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ABSTRACT 

How does the brain represent information about motion events in relation to agentive and 

physical forces? In this study, we investigated the neural activity patterns associated with 

observing animated actions of agents (e.g., an agent hitting a chair) in comparison to similar 

movements of inanimate objects that were either shaped solely by the physics of the scene (e.g., 

gravity causing an object to fall down a hill and hit a chair) or initiated by agents (e.g., a visible 

agent causing an object to hit a chair). Using fMRI-based multivariate pattern analysis, this 

design allowed testing where in the brain the neural activity patterns associated with motion 

events change as a function of, or are invariant to, agentive versus physical forces behind them. 

Cross-decoding revealed a shared neural representation of animate and inanimate motion events 

that is invariant to agentive or physical forces in regions spanning frontoparietal and posterior 

temporal cortices. In contrast, the right lateral occipitotemporal cortex showed higher sensitivity 

to agentive events, while the left dorsal premotor cortex was more sensitive to information about 

inanimate object events that were solely shaped by the physics of the scene. 
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Introduction 

Understanding others’ actions is fundamental to our everyday lives. Whether navigating 

through a crowded street or talking to someone, our brains process a variety of cues related to 

people, objects, and their interactions to arrive at a meaningful interpretation. Previous work 

identified certain frontoparietal and posterior temporal brain regions that are involved in 

understanding others’ actions (Caspers et al., 2010; Watson et al., 2013; Urgesi et al., 2014; 

Hardwick et al., 2018). These regions encode various aspects of human actions such as body 

motion (Grosbras et al., 2012; Han et al., 2013), agency (Gao et al., 2012; Scholl and Gao, 2013), 

sociality (Iacoboni and Dapretto, 2006; Isik et al., 2017; Wurm et al., 2017), motor 

representations (Rizzolatti and Craighero, 2004; Calvo-Merino et al., 2006), and goals (Iacoboni 

et al., 2005; Cavallo et al., 2016; Patri et al., 2020). 

While it is important to investigate how the brain represents information specific to 

human actions, it is also crucial to acknowledge that actions can be understood at a more basic 

level as the movements of physical objects. After all, humans are tangible objects existing in a 

physical world, generating forces, and moving through space. That is, the actions of an animate 

being can be described with respect to agency or goals, but also at a level specifying kinematics 

of movement (Zacks et al., 2006; Dayan et al., 2007; Mulliken et al., 2008; McAleer et al., 

2014), inter-object relations (Hafri and Firestone, 2021) or the amount of physical force exerted 

(Liu et al., 2017). Is there a neural representation of events that encodes such properties 

regardless of animacy or agency? Which brain regions are more sensitive to agentive versus 

physical event dynamics? These are the questions addressed in the current study. 

We define motion events as changes in an object's position relative to its surroundings. 

For a motion event to occur, a force needs to be applied upon an object, causing it to accelerate 
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or decelerate. Various physical forces can shape motion, and importantly, animate agents can 

generate and control their own movement. Relatedly, for the purposes of this study, we 

categorized forces that control movement as agentive or physical. For instance, a person rising 

from a chair involves an agentive force, controlled by the individual, in a way that cannot be 

reduced to external physical forces. In contrast, an inanimate object, incapable of self-propelled 

motion, requires an external energy source to move. The movements of an  inanimate object can 

be fully explained by external physical forces, the source of which can be agentive (e.g., a person 

throwing a rock) or physical (e.g., a rock falling off a cliff). 

Within this framework, our study addressed the contributions of agentive and physical 

forces on the neural representation of motion events. Our experimental conditions included 

events driven entirely by the physics of the scene devoid of any agent involvement (e.g., a ball 

rolls down a slope due to gravitational pull and bounces over a chair), as well as events tied to 

animate agents, either as the cause of inanimate motion (e.g., a visible agent causes a ball to 

descend a slope and bounce over a chair) or as executors of an action (e.g., an agent bounces 

over a chair). We ensured that the unfolding of events, motion trajectories, and inter-object 

relations were analogous across all experimental conditions (e.g., X bounces over Y). 

Using fMRI-based multivariate pattern analysis and cross-decoding, we identified a 

neural representation of motion events that is invariant to agentive or physical forces in 

frontoparietal and posterior temporal regions that are associated with human action recognition. 

Furthermore, right lateral occipitotemporal cortex showed greater sensitivity to events involving 

animacy and agency, while the left dorsal premotor cortex was more sensitive to information 

about inanimate object events that were shaped by the physics of the scene. Overall, our study 
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provides new insights into the functional properties of brain regions that are involved in human

action understanding. 

 

Figure 1. Sample stimuli and experimental design. (A) Experimental conditions and sample 
trials. For all experimental conditions, 2-sec videos were used depicting the movements of a 
spheric agent or a ball. (B) Events used for decoding. For all experimental conditions, three 
motion trajectories were used in relation to an animate or inanimate passive patient: bounce 
over – hit – roll in front.  

 

Materials and Methods 

5

an 
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Participants. Twenty-nine healthy adult participants completed the study (nine male; age range: 

21-34; Meanage: 25.62). Neuroimaging data and participant performance were inspected for 

quality and four subjects were excluded from the analyses (see Preprocessing for more detail). 

The final dataset included 25 participants. All participants were right-handed and had normal or 

corrected-to-normal vision. Participants provided informed consent prior to the experiment and 

were paid 75 dollars for a 2-hour scanning session. The experimental protocol was approved by 

Harvard University’s Committee on the Use of Human Subjects. 

Stimuli. To identify where in the brain the neural activity patterns associated with motion events 

are invariant to, or change as a function of, agentive and physical forces, we used fMRI while 

participants viewed 2-sec animated videos (see Figure 1). We produced the videos using Blender 

v2.92, a free and open-source animation software (Blender Foundation, 2021), and presented 

them at the center of fixation with a frame rate of 30 frames per second. For stimulus 

presentation, response collection, and synchronization with the scanner, we used MATLAB 

Psychtoolbox-3. 

Our stimuli comprised four event conditions: object eventsphysical (e.g., gravity makes a 

ball roll down a hill and the ball bounces over a chair as governed solely by the inherent physics 

of the scene), object eventsagent-induced (e.g., an agent causes a ball to roll down a hill and the ball 

bounces over a chair), agent actionsself-propelled (e.g., a stationary agent at the bottom of the hill 

starts moving and jumps over a chair in a fully self-propelled way), and agent actionsobject-path 

(e.g. an agent slides down a hill and bounces over a chair following the same trajectory as the 

inanimate object events, see Figure 1A for sample stimuli, see Supplementary Figure 1 for 

univariate activation maps). All events took place within a scene layout of a hill and a meadow. 

