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Abstract

Neural networks have demonstrated outstanding capabilities, surpassing hu-
man expertise across diverse tasks. Despite these advances, their widespread
adoption is hindered by the complexity of interpreting their decision-making
processes. This lack of transparency raises concerns in critical areas such as
autonomous mobility, digital security, and healthcare. This thesis addresses
the critical need for more interpretable and efficient neural-based technologies,
aiming to enhance their transparency and lower their memory footprint. In the
first part of this thesis we introduce Agglomerator and Agglomerator++, two
frameworks that embody the principles of hierarchical representation to im-
prove the understanding and interpretability of neural networks. These models
aim to bridge the cognitive gap between human visual perception and com-
putational models, effectively enhancing the capability of neural networks to
dynamically represent complex data. The second part of the manuscript fo-
cuses on addressing the lack of spatial coherency and thereby efficiency of the
latest fast-training neural field representations. To address this limitation we
propose Lagrangian Hashing, a novel method that combines the efficiency of
Eulerian grid-based representations with the spatial flexibility of Lagrangian
point-based systems. This method extends the foundational work of hierarchi-
cal hashing, allowing for an adaptive allocation of the representation budget.
In this way we effectively preserve the coherence of the neural structure with
respect to the reconstructed 3D space. Within the context of 3D reconstruction
we also conduct a comparative evaluation of the NeRF based reconstruction
methodologies against traditional photogrammetry, to assess their usability in

practical, real-world settings.
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Architecture of our Agglomerator++ model (center) with 1n-

formation routing (left) and detailed structure of building ele-

ments (right). Each cube represents a level ltk. Top: (a) legend

of the arrows 1n the figure, representing the top-down network

Nrp(I7T]) and the positional embedding p(f,w), the bottom-

up network Ny (15~} ), attention mechanism A(LF |) and time

step t. Left: (b) Contribution to the value of level I¥ given

by ltk_l, NTD(ltkfll) and NBU(ltk__ll). (c) The attention mecha-

nism A(Lf_l) shares information between ltk_1 = Lf_l. The po-

sitional embedding p(h,w) is different for each column C(h,w).

All levels belonging to the same hyper-column C(h,w) share

the positional embedding p(h,w). Center: bottom to top, the

architecture consists of the tokenizer module, followed by the

columns C(h,w), with each level I¥ connected to the neighbors

with NTD(lffll) and NBU(ltk__ll). Right: (d) Structure of the top-

down network NTD(ltkfll) and the bottom-up network NBU(ltk__l1 ).
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the regularisation losses £, on the last level L encourages the

network to display more definite islands of agreement at higher
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Training for image classification. During the training phase,

1mage samples are fed through the network to obtain their neu-

ral representation. The information 1s routed for at least 2K

iterations for the information to be propagated all along the net-

work from the bottom level thanks to the bottom-up networks

and back down thanks to the top-down nets. The classification

loss L 1s attached to the last level because the higher-level fea-

res are more suitable for the classification task.) . . . . . . ..
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Illustration of the evolving islands of agreement at varying K

levels for MNIST and CIFAR-10 datasets samples. Displaying
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1slands surface representing the object and the background.| . . .
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class separation, while placing similar samples together. Our
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SinGAN 3D’s multi-scale generation pipeline on the “simple
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criminator D, tries to distinguish the generated samples from

the original ones. G, takes as input (together with the down-

sampled voxelized model) a random 3D Gaussian noise map
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Chapter 1

Introduction

In the rapidly evolving landscape of computer science, neural networks have
emerged as an important tool for innovation and advancement. Their excep-
tional ability to learn from and adapt to a wide set of data has changed the
way we approach complex problems across diverse domains. The application
of neural networks has transformed traditional methodologies, offering novel
solutions and unprecedented efficiency.

A particularly important impact of neural networks is observed in the realms of
computer vision and graphics. In this contexts, they have not only enhanced ex-
isting technologies but also introduced groundbreaking developments. Among
these, Neural Radiance Fields (NeRF) stand out as a remarkable achievement.
NeRF’s approach to 3D rendering and representation has enabled an unprece-
dented level of realism. This advancement particularly highlights the transfor-
mative impact of neural networks on our vision technologies.

Despite their impressive capabilities, neural networks often operate as enig-
matic “black boxes”, hiding the logic behind their decision-making processes.
This lack of transparency is particularly problematic in critical sectors such as
autonomous mobility, digital security, and healthcare, where the necessity for
safety and reliability is a must. To address this concerns we introduce Agglom-

erator, an innovative approach, theorized by Hinton in [40], that tries to bridge

1



this gap by exploiting concepts coming from cognitive science. In particular
this architecture focus on discovering part-whole hierarchies in visual data to
learn representations and enhance our ability to interpret and trust its decisions.
In the realm of computer graphics, the efficiency of Neural Radiance Fields
(NeRF) training routines received a considerable boost from InstantNGP [//8]].
This method has yielded outstanding results in both the quality and speed of
NeRF reconstruction. However, the reliance of this method on hashtables, af-
fected by collisions, causes the loss of Lagrangian properties within the frame-
work. This disruption of Lagrangian properties compromise the spatial coher-
ence between the implicit representation and the actual 3D signal reconstruc-
tion. This issue highlights a critical trade-off between efficiency and inter-
pretability in the representation of 3D environments.

To overcome the spatial coherence challenges inherent of current NeRF train-
ing methods, we propose Lagrangian Hashing, a novel representation for neural
fields. This technique combines the rapid training advantages of Eulerian grid-
based systems, such as InstantNGP, with the precision and detail offered by
point-based representation methods like 3D Gaussian Splatting [48] and Point-
NeRF [124]. By embedding point-based features within the high-resolution
layers of InstantNGP’s hierarchical hash tables, Lagrangian Hashing effectively
respects the Lagrangian properties essential for accurate 3D signal reconstruc-
tion, thereby enhancing both the interpretability and efficiency of neural field
representations.

