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Abstract

Neural networks have demonstrated outstanding capabilities, surpassing hu-

man expertise across diverse tasks. Despite these advances, their widespread

adoption is hindered by the complexity of interpreting their decision-making

processes. This lack of transparency raises concerns in critical areas such as

autonomous mobility, digital security, and healthcare. This thesis addresses

the critical need for more interpretable and efficient neural-based technologies,

aiming to enhance their transparency and lower their memory footprint. In the

first part of this thesis we introduce Agglomerator and Agglomerator++, two

frameworks that embody the principles of hierarchical representation to im-

prove the understanding and interpretability of neural networks. These models

aim to bridge the cognitive gap between human visual perception and com-

putational models, effectively enhancing the capability of neural networks to

dynamically represent complex data. The second part of the manuscript fo-

cuses on addressing the lack of spatial coherency and thereby efficiency of the

latest fast-training neural field representations. To address this limitation we

propose Lagrangian Hashing, a novel method that combines the efficiency of

Eulerian grid-based representations with the spatial flexibility of Lagrangian

point-based systems. This method extends the foundational work of hierarchi-

cal hashing, allowing for an adaptive allocation of the representation budget.

In this way we effectively preserve the coherence of the neural structure with

respect to the reconstructed 3D space. Within the context of 3D reconstruction

we also conduct a comparative evaluation of the NeRF based reconstruction

methodologies against traditional photogrammetry, to assess their usability in

practical, real-world settings.
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Chapter 1

Introduction

In the rapidly evolving landscape of computer science, neural networks have
emerged as an important tool for innovation and advancement. Their excep-
tional ability to learn from and adapt to a wide set of data has changed the
way we approach complex problems across diverse domains. The application
of neural networks has transformed traditional methodologies, offering novel
solutions and unprecedented efficiency.
A particularly important impact of neural networks is observed in the realms of
computer vision and graphics. In this contexts, they have not only enhanced ex-
isting technologies but also introduced groundbreaking developments. Among
these, Neural Radiance Fields (NeRF) stand out as a remarkable achievement.
NeRF’s approach to 3D rendering and representation has enabled an unprece-
dented level of realism. This advancement particularly highlights the transfor-
mative impact of neural networks on our vision technologies.
Despite their impressive capabilities, neural networks often operate as enig-
matic ”black boxes”, hiding the logic behind their decision-making processes.
This lack of transparency is particularly problematic in critical sectors such as
autonomous mobility, digital security, and healthcare, where the necessity for
safety and reliability is a must. To address this concerns we introduce Agglom-
erator, an innovative approach, theorized by Hinton in [40], that tries to bridge
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this gap by exploiting concepts coming from cognitive science. In particular
this architecture focus on discovering part-whole hierarchies in visual data to
learn representations and enhance our ability to interpret and trust its decisions.
In the realm of computer graphics, the efficiency of Neural Radiance Fields
(NeRF) training routines received a considerable boost from InstantNGP [78].
This method has yielded outstanding results in both the quality and speed of
NeRF reconstruction. However, the reliance of this method on hashtables, af-
fected by collisions, causes the loss of Lagrangian properties within the frame-
work. This disruption of Lagrangian properties compromise the spatial coher-
ence between the implicit representation and the actual 3D signal reconstruc-
tion. This issue highlights a critical trade-off between efficiency and inter-
pretability in the representation of 3D environments.
To overcome the spatial coherence challenges inherent of current NeRF train-
ing methods, we propose Lagrangian Hashing, a novel representation for neural
fields. This technique combines the rapid training advantages of Eulerian grid-
based systems, such as InstantNGP, with the precision and detail offered by
point-based representation methods like 3D Gaussian Splatting [48] and Point-
NeRF [124]. By embedding point-based features within the high-resolution
layers of InstantNGP’s hierarchical hash tables, Lagrangian Hashing effectively
respects the Lagrangian properties essential for accurate 3D signal reconstruc-
tion, thereby enhancing both the interpretability and efficiency of neural field
representations.
Lastly, we present a study on the impact of radiance-based representations on
3D reconstruction for industrial applications. Specifically, we present a com-
prehensive comparison of classical photogrammetry with state of the art NeRF
based techniques[48, 78] in terms of fidelity of the reconstruction and preci-
sion of the resulting point cloud. More in detail, the structure of the thesis is
organized as follows:

• In the first part (Chapter 2) we explore neural network architectures from

2



3 CHAPTER 1. INTRODUCTION

the multilayer perception to state-of-the-art Vision Transformers [114],
with a particular focus on architectures focusing on discovering part-whole
hierarchies in the data, like Capsule networks [93]. We then present our
work on Agglomerator and its extension Agglomerator++.

• In the second part (Chapter 3) we delve into 3D representations for 3D
data, starting from voxels for the first project SinGAN-3D in section 3.1
and then Neural Radiance Fields reconstruction, presenting the first pure
neural methods and the further development in the field with hybrid NeRF
methods. In Section 3.4 we highlight the issues with these fast and efficient
representation and how we address these issues with our novel method
Lagrangian Hashing. In the context of Graphics representation we show
a comparison of classical photogrammetry and Implicit representations in
Chapter 4.

• In Chapter 5 we draw some conclusions on the thesis and discuss about fu-
ture directions in the context of Neural Network interpretability and com-
pact 3D representations.

3



4

4



Chapter 2

Representing Part-whole Hierarchies in
Neural Networks

2.1 Part-whole hierarchies in Neural Networks

Neural networks have demonstrated outstanding capabilities, surpassing human
expertise across diverse tasks. However, a significant drawback of these ad-
vanced neural models is the poor accessibility to understand and interpret the
network response to a given input. This lack of clarity becomes particularly
problematic in sectors where safety and reliability are paramount, such as in
autonomous mobility, digital security, and healthcare, where the absence of in-
terpretable insights can erode trust in these otherwise highly accurate systems.
Additionally, traditional performance metrics such as accuracy offer an incom-
plete picture of a system’s effectiveness in complex, real-life situations.

Substantial psychological findings indicate that the human visual system de-
composes scenes into part-whole hierarchies, establishing consistent spatial re-
lationships through internal coordinate transformations [39]. To mirror this
capability in neural networks, we must devise ways for these models to rep-
resent such hierarchies. Traditional neural networks falter here, unable to dy-
namically assign neuron groups to specific hierarchical nodes. This limitation
prompted the exploration of ”capsule” networks, where neuron clusters, or cap-
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2.1. PART-WHOLE HIERARCHIES IN NEURAL NETWORKS 6

sules, are dedicated to representing distinct image segments within a specified
region [43, 54, 93]. This framework enables the construction of parse trees by
activating specific capsules and their linkages, facilitating a more human-like
interpretation of visual data.
Efforts to make neural networks more interpretable is not a recent phenomenon,
with its origins deeply embedded in the foundational periods of artificial intel-
ligence and cognitive science. The foundational work in this field aimed to
bridge the gap between human cognitive processes and computational models,
particularly in how complex systems like the human brain parse and understand
visual information.

A foundational theory that significantly shaped the direction of neural net-
work interpretability originated in cognitive science. Researchers like Marr
(1982) laid the groundwork with his theory of vision, proposing that visual pro-
cessing involves multiple stages – from the raw image to a 3D understanding of
the world. Influenced by this perspective, early efforts in computer vision aimed
to replicate these processes computationally, striving to design systems capable
of recognizing image features and comprehending their spatial and hierarchical
connections, mirroring human visual perception.