The hill in the scene enabled introducing gravity and control of physical forces such that an 
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object can move without agent involvement (see Results for more detail on how the different 

conditions were used to address different aspects of motion event representation in the brain).   

All experimental conditions depicted three motion trajectories with respect to a passive 

patient in the scene (“bounce over”, “hit”, “roll in front of”, see Figure 1B), creating 12 unique 

motion events (4 experimental conditions * 3 motion trajectories). These three motion 

trajectories were used as the basis for all decoding analyses within or across experimental 

conditions (for more detail, see Whole-brain searchlight MVPA). We created 64 exemplars per 

unique motion event, through which we introduced significant perceptual variability (see 

Supplementary Figure 2). Through these exemplars, all motion events were presented across four 

viewing angles, two moving directions (left or right), two subjects (ball-basketball for inanimate 

objects; red agent-blue agent for animate agents), and four passive patients (two inanimate 

patients: chair or box; two animate patients: pink agent-orange agent). For instance, the “roll in 

front of” event featuring the “object eventsphysical” condition was depicted across these 64 

different exemplars. This strategy helped control for low-level visual confounds that might 

distinguish one motion trajectory from another (e.g., presence of an animate entity, presence of 

occlusion, where in the scene there is movement), ensuring that decoding is not merely a 

consequence of such low-level visual features. 

Design of the fMRI experiment. Participants underwent one scanning session that started with 

an anatomical scan followed by eight functional runs; each run contained four blocks, and each 

block contained 28 trials (24 experimental trials, and four catch trials). We used an event-related 

design to present the stimuli, and the different event conditions and motion trajectories were 

interspersed within runs in a randomized fashion. There were 96 experimental trials (24 

experimental trials per block x 4 blocks = 96) and 16 catch trials per run, and each trial consisted 
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of a 2-sec video followed by a 1-sec fixation period. We showed longer fixation periods of 10-

sec before runs, 16-sec after runs, and 10-sec between blocks. Over the course of the 96 

experimental trials within a run, we showed each of the 12 unique motion events (4 event 

conditions * 3 motion trajectories) eight times (twice per block, once with animate and once with 

inanimate patients). Due to logistical challenges, some participants were not able to complete all 

eight runs; however, since different event conditions were balanced within runs and exemplars 

were sampled randomly across runs, this is unlikely to have resulted in confounds. In the final 

dataset, all 25 subjects provided data at least for seven out of the eight runs. 

Task. To ensure that participants paid attention to the events depicted in the videos, we 

conducted a catch trial detection task: participants were asked to press a button when they 

detected aberrant videos (16 catch trials per run, 14% of all trials). These aberrations were either 

perceptual, in which a visual oddity was introduced to the video (e.g., color change, freezing), or 

conceptual, in which the video depicted a meaningfully different movement (e.g., a ball rolling 

down the back of the hill; an agent turning around prior to movement). The catch trial task 

ensured that participants paid attention to the stimuli, both to their visual features (through the 

perceptual catch trials), and their higher-level aspects (through the conceptual catch trials). 

Responses made prior to the end of the 1-sec fixation period following each trial were counted. 

Prior to the scanning session, we showed participants demo videos, explained that catch trials 

would contain either perceptual or conceptual aberrations, and then showed a sample of the 

experimental layout. During the anatomical scan, participants completed a practice run, in which 

the screen displayed feedback after both correct and incorrect responses; no feedback was shown 

during the actual experiment.  
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During the functional scans, we presented an equal number of catch trials for each of the 

four experimental conditions, and the variations in viewpoint and moving direction were 

counterbalanced. Participants showed high performance in the catch trial task with low false 

alarm rates (M = .006, SD = .007) and high hit rates (M = .953, SD = .036). For two participants, 

catch trial performance could not be recorded due to technical issues. These participants 

performed with high accuracy as observed throughout the data collection, thus, we chose to keep 

these participants in the analysis of the neuroimaging data. One run each of three participants 

were excluded due to off-task behavior during the scans (e.g., sleeping). 

Data Acquisition. The neuroimaging data were collected using a 3T Siemens Prisma fMRI 

Scanner using a 32-channel phased-array head coil. T1-weighted structural images were obtained 

using a 3D MPRAGE sequence (176 sagittal slices; repetition time (TR) = 2530 msec; inversion 

time = 1020 msec; flip angle = 7 degrees; field of view (FoV) = 256 x 256 mm; 1x1x1 mm voxel 

resolution). Functional images were acquired using a T2*-weighted gradient echo-planar 

imaging (EPI) sequence (TR = 1500 msec; echo time (TE) = 28 msec; inter slice time = 33 msec; 

flip angle = 70 degrees; FoV = 200 mm x 200 mm; matrix size = 66 x 66; 3x3x3 mm voxel 

resolution; 45 slices with 3 mm thickness and 0 mm gap). 

Preprocessing. We preprocessed and analyzed functional and anatomical data using 

BrainVoyager 22.4, NeuroElf Toolboxes, CoSMoMVPA, and MATLAB 2021b (Goebel, 2012; 

Oosterhof et al., 2016). The first four volumes of functional runs were removed to prevent T1 

saturation. Preprocessing of functional data included slice time correction, three-dimensional 

motion correction (trilinear interpolation, the first volume of the first run of each participant was 

used as reference), linear trend removal, high pass filtering (cutoff frequency of three cycles), 

and spatial smoothing (Gaussian kernel of 8mm FWHM for univariate analyses and 3 mm 
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FWHM for MVPA). Functional images were registered to high-resolution anatomical images, 

and anatomical and functional data were normalized to Talairach space. We inspected all 

anatomical and functional scans for data quality and excluded scans that had a maximum 

absolute motion greater than 3mm and a signal-to-noise ratio lower than 130. Based on these 

criteria, two out of the 29 participants were excluded due to low data quality as many of their 

runs did not meet these quality criteria, leaving limited data for analyses. Another two 

participants were excluded from the analyses due to logistical issues during their scan and off-

task behavior. Out of the remaining 25 participants, only one run of one participant was excluded 

for not meeting the quality criteria for functional scans. Thus, the analyses presented in the paper 

contain high quality functional data with low motion and high signal-to-noise ratio. 

fMRI Data Analysis. For each participant and run, we computed a general linear model using 

design matrices containing 24 event predictors (separate predictors were fit for animate-

inanimate patients per 12 unique motion events), plus one predictor for catch trials. Regressors 

were defined as boxcar functions convolved with a canonical double-gamma hemodynamic 

response function. Trials were modeled as epochs lasting from video onset to offset (2-sec) and 

the resulting reference time courses were used to fit the signal time courses of each voxel. In 

total, this procedure resulted in 16 beta maps per 12 unique motion event per subject. 