Lastly, we present a study on the impact of radiance-based representations on
3D reconstruction for industrial applications. Specifically, we present a com-
prehensive comparison of classical photogrammetry with state of the art NeRF
based techniques[48, 78] in terms of fidelity of the reconstruction and preci-
sion of the resulting point cloud. More in detail, the structure of the thesis is

organized as follows:
* In the first part (Chapter [2)) we explore neural network architectures from

2



CHAPTER 1. INTRODUCTION

the multilayer perception to state-of-the-art Vision Transformers [114],
with a particular focus on architectures focusing on discovering part-whole
hierarchies in the data, like Capsule networks [93]]. We then present our

work on Agglomerator and its extension Agglomerator++.

In the second part (Chapter [3) we delve into 3D representations for 3D
data, starting from voxels for the first project SinGAN-3D in section
and then Neural Radiance Fields reconstruction, presenting the first pure
neural methods and the further development in the field with hybrid NeRF
methods. In Section 3.4 we highlight the issues with these fast and efficient
representation and how we address these issues with our novel method
Lagrangian Hashing. In the context of Graphics representation we show
a comparison of classical photogrammetry and Implicit representations in
Chapter 4]

In Chapter [5|we draw some conclusions on the thesis and discuss about fu-
ture directions in the context of Neural Network interpretability and com-

pact 3D representations.






Chapter 2

Representing Part-whole Hierarchies in
Neural Networks

2.1 Part-whole hierarchies in Neural Networks

Neural networks have demonstrated outstanding capabilities, surpassing human
expertise across diverse tasks. However, a significant drawback of these ad-
vanced neural models is the poor accessibility to understand and interpret the
network response to a given input. This lack of clarity becomes particularly
problematic in sectors where safety and reliability are paramount, such as in
autonomous mobility, digital security, and healthcare, where the absence of in-
terpretable insights can erode trust in these otherwise highly accurate systems.
Additionally, traditional performance metrics such as accuracy offer an incom-
plete picture of a system’s effectiveness in complex, real-life situations.
Substantial psychological findings indicate that the human visual system de-
composes scenes into part-whole hierarchies, establishing consistent spatial re-
lationships through internal coordinate transformations [39]. To mirror this
capability in neural networks, we must devise ways for these models to rep-
resent such hierarchies. Traditional neural networks falter here, unable to dy-
namically assign neuron groups to specific hierarchical nodes. This limitation

prompted the exploration of ’capsule” networks, where neuron clusters, or cap-
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2.1. PART-WHOLE HIERARCHIES IN NEURAL NETWORKS 6

sules, are dedicated to representing distinct image segments within a specified
region [43, 154, 93]]. This framework enables the construction of parse trees by
activating specific capsules and their linkages, facilitating a more human-like
interpretation of visual data.

Efforts to make neural networks more interpretable is not a recent phenomenon,
with its origins deeply embedded in the foundational periods of artificial intel-
ligence and cognitive science. The foundational work in this field aimed to
bridge the gap between human cognitive processes and computational models,
particularly in how complex systems like the human brain parse and understand

visual information.

A foundational theory that significantly shaped the direction of neural net-
work interpretability originated in cognitive science. Researchers like Marr
(1982) laid the groundwork with his theory of vision, proposing that visual pro-
cessing involves multiple stages — from the raw image to a 3D understanding of
the world. Influenced by this perspective, early efforts in computer vision aimed
to replicate these processes computationally, striving to design systems capable
of recognizing image features and comprehending their spatial and hierarchical

connections, mirroring human visual perception.

Parallel to these developments, early neural network models started to incor-
porate hierarchical structures, an approach inspired by both biological neural
systems and cognitive theories. These hierarchical models aimed to represent
complex data in a multi-layered fashion, where lower layers captured basic fea-
tures and higher layers integrated these features into more abstract representa-
tions. The Neocognitron, introduced by Fukushima in 1980, is an early example
of such a model. It was designed to recognize visual patterns by building in-
creasingly complex representations at each layer of the network, illustrating a

primitive form of part-whole hierarchy.
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CHAPTER 2. REPRESENTING PART-WHOLE HIERARCHIES IN NEURAL
7 NETWORKS

2.1.1 The evolution of neural architectures

Multi Layer Perceptrons (MLPs) [61,[111] are characterised by fully connected
layers, in which each node is connected to every other possible node of the
next layer. Even though they are easier to train and have simpler architec-
ture compared to CNNs, the fully connected layers may cause the network to
grow too fast in size and number of parameters, not allowing powerful scala-
bility. MLPs have recently experienced a resurgence, thanks to patch-based ap-
proaches [61, [111]], that allowed reaching state-of-the-art performances. They
can also be seen as 1x1 convolutions [40, 61, [111]], which do not require the

pooling operation.

Convolutional Neural Networks (CNNs) 37, 98] have risen to a prominent
role in computer vision when they started to outperform the existing literature
in the image classification task of the ImageNet challenge [S6]]. The convolu-
tion operator can effectively describe spatially-correlated data resulting in a fea-
ture map, while the pooling operation down-samples the obtained feature map
by summarizing the presence of certain features in patches of the image. The
pooling operation in CNNs has been the subject of criticism since it does not
preserve the information related to the part-whole relationship [100] between

features belonging to the same object [93]].

Transformers [23, 149, |66] have proven able to outperform CNNs, thanks to
their ability to encode powerful features using self-attention and patch-based
analysis of images. Multi-headed transformers [20] require the query, key, and
value weights to be trained differently for each head, which is a costly oper-
ation. The main advantage compared to CNNs is the ability of the multiple
heads to combine information from different locations in the image with fewer
losses than the pooling operation [60]. However, when compared with CNNss,
Transformer-like models usually require intensive pre-training on large datasets,

to achieve state-of-the-art performances.
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2.1. PART-WHOLE HIERARCHIES IN NEURAL NETWORKS 8

2.1.2 Capsule Networks

The concept of capsule networks proposed by Hinton et al. in 2011, marked
a significant advancement in the field of neural network, particularly in the
quest for improved interpretability and representation of complex data struc-
tures. These networks introduced a novel concept in neural network architec-

ture, fundamentally different from traditional Convolutional Neural Networks
(CNNs).