Parallel to these developments, early neural network models started to incor-
porate hierarchical structures, an approach inspired by both biological neural
systems and cognitive theories. These hierarchical models aimed to represent
complex data in a multi-layered fashion, where lower layers captured basic fea-
tures and higher layers integrated these features into more abstract representa-
tions. The Neocognitron, introduced by Fukushima in 1980, is an early example
of such a model. It was designed to recognize visual patterns by building in-
creasingly complex representations at each layer of the network, illustrating a
primitive form of part-whole hierarchy.
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2.1.1 The evolution of neural architectures

Multi Layer Perceptrons (MLPs) [61, 111] are characterised by fully connected
layers, in which each node is connected to every other possible node of the
next layer. Even though they are easier to train and have simpler architec-
ture compared to CNNs, the fully connected layers may cause the network to
grow too fast in size and number of parameters, not allowing powerful scala-
bility. MLPs have recently experienced a resurgence, thanks to patch-based ap-
proaches [61, 111], that allowed reaching state-of-the-art performances. They
can also be seen as 1x1 convolutions [40, 61, 111], which do not require the
pooling operation.

Convolutional Neural Networks (CNNs) [37, 98] have risen to a prominent
role in computer vision when they started to outperform the existing literature
in the image classification task of the ImageNet challenge [56]. The convolu-
tion operator can effectively describe spatially-correlated data resulting in a fea-
ture map, while the pooling operation down-samples the obtained feature map
by summarizing the presence of certain features in patches of the image. The
pooling operation in CNNs has been the subject of criticism since it does not
preserve the information related to the part-whole relationship [100] between
features belonging to the same object [93].

Transformers [23, 49, 66] have proven able to outperform CNNs, thanks to
their ability to encode powerful features using self-attention and patch-based
analysis of images. Multi-headed transformers [20] require the query, key, and
value weights to be trained differently for each head, which is a costly oper-
ation. The main advantage compared to CNNs is the ability of the multiple
heads to combine information from different locations in the image with fewer
losses than the pooling operation [60]. However, when compared with CNNs,
Transformer-like models usually require intensive pre-training on large datasets,
to achieve state-of-the-art performances.

7
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2.1.2 Capsule Networks

The concept of capsule networks proposed by Hinton et al. in 2011, marked
a significant advancement in the field of neural network, particularly in the
quest for improved interpretability and representation of complex data struc-
tures. These networks introduced a novel concept in neural network architec-
ture, fundamentally different from traditional Convolutional Neural Networks
(CNNs).

Unlike CNNs, which output scalar values and are known for their transla-
tional invariance, Capsule Networks operate on the principle of equivariance
through vector outputs. Each capsule, a group of neurons within the network,
is designed to capture and output a vector. This vector represents not only the
probability of the presence of a particular feature within the data but also a set of
instantiation parameters. These parameters encapsulate vital information about
the feature, such as its pose, texture, and deformation, adding a layer of inter-
pretability that was previously elusive in traditional neural network models.

One of the defining advantages of Capsule Networks is their innate ability to
recognize entities by first recognizing their constituent parts, a concept inspired
by cognitive theories of visual perception. This is achieved through a sophis-
ticated structuring of capsules into layers, where lower-level capsules (primary
capsules) extract pose parameters from pixel intensities, initiating a part-whole
hierarchy. These primary capsules then make predictions for higher-level cap-
sules (secondary capsules), based on the spatial relationships of the features
they represent. For example, the detection of eyes and mouth as individual
features by lower-level capsules can collectively activate a higher-level capsule
representing a face, provided their spatial relationships align accurately.

The journey of Capsule Networks saw several significant evolutions. The
first model, termed ’Transforming Auto-encoders’, was designed to recognize
the pose of an object in an image. The authors showed how a neural network

8
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Figure 2.1: A simple capsule network with 3 layers. The PrimaryCaps are the lowest level of
multi-dimensional neuronal activity (each capsule is an 8D vector). The length of the activity
vector of each capsule in the DigitCaps layer indicates the presence of each class. Figure from
[14].

can be used to learn features that output a vector of instantiation parameters
(capsule), and argued that this is a better way of dealing with tranformations of
the input. This implementation laid the groundwork for subsequent models that
focused on enhancing the part-whole relationship recognition.

Sabour et al. in 2017 further refined Capsule Networks by introducing a dy-
namic routing mechanism between capsules. This architecture, shown in Figure
2.1 overcame the need for pose data as input, instead utilizing instantiation pa-
rameters represented by activity vectors. The dynamic routing algorithm was a
critical advancement, enabling the network to learn the spatial relationships and
hierarchies more effectively.

Presence +
pose vector u

Figure 2.2: Structure of a capsule as described in [93], developed to allow dynamic routing.
Classic CNNs scalar-output feature detectors are replaced by vector-output capsules. Each
capsule describes both pose and presence of an entity.

Hinton et al. in 2018 [43] introduced another variant of Capsule Networks,
utilizing matrix outputs instead of vectors. This approach was aimed at reduc-
ing the complexity of transformation matrices between capsules and introduced

9
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the use of expectation-maximization routing, replacing the dynamic routing by
agreement. This is achieved through a more complex capsule structure (Fig.
2.3) and an Expectation-Maximization routing (EM-routing) for capsules. Un-
fortunately, the EM-routing and the 4×4 pose matrix embedded in the capsule
contribute to increasing the training time, when compared to both CNNs and
[93].

Presence probability a
Pose matrix M

Figure 2.3: Structure of capsule as described in [43]. It contains both a scalar value and a 4X4
matrix, respectively describing the presence probability and a more robust 3D pose compared
to the first capsule implementation.

Another important step in the developement of capsule network is presented
by [54] by Kosiorek et al., introducing for the first time an unsupervised capsule-
based autoencoder. Following this, Ribeiro et al. expanded on EM-routing
with a novel approach, using VB capsule routing for the first time to fit a mix-
ture of transforming Gaussians [91]. Their method present state-of-the-art re-
sults on smallNORB by using ∼ 50% less capsules. This breakthrough opens
new avenues for performance improvement and network simplification. Subse-
quent studies have delved into minimizing the complexity of capsule networks
via quaternions [82], also enhancing their efficacy. Despite these innovations,
benchmarks have predominantly focused on smaller datasets.

Capsule Networks represent a significant advacement towards more inter-
pretable and efficient neural networks. By focusing on the representation of
part-whole hierarchies and spatial relationships, they offer a more complete un-
derstanding of the data they process.

There has been a recent push toward the so-called biologically inspired Ar-
tificial Intelligence (AI) [34, 44], which tries to build deep learning networks
able to mimic the structure and functions of the human brain. In [34], the au-

10
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thors propose a column-like structure, similar to hyper-columns typical of the
human neocortex. In [113], the authors build upon cortical columns imple-
mented as separate neural networks called Cortical Column Networks (CCN).
Their framework aims at representing part-whole relationships in scenes to learn
object-centric representations for classification.

The author in [40] proposes a conceptual framework, called GLOM, based
on inter-connected columns, each of which is connected to a patch of the image
and is composed of auto-encoders stacked in levels. Weights sharing among
MLP-based [61] auto-encoders allows for an easily trainable architecture with
fewer weights, while knowledge distillation [41] allows for a reduction of the
training parameters. The patch-based approach combined with the spatial dis-
tribution of columns allows for a sort of positional encoding and viewpoint es-
timation similarly to what is used in neural fields [71, 100]. At training time,
the author recommends that GLOM should be trained using a contrastive loss
function [14]. This procedure, combined with a Transformer-like self-attention
[114] mechanism on each layer of the columns, aims at reaching a consen-
sus between columns. Routing the information with layer-based attention and
stacked autoencoders would theoretically allow GLOM to learn a different level
of abstraction of the input at a different location and level in the columns, cre-
ating a part-whole structure with a richer representation if compared to capsule
networks [93].

