

n+1 | t � 0}
and let F : Rn+1 ! R be the C1 extension of f � ✓ : Sn \ {N} ! R defined by
F (x, xn+1) :=  (|x|2n + x2

n+1)f(✓(⇢(x, xn+1))) if (x, xn+1) 62 N+ and F (x, xn+1) := 0
if (x, xn+1) 2 N+. Note that N is an interior point of F�1(0). Choose a compact
neighborhood H of N in R

n+1 such that F vanishes on H and H \ ✓�1(L) = ?.
Define the subsets L0 and P 0 of Rn+1 by

L0 := ✓�1(L) [ {N},
P 0 := H [ L0 = H t ✓�1(L)

and the polynomial P`+1 2 Q[x, xn+1] by P`+1(x, xn+1) := |x|2n + x2
n+1 � 1.

Let us show that (P 0, L0) is a Q-approximable pair of R
n+1. By (3.1.6) and

(3.1.7), we know that L0 =
T
`+1
i=1 P

�1
i

(0), so L0 is Q-algebraic. Let b 2 L0 \
intRn+1(P 0) = ✓�1(L), let a := ✓(b) 2 L and let Vb be the open neighborhood
of b in R

n+1 defined by Vb := ⇢�1(✓�1(Ua)) \ (H [ {xn+1 � 1}). Note that
Vb \ S

n ⇢ ✓�1(Ua), ⇢(Vb) ⇢ ✓�1(Ua) and Vb \ (H [ {xn+1 � 1}) = ?. Shrinking Ua

around a if necessary, we can assume that Vb \ S
n = ✓�1(Ua). By [AK92, Lemma

2.5.4], there exists an open neighborhood V ⇤
b

of b in Vb such that I1
V

⇤
b
(V ⇤

b
\ S

n) ⇢
(p`+1)C1(V ⇤

b
). Let g 2 I1

Rn+1(P 0) and let g0 : Rn ! R be the C1 function defined
by g0(x) := g(✓�1(x)). Since g0 2 I1

Rn(L), there exist u1, . . . , u` 2 C1(Ua) such that

g0(x) =
P

`

i=1 ui(x)pi(x) for all x 2 Ua. As a consequence, bearing in mind (3.1.7),
we obtain:

g(y) = g0(✓(y)) =
P

`

i=1 ui(✓(y))(1� yn+1)�diPi(y),

for all y = (y1, . . . , yn+1) 2 Vb \ S
n. For each i 2 {1, . . . , `}, we define the C1

function vi : Vb ! R by setting vi(y) := ui(✓(⇢(y)))(1 � yn+1)�di . It follows that
the C1 function G :=

P
`

i=1 vi · Pi|Vb 2 C1(Vb) coincides with g on Vb \ S
n. Thus,

g � G = v`+1P`+1 on V ⇤
b

for some v`+1 2 C1(V ⇤
b
), and hence g =

P
`+1
i=1 viPi on

V ⇤
b
. This proves that I1

Rn+1(P 0)C1(V ⇤
b
) ⇢ (P1, . . . , P`+1)C1(V ⇤

b
). Hence (P 0, L0) is

a Q-approximable pair.

By Lemma 3.1.8, there exists a polynomial S 2 IQ(L0) arbitrarily C1
w close to

F . In particular, we can assume that |F (y) � S(y)| < " for all y 2 S
n. Define the

regular function g : Rn ! R by setting g(x) := S(✓�1(x)). Evidently, (ii) & (iii)
hold, because S 2 IQ(✓�1(L)) and |f(x) � g(x)| = |F (✓�1(x)) � S(✓�1(x))| < " for
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all x 2 R
n. Write S as follows: S =

P
e

i=0 Si, where Si 2 Q[x, xn+1] is homogeneous
of degree i, and e is the degree of S. It follows that g(x) = (1 + |x|2n)�ep(x),
where p(x) :=

P
e

i=0(1 + |x|2n)e�iSi(2x,�1 + |x|2n) 2 Q[x] is a polynomial of degree
 2e. This proves (i). It remains to prove (iv). Let  : R

n ! R
n+1 be the

C1 map  (x) := ✓�1(x). Since the pullback map  ⇤ : C1
w (Rn+1) ! C1

w (Rn) is
continuous, it follows that  ⇤(S) = S � = g can be chosen arbitrarily C1

w close to
 ⇤(F ) = F � = f , as desired. ⇤

3.2. The workhorse theorem over Q and applications

Let U be a non-empty open subset of Rn, let x 2 U , let ↵ 2 N
n, let M be a C1

submanifold of Rm, let j : M ,! R
m be the inclusion map and let f : U ! M be a

C1 map. To abbreviate notations, we write D↵f(x) in place D↵(j � f)(x).
The following is a version ‘over Q’ of the workhorse approximation theorem of

Akbulut and King, see [AK92, Theorems 2.8.3, pp. 63-64].

Lemma 3.2.1. Let L ⇢ R
n be a compact Q-algebraic set, let U be an open

neighborhood of L in R
n whose closure U in R

n is compact, let W ⇢ R
k be a Q-

nonsingular Q-algebraic set and let f : U ! W be a C1 map such that the restriction
f |L : L ! W of f to L is a regular map. Suppose that L is Q-nice and f |L is Q-
regular. Choose " > 0, h 2 N and an open neighborhood U 0 of L in R

n such that
U 0 ⇢ U . Then there exist an algebraic subset Z of Rn+k, an open subset Z0 of Z
and a regular map ⌘ : Z ! W with the following four properties:

(i) Z is Q-nonsingular Q-algebraic and ⌘ is Q-regular.
(ii) Let ◆ : U 0 ,! R

n+k be the inclusion map and let ⇡ : Rn+k ! R
n be the

natural projection onto the first n coordinates, i.e., ◆(x) := (x, 0) for all
x 2 U 0 and ⇡(x, y) := x for all (x, y) 2 R

n⇥R
k = R

n+k. Then L⇥{0} ⇢ Z0,
⇡(Z0) = U 0, the restriction ⇡|Z0 : Z0 ! U 0 is a C1 di↵eomorphism, and
the C1 map � : U 0 ! Z, defined by �(x) := (⇡|Z0)

�1(x) for all x 2 U 0,
satisfies the following inequalities:

sup
x2U 0

|D↵�(x)�D↵◆(x)|n < "

for all ↵ 2 N
n with |↵|  h.

(iii) ⌘(x, 0) = f(x) for all x 2 L.
(iv) supx2U 0 ||D↵f(x)�D↵(⌘ � �)(x)|k < " for all ↵ 2 N

n with |↵|  h.

Proof. Let T be an open tubular neighborhood of W in R
k and let ⇢ : T ! W

the closest point map, which is a C1 map. By Lemma 2.1.3(i) and Remark 2.1.4,
there exists a Q-regular map F : Rn ! R

k such that F (x) = f(x) for all x 2 L. Let
U 00 and U 000 be open neighborhoods of L in R

n such that U 0 ⇢ U 00, U 00 ⇢ U 000 and
U 000 ⇢ U . Let  : Rn ! R be a C1 function such that  = 1 on U 000 and  = 0 on
R
n \U in R

n. Define the C1 map ef : Rn ! R
k by ef(x) :=  (x)(f(x)�F (x)) for all

x 2 U and ef(x) := 0 for all x 2 R
n\U . Note that ef = (|�f)�F on U 00 and ef(x) = 0

for all x 2 L [ (Rn \ U). Applying Lemma 3.1.9 to each component of ef , we obtain
a Q-regular map eg : Rn ! R

k such that eg = 0 on L and eg is arbitrarily C1
w close

to ef . Define the regular map g : Rn ! R
k as g := eg + F . Note that g is Q-regular,
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g = | � f on L and g|U 000 is arbitrarily C1
w close to (| � f)|U 000 . In particular, we can

assume that g(U 00) ⇢ T . Choose � > 0 such that max
x2U 00 |g(x)� ⇢(g(x))|k < � and

{y 2 R
k : distRk(y, ⇢(g(U 00))) < �} ⇢ T . Consider g|U 00 and f |U 00 as C1 maps with

from U 00 to T . We know that g|U 00 = f |U 00 on L and g|U 00 is arbitrarily C1
w close to

f |U 000 .

Consider the normal bundle N = {(w, y) 2 W ⇥ R
k : y 2 Tw(W )?} of W in

R
k. Observe that N = �⇤(Ek,k�dim(W )) ⇢ R

2k is a Q-nonsingular Q-algebraic set

of dimension k since � is the mapping classifying the normal bundle of W in R
k,

which is Q-regular by Lemma 2.2.5, and Ek,k�dim(W ) is a Q-nonsingular Q-algebraic

set by Lemma 2.2.3. Define the regular map � : Rn+k ! R
2k = R

k ⇥ R
k and the

algebraic subset Z of Rn+k as �(x, y) := (g(x) + y, y) and Z := ��1(N). Note that
� is Q-regular, since g is. Moreover, it turns out that � is transverse to N in R

2k.
Indeed, given any (x, y) 2 Z and set w := g(x) + y 2 W , we have: T(w,y)(N) =

Tw(W )⇥ Tw(W )?, d�(x,y)(R
n+k) contains the diagonal � = {(y, y) 2 R

2k : y 2 R
k}

of R2k, �\(Tw(W )⇥T?
w (W )) = {(0, 0)} and hence d�(x,y)(R

n+k)+T(w,y)(N) = R
2k.

By Lemmas 2.1.3(v) & 2.1.5, it follows that Z ⇢ R
n+k is a Q-nonsingular Q-algebraic

set.

Let ⌘ : Z ! W be the Q-regular map given by ⌘(x, y) := g(x) + y, let Z1 be
the open subset {(x, y) 2 Z : x 2 U 00, |y| < �} of Z and let v : U 00 ! R

k be the
C1 map defined by v(x) := ⇢(g(x)) � g(x) for all x 2 U 00. By construction, Z1 is
the graph of v and v(x) = 0 for all x 2 L. Thus, L ⇥ {0} ⇢ Z1, ⇡|Z1 : Z1 ! U 00

is a C1 di↵eomorphism. Moreover, if �1 : U 00 ! Z1 denotes (⇡|Z1)
�1 and x is a

point of U 00, then �1(x) = (x, v(x)) and hence (⌘ � �1)(x) = g(x) + v(x) = ⇢(g(x)).
In particular, if x 2 L, then (⌘ � �1)(x) = ⇢(g(x)) = ⇢(f(x)) = f(x). Since the
push-forward ⇢⇤ : C1

w (U 00, T ) ! C1
w (U 00,W ) is continuous and g|U 00 is arbitrarily

C1
w close to f |U 00 , we can assume that ⇢⇤(g|U 00) = ⇢ � g|U 00 is arbitrarily C1

w close
to ⇢⇤(f |U 00) = ⇢ � f |U 00 = f |U 00 . In particular, ⇢ � g|U 00 is arbitrarily C1

w close to
g|U 00 , which is equivalent to say that �1 is arbitrarily C1

w close to the inclusion map
U 00 ,! R

n+k. Now it su�ces to set Z0 := {(x, y) 2 Z : x 2 U 0, |y| < �}. The proof
is complete. ⇤

The following is a strong version ‘over Q’ of [AK81b, Proposition 2.8], see also
[AK92, Theorem 2.8.4, pp. 65-66].

Theorem 3.2.2. Let M be a compact C1 submanifold of Rs of dimension d, let
L be a Q-algebraic subset of M , let � : M ! Gd,s�d be the normal bundle map of
M in R

s, let W ⇢ R
k be a Q-nonsingular Q-algebraic set and let f : M ! W be a

C1 map. Suppose that the following three conditions are verified.

(1) L ⇢ R
s is a Q-nice projectively Q-closed Q-algebraic set.

(2) W has projectively Q-algebraic homology.
(3) If L 6= ?, then the restrictions �|L : L ! Gs,s�d and f |L : L ! W are

Q-regular maps.

Then there exist a projectively Q-closed Q-nonsingular Q-algebraic set V ⇢ R
s+t for

some t 2 N, a C1 di↵eomorphism ' : M ! V and a Q-regular map ⇠ : V ! W
with the following three properties:

(i) L⇥ {0} ⇢ V .
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(ii) '(x) = (x, 0) for all x 2 L, and ' is arbitrarily C1
w -close to the inclusion

map M ,! R
s+t.

(iii) ⇠(x, 0) = f(x) for all x 2 L, and ⇠ � ' is arbitrarily C1
w -close to f .

Proof. Let us give the proof in the case L 6= ?. In the case L = ?, the
proof, suitably simplified, works as well. Thanks to Theorem 2.4.5, by increasing
s if necessary, there exist a d-dimensional projectively Q-closed Q-nonsingular Q-
algebraic set X ⇢ R

s, a Q-regular map g : X ! W , a compact C1 submanifold S
of Rs+1 = R

s ⇥ R and a C1 map G : S ! W such that

(iv) M \X = ?,
(v) S \ (Rs ⇥ (�1, 1)) = (M tX)⇥ (�1, 1),
(vi) G(x, 0) = f(x) for all x 2 M and G(x, 0) = g(x) for all x 2 X.

Let G := Gs+1,s�d and let B : S ! G be the normal bundle map of S in R
s+1 =

R
s⇥R. Using (iv), (v), Lemmas 2.2.5 & 2.1.3(iii) and Remark 2.1.4, we obtain that

the restriction of B to (L⇥ {0}) t (X ⇥ {0}) = (L tX)⇥ {0} is a Q-regular map.

Let us recall the construction of a tubular neighborhood U of S in R
s+1 and

the closest point map ⇢ : U ! S. Let E := Es+1,s�d = {(N, y) 2 G ⇥ R
s+1 :

Ny = y} ⇢ R
(s+1)2+s+1 = R

(s+1)(s+2) be the universal vector bundle over G, let
B⇤(E) := {(x, y) 2 S ⇥ R

s+1 : B(x)y = y} be the total space of the corresponding
pullback bundle with projection map ⇧ : B⇤(E) ! S given by ⇧(x, y) := x, and
let ✓ : B⇤(E) ! R

s+1 be the C1 map defined by ✓(x, y) := x + y. By the inverse
function theorem, there exists an open neighborhood U0 in B⇤(E) of the zero section
S ⇥ {0} of B⇤(E) such that U := ✓(U0) is an open neighborhood of S in R

s+1 and
the restriction ✓0 : U0 ! U of ✓ from U0 to U is a C1 di↵eomorphism. Define
⇢ : U ! S by ⇢(z) := ⇧((✓0)�1(z)). Restricting U around S in R

s+1 if necessary, we
can assume that ⇢ is the closest point map. Since S is compact, we can also assume
that the closure U of U in R

s+1 is compact as well.

Let us define the C1 map ⇥ : U ! E by ⇥(z) := (B(⇢(z)), z � ⇢(z)). The C1

map ⇥ is transverse in E to the zero section G⇥ {0} of E, and ⇥�1(G⇥ {0}) = S.
Note that ⇥(z) = (B(z), 0) for all z 2 (L t X) ⇥ {0}; thus, ⇥|(LtX)⇥{0} is a Q-
regular map. Moreover, by Corollary 3.1.3 and Lemma 3.1.4, X ⇥ {0} and L⇥ {0}
are Q-nice. Evidently, the same is true for their disjoint union (L tX)⇥ {0}.

Let F : U ! W be the C1 map defined by F := G � ⇢. By (3), (vi), Lemma
2.1.3(iii) and Remark 2.1.4, we have that F |(LtX)⇥{0} is a Q-regular map. Consider
the product map ⇥⇥F : U ! E ⇥W . Note that (⇥⇥F )|(LtX)⇥{0} is a Q-regular,
because both ⇥|(LtX)⇥{0} and F |(LtX)⇥{0} are. By Lemma 2.1.3(vi), E ⇥ W is a

Q-nonsingular Q-algebraic subset of R(s+1)(s+2)+k.

Thanks to the properties of ⇥⇥F just described, we can apply Lemma 3.2.1 to
⇥ ⇥ F . Chosen an open neighborhood U 0 of S in R

s+1 with U 0 ⇢ U , there exist a
Q-nonsingular Q-algebraic subset Z of Rs+1 ⇥R

(s+1)(s+2)+k = R
s+t, an open subset

Z0 of Z and a Q-regular map ⌘ : Z ! E ⇥W satisfying the following properties:

(vii) Let ◆ : U 0 ,! R
s+t be the inclusion map and let ⇡ : R

s+t = R
s ⇥ R ⇥

R
(s+1)(s+2)+k ! R

s ⇥ R be the natural projection onto the first s + 1
coordinates, i.e., ◆(x, xs+1) := (x, xs+1, 0) and ⇡(x, xs+1, y) := (x, xs+1).
Then (LtX)⇥ {0}⇥ {0} ⇢ Z0, ⇡(Z0) = U 0, the restriction ⇡|Z0 : Z0 ! U 0
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is a C1 di↵eomorphism, and the C1 map � : U 0 ! R
s+t, defined by

�(x, xs+1) := (⇡|Z0)
�1(x, xs+1) for all (x, xs+1) 2 U 0, is arbitrarily C1

w
close to ◆.

(viii) ⌘(x, 0, 0) = (⇥⇥ F )(x, 0) for all x 2 L tX.
(ix) The C1 map b⌘ : U 0 ! E ⇥ W , defined by b⌘(x, xs+1) := ⌘(�(x, xs+1)), is

arbitrarily C1
w close to (⇥⇥ F )|U 0 .

Choose an open neighborhood U 00 of S in R
s+1 such that U 00 ⇢ U 0 (actually,

we can also assume that U 00 is a compact C1 manifold with boundary). Set Z1 :=
(⇡|Z0)

�1(U 00). Since ⇥⇥F is transverse to (G⇥ {0})⇥W in E⇥W , by (vii), (viii),
(ix) and [BCR98, Theorem 14.1.1], we have that S0 := b⌘�1((G ⇥ {0}) ⇥ W ) is a
compact C1 submanifold of U 00 containing (L t X) ⇥ {0} and there exists a C1

di↵eomorphism  1 : U 00 ! U 00 arbitrarily C1
w close to idU 00 such that  1(S) = S0

and  = idU 00 on (L t X) ⇥ {0}. Moreover, bearing in mind (vii) and Lemma
2.1.5, we have that S00 := ⌘�1((G ⇥ {0}) ⇥ W ) ⇢ R

s+t is a Q-algebraic set such
that S00

1 := S00 \ Z1 = (⇡|Z1)
�1(S0) ⇢ RegR|Q(S00). In addition, the C1 embedding

 2 : S ! R
s+t, sending (x, xs+1) to (⇡|Z1)

�1( 1(x, xs+1)), is arbitrarily C1
w close

to the inclusion map jS : S ,! R
s+t sending (x, xs+1) to (x, xs+1, 0),  2 = jS on

(L tX)⇥ {0} and  2(S) = S00
1 . Note that the set S00

1 is both compact and open in
S00; thus, S00

1 is the union of some connected components of S00 and S00
2 := S00 \ S00

1 is
a closed subset of Rs+t (recall that an algebraic set, as S00, has only finitely many
connected components). Since  2 is arbitrarily C1

w close to jS , the coordinate
hyperplane {xs+1 = 0} of Rs+t = R

s⇥R⇥R
(s+1)(s+2)+k is transverse to S00

1 in R
s+t,

S00
1 \{xs+1 = 0} = M 0tX for some compact C1 submanifold M 0 of Rs+t containing

L ⇥ {0} and there exists a C1 embedding  3 : M ! R
s+t arbitrarily C1

w close to
the inclusion map jM : M ,! R

s+t, i.e., jM (x) := (x, 0, 0), such that M 0 =  3(M)
and  3 = jM on L⇥ {0}.