Unlike CNNs, which output scalar values and are known for their transla-
tional invariance, Capsule Networks operate on the principle of equivariance
through vector outputs. Each capsule, a group of neurons within the network,
is designed to capture and output a vector. This vector represents not only the
probability of the presence of a particular feature within the data but also a set of
instantiation parameters. These parameters encapsulate vital information about
the feature, such as its pose, texture, and deformation, adding a layer of inter-

pretability that was previously elusive in traditional neural network models.

One of the defining advantages of Capsule Networks is their innate ability to
recognize entities by first recognizing their constituent parts, a concept inspired
by cognitive theories of visual perception. This is achieved through a sophis-
ticated structuring of capsules into layers, where lower-level capsules (primary
capsules) extract pose parameters from pixel intensities, initiating a part-whole
hierarchy. These primary capsules then make predictions for higher-level cap-
sules (secondary capsules), based on the spatial relationships of the features
they represent. For example, the detection of eyes and mouth as individual
features by lower-level capsules can collectively activate a higher-level capsule

representing a face, provided their spatial relationships align accurately.

The journey of Capsule Networks saw several significant evolutions. The
first model, termed ’Transforming Auto-encoders’, was designed to recognize

the pose of an object in an image. The authors showed how a neural network

8
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Figure 2.1: A simple capsule network with 3 layers. The PrimaryCaps are the lowest level of
multi-dimensional neuronal activity (each capsule is an 8D vector). The length of the activity
vector of each capsule in the DigitCaps layer indicates the presence of each class. Figure from
[14].

can be used to learn features that output a vector of instantiation parameters
(capsule), and argued that this is a better way of dealing with tranformations of
the input. This implementation laid the groundwork for subsequent models that
focused on enhancing the part-whole relationship recognition.

Sabour et al. in 2017 further refined Capsule Networks by introducing a dy-
namic routing mechanism between capsules. This architecture, shown in Figure
2.1] overcame the need for pose data as input, instead utilizing instantiation pa-
rameters represented by activity vectors. The dynamic routing algorithm was a
critical advancement, enabling the network to learn the spatial relationships and

hierarchies more effectively.

Presence +

‘—E pose vector u

Figure 2.2: Structure of a capsule as described in [93], developed to allow dynamic routing.
Classic CNNs scalar-output feature detectors are replaced by vector-output capsules. Each
capsule describes both pose and presence of an entity.

Hinton et al. in 2018 [43]] introduced another variant of Capsule Networks,
utilizing matrix outputs instead of vectors. This approach was aimed at reduc-

ing the complexity of transformation matrices between capsules and introduced

9
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the use of expectation-maximization routing, replacing the dynamic routing by
agreement. This is achieved through a more complex capsule structure (Fig.
2.3)) and an Expectation-Maximization routing (EM-routing) for capsules. Un-
fortunately, the EM-routing and the 4 x 4 pose matrix embedded in the capsule

contribute to increasing the training time, when compared to both CNNs and

[93].
O Presence probability a
f : EEEE Pose matrix M

Figure 2.3: Structure of capsule as described in [43]. It contains both a scalar value and a 4X4
matrix, respectively describing the presence probability and a more robust 3D pose compared

to the first capsule implementation.

Another important step in the developement of capsule network is presented
by [54] by Kosiorek et al., introducing for the first time an unsupervised capsule-
based autoencoder. Following this, Ribeiro et al. expanded on EM-routing
with a novel approach, using VB capsule routing for the first time to fit a mix-
ture of transforming Gaussians [91]. Their method present state-of-the-art re-
sults on smalINORB by using ~ 50% less capsules. This breakthrough opens
new avenues for performance improvement and network simplification. Subse-
quent studies have delved into minimizing the complexity of capsule networks
via quaternions [82], also enhancing their efficacy. Despite these innovations,
benchmarks have predominantly focused on smaller datasets.

Capsule Networks represent a significant advacement towards more inter-
pretable and efficient neural networks. By focusing on the representation of
part-whole hierarchies and spatial relationships, they offer a more complete un-
derstanding of the data they process.

There has been a recent push toward the so-called biologically inspired Ar-
tificial Intelligence (AI) [34, 44], which tries to build deep learning networks

able to mimic the structure and functions of the human brain. In [34], the au-

10
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thors propose a column-like structure, similar to hyper-columns typical of the
human neocortex. In [113], the authors build upon cortical columns imple-
mented as separate neural networks called Cortical Column Networks (CCN).
Their framework aims at representing part-whole relationships in scenes to learn
object-centric representations for classification.

The author in [40] proposes a conceptual framework, called GLOM, based
on inter-connected columns, each of which is connected to a patch of the image
and 1s composed of auto-encoders stacked in levels. Weights sharing among
MLP-based [61] auto-encoders allows for an easily trainable architecture with
fewer weights, while knowledge distillation [41] allows for a reduction of the
training parameters. The patch-based approach combined with the spatial dis-
tribution of columns allows for a sort of positional encoding and viewpoint es-
timation similarly to what is used in neural fields [[71, 100]. At training time,
the author recommends that GLOM should be trained using a contrastive loss
function [[14]. This procedure, combined with a Transformer-like self-attention
[114] mechanism on each layer of the columns, aims at reaching a consen-
sus between columns. Routing the information with layer-based attention and
stacked autoencoders would theoretically allow GLOM to learn a different level
of abstraction of the input at a different location and level in the columns, cre-
ating a part-whole structure with a richer representation if compared to capsule
networks [93]].