Whole-brain searchlight MVPA. To investigate the neural representation of motion events in 

relation to agentive and physical forces, we used multivariate pattern analysis techniques 

(MVPA). For all MVPA analyses, decoding was completed over three motion trajectories 

defined with respect to a passive patient (i.e., bounce over – hit – roll in front, see Figure 1B). A 

linear discriminant analysis classifier algorithm was trained and tested on the beta maps, divided 
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into four-voxel-radius spheres (12mm), to classify the associated stimuli by motion trajectory 

(three-way decoding, chance-level: 33.33%). 

To investigate the neural representation of motion events in relation to different 

experimental conditions, we employed two decoding approaches. Firstly, within-condition 

decoding was used, where a classifier was trained and tested to differentiate between the three 

motion events within a specific experimental condition (e.g., self-propelled agent actions) using 

leave-one-out cross-validation. To test for differences in decoding strength across the different 

experimental conditions, we compared the respective decoding maps using whole-brain two-

tailed paired t-tests. To identify the neural representations shared across agentive and physical 

dynamics, we performed cross-decoding. This involved training the classifier on data from one 

condition (e.g., distinguishing bounce over – hit – roll in front for physical object events) and 

then testing it on data from another condition (e.g., distinguishing bounce over – hit – roll in 

front for self-propelled agent actions). We repeated this process in the opposite direction and 

averaged the resulting classification accuracies. The resulting accuracy maps from the decoding 

analyses were entered into one-tailed t-tests to test for above chance classification in the whole 

brain (chance level: 33.33%). We used the Monte Carlo Cluster based method to correct for 

multiple comparisons (initial threshold: p = .001, 10000 simulations), and visualized the results 

on a cortex-based surface. 

In our decoding analyses, we treated the motion events with different subjects, animate or 

inanimate passive patients, viewing angles, and moving directions as the “same event”. This 

approach allowed the classifier to learn to detect the motion events regardless of variability in 

these factors. Since the classifiers were trained to distinguish the three motion events across 

these variations, any differences observed in decoding between different experimental conditions 
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(e.g., between object eventsphysical versus agent actionsself-propelled) cannot be reduced to these 

factors. 

ROI analysis. We primarily focused on and report whole-brain searchlight maps. However, to 

gain a more detailed understanding of how information about motion events is represented in 

different brain regions, we conducted region-of-interest (ROI) analyses on specific areas that are 

traditionally associated with human action observation following a meta-analysis (Caspers et al., 

2010): the lateral occipitotemporal cortex (LOTC), inferior parietal lobule (IPL), dorsal premotor 

cortex (PMd), ventral premotor cortex (PMv), posterior superior temporal sulcus (pSTS), and 

superior parietal lobule (SPL). The MNI coordinates from the meta-analysis were converted to 

TAL coordinates using Yale Bioimage Suite (Papademetris et al., 2006; Lacadie et al., 2008). 

Since the meta-analysis provided a different number of ROIs in the frontoparietal cortices for left 

and right hemispheres, for simplicity, we used the centroid of Brodmann areas 6 and 7 for dorsal 

premotor cortex and superior parietal lobules, respectively (Lacadie et al., 2008). All ROIs were 

created as spheres with a 12mm radius around their respective coordinates (TAL coordinates: left 

LOTC [-45 -71 6], left IPL [-58 -23 34], left PMd [-28 0 48], left PMv [-48 8 29], left pSTS [−52 

−49 11], left SPL [-18 -57 50]; right LOTC [52 -63 5], right IPL [44 -31 41], right PMd [28 1 

47], right PMv [50 12 27], right pSTS [54 −40 8], right SPL [24 -56 54]). 

For the ROI analyses, we extracted decoding accuracies from the searchlight maps for 

each classification scheme (e.g., decoding of self-propelled agent actions), participant, and ROI. 

We then entered the decoding accuracies for ROIs into FDR-corrected one-tailed t-tests to 

identify which ROIs showed above chance classification. To investigate differences in decoding 

strength across event types and ROIs, we applied linear mixed effects models using the lme4 

package (Bates et al., 2015) in R version 4.1.1. (R Core Team, 2021). To examine interactions 
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between event type and ROI, we compared models with and without the interaction term using a 

likelihood ratio test. For instance, to test the interaction between event type and ROI, Model 1 

included Classification Accuracy, Region, Event Type, and Subject ID as a random effect (1 | 

Subject ID) and did not allow for an interaction term between Region and Event Type (Region + 

Event Type). We then compared Model 1 with Model 2, which expanded on Model 1 by 

including an interaction term between Region and Event Type (Region * Event Type). After 

significant interactions or main effects, we conducted FDR corrected post-hoc two-tailed tests of 

estimated marginal means to investigate which conditions are responsible for driving the 

observed effects. 

Results 

A shared neural representation of motion events across agentive and physical forces. One of 

our main aims was to identify a neural representation of motion events that is invariant to 

agentive or physical forces behind them. To this end, we first focused on two conditions: self-

propelled agent actions and physical object events. To make sure that the self-propelled agent 

actions depicted full agentive control, an animated agent (a solid-color sphere with eyes and 

mouth) stood stationary on a flat surface and then started moving (see Figure 1A). These agent 

actions served as reference for human actions that are broadly studied in the literature, as 

substantial literature has shown that animations of simple geometric figures can elicit robust 

perceptions of animacy and agency, especially when they move in a self-propelled way (Heider 

and Simmel, 1944; Michotte, 1946; Scholl and Tremoulet, 2000; Blakemore et al., 2001).  

On the opposite end of these self-propelled, agentive actions were physical object events 

that were governed fully by the physics of the scene without any agent involvement. These 

events started with a ball toppling off a ledge atop a hill. The ball would then fall down the hill to 
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complete one of the three motion trajectories (i.e., bounce over – hit – roll in front) as controlled

by a physics engine built into the animation software. An independently collected behavioral

survey confirmed that observers did not attribute agent involvement to these events (see

Supplementary Figure 3, Supplementary Note 1). 