Let K be a compact neighborhood of S00
1 in R

s+t such that K \ S00
2 = ? and let

⇡s+1 : Rs+t = R
s⇥R⇥R

(s+1)(s+2)+k ! R be the projection ⇡s+1(x, xs+1, y) := xs+1.
By Lemma 2.1.7(i)(iv), we know that the algebraic set (LtX)⇥{0}⇥{0} ⇢ R

s+t is
projectively Q-closed; thus, there exists an overt polynomial q 2 Q[x, xs+1, y] such
that ZR(q) = (L t X) ⇥ {0} ⇥ {0}. Since q is a proper function, replacing q with
Cq2 for some rational number C > 0 if necessary, we can assume that q is overt,
ZR(q) = (L t X) ⇥ {0} ⇥ {0}, q � 0 on R

s+t and q � 2 on R
s+t \ K. Let K 0

be a compact neighborhood of S00
1 in intRs+t(K). Using a C1 partition of unity

subordinated to {intRs+t(K),Rs+t \K 0}, we can define a C1 function h : Rs+t ! R

such that h = ⇡s+1 on K 0 and h = q on R
s+t \ K. Apply Lemma 3.1.9 to h � q,

obtaining a Q-regular function u0 : Rs+t ! R with the following properties:

(x) There exist e 2 N and a polynomial p 2 Q[x1, . . . , xs+t] of degree  2e such
that u0(x) = p(x)(1 + |x|2s+t)

�e for all x 2 R
s+t.

(xi) (L tX)⇥ {0}⇥ {0} ⇢ ZR(u0).
(xii) supx2Rs+t |h(x)� q(x)� u0(x)| < 1.
(xiii) u0 is arbitrarily C1

w close to ⇡s+1 � q on intRs+t(K 0).

Let u : R
s+t ! R be the Q-regular map given by u := u0 + q, and let v 2

Q[x1, . . . , xs+t] be the polynomial v(x) := q(x)(1 + |x|2s+t)
e + p(x). Combining (x)

with the fact that q is non-constant and overt, we immediately deduce that u(x) =
(1 + |x|2s+t)

�ev(x) and v is Q-overt. By (xi), (xii) and (xiii), we know that (L t
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X) ⇥ {0} ⇥ {0} ⇢ ZR(u), u > 1 on R
s+t \K and u is arbitrarily C1

w close to ⇡s+1

on intRs+t(K 0). In particular, 0 is a regular value of the restriction u|S00
1
of u to S00

1 ,

S00
1 \u�1(0) = (u|S00

1
)�1(0) is equal to M 00tX for some compact C1 submanifold M 00

of Rs+t containing L⇥ {0}⇥ {0} and there exists a C1 embedding  4 : M 0 ! R
s+t

arbitrarily C1
w close to the inclusion map jM 0 : M 0 ,! R

s+t such that M 00 =  4(M 0)
and  4 = jM 0 on L⇥ {0}⇥ {0}. Since M 00 tX = S00 \ u�1(0), Lemma 2.1.5 ensures
that M 00tX ⇢ R

s+t is a Q-nonsingular Q-algebraic set. On the other hand, we also
have that M 00 tX = S00 \ u�1(0) = S00 \ v�1(0); thus, Lemma 2.1.7(ii) implies that
M 00 tX is projectively Q-closed.

Let T 000 := T 0 \ {g00 = 0}. By the above properties of g00, it follows that:
T 000 = M 00tY where M 00 is an approximation of M 0 in T 0 fixing L, T 000 is an algebraic
set because it is equal to T 00 \ {g00 = 0} and T 000 is nonsingular in fact ⇡n+1|T 0 (and
hence g00|T 0) is transverse to 0 in R. By Lemma 2.1.3(v), we deduce that T 000 is a
Q-nonsingular Q-algebraic set, hence M 00 is a Q-nonsingular Q-algebraic set as well
by Lemma 1.6.14. Since M 00 is a Q-algebraic subset of M 00tX which is projectively
Q-closed, Lemma 2.1.7(ii) ensures that M 00 is projectively Q-closed as well.

Finally let ⇡W : E ⇥W ! W be the natural projection and let ⇠ := ⇡W � ⌘|M 00 .
Using the first part of b), it is easy to see that M 00 and P satisfy the conclusion of
the theorem. ⇤

3.2.1. A relative Nash-Tognoli theorem ‘over Q’. In the next result we
prove a version ‘over Q’ of [AK81b, Theorem 2.10].

Theorem 3.2.3. Let M be a compact C1 submanifold of R
n and let Mi for

i = 1, . . . , `, be C1 hypersurfaces of M in general position. Then there exist a
C1-di↵eotopy {ht}t2[0,1] of Rn+k = R

n ⇥R
k (for some k 2 N) arbitrarily C1

w -close
to idRn+k which simultaneously takes M ⇥ {0} and each Mi ⇥ {0} to projectively
Q-closed Q-nonsingular Q-algebraic sets.

In particular, there exist projectively Q-closed Q-nonsingular Q-algebraic sets
M 0,M 0

1, . . . ,M
0
`
and a C1 di↵eomorphism h : M ! M 0 such that M 0

i
⇢ M 0 and

h(Mi) = M 0
i
for all i 2 {1, . . . , `}.

Proof. Since the canonical line bundle over G1,n�2 classifies line bundles and
G1,n�1 is the Thom space of the canonical bundle overG1,n�2, for every i 2 {1, . . . , `},
increasing n if necessary, there is a smooth map fi : M ! G1,n�1 that is transverse to
G1,n�2 ⇢ G1,n�1 and such that f�1

i
(G1,n�2) = Mi. Let W = G1,n�1⇥ · · ·⇥G1,n�1 ⇢

R
n
2
` be the `-times product of G1,n�1 with itself and let f : M ! W be the

smooth map having fi as the i-th coordinate. Recall that, by Lemma 2.1.3 (f) and
Lemma 2.2.1 W is a Q-nonsingular Q-algebraic set. Moreover, since each G1,n�1

has projectively Q-algebraic homology, Lemma 2.4.7 implies that W has projec-
tively Q-algebraic homology as well. Hence, by Theorem 3.2.2, there is a projec-
tively Q-closed Q-nonsingular Q-algebraic set M 0 ⇢ R

n ⇥ R
k, for some k 2 N, a

Q-regular map r : M 0 ! W and a di↵eotopy {h0t}t2[0,1] of Rn+k = R
n⇥R

k such that
h01(M) = M 0 and r �h01 is a C1-approximation of f . For every i 2 {1, . . . , `}, define
Wi = G1,n�1 ⇥ · · · ⇥ G1,n�2 ⇥ · · · ⇥ G1,n�1 with G1,n�2 at the i-th place. Observe
that if we choose the approximations su�ciently C1

w close then r � h1 is transverse
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to Wi, since f is so. In addition, there is a di↵eotopy {hit}t2[0,1] of M 0 arbitrarily
C1 close to idM 0 such that hi1(h

0
1(Mi)) = r�1(Wi). Moreover, by Lemma 2.1.3 we

deduce that r�1(Wi) ⇢ M 0 is a Q-nonsingular Q-algebraic set. By [AK81b, Lemma
2.9] there is a di↵eomorphism h00 : M 0 ! M 0 such that (h00 � h0)(Mi) = r�1(Wi) for
every i 2 {1, . . . , l}. Setting ht := h00t � h0t and M 0

i
:= r�1(Wi), we are done. ⇤

We will see further deep generalizations of latter result in Section 4.1.

3.3. Q-Algebraic blowing down with approximation

Here we propose a version ‘over Q’ of the blowing down lemma by Akbulut-King.
With respect to the original result [AK92, Lemma 2.6.1] we are also able to produce
approximating algebraic sets.

Definition 3.3.1. Let V be a Q-algebraic subset of Rn and let U be a Zariski
open subset of V . We say that V is Q-determined on U if U ⇢ Reg⇤(V ).

Remark 3.3.2. Let V be aQ-algebraic subset of Rn. Then, in terms of Definition
3.3.1, V is Q-determined means that V is Q-determined on Reg(V ).

Lemma 3.3.3. Let X ⇢ R
n and Y ⇢ R

m be Q-algebraic sets. Let A be a Q-
algebraic subset of X and let p : X ! Y be a Q-regular map. Suppose that X ⇢ R

n

is projectively Q-closed and Q-determined. Let X [p Y be the adjunction space of X
and Y via p, namely the quotient topological space obtained from the disjoint union
X t Y by identifying every x 2 A with p(x) 2 Y , and let ⇡ : X t Y ! X [p Y be
the quotient map. Then, there are a Q-algebraic set V ⇢ R

n+m+1, Q-regular maps
f : X ! V and g : Y ! V and a homeomorphism h : V ! X [p Y such that:

(i) h � f = ⇡|X and h � g = ⇡|Y ; in other words, the following diagram com-
mutes.

X

X t Y X [p Y V

Y

f

⇡ h

g

(ii) g coincides with the inclusion map ||Y : Y ,! R
n+m+1, thus Y0 := g(Y ) ⇢

R
n+m+1 is a Q-algebraic subset of V .

(iii) f | : X \ A ! V \ Y0 is a Q-biregular isomorphism; in particular, V =
f(X \A) t Y0.

(iv) If dim(Y ) < dim(X \A) then Sing(V ) ⇢ Y0[f(Sing(X)) and V ⇢ R
n+m+1

is Q-determined on the Zariski open subset Reg(V ) \ Y0.
(v) |V � f is arbitrarily C 0

w close to |Y � p, where |Y : Y ,! R
n+m+1 = R

n ⇥
R
m ⇥ R as y ! (0, y, 0) and |V : V ,! R

n+m+1 denote the inclusion maps.
(vi) (|V � f)|Reg(X) is arbitrarily C1

w close to (|Y � p)|Reg(X).

Proof. Let a, b 2 Q[x] such that A = ZR(a) and X = ZR(b). Since p :
A ! Y is Q-regular, let p1, . . . , pm, q 2 Q[x] such that ZR(q) = ? and p(x) =
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�
p1
q
(x), . . . , pm

q
(x)
�
for every x 2 A by Lemma 2.1.3(i). Let C1 2 Q \ {0} arbitrar-

ily small. Define the Q-regular maps p0 : A ! Y ⇥ {0} and P 0 : A ! R
m ⇥ R

by p0(x) = (p(x), 0) and P 0(x) = (P (x), C1a(x)), respectively. Denote by Y 0 :=
Y ⇥ {0} ⇢ R

m ⇥ R. Observe that P 0 extends p0 and the topological space X tp0 Y 0

is homeomorphic to X tp Y . Thus it su�ces to prove the following claim:

Claim: Let X ⇢ R
n be a projectively Q-closed Q-determined Q-algebraic set, let

Y ⇢ R
m be a Q-algebraic set and let p : X ! R

m be a Q-regular map. Let X[pY be
the quotient topological space obtained from the disjoint union X t Y by identifying
every y 2 Y with the points of the fiber p�1(y). Then, there are a Q-algebraic set
V ⇢ R

n+m, Q-regular maps f : X ! V and g : Y ! V and a homeomorphism
h : X [p Y ! V satisfying conditions (i)-(vi).

Since X is projectively Q-closed, hence compact, we may assume that 0 /2 X,
up to perform a small translation of a rational vector. Let s 2 Q[x] and t 2 Q[y]
such that X = ZR(s) and Y = ZR(t), with s overt. Since p is Q-regular, there
are p1, . . . , pm, q 2 Q[x] such that p(x) =

�
p1
q
(x), . . . , pm

q
(x)
�
for every x 2 X and

ZR(q) = ?. Define a Q-regular extension p0 : R
n ! R

m of p defined by p0 =�
p1q

q2+s2b
, . . . , pmq

q2+s2b

�
, where b is chosen in such a way that the degree of q2 + s2b is

greater than the degree of piq, for every i 2 {1, . . . ,m}. Let d be the degree of s
and C2 2 Q \ {0}. Let r : Rn ⇥ R

m ! R be the Q-regular function defined as

r(x, y) = t(y)2d
⇣
|y � p(x/C2t(y))|2m + s(x/C2t(y))

2
⌘
.

Observe that the choices of b and d ensure that the regular map r is globally defined
as a polynomial r 2 Q[x, y] by erasing the denominators. Let V := ZR(r). Define
f : X ! R

n⇥R
m by f(x) := (x ·C2t(p(x)), p(x)), g : Y ! R

n⇥R
m by g(y) := (0, y)

and let Y0 := g(Y ) = {0} ⇥ Y ⇢ R
n+m. Thus, Y0 ⇢ R

n+m is a Q-algebraic set. In
addition, g = ||Y and, if C2 2 Q\{0} is chosen su�ciently small, |V �f is arbitrarily
C 0
w close to |Y � p and (|V � f)|Reg(X) is arbitrarily C1

w close to (|Y � p)|Reg(X). This
proves (ii),(v) & (vi).

Let us prove that V = f(X) [ Y0. Let (x, y) 2 V . If y 2 Y then t(y) = 0, thus
r(x, y) = sd(x)2, where sd is the homogeneous part of s of highest degree equal to
d. Since s is supposed to be overt, the only root of sd(x) is x = 0 2 R

n. Hence
V \(Rn⇥Y ) = {0}⇥Y = Y0. Now suppose y 2 R

m\Y . Since t(y) 6= 0, if r(x, y) = 0
for some x 2 R

n, it follows that y = p(x/C2t(y)) and s(x/C2t(y)) = 0, that is,
x/C2t(y) 2 V . We get (x, y) = f(x/C2t(y)), thus V \(Rn⇥Y ) ⇢ f(X \p�1(Y )). On
the other hand, r(f(x)) = 0 for every x 2 X since X = ZR(s), namely f(X) ⇢ V .

Now we apply the universal property of the quotient topology to find an home-
omorphism h : X [p Y ! V so that h�1 � f and h�1 � g are the quotient maps.
Consider the following diagram:

X t Y

X [p Y V

⇡
ftg

h

We want to prove that for every z, z0 2 X t Y such that p(z) = p(z0) 2 Y , then
(f t g)(z) = (f t g)(z0). Let z, z0 2 X, with z 6= z0, such that p(z) = p(z0) 2 Y ,
then t(p(z)) = 0 = t(p(z0)) and f(z) = (z · t(p(z)), p(z)) = (0, p(z)) = (0, p(z0)) =
(z · r(p(z0)), p(z0)) = f(z0). Let z 2 X and z0 2 Y so that p(z) = z0, then f(z) =
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(z · r(p(z)), p(z)) = (0, z0) = g(z0), since Y = ZR(t). This proves, by the universal
property of the quotient topology, that there is a unique continuous map h that
makes the previous diagram commute. To get that h is actually an homeomorphism
we are left to prove that f t g is closed. Let A be a closed subset of X t Y , then
it splits into the union of the two closed sets A \ X and A \ Y , thus it su�ces to
prove that the images of both these sets are closed. Since X is compact, A \X is
compact and f(A \X) is compact as well, hence f(A \X) ⇢ V is closed in V . On
the other hand, g(Y ) = {0}⇥ Y = V \ (Rn ⇥ Y ), hence g(Y ) is closed in V . Thus,
g(A\Y ) = {0}⇥ (A\Y ) is closed in V as well. This proves that f t g is a quotient
map, then, by the universal property of the quotient topology, we conclude that h
is an homeomorphism satisfying (i).

It remains to show that, if dim(Y ) < dim(X \ p�1(Y )), then Sing(V ) ⇢ Y0 [
f(Sing(X)) and V is Q-determined on Reg(V ) \ Y0, that is Reg(V ) \ Y0 ⇢ Reg⇤(V ).
Observe that the Q-regular function f 0 : V \ Y0 ! X \ p�1(Y ) defined as f 0(x, y) =
x/C2t(y) is the inverse of f |X\p�1(Y ), thus Sing(V \ Y0) = f(Sing(X \ p�1(Y ))) ⇢
f(Sing(X)) and dim(V \ Y0) = dim(X \ p�1(Y )). In particular, (iii) holds. Let
a := (x, y) 2 Reg(V ) \ Y0. Since f : X \ p�1(Y ) ! V \ Y0 is a Q-biregular map we
deduce that R⇤

V,a
⌘ R⇤

X,f 0(a). This proves that V is Q-determined on Reg(V ) \ Y0,
thus also (iv) holds and the Claim follows. ⇤



CHAPTER 4

Q-Algebrization results

Abstract. This chapter contains our main Q-approximation results. In Section
4.1 we extend some results of [BFR14] from the C 1 to the Nash category. Then,
we prove a relative Nash-Tognoli theorem ‘over Q’ improving a previous version
already presented in Section 3.2. In particular, we prove that, in case the starting
data are actually Nash than the di↵eomorphism in the statement of the theorem
can be produced Nash. After dealing with a singularity at infinity, we prove a
general relative Q-algebrization theorem in the case of nonsingular algebraic sets
with a finite set of nonsingular algebraic subsets in general position. In Section
4.2 we prove a Q-algebrization theorem for Nash manifolds over any real closed
field. The main ingredients are a deep result in [CS92], model completeness of the
theory of real closed fields and our Q-algebrization results over R. Section 4.3 is
devoted to the proof of a Q-algebrization result in the case of algebraic sets with
isolated singularities at first in the compact case and then in general by apply-
ing algebraic compactification. The results explained so far provide a complete
positive answer of [Par21, Open problem 1, p. 199] in the case of nonsingular al-
gebraic sets and singular algebraic sets with isolated singularities. In Section 4.4
we prove a consequence of our Q-algebrization theorems to provide a complete
positive answer of [Par21, Open problem 2, p. 200] in the case of algebraic set
germs with an isolated singularity.

The main references for this chapter are [GS23] and [Sav23].

4.1. Relative Q-algebrization problem for nonsingular algebraic sets

This section is devoted to provide a complete positive answer to the Relative

Q-algebrization of nonsingular algebraic sets. We will divide the compact
and the non-compact cases.

4.1.1. Relative Nash approximation of C1 di↵eomorphisms. A subset
of Ra is semialgebraic if it is a Boolean combination of subsets of Ra defined by
polynomial equations and polynomial strict inequalities. A locally closed semialge-
braic set M ⇢ R

a is called (a�ne) Nash manifold if it is also a C1 submanifold of
R
a. Let M ⇢ R

a be a Nash manifold, let X ⇢ M be a (non-empty) semialgebraic
subset of Ra contained in M , and let Y ⇢ R

b be a (non-empty) semialgebraic set.
We denote C 0

w(X,Y ) the set C 0(X,Y ) of continuous maps from X to Y , equipped
with the compact-open topology. Let ⌫ 2 N

⇤ [ {1} and let f : X ! Y be a map.
We say that f is a C ⌫ map if there exist an open (not necessarily semialgebraic)
neighborhood U of X in M and a map F : U ! R

b such that F is of class C ⌫ in
the usual sense of C1 (and hence C ⌫) manifolds and F (x) = f(x) for all x 2 X.
We denote C ⌫(X,Y ) the set of C ⌫ maps from X to Y . The map f : X ! Y is
called semialgebraic if its graph is a semialgebraic subset of Ra+b = R

a ⇥ R
b. The

95
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map f : X ! Y is said to be a Nash map if there exist an open semialgebraic
neighborhood U of X in M and a C1 map F : U ! R

b such that F is semialgebraic
and F (x) = f(x) for all x 2 X. We denote N(X,Y ) the set of Nash maps from
X to Y . Note that N(X,Y ) ⇢ C1(X,Y ) ⇢ C ⌫(X,Y ) ⇢ C 0(X,Y ). We denote
C ⌫
w(M,Rb) the set C ⌫(M,Rb) equipped with the usual weak C ⌫ topology, see [Hir94,

§2]. Similarly, we denote Nw(M,Rb) the set N(M,Rb) equipped with the relative
topology of C ⌫

w(M,Rb).When Y = R, we often speak about C ⌫ (Nash) functions
instead of C ⌫ (Nash) maps, and we set C ⌫(X) := C ⌫(X,R) and N(X) := N(X,R).
Note that f = (f1, . . . , fb) : X ! Y ⇢ R

b is a C ⌫ (Nash) map if, and only if, each
component fi : X ! R of f is a function in C ⌫(X) (in N(X)). The set X ⇢ M is
a Nash set if it is the common zero set of a finite family of Nash functions defined
on M . Each Nash set X ⇢ M is closed in M , and it decomposes into the finite
union of its Nash irreducible components, see [BCR98, Corollary 8.6.8]. For further
information on semialgebraic and Nash sets, we refer to [BCR98] (see also [BR90;
Shi87]).

Let us recall the concepts of Nash set with monomial singularities and of Nash
monomial crossings.

Definition 4.1.1 ([BFR14, Definitions 1.1, 1.3 & p. 63]). A set X ⇢ M is called
Nash set with monomial singularities if it is a Nash set and, for each x 2 X, there
exist a semialgebraic open neighborhood U of x in M and a Nash di↵eomorphism u :
U ! R

m, where m = dim(M), such that u(x) = 0 and u(X \U) is equal to a union
of coordinate linear varieties of Rm. If in addition the Nash irreducible components
of X are Nash manifolds, then X ⇢ M is called Nash monomial crossings.