2.2 Agglomerator

The rapid increase in the adoption of neural networks and machine learning
models has raised concerns over our ability to decipher their decision-making
processes. Particularly in critical applications such as autonomous driving [30]],
healthcare[74], and finance [96], where stakes involve safety, life, and security,

the need for neural networks to be interpretable is paramount. In fact, their

11
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Animals

frog
deer
e bird
® dog
® horse
cat

Vehicles

A airplane

A tuck

A automobile
o5 4 ship

(d) Part-whole (e) Conceptual-semantic
(a) Input (b) Patch-based embedding (c) Agglomerator hierarchy relationships

Figure 2.4: [Better seen in color]. Overview of the proposed solution. Our Agglomerator is a
novel architecture for vision applications, in which column structure (c) mimics hyper-columns
typical of the human visual cortex [34]. The input data (a) is fed to the columns using a patch-
based embedding (b). The Agglomerator architecture iteratively routes the information across
its structure, creating a neural representation of each image, similar to neural fields [71]. In
the neural representation, part-whole hierarchies (d) emerge at different levels of the columns.
The same column can represent the same patch of the image with different levels of abstraction
(e.g., the ears, the head, and the dog) corresponding to each level in the column. Neighbor
columns agree on a part representation (e.g ears, head) at lower levels, ideally representing the
same whole (e.g. dog) at the top level. The resulting feature space represents the conceptual-
semantic relationships between data (e) resembling the human hierarchical organization [72].
Samples belonging to the same super-class (e.g., animals, vehicles) are clustered together, with
conceptually close categories (e.g., birds and airplanes) represented on the edge of the super-

classes.
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outstanding abilities come at a cost of model complexity, making it difficult
to interpret how neural networks work [64]. Often deployed as “black boxes,”
these networks require the fine-tuning of millions of parameters, largely based
on trial and error. Determining the effect of specific trainable parameters on the
output for any given input is nearly infeasible.

The literature describes interpretability as “the extent to which a human can
grasp the rationale behind a decision” [[73]. This concept becomes crucial when
a machine learning model, tasked with classification or prediction, achieves
high accuracy. The question arises: Can we trust the model without under-
standing why such a decision has been taken? The decision process is complex
and we tend to evaluate the performance of a system in solving a given task us-
ing metrics computed at the end of the processing chain. While single metrics,
such as the classification accuracy, reach super-human results, they provide an
incomplete description of the real-world task [22]. For example, when dealing
with an image classification problem, the learning model might tell the class
the represented object belongs to. In this case we can obtain a prediction on
what the network assigned the image to, but we have little understanding about
why we it made such a prediction [75]]. Humans, by contrast, use reasoning and
intuition to associate parts with their wholes, drawing on experiences and cog-
nitive frameworks to make inferences—even about unfamiliar animals—based
on visual cues and hierarchical object organization [, 8, 34, 72]. We would like
neural networks to display a similar behavior, so that objects that are close in
the conceptual-semantic and lexical relations are adjacent in the feature space
as well (as shown in Fig. 2.4k). By doing so, it would be intuitive to identify
hierarchical relations between samples and how the model has learned to build
a topology describing each sample. Consequently, we can agree on the defini-
tion of interpretability in deep learning as the “extraction of relevant knowledge
from a machine-learning model concerning relationships either contained in

data or learned by the model” []9].
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The landscape of image classification has been revolutionized by methods such
as transformers [20, 23|, [114], neural fields [[/1], contrastive learning represen-
tation [14], distillation [41] and capsules [93], each bringing forward break-
throughs like powerful attention-based features and per-patch analysis, posi-
tional encoding, similarity-based self-supervised pre-training, model compres-
sion and deep modeling of part-whole relationships. Despite their individual
contributions to improving network interpretability, these methods often fall
short in fully articulating both the data-centric relationships (such as conceptual-
semantic ties [14, 20, 23|, [71, [114]) and the intricacies of relationships learned
by the models (like part-whole dynamics [41, 93]).

Addressing this, the conceptual framework of GLOM [40] integrates these di-
verse technologies, aiming to emulate the human process of parsing visual in-
puts into coherent structures. GLOM aims at mimicking the human ability in
learning to parse visual scenes. Drawing inspiration from this theoretical con-
cept, also described in [34], we developed the Agglomerator system, which
achieves part-whole agreement [42] at different levels of the model (relation-
ships learned by the model) and hierarchical organization of the feature space
(relationships contained in data), as shown in Fig. 2.4]

Our contribution is summarised as follows:

* we introduce a novel model, called Agglomerator, mimicking the func-

tioning of the cortical columns in the human brain [33];

* we explain how our architecture provides interpretability of relationships

learned by the model, specifically part-whole relationships;

* we show how our architecture provides interpretability of relationships

contained in data, namely the hierarchical organization of the feature space;

* we provide results outperforming or on par with current methods on mul-
tiple common datasets, such as SmalINORB [359], MNIST [58]], Fashion-
MNIST [120], CIFAR-10 and CIFAR-100 [55];

14
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* we show that our model relies on fewer parameters and can generalize to

multiple datasets.

2.2.1 Method

The framework we propose aims at replicating the column-like pattern, similar
to hyper-columns typical of the human visual cortex [34]. An overview is shown
in Fig. 2.4

Agglomerator brings together concepts and building blocks from multiple
methods, such as CNNs [61], transformers [20, 23, [114], neural fields [71],

contrastive learning representation [14], distillation [41], and capsules [93]].

Differently from the transformer architecture Agglomerator is a recurrent ar-
chitecture, organized in different hierarchical levels, representing different lev-
els of granularity of the parts. In the next paragraph, we introduce the mathe-
matical notation needed to explain the details of the main building blocks of the

architecture.

Each input image is transformed into a feature map divided into N = h x w
patches. The n-th patch, with n € {1,...,N} is fed to the corresponding column
C,(h,w), spatially located at coordinates (i, w). The subscript n is omitted in
the next equations for better readability. As shown in Fig. [2.5] each column
C(h,w) consists of K embedding levels {lt(h’w)’k | k=0,...,K} connected by a
stack of auto-encoders at location (h,w) at time ¢t € {0,...,r—1,t,¢+1,...,T}.
The superscript (2, w) is omitted in the next instances of I¥ for better readability.
Each level ltk of the column is an embedding vector representation of size d.
Levels l,k*1 and ¥ represent consecutive levels; ltk*1 represents a part of the
whole IF. We indicate as I¥ € LF all the levels I¥ in all columns C(h,w) sharing
the same k value and belonging to the same layer Lf . Being K the last layer of

our architecture at the last time step 7', it is represented as LIT( .