2.2 Agglomerator

The rapid increase in the adoption of neural networks and machine learning
models has raised concerns over our ability to decipher their decision-making
processes. Particularly in critical applications such as autonomous driving [30],
healthcare[74], and finance [96], where stakes involve safety, life, and security,
the need for neural networks to be interpretable is paramount. In fact, their

11
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H

W

(a) Input (b) Patch-based embedding (c) Agglomerator
(d) Part-whole

hierarchy
(e) Conceptual-semantic

relationships

w

h

K

d
dog

head

ears

Figure 2.4: [Better seen in color]. Overview of the proposed solution. Our Agglomerator is a
novel architecture for vision applications, in which column structure (c) mimics hyper-columns
typical of the human visual cortex [34]. The input data (a) is fed to the columns using a patch-
based embedding (b). The Agglomerator architecture iteratively routes the information across
its structure, creating a neural representation of each image, similar to neural fields [71]. In
the neural representation, part-whole hierarchies (d) emerge at different levels of the columns.
The same column can represent the same patch of the image with different levels of abstraction
(e.g., the ears, the head, and the dog) corresponding to each level in the column. Neighbor
columns agree on a part representation (e.g ears, head) at lower levels, ideally representing the
same whole (e.g. dog) at the top level. The resulting feature space represents the conceptual-
semantic relationships between data (e) resembling the human hierarchical organization [72].
Samples belonging to the same super-class (e.g., animals, vehicles) are clustered together, with
conceptually close categories (e.g., birds and airplanes) represented on the edge of the super-
classes.
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outstanding abilities come at a cost of model complexity, making it difficult
to interpret how neural networks work [64]. Often deployed as ”black boxes,”
these networks require the fine-tuning of millions of parameters, largely based
on trial and error. Determining the effect of specific trainable parameters on the
output for any given input is nearly infeasible.
The literature describes interpretability as ”the extent to which a human can
grasp the rationale behind a decision” [73]. This concept becomes crucial when
a machine learning model, tasked with classification or prediction, achieves
high accuracy. The question arises: Can we trust the model without under-
standing why such a decision has been taken? The decision process is complex
and we tend to evaluate the performance of a system in solving a given task us-
ing metrics computed at the end of the processing chain. While single metrics,
such as the classification accuracy, reach super-human results, they provide an
incomplete description of the real-world task [22]. For example, when dealing
with an image classification problem, the learning model might tell the class
the represented object belongs to. In this case we can obtain a prediction on
what the network assigned the image to, but we have little understanding about
why we it made such a prediction [75]. Humans, by contrast, use reasoning and
intuition to associate parts with their wholes, drawing on experiences and cog-
nitive frameworks to make inferences—even about unfamiliar animals—based
on visual cues and hierarchical object organization [1, 8, 34, 72]. We would like
neural networks to display a similar behavior, so that objects that are close in
the conceptual-semantic and lexical relations are adjacent in the feature space
as well (as shown in Fig. 2.4e). By doing so, it would be intuitive to identify
hierarchical relations between samples and how the model has learned to build
a topology describing each sample. Consequently, we can agree on the defini-
tion of interpretability in deep learning as the “extraction of relevant knowledge

from a machine-learning model concerning relationships either contained in

data or learned by the model” [79].

13
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The landscape of image classification has been revolutionized by methods such
as transformers [20, 23, 114], neural fields [71], contrastive learning represen-
tation [14], distillation [41] and capsules [93], each bringing forward break-
throughs like powerful attention-based features and per-patch analysis, posi-
tional encoding, similarity-based self-supervised pre-training, model compres-
sion and deep modeling of part-whole relationships. Despite their individual
contributions to improving network interpretability, these methods often fall
short in fully articulating both the data-centric relationships (such as conceptual-
semantic ties [14, 20, 23, 71, 114]) and the intricacies of relationships learned
by the models (like part-whole dynamics [41, 93]).
Addressing this, the conceptual framework of GLOM [40] integrates these di-
verse technologies, aiming to emulate the human process of parsing visual in-
puts into coherent structures. GLOM aims at mimicking the human ability in
learning to parse visual scenes. Drawing inspiration from this theoretical con-
cept, also described in [34], we developed the Agglomerator system, which
achieves part-whole agreement [42] at different levels of the model (relation-

ships learned by the model) and hierarchical organization of the feature space
(relationships contained in data), as shown in Fig. 2.4.

Our contribution is summarised as follows:

• we introduce a novel model, called Agglomerator, mimicking the func-
tioning of the cortical columns in the human brain [35];

• we explain how our architecture provides interpretability of relationships

learned by the model, specifically part-whole relationships;

• we show how our architecture provides interpretability of relationships

contained in data, namely the hierarchical organization of the feature space;

• we provide results outperforming or on par with current methods on mul-
tiple common datasets, such as SmallNORB [59], MNIST [58], Fashion-
MNIST [120], CIFAR-10 and CIFAR-100 [55];

14
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• we show that our model relies on fewer parameters and can generalize to
multiple datasets.

2.2.1 Method

The framework we propose aims at replicating the column-like pattern, similar
to hyper-columns typical of the human visual cortex [34]. An overview is shown
in Fig. 2.4.

Agglomerator brings together concepts and building blocks from multiple
methods, such as CNNs [61], transformers [20, 23, 114], neural fields [71],
contrastive learning representation [14], distillation [41], and capsules [93].

Differently from the transformer architecture Agglomerator is a recurrent ar-
chitecture, organized in different hierarchical levels, representing different lev-
els of granularity of the parts. In the next paragraph, we introduce the mathe-
matical notation needed to explain the details of the main building blocks of the
architecture.

Each input image is transformed into a feature map divided into N = h×w

patches. The n-th patch, with n ∈ {1, . . . ,N} is fed to the corresponding column
Cn(h,w), spatially located at coordinates (h,w). The subscript n is omitted in
the next equations for better readability. As shown in Fig. 2.5, each column
C(h,w) consists of K embedding levels {l(h,w),kt | k = 0, . . . ,K} connected by a
stack of auto-encoders at location (h,w) at time t ∈ {0, . . . , t −1, t, t +1, . . . ,T}.
The superscript (h,w) is omitted in the next instances of lk

t for better readability.
Each level lk

t of the column is an embedding vector representation of size d.
Levels lk−1

t and lk
t represent consecutive levels; lk−1

t represents a part of the
whole lk

t . We indicate as lk
t ∈ Lk

t all the levels lk
t in all columns C(h,w) sharing

the same k value and belonging to the same layer Lk
t . Being K the last layer of

our architecture at the last time step T , it is represented as LK
T .
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Patches embedding

At the embedding stage, as in [61], we apply a convolutional Tokenizer to ex-
tract the feature map of each image of size H ×W pixels, which provides a
richer representation compared to the original image. Following the implemen-
tation in [61], the obtained feature map has size h×w×d where h = H/4 and
w =W/4. We then embed each of the n d-dimensional embedding vectors into
the bottom levels l0

t ∈ L0
t at the corresponding coordinates (h,w) of the corre-

sponding column C(h,w). Feeding the n-th each patch to a spatially located
column C(h,w) resembles the positional encoding of neural fields [71], where
each d-sized embedding lk

t represents at the same time the sample and its rela-
tive observation viewpoint. At each time step t, we embed each image sample
into the first layer of the columns, which is represented as the bottom layer L0

t .