Given a Nash set M 0 ⇢ M , we say that M 0 is a Nash submanifold of M if
M 0 ⇢ R

a is a Nash manifold. If {Mi}`i=1 is a finite family of Nash submanifolds

of M in general position, then their union
S
`

i=1Mi ⇢ M is an example of Nash
monomial crossings.

Here we state a theorem which is a variant of results originally proved in [BFR14].
The interested reader will find the complete proof in the Appendix A. Next result
will play an important role in the proof of Theorems 4.1.4 & 4.3.4.

Theorem 4.1.2. Let M and N be compact Nash manifolds, let ` 2 N
⇤, let

{Mi}`i=1 be a family of Nash submanifolds of M in general position, let {Ni}`i=1 be
a family of Nash submanifolds of N in general position, let X 0 ⇢ M be a Nash set
with monomial singularities and let � : M ! N be a C1 di↵eomorphism such that
�(Mi) = Ni for all i 2 {1, . . . , `}, X 0 \

�S
`

i=1Mi

�
= ? and �|X0 is a Nash map.

Then there exists a Nash di↵eomorphism  : M ! N arbitrarily C1
w close to  such

that  (Mi) = Ni for all i 2 {1, . . . , `} and  |X0 = �|X0.

As a direct consequence of Lemma 2.1.8 and Theorems 3.2.3 & 4.1.2 we have
the following result.

Corollary 4.1.3. Let M be a compact Nash submanifold of Rn of dimension d
and let {Mi}`i=1 be a family of Nash hypersurfaces of M in general position. Then
there exist a C1-di↵eotopy {ht}t2[0,1] of Rn+k = R

n⇥R
k (for some k 2 N) arbitrarily

C1
w -close to idRn+k which simultaneously take M ⇥ {0} and each Mi ⇥ {0} to a

projectively Q-closed Q-nonsingular Q-algebraic sets.
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In particular, there exist projectively Q-closed Q-nonsingular Q-algebraic sets
M 0,M 0

1, . . . ,M
0
`
⇢ R

2d+1 and a Nash di↵eomorphism h : M ! M 0 such that M 0
i
⇢

M 0 and h(Mi) = M 0
i
for all i 2 {1, . . . , `}.

4.1.2. The compact case: the relative Nash-Tognoli theorem ‘over Q’.
In order to prove the version ‘over Q’ of [AK81a, Theorem 2.10] presented below,
the main ingredients will be our relative bordisms ‘over Q’ constructed in Theorem
2.5.2 combined with approximation techniques ‘over Q’ of Chapter 3, Lemma 1.6.14
and generic projection ‘over Q’ (see Lemma 2.1.8).

Theorem 4.1.4 (Relative Nash-Tognoli theorem ‘over Q’). Let M be a com-
pact C1 submanifold of R

n of dimension d and let Mi for i = 1, . . . , `, be C1

submanifolds of M in general position. Set m := max{n, 2d + 1}. Then, for every
neighborhood U of the inclusion map ◆ : M ,! R

m in C1
w (M,Rm) and for every

neighborhood Ui of the inclusion map ◆|Mi : Mi ,! R
m in C1

w (Mi,Rm), for ev-
ery i 2 {1, . . . , `}, there exist a projectively Q-closed Q-nonsingular Q-algebraic set
M 0 ⇢ R

m, Q-nonsingular Q-algebraic subsets M 0
i
of M 0 for i = 1, . . . , `, in general

position and a C1 di↵eomorphism h : M ! M 0 which simultaneously takes each
Mi to M 0

i
such that, if | : M 0 ,! R

m denotes the inclusion map, then | � h 2 U and
| � h|Mi 2 Ui, for every i 2 {1, . . . , `}.

If in addition M and each Mi are compact Nash manifolds, then we can as-
sume that h : M ! M 0 is a Nash di↵eomorphism and h extends to a semialgebraic
homeomorphism from R

m to R
m.

Proof. Let ci be the codimension of Mi in M for i 2 {1, . . . , `}. An application
of Theorem 2.5.2 gives s 2 N, a projectively Q-closed Q-nonsingular Q-algebraic set
Y ⇢ R

s := R
n ⇥R

s�n of dimension d, Q-nonsingular Q-algebraic subsets Yi, for i 2
{1, . . . , `}, of Y in general position, a compact C1 submanifold S of Rs+1 = R

s⇥R

of dimension m + 1 and compact C1 submanifolds Si of S of codimension ci, for
i 2 {1, . . . , `}, in general position satisfying Theorem 2.5.2(i)-(iv).

Consider the map �i : Si ! Gci,s+1�ci classifying the normal bundle of Si in S.
By Theorem 2.5.2(iv) we have that �i|Yi is a Q-regular map extending the codomain
from Gci,n�ci to Gci,s+1�ci . An application of Theorem 3.2.2, with “L” := Yi ⇥ {0},
“M” := Si, “W” := Gci,s+1�ci and “f” := �i gives t 2 N, a projectively Q-closed
Q-nonsingular Q-algebraic subset Xi of Rs+1+t, a di↵eomorphism ⇢i : Si ! Xi and
a Q-regular map �i : Xi ! Gci,s+1�ci satisfying Theorem 3.2.2(i)-(iii). In particular,
(Yi⇥{0})⇥{0} ⇢ Xi, ⇢i(x) = (x, 0) and �i(x, 0) = �i|Yi⇥{0}(x) for every x 2 Yi⇥{0}.

Consider the pullback bundle Zi := �⇤
i
(E⇤

ci,s+1�ci
). By Lemma 2.2.6, Zi is a

projectively Q-closed Q-nonsingular Q-algebraic subset of Rs+1+t ⇥ R
s+1+t+1 and

it contains those subsets Y ↵ of Y such that i 2 ↵, by Theorem 2.5.2(iii)(iv) and
Lemma 2.5.1(iii). More precisely, following the notations of Theorem 2.5.2, we have
that

Y 0↵ := (�i|(Y ↵
i +v↵)⇥{0}⇥{0})

⇤(E⇤
ci,s+1�ci

)

is contained in Zi, for every ↵ 2 Ai, and is Q-biregularly isomorphic to Y ↵ fixing
each x 2 Y↵. Let Y 0

i
⇢ R

s ⇥ R⇥ R
t ⇥ R

s+1+t+1 be defined as

Y 0
i :=

⇣ G

↵2Ai

Y 0↵
⌘
t
⇣ G

↵/2Ai

(Y ↵ + v↵)⇥ {0}⇥ {0}⇥ {0}
⌘
.
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M

Mi

S ⇢ R
s+1

Si Sj

Y ⇢ R
s

Y↵

Y ↵

i

Y�

Y �

j

Figure 4.1.1. Starting situation after the application of Theorem 2.5.2.

Since �i can be chosen such that �i � ⇢ is arbitrarily C1
w close to �i, those maps are

homotopic, thus the normal bundle of Si in S and the normal bundle ofXi⇥{0}⇥{0}
in Zi are equivalent. Hence, the germ (S, Si [ (Y ⇥ {0})) of S at Si [ (Y ⇥ {0}) is
di↵eomorphic to the germ

⇣
Zi [ (

G

↵/2Ai

(Y ↵ + v↵)⇥ R⇥ {0}⇥ {0}), (Xi ⇥ {0}) [ Y 0
i

⌘

of the Q-algebraic set Zi [ (
F
↵/2Ai

(Y ↵+ v↵)⇥R⇥ {0}⇥ {0}) Q-nonsingular locally
at (Xi ⇥ {0}) [ Y 0

i
.

Let �i : Ui ! Vi be the above C1 di↵eomorphism between a neighborhood Ui

of Si[ (Y ⇥{0}) in S and a neighborhood Vi of (Xi⇥{0})[Y 0
i
in Zi[ (

F
↵/2Ai

(Y ↵+
v↵)⇥ R⇥ {0}⇥ {0}) such that �i|Si = ⇢i ⇥ {0} and �i|Y ↵ is the above Q-biregular
isomorphism for every ↵ 2 Ai, and �i|Y ↵ is the inclusion map for every ↵ /2 Ai. Let
V 0
i
⇢ Vi be a neighborhood of (Xi⇥{0})[Y 0

i
in Zi[(

F
↵/2Ai

(Y ↵+v↵)⇥R⇥{0}⇥{0})
such that V 0

i
( Vi. Set Ai := ��1

i
(V 0

i
) ⇢ Ui closed neighborhood of Si [ (Y ⇥ {0}) in

S and consider the map �i|Ai : Ai ! R
s+1+t⇥R

s+1+t+1. Since 2(s+1+t)+1 � 2(d+
1)+1, Tietze’s theorem ensures the existence of a continuous extension of �i from the
whole S to R

s+1+t⇥R
s+1+t+1, we can apply to �i|Ai the extension theorem [Whi36,

Theorem 5(f)] of Whitney, obtaining a C1 embedding �0
i
: S ! R

s+1+t ⇥R
s+1+t+1

extending �i|Ai . Thus, there exists a C1 manifold Ni ⇢ R
s+1+t ⇥ R

s+1+t+1 which
is C1 di↵eomorphic to S via �0

i
and, by construction, the following properties are

satisfied:
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M

Mi

Y 0↵
Yi ⇥ {0}

Y �

Y � ⇥ R⇥ {0}⇥ {0}

ZiXi ⇥ {0}

Ni ⇢ R
2(s+t)+3

fx

Y 0
i

Figure 4.1.2. Topological construction of Ni with i 2 ↵ and i /2 �.

(i) (Xi ⇥ {0}) [ Y 0
i
⇢ Ni;

(ii) the germ of Ni at (Xi⇥{0})[Y 0
i
is the germ of a Q-nonsingular Q-algebraic

set.

Since Xi⇥{0} is a Q-nonsingular Q-algebraic subset of Ni and Y 0
i
is a Q-nonsingular

Q-algebraic hypersurface of Ni satisfying above property (ii), Lemma 3.1.5 ensures
that (Xi⇥{0})[Y 0

i
⇢ R

s+1+t⇥R
s+1+t+1 is a Q-nice Q-algebraic set. An application

of Theorem 3.2.2 with “L” := (Xi ⇥ {0}) [ Y 0
i
, “M” := Ni and “W” := {0} gives

ti 2 N, with ti � 2(s+1+t)+1, a projectively Q-closed Q-nonsingular Q-algebraic set
Xi ⇢ R

ti = R
s+1+t⇥R

s+1+t+1⇥R
ti�2(s+1+t)+1 such that ((Xi⇥{0})[Y 0

i
)⇥{0} ⇢ Xi

and a C1 di↵eomorphism ⌧i : Ni ! Xi such that ⌧i(x, 0) = x for every x 2
(Xi ⇥ {0}) [ Y 0

i
. Define the di↵eomorphism 'i : S ! Xi as 'i := ⌧i � �0i, for every

i 2 {1, . . . , `}. Let t := maxi2{1,...,`} ti and consider Xi ⇢ R
t, for every i 2 {1, . . . , `}.

Here we adapt part of the proof of Treorem 3.2.2 to the present situation.

Let G := Gs�d,d+1 and let � : S ! G be the Gauss mapping of S in R
s+1.

Recall that Y ⇢ R
s and, by Theorem 2.5.2(iii)(iv), �|Y⇥{0} coincides with the Gauss

mapping of the Q-nonsingular Q-algebraic set Y ⇥R in R
s+1. Hence, �|Y⇥{0} is Q-

regular since the Gauss mapping of Y ⇥ R in R
s+1 is so by Lemma 2.2.5.

Let E := Es�d,d+1 = {(A, b) 2 G⇥R
s+1 |Ab = b} be the universal vector bundle

over the grassmannian G. Let �⇤(E) := {(x, y) 2 S ⇥ R
s+1 |�(x)y = y} be the

pullback bundle and let ✓ : �⇤(E) ! R
s+1 defined by ✓(x, y) := x + y. By the

Implicit Function Theorem, there exists an open neighborhood U0 in �⇤(E) of the
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zero section S ⇥ 0 of �⇤(E) and an open neighborhood U of S in R
s+1 such that

✓|U0 : U0 ! U is a di↵eomorphism.

Define a C1 map e� : U ! E and a smooth map e% : U ! S in the following
way: for every x 2 U , let (zx, yx) := (✓|U0)

�1(x) and let Nx := �(zx), then define
e�(x) := (Nx, yx) and e%(x) := zx. Since (✓|U0)

�1(S) = G ⇥ {0}, we have that
e��1(G ⇥ {0}) = S; moreover if x 2 S then e�(x) = (�(x), 0), so e�|Y is Q-regular.
Now we prove that e� is transverse to G⇥ {0} in E. Fix x 2 S and let Nx := �(x).
Let eNx be the (s � d)-dimensional vector subspace of Rs+1 corresponding to Nx

and let y 2 eNx so close to the origin 0 of Rs+1 that (x, y) 2 U0. We have that
✓|U0(x, y) = x + y, so (✓|U0)

�1(x + y) = (x, y) and e�(x + y) = (Nx, y). It follows

that de�x( eNx) = eNx, hence de�x(Rs+1) contains the vector subspace {0} ⇥ R
s�d of

TNx(G)⇥ R
s�d = T(Nx,0)(E) and so e� is transverse to G⇥ {0} at x.

Recall that, by Lemma 2.1.7(iv), X1⇥ · · ·⇥X` ⇢ (Rs)` is a projectively Q-closed
Q-nonsingular Q-algebraic set. Let ' : S ! X1 ⇥ · · ·⇥X` be the C1 map defined
as ' = ('1, . . . ,'`). Let e' : U ! X1 ⇥ · · · ⇥ X` be the smooth map defined by
e' := ' � e%. The smooth map e� ⇥ e' : U ! E ⇥X1 ⇥ · · ·⇥X` satisfies the following
properties:

(iii) e�⇥ e' is transverse to (G⇥ {0})⇥X1⇥ · · ·⇥X` and (e�⇥ e')�1((G⇥ {0})⇥
X1 ⇥ · · ·⇥X`) = S,

(iv) (e� ⇥ e')|Y is Q-regular.

Apply Lemma 3.2.1 with the following substitutions: “W”:= E⇥X1⇥ · · ·⇥X`,
“L”:= Y ⇥ {0}, “f”:= e� ⇥ e' and “U” equal to some open neighborhood U 0 of S
in R

s+1 relatively compact in U , obtaining a Q-nonsingular Q-algebraic subset Z
of Rs+1 ⇥ R

k, for some integer k, an open subset Z0 of Z and a Q-regular map
⌘ : Z ! E ⇥ X1 ⇥ · · · ⇥ X` such that, if ⇡ : Rs+1 ⇥ R

k ! R
s+1 is the natural

projection and ◆ : U 0 ,! R
s+1 ⇥ R

k is the inclusion map, the following conditions
hold:

(v) Y ⇥ {0} ⇥ {0} ⇢ Z0, ⇡(Z0) = U 0, the restriction ⇡|Z0 : Z0 ! U 0 is
a C1 di↵eomorphism, and the C1 map � : U 0 ! R

s+1+k, defined by
�(x, xs+1) := (⇡|Z0)

�1(x, xs+1) for all (x, xs+1) 2 U 0, is arbitrarily C1
w

close to ◆.
(vi) ⌘(x, xs+1, 0) = (e� ⇥ e')(x, xs+1) for all (x, xs+1) 2 Y ⇥ {0}.
(vii) The C1 map b⌘ : U 0 ! E ⇥ X1 ⇥ · · · ⇥ X`, defined by b⌘(x, xs+1) :=

⌘(�(x, xs+1)), is arbitrarily C1
w close to (e� ⇥ e')|U 0 .

Choose an open neighborhood U 00 of S in R
s+1 such that U 00 ⇢ U 0. Set Z1 :=

(⇡|Z0)
�1(U 00). Since e�⇥e' is transverse to (G⇥{0})⇥X1⇥· · ·⇥X` in E⇥X1⇥· · ·⇥X`,

by (v), (vi), (vii) and [BCR98, Theorem 14.1.1], we have that S0 := b⌘�1((G⇥{0})⇥
X1 ⇥ · · ·⇥X`) is a compact C1 submanifold of U 00 containing Y ⇥ {0}⇥ {0} and
there exists a C1 di↵eomorphism  1 : U 00 ! U 00 arbitrarily C1

w close to idU 00 such
that  1(S) = S0 and  = idU 00 on Y ⇥ {0} ⇥ {0}. Moreover, Lemma 2.1.5 ensures
that S00 := ⌘�1((G⇥{0})⇥X1⇥ · · ·⇥X`) ⇢ R

s+1+k is a Q-nonsingular Q-algebraic
set of dimension d + 1. In addition, the C1 embedding  2 : S ! R

s+1+k defined
by  (x, xs+1) := (⇡|Z1)

�1( 1(x, xs+1)), is arbitrarily C1
w close to the inclusion map

jS : S ,! R
s+1+k,  2 = jS on Y ⇥ {0} and  2(S) = S00

1 . Note that the set S
00
1 is both
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compact and open in S00; thus, S00
1 is the union of some connected components of S00

and S00
2 := S00 \S00

1 is a closed subset of Rs+1+k (recall that an algebraic set, as S00 is,
only has finitely many connected components). Since  2 is arbitrarily C1

w close to
jS , the coordinate hyperplane {xs+1 = 0} of Rs+1+k is transverse to S00

1 in R
s+1+k,

S00
1 \ {xs+1 = 0} = M 0 t (Y ⇥ {0}⇥ {0}) for some compact C1 submanifold M 0 of

R
s+1+k and there exists a C1 embedding  3 : M ! R

s+1+k arbitrarily C1
w close to

the inclusion map jM : M ,! R
s+1+k such that M 0 =  3(M).

Let K be a compact neighborhood of S00
1 in R

s+1+k such that K \ S00
2 = ? and

let ⇡s+1 : Rs+1+k = R
s⇥R⇥R

k ! R be the projection ⇡s+1(x, xs+1, y) := xs+1. By
Lemma 2.1.7(i)(iv), the algebraic set Y ⇥{0}⇥{0} ⇢ R

s+1+k is projectively Q-closed.
Let q 2 Q[x1, . . . , xs+1+k] be an overt polynomial such that ZR(q) = Y ⇥ {0}⇥ {0}.
Since q is a proper function, replacing q with Cq2 for some rational number C > 0
if necessary, we can assume that q 2 Q[x1, . . . , xs+1+k] is overt, ZR(q) = Y ⇥
{0} ⇥ {0}, q � 0 on R

s+1+k and q � 2 on R
s+1+k \ K. Let K 0 be a compact

neighborhood of S00
1 in intRs+1+k(K). Using a C1 partition of unity subordinated to

{intRs+1+k(K),Rs+1+k \K 0}, we can define a C1 function h : Rs+1+k ! R such that
h = ⇡s+1 on K 0 and h = q on R

s+1+k \K. Apply Lemma 3.1.9 to h� q, obtaining
a Q-regular function u0 : Rs+1+k ! R with the following properties:

(viii) There exist e 2 N and a polynomial p 2 Q[x1, . . . , xs+1+k] of degree  2e
such that u0(x) = p(x)(1 + |x|2s+t)

�e for all x 2 R
s+1+k.

(ix) Y ⇥ {0}⇥ {0} ⇢ ZR(u0).
(x) supx2Rs+1+k |h(x)� q(x)� u0(x)| < 1.
(xi) u0 is arbitrarily C1

w close to ⇡s+1 � q on intRs+1+k(K 0).

Let u : R
s+1+k ! R be the Q-regular map given by u := u0 + q, and let

v 2 Q[x], with x = (x1, . . . , xs+1+k), be the polynomial v(x) := q(x)(1+ |x|2
s+1+k

)e+
p(x). Combining (viii) with the fact that q 2 Q[x] is non-constant and overt, we
immediately deduce that u(x) = (1 + |x|2

s+1+k
)�ev(x) and v 2 Q[x] is overt. By

(ix), (x) & (xi), we know that Y ⇥ {0} ⇥ {0} ⇢ ZR(u), u > 1 on R
s+1+k \ K and

u is arbitrarily C1
w close to ⇡s+1 on intRs+1+k(K 0). In particular, 0 is a regular

value of the restriction u|S00
1
of u to S00

1 , S
00
1 \ ZR(u) = M 00 t X for some compact

C1 submanifold M 00 of R
s+1+k and there exists a C1 embedding  4 : M 0 !