 

 
Figure 2. Decoding of observed events by generalizing across animacy, and agentive and 
physical forces. (A) Results of whole-brain three-way decoding searchlight across self-
propelled agent actions and physical object events. (B) Results of whole-brain three-way 
decoding searchlight across self-propelled agent actions and agent-induced object events (one 
tailed t-tests against chance level 33.33%). Correction for multiple comparisons was 
conducted using the Monte Carlo Cluster based method (pinitial = .001). Only the areas that 
survived correction are presented as highlighted by a black border.  
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To identify brain regions that encode a general neural representation of motion events 

independent of agentive or physical forces, we conducted cross-decoding MVPA across self-

propelled agent actions and physical object events. Cross-decoding revealed robust 

generalization across self-propelled agent actions and physical object events in various 

frontoparietal and posterior temporal clusters in both hemispheres (see Figure 2A, for ROI 

analysis see Supplementary Figure 4B). Success in this cross-decoding reflects event 

representations that are not tied to animacy or the type of force controlling the event – agentive 

or physical. 

We found a shared neural representation for self-propelled agent actions and physical 

object events in regions classically associated with human action recognition. As we noted 

before, the source of an inanimate objects’ movement can be agentive or physical. Is this shared 

neural representation we identified independent of whether the movement is caused by an agent 

or physical forces? How does the presence of causal agency in the movement of inanimate 

objects affect their neural representation compared to actions performed by animate entities? 

To address this question, we created instrumental object events that had a visible agent 

cause behind them: agent-induced object events. Here, a visible agent pushed a ball down the hill 

and as a result, the ball bounced over – hit – rolled in front of a passive patient (see Figures 1A-

B). The movements of the initiator agent were always the same across the three motion 

trajectories, and the meaningful distinctions happened in relation to the resulting movements of 

the ball. Thus, successful decoding of the three motion trajectories could not rely on the initiator 

agent’s movement and should capture the movements of the ball. Furthermore, to control for 

possible perceptual confounds between the physical object events and agent-induced object 

events, the ball’s movements were made identical in the two conditions: all that differed was the 
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presence of an animate agent initiating the object motion in agent-induced object events, and the 

rest of the path was controlled by the physics engine. An independently collected behavioral 

survey showed that observers endorsed the involvement of agents in these agent-induced object 

events (see Supplementary Figure 3, Supplementary Note 1). 

Cross-decoding of self-propelled agent actions and agent-induced object events was 

successful in overlapping frontoparietal and posterior temporal clusters (see Figure 2B). We 

hypothesized that regions that are sensitive to causal agency might demonstrate greater 

generalization between agent actions and agent-induced object events compared to physical 

object events that were purely governed by physical forces. No reliable differences were found in 

cross-decoding strength across the whole-brain when comparing the two cross-decoding maps 

from self-propelled agent actions to agent-induced or physical object events. (see Supplementary 

Figure 4A). In the ROI-analysis, cross-decoding between self-propelled agent actions and 

physical object events was stronger than that between self-propelled agent actions and agent-

induced object events in right and left LOTC (see Supplementary Figure 4B, Supplementary 

Note 2). However, note that agent-induced object events had a more complex event structure and 

depicted instrumental actions, whereas physical object events and self-propelled agent actions 

did not. This difference in complexity might explain better cross-decoding of self-propelled 

agent actions to physical object events compared to that between self-propelled agent actions and 

agent-induced object events in bilateral LOTC and might have masked any possible 

contributions of causal agency to cross-animacy generalization. 

Searching for signs of agency and animacy in the neural representation of motion events. 

Cross-decoding showed that regions classically associated with human action recognition carry a 

shared neural code for motion events that generalizes across animate and inanimate entities, and 
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agentive and physical forces. However, agent actions and movements of inanimate objects are 

marked by key differences. For example, their kinematics may differ, with agents able to change 

direction and speed while inanimate object movement is determined by external physical forces. 

Additionally, agent actions reflect the goal-directed behavior of animate entities, while object 

events pertain to inanimate physical objects. There is evidence that sensitivity to animacy and 

agency is present even from infancy (Opfer, 2002; Csibra, 2003, 2008; Tremoulet and Feldman, 

2006; Liu et al., 2017) and animacy is a widely established principle of organization in the neural 

representation of objects (Konkle and Caramazza, 2013; Grill-Spector and Weiner, 2014; Peelen 

and Downing, 2017; Wurm and Caramazza, 2022). Given these considerations, we next asked if 

any brain regions are sensitive to agentive versus physical forces while encoding dynamic event 

information. To address the differential roles of agentive and physical forces on the neural 

representation of motion events, we completed different decoding analyses. Specifically, we 

trained and tested classifiers with neural activity patterns associated with different experimental 

conditions separately (i.e., within self-propelled agent actions or physical object events), and 

compared their decoding strengths.  

We first investigated the decoding strengths of self-propelled agent actions and physical 

object events, which provides a robust testbed to investigate the relative contributions of agentive 

and physical forces to the neural representation of motion events. In line with previous findings, 

both event types were decoded in regions spanning posterior temporal, frontal, and parietal 

cortices (see Figures 3A-B). Comparing the two event types, a two-tailed whole-brain paired t-

test revealed multiple clusters spanning the right lateral occipitotemporal cortex, posterior middle 

temporal sulcus, temporoparietal junction, and supramarginal gyrus that can better distinguish 

self-propelled agent actions compared to physical object events (see Figure 3C). Although 
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additional clusters in left posterior temporal cortex showed better decoding of self-propelled 

agent actions, and some clusters in left dorsal premotor cortex showed better decoding of 

physical object events (ps < .005), these effects did not survive correction for multiple 

comparisons in the whole brain. For a more fine-grained analysis, we turned to the ROI analysis 

(see Figure 3D). 
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Figure 3. Decoding of self-propelled agent actions and physical object events. Results of 
whole-brain three-way decoding searchlight for (A) self-propelled agent actions and (B) 
physical object events (one tailed t-tests against chance 33.33%). Correction for multiple 
comparisons was conducted using the Monte Carlo Cluster based method (pinitial = .001). Only 
the areas that survived correction are presented as highlighted by a black border. (C) Two-
tailed whole brain decoding contrast of self-propelled agent actions physical object events. 
Black outlines mark areas that survived Monte Carlo Cluster based correction (pinitial = .001). 
The map is thresholded at p < .02 to demonstrate significant differences that do not survive 
correction for multiple comparisons. (D) ROI decoding accuracies for self-propelled agent 
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actions and physical object events. Error bars indicate standard error of the mean (SEM), and 
asterisks indicate FDR-corrected effects of one-tailed t-tests for comparisons against chance 
level (33.33%, *p < .05, **p < 0.01, ***p < 0.001). Individual participants are connected via 
light gray lines. FDR-corrected pairwise two-tailed tests of estimated marginal means showed 
better decoding of self-propelled agent actions in left and right LOTC, and right pSTS (*p < 
.05, **p < 0.01, ***p < 0.001). 
 