Hypercolumns

Consecutive levels in time and space in a column C(h,w) are connected by an
auto-encoder. The auto-encoders are based on an MLP, which allows for model
reduction [41] and faster training time. Each auto-encoder computes the top-
down contribution of a level lk+1

t−1 to the value of the level below at the next
time step lk

t using a NT D(lk+1
t−1 ) top-down decoder. Similarly, each auto-encoder

computes the bottom-up contribution of a level lk−1
t−1 to the value of the level

above at the next time step lk
t using a NBU(lk−1

t−1 ) bottom-up encoder. NT D(lk+1
t−1 )

and NBU(lk−1
t−1 ) share a similar structure, but for the activation functions, as de-

scribed in Fig. 2.5(e). The top-down network uses GELU activation functions
[38], while the bottom up network relies on Siren activation functions [99]. All
the NT D(lk+1

t−1 ) connecting Lk+1
t−1 to layer Lk

t share the same weights. The same is
true for the NBU(lk−1

t−1 ) connecting Lk−1
t−1 to layer Lk

t .
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Figure 2.5: [Better seen in color]. Architecture of our Agglomerator model (center) with infor-
mation routing (left) and detailed structure of building elements (right). Each cube represents
a level lk

t . Left: (a) legend of the arrows in the figure, representing the top-down network
NT D(lk+1

t−1 ), the bottom-up network NBU(lk−1
t−1 ), attention mechanism A(Lk

t−1) and time step t.
(b) Contribution to the value of level lk

t given by lk
t−1, NT D(lk+1

t−1 ) and NBU(lk−1
t−1 ). (c) The at-

tention mechanisms A(Lk
t−1) share information between lk

t−1 ∈ Lk
t−1. Center: bottom to top,

the architecture consists of the Tokenizer module, followed by the columns C(h,w), with each
level lk

t connected to the neighbors with NT D(lk+1
t−1 ) and NBU(lk−1

t−1 ). On top of the structure,
the contrastive H1 and cross entropy H2 heads. Right: (d) structure of heads H1 and H2. (e)
Structure of the top-down network NT D(lk+1

t−1 ) and the bottom-up network NBU(lk−1
t−1 ).

17



2.2. AGGLOMERATOR 18

Figure 2.6: Contrastive pre-training (dashed lines) and supervised training (continuous
lines) procedures. During the contrastive pre-training, two images Ia and Ib are produced by
applying random data augmentation to the input image I. Through the Tokenizer, we compute
feature maps for both Ia and Ib, which are then divided in patches and embedded into the bottom
layer of the columns L0

t . During the propagation phase, the information is routed through the
Agglomerator architecture to obtain the neural representation LK

T for each sample. We pre-train
the network with the contrastive head H1 using a supervised contrastive loss L1, obtaining
weights W. During the supervised training, we first load the frozen weights W in the network.
Then, augmentation RandAugment [18] is applied on the input image I to obtain Ic, which
follows the same steps as the pre-training phase. The network, with the classification head H2,
is trained for the classification task by minimizing the cross-entropy loss L2.

Routing

The key element of our architecture is how the information is routed to obtain a
representation of the input data where the part-whole hierarchies emerge.

Before computing the loss, we need to iteratively propagate each batch N

through the network, obtaining a deep representation of each image. This pro-
cedure, propagation phase, encourages the network to reach consensus between
neighbor levels lk

t ∈ Lk
t . Ideally, this means that all neighbor levels in the last

layer lK
t ∈ LK

t should have similar values, representing the same whole; neigh-
bor levels at bottom layers lk

t ∈ Lk
t |k ̸= K should instead share the value among

smaller groups, each group representing the same part. Group of vectors that
”agree” on a similar value have reached the consensus on the image represen-
tation at that level, and they are called islands of agreement. An example of
such representation is shown in Fig. 2.4(d). In capsules-based approaches [93],
group of neurons are activated to represent the part-whole hierarchy with limited
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expressive power. Our d-dimensional layers lk
t provide a richer representation

of the same hierarchy.

To obtain such representation, at time step t = 0, we randomly initialise all
the values lk

0 and we embed a batch of B samples into the bottom layer L0
0. Once

the values are initialized, we compute the attention A(Lk
t ). Instead of the self-

attention mechanism used in Transformers [20, 23, 114], a standard attention
weighting is deployed as in [123]. Each attention weight ωn is computed as

ωn =
eβλn·lk

t

∑eβλn·N(λn)
(2.1)

where λn represents each possible level lk
t belonging to the same layer Lk

t

as lk
t , N(λn) is an indicator function which indexes all the neighbors levels of

λn belonging to the same layer Lk
t and β is a parameter that determines the

sharpness of the attention.

At each time step t | t ∈ {1, . . . ,T}, a batch with B samples is fed to the
bottom layer L0

t network as described in Sec. 2.2.1. We compute the values lk
t

as

lk
t = avg(ωllk

t−1,ωBUNBU(lk−1
t−1 ),

ωT DNT D(lk+1
t−1 ),ωAA(Lk

t−1))
(2.2)

where avg() indicates the arithmetical average, and ωl,ωBU ,ωT D,ωA are
trainable weights. For layer LK

t , contribution NT D(lk+1
t−1 ) is not included, as

LK+1
t does not exist. The propagation phase takes T time steps to reach the

final representation of each image at each layer LT
k .

Training

The training procedure of our architecture is shown in Fig. 2.6. It is divided in
two steps: (i) a pre-training phase using a supervised contrastive loss function
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Figure 2.7: Agglomerator hyper-parameters sweep. Hyper-parameters sweep. Each line
represents a combination of parameters setup, with the darker lines representing the models
achieving the lowest validation loss. Image obtained with [9].

Figure 2.8: Agglomerator weights balancing. Each line represents the variation of weights
ωl,ωBU ,ωT D,ωA across epochs. Image obtained with [9].
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[14] and (ii) a training phase for the image classification using a Cross-Entropy
loss.

We first pre-train our network using an image-based contrastive loss [14].
Given a batch with B samples, we duplicate each image I to obtain pairs of
samples (Ia, Ib), for a total of 2B data points. We then apply data augmentation
RandAugment [18] to both (Ia, Ib). Both samples are fed to the network as
described in Sec. 2.2.1, and we perform the propagation phase in Sec. 2.2.1 to
obtain the representation at the last layer LK

T . Then we rearrange the n levels
lK
T ∈ LK

T to obtain a vector of dimensions n×d, given as input to the contrastive
head H1, as described in Fig. 2.5. At the output of the contrastive head, each
sample is described by a feature vector of dimension f 1. We take all the possible
sample pairs (Ia, Ib) from the batch and we compute the contrastive loss defined
as:

L1 =ContrLoss(Ia, Ib) =−log
esim(Ia,Ib)

∑
2B
k=1I[k ̸=a]esim(Ia,Ib)

(2.3)

where ∼ (u,v) = uT v
∥u∥∥v∥ indicates the dot product between the normalized

versions of u and v, I[k ̸=a] is an indicator function valued 0 if k and a belong to
the same class, and 1 otherwise.

Once the network is pre-trained using the contrastive loss, the weights are
frozen. We apply augmentation [18] to each sample Ic in a batch of size B,
which is then fed to the network for the propagation phase to obtain for each
sample the representation LK

T . Then, the cross-entropy head H2 is added on top
of the contrastive head H1. A linear layer resizes f 1-dimensional features to
dimension f 2, which corresponds to the number of classes to be predicted for
each dataset. The new layers are then trained using the cross-entropy function:

L2 =CE(y, ŷ) =− 1
f 2

f2

∑
i=1

yi log(ŷi) (2.4)
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where y is the label of a sample taken from the batch and ŷ is the label to be
predicted.