R
s+1+k arbitrarily C1

w close to the inclusion map jM 0 : M 0 ,! R
s+1+k such that

M 00 =  4(M 0). Since M 00 tX = S00 \ ZR(u), Lemma 2.1.5 ensures that M 00 tX ⇢
R
s+1+k is a Q-nonsingular Q-algebraic set. On the other hand, we also have that

M 00 tX = S00 \ZR(u) = S00 \ZR(v); thus, Lemma 2.1.7(ii) implies that M 00 tX is
projectively Q-closed. In addition, by Lemma 1.6.14 we deduce that M 00 ⇢ R

s+1+k

is a projectively Q-closed Q-nonsingular Q-algebraic set. Consider the embedding
 : M ! R

s+1+k defined as  :=  4 �  3. Then,  is arbitrarily C1
w close to jM ,

 (M) = M 00 and consider the C1 submanifolds  (Mi), for every i 2 {1, . . . , `}, of
M 00 in general position.

Consider ⇡i : E ⇥ X1 ⇥ · · · ⇥ X` ! Xi the projection on the i-th component
of X1 ⇥ · · · ⇥ X`, thus ⇡i � (e� ⇥ e') = 'i � e⇢. Let X 0

i
:= Xi ⇥ {0} ⇥ {0} ⇢ Xi,

for every i 2 {1, . . . , `}. By (vii), we know that ⇡i � b⌘ is arbitrarily C1
w close

to 'i � e⇢, thus ⇡i � b⌘ is transverse to X 0
i
in Xi for every i 2 {1, . . . , `}. By (v),

(vi), (vii) and [BCR98, Theorem 14.1.1], we have that S0
i
:= b⌘�1((G ⇥ {0}) ⇥

X1 ⇥ · · · ⇥ X 0
i
⇥ · · · ⇥ X`) = S0 \ (⇡i � b⌘)�1(X 0

i
) is a compact C1 submanifold
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of S ⇢ U 00 containing Yi ⇥ {0} ⇥ {0} and there exists a C1 di↵eomorphism  i

1 :
U 00 ! U 00 arbitrarily C1

w close to idU 00 such that  i

1(Si) = S0
i
and  i

1 = idU 00

on Yi ⇥ {0} ⇥ {0}. Moreover, by (v), Lemma 2.1.5 ensures that S00
i
:= ⌘�1((G ⇥

{0}) ⇥X1 ⇥ · · · ⇥X 0
i
⇥ · · · ⇥X`) = S00 \ (⇡i � ⌘)�1(X 0

i
) ⇢ R

s+1+k is a Q-algebraic
set such that S00

1 := S00 \ Z1 = (⇡|Z1)
�1(S0) ⇢ RegR|Q(S00) In addition, the C1

embedding  i

2 : Si ! R
s+1+k defined by  i

2(x, xs+1) := (⇡|Z1)
�1( i

1(x, xs+1)), is
arbitrarily C1

w close to the inclusion map jSi : Si ,! R
s+1+k,  i

2 = jSi on Yi ⇥ {0}
and  i

2(Si) = S00
i1. Note that the set S00

i1 is both compact and open in S00
i
; thus,

S00
i1 is the union of some connected components of S00

i
and S00

i2 := S00
i
\ S00

i1 is a
closed subset of R

s+1+k. Since  i

2 is arbitrarily C1
w close to jSi , the coordinate

hyperplane {xs+1 = 0} of Rs+1+k is transverse to S00
i1 in R

s+1+k, S00
i1 \ {xs+1 = 0} =

M 0
i
t (Yi ⇥ {0} ⇥ {0}) for some compact C1 submanifold M 0

i
of Rs+1+k and there

exists a C1 embedding  i

3 : Mi ! R
s+1+k arbitrarily C1

w close to the inclusion
map jMi : Mi ,! R

s+1+k such that M 0
i
=  i

3(Mi). Observe that, by construction
M 0

i
⇢ M 0, for every i 2 {1, . . . , `}, are in general position. Define M 00

i
:= M 00\S00

i
, for

every i 2 {1, . . . , `}. By (ix), (x) & (xi), we deduce that M 00
i
, for every i 2 {1, . . . , `},

are Q-nonsingular Q-algebraic subsets of M 00 in general position and there exists
a C1 embedding  i

4 : Mi ! R
s+1+k arbitrarily C1

w close to the inclusion map
jM 0

i
: M 0

i
,! R

s+1+k such that M 00
i
=  i

4(M
0
i
), for every i 2 {1, . . . , `}. Consider

the embeddings  i : Mi ! R
s+1+k defined as  i :=  i

3 �  i

4. Then,  i is C1
w close

to jMi and  (Mi) = M 00
i
, for every i 2 {1, . . . , `}. As a consequence,  i � ( |)�1| :

 (Mi) ! M 00
i
⇢ M 00 is a C1

w di↵eomorphism C1
w close to j (Mi) :  (Mi) ,! R

s+1+k,
for every i 2 {1, . . . , `}. Thus, [AK81b, Lemma 2.9] ensures the existence of a C1

di↵eomorphism  5 : M 00 ! M 00 such that  5( (Mi)) = M 00
i
and  5 is C1

w close to
jM 0 : M 0 ,! R

s+1+k.

Hence, by setting “M 0” := M 00 and “M 0
i
” := M 00

i
, for every i 2 {1, . . . , `},

and the C1 di↵eomorphism h : M ! M 0 as “h” :=  5 �  4 �  3 we get the
wondered projectively Q-closed Q-nonsingular Q-algebraic model M 0 ⇢ R

s+1+k of
M with Q-nonsingular Q-algebraic subsets {M 0

i
}`
i=1 in general position such that

there exists a C1 di↵eomorphism h : M ! M 0 satisfying h(Mi) = M 0
i
, for every

i 2 {1, . . . , `}, | � h 2 U and | � h|Mi 2 Ui, for every i 2 {1, . . . , `}, where | :
M 0 ,! R

s+1+k denotes the inclusion map. Finally, applying Q-generic projection
(see Lemma 2.1.8) we may suppose that the projectively Q-closed Q-nonsingular
Q-algebraic sets M 0,M 0

1, . . . ,M
0
`
⇢ R

m, with m := max(n, 2d+ 1).

Assume in addition that M and each Mi are Nash manifolds, for every i 2
{1, . . . , `}. By Theorem 4.1.2 we can assume that h : M ! M 0 is a Nash di↵eo-
morphism such that h(Mi) = M 0

i
, for every i 2 {1, . . . , `}. Moreover, an application

of [Jel09] provides a semi-algebraic homeomorphism R
m ! R

m extending h, as
desired. ⇤

Remark 4.1.5. In the statement of Theorem 4.1.4 we can add the following
requirement: “ M 0 ⇢ R

m contains an hypersurface of rational points, that is,
dim(ZclRm(M 0(Q))) � d� 1”.

Indeed, up to perform a small translation and rotation we may suppose that
there is a 2 (M \

S
`

i=1Mi)\Q
n and the tangent space TaM of M at a has equation

over the rationals. Then, consider a sphere S
n�1(a, r)(a, r) centred at a of radius

r 2 Q such that S
n�1(a, r) \

S
`

i=1Mi = ?. Observe that S
n�1(a, r) \ TaM is a
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Q-nonsingular Q-algebraic set of dimension d � 1 having Zariski dense (actually
Euclidean dense) rational points. Choose neighborhoods U 0

a and Ua of a in M such
that Sn�1(a, r)\TaM ⇢ U 0

a and U 0
a ⇢ Ua and neighborhoods V and V 0 of

S
`

i=1Mi in
M such that V 0 ⇢ V . By a partition of unity argument, we may find a C1 manifold
fM ⇢ R

n such that:

(i) M`+1 := S
n�1(a, r) \ TaM ⇢ fM and {Mi}`+1

i=1 are C1 submanifolds of fM
in general position.

(ii) S
n�1(a, r) \ TaM ⇢ fM(Q), thus dim(ZclRm(fM(Q))) � d� 1.

(iii) We may choose fM to be di↵eomorphic to M , in addition, by [AK81b,

Lemma 2.9], there exists a di↵eomorphism e� : M ! fM such that e�|Mi =

idMi , for every i 2 {1, . . . , `}, and |fM � e� is arbitrarily C1
w close to |M ,

where |M : M ,! R
n and |fM : fM ,! R

n denote the inclusion maps.
(iv) Suppose that in addition M,M1, . . . ,M` ⇢ R

n are Nash manifolds. By

Theorem 4.1.2, we may suppose that above di↵eomorphism e� : M ! fM
is actually a Nash di↵eomorphism such that e�|Mi = idMi and |fM � e� is
arbitrarily Nw close to |M .

Then, it su�ces to substitute “M” := fM , “`” := `+1 and fix “M`+1” := S
n�1(a, r)\

TaM in the proof of Theorem 4.1.4 and observe that, being M`+1 a Q-nonsingular
Q-algebraic subset of Rn contained in M such that M`+1 \

S
`

i=1Mi = ? and the
Gauss mapping of M restricted to M`+1 is Q-regular, we can keep M`+1 fixed during
the approximation steps. This ensures that M`+1 = S

n�1(a, r)\TaM ⇢ M 0(Q), thus
dim(ZclRm(M 0(Q))) � d� 1, as desired. ⌅

4.1.3. The non-compact case. The relative Nash-Tognoli theorem ‘over Q’,
namely above Theorem 4.1.4, can be extended also to the non-compact case when
M ⇢ R

n and each Mi ⇢ R
n are nonsingular algebraic sets. The strategy is to

apply algebraic compactification getting a compact algebraic set with (eventually)
only one isolated singularity, apply Hironaka’s desingularization theorem, apply our
approximation results ‘over Q’ of Chapter 3 and our blowing down lemma ‘over Q’,
namely Lemma 3.3.3. Hence, next theorem provides a complete positive answer to
the Relative Q-algebrization problem for nonsingular algebraic sets.

Theorem 4.1.6. Let V be a nonsingular algebraic subset of Rn of dimension d
and let {Vi}`i=1 be a finite family of nonsingular algebraic subsets of V in general
position. Set m := n + 2d + 3. Then, for every neighborhood U of the inclusion
map ◆ : V ,! R

m in Nw(V,Rm) and for every neighborhood Ui of the inclusion map
◆|Vi : Vi ,! R

m in Nw(Vi,Rm) for every i 2 {1, . . . , `}, there exist a Q-nonsingular
Q-algebraic set V 0 ⇢ R

m, a family {V 0
i
}`
i=1 of Q-nonsingular Q-algebraic subsets of

V 0 in general position and a Nash di↵eomorphism h : V ! V 0 which simultaneously
takes each Vi to V 0

i
such that, if | : V 0 ,! R

m denotes the inclusion map, then
| � h 2 U and | � h|Mi 2 Ui for every i 2 {1, . . . , `}. Moreover, h extends to a
semialgebraic homeomorphism from R

m to R
m.

Proof. Let ci be the codimension of Mi in M for every i 2 {1, . . . , `}. We
can assume V is noncompact. If V = R

n, then it su�ces to identify V with the
algebraic set V ⇥ {0} ⇢ R

n+1 = R
n ⇥ R and next proof continues to work with the

same estimate m = n+2d+3. Up to translate V and each Vi with i 2 {1, . . . , `}, of a



104 CHAPTER 4. Q-ALGEBRIZATION RESULTS

very small vector we may suppose that the origin 0 of Rn is not contained in V . Let
s, s1, . . . , s` 2 R[x] such that ZR(s) = V and ZR(si) = Vi, for every i 2 {1, . . . , `}.
Let S

n�1 be the standard unit sphere of Rn and let ✓ : Rn \ {0} ! R
n \ {0} as

✓(x) = x

|x|2n
be the inversion with respect to S

n�1. Recall that ✓ � ✓ = idRn\{0}.

Let e � max{deg(s), deg(s1), . . . , deg(s`)}. Define the polynomials t := |x|2en · (s �
✓)(x) 2 R[x], ti := |x|2en (si � ✓(x)) 2 R[x], the compact algebraic sets eV := ZR(t)
and eVi := ZR(ti), for every i 2 {1, . . . , `}. By construction, eV = ✓(V ) t {0},
eVi = ✓(V )i t {0}, for every i 2 {1, . . . , `}, and ✓ : V ! eV \ {0} is a Q-biregular map
between the algebraic set V and the Zariski open subset eV \ {0} of eV . In general, 0
may be a singular point of eV and eVi for i 2 {1, . . . , `}.

By a relative version of Hironaka’s desingularization theorem (see [AK92, Lemma
6.2.3]) there are a finite set J ⇢ N \ {1, . . . , `}, nonsingular algebraic sets X, Xi and
Ej , for every i 2 {1, . . . , `} and j 2 J , and a regular map p : X ! eV satisfying the
following properties:

(i) Ej is an algebraic hypersurface of X for every j 2 J and
S

j2J Ej = p�1(0);

(ii) the nonsingular algebraic sets {Xi}`i=1 t {Ej}j2J are in general position;

(iii) p|X\
S

j2J Ej
: X \

S
j2J Ej ! eV is biregular.

(iv) p(Xi) = Vi for every i 2 {1, . . . , `}.

An application of Theorem 4.1.4 with the following substitutions: “M”:= X, “`”:=
` + |J |,“Mi”:= Xi for every i 2 {1, . . . , `}, “Mj”:= Ej for every j 2 J , gives a
projectively Q-closed Q-nonsingular Q-algebraic set X 0 ⇢ R

2d+1 of dimension d, Q-
nonsingular Q-algebraic subsets X 0

i
for i 2 {1, . . . , `}, and Q-nonsingular Q-algebraic

hypersurfaces E0
j
, for j 2 J , of X 0 in general position and a Nash di↵eomorphism

� : X ! X 0 such that �(Xi) = X 0
i
for every i 2 {1, . . . , `}, and �(Ej) = E0

j
, for

every j 2 J .

Consider the Nash map p0 := p � ��1 : X 0 ! eV such that (p0)�1(0) =
S
`

j2J E
0
i
.

By Lemma 3.1.6,
S
`

j2J E
0
i
⇢ R

2d+1 is Q-nice, thus we can apply Lemma 3.1.8 with

“L” = “P” :=
S

j2J E
0
j
to each entry of any smooth extension R

2d+1 ! R
n of

p0 : X 0 ! R
n getting a polynomial map q := (q1, . . . , qn) : R2d+1 ! R

n such that
q|X0 is arbitrarily Nw close to p0 and qi 2 IQ(

S
j2J E

0
j
).

Finally, an application of Lemma 3.3.3 with the following substitutions: “X”:=
X 0, “Y ”:= {0}, “A”:=

S
j2J E

0
j
, “p”:= q|S

j2J E
0
j
and “P”:= q gives a Q-determined

Q-algebraic set eV 0 ⇢ R
2d+1 ⇥ R

n ⇥ R of dimension d with (eventually) only an
isolated singularity at the origin 0 of R2d+1 ⇥ R

n ⇥ R, such that eV 0
i
:= f(eVi) [ {0},

for every i 2 {1, . . . , `}, is a Q-determined Q-algebraic subset of eV 0 of codimension
ci with (eventually) only an isolated singularity at the origin 0 of R2d+1 ⇥ R

n ⇥ R,

where f : X 00 ! fV 0 denotes the Q-regular map of Lemma 3.3.3, and a semialgebraic
homeomorphism eh : eV ! eV 0 defined as:

eh(x) =
(
0 if x = 0 2 R

n,

f � � � p�1(x) otherwise.
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Let m0 := 2(d + 1) + n. Observe that eh|eV \{0} : eV \ {0} ! eV 0 \ {0} is a Nash

di↵eomorphism and eh|eVi
: eVi ! eV 0

i
is a semialgebraic homeomorphism satisfying the

following approximation properties:

(iv) eh is arbitrarily C 0
w close to ◆eV and eh|V \{0} is arbitrarily C1

w close to ◆eV |eV \{0},

(v) eheVi
is arbitrarily C 0

w close to ◆eV |eVi
and eheVi\{0} is arbitrarily C1

w close to

◆eV |eVi\{0},

where ◆eV : eV ,! R
m

0
denotes the inclusion map.

Let t0, t01, . . . , t
0
`
2 Q[x1, . . . , xm0 ] such that ZR(t0) = fV 0 and ZR(t0i) = fV 0

i
for

every i 2 {1, . . . , `}. Let S
m�1 be the standard unit sphere of R

m
0
and let ✓0 :

R
m

0 \ {0} ! R
m

0 \ {0} as ✓0(x) = x

|x|2
m0

be the inversion with respect to S
m

0�1.

Recall that ✓0 � ✓0 = id
Rm0\{0}. Let e0 > max{deg(t0), deg(t01), . . . , deg(t0`)}. Define

the polynomials s0 := |x|2e0
m0 · (t0 � ✓0)(x) 2 Q[x], s0

i
:= |x|2e0

Rm0 (t0i � ✓0)(x) 2 Q[x],
the algebraic sets V 0 := ZR(s0) and Vi := ZR(s0i), for every i 2 {1, . . . , `}. By
construction,

V 0 = ✓0(eV 0 \ {0}) [ {0} and V 0
i = ✓0(eV 0

i \ {0}) [ {0},

for every i 2 {1, . . . , `}, and ✓0 : eV 0 \ {0} ! V 0 [ {0} is a Q-biregular map between
Zariski open subsets of Q-algebraic sets. Moreover, ✓0(eV 0

i
\ {0}) = V 0

i
[ {0} for every

i 2 {1, . . . , `}. Observe that, by construction, the Q-nonsingular Q-algebraic sets
{V 0

i
}`
i=1 are in general position. Let C 2 Q \ {0} and define the Q-algebraic sets

V 00 :=
n
(x, y) 2 R

m
0 ⇥ R

��� y
m

0X

k=1

x2
k
= C, s0(x) = 0

o
,

V 00
i :=

n
(x, y) 2 R

m
0 ⇥ R

��� y
m

0X

k=1

x2
k
= C, s0i(x) = 0

o

for every i 2 {1, . . . , `}. By construction, V 00 and V 00
i

are Q-nonsingular Q-algebraic
sets, for every i 2 {1, . . . , `}, V 0 \ {0} and V 00 are Q-biregularly isomorphic via
projection ⇡ : Rm

0 ⇥ R ! R
m

0
, ⇡|V 00

i
: V 00

i
! V 0

i
\ {0}, for every i 2 {1, . . . , `}, and

the Q-nonsingular Q-algebraic sets {V 00
i
}`
i=1 are in general position.

Define the Nash di↵eomorphism h : V ! V 00 as

h := (⇡|V 00)�1 � ✓0|eV 0\{0} � eh|eV \{0} � ✓|V .

Let m := m0 + 1 = 2d + n + 3. If we fix C 2 Q \ {0} be su�ciently small, by
(iv), (v) and the choice of eh as above, we deduce that h|Vi : Vi ! V 00

i
is a Nash

di↵eomorphism, |V 00 � h is C1
w close to the inclusion ◆V : V ,! R

m and h|Vi is C1
w

close to the inclusion map ◆Vi : Vi ,! R
m, where |V 0 : V 0 ,! R

m denotes the inclusion
map. Moreover, an application of [Jel09] provides a semialgebraic homeomorphism
R
m ! R

m extending h, as desired. ⇤
Remark 4.1.7. In the statement of Theorem 4.1.6 we can add the follow-

ing requirement: “ V 0 ⇢ R
m contains an hypersurface of rational points, that is,

dim(ZclRm(V 0(Q))) � d� 1”.
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By Remark 4.1.5 we may suppose that X 0 ⇢ R
2d+1 in the proof of Theorem 4.1.6

is such that dim(ZclR2d+1(X 0(Q))) � n�1. In addition, since Q-biregular maps send

rational points to rational points, as f |X0\(
S

j2J E
0
j)
: X 0 \ (

S
j2J E

0
j
) ! fV 0 \ {0} and

✓0 : Rm \ {0} ! R
m \ {0} are, we get that dim(ZclR2d+1(X 0(Q) \ (

S
j2J E

0
j
))) � d� 1

and (✓0 � f)(X 0(Q) \ (
S

j2J E
0
j
)) = V 0(Q), hence, being both f and ✓0 biregular,

dim(ZclRm(V 0(Q))) � d� 1, as desired. ⌅

4.2. Q-Algebrization of Nash manifolds over real closed fields

Throughout this section R denotes a real closed field. Let us generalize the
concept of semialgebraic and Nash sets and functions over R. Our main result is the
Q-algebrization theorem for Nash manifolds M ⇢ Rn improving [CS92, Corollary
3.9].