To compare decoding accuracies of self-propelled agent actions and physical object 

events across different ROIs within each hemisphere, we fitted linear mixed effect models testing 

the interaction of event type and ROI. This ROI by event type interaction was significant both in 

the left hemisphere (χ2[5] = 32.23, p < .001, ΔAIC = 22.23) and in the right hemisphere (χ2[5] = 

42.30, p < .001, ΔAIC = 32.30). Post-hoc contrasts revealed that self-propelled agent actions 

were decoded at a higher accuracy than physical object events in left LOTC (b = 4.60, p = .020, 

d = .68). In the remainder of the left hemisphere ROIs, self-propelled agent actions and physical 

object events were classified with a comparable accuracy (IPL: b =.19, p = .905, d = .03; PMd: b 

= -2.49, p = .217, d = -.44;  PMv: b = -.95, p = .646, d = -.16; pSTS: b = 3.25, p = .111, d = .59; 

SPL: b = -1.87, p = .342, d = -.23). In the right hemisphere, self-propelled agent actions were 

decoded at a higher accuracy than physical object events in right LOTC (b = 6.79, p < .001, d = 

.94) and pSTS (b = 5.10, p = .002, d = .81). Self-propelled agent actions and physical object 

events were classified with comparable accuracy in the remainder of the right hemisphere ROIs 

(IPL: b = 1.06, p = .476, d = .13; PMd: b = -1.17, p = .476, d = -.17; PMv: b = 1.48, p = .476, d = 

.23; SPL: b = -2.33, p = .234, d = -.32). 

Stronger decoding of self-propelled agent actions in LOTC and pSTS, particularly in the 

right hemisphere, replicates our previous study that addressed the shared and distinct neural 

representations of observed human actions and inanimate object events (Karakose-Akbiyik et al., 

2023). The current study adds to these findings and highlights that explicit body motion, and the 
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associated movement kinematics, are not necessary for driving differences between animate and 

inanimate movement in these regions. 

Comparing agent actions and object events in a more controlled setting. Self-propelled agent 

actions presented so far were highly effective in giving impressions of intentionality and 

agentive control. However, the overall trajectories of these stimuli were not completely matched 

with that of physical object events. In physical object events, the ball first fell down a hill, and 

completed one of the three motion trajectories. The agent actions on the other hand, started on a 

meadow and did not complete the extra step of going down a hill (see Figure 1A). To compare 

agent actions and object events in a more controlled setting, we created another agent action 

condition: agent actionsobject-path. These stimuli started with an agent standing atop a hill. The 

agent then slid down the hill to complete one of the three motion trajectories. Thus, the motion 

trajectories of the agent actionsobject-path stimuli were matched with that of physical object events, 

providing a controlled setting to identify the contributions of animacy. Furthermore, like physical 

object events, the motion trajectories of agent actionsobject-path were also determined by the 

physics engine. An independently collected behavioral survey ensured that these agent actions 

were still perceived as agentive compared to physical object events validating the use of these 

stimuli to test the contributions of agentive and physical forces to the neural representation of 

event dynamics (see Supplementary Figure 3, Supplementary Note 1). 
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Figure 4. Decoding of agent actionsobject-path and physical object events. Results of whole-
brain three-way decoding searchlight for (A) agent actionsobject-path and (B) physical object 
events (one tailed t-tests against chance 33.33). Correction for multiple comparisons was 
conducted using the Monte Carlo Cluster based method (pinitial = .001), and only the regions 
that survived correction for multiple comparisons are presented as highlighted by a black 
border. (C) Two-tailed whole brain t-test contrast of agent actionsobject-path and physical object 
events decoding. Black outlines mark clusters that survived Monte Carlo Cluster based 
correction (pinitial = .001). The map is thresholded at p < .02 to demonstrate significant 
differences that do not survive correction. (D) ROI decoding accuracies for agent actionsobject-

path and physical object events. Error bars indicate standard error of the mean (SEM), and 
asterisks indicate FDR-corrected effects of one-tailed t-tests for comparisons against chance 

22

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 24, 2023. ; https://doi.org/10.1101/2023.07.20.549905doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.20.549905
http://creativecommons.org/licenses/by-nd/4.0/


 23

level (33.33%, *p < .05, **p < 0.01, ***p < 0.001). Individual participants are connected via 
light gray lines. FDR-corrected pairwise two-tailed tests of estimated marginal means showed 
better decoding of agent actionsobject-path in right LOTC, and better decoding of physical object 
events in left PMd and SPL (*p < .05, **p < 0.01, ***p < 0.001). 
 

Consistent with previous results, decoding of agent actionsobject-path and object events was 

successful in mostly overlapping frontoparietal and posterior temporal brain regions (see Figure 

4A-B). Comparing the decoding strengths of the two conditions in the whole brain, a two-tailed 

t-test revealed better decoding for physical object events in a left dorsal premotor cortex cluster 

(see Figure 4C). Additional clusters in bilateral SPL and right LOTC showed a significant 

difference between the two event types (ps < .005), but these effects did not survive correction 

for multiple comparisons in the whole brain. For a more fine-grained analysis, we again turned to 

ROIs (see Figure 4D). 

All ROIs showed above chance decoding of agent actionsobject-path except for left ventral 

premotor cortex, which bordered at significance (p = .06). To test which regions show a 

difference in decoding for the two event types, we fitted linear mixed effect models testing the 

interaction of event type and ROI. This ROI by event type interaction was significant both in left 

(χ2[5] = 23.59, p < .001, ΔAIC = 13.59) and right hemispheres (χ2[5] = 34.40, p < .001, ΔAIC = 

24.40). In the left hemisphere, physical object events were decoded at a higher accuracy than 

agent actionsobject-path in left dorsal premotor cortex (b = -4.79, p = .017, d = -.65) and superior 

parietal lobule (b = -3.92, p = .043, d = -.43). Agent actionsobject path and physical object events 

were classified with comparable accuracy in the rest of the left hemisphere ROIs (LOTC: b = -

.15, p = .923, d = -.02; IPL: b = -1.83, p = .378, d = -.21; PMv: b = -2.69, p = .184, d = -.36; 

pSTS: b = .24, p = .923, d =.03). In the right hemisphere, agent actionsobject-path were decoded at a 

higher accuracy than physical object events in LOTC (b = 4.78, p = .003, d = .65). The rest of the 
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right hemisphere ROIs showed comparable decoding of agent actionsobject-path and physical object 

events (IPL: b = .71, p = .607, d = .10; PMd: b = -2.13, p = .243, d = -.35; PMv: b = .71, p = 

.607, d = .13; pSTS: b = 1.85, p = .267, d = .26), with a marginal trend in right SPL (b = -2.94, p 

= .099, d = -.45). 