2.2.2 Experiments

We perform our experiments on the following datasets:

SmallNorb (S-NORB) [59] is a dataset for 3D object recognition from shape.
It consists of roughly 200000 images of size 96×96 pixels of 5 classes of toys.

MNIST [58] and FashionMNIST [120], consist of 60000 training images
and 10000 test images of grayscale handwritten digits and Zalando’s articles of
size 28×28 pixels.

CIFAR-10 and CIFAR-100 [55] both consist of 50000 training images and
10000 test images of size 32×32 pixels, with 10 and 100 classes, respectively.

Our network is trained in an end-to-end fashion using PyTorch Lightning
on a single NVIDIA GeForce RTX 3090. Input images for each dataset are
normalized using each standard dataset’s normalization. We train our network
on each dataset’s native resolution, except for SmallNorb, which is resized
to 32× 32 pixels, following the standard procedure as in [43, 91]. The To-
kenizer embedding creates n = H/4 ×W/4 patches, thus the corresponding
number of columns is 8× 8 for CIFAR-10, CIFAR-100, and SmallNorb, and
7× 7 for MNIST FashionMNIST. During the pre-training, we deploy the fol-
lowing hyper-parameters: 300 epochs, cyclic learning rate [101] in the range
[0.002,0.05], batch size B = 1024, levels embedding d = 128, number of levels
K = 3, number of iterations T = 2K = 6, dropout value 0.3, contrastive fea-
tures dimension f 1 = 512, and weight decay 5e−4. During the training phase,
we resume the network training with the same hyper-parameters, f 2 being the
number of classes corresponding to each dataset.
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Method Ref Backbone
Error % # of

params
(Millions)

Training
Arch.S-Norb MNIST F-MNIST C-10 C-100

E-CapsNet [70]

Caps

2.54 0.26 - - - 0.2 GPU
CapsNet [77, 93] 2.70 0.25 6.38 10.6 82.00 6.8 GPU

Matrix-CapsNet [43] 1.40 0.44 6.14 11.9 - 0.3 GPU
Capsule VB [91] 1.60 0.30 5.20 11.2 - 0.2 GPU
ResNet-110 [5, 37, 45]

Conv
- 2.10 5.10 6.41* 27.76* 1.7 GPU

VGG [5, 98] - 0.32 6.50 7.74* 28.05* 20 GPU
ViT-L/16 [23] Transf - - - 0.85* 6.75* 632 TPU

ConvMLP-L [61] Conv/MLP - - - 1.40* 11.40* 43 TPU
MLP-Mixer-L/16 [111] MLP - - - 1.66* - 207 TPU

Ours Conv/MLP/Caps 0.01 0.30 7.43 11.15 40.97 72 GPU

Table 2.1: Error percentages on the Top-1 accuracy results on datasets SmallNorb (S-Norb),
MNIST, FashionMNIST (F-MNIST), CIFAR-10 (C-10), and CIFAR-100 (C-100). The ∗ nota-
tion indicates results obtained with networks pre-trained on ImageNet.

Figure 2.9: Vectorial representation of emerging islands of agreement at different K levels of
sample from MNIST and CIFAR-10 datasets.
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2.2.3 Quantitative results

We report the quantitative results for each dataset in Tab. 2.1. Capsule-based
models [43, 70, 77, 91, 93] can achieve good performances on simple datasets
(SmallNorb, MNIST, and FashionMNIST), but they fail to generalize to datasets
with a higher number of classes (CIFAR-100). Convolutional-based models
[5, 37, 45, 98] can generalize to different datasets, at the expense of weak model
interpretability, mainly due to the max-pooling operation. Transformer-based
[23] and MLP-based methods [61, 111] are able to achieve the best perfor-
mances on more complex datasets, but they do not provide tests for smaller
datasets. However, to achieve such levels of accuracy they rely on long pre-
training (thousands of TPU days) on expensive computational architectures,
implementing data augmentation on ImageNet [56] or the JFT-300M [104]
dataset, not available publicly. As can be seen, our method performs on par
with capsule-based methods on simpler datasets, while achieving better gener-
alization on more complex ones. In addition, our method has fewer parameters
than most transformer-based and MLP-based methods, and it can be trained in
less time on a much smaller architecture.

Ablation study. We analyze the contribution of the different components
of our architecture evaluating their influence on the validation loss. The con-
sidered parameters, in descending order of correlation with the validation loss
value are: the embedding dimension d, the contrastive feature vector f 1, learn-
ing rate, weight decay, dropout, and the number of levels K. The results are
reported in Fig. 2.7. We perform 50 different training on CIFAR-10 with differ-
ent combinations of parameters. We monitor the validation loss value after 50
epochs.

In Fig. 2.8, we show how the contributions to the values of levels lk
t in

Eq. 2.2 are weighted over the first 100 epochs by observing how the trainable
weights ωl,ωBU ,ωT D,ωA change. The attention contribution ωA and the previ-
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(a) ResNet-110 [37]
O=12%

(b) ViT-L/16 [23]
O=24%

(c) Ours
O=2%

(d) ConvMLP-L [61]
O=12%

(e) Matrix-CapsNet [43]
O=20% (f) Legend

Figure 2.10: 2D representation of the latent space for multiple methods trained only on the
CIFAR-10 dataset obtained using Principal Component Analysis (PCA) [117]. The PCA pro-
vides a deterministic change of base for the data from a multidimensional space into a 2D space.
The legend (f) displays the classes, which are divided between super-classes Vehicles and An-
imals following the WordNet hierarchy [72]. The different methods (a,b,c,d,e) are all able to
cluster the samples between the two super-classes. However, while (a,b,e) display a latent space
where classes are close to each other, the two MLP-based methods (c,d) are able to provide a
clearer separation between the super-classes. Both methods show conceptual-semantically close
samples on the edge of each superclass, such as airplanes and birds. Inside each superclass, se-
mantically close samples are represented contiguously, such as deers and horses, or cars and
trucks. Our method (c) provides better inter-class and intra-class separability. The overlap per-
centage O is reported for each method. The overlap area is the area where a mistake with a
higher hierarchical severity [7] has a higher probability to occur.
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ous level one ωl decrease over time, with ωl reaching a plateau. After 15 epochs
of weights self-calibration, the top-down contribution ωT D increases over the
epochs, as the network can infer useful information from predicted ”wholes”
at the upper levels. The bottom-up contribution ωBU decreases over the epochs
since the bottom-up networks have learned to map efficiently map the input into
the embeddings, especially at lower levels.

2.2.4 Qualitative results: interpretability

Our method provides interpretability of the relationships learned by the model

by explicitly modeling the part-whole hierarchy, and of the relationships con-

tained in data through the hierarchical organization of the feature space.
Island of agreement as a representation of multi-level part-whole hier-

archy. During the propagation phase, neighbor levels on the same layer Lk
t are

encouraged to reach a consensus by forming islands of agreement. The islands

of agreement represent the part-whole hierarchies at different levels. In Fig. 2.9,
we provide a few examples of the islands of agreement obtained on MNIST and
CIFAR-10 trained with K = 5 levels. Each arrow represents the value of a level
lt
k at location (h,w), reduced from d-dimensional to 2D using a linear layer. As

k for Lk
t increases, neighbor lt

k ∈ Lk
t tend to agree on a common representation

of the whole represented in the image sample. At lower levels, smaller islands
emerge, each representing a part of the whole. Samples of MNIST present fewer
changes in the islands across levels because the data is much simpler, indicating
that fewer levels in the hierarchy can be sufficient to obtain similar results. Our
Agglomerator is thus able to represent a patch differently at different levels of
abstraction. At the same level, spatially adjacent patches take the same value,
agreeing on the representation of parts and wholes.