A subset S of Rn is semialgebraic if it is a Boolean combination of subsets of Rn

defined by polynomial equations and polynomial strict inequalities. Observe that,
by quantifier elimination of the theory of real closed fields (see [BCR98, Theorem
1.4.2 & Proposition 5.2.2]), S ⇢ Ra is semialgebraic if and only if it is described by
a first-order formula in the language of ordered fields. A locally closed semialgebraic
set M ⇢ Rn is called (a�ne) Nash manifold if it is also a C1 submanifold of Rn.
Let M ⇢ Rn be a Nash manifold, let X ⇢ M be a (non-empty) semialgebraic subset
of Rn contained in M , and let Y ⇢ Rm be a (non-empty) semialgebraic set. Let
⌫ 2 N

⇤ [ {1} and let f : X ! Y be a map. We say that f is a C ⌫ map if there
exist an open (not necessarily semialgebraic) neighborhood U of X in M and a map
F : U ! Rm such that F is of class C ⌫ in the usual sense of C1 (and hence C ⌫)
manifolds and F (x) = f(x) for all x 2 X. We denote C ⌫(X,Y ) the set of C ⌫

maps from X to Y . The map f : X ! Y is called semialgebraic if its graph is a
semialgebraic subset of Rn+m = R

n⇥R
m. The map f : X ! Y is said to be a Nash

map if there exist an open semialgebraic neighborhood U of X in M and a C1 map
F : U ! R

m such that F is semialgebraic and F (x) = f(x) for all x 2 X. The map
f : X ! Y is said to be a Nash di↵eomorphism if f is a bijective Nash map and
f�1 is a Nash map too.

Let R2|R1 be a field extension such that both R1 and R2 are real closed fields.
We present a version of Definition 1.1.18 in the case of semialgebraic sets.

Definition 4.2.1. Let S ⇢ Rn

1 be an algebraic set and let � be a first-order
formula in the language of ordered fields (with coe�cients in R1) such that S =
{x 2 Rn

1 |�(x)}. We say that SR2 := {x 2 Rn

2 |�(x)} is the extension of coe�cients
of S to R2. ⌅

Observe that, by model completeness of the theory of real closed fields, the
semialgebraic set SR2 ⇢ Rn

2 in Definition 4.2.1 only depends on S ⇢ Rn

1 , so the
definition is well posed. For more details about extension of coe�cients and model
theoretical properties of the theory of real closed fields we refer to [BCR98, §5].

Let us introduce the main result of this section.

Theorem 4.2.2. Let M ⇢ Rn be a Nash manifold of dimension d. Then, there
exists a Q-nonsingular Q-algebraic set M 0 ⇢ Rm and a Nash di↵eomorphism h :
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M ! M 0, for some m 2 N with m � n. In particular, M 0 ⇢ Rm can be chosen in
such a way that dim(ZclRm(M 0(Q))) � d� 1.

Proof. Denote by Q
r
the real closure of Q. By [CS92, Corollary 3.3], there

exists a nonsingular algebraic set X ⇢ (Q
r
)n

0
and a Nash di↵eomorphism h0 : M !

XR, for some n0 2 N with n0 � n. Consider XR ⇢ R
n
0
as a Q

r
-algebraic set

(actually XR ⇢ R
n
0
is defined over Q

r
by Proposition1.1.19(ii)). An application of

Theorem 4.1.4 ensures the existence of a Q-algebraic set X 0 ⇢ (Q
r
)m and a Nash

di↵eomorphism ' : XR ! X 0
R
such that X 0

R
⇢ R

m is a Q-nonsingular Q-algebraic
set, for some m 2 N with m � n0. Moreover, the Nash di↵eomorphism ' : XR ! X 0

R

can be approximated by a Nash di↵eomorphism described by a first order formula
with coe�cients in Q

r
. Let us prove this assertion. The normal bundle of X 0

R
in

R
m is the extension over R of the normal bundle of X 0 in (Q

r
)m, thus it is a Nash

submanifold of Rm defined by a first order formula with coe�cients in Q
r
whose

retraction on X 0
R
is a Nash map defined by a first order formula with coe�cients

in Q
r
as well. Hence, it su�ces to approximate by Weierstrass approximation the

di↵eomorphism ' with a polynomial map whose coe�cients lie over Q
r
and compose

it with the retraction. Thus, the resulting Nash di↵eomorphism  R : XR ! X 0
R
is

the extension over R of a Nash di↵eomorphism  : X ! X 0.

Let IQ(X 0
R
) = (q1, . . . , qs) ⇢ Q[x]. Observe that the property of the Q-algebraic

set X 0
R
⇢ R

m of being Q-nonsingular can be expressed by a first-order sentence with
coe�cients over Q corresponding to the following assertion: “For every a 2 X 0

R
the

rank of the Jacobian matrix JQ(a) of Q := (q1, . . . , qs) : Rm ! R
s at a is m�d (with

d = dimR(M) = dimR(XR)) and there are qi1,a, . . . , qim�d,a polynomials among the
q0
i
s such that

ZRm(qi1,a, . . . , qim�d,a) \ U = VR \ U,

where U = R
m \ {y 2 R

m | dim(J(qi1,x,...,qim�d,x
)(y) < m� d)}”.

Since above first-order sentence can be expressed with coe�cients over Q (i.e.
without coe�cients), X 0 ⇢ (Q

r
)m is a Q-nonsingular Q-algebraic set by model com-

pleteness of the theory of real closed fields. Again, by model completeness of the
theory of real closed fields, we get that  R : XR ! X 0

R
is a Nash di↵eomorphism

and X 0
R
⇢ Rm is a Q-nonsingular Q-algebraic set. So it su�ces to fix “M 0” := X 0

R

and “h” :=  R � h0. In addition, since the Q-algebraic set X 0
R
⇢ R

m can be chosen
such that dim(ZclRm(X 0

R
(Q))) � d � 1 and X 0

R
(Q) = X 0(Q) = X 0

R
(Q), Proposition

1.1.19(iv) ensures that

dimR(ZclRm(M 0(Q))) = dimR(ZclRm(X 0
R(Q))) = dim

Q
r(Zcl(Qr

)m(X
0(Q)))

= dimR(ZclRm(X 0
R
(Q))) � d� 1,

as desired. ⇤

4.3. Global Q-algebrization of isolated singularities

This section is devoted to provide a complete positive answer to [Par21, Open
problem 1, p. 199] in the case of algebraic sets V ⇢ R

n with isolated singularities.
First we deal with the compact case and then we extend the proof to the general
one. Let us start by proving some preparatory results.
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4.3.1. Small Lagrange-type interpolations. In this subsection we prove a
technical result which will allow us to apply our blowing down lemma ‘over Q’,
namely Lemma 3.3.3, in the case of algebraic sets with isolated singularities in
Subsection 4.3.2.

Let � 2 N
⇤ and let c = (c1, . . . , c�) 2 R

� be such that cj 6= cj0 for all
j, j0 2 {1, . . . ,�} with j 6= j0. We denote Lc,1, . . . ,Lc,� 2 R[x] the Lagrange ba-
sis polynomials associated to c, i.e.,

Lc,j(x) :=
Y

s2{1,...,�}\{j}

✓
x� cs
cj � cs

◆
. (4.3.1)

If d = (d1, . . . , d�) 2 R
� , then

P
�

j=1 djLc,j is the Lagrange interpolation polynomial
associated to c and d. This polynomial coincides with the unique polynomial L 2
R[x] of degree < � such that L(cj) = dj for all j 2 {1, . . . ,�}. Furthermore, if each
dj is su�ciently small then L is arbitrarily C1 small on compact subsets of R. We
need a variant of this result in which we permit that the interpolating function L is
regular (not only polynomial), it vanishes on a finite set disjoint from {c1, . . . , c�}
and its smallness is also controlled at infinity. The mentioned variant is as follows.

Proposition 4.3.1. Let A be a finite subset of R, let � 2 N
⇤ and let b1, . . . , b� 2

R be real numbers such that bj 6= bj0 for all j, j0 2 {1, . . . ,�} with j 6= j0, and
A \ {b1, . . . , b�} = ?. Let k,m 2 N and let ✏ 2 R

+. Then there exists � 2 R
+ with

the following property: for each c = (c1, . . . , c�) 2 R
� such that |bj � cj | < � for all

j 2 {1, . . . ,�}, there exists a regular function Lc : R ! R such that:

(a) Lc(a) = 0 for all a 2 A.
(b) Lc(cj) = bj � cj for all j 2 {1, . . . ,�}.
(c) |DhLc(x)| < ✏(1 + x2)�k for all h 2 {0, . . . ,m} and for all x 2 R, where

Dh denotes the hth derivative operator.

Proof. Let us assume that A 6= ?. If A = ?, the proof we present below
(suitably simplified) continues to work. Let a1, . . . , a↵ be the elements of A. Choose
a natural number ` such that

↵+ � � 1� 2`  �2k

and define:

�1 :=
1
3 mini,j2{1,...,�},i 6=j |bi � bj | > 0,

�2 :=
1
2 mini2{1,...,↵},j2{1,...,�} |ai � bj | > 0,

�3 := min{�1, �2} > 0,

K :=
S
�

j=1[bj � �3, bj + �3],

H :=
Q
�

j=1[bj � �3, bj + �3],

p(x) :=
Q
↵

i=1(x� ai) 2 R[x].

Note that dist(A,K) � 2�2 � �3 � �2 > 0; thus, p never vanishes on the compact
subset K of R and hence M := maxx2K |p(x)|�1(1 + x2)` is finite (and positive). It
follows that

|p(x)|�1(1 + x2)`  M for all x 2 K. (4.3.2)
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For each j 2 {1, . . . ,�} and w 2 {1, . . . ,↵+��1}, let qj,w(y) 2 R[y] = R[y1, . . . , y� ]
be the (unique) polynomials such that

p(x)
Q

s2{1,...,�}\{j}(x� ys) =
P

↵+��1
w=0 qj,w(y)xw (4.3.3)

for all (x, y) 2 R ⇥ R
� . Note that, for each j, j0 2 {1, . . . ,�} with j 6= j0, the

intervals [bj � �3, bj + �3] and [bj0 � �3, bj0 + �3] are disjoint; indeed, their distance is
� 3�1 � 2�3 � �1 > 0. As a consequence,

Nj,w := max(y1,...,yn)2H
��qj,w(y)

Q
s2{1,...,�}\{j}(yj � ys)�1

��

is finite (and positive) for all j 2 {1, . . . ,�} and w 2 {1, . . . ,↵+ � � 1}. Set
N := maxj2{1,...,�},w2{1,...,↵+��1}Nj,w > 0.

It follows that ��qj,w(y)
Q

s2{1,...,�}\{j}(yj � ys)�1
��  N (4.3.4)

for all j 2 {1, . . . ,�}, w 2 {1, . . . ,↵+��1} and y 2 H. Given w 2 {1, . . . ,↵+��1},
let gw : R ! R be the C1 function defined by gw(x) := xw(1+x2)�`. By elementary
considerations from calculus, for each h 2 {0, . . . ,m}, there exists a constant Lw,h >
0 such that |Dhgw(x)|  Lw,h(1 + x2)(w�2`�h)/2 for all x 2 R. Set

L := maxw2{1,...,↵+��1},h2{0,...,m} Lw,h > 0.

Since ↵+ � � 1� 2`  �2k, we have that

|Dhgw(x)|  Lw,h(1 + x2)(w�2`�h)/2  L(1 + x2)(↵+��1�2`)/2  L(1 + x2)�k

for all x 2 R. It follows that

|Dhgw(x)|  L(1 + x2)�k (4.3.5)

for all w 2 {1, . . . ,↵+ � � 1}, h 2 {0, . . . ,m} and x 2 R. Set

� := min{�3, (2�(↵+ � � 1)MNL)�1✏} > 0.

Let cj 2 R such that

|bj � cj | < � for each j 2 {1, . . . ,�}. (4.3.6)

Note that

cj 2 K for all j 2 {1, . . . ,�}, and c := (c1, . . . , c�) belongs to H, (4.3.7)

because �  �3. Define the regular function Lc : R ! R by setting

Lc(x) :=
p(x)

(1+x2)`

✓P
�

j=1
(1+c

2
j )

`

p(cj)
(bj � cj)Lc,j(x)

◆
.

Evidently, Lc satisfies items (a) and (b). Let us prove point (c). By (4.3.1) and
(4.3.3), for each x 2 R, we have

Lc(x) =
P

�

j=1(bj � cj)
(1+c

2
j )

`

p(cj)
1Q

s 6=j(cj�cs)
·
⇣
p(x)

Q
s 6=j

(x� cs)
⌘

1
(1+x2)`

=
P

�

j=1

P
↵+��1
w=1 (bj � cj)

(1+c
2
j )

`

p(cj)
qj,w(c)Q

s2{1,...,�}\{j}(cj�cs)
xw(1 + x2)�`.

As a consequence, by (4.3.2), (4.3.4), (4.3.5), (4.3.6) and (4.3.7), it follows that

|DhLc(x)| 
P

�

j=1

P
↵+��1
w=1 �MNL(1 + x2)�k =

= �(↵+ � � 1)MNL�(1 + x2)�k  ✏

2(1 + x2)�k < ✏(1 + x2)�k
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for all h 2 {0, . . . ,m} and for all x 2 R, as desired. ⇤

Let ⌧ be the topology of N(R) = N(R,R) for which a fundamental system of
neighborhoods of f 2 N(R) is given by the sets

Uk,m,✏(f) :=
�
g 2 N(R) |

��Dh(g � f)(x)
�� < ✏

(1+x2)k
, 8h 2 {0, . . . ,m}, x 2 R

 
,

where k,m 2 N and ✏ 2 R
+. Recall thatDh denotes the hth derivative operator. The

topology ⌧ on N(R) coincides with the “C1 topology” on N!(R) = N(R) defined
in [Shi87, §II.1]. Denote N⌧ (R) the set N(R) equipped with the topology ⌧ . Let D
be the subset of N(R) of all Nash di↵eomorphisms from R to R. By [Shi87, Lemma
II.1.7], D is open in N⌧ (R) and the map Inv : D ! D , sending f into f�1, is
continuous with respect to the relative topology induced by ⌧ on D .

Two consequences of Proposition 4.3.1 are as follows.

Corollary 4.3.2. Let A and B be two finite subsets of R such that A ⇢ Q and
B ⇢ R \ Q. Then, for each neighborhood U of idR in N⌧ (R), there exists a Nash
di↵eomorphism ' : R ! R such that ' 2 U , '(a) = a for all a 2 A, '(B) ⇢ Q and
'�1 : R ! R is a regular map.

Proof. If B = ?, then it su�ces to set ' := idR. Suppose that B 6= ?.
Let b1, . . . , b� be the elements of B. Let U be an arbitrary neighborhood of idR in
N⌧ (R). Choose a neighborhood V of idR in N⌧ (R) such that V ⇢ D and Inv(V) ⇢ U .
Shrinking V if necessary, we can assume that there exist k,m 2 N and ✏ 2 R

+ such
that V = Uk,m,✏(idR). Let � 2 R

+ be a positive real number with the properties (a),
(b) and (c) described in Proposition 4.3.1. Choose c = (c1, . . . , c�) 2 Q

� in such
a way that |bj � cj | < � for all j 2 {1, . . . ,�}, and consider the regular function
Lc : R ! R given by the mentioned Proposition 4.3.1. We know that Lc(a) = 0 for
all a 2 A, Lc(cj) = bj � cj for all j 2 {1, . . . ,�} and Lc 2 V . Define the regular
function  : R ! R by setting  := idR + Lc. Note that  (a) = a for all a 2 A and
 (cj) = bj for all j 2 {1, . . . ,�}. Moreover, since V ⇢ D and Inv(V) ⇢ U , we have
that  is a Nash di↵eomorphism such that ' :=  �1 2 U . The Nash di↵eomorphism
' has all the desired properties. ⇤

Corollary 4.3.3. Let n 2 N
⇤, and let A and B be two finite subsets of Rn such

that A ⇢ Q
n and B ⇢ R

n \Qn. Then there exists a Nash di↵eomorphism ' : Rn !
R
n arbitrarily C1

w close to idRn such that '(a) = a for all a 2 A, '(B) ⇢ Q
n and

'�1 : Rn ! R
n is a regular map. More precisely, for each neighborhood U of idRn

in C1
w (Rn,Rn), there exists a Nash di↵eomorphism ' : Rn ! R

n such that ' 2 U ,
'(a) = a for all a 2 A, '(B) ⇢ Q

n and '�1 : Rn ! R
n is a regular map.

Proof. For each i 2 {1, . . . , n}, let ⇡i : Rn ! R be the projection ⇡i(x) := xi,
let Ai := ⇡i(A[B)\Q and let Bi := ⇡i(A[B)\Q. By Corollary 4.3.2, there exists a
Nash di↵eomorphism 'i : R ! R arbitrarily close to idR in N⌧ (R) such that 'i(a) =
a for all a 2 Ai, 'i(Bi) ⇢ Q and '�1

i
is a regular function. Note that ⌧ is finer than

the relative topology induced by C1
w (R) on N(R); thus, we can assume that each

'i is arbitrarily C1
w close to idR. Define the Nash di↵eomorphism ' : Rn ! R

n by
setting '(x1, . . . , xn) := ('1(x1), . . . ,'n(xn)). Note that '(a) = a for all a 2 A and
'(B) ⇢ Q

n. Furthermore, the ith component of ' equals (⇡i)⇤('i) = 'i � ⇡i, where
(⇡i)⇤ : C1

w (R) ! C1
w (Rn) is the pullback map associated to ⇡i. Since each pullback

map (⇡i)⇤ is continuous (with respect to the weak C1 topology, see [Hir94, §2]),
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we can assume that each component of ' is arbitrarily C1
w close to idR, which is

equivalent to assume that ' is arbitrarily C1
w close to idRn . ⇤

4.3.2. The compact case. The aim of this subsection is to provide a proof of
the following Q-algebrization result.

Theorem 4.3.4. Let V ⇢ R
n be a compact algebraic set with isolated singular-

ities. Then there exist an algebraic set V 0 ⇢ R
m with isolated singularities and a

semialgebraic homeomorphism � : V ! V 0 with the following properties:

(i) V 0 ⇢ R
m is a Q-determined Q-algebraic set.

(ii) �(Reg(V )) = Reg(V 0) and �| : Reg(V ) ! Reg(V 0) is a Nash di↵eomor-
phism. In particular, V 0 is Q-nonsingular if V is nonsingular.

More precisely, the following is true. Denote by d the dimension of V and
set m := n + 2d + 3. Choose a neighborhood U of the inclusion map V ,! R

m in
C 0
w(V,R

m), and a neighborhood V of the inclusion map Reg(V ) ,! R
m in Nw(Reg(V ),

R
m). Then there exist an algebraic set V 0 ⇢ R

m with isolated singularities and a
semialgebraic homeomorphism � : V ! V 0 that have both the preceding properties
(i) and (ii) and the following:

(iii) The Zariski closure of V 0(Q) in R
m has dimension at least d� 1.

(iv) � extends to a semialgebraic homeomorphism from R
m to R

m.
(v) � fixes Sing(V ) \ Q

n, that is, �(x) = x for all x 2 Sing(V ) \ Q
n. In

particular, V 0(Q) contains Sing(V ) \Q
n.

(vi) If | : V 0 ,! R
m denotes the inclusion map, then |�� 2 U and (|��)|Reg(V ) 2

V.

Proof. Let Sing(V ) = {a1, . . . , as} with a1, . . . , ar 2 Q
n and ar+1, . . . , as 2

R
n \Qn. By Corollary 4.3.3 for every neighborhood U of idRn in C1

w (Rn,Rn), there
exists a Nash di↵eomorphism ' : Rn ! R

n such that ' 2 U , '(ai) = ai for all
i = 1, . . . , r, '(ai) = bi 2 Q

n for every i = r + 1, . . . , s and '�1 : Rn ! R
n is a

regular map. Then eV := ('�1)�1(V ) ⇢ R
n is an algebraic set such that Sing(eV ) ⇢

{a1, . . . , ar, br+1, . . . , bs} ⇢ Q
n, indeed ' : Rn ! R

n is a Nash di↵eomorphism of
Nash manifolds and '�1 is regular, hence '(Reg(V )) = ('�1)�1(Reg(V )) ⇢ Reg(eV ).
In particular, '|V : V ! eV is a semialgebraic homeomorphism such that '|Reg(V ) :

Reg(V ) ! eV \ {a01, . . . , a0s}, where a0
i
:= ai if i  r or a0

i
= bi otherwise, is a Nash

di↵eomorphism of Nash manifolds and ('|V )�1 = ('�1)|eV is a regular map.