Overall, we found increased sensitivity to events signaling animacy and agency in right 

lateral occipitotemporal cortex and posterior superior temporal sulcus. We also found greater 

sensitivity to physical event dynamics in left dorsal premotor cortex and, in the ROI analyses, 

also superior parietal lobule. Increased sensitivity to physical as opposed to agentive event 

dynamics in superior parietal lobule also held when comparing physical and agent-induced 

object events (see Supplementary Figure 5, Supplementary Note 3). Overall, compared to events 

that had some agent involvement, motion events that followed the physics of the scene 

emphasized parts of dorsal premotor cortex and superior parietal lobule. 

Discussion 

In frontoparietal and posterior temporal brain regions associated with human action 

understanding, we identified a shared neural representation of animate and inanimate motion that 

is also invariant to agentive or physical forces shaping the event dynamics. The right LOTC and 

pSTS exhibited higher sensitivity to events signaling animacy and agency, while the left dorsal 

premotor cortex and superior parietal lobules were more sensitive to events that were shaped by 

the inherent physics of the scene. Together with recent work showing a shared neural code for 

animate and inanimate motion, our findings highlight the general role of frontoparietal and 

posterior temporal regions in encoding the physics and kinematics of events regardless of 

animacy (Albertini et al., 2021; Karakose-Akbiyik et al., 2023). Here, we directly assessed the 

contributions of agentive versus physical control over movement and showed that these regions 
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can encode information about motion events at a level that does not concern whether the source 

of movement is tied to an agentive or physical force. 

We found increased sensitivity to events with agent involvement in right LOTC and 

pSTS. This finding is in line with the previous literature. Overall, it has been widely established 

that right LOTC and pSTS are sensitive to certain human-specific aspects of actions such as 

biological motion, social interactions, agency and intentionality (Saxe et al., 2004; Grafton and 

Hamilton, 2007; Isik et al., 2017; Tarhan and Konkle, 2020; Lee Masson and Isik, 2021; Pitcher 

and Ungerleider, 2021; Schultz and Frith, 2022). Nearby regions are also known to be involved 

in higher level cognitive processes such as theory of mind and social cognition (Pelphrey et al., 

2004; Deen et al., 2015). Combined with previous findings, our results underscore that the 

presence of simple cues signaling animacy (e.g., facial features) and agency (e.g., self-propelled 

motion) are enough to drive agent-specific responses in the right LOTC and pSTS, in the absence 

of bodies, or when movement patterns are matched between agents and inanimate objects in 

terms of their interpretability. 

We found increased sensitivity to events controlled by the physics of the scene in dorsal 

premotor cortex and superior parietal lobule. These regions are implicated in human action 

observation but are also considered to be a part of the brain’s intuitive physics network (Fischer 

et al., 2016; Pramod et al., 2022). There is now growing evidence that dorsal premotor cortex 

and superior parietal lobule are recruited when observers predict the unfolding of physical events 

as opposed to making other non-physical judgements about a scene (e.g., judging where an 

unstable tower of blocks would fall as opposed to judging whether it has more yellow or blue 

blocks). In these regions, there is also evidence for explicit representation of physical features 

such as object mass in both action planning (Van Nuenen et al., 2012) and physical inference 
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(Schwettmann et al., 2019). The dorsal premotor cortex and superior parietal lobules have also 

been shown to respond more to dynamic scenes depicting higher physical content, such as 

moving objects, compared to faces, scenes, or moving bodies (Fischer et al., 2016). Given these 

previous findings, increased sensitivity to physical event dynamics in dorsal premotor cortex and 

superior parietal lobule might have to do with greater recruitment of parameters related to 

physical inference. 

At this juncture, we would like to note that in a recent study, we found higher sensitivity 

to human actions compared to inanimate object events in the same superior parietal lobule ROI 

(Karakose-Akbiyik et al., 2023). However, in the current study, superior parietal lobule tended to 

show higher sensitivity to physical object events compared to cases where there was some 

animate agent involvement (e.g., agent actions, agent-induced object events). At a first glance, 

the reversal of the effect in SPL might be surprising. However, it is worth noting that in 

Karakose-Akbiyik et al. (2023), human actions depicted human body motion that has more 

complex mechanics than similar movements of a ball. In the current study, on the other hand, 

both animate agents and inanimate objects were presented as spherical geometric shapes. 

Furthermore, physical object events were fully governed by the physics engine and did not give 

any impressions of agent involvement, even behind the scenes. Taken together, these findings 

imply that SPL is sensitive to physical properties of movement, rather than agent-specific aspects 

of events. Hence, it might show sensitivity to the animate or the inanimate domain depending on 

the context and the specific kinds of stimuli. We do not have any direct evidence speaking to this 

hypothesis, but only a comparison of the patterns in our two studies. Future work could build 

upon these findings by investigating how the recruitment of regions associated with physical 
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inference varies across animate and inanimate movement by using stimuli with varying physical 

complexity. 

Overall, our findings contribute to an emerging framework on how the brain represents 

information about dynamic scenes. It appears that a specialized right lateralized system centered 

around LOTC and pSTS is particularly involved in processing information relevant for social 

aspects of dynamic scenes such as animacy, agency, and social interactions (Isik et al., 2017; 

Sliwa and Freiwald, 2017; Pitcher and Ungerleider, 2021; Dima et al., 2022). Conversely, a 

domain-general network comprising premotor cortex and superior parietal lobule are involved in 

physical inferences and prediction (Fischer et al., 2016; Yildirim et al., 2019; Fischer and 

Mahon, 2021).  

This framework raises some interesting questions. For instance, our study revealed a 

shared neural code spanning various frontoparietal and posterior temporal brain regions that 

represents information about motion events more broadly, including those regions that showed 

increased sensitivity to animacy and agency (e.g., right LOTC, pSTS). What shared aspects of 

actions and physical object events are encoded by this overarching neural representation? While 

shared kinematics and spatiotemporal dynamics may be involved, further specification is needed. 