Latent space organization as the representation of conceptual-semantic
relationship in data. Recent networks aim at maximizing inter-class distances
and minimizing intra-class distances between samples in the latent space. While
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(a) ResNet-110 [37] (b) ViT-L/16 [23] (c) Ours

(d) ConvMLP-L [61] (e) Matrix-CapsNet [43] (f) Legend

Figure 2.11: 2D representation of the latent space for multiple methods trained only on the
CIFAR-10 dataset obtained using Principal Component Analysis (PCA) [117]. The PCA pro-
vides a deterministic change of base for the data from a multidimensional space into a 2D space.
The legend (f) displays the classes, which are divided between super-classes Vehicles and An-
imals following the WordNet hierarchy [72]. The different methods (a,b,c,d,e) are all able to
cluster the samples. However, while (a,b,e) display a latent space where classes are close to
each other, the two MLP-based methods (c,d) are able to provide a clearer separation between
classes. Both methods show conceptual-semantically close samples on the edge of each su-
perclass, such as airplanes and birds. Inside each superclass, semantically close samples are
represented contiguously, such as deers and horses, or cars and trucks. Our method (c) provides
better inter-class and intra-class separability. We provide numerical results of the classes over-
lap in Fig. 2.12.
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Frog 100 32 70 12 3 30 24 0 0 3
Deer 32 100 42 50 22 73 14 1 1 0
Bird 70 42 100 18 7 39 27 3 3 6
Dog 12 50 18 100 39 52 5 0 0 0
Horse 3 22 7 39 100 33 4 4 4 0
Cat 30 73 39 52 33 100 17 3 4 2

Airplane 24 14 27 5 4 17 100 19 21 44
Truck 0 1 3 0 4 3 19 100 70 15

Automobile 0 1 3 0 4 4 21 70 100 18
Ship 3 0 6 0 0 2 44 15 18 100

(a) ResNet-110 [37]
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Frog 100 75 55 73 59 73 25 18 13 14
Deer 75 100 71 56 53 58 30 18 13 18
Bird 55 71 100 48 56 52 39 22 16 22
Dog 73 56 48 100 65 82 20 19 16 11
Horse 59 53 56 65 100 65 27 28 24 20
Cat 73 58 52 82 65 100 24 23 20 14

Airplane 25 30 39 20 27 24 100 42 35 60
Truck 18 18 22 19 28 23 42 100 71 41

Automobile 13 13 16 16 24 20 35 71 100 35
Ship 14 18 22 11 20 14 60 41 35 100

(b) ViT-L/16 [23]
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Frog 100 2 17 0 0 17 0 0 0 0
Deer 2 100 26 63 14 29 0 0 0 0
Bird 17 26 100 19 0 54 12 0 0 0
Dog 0 63 19 100 14 27 0 0 0 0
Horse 0 14 0 14 100 14 0 0 0 0
Cat 17 29 54 27 14 100 10 0 0 0

Airplane 0 0 12 0 0 10 100 18 11 16
Truck 0 0 0 0 0 0 18 100 19 11

Automobile 0 0 0 0 0 0 11 19 100 44
Ship 0 0 0 0 0 0 16 11 44 100

(c) Ours
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Frog 100 6 23 5 0 18 9 0 3 0
Deer 6 100 42 85 33 58 18 0 9 3
Bird 23 42 100 39 8 62 35 5 21 11
Dog 5 85 39 100 30 57 17 0 9 3
Horse 0 33 8 30 100 16 6 0 1 0
Cat 18 58 62 57 16 100 23 1 13 5

Airplane 9 18 35 17 6 23 100 38 61 53
Truck 0 0 5 0 0 1 38 100 59 70

Automobile 3 9 21 9 1 13 61 59 100 66
Ship 0 3 11 3 0 5 53 70 66 100

(d) ConvMLP-L [61]

Matrix-CapsNet
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Frog 100 21 5 15 25 50 19 60 73 18
Deer 21 100 28 66 74 16 77 24 28 57
Bird 5 28 100 25 33 6 31 6 8 10
Dog 15 66 25 100 58 10 75 16 21 54
Horse 25 74 33 58 100 22 76 31 32 44
Cat 50 16 6 10 22 100 15 69 49 9

Airplane 19 77 31 75 76 15 100 21 25 48
Truck 60 24 6 16 31 69 21 100 70 18

Automobile 73 28 8 21 32 49 25 70 100 25
Ship 18 57 10 54 44 9 48 18 25 100

(e) Matrix-CapsNet [43]

Figure 2.12: The overlap percentage O between classes in the latent space is reported for each
possible class and each method. For each table, the top-left quadrant represents the overlap
percentage between classes belonging to the super-class animals, while the bottom-right one
for the superclass vehicles. The top-right and bottom-left quadrants represent the area where a
mistake with a higher hierarchical severity [7] is possible. It would be ideal to have the table
with zeros for all the values, but the diagonal. That would represent perfect separation between
all the classes. Our method provides the best separation between the two superclasses. It is
interesting to notice that the highest intra-superclasses correlation is present between the two
classes bird and airplanes which share features like the wings and the ability to fly.
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the accuracy is high, they provide little interpretability in their data representa-
tion. As a result, mistakes are less likely to happen, but the mistake severity,
defined as the distance between two classes in WordNet lexical hierarchy [72],
does not decrease [7]. As shown in Fig. 2.10, our network provides an orga-
nization of the input data, which is semantically closer to the human lexical
hierarchy.

2.2.5 Limitations

Our novel neural network structure inherently incorporates new types of hyper-
parameters such as embedding dimensions, number of levels, and size of patches,
which need to be tuned. We believe a better parameters setting can be found
for all the datasets, increasing accuracy while still retaining interpretability.
Moreover, a higher number of parameters generally causes architectures to be
more prone to over-fitting and more difficult to train. To improve the accu-
racy of our network, we would need a pre-training on large datasets (e.g., on
ImageNet), which requires large computational resources to be performed in
a reasonable time frame. While hoping that powerful TPU architectures be-
come publicly available in the future, we are currently investigating efficient
pre-training strategies for our network.

2.2.6 Discussion

We presented Agglomerator, a method that makes a step forward towards repre-
senting interpretable part-whole hierarchies and conceptual-semantic relation-
ships in neural networks. We believe that interpretable networks are key to the
success of artificial intelligence and deep learning. With this work, we intend
to promote a preliminary implementation and the corresponding results on the
image classification task, and we hope to inspire other researchers to adjust our
solution to solve more complex and diverse tasks.
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2.3 Agglomerator++

While deep neural networks consistently outperform humans across fields like
computer vision [37], natural language processing [114], and data analysis [96],
the attained high performance often comes at the cost of increased complexity.
An established practice is to train and evaluate the output of neural networks
consisting of billions of parameters, and this is accomplished mostly following
experience and the rule of thumb. Interpreting how a trainable parameter in the
network setup directly affects the desired output from a given input becomes
then nearly impossible [67].

Interpretability, defined as the capacity to provide understandable explana-
tions to humans [22, 64], is crucial in many areas [30] [96], although it is gen-
erally hard to understand why a specific decision was made. Humans, on the
other hand, are adept at understanding objects, their parts, and their interrela-
tionships. We can categorize and recognize an object from its parts and infer
its concept from its visual features [8]. This hierarchical representation is often
missing in deep learning networks.