By Hironaka’s resolution theorem and generic projection, there are a compact
nonsingular algebraic set M ⇢ R

2d+1 with nonsingular algebraic hypersurfaces
{Mij}`ij=1 in general position, for i 2 {1, . . . , s}, and a regular map p : M ! eV
such that:

(vii) Ai := p�1(a0
i
) =

S
`i
j=1Mij , for every i 2 {1, . . . , s}.

(viii) Let A :=
S

s

i=1Ai =
S

s

i=1

S
`i
j=1Mij , then p|M\A : M \A ! eV \ {a01, . . . , a0s}

is biregular.

By Theorem 4.1.4 and Lemma 2.1.8 there are a Q-nonsingular Q-algebraic set
M 0 ⇢ R

2d+1, Q-nonsingular Q-algebraic subsets M 0
ij
, for i 2 {1, . . . , s} and j =

{1, . . . , `i}, of M 0 in general position and a Nash di↵eomorphism '0 : M ! M 0
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such that '0(Mij) = M 0
ij

for every i 2 {1, . . . , s} and j = {1, . . . , `i}. Let A0 :=
S

s

i=1Ai =
S

s

i=1

S
`i
j=1M

0
ij
⇢ R

2d+1. By Remark 4.1.5, we may suppose thatM 0\A0 ⇢
R
2d+1 contains a “hypersurface of rational points”, that is, we may suppose that

dim(ZclR2d+1((M 0 \ A0)(Q))) � d � 1. In particular, A0 ⇢ R
2d+1 is a Q-nice Q-

algebraic set by Lemma 3.1.6 and p0 := p � ('0)�1 is a Nash map such that p0|A0 is
Q-regular, since p0|Ai ⌘ a0

i
if i 2 {1, . . . , s}.

Denote by p0 := (p01, . . . , p
0
n) : M 0 ! R

n and by P 0 : R2d+1 ! R
n any smooth

extension of p0. Since a0
i
2 Q

n for every i 2 {1, . . . , s}, we have that p0
j
|A0 is Q-

regular for every j 2 {1, . . . , 2d + 1}. Let fj 2 RQ(R2d+1) be a Q-regular function
such that p0

j
|A0 = fj |A0 for every j 2 {1, . . . , n}. Then, apply Lemma 3.1.8 with

“P” = “L” := A0, “K” be any compact neighborhood of M 0 in R
2d+1 and “f” :=

p0
j
� fj getting a polynomial sj 2 IQ(A0) arbitrarily C1

w close to p0
j
� fj , for every

j 2 {1, . . . , n}. Hence, the Q-regular map q 2 RQ(R2d+1,Rn) defined as q(y) :=
(s1(y) + f1(y), . . . , sn(y) + fn(y)) for every y 2 R

2d+1 is such that q|M 0 is arbitrarily
Nw close to p0 and q|A0 = p0|A0 .

Let W := {a01, . . . , a0s} ⇢ R
n be a Q-nonsingular Q-algebraic set. An application

of Lemma 3.3.3 with the following substitutions: “X” := M 0, “Y ” := W ⇥ {0},
“A” := A0 and “p” := q ⇥ Ca, with a 2 Q[y] such that A0 = ZR(a) and C 2
Q \ {0} su�ciently small, gives m0 = n + 2d + 2, a Q-determined Q-algebraic set
V 0 ⇢ R

m
0
on V 0 \ (W ⇥ {0}), that is, V 0 \ (W ⇥ {0}) ⇢ Reg⇤(V 0), a homeomorphism

h : M 0 [q⇥Ca W ! V 0 and Q-regular maps f : M 0 ! V 0, g : W ! V 0 such that
f |M 0\A0 : M 0 \ A0 ! V 0 \ g(W ) is Q-biregular and g = |W is the inclusion map
satisfying the following diagram:

M 0

M 0 t (W ⇥ {0}) M 0 [q⇥Ca (W ⇥ {0}) V 0.

W

f

⇡ h

g

In addition, by Lemma 3.3.3(v)(vi), the next conditions are satisfied:

(ix) |(q⇥Ca)(M 0) � (q ⇥ Ca) is arbitrarily C 0
w close to f ,

(x) |(q⇥Ca)(M 0)|X00\A00 � (q ⇥ Ca)|X00\A00 is arbitrarily C1
w close to f ,

where |(q⇥Ca)(M 0) : (q ⇥ Ca)(M 0) ,! R
m

0
denotes the inclusion map.

Let m := m0 + 1 = n + 2d + 3. Let us construct an algebraic set V 00 ⇢ R
m

and a semialgebraic homeomorphism � : V ! V 00 satisfying (i)-(vi). Recall that,
by Remark 4.1.5, we may assume that M 0 \ A0 contains an algebraic hypersurface
S ⇢ R

m
0
which is Q-biregular isomorphic to the standard sphere S

d�1 ⇢ R
d, thus

S ⇢ R
m

0
is a Q-nonsingular Q-algebraic set and S(Q) is Zariski dense in S. Let

s 2 IQ(S) such that ZR(s) = S and s(x) � 0 for every x 2 R
m

0
. Recall that

g(W ) ⇢ R
m

0
is a Q-algebraic set consisting of a finite set of points, thus there exists
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t 2 Q[x] such that ZR(t) = g(W ) and t(x) � 0 for every x 2 R
m

0
. Let C 0 2 Q \ {0}.

Consider the algebraic set V 00 ⇢ R
m

0+1 defined as:

V 00 :=
�
(x, y) 2V 0 ⇥ R

�� (s(x)2 + t(x)2)y3 = (C 0)3t(x)2
 
.

Observe that V 00 ⇢ R
m

0+1 is a Q-algebraic set such that V 00 \ (S ⇥ R) = S ⇥ {C 0},
V 00 \ (g(W ) ⇥ R) = g(W ) ⇥ {0} = Sing(V 00) and V 00 ⇢ R

m
0+1 coincides with the

graph of the function y : V 0 ! R defined as y(x) = C 0 3

q
t(x)2

(s(x)2+t(x)2) . Consider

the projection ⇧ : Rm
0+1 ! R

m
0
. Then, the restriction ⇧| of ⇧ from Reg(V 00) to

V 0 \ g(W ) is a Nash di↵eomorphism.

(M,A) (M 0, A0)

V eV R
n

Sing(V ) W V 0
R
m

0

Sing(V 00) V 00
R
m

p

'
0

q

f
'

'| g

⇧| ⇧

Figure 4.3.1. Approximation steps performed during the proof.

Define the semialgebraic homeomorphism � : V ! V 00 as follows:

�(x) =

(
(⇧|)�1 � f � '0 � (p|X\A)

�1 � '(x) if x 2 Reg(V );

|V 0 � g � '(x) if x 2 Sing(V ),

where |V 0 denotes the inclusion map of V 0 ⇢ R
m

0
in R

m
0+1. Observe that �|Reg(V ) :

Reg(V ) ! V 00 \ (|V 0 � g)(W ) is a Nash di↵eomorphism of Nash manifolds since it
is the composition of Nash di↵eomorphisms of Nash manifolds. Let (a, b) 2 V 00.
Since V 0 is Q-determined on V 0 \ g(W ), that is, V 0 \ g(W ) ⇢ Reg⇤(V 0), there are
p1, . . . , pm�1�d 2 IQ(V 0) such that {rpi(a)}m�1�d

i=1 are linearly independent over R.
Let q1, . . . , qm�d 2 IQ(V 00) be defined as qi(x, y) := pi(x), for every i 2 {1, . . . ,m�
1 � d}, and qm�d(x, y) := (s(x)2 + t(x)2)y3 � (C 0)3t(x)2. Hence, {rqi(a, b)}m�d

i=1
are linearly independent over R as well since the last entry of rqm�d(a, b) only
vanishes if b = 0 since S \ g(W ) = ?, that is, if (a, b) 2 Sing(V 00). This proves
that Reg(V 00) = Reg⇤(V 00), that is, V 00 ⇢ R

m is a Q-determined Q-algebraic set.
This proves (i) & (ii) with “V 0” := V 00 and “�” := �. In addition, an application of
[Jel09] provides a semialgebraic extension R

m ! R
m of �, thus (iv) holds. Observe

that, by construction, |V 0(S [ g(W )) ⇢ V 00, thus (iii) and (v) hold. Finally, since '
is arbitrarily C 0

w close to idRn and it restriction to Reg(V ) is arbitrarily C1
w close

to the inclusion Reg(V ) ,! R
m, by (ix), (x), by letting C,C 0 2 Q \ {0} su�ciently

small and by the continuity of the pullback with respect to the C 0
w and the C1

w
topologies, (vi) follows. ⇤

If we are willing to lose properties (v) & (vi), we can find a Q-determined Q-
algebraic model V 0 of V as in Theorem 4.3.4 with an improvement on the estimate
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of m, namely, we can choose m = 2d + 3. Indeed, since Sing(V ) is finite, we may
consider “W”:={0, . . . , s} ⇢ R, where s is the cardinality of Sing(V ), and then follow
the steps of the proof of Theorem 4.3.4.

Theorem 4.3.5. Let V ⇢ R
n be a compact algebraic set with isolated singular-

ities of dimension d. Set m := 2d + 3. Then there exist an algebraic set V 0 ⇢ R
m

with isolated singularities and a semialgebraic homeomorphism � : V ! V 0 having
properties (i)-(iv) of Theorem 4.3.4.

4.3.3. The non-compact case. In this subsection we extend Theorem 4.3.4
to the non-compact case, that is, we provide a complete positive answer to [Par21,
Open problem 1, p. 199] in the case of algebraic sets with isolated singularities.

Theorem 4.3.6. Let V ⇢ R
n be an algebraic set with isolated singularities. Then

there exist an algebraic set V 0 ⇢ R
m with isolated singularities and a semialgebraic

homeomorphism � : V ! V 0 with the following properties:

(i) V 0 ⇢ R
m is a Q-determined Q-algebraic set.

(ii) �(Reg(V )) = Reg(V 0) and �| : Reg(V ) ! Reg(V 0) is a Nash di↵eomor-
phism. In particular, V 0 is Q-nonsingular if V is nonsingular.

More precisely, the following is true. Denote by d the dimension of V and
set m := n + 2d + 4. Choose a neighborhood U of the inclusion map V ,! R

m in
C 0
w(V,R

m), and a neighborhood V of the inclusion map Reg(V ) ,! R
m in Nw(Reg(V ),

R
m). Then there exist an algebraic set V 0 ⇢ R

m with isolated singularities and a
semialgebraic homeomorphism � : V ! V 0 that have both the preceding properties
(i) and (ii) and the following:

(iii) The Zariski closure of V 0(Q) in R
m has dimension at least d� 1.

(iv) � extends to a semialgebraic homeomorphism from R
m to R

m.
(v) � fixes Sing(V ) \ Q

n, that is, �(x) = x for all x 2 Sing(V ) \ Q
n. In

particular, V 0(Q) contains Sing(V ) \Q
n.

(vi) If | : V 0 ,! R
m denotes the inclusion map, then |�� 2 U and (|��)|Reg(V ) 2

V.

Proof. If V = R
n, it su�ces to fix “V 0”:=V . If V is finite, we conclude by

density of Q in R. Suppose that V is infinite and di↵erent form R
n. Suppose

also V is non compact, otherwise we conclude by Theorem 4.3.4 with the improved
estimate of m := n + 2d + 3 such that V 0 ⇢ R

m. Let Sing(V ) = {a1, . . . , as}
with {a1, . . . , ar} = Sing(V ) \ Q

n, for some s, r 2 N with r  s. Up to perform
a translation of a rational factor we may suppose that 0 /2 V . Let u 2 R[x] such
that V = ZR(u). Let S

n�1 ⇢ R
n be the standard unit sphere and let ✓ : R

n \
{0} ! R

n \ {0} as ✓(x) = x

|x|2n
be the inversion with respect to S

n�1. Recall that

✓ � ✓ = idRn\{0}. Let d � deg(u). Define the polynomial v := |x|2dn · (u � ✓)(x) 2 R[x]
and the compact algebraic set W := ZR(v). By construction, W = ✓(V ) t {0} and
✓ : V ! W \ {0} is a biregular isomorphism of locally Zariski closed algebraic sets,
thus Reg(W ) \ {0} = ✓(Reg(V )), Sing(W ) \ {0} = ✓(Sing(V )) =: {b1, . . . , bs} ⇢ R

n

and ✓(Sing(V ) \ Q) = {b1, . . . , br} ⇢ Q
n. Consider the origin 0 2 R

n as a singular
point, that is in the application of Theorem 4.3.4 apply Hironaka’s resolution of
singularities to the set {0, b1, . . . , bs} ⇢ W . Hence, the application of mentioned
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Theorem 4.3.4, gives m0 = n+ 2d+ 3, a compact algebraic subset W 0 of Rm
0
and a

semialgebraic homeomorphism �0 : W ! W 0 satisfying the following conditions:

(i0) W 0 ⇢ R
m

0
is a Q-determined Q-algebraic set.

(ii0) �0(Reg(W )) = Reg(W 0) and �0|Reg(W ) : Reg(W ) ! Reg(W 0) is a Nash
di↵eomorphism. In particular, W 0 is Q-nonsingular if W is nonsingular.

(iii0) The Zariski closure of W 0(Q) in R
m

0
has dimension at least d� 1.

(iv0) �0 extends to a semialgebraic homeomorphism from R
m

0
to R

m
0
.

(v0) �0 fixes (Sing(W )[{0})\Q
n, that is, �(x) = x for every x 2 {0, b1, . . . , br}.

In particular, (Sing(W )[{0})\Qn ⇢ W 0(Q) and Sing(W 0) = �0(Sing(W ))[
{0}.

(vi0) If |W : W ,! R
m and |W 0 : W 0 ,! R

m denote the inclusion maps, then
|W 0 ��0 is arbitrarily C1

w close to |W and (|W 0 ��)|Reg(W ) is arbitrarily C1
w

close to |W |Reg(W ).

Let W 0 = ZR(u0) for some u0 2 Q[x, y], with (x, y) = (x1, . . . , xn, y1, . . . , ym0�n).
Let S

m
0�1 ⇢ R

m
0
be the standard unit sphere and let ✓0 : Rm

0 \ {0} ! R
m

0 \ {0}
as ✓0(x, y) = (x,y)

|(x,y)|2
m0

be the inversion with respect to S
m

0�1. Recall that ✓0 � ✓0 =
id

Rm0\{0}. Let e � deg(u0). Define the polynomial v0 := |(x, y)|2e
m0 · (u0 � ✓0)(x, y) 2

Q[x, y] and the algebraic set W 00 := ZR(v0). By construction, W 00 = ✓0(W 0) t {0}
is an algebraic set with 0 2 Sing(W 00) (since 0 is an isolated point of W 00) and
✓0 : W 0 \ {0} ! W 00 \ {0} is a Q-biregular isomorphism of Zariski open subsets of
W 0 and W 00, respectively, thus Reg⇤(W 00) = ✓(Reg⇤(W 0)). In addition, if S ⇢ W 0

denotes an hypersurface of W 0 contained in Reg(W 0) with dense rational points,
then the dimension of Zcl

Rm0 (✓0(S)(Q)) ⇢ W 00 is d � 1 since ✓0 is Q-biregular, thus
it sends rational points to rational ones and Zcl

Rm0 (✓0(S)(Q)) = Zcl
Rm0 (✓0(S)) ⇢

✓0(S)[{0}. Observe that (✓0��0�✓)(ai) = (ai, 0) 2 R
m

0
, for every i 2 {1, . . . , r}, thus

Sing(W 00) \ {(0, 0)} = ✓({b1, . . . , bs}) = {(a1, 0). . . . , (ar, 0), a0r+1, . . . , a
0
s} ⇢ Q

m
0
.

Let a, s 2 Q[x, y] such that a(x, y), s(x, y) � 0 for every (x, y) 2 R
m

0
, ZR(a) =

{0} ⇢ R
m

0
and ZR(s) = Sing(W 00) \ {0} = ✓(Sing(W 0) \ {0}) ⇢ R

m
0
. Let m :=

m0 + 1 = n+ 2d+ 4 and C 2 Q \ {0}. Define the Q-algebraic set V 0 ⇢ R
m as

V 0 :=
�
((x, y), z) 2 R

m
0 ⇥ R

�� v0(x, y) = 0, a(x, y)z = Cs(x, y)
 
.

Observe that V 0 ⇢ R
m is Q-biregularly isomorphic to W 00 \ {0} via projection ⇡ :

R
m⇥R ! R

m, thus V 0 is a Q-determined Q-algebraic set. By construction, we also
have that

V 0 \ (Rm
0 ⇥ {0}) = (Sing(W 00) \ {0})⇥ {0}

= {(a1, 0, 0). . . . , (ar, 0, 0), (a0r+1, 0), . . . , (a
0
s, 0)} ⇢ Q

m.

In addition, since 0 2 R
m

0
is an isolated point of W 00, up to chose C 2 Q \ {0}

su�ciently small, we may suppose that |V 0 � (⇡|V 0)�1 is arbitrarily C 0
w close to

|W 00\{0} and |V 0 |Reg V 0 � (⇡|Reg V 0)�1 is arbitrarily C1
w close to |W 00\{0}|Reg(W 00)\{0},

where |V 0 : V 0 ,! R
m and |W 00\{0} : W 00 \ {0} ,! R

m denote the inclusion maps.
Finally, define � : V ! V 0 as follows:

� := (⇡|W 00\{0})
�1 � ✓0

W 0 � �0 � ✓|V
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Observe that � is a semialgebraic homeomorphism, since it is a composition of
semialgebraic homeomorphisms, and �|Reg(V ) : Reg(V ) ! Reg(V 0) is a Nash dif-
feomorphism, since it is a composition of Nash di↵eomorphisms. This proves (i),
(ii) & (v). In addition, [Jel09] ensures that � can be extended to a semialgebraic
homeomorphism R

m ! R
m, thus (iv) holds. As above, since ⇡|V 0 is a Q-biregular

map, we deduce that (⇡|�1
V 0 �✓0)(S) ⇢ V 0(Q) and ZclRm((⇡|�1

V 0 �✓0)(S)) has dimension
d � 1, thus (iii) follows. Finally, Theorem 4.3.4(vi), the fact that ✓0|Rn = ✓ and
C 2 Q \ {0} is chosen su�ciently small, imply (vi) by continuity of the pull-back
with respect to the C 0

w and the C1
w topologies. ⇤

If we are willing to lose properties (v) & (vi), we can find a Q-determined Q-
algebraic model V 0 of V as in Theorem 4.3.6 with an improvement on the estimate
of m, namely, we can choose m = 2d + 4. Indeed, since Sing(V ) is finite, we may
consider “W”:={0, . . . , s} ⇢ R, where s is the cardinality of Sing(V ), and then follow
the steps of the proof of Theorem 4.3.6.

Theorem 4.3.7. Let V ⇢ R
n be an algebraic set with isolated singularities of

dimension d. Set m := 2d+ 4. Then there exist an algebraic set V 0 ⇢ R
m with iso-

lated singularities and a semialgebraic homeomorphism � : V ! V 0 having properties
(i)-(iv) of Theorem “W”:={0, . . . , s} ⇢ R.

4.4. Local Q-algebrization of isolated singularities

This section is devoted to provide a complete positive answer to [Par21, Open
problem 2, p. 200] in the case of germs (V, 0) of an algebraic set V ⇢ R

n having
an isolated singularity at 0 2 R

n. Our result appears as a consequence of Theorem
4.3.4.

Theorem 4.4.1. Let (V, 0) ⇢ (Rn, 0) be the germ of an isolated algebraic singu-
larity. Then there exist a germ of an isolated algebraic singularity (V 0, 0) ⇢ (Rm, 0),
semialgebraic nieghborhoods U of 0 in R

n and U 0 of 0 in R
m and a semialgebraic

homeomorphism � : V \ U ! V 0 \ U 0, with the following properties:

(i) V 0 ⇢ R
m is a Q-determined Q-algebraic set.