15



2.2. AGGLOMERATOR 16

Patches embedding

At the embedding stage, as in [61], we apply a convolutional Tokenizer to ex-
tract the feature map of each image of size H x W pixels, which provides a
richer representation compared to the original image. Following the implemen-
tation in [61]], the obtained feature map has size & x w x d where h = H /4 and
w =W /4. We then embed each of the n d-dimensional embedding vectors into
the bottom levels 1” € L? at the corresponding coordinates (i, w) of the corre-
sponding column C(h,w). Feeding the n-th each patch to a spatially located
column C(h,w) resembles the positional encoding of neural fields [71], where
each d-sized embedding l,k represents at the same time the sample and its rela-
tive observation viewpoint. At each time step ¢, we embed each image sample

into the first layer of the columns, which is represented as the bottom layer L.

Hypercolumns

Consecutive levels in time and space in a column C(h,w) are connected by an
auto-encoder. The auto-encoders are based on an MLP, which allows for model
reduction [41] and faster training time. Each auto-encoder computes the top-
down contribution of a level lk to the value of the level below at the next

lk—i—l)

time step lk using a Nrp( top—down decoder. Similarly, each auto-encoder

computes the bottom-up contribution of a level lk | to the value of the level
above at the next time step /X using a Npy (1°7') bottom-up encoder. Nrp(I51))
and NBU(ltk_ 11) share a similar structure, but for the activation functions, as de-
scribed in Fig. [2.5(e). The top-down network uses GELU activation functions
[38]], while the bottom up network relies on Siren activation functions [99]. All

Lk+

the NTD(lk“) connecting L, ", to layer Lk share the same weights. The same is

true for the Npy (lf:ll) connecting Lk | to layer LK,
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Figure 2.5: [Better seen in color]. Architecture of our Agglomerator model (center) with infor-
mation routing (left) and detailed structure of building elements (right). Each cube represents
a level I¥. Left: (a) legend of the arrows in the figure, representing the top-down network
NTD(ltkj—ll), the bottom-up network NBU(ZII‘:II), attention mechanism A(Lf_l) and time step ¢.
(b) Contribution to the value of level IX given by I* |, Nrp(I*t!) and Ngy (I¥7}). (c) The at-
tention mechanisms A(Lffl) share information between ltkfl € Lffl. Center: bottom to top,
the architecture consists of the Tokenizer module, followed by the columns C(h,w), with each
level I¥ connected to the neighbors with Nrp(I5"!) and Npy (I*7!). On top of the structure,
the contrastive H1 and cross entropy H2 heads. Right: (d) structure of heads H1 and H2. (e)
Structure of the top-down network N7p (llkfll) and the bottom-up network Ny (ltk__ll ).
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Figure 2.6: Contrastive pre-training (dashed lines) and supervised training (continuous
lines) procedures. During the contrastive pre-training, two images I, and [, are produced by
applying random data augmentation to the input image /. Through the Tokenizer, we compute
feature maps for both 7, and I;,, which are then divided in patches and embedded into the bottom
layer of the columns L?. During the propagation phase, the information is routed through the
Agglomerator architecture to obtain the neural representation LX for each sample. We pre-train
the network with the contrastive head H1 using a supervised contrastive loss £, obtaining
weights W. During the supervised training, we first load the frozen weights W in the network.
Then, augmentation RandAugment [18] is applied on the input image / to obtain /., which
follows the same steps as the pre-training phase. The network, with the classification head H2,
is trained for the classification task by minimizing the cross-entropy loss L,.

Routing

The key element of our architecture is how the information is routed to obtain a
representation of the input data where the part-whole hierarchies emerge.
Before computing the loss, we need to iteratively propagate each batch N
through the network, obtaining a deep representation of each image. This pro-
cedure, propagation phase, encourages the network to reach consensus between
neighbor levels ltk € Lf. Ideally, this means that all neighbor levels in the last
layer /X € LX should have similar values, representing the same whole; neigh-
bor levels at bottom layers I¥ € L¥|k +# K should instead share the value among
smaller groups, each group representing the same part. Group of vectors that
”agree” on a similar value have reached the consensus on the image represen-
tation at that level, and they are called islands of agreement. An example of
such representation is shown in Fig. 2.4(d). In capsules-based approaches [93],

group of neurons are activated to represent the part-whole hierarchy with limited
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expressive power. Our d-dimensional layers l{‘ provide a richer representation
of the same hierarchy.

To obtain such representation, at time step t = 0, we randomly initialise all
the values l’g and we embed a batch of B samples into the bottom layer L8. Once
the values are initialized, we compute the attention A(LK). Instead of the self-
attention mechanism used in Transformers [20, 23, [114]], a standard attention

weighting is deployed as in [[123]. Each attention weight @, is computed as

eﬁz‘nltk

= 5 BN @1

W

where A, represents each possible level ltk belonging to the same layer Lf
as [¥, N(A,) is an indicator function which indexes all the neighbors levels of
A, belonging to the same layer Lf and B is a parameter that determines the
sharpness of the attention.

At each time step ¢ |t € {1,...,T}, a batch with B samples is fed to the

bottom layer L? network as described in Sec. [2.2.1, We compute the values ¥

as

Ik = avg(a)lltk_l : wBUNBU(ltk__ll)a
wrpNrp(IFH]), oaA(LF )

where avg() indicates the arithmetical average, and ®;, Wpy,@rp, W are

trainable weights. For layer LK, contribution Nyp(I*t))

(2.2)

is not included, as
L,KH does not exist. The propagation phase takes T time steps to reach the

final representation of each image at each layer L,{.