Various techniques have been introduced in the image classification field,
such as transformers [23, 114], neural fields [71], contrastive learning represen-
tation [14], distillation [41], and capsules [93]. These methods have improved
interpretability to a certain extent. However, they often lack emphasis on data
relationships or model-learned relationships, such as part-whole hierarchies. In-
spired by the GLOM framework [40], our Agglomerator [24] aims to address
these shortcomings. It integrates multiple methods, such as CNNs [61], trans-
formers, and positional encoding [23, 114], contrastive learning representation
[14], distillation [41], and capsules [93].

Agglomerator++ is an evolution of our previous contribution, Agglomerator
[24], which had proven effective for representing part-whole hierarchies while
dealing with the image classification task. Agglomerator++ shares a similar
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structure but improves the results while reducing the model size. Adopting
a similar technique as in [71], we introduced the positional encoding and we
adopt a training procedure with masked patches as performed in [36, 122]. The
sample latent representation after the masked pre-raining allows the architecture
to achieve better performances in the classification stage than the previously
adopted contrastive pre-training, at a smaller computational cost. We perform
an extensive evaluation of Agglomerator++, focusing on the hyperparameters
that are peculiar to our architecture and cannot be found in different neural
networks, such as the number of levels and column structure (details in the
coming paragraphs). Experimental results show that our model can compete
with much larger models on big datasets while retaining a small number of
parameters and outperforming capsule networks on smaller ones.

Our contribution is summarised as follows:

• we introduce a novel model, called Agglomerator++, mimicking the func-
tioning of the cortical columns in the human brain [34];

• we show how our architecture provides interpretability of relationships

contained in data, namely the hierarchical organization of the feature space
closely resembling human lexical similarities [72];

• we provide results outperforming or on par with current methods on com-
mon datasets, such as SmallNORB [59], MNIST [58], FashionMNIST
[120], CIFAR-10 and CIFAR-100 [55];

• we show how the input masking during the pre-training for self-supervised
reconstruction leads to a better, more efficient neural representation than
the previously deployed contrastive pre-training [24].
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2.3.1 Method

The framework we propose aims at replicating a column-like pattern, similar
to hyper-columns typical of the human visual cortex [34]. The proposed net-
work, called Agglomerator++, approaches the classification task in a patch-
based fashion, constructing on top of each patch so-called columns. Each col-
umn consists of several layers which, from bottom to top, progressively agree
according to a part-whole paradigm, to the definition of the image content.

Compared to the previous solution proposed in Agglomerator [24], the method
also benefits from an unsupervised pre-training [33], setting up the network as
an autoencoder to reconstruct the masked input image as in [122], which leads
to a better neural representation. This procedure, combined with a simplified
version of the Transformer self-attention [114] mechanism on each layer of the
columns, aims at reaching a consensus between columns. Routing the infor-
mation with layer-based attention and stacked autoencoders allows GLOM to
learn a different level of abstraction of the input at a different location and level
in the columns, creating a part-whole structure with a richer representation if
compared to capsule networks [93].

Here, we introduce the mathematical notation needed to explain the details
of the main building blocks of the architecture.

As can be seen in Fig. 2.14, each input image is transformed into a feature
map divided into N = h×w patches. The n-th patch, with n ∈ {1, . . . ,N}, lo-
cated at coordinates (h,w) is fed to the corresponding column C(h,w), as in Fig.
2.13(c).

As shown in Fig. 2.13, each column C(h,w) consists of K embedding levels
{l(h,w),kt | k = 0, . . . ,K} connected by a stack of auto-encoders at location (h,w)

at time t ∈ {0,1, . . . ,T}, as suggested in [40]. The (h,w) is omitted in the next
instances of lk

t for better readability. Each level lk
t of the column is a vector

representation of size d, which encodes the patch information at position k at
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Figure 2.13: Architecture of our Agglomerator++ model (center) with information routing (left)
and detailed structure of building elements (right). Each cube represents a level lk

t . Top: (a)
legend of the arrows in the figure, representing the top-down network NT D(lk+1

t−1 ) and the po-
sitional embedding p(h,w), the bottom-up network NBU(lk−1

t−1 ), attention mechanism A(Lk
t−1)

and time step t. Left: (b) Contribution to the value of level lk
t given by lk

t−1, NT D(lk+1
t−1 ) and

NBU(lk−1
t−1 ). (c) The attention mechanism A(Lk

t−1) shares information between lk
t−1 ∈ Lk

t−1. The
positional embedding p(h,w) is different for each column C(h,w). All levels belonging to the
same hyper-column C(h,w) share the positional embedding p(h,w). Center: bottom to top,
the architecture consists of the tokenizer module, followed by the columns C(h,w), with each
level lk

t connected to the neighbors with NT D(lk+1
t−1 ) and NBU(lk−1

t−1 ). Right: (d) Structure of the
top-down network NT D(lk+1

t−1 ) and the bottom-up network NBU(lk−1
t−1 ).

time t; lk−1
t and lk

t represents consecutive embedding levels; lk−1
t represents a

part of the whole lk
t .

We denote as the layer Lk
t , all the levels lk

t in all columns sharing the same k.
Being K the last layer of our architecture at the last time step T , it is represented
as LK

T .

Patches embedding

At the embedding stage, following the approach in [61], we utilize a convolu-
tional tokenizer to extract the feature map of each image of size H ×W pixels.
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This process provides a richer representation compared to the original image.
Unlike Agglomerator [24], which employs a ResNet [56] as the tokenizer for
the input image, our model uses a straightforward convolutional tokenizer con-
sisting of three 3x3 convolutional layers.

Following the implementation in [61], the obtained feature map has size
h×w× d where h = H/Hp and w = W/Pp, Hp and Wp being the dimensions
in pixels of each patch. We then embed each d-dimensional embedding vec-
tor into the bottom levels l0

t ∈ L0
t at the corresponding coordinates (h,w) of the

corresponding column C(h,w). Feeding the each patch to a spatially located
column C(h,w) resembles the positional encoding of neural fields [71], where
each d-sized embedding lk

t represents at the same time the sample and its rela-
tive observation viewpoint.

Hypercolumns

Every auto-encoder bridges consecutive levels in time and space within a col-
umn C(h,w). Based on an MLP, these auto-encoders facilitate model reduction
[41] and quicker training. The auto-encoder computes the top-down contribu-
tion of level lk+1

t−1 to the value of the lower level at the next time step lk
t using

a NT D(lk+1
t−1 ) top-down decoder. Likewise, it calculates the bottom-up contribu-

tion of level lk−1
t−1 to the value of the level above at the next time step lk

t using a
NBU(lk−1

t−1 ) bottom-up encoder.

NT D(lk+1
t−1 ) and NBU(lk−1

t−1 ) share a similar structure, except for the activation
functions as shown in Fig. 2.13(e). Both these networks use GELU activation
functions [38]. All NT D(lk+1

t−1 ) | k = 0, . . . ,K networks share the same weights,
as do all NBU(lk+1

t−1 ) | k = 0, . . . ,K networks. This weight sharing among top-
down decoders and bottom-up encoders significantly reduces the number of
parameters and model size. Additionally, it promotes the part-whole hierarchy
since identical networks connect embeddings at successive levels with similar
hierarchical relationships (a part at level k−1 to its whole at level k), but varying

34



35
CHAPTER 2. REPRESENTING PART-WHOLE HIERARCHIES IN NEURAL

NETWORKS

Figure 2.14: Pre-training to obtain a rich neural representation. During the pre-training
phase, a masked input is given to the network. The reconstruction loss LRecon depends on how
well the masked patches of the input image are reconstructed. The loss is attached to level L1

t

because the network present more detailed features at a lower level, while the representation
becomes more abstract at higher levels, thus less suitable for reconstructing the input image. At
the same time, enforcing the minimization of the regularisation losses Ld on the last level LK

t

encourages the network to display more definite islands of agreement at higher levels.

representation abstractions (a whole at level k is a part relative to level k+ 1).
Thus, the same auto-encoder can represent part-whole relationships indepen-
dently from the level of abstraction.