(ii) �(Reg(V ) \ U) = Reg(V 0) \ U 0 and �| : Reg(V ) \ U ! Reg(V 0) \ U 0 is a
Nash di↵eomorphism.

Proof. Let ⇡ : Rn+1 ! R
n denote the projection map. By [BCR98, Theorem

9.3.6], we can choose U := Bn(0, ✏) ⇢ R
n to be an open ball centered at 0 of radius

✏ > 0, with ✏ > 0 su�ciently small, such that Sing(V ) \ U = {0} and V \ U =
V \Bn(0, ✏) is semialgebraically homeomorphic to the cone over V \S

n�1(0, ✏) ⇢ R
n

centered at 0 of radius ✏ > 0. Consider the sphere S
n(0, ✏) ⇢ R

n+1 and denote
by S

n
+(0, ✏) := {(x, y) 2 S

n(0, ✏) | y > 0} ⇢ R
n+1. Define the algebraic set W :=

⇡�1(V ) \ S
n(0, ✏). Observe that, by above construction, W is a compact algebraic

subset of Rn+1 such that Sing(W ) = {(0, . . . , 0, 1), (0, . . . , 0,�1)} ⇢ R
n+1 and, since

⇡| : Sn+(0, ✏) ! U is a Nash di↵eomorphism, thus ⇡|W\Sn+(0,✏) : W \S
n
+(0, ✏) ! V \U

is a Nash di↵eomorphism of Nash manifolds. Let W 0 ⇢ R
n+1 be the algebraic set

obtained by applying the translation ' : Rn+1 ! R
n+1 defined as '(x, y) = (x, y�1),

for every (x, y) 2 R
n ⇥ R = R

n+1. An application of Theorem 4.3.4 provides a
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compact algebraic set W 00 ⇢ R
m with isolated singularities and a semialgebraic

homeomorphism �0 : W 0 ! W 00 such that:

(iii) W 00 ⇢ R
m is a Q-determined Q-algebraic set.

(iv) �0(Reg(W 0)) = Reg(W 00) and �0| : Reg(W 0) ! Reg(W 00) is a Nash di↵eo-
morphism.

(v) �0 fixes Sing(W 0), that is, �0(x) = x for all x 2 Sing(W 0). In particular,
0 2 W 00.

Let “m” := (n+1)+2d+3 = n+2d+4, “V ” := W 0, “U 0” to be any open neighborhood
of 0 in R

n such that W 0 \ U 0 = �0(W \ S
n
+(0, ✏)) and � := �0 � ' � (⇡|W\Sn+(0,✏))

�1 :

V \ U ! V 0 \ U 0. Thus, (i) & (ii) hold. ⇤





APPENDIX A

Smooth variants of Baro-Fernando-Ruiz results

Abstract. Here we propose some smooth variants of results originally proven in
[BFR14] in order to give a complete proof of Theorem 4.1.2.

A.1. Relative Nash approximation of C1 di↵eomorphisms

We refer to the notation of Subsection 4.1.1. Let M ⇢ R
a be a Nash manifold,

let X ⇢ M be a (non-empty) Nash subset of Ra contained in M and let Y ⇢ R
b

be a (non-empty) semialgebraic set. Accordingly with [BFR14, Definition 1.5 and
p. 72], we say that a map f : X ! Y is c-Nash if the restriction of f to each
Nash irreducible component of X is a Nash map. We denote cN(X,Y ) the set of
c-Nash maps from X to Y , and we set cN(X) := cN(X,R). Let us introduce similar
concepts for C ⌫ maps.

Definition A.1.1. Let X ⇢ M be a Nash set and let X1, . . . , Xs be the Nash
irreducible components of X. Given a map f : X ! Y , we say that f is a cC ⌫

map if, for each j 2 {1, . . . , s}, the restriction f |Xj : Xj ! Y of f to Xj is a
C ⌫ map. We denote cC ⌫(X,Y ) the set of cC ⌫ maps from X to Y , and we set
cC ⌫(X) := cC ⌫(X,R).

Once again, f = (f1, . . . , fb) : X ! Y ⇢ R
b is a cC ⌫ (c-Nash) map if, and only

if, each component fi : X ! R of f is a function in cC ⌫(X) (in cN(X)). Note that
N(X,Y ) ⇢ cN(X,Y ) and C ⌫(X,Y ) ⇢ cC ⌫(X,Y ).

Consider again a Nash manifold M ⇢ R
a, a Nash set X ⇢ M with Nash irre-

ducible components X1, . . . , Xs, a semialgebraic set Y ⇢ R
b and ⌫ 2 N

⇤ [ {1}. Our
next goal is to define suitable topologies on the sets C ⌫(X,Y ) and cC ⌫(X,Y ). First,
we consider the set C ⌫(X,Rb). We denote C ⌫

w(M,Rb) the set C ⌫(M,Rb) equipped
with the usual weak C ⌫ topology, see [Hir94, §2]. This topology makes C ⌫

w(M,Rb) a
topological real vector space, with the usual pointwise defined addition and multi-
plication by real scalars. Consider the restriction map ⇢ : C ⌫

w(M,Rb) ! C ⌫(X,Rb),
i.e., ⇢(F ) := F |X . Let f 2 C ⌫(X,Rb) and let F : U ! R

b be a C ⌫ map extending
f to an open neighborhood U of X in M . Choose a C ⌫ partition of unity {↵,�}
subordinate to the open cover {U,M \X} of M , and define the C ⌫ map eF : M ! R

b

by eF (x) := ↵(x)F (x) if x 2 U and eF (x) := 0 otherwise; evidently, ⇢( eF ) = f . This
proves that ⇢ is surjective. We equip C ⌫(X,Rb) with the quotient topology induced
by ⇢, i.e., the finest topology of C ⌫(X,Rb) which makes ⇢ continuous. We denote
C ⌫
w(X,Rb) the set C ⌫(X,Rb) equipped with such a quotient topology. An important

property of C ⌫
w(X,Rb) is that ⇢ : C ⌫

w(M,Rb) ! C ⌫
w(X,Rb) is an open map. Indeed,

if U ⇢ C ⌫
w(M,Rb) is open and I = {F 2 C ⌫(M,Rb) : ⇢(F ) = 0}, then ⇢�1(⇢(U)) =

119
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S
F2I(U +F ) is open as well, because the translations of C ⌫

w(M,Rb) are homeomor-
phisms. Identify C ⌫(X,Y ) with the subset of C ⌫(X,Rb) of all C ⌫ maps f : X ! R

b

such that f(X) ⇢ Y . We denote C ⌫
w(X,Y ) the set C ⌫(X,Y ) equipped with the

relative topology induced by C ⌫
w(X,Rb). Let us topologize cC ⌫(X,Y ). Consider the

topological product C ⌫
w(X1, Y ) ⇥ · · · ⇥ C ⌫

w(Xs, Y ) and the multiple restriction map
⌘ : cC ⌫(X,Y ) ! C ⌫

w(X1, Y ) ⇥ · · · ⇥ C ⌫
w(Xs, Y ) defined by ⌘(f) := (f |X1 , . . . , f |Xs).

Note that ⌘ is injective. We denote cC ⌫
w(X,Y ) the set cC ⌫(X,Y ) equipped with the

topology induced by ⌘, i.e., the topology making ⌘ a homeomorphism onto its image.
Let � : C ⌫(X,Y ) ,! cC ⌫(X,Y ) be the inclusion map. By the universal property of
quotient topology, we know that each restriction map C ⌫

w(X,Rb) ! C ⌫
w(Xj ,Rb) is

continuous. This implies at once that � : C ⌫
w(X,Y ) ,! cC ⌫

w(X,Y ) is continuous as
well. We denote J : C ⌫

w(X,Y ) ! C ⌫
w(X1, Y )⇥ · · ·⇥C ⌫

w(Xs, Y ) the composition map
⌘ � �.

The next result is a variant of [BFR14, Propositions 6.2 and 8.1].

Proposition A.1.2. Suppose that X ⇢ M is a Nash set with monomial singu-
larities. Then there exists a continuous linear map ✓ : C ⌫

w(X,Rb) ! C ⌫
w(M,Rb) such

that ✓ is an extension map, i.e, ✓(f)|X = f for all f 2 C ⌫
w(X,Rb). Moreover, the

restriction map J : C ⌫
w(X,Y ) ! C ⌫

w(X1, Y )⇥ · · ·⇥ C ⌫
w(Xs, Y ) is a homeomorphism

onto its image.

Proof. As in the proof of [BFR14, Proposition 6.2], it su�ces to consider the
case Y = R

b = R and to prove the existence of an extension continuous linear
map c✓ : cC ⌫

w(X) ! C ⌫
w(M). This implies at once that ✓ := c✓ � � is the desired

extension map and � is a homeomorphism (hence J is a homeomorphism onto its
image). The problem of constructing c✓ is local in nature, because M admits C ⌫

partitions of unity subordinate to each open cover of M . This fact and Definition
4.1.1 reduce the problem to the case in which M = R

m and X = L1 [ . . . [ Ls is a
union of coordinate linear varieties of Rm. In this situation, the proof of [BFR14,
Proposition 4.C.1] gives an explicit formula for c✓. Let P(s) be the power set of
{1, . . . , s} and, for each I 2 P(s) \ {?}, let LI :=

T
i2I Li, let |I : LI ,! X be the

inclusion map and let ⇡I : Rm ! LI be the orthogonal projection of Rm onto LI .
Set c✓(f) := �

P
I2P(s)\{?}(�1)|I|(f � |I � ⇡I), where |I| is the cardinality of I. It is

immediate to verify that c✓(f)|Li = f |Li for all i 2 {1, . . . , s}, so c✓(f)|X = f . It is
well-known that the composition operation is continuous in the weak C ⌫ topology
(see [Hir94, Exercise 10(a), p. 64]). Thus, c✓ is continuous, as desired. ⇤

Remark A.1.3. In [BFR14, Theorem 1.6], the authors prove the following re-
markable fact: if X ⇢ M is a Nash set with monomial singularities, then cN(X,Y ) =
N(X,Y ).

The next result is a variant of [BFR14, Proposition 8.2].

Proposition A.1.4. Let X ⇢ M be a Nash set with monomial singularities,
let N ⇢ R

b be a Nash manifold and let F : M ! N be a C ⌫ map. Suppose that
⌫ � m, where m = dim(M). Then each Nash map h : X ! N which is su�ciently
C ⌫
w close to F |X has a Nash extension H : M ! N which is arbitrarily C ⌫�m close

to F . More precisely, for each neighborhood U of F in C ⌫�m(M,N), there exists a
neighborhood V of F |X in C ⌫(X,N) with the following property: for each Nash map
h 2 N(X,N) \ V, there exists a Nash map H 2 N(M,N) \ U such that H|X = h.
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Proof. Since N has a Nash tubular neighborhood in R
b (see [BCR98, Corollary

8.9.5] or [Shi87, §I.3]), it su�ces to consider the case in which N = R
b. Reasoning

component by component, we can further assume that N = R. We follow the
strategy of the proof of [BFR14, Proposition 7.6]. The set U 0 = U \ C ⌫(M) is a
neighborhood of F in C ⌫

w(M). The openness of the restriction map ⇢ : C ⌫
w(M) !

C ⌫
w(X) implies that ⇢(U 0) is a neighborhood of F |X in C ⌫

w(X). Suppose that h 2
⇢(U 0). Choose G 2 U 0 ⇢ U such that ⇢(G) = h, i.e., G|X = h. It remains to
show that there exists a Nash function H : M ! R arbitrarily C ⌫�m

w close to
F (thus, we can assume H 2 U) such that H|X = G|X . By [BFR14, Theorem
1.4], there exist a finite family of open semialgebraic subsets U1, . . . , U` of M and
Nash di↵eomorphisms {ui : Ui ! R

m}`
i=1 such that X ⇢ U1 [ . . . [ U` and, for

each i 2 {1, . . . , `}, ui(X \ Ui) is a union of coordinate linear varieties of Rm. It
follows that I⌫

Rm(ui(X \ Ui)) ⇢ IN
Rm(ui(X \ Ui))C ⌫�m(Rm) for each fixed i. The

latter inclusion can be proven exactly as in [BFR14, Proposition 7.3 and Remark
7.4] (however, here the proof is slightly easier). As an immediate consequence, we
have I⌫

Ui
(X \ Ui) ⇢ IN

Ui
(X \ Ui)C ⌫�m(Ui). Since X ⇢ M is coherent, it holds

IN
Ui
(X \ Ui) = IN

M
(X)N(Ui) (see equation (2.2) and Lemma 5.1 of [BFR14]). It

follows that I⌫
Ui
(X \ Ui) ⇢ IN

M
(X)C ⌫�m(Ui) for all i 2 {1, . . . , `}. Making use

of a C ⌫ partition of unity subordinate to the open cover {U1, . . . , U`,M \ X} of
M , we obtain at once that I⌫

M
(X) ⇢ IN

M
(X)C ⌫�m(M). Since G|X = h 2 N(X),

by [BCR98, Theorem 8.9.12], there exists eG 2 N(M) such that eG|X = G|X , i.e.,
G� eG 2 I⌫

M
(X). Thus, there exist e 2 N

⇤, functions {fj}ej=1 in IN
M
(X) and functions

{ j}ej=1 in C ⌫�m(M) such thatG� eG =
P

e

j=1  jfj onM . Thanks to the Weierstrass
approximation theorem, for each j 2 {1, . . . , e}, there exists a polynomial (and hence
Nash) function e j : M ! R arbitrarily C ⌫�m

w close to  j on M . This proves that

the Nash function H 2 N(M) defined by H := eG +
P

j=1
e jfj is arbitrarily C ⌫�m

w

close to G and H|X = G|X . ⇤

The following result is a variant of [BFR14, Theorem 1.7].

Theorem A.1.5. Let M ⇢ R
a and N ⇢ R

b be Nash manifolds, let X ⇢ M
and Y ⇢ N be two Nash monomial crossings, let X 0 ⇢ M be a Nash set with
monomial singularities, let ⌫ 2 N [ {1} and let f : M ! N be a C ⌫ map such
that X \ X 0 = ?, f |X0 is a Nash map, f(X) ⇢ Y and f |Y

X
preserves irreducible

components. Set m := dim(M), n := dim(N) and q := m
�

n

bn/2c
�
, where bn/2c is the

integer part of n/2. Suppose that ⌫ � q. Then there exists a Nash map g : M ! N
arbitrarily C ⌫�q

w close to f such that g(X) ⇢ Y , g|Y
X

preserves irreducible components
and g|X0 = f |X0. More precisely, for each neighborhood U of f in C ⌫�q

w (M,N), there
exists a Nash map g : M ! N such that g 2 U , g(X) ⇢ Y , g|Y

X
preserves irreducible

components and g|X0 = f |X0.

Proof. We divide the proof into two steps.

STEP I. Let us adapt the proof of [BFR14, Theorem 1.7] to the present situation.
Let X1, . . . , Xs be the Nash irreducible components of X and let Y1, . . . , Yt be the
Nash irreducible components of Y . By hypothesis, all Xi ⇢ M and Yj ⇢ N are
Nash manifolds, and there exists a function  : {1, . . . , s} ! {1, . . . , t} such that
f(Xi) ⇢ Y(i) for all i 2 {1, . . . , s}. For each J 2 P(t) and for each p 2 N

⇤, we
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set YJ :=
T

j2J Yj , XJ :=
T

i2�1(J)Xi, P(t, p) := {J 2 P(t) : |J | = p}, X(p) :=
S

J2P(t,p)XJ and Y (p) :=
S

J2P(t,p) YJ . By construction, we have that f(XJ) ⇢ YJ
and f(X(p)) ⇢ Y (p) for all J 2 P(t) and for all p 2 N

⇤, and X(1) = X and Y (1) = Y .
By [BFR14, Lemma 5.1 and Proposition 8.3], we know that allXJ ⇢ R

a and YJ ⇢ R
b

are Nash manifolds, and all X(p) ⇢ M and Y (p) ⇢ N are Nash monomial crossings.
Note that each of the sets XJ , X(p), YJ and Y (p) may be empty. Let r := max{p 2
N
⇤ : X(p) 6= ?}. By [BFR14, Proof of Theorem 1.7, Final arrangement, p. 108],

we know that r 
�

n

bn/2c
�
. Given any p 2 {1, . . . , r}, we have that both X(p) and

Y (p) are non-empty, because X(p) � X(r) 6= ? and Y (p) � f(X(p)) 6= ?; thus, we
can define the C ⌫ map fp : X(p) ! Y (p) as the restriction of f from X(p) to Y (p).
Moreover, for each J 2 P(t) such that XJ 6= ? (and hence YJ � f(XJ) 6= ?), we
define the C ⌫ map fJ : XJ ! YJ as the restriction of f from XJ to YJ .

Let us prove the following

Claim: For each p 2 {1, . . . , r}, there exists a Nash map gp : X(p) ! Y (p)

arbitrarily C ⌫�m(r�p)
w close to fp such that gp(XJ) ⇢ YJ for all J 2 P⇤(t, p), where

P⇤(t, p) :=
S

r

`=p
P(t, `).

Let us proceed by induction on p = r, r�1, . . . , 1. Suppose that p = r. Note that
X(r) is the disjoint union of the XJ ’s with J in P(t, r); otherwise, there would exist
J1, J2 2 P(t, r) with J1 6= J2 (and hence |J1 [ J2| > r) such that ? 6= XJ1 \XJ2 =
XJ1[J2 , contradicting the maximality of r. Given any J 2 P(t, r), we have that
fr(XJ) = f(XJ) ⇢ YJ . Thus, if XJ 6= ? (and hence YJ 6= ?), the Weierstrass
approximation theorem and the existence of Nash tubular neighborhoods of YJ in
R
b imply at once that there exists a Nash map gJ : XJ ! YJ arbitrarily C ⌫

w close
to fJ . On the other hand, we know that X(r) is the disjoint union of the XJ ’s with
J 2 P(t, r). Consequently, the Nash map gr : X(r) ! Y (r), defined as gr(x) := gJ(x)
if x 2 XJ for some (unique) J 2 P(t, r), is arbitrarily C ⌫

w close to fr and gr(XJ) ⇢ YJ
for all J 2 P(t, r) = P⇤(t, r), as desired. Suppose that the assertion we want to
prove is true for some p 2 {1, . . . , r}. We can assume that p 6= 1; otherwise, we are

done. Let gp : X(p) ! Y (p) be a Nash map arbitrarily C ⌫�m(r�p)
w close to fp such

that gp(XJ) ⇢ YJ for all J 2 P(t, p). Let K 2 P(t, p � 1). If K 0 2 P(t, p � 1) \
{K} then XK \ XK0 = XK[K0 ⇢ X(p). Note that gp(XK \ X(p)) ⇢ YK ; indeed,
XK \ X(p) =

S
J2P(t,p)(XK \ XJ) =

S
J2P(t,p)XK[J and hence gp(XK \ X(p)) =S

J2P(t,p) gp(XK[J) ⇢
S

J2P(t,p) YK[J ⇢ YK ; here we used the fact that, for all

J 2 P(t, p), it holds K [J 2 P⇤(t, p), so gp(XK[J) ⇢ YK[J . If XK \X(p) 6= ?, then
we define the C ⌫�m(r�p)

w maps fp,K : XK \X(p) ! YK and gp,K : XK \X(p) ! YK
as the restrictions of fp and gp from XK \ X(p) to YK , respectively. Recall that
XK ⇢ R

a and YK ⇢ R
b are Nash manifolds, and XK \ X(p) ⇢ XK is a Nash

monomial crossings. If we choose gp su�ciently C ⌫�m(r�p) close to fp, then we
can assume that, for each K 2 P(t, p � 1), gp,K is arbitrarily C ⌫�m(r�p) close to
fp,K = fK |

XK\X(p) . By Proposition A.1.4, there exists a Nash map egp,K : XK ! YK
arbitrarily C ⌫�m(r�p+1) close to fK such that egp,K |

XK\X(p) = gp,K = gp|XK\X(p) .
Consider K,K 0 2 P(t, p � 1) such that K 6= K 0 and XK \ XK0 6= ?, and choose
x 2 XK \XK0 . By construction, we know that x 2 XK \X(p) and x 2 XK0 \X(p),
so egp,K(x) = gp(x) = egp,K0(x). This proves that the map gp�1 : X(p�1) ! Y (p�1),
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defined by gp�1(x) := egp,K(x) if x 2 XK for some K 2 P(t, p� 1), is a well-defined
c-Nash map, which is also a Nash map by Remark A.1.3. Note that gp�1(XK) ⇢ YK
for all K 2 P(t, p� 1) and gp�1 is an extension of gp; indeed, it coincides with gp onS

K2P(t,p�1)(XK \X(p)) =
�S

K2P(t,p�1)XK

�
\X(p) = X(p�1) \X(p) = X(p). As a

consequence, gp�1(XK) ⇢ YK for all K 2 P⇤(t, p � 1). Since gp�1|XK is arbitrarily
C ⌫�m(r�p+1) close to fK = f |XK for all K 2 P(t, p � 1), by Proposition A.1.2, it
follows that gp�1 is arbitrarily C ⌫�m(r�p+1) close to fp�1. This proves the preceding
Claim. In particular, we proved the existence of a Nash map g1 : X ! Y arbitrarily
C ⌫�m(r�1) close to f |Y

X
.