Training

The training procedure of our architecture is shown in Fig. [2.6] It is divided in

two steps: (i) a pre-training phase using a supervised contrastive loss function
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Figure 2.7: Agglomerator hyper-parameters sweep. Hyper-parameters sweep. Each line
represents a combination of parameters setup, with the darker lines representing the models
achieving the lowest validation loss. Image obtained with [9].
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Figure 2.8: Agglomerator weights balancing. Each line represents the variation of weights
@y, Wy, O7p, W4 across epochs. Image obtained with [9]].
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[14] and (i1) a training phase for the image classification using a Cross-Entropy
loss.

We first pre-train our network using an image-based contrastive loss [14].
Given a batch with B samples, we duplicate each image / to obtain pairs of
samples (1,,1), for a total of 2B data points. We then apply data augmentation
RandAugment [[18] to both (I,,1;). Both samples are fed to the network as
described in Sec. [2.2.1}, and we perform the propagation phase in Sec. to
obtain the representation at the last layer Llf . Then we rearrange the n levels
IX € LX to obtain a vector of dimensions n x d, given as input to the contrastive
head H1, as described in Fig. 2.5] At the output of the contrastive head, each
sample is described by a feature vector of dimension f1. We take all the possible

sample pairs (I,,1,) from the batch and we compute the contrastive loss defined

as:
eSim(la.lp)
Ly = ContrLoss(1;,1,) = —log B B 1, ol (2.3)
[k#a]
where ~ (u,v) = T \ﬁl I indicates the dot product between the normalized

versions of u and v, Zj;, is an indicator function valued 0 if k£ and a belong to
the same class, and 1 otherwise.

Once the network is pre-trained using the contrastive loss, the weights are
frozen. We apply augmentation [18]] to each sample /. in a batch of size B,
which is then fed to the network for the propagation phase to obtain for each
sample the representation Llf . Then, the cross-entropy head H?2 is added on top
of the contrastive head H1. A linear layer resizes f1-dimensional features to
dimension f2, which corresponds to the number of classes to be predicted for

each dataset. The new layers are then trained using the cross-entropy function:

2
Ly =CE(y,) = f2 Z)’zlog (9:) (2.4)
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where y is the label of a sample taken from the batch and y is the label to be
predicted.

2.2.2 Experiments

We perform our experiments on the following datasets:

SmallNorb (S-NORB) [59] is a dataset for 3D object recognition from shape.
It consists of roughly 200000 images of size 96 x 96 pixels of 5 classes of toys.

MNIST [58] and FashionMNIST [120], consist of 60000 training images
and 10000 test images of grayscale handwritten digits and Zalando’s articles of

size 28 x 28 pixels.

CIFAR-10 and CIFAR-100 [55]] both consist of 50000 training images and
10000 test images of size 32 x 32 pixels, with 10 and 100 classes, respectively.

Our network is trained in an end-to-end fashion using PyTorch Lightning
on a single NVIDIA GeForce RTX 3090. Input images for each dataset are
normalized using each standard dataset’s normalization. We train our network
on each dataset’s native resolution, except for SmallNorb, which is resized
to 32 x 32 pixels, following the standard procedure as in [43, 91]. The To-
kenizer embedding creates n = H /4 x W /4 patches, thus the corresponding
number of columns is 8 x 8 for CIFAR-10, CIFAR-100, and SmallNorb, and
7 x 7 for MNIST FashionMNIST. During the pre-training, we deploy the fol-
lowing hyper-parameters: 300 epochs, cyclic learning rate [101] in the range
[0.002,0.05], batch size B = 1024, levels embedding d = 128, number of levels
K = 3, number of iterations T = 2K = 6, dropout value 0.3, contrastive fea-
tures dimension f1 = 512, and weight decay 5e~*. During the training phase,
we resume the network training with the same hyper-parameters, f2 being the

number of classes corresponding to each dataset.
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Error % # of .
Training

Method Ref Backbone params

S-Norb MNIST F-MNIST C-10 C-100 . Arch.
(Millions)
E-CapsNet [70] 2.54 0.26 - - - 0.2 GPU
CapsNet 1771193] c 2.70 0.25 6.38 10.6  82.00 6.8 GPU
Matrix-CapsNet ~ [43] ps 140 044 614 119 03 GPU
Capsule VB [91] 1.60 0.30 5.20 11.2 - 0.2 GPU
ResNet-110 [511371145] c 2.10 5.10 6.41* 27.76* 1.7 GPU
onv

VGG [51198] 0.32 6.50 7.74%  28.05% 20 GPU
ViT-L/16 [23] Transf 0.85*%  6.75* 632 TPU
ConvMLP-L [61] Conv/MLP 1.40* 11.40% 43 TPU
MLP-Mixer-L/16 [L11] MLP - - - 1.66* - 207 TPU
Ours Conv/MLP/Caps  0.01 0.30 7.43 11.15 4097 72 GPU

Table 2.1: Error percentages on the Top-1 accuracy results on datasets SmallNorb (S-Norb),
MNIST, FashionMNIST (F-MNIST), CIFAR-10 (C-10), and CIFAR-100 (C-100). The * nota-

tion indicates results obtained with networks pre-trained on ImageNet.

MNIST

Figure 2.9: Vectorial representation of emerging islands of agreement at different K levels of
sample from MNIST and CIFAR-10 datasets.
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2.2.3 Quantitative results

We report the quantitative results for each dataset in Tab. [2.1} Capsule-based
models [43, [70, 77, 91, 93] can achieve good performances on simple datasets
(SmallNorb, MNIST, and FashionMNIST), but they fail to generalize to datasets
with a higher number of classes (CIFAR-100). Convolutional-based models
[5,137,45, 98] can generalize to different datasets, at the expense of weak model
interpretability, mainly due to the max-pooling operation. Transformer-based
[23]] and MLP-based methods [61, [111] are able to achieve the best perfor-
mances on more complex datasets, but they do not provide tests for smaller
datasets. However, to achieve such levels of accuracy they rely on long pre-
training (thousands of TPU days) on expensive computational architectures,
implementing data augmentation on ImageNet [56] or the JFT-300M [104]
dataset, not available publicly. As can be seen, our method performs on par
with capsule-based methods on simpler datasets, while achieving better gener-
alization on more complex ones. In addition, our method has fewer parameters
than most transformer-based and MLP-based methods, and it can be trained in

less time on a much smaller architecture.