Moreover, both the frontoparietal and posterior temporal brain regions participate in processing 

of dynamic scene information. What are their distinct roles? What specific elements of dynamic 

scenes do they each encode? Additionally, the notion of a shared neural system that is applicable 

to both animate and inanimate motion presents a plausible hypothesis. However, making claims 

of such generality is challenging due to the limitations of fMRI measures, particularly in terms of 

group averaging and comparisons across different studies and paradigms. Therefore, the question 

persists as to whether this proposed domain-general network encompasses subcomponents that 
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differentiate between animate and inanimate movement, paralleling distinctions observed in the 

object domain (Grill-Spector and Weiner, 2014; Wurm and Caramazza, 2022). 

To sum up, we found a shared neural representation of animate and inanimate motion that 

is also invariant to agentive or physical forces in various frontoparietal and posterior temporal 

brain regions. Furthermore, the right lateral occipitotemporal cortex and posterior superior 

temporal sulcus showed higher sensitivity to cues related to animacy and agency, while the left 

dorsal premotor cortex and superior parietal lobules showed higher sensitivity to events that were 

controlled by the physics of the scene. Overall, our findings provide new insights into the 

contributions of agentive and physical forces in the neural representation of event dynamics and 

highlight the importance of a unified approach that takes both factors into account. 

  

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 24, 2023. ; https://doi.org/10.1101/2023.07.20.549905doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.20.549905
http://creativecommons.org/licenses/by-nd/4.0/


 29

References 
 

Albertini D, Lanzilotto M, Maranesi M, Bonini L (2021) Largely shared neural codes for 
biological and nonbiological observed movements but not for executed actions in 
monkey premotor areas. J Neurophysiol 126:906–912. 

Bates D, Mächler M, Bolker B WS (2015) Fitting Linear Mixed-Effects Models Using lme4. 
Journal of Statistical Software 67:1–48. 

Blakemore SJ, Fonlupt P, Pachot-Clouard M, Darmon C, Boyer P, Meltzoff AN, Segebarth C, 
Decety J (2001) How the brain perceives causality: an event-related fMRI study. 
Neuroreport 12:3741–3746. 

Calvo-Merino B, Grèzes J, Glaser DE, Passingham RE, Haggard P (2006) Seeing or doing? 
Influence of visual and motor familiarity in action observation. Curr Biol 16:1905–1910. 

Caspers S, Zilles K, Laird AR, Eickhoff SB (2010) ALE meta-analysis of action observation and 
imitation in the human brain. Neuroimage 50:1148–1167. 

Cavallo A, Koul A, Ansuini C, Capozzi F, Becchio C (2016) Decoding intentions from 
movement kinematics. Sci Rep 6:37036. 

Csibra G (2003) Teleological and referential understanding of action in infancy. Philos Trans R 
Soc Lond B Biol Sci 358:447–458. 

Csibra G (2008) Goal attribution to inanimate agents by 6.5-month-old infants. Cognition 
107:705–717. 

Dayan E, Casile A, Levit-Binnun N, Giese MA, Hendler T, Flash T (2007) Neural 
representations of kinematic laws of motion: evidence for action-perception coupling. 
Proc Natl Acad Sci U S A 104:20582–20587. 

Deen B, Koldewyn K, Kanwisher N, Saxe R (2015) Functional organization of social perception 
and cognition in the superior temporal sulcus. Cereb Cortex 25:4596–4609. 

Dima DC, Tomita TM, Honey CJ, Isik L (2022) Social-affective features drive human 
representations of observed actions. Elife 11 Available at: 
http://dx.doi.org/10.7554/eLife.75027. 

Fischer J, Mahon BZ (2021) What tool representation, intuitive physics, and action have in 
common: The brain’s first-person physics engine. Cogn Neuropsychol 38:455–467. 

Fischer J, Mikhael JG, Tenenbaum JB, Kanwisher N (2016) Functional neuroanatomy of 
intuitive physical inference. Proceedings of the National Academy of Sciences 
113:E5072–E5081 Available at: http://dx.doi.org/10.1073/pnas.1610344113. 

Gao T, Scholl BJ, McCarthy G (2012) Dissociating the detection of intentionality from animacy 
in the right posterior superior temporal sulcus. J Neurosci 32:14276–14280. 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 24, 2023. ; https://doi.org/10.1101/2023.07.20.549905doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.20.549905
http://creativecommons.org/licenses/by-nd/4.0/


 30

Goebel R (2012) BrainVoyager--past, present, future. Neuroimage 62:748–756. 

Grafton ST, Hamilton AF de C (2007) Evidence for a distributed hierarchy of action 
representation in the brain. Hum Mov Sci 26:590–616. 

Grill-Spector K, Weiner KS (2014) The functional architecture of the ventral temporal cortex 
and its role in categorization. Nat Rev Neurosci 15:536–548. 

Grosbras M-H, Beaton S, Eickhoff SB (2012) Brain regions involved in human movement 
perception: a quantitative voxel-based meta-analysis. Hum Brain Mapp 33:431–454. 

Hafri A, Firestone C (2021) The Perception of Relations. Trends Cogn Sci 25:475–492. 

Han Z, Bi Y, Chen J, Chen Q, He Y, Caramazza A (2013) Distinct Regions of Right Temporal 
Cortex Are Associated with Biological and Human–Agent Motion: Functional Magnetic 
Resonance Imaging and Neuropsychological Evidence. The Journal of Neuroscience 
33:15442–15453 Available at: http://dx.doi.org/10.1523/jneurosci.5868-12.2013. 

Hardwick RM, Caspers S, Eickhoff SB, Swinnen SP (2018) Neural correlates of action: 
Comparing meta-analyses of imagery, observation, and execution. Neurosci Biobehav 
Rev 94:31–44. 

Heider F, Simmel M (1944) An Experimental Study of Apparent Behavior. Am J Psychol 
57:243–259. 

Iacoboni M, Dapretto M (2006) The mirror neuron system and the consequences of its 
dysfunction. Nat Rev Neurosci 7:942–951. 

Iacoboni M, Molnar-Szakacs I, Gallese V, Buccino G, Mazziotta JC, Rizzolatti G (2005) 
Grasping the intentions of others with one’s own mirror neuron system. PLoS Biol 3:e79. 

Isik L, Koldewyn K, Beeler D, Kanwisher N (2017) Perceiving social interactions in the 
posterior superior temporal sulcus. Proc Natl Acad Sci U S A 114:E9145–E9152. 