STEP II. Let us complete the proof. Note that X [ X 0 ⇢ M is a Nash set
with monomial singularities. We denote g0 : X ! N the Nash map defined by
g0(x) := g1(x) if x 2 X and g0(x) := f(x) if x 2 X 0. Since g0 is arbitrarily
C ⌫�m(r�1) close to f |X[X0 , using again Proposition A.1.4, we obtain a Nash map
g : M ! N arbitrarily C ⌫�mr close (and hence C ⌫�q close, being q � mr) to f such
that g|X[X0 = g0|X[X0 . The proof is complete. ⇤

Since 1 � q = 1 and the subset of C1
w (M,N) of all C1 di↵eomorphisms is

open when M and N are compact, Theorem 4.1.2 is an immediate consequence of
Theorem A.1.5.





APPENDIX B

On the degree of global smoothing mappings of

subanalytic sets

Abstract. Let X ⇢ R
n be a subanalytic set of dimension k, let U be an open

subset of the smooth part of X of dimension k and let W be a connected compo-
nent of U . In this work we present a criterion for any global smoothing section
� := (X 0,', U) of X to have even degree over W . This appendix is based on
[Sav22].

B.1. Global smoothings of subanalytic sets

In [BP18] Bierstone and Parusiński proved the following two remarkable global
smoothing results for subanalytic sets. The term ‘analytic’ means ‘real analytic’.
Let V be an analytic manifold of dimension n, and let X be a closed subanalytic
subset of V of dimension k.

Theorem A ([BP18, Theorem1.1] Non-embedded global smoothing). There
exist an analytic manifold X 0 of pure dimension k, a proper analytic mapping ' :
X 0 ! V , and a smooth open subanalytic subset U of X such that:

(i) '(X 0) ⇢ X.
(ii) dim(X \U) < k and '�1(X \U) is a simple normal crossings hypersurface

B0 of X 0.
(iii) For each connected component W of U , '�1(W ) is a finite union of subsets

open and closed in '�1(U), each mapped isomorphically onto W by '.

Theorem B ([BP18, Theorem1.2] Embedded global smoothing). There exist
an analytic manifold V 0, a smooth closed analytic subset X 0 ⇢ V 0 of dimension k,
a simple normal crossings hypersurface B0 ⇢ V 0 transverse to X 0, and a proper
analytic mapping ' : V 0 ! V such that:

(i) dim('(B0)) < k.
(ii) The restriction '|V 0\B0 is finite-to-one and of constant rank n;
(iii) ' induces an isomorphism from a union of connected components of X 0\B0

to a smooth open subanalytic subset U ⇢ X such that dim(X \ U) < k.

We give a couple of remarks motivating our study. Although the previous re-
sults are global, the techniques involved in their proves are local. Indeed, in [BP18,
Section 2.3] the authors provide a partition of the analytic manifold V into a count-
able number of semianalytic cells in general position with respect to X and then
they develop explicit desingularization techniques for these cells with respect to the
global behaviour of V . More in detail, in [BP18, Section 2.2] the authors develop
a desingularizing procedure for a semianalytic n-cell C of V by explicitly finding
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an analytic subset ZC of V ⇥ R
m, for some m 2 N depending on the number of

inequalities defining C, a map 'C : ZC ! C and an open semianalytic subset UC

of C such that '�1
C

(UC) is a 2m covering of UC and dim(C \ UC) < k. Then the
authors apply desingularitazion techniques in the sense of [BM97] to ZC finding a
smoothing of the cell C. Thus, we see that the smoothing map 'C of a single cell C
of V is even-to-one over UC . Since the global maps ' in Theorem A and Theorem
B are constructed in terms of the local maps 'C , we deduce that ' is even-to-one
over each open set UC , hence, in particular, ' is even-to-one over each intersection
UC \X.

Let us give a definition.

Definition B.1.1. Let X 0, ', U and W be as in the previous Theorem A, that
is, X 0 is an analytic manifold of pure dimension k, ' : X 0 ! V is a proper analytic
mapping, U is an open subset of the smooth part of X of dimension k and W is a
connected component of U such that '(X 0) ⇢ X, dim(X \ U) < k, '�1(X \ U) is a
simple normal crossings hypersuface of X 0 and '�1(W ) is a finite union of subsets
open and closed in '�1(U), each mapped isomorphically onto W by '. We call
the triple � := (X 0,', U) global smoothing section of X ⇢ V and the finite positive
number of subsets open and closed in '�1(U), each mapped isomorphically onto W
by ', as the degree of � over W .

Theorem A asserts that global smoothing sections of X ⇢ V always exist.

Thanks to [BP18, Remark 2.6], if V = R
n and X is a closed semialgebraic subset

of Rn, then Theorem B can be strengthened by requiring the mapping in (2) to
be injective. On the other hand, in the setting of Theorem A, it is not possible in
general to choose a global smoothing section (X 0,', U) of X ⇢ R

n whose degree in
each connected component of U is equal to 1, as it happens in the case of Hironaka’s
resolution of singularities, see Example B.2.5 below.

The aim of this note is to give a criterion for the evenness of the degree of global
smoothing sections on the connected components over an arbitrary open subset U of
the smooth part of X of dimension k. This criterion aims to be useful, somehow, in
producing counterexamples about the existence of a global smoothing section with
U to be the entire smooth part of X of dimension k, as Bierstone and Parusiński
assert to believe in [BP18, p. 3117] without explicit examples.

B.2. The evenness criterion, consequences and examples

By Whitney’s embedding theorem we can assume that the analytic manifold V
coincides with R

n. Let X be a subanalytic subset of Rn and let k 2 N. Recall that
a point x 2 X is smooth of dimension k if there exists an open neighborhood N of x
in R

n such that X \N is an analytic submanifold of Rn of dimension k, see [BM88,
Definition 3.3]. The set of all points of X of dimension k is an open subset of X and
an analytic submanifold of Rn of pure dimension k.

Let us introduce the concept of nonbounding equator for subanalytic sets.

Definition B.2.1. Let X be a closed subanalytic subset of Rn of dimension k,
let W be an open subset of the smooth part of X of dimension k and let Y be a
subset of W . We say that Y is a nonbounding equator of W in X if it satisfies the
following properties:
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(i) Y is a compact C1 submanifold of Rn of dimension k � 1.
(ii) Y does not bound, that is, it is not the boundary of a compact C1 manifold

with boundary.
(iii) Y has a collar in W , that is, there exists a C1 map  : Y ⇥ (�1, 1) ! W

such that the image T :=  (Y ⇥ (�1, 1)) of  is an open neighborhood of
Y in W , the restriction  : Y ⇥ (�1, 1) ! T is a C1 di↵eomorphism and
 (Y ⇥ {0}) = Y .

(iv) There exists a relatively compact open subset K of X such that @K :=
K \K = Y and K \ T =  (Y ⇥ (�1, 0)). Here K denotes the closure of K
in X.

If such a Y exists, we say that W has a nonbounding equator in X.

The next lemma gives an alternative description of the notion of nonbounding
equator. We keep the notations of Definition B.2.1.

Lemma B.2.2. The set Y is a nonbounding equator of W in X if and only if
there exists a continuous function h : X ! R with the following properties:

(i) There exist an open neighborhood Z of Y in W and ✏ > 0 such that the
restriction h0 := h|Z : Z ! R is a C1 function, h�1([�✏, ✏]) is a compact
neighborhood of Y in Z containing no critical points of h0 and h�1(0) = Y .

(ii) Y does not bound.
(iii) The subset h�1((�1, 0]) of X is compact.

Proof. Let X, k, W , Y ,  : Y ⇥ (�1, 1) ! W and K be as in Definition B.2.1
and let ⇡ : Y ⇥ (�1, 1) ! (�1, 1) be the projection onto the second factor. Let us
prove that Lemma B.2.2(i)-(iii) are satisfied. Define Z :=  (Y ⇥ (�1/2, 1/2)) and
h0 : Z ! R as h0(x) := (⇡ �  )�1(x). Then extend h0 to the whole X as follows:
define h : X ! R as h(x) := �1/2 if x 2 K \ Z, h(x) := h0(x) if x 2 Z and
h(x) := 1/2 otherwise. Fix ✏ := 1/4. Observe that h|Z = (⇡ �  �1)|Z , thus h|Z
has no critical points, h�1([�1/4, 1/4]) =  (Y ⇥ [�1/4, 1/4]), which is compact and
contains Y , and h�1((�1, 0]) = K [ Y = K.

On the other hand, assume that X, Y , W , Z and h satisfy conditions Lemma
B.2.2(i)-(iii). By Lemma B.2.2(i) and [Hir94, Corollary 2.3, p. 154], h|h�1([�","])
induces the existence of a collar of Y in W , as in Definition B.2.1(iii). More-
over, by Lemma B.2.2(i)(iii), we have that K := h�1((�1, 0)) satisfies Definition
B.2.1(iv). ⇤

Our evenness criterion reads as follows.

Theorem B.2.3. Let X be a closed subanalytic subset of Rn, let � := (X 0,', U)
be a global smoothing section of X ⇢ R

n and let W be a connected component of U .
If W has a nonbounding equator in X then the degree of � over W is even.

Proof. Let Y ⇢ W be a nonbounding equator of W in X. By Definition B.2.1,
there is an open neighborhood T of Y in W , a di↵eomorphism  : Y ⇥ (�1, 1) ! T
such that  (Y ⇥ {0}) = Y and a relatively compact open subset K of X such that
@K = Y and K\T =  (Y ⇥(�1, 0)). Since � is a global smoothing section, '�1(W )
consists of a finite disjoint union of open and closed subsets of '�1(U), each mapped
isomorphically onto W . Hence, each connected component of '�1(W ) contains a
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copy of Y and a copy of the collar T of Y in W . By Definition B.1.1, the map
' is proper, hence '�1(K) is a compact subset of X 0. Moreover, since @K = Y ,
K\T =  (Y ⇥(�1, 0)) and ' is a di↵eomorphism when restricted to each connected
component of '�1(W ), we have that '�1(K) is a manifold with boundary whose
boundary is the disjoint union of d copies of Y , where d denotes the degree of �
over W . Since Y is nonbounding, we deduce that d is even since the Stiefel-Whitney
numbers of

F
d

1 Y must be all zero [MS74, Theorem4.9, p. 52]. ⇤

As a consequence, the nonexistence of nonbounding equators of the smooth part
of X of dimemension k is a necessary condition to have global one-to-one smoothings
similar to Hironaka’s resolution of singularities.

Corollary B.2.4. Let X be a closed subanalytic subset of Rn. If the degree
of a global smoothing section of X ⇢ R

n over W is 1, then W does not have any
nonbounding equator in X.

Here we present some examples of semialgebraic sets concerning our Theorem
B.2.3.

Example B.2.5. Let X := R�0 := {x 2 R |x � 0}. There is a global smoothing
section of the whole smooth part of X, that is � := (X 0,', U) with U := R>0 =
{x 2 R |x > 0}, X 0 := {(x, y) 2 R

2 |x = y2} and ' : X 0 ! X defined as the
projection onto the first factor. According to our Theorem B.2.3, the degree of the
above smoothing section over the whole smooth part of X is 2. But our result says
something more, indeed any global smoothing section � := (X 0,', U) of X, with U
any open subset of the smooth part of X, has even degree over any connected com-
ponent of U . Indeed, since U is an open subset of R>0, every connected component
of U has a nonbounding equator Y consisting of a singleton {p}, with K := [0, p)
and the collar (p� ", p+ ") ⇢ U of p in W , for ✏ > 0 su�ciently small.

Examples B.2.6. Let M be a connected compact C1 manifold of dimension
k � 1, which does not bound (so k � 1 � 2): for instance, the real projective plane
P
2(R). By the Nash-Tognoli theorem, [Nas52] and [Tog73], we can assume that M

is a compact nonsingular real algebraic subset of some R
n.

(1) Consider the standard circumference S
1 := {(a, b) 2 R

2 : a2 + b2 = 1},
the compact nonsingular real algebraic set X 0 := M ⇥ S

1 ⇢ R
n+2, and the

polynomial maps ⇡1 : X 0 ! R
n+2 and ⇡2 : Rn+2 ! R

n+2 defined as follows:

⇡1(x, a, b) := (bx, a, b) and ⇡2(x, a, b) := (x, a, b2),

where x = (x1, x2, . . . , xn). The set ⇡1(X 0) is equal toX 0 withM⇥{(�1, 0)}
crushed to the point p := (0, . . . , 0,�1, 0) and M ⇥ {(1, 0)} crushed to the
point q := (0, . . . , 0, 1, 0). The setX := ⇡2(⇡1(X 0)) is a semialgebraic subset
of Rn+2 homeomorphic to the suspension ofM . DefineX 0

± := X 0\{±b > 0}
and the polynomial map ' : X 0 ! R

n+2 by '(x, a, b) := ⇡2(⇡1(x, a, b)). Ob-
serve that '(X 0) = X, '�1(p) = M ⇥ {(�1, 0)}, '�1(q) = M ⇥ {(1, 0)},
and the restriction of ' from X 0

± to U := X \ {p, q}, namely to the whole
smooth part of X, is a Nash di↵eomorphism between connected Nash man-
ifolds. For more details about Nash functions and Nash manifolds we refer
to [BCR98, § 8]. The triple � := (X 0,', U) is a global smoothing section of
X ⇢ R

n+2 and '(M ⇥ {(0, 1)}) is a nonbounding equator of W := U in X.
The degree of � over W is two, in accordance with our Theorem B.2.3.
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(2) Let Z 0 := M ⇥ [�1, 1] ⇢ R
n+1, let � : Z 0 ! R

n+1 be the polynomial map

�(x, a) := (x(1� a2), a)

and let X be the semialgebraic subset �(Z 0) of Rn+1. Observe that X is
homeomorphic to the suspension of M , ��1(z±) = M ⇥ {±1}, where z± :=
(0, . . . , 0,±1), the restriction of � from Z 0 \ (M ⇥ {�1, 1}) = M ⇥ (�1, 1)
to U := X \ {z�, z+} is a Nash di↵eomorphism between connected Nash
manifolds (so � has degree one over U), and �(M ⇥ {0}) is a nonbounding
equator of W := U in X. However, the triple (Z 0,�, U) is not a global
smoothing section of X ⇢ R

n+1, because Z 0 is not an analytic manifold: it
has the nonempty boundary M ⇥ {�1, 1}.

Nevertheless, the previous construction arises as an explicit case of The-
orem B. Let V := R

n+1. By [AK92, Corollary 2.5.14, p. 50] we may assume
in addition that M is projectively closed, that is M is the zero set ZRn(p)
in R

n of some overt polynomial p 2 R[x1, . . . , xn]. Write p as follows: p =P
d

i=0 pi, where pi is an homogeneous polynomial of degree i. Recall that
ZRn(pd) = {0} as p is overt. Thus, if ' : Rn+1 ! R

n+1 is the polynomial
map (x, a) 7! ((1 � a2)x, a), Z := '(M ⇥ R) and q(x, a) 2 R[x1, . . . , xn, a]
is the polynomial q(x, a) :=

P
d

i=0(1� a2)d�ipi(x), then M ⇥R = ZRn+1(p)
and q('(x, a)) = (1� a2)dp(x) = 0 for all (x, a) 2 M ⇥ R. It follows that

Z = ZRn+1(q).

This proves that Z is algebraic and irreducible, so Z is the Zariski closure
of X in R

n+1. Thus, we deduce that X, Z, Y := {z�, z+}, U , Z 0 and X 0

constitute an explicit embedded global smoothing as in [BP18, Remark 2.6].
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Sci. École Norm. Sup. (4) 22.1 (1989), pp. 1–32. issn: 0012-9593. doi:
10.24033/asens.1573.

[Wal57] Andrew H. Wallace. “Algebraic approximation of manifolds”. In: Proc.
London Math. Soc. (3) 7 (1957), pp. 196–210. issn: 0024-6115. doi: 10.
1112/plms/s3-7.1.196.

[Whi36] Hassler Whitney. “Di↵erentiable manifolds”. In: Ann. of Math. (2) 37.3
(1936), pp. 645–680. issn: 0003-486X. doi: 10.2307/1968482.

[Whi65] Hassler Whitney. “Local properties of analytic varieties”. In: Di↵erential
and Combinatorial Topology (A Symposium in Honor of Marston Morse).
Princeton Univ. Press, Princeton, N.J., 1965, pp. 205–244.

https://doi.org/10.1016/S0040-9383(99)00013-0
https://doi.org/10.2307/1969649
https://doi.org/10.4171/CMH/490
https://doi.org/10.2140/ant.2018.12.1215
https://doi.org/10.2140/ant.2018.12.1215
https://arxiv.org/abs/2210.06841
https://arxiv.org/abs/2210.06841
https://arxiv.org/abs/2302.04673
https://arxiv.org/abs/2302.04673
https://doi.org/10.1007/BFb0078571
https://doi.org/10.1007/BF02566923
https://doi.org/10.24033/asens.1573
https://doi.org/10.1112/plms/s3-7.1.196
https://doi.org/10.1112/plms/s3-7.1.196
https://doi.org/10.2307/1968482


BIBLIOGRAPHY 135

[Zel83] Andrei Zelevinsky. “Small resolutions of singularities of Schubert vari-
eties”. In: Funktsional. Anal. i Prilozhen. 17.2 (1983), pp. 75–77. issn:
0374-1990.

[ZS75] Oscar Zariski and Pierre Samuel. Commutative algebra. Vol. II. Graduate
Texts in Mathematics, Vol. 29. Reprint of the 1960 edition. Springer-
Verlag, New York-Heidelberg, 1975, pp. x+414.


	Introduction
	State of the art & open problems
	Main results
	Structure of the thesis

	Chapter 1. Algebraic geometry over subfields
	1.1. K-Algebraic sets
	1.2. Galois completion & complex K-algebraic sets
	1.3. Galois completions & real K-algebraic sets
	1.4. Algebraic sets defined over K
	1.5. Regular and singular points of K-algebraic sets
	1.6. K-Determined K-algebraic sets

	Chapter 2. Q-Nonsingular Q-algebraic sets
	2.1. Q-Regular maps & projectively Q-closure
	2.2. Q-algebraic embeddings of some special manifolds
	2.3. Q-Desingularization of real embedded Schubert varieties
	2.4. Unoriented (co)bordism and homology over Q
	2.5. Unoriented relative bordisms over Q

	Chapter 3. Q-algebraic approximations à la Akbulut-King
	3.1. Q-Approximable pairs
	3.2. The workhorse theorem over Q and applications
	3.3. Q-Algebraic blowing down with approximation

	Chapter 4. Q-Algebrization results
	4.1. Relative Q-algebrization problem for nonsingular algebraic sets
	4.2. Q-Algebrization of Nash manifolds over real closed fields
	4.3. Global Q-algebrization of isolated singularities
	4.4. Local Q-algebrization of isolated singularities

	Appendix A. Smooth variants of Baro-Fernando-Ruiz results
	A.1. Relative Nash approximation techniques

	Appendix B. On the degree of global smoothing mappings of subanalytic sets
	B.1. Global smoothings of subanalytic sets
	B.2. The evenness criterion, consequences and examples

	Bibliography