Ablation study. We analyze the contribution of the different components
of our architecture evaluating their influence on the validation loss. The con-
sidered parameters, in descending order of correlation with the validation loss
value are: the embedding dimension d, the contrastive feature vector f1, learn-
ing rate, weight decay, dropout, and the number of levels K. The results are
reported in Fig. 2.7, We perform 50 different training on CIFAR-10 with differ-
ent combinations of parameters. We monitor the validation loss value after 50

epochs.

In Fig. 2.8, we show how the contributions to the values of levels /¥ in
Eq. are weighted over the first 100 epochs by observing how the trainable
weights w;, wpy, O7p, W4 change. The attention contribution w4 and the previ-
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(a) ResNet-110 [37]] (c) Ours
0=12% 0=24% 0=2%
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cat
(d) ConvMLP-L [61] (e) Matrix-CapsNet [43]
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Figure 2.10: 2D representation of the latent space for multiple methods trained only on the
CIFAR-10 dataset obtained using Principal Component Analysis (PCA) [117)]. The PCA pro-
vides a deterministic change of base for the data from a multidimensional space into a 2D space.
The legend (f) displays the classes, which are divided between super-classes Vehicles and An-
imals following the WordNet hierarchy [72]. The different methods (a,b,c,d,e) are all able to
cluster the samples between the two super-classes. However, while (a,b,e) display a latent space
where classes are close to each other, the two MLP-based methods (c,d) are able to provide a
clearer separation between the super-classes. Both methods show conceptual-semantically close
samples on the edge of each superclass, such as airplanes and birds. Inside each superclass, se-
mantically close samples are represented contiguously, such as deers and horses, or cars and
trucks. Our method (c) provides better inter-class and intra-class separability. The overlap per-
centage O i1s reported for each method. The overlap area is the area where a mistake with a

higher hierarchical severity [/] has a higher probability to occur.
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ous level one w; decrease over time, with @; reaching a plateau. After 15 epochs
of weights self-calibration, the top-down contribution w7p increases over the
epochs, as the network can infer useful information from predicted ”wholes”
at the upper levels. The bottom-up contribution gy decreases over the epochs
since the bottom-up networks have learned to map efficiently map the input into

the embeddings, especially at lower levels.

2.2.4 Qualitative results: interpretability

Our method provides interpretability of the relationships learned by the model
by explicitly modeling the part-whole hierarchy, and of the relationships con-
tained in data through the hierarchical organization of the feature space.

Island of agreement as a representation of multi-level part-whole hier-
archy. During the propagation phase, neighbor levels on the same layer Lf are
encouraged to reach a consensus by forming islands of agreement. The islands
of agreement represent the part-whole hierarchies at different levels. In Fig.
we provide a few examples of the islands of agreement obtained on MNIST and
CIFAR-10 trained with K = 5 levels. Each arrow represents the value of a level
[l at location (s, w), reduced from d-dimensional to 2D using a linear layer. As
k for Lf increases, neighbor [} € Lf tend to agree on a common representation
of the whole represented in the image sample. At lower levels, smaller islands
emerge, each representing a part of the whole. Samples of MNIST present fewer
changes in the islands across levels because the data is much simpler, indicating
that fewer levels in the hierarchy can be sufficient to obtain similar results. Our
Agglomerator is thus able to represent a patch differently at different levels of
abstraction. At the same level, spatially adjacent patches take the same value,
agreeing on the representation of parts and wholes.

Latent space organization as the representation of conceptual-semantic
relationship in data. Recent networks aim at maximizing inter-class distances

and minimizing intra-class distances between samples in the latent space. While
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Figure 2.11: 2D representation of the latent space for multiple methods trained only on the
CIFAR-10 dataset obtained using Principal Component Analysis (PCA) [117]. The PCA pro-
vides a deterministic change of base for the data from a multidimensional space into a 2D space.
The legend (f) displays the classes, which are divided between super-classes Vehicles and An-
imals following the WordNet hierarchy [72]]. The different methods (a,b,c,d,e) are all able to
cluster the samples. However, while (a,b,e) display a latent space where classes are close to
each other, the two MLP-based methods (c,d) are able to provide a clearer separation between
classes. Both methods show conceptual-semantically close samples on the edge of each su-
perclass, such as airplanes and birds. Inside each superclass, semantically close samples are
represented contiguously, such as deers and horses, or cars and trucks. Our method (c¢) provides

better inter-class and intra-class separability. We provide numerical results of the classes over-

lap in Fig. @
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Figure 2.12: The overlap percentage O between classes in the latent space is reported for each
possible class and each method. For each table, the top-left quadrant represents the overlap
percentage between classes belonging to the super-class animals, while the bottom-right one
for the superclass vehicles. The top-right and bottom-left quadrants represent the area where a
mistake with a higher hierarchical severity [7] is possible. It would be ideal to have the table
with zeros for all the values, but the diagonal. That would represent perfect separation between
all the classes. Our method provides the best separation between the two superclasses. It is
interesting to notice that the highest intra-superclasses correlation is present between the two
classes bird and airplanes which share features like the wings and the ability to fly.
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the accuracy is high, they provide little interpretability in their data representa-
tion. As a result, mistakes are less likely to happen, but the mistake severity,
defined as the distance between two classes in WordNet lexical hierarchy [72],
does not decrease [7]. As shown in Fig. our network provides an orga-
nization of the input data, which is semantically closer to the human lexical

hierarchy.