Karakose-Akbiyik S, Caramazza A, Wurm MF (2023) A shared neural code for the physics of 
actions and object events. Nat Commun 14:1–13. 

Konkle T, Caramazza A (2013) Tripartite organization of the ventral stream by animacy and 
object size. J Neurosci 33:10235–10242. 

Lacadie CM, Fulbright RK, Arora J, Constable RT, Papademetris X (2008) Brodmann Areas 
defined in MNI space using a new Tracing Tool in BioImage Suite. Human Brain 
Mapping, 2008. In. Human Brain Mapping. 

Lee Masson H, Isik L (2021) Functional selectivity for social interaction perception in the human 
superior temporal sulcus during natural viewing. Neuroimage 245:118741. 

Liu S, Ullman TD, Tenenbaum JB, Spelke ES (2017) Ten-month-old infants infer the value of 
goals from the costs of actions. Science 358:1038–1041. 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 24, 2023. ; https://doi.org/10.1101/2023.07.20.549905doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.20.549905
http://creativecommons.org/licenses/by-nd/4.0/


 31

McAleer P, Pollick FE, Love SA, Crabbe F, Zacks JM (2014) The role of kinematics in cortical 
regions for continuous human motion perception. Cogn Affect Behav Neurosci 14:307–
318. 

Michotte A (1946) La perception de la causalité. (Etudes Psychol.), Vol. VI. 296 Available at: 
https://psycnet.apa.org/fulltext/1948-01004-000.pdf. 

Mulliken GH, Musallam S, Andersen RA (2008) Decoding trajectories from posterior parietal 
cortex ensembles. J Neurosci 28:12913–12926. 

Oosterhof NN, Connolly AC, Haxby JV (2016) CoSMoMVPA: Multi-Modal Multivariate 
Pattern Analysis of Neuroimaging Data in Matlab/GNU Octave. Front Neuroinform 
10:27. 

Opfer JE (2002) Identifying living and sentient kinds from dynamic information: the case of 
goal-directed versus aimless autonomous movement in conceptual change. Cognition 
86:97–122. 

Papademetris X, Jackowski MP, Rajeevan N, DiStasio M, Okuda H, Constable RT, Staib LH 
(2006) BioImage Suite: An integrated medical image analysis suite: An update. Insight J 
2006:209. 

Patri J-F, Cavallo A, Pullar K, Soriano M, Valente M, Koul A, Avenanti A, Panzeri S, Becchio C 
(2020) Transient disruption of the inferior parietal lobule impairs the ability to attribute 
intention to action. Curr Biol 30:4594-4605.e7. 

Peelen MV, Downing PE (2017) Category selectivity in human visual cortex: Beyond visual 
object recognition. Neuropsychologia 105:177–183. 

Pelphrey KA, Morris JP, McCarthy G (2004) Grasping the intentions of others: the perceived 
intentionality of an action influences activity in the superior temporal sulcus during social 
perception. J Cogn Neurosci 16:1706–1716. 

Pitcher D, Ungerleider LG (2021) Evidence for a Third Visual Pathway Specialized for Social 
Perception. Trends Cogn Sci 25:100–110. 

Pramod RT, Cohen MA, Tenenbaum JB, Kanwisher N (2022) Invariant representation of 
physical stability in the human brain. Elife 11 Available at: 
http://dx.doi.org/10.7554/eLife.71736. 

R Core Team (2021) R: A language and environment for statistical computing. R Foundation for 
Statistical Computing, Vienna, Austria. Vienna, Austria. 

Rizzolatti G, Craighero L (2004) The mirror-neuron system. Annu Rev Neurosci 27:169–192. 

Saxe R, Xiao D-K, Kovacs G, Perrett DI, Kanwisher N (2004) A region of right posterior 
superior temporal sulcus responds to observed intentional actions. Neuropsychologia 
42:1435–1446. 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 24, 2023. ; https://doi.org/10.1101/2023.07.20.549905doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.20.549905
http://creativecommons.org/licenses/by-nd/4.0/


 32

Scholl BJ, Gao T (2013) Perceiving Animacy and Intentionality. In: Social Perception, pp 197–
230. The MIT Press. 

Scholl BJ, Tremoulet PD (2000) Perceptual causality and animacy. Trends Cogn Sci 4:299–309. 

Schultz J, Frith CD (2022) Animacy and the prediction of behaviour. Neurosci Biobehav Rev 
140:104766. 

Schwettmann S, Tenenbaum JB, Kanwisher N (2019) Invariant representations of mass in the 
human brain. Elife 8 Available at: http://dx.doi.org/10.7554/eLife.46619. 

Sliwa J, Freiwald WA (2017) A dedicated network for social interaction processing in the 
primate brain. Science 356:745–749. 

Tarhan L, Konkle T (2020) Sociality and interaction envelope organize visual action 
representations. Nat Commun 11:3002. 

Tremoulet PD, Feldman J (2006) The influence of spatial context and the role of intentionality in 
the interpretation of animacy from motion. Percept Psychophys 68:1047–1058. 

Urgesi C, Candidi M, Avenanti A (2014) Neuroanatomical substrates of action perception and 
understanding: an anatomic likelihood estimation meta-analysis of lesion-symptom 
mapping studies in brain injured patients. Front Hum Neurosci 8:344. 

Van Nuenen BF, Kuhtz-Buschbeck J, Schulz C, Bloem BR, Siebner HR (2012) Weightspecific 
anticipatory coding of grip force in human dorsal premotor cortex. J Neurosci 32:5272–
5283. 

Watson CE, Cardillo ER, Ianni GR, Chatterjee A (2013) Action concepts in the brain: an 
activation likelihood estimation meta-analysis. J Cogn Neurosci 25:1191–1205. 

Wurm MF, Caramazza A (2022) Two “what” pathways for action and object recognition. Trends 
Cogn Sci 26:103–116. 

Wurm MF, Caramazza A, Lingnau A (2017) Action Categories in Lateral Occipitotemporal 
Cortex Are Organized Along Sociality and Transitivity. J Neurosci 37:562–575. 

Yildirim I, Wu J, Kanwisher N, Tenenbaum J (2019) An integrative computational architecture 
for object-driven cortex. Curr Opin Neurobiol 55:73–81. 

Zacks JM, Swallow KM, Vettel JM, McAvoy MP (2006) Visual motion and the neural correlates 
of event perception. Brain Res 1076:150–162. 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 24, 2023. ; https://doi.org/10.1101/2023.07.20.549905doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.20.549905
http://creativecommons.org/licenses/by-nd/4.0/