2.2.5 Limitations

Our novel neural network structure inherently incorporates new types of hyper-
parameters such as embedding dimensions, number of levels, and size of patches,
which need to be tuned. We believe a better parameters setting can be found
for all the datasets, increasing accuracy while still retaining interpretability.
Moreover, a higher number of parameters generally causes architectures to be
more prone to over-fitting and more difficult to train. To improve the accu-
racy of our network, we would need a pre-training on large datasets (e.g., on
ImageNet), which requires large computational resources to be performed in
a reasonable time frame. While hoping that powerful TPU architectures be-
come publicly available in the future, we are currently investigating efficient

pre-training strategies for our network.

2.2.6 Discussion

We presented Agglomerator, a method that makes a step forward towards repre-
senting interpretable part-whole hierarchies and conceptual-semantic relation-
ships in neural networks. We believe that interpretable networks are key to the
success of artificial intelligence and deep learning. With this work, we intend
to promote a preliminary implementation and the corresponding results on the
image classification task, and we hope to inspire other researchers to adjust our

solution to solve more complex and diverse tasks.
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2.3 Agglomerator++

While deep neural networks consistently outperform humans across fields like
computer vision [37], natural language processing [[114], and data analysis [96],
the attained high performance often comes at the cost of increased complexity.
An established practice is to train and evaluate the output of neural networks
consisting of billions of parameters, and this is accomplished mostly following
experience and the rule of thumb. Interpreting how a trainable parameter in the
network setup directly affects the desired output from a given input becomes

then nearly impossible [67].

Interpretability, defined as the capacity to provide understandable explana-
tions to humans [22, |64], is crucial in many areas [30] [96], although it is gen-
erally hard to understand why a specific decision was made. Humans, on the
other hand, are adept at understanding objects, their parts, and their interrela-
tionships. We can categorize and recognize an object from its parts and infer
its concept from its visual features [8]]. This hierarchical representation is often

missing in deep learning networks.

Various techniques have been introduced in the image classification field,
such as transformers [23,114], neural fields [/1], contrastive learning represen-
tation [14], distillation [41], and capsules [93]]. These methods have improved
interpretability to a certain extent. However, they often lack emphasis on data
relationships or model-learned relationships, such as part-whole hierarchies. In-
spired by the GLOM framework [40], our Agglomerator [24] aims to address
these shortcomings. It integrates multiple methods, such as CNNs [61], trans-
formers, and positional encoding [23, [114], contrastive learning representation
[14], distillation [41], and capsules [93]].

Agglomerator++ is an evolution of our previous contribution, Agglomerator
[24], which had proven effective for representing part-whole hierarchies while

dealing with the image classification task. Agglomerator++ shares a similar
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structure but improves the results while reducing the model size. Adopting
a similar technique as in [71], we introduced the positional encoding and we
adopt a training procedure with masked patches as performed in [36,122]. The
sample latent representation after the masked pre-raining allows the architecture
to achieve better performances in the classification stage than the previously
adopted contrastive pre-training, at a smaller computational cost. We perform
an extensive evaluation of Agglomerator++, focusing on the hyperparameters
that are peculiar to our architecture and cannot be found in different neural
networks, such as the number of levels and column structure (details in the
coming paragraphs). Experimental results show that our model can compete
with much larger models on big datasets while retaining a small number of

parameters and outperforming capsule networks on smaller ones.

Our contribution is summarised as follows:

» we introduce a novel model, called Agglomerator++, mimicking the func-

tioning of the cortical columns in the human brain [34];

* we show how our architecture provides interpretability of relationships
contained in data, namely the hierarchical organization of the feature space

closely resembling human lexical similarities [[72];

» we provide results outperforming or on par with current methods on com-
mon datasets, such as SmalINORB [59], MNIST [58], FashionMNIST
[120], CIFAR-10 and CIFAR-100 [55];

* we show how the input masking during the pre-training for self-supervised
reconstruction leads to a better, more efficient neural representation than

the previously deployed contrastive pre-training [24].
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2.3.1 Method

The framework we propose aims at replicating a column-like pattern, similar
to hyper-columns typical of the human visual cortex [34]. The proposed net-
work, called Agglomerator++, approaches the classification task in a patch-
based fashion, constructing on top of each patch so-called columns. Each col-
umn consists of several layers which, from bottom to top, progressively agree

according to a part-whole paradigm, to the definition of the image content.

Compared to the previous solution proposed in Agglomerator [24], the method
also benefits from an unsupervised pre-training [33]], setting up the network as
an autoencoder to reconstruct the masked input image as in [[122], which leads
to a better neural representation. This procedure, combined with a simplified
version of the Transformer self-attention [114] mechanism on each layer of the
columns, aims at reaching a consensus between columns. Routing the infor-
mation with layer-based attention and stacked autoencoders allows GLOM to
learn a different level of abstraction of the input at a different location and level
in the columns, creating a part-whole structure with a richer representation if

compared to capsule networks [93]].

Here, we introduce the mathematical notation needed to explain the details

of the main building blocks of the architecture.

As can be seen in Fig. [2.14] each input image is transformed into a feature
map divided into N = h x w patches. The n-th patch, with n € {1,...,N}, lo-
cated at coordinates (4, w) is fed to the corresponding column C(h,w), as in Fig.
2.13(c).

As shown in Fig. each column C(h,w) consists of K embedding levels
{l,(h’w)’k | k=0,...,K} connected by a stack of auto-encoders at location (&, w)
at time r € {0,1,...,T}, as suggested in [40]. The (h,w) is omitted in the next
instances of I¥ for better readability. Each level I¥ of the column is a vector

representation of size d, which encodes the patch information at position k at
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Figure 2.13: Architecture of our Agglomerator++ model (center) with information routing (left)
and detailed structure of building elements (right). Each cube represents a level ltk. Top: (a)
legend of the arrows in the figure, representing the top-down network NTD(llklel) and the po-
sitional embedding p(h,w), the bottom-up network Ny (IX7), attention mechanism A(L¥ )
and time step ¢. Left: (b) Contribution to the value of level l,k given by l,k_l, NTD(llkfll) and
Ngy (I571). (c) The attention mechanism A(LX ) shares information between /X | € LF |. The
positional embedding p(h,w) is different for each column C(h,w). <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>