Routing

The key element of our architecture is the routing of information to obtain a
representation of the input data where part-whole hierarchies naturally emerge.
Leveraging Masked pretraining [36], the model learns a richer representation
that facilitates the routing process. To propagate batch B through the network,
to achieve deep image representations, we employ the propagation phase, fos-
tering consensus between neighbor levels lk

t ∈ Lk
t . This process yields similar

values across the last layer’s neighbor levels lK
t ∈ LK

t , each depicting the same
whole, while lower layers share values amongst smaller groups signifying the
same part. Vectors with similar values, or islands of agreement, symbolize im-
age representation consensus at a level [40].

Attention weights. The attention A(Lk
t ) allows the information to be routed

between embeddings belonging to the same layer. In our architecture we em-
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Figure 2.15: Training for image classification. During the training phase, image samples
are fed through the network to obtain their neural representation. The information is routed
for at least 2K iterations for the information to be propagated all along the network from the
bottom level thanks to the bottom-up networks and back down thanks to the top-down nets.
The classification loss L2 is attached to the last level because the higher-level features are more
suitable for the classification task.

ploy a simple version of the attention, which is similar to a weighted average of
the embedding belonging to the same levels of the network [123]. Each atten-
tion weight Ωn is computed as

Ωn =
eβλn·lk

t

∑eβλn·a(λn)
(2.5)

where λn represents each possible level lk
t belonging to the same layer Lk

t ,
a(λn) is an indicator function, which indexes all the neighbors levels of λn be-
longing to the same layer Lk

t and β is a parameter that determines the sharpness
of the attention.

Positional embedding. Similarly to [23], we define a set of positional em-
beddings to retain positional information. The same d-dimensional positional
embedding p(h,w) is shared among all the levels lk

t belonging to the same col-
umn, one for each patch. As suggested in [40], to obtain a rich image represen-
tation. Similar to neural fields [71], the positional embedding vector is added to
the output of the top-down network. The bottom-up networks to propagate the
information to upper levels, causing the emergence of islands of agreement be-
tween neighbor patches a(λn) corresponding to neighbor object representations.
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Method Backbone
Error % # of

params
(Millions)

Training
Arch.

S-Norb MNIST F-MNIST C-10 C-100

E-CapsNet Caps 2.54 0.26 - - - 0.2 GPU
CapsNet Caps 2.70 0.25 6.38 10.6 82.00 6.8 GPU

Matrix-CapsNet Caps 1.40 0.44 6.14 11.9 - 0.3 GPU
Capsule VB Caps 1.60 0.30 5.20 11.2 - 0.2 GPU
ResNet-110 Conv - 2.10 5.10 6.41* 27.76* 23 GPU

VGG Conv - 0.32 6.50 7.74* 28.05* 20 GPU
ViT-L/16 Transf - - - 0.85* 6.75* 632 TPU

ConvMLP-L Conv/MLP - - - 1.40* 11.40* 43 TPU
MLP-Mixer-L/16 MLP - - - 1.66* - 207 TPU
Agglom (Ours) Conv/MLP/Caps 0.01 0.30 7.43 11.15 40.97 72 GPU

Agglom++ (Ours) Conv/MLP/Caps 0.01 0.30 5.74 9.35 35.6 1.3 GPU

Table 2.2: Error percentages on the Top-1 accuracy results on datasets SmallNorb (S-Norb),
MNIST, FashionMNIST (F-MNIST), CIFAR-10 (C-10), and CIFAR-100 (C-100). The ∗ nota-
tion indicates results obtained with networks pre-trained on ImageNet.

The top-down network, using both object representations a(λn) and positional
encoding p(h,w), decodes whole object representation into different parts. For
instance, starting from a uniform vector lk+1

t−1 representing a dog’s face (whole),
the addition of positional embedding allows the network to decode this vector
into diverse embeddings lk

t , such as a mouth or ears (parts). Through the inte-
gration of positional embeddings, our network enables the emergence of islands

of agreement without the necessity of contrastive learning.
Propagation phase. At each time step t ∈ {1, . . . ,T}, we compute the values

lk
t as

lk
t = avg(ωllk

t−1,ωBUNBU(lk−1
t−1 ),

ωT D(NT D(lk+1
t−1 )+ p(h,w)),ωAA(Lk

t−1))
(2.6)

where avg() indicates the arithmetical average, and ωl,ωBU ,ωT D,ωA are
trainable weights.1

1For layer LK
t , contribution NT D(lk+1

t−1 ) is not included, as LK+1
t does not exist.
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Configuration Error %
# of

levels
K

Levels
embedding

d

# of
params

(Millions)
I Agglomerator [24] 11.15 2 128 72
II Agglomerator++ (Ours) 9.35 5 192 1.3
III Without A(Lk

t ) 13.99 5 192 1.1
IV Without p(h,w) 13.03 5 192 1.3
V Decrease K 12.50 3 192 0.8
VI Increase K 11.90 8 192 1.9
VII Decrease d 12.70 5 128 0.6
VIII Increase d 9.55 5 512 9.0
IX Without regularization L 9.57 5 128 1.3
X Without conv tokenizer 16.91 5 128 3.4

Table 2.3: Ablation study results of different Agglomerator configurations obtained on CIFAR-
10.

2.3.2 Training

The training procedure of our architecture is divided into two steps: (i) a pre-
training phase where we train Agglomerator++ as an auto-encoder with a recon-
struction loss for masked patches of the image [122] coupled with a consensus

regularization loss [40] and (ii) a training phase for the image classification us-
ing a Cross-Entropy loss.

Pre-training to obtain a rich neural representation: As shown in Fig.
2.14 and similarly to [122], we pre-train our network to reconstruct the masked
pixels xM of image input. Specifically, we set 50% of the total patches to ran-
dom values before applying the convolutional tokenizer. The final neural image
representation is derived from iterative information routing, with reconstruction
loss LRecon attached to layer Lt1. This detailed representation is a blend of
low-level feature encoding and high-level abstract aggregation [40]. The recon-
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struction loss is defined as:

LRecon =
1

Ω(xM)
||yM − xM||1 (2.7)

where x,y∈R3HpWp are the input and predicted RGB pixel values, M denotes
the set of masked pixels, Ω(.) is the number of total pixels, and ||.||1 is the 1-
norm.

As suggested in [40], we use a consensus loss to regularise the network and
encourage the formation of islands of agreement at the top level of the archi-
tecture. We define the consensus vector V k

t , the bottom-up loss vector VBU(LK
t )

and the top-down loss vector VT D(LK−1
t ) as

V k
t = lk

t (1)⌢ lk
t (N) (2.8)

VBU(LK
t ) = NBU(lK−1

t−1 (1))⌢ NBU(lK−1
t−1 (N)) (2.9)

VT D(LK−1
t ) = NT D(lK

t−1(1))⌢ NT D(lK
t−1(N)) (2.10)

where the .⌢ . operator denotes the concatenation between all the d-dimensional
vectors belonging to the same layer, thus obtaining a vector of size N ×d.

Defining the cosine distance loss between two vectors x and y as Ld(x,y) =

1− cos(x,y) = xTy
∥x∥∥y∥ , the resulting loss to be minimized at the pre-training

stage is

L1 = LRecon +Ld(VBU(LK
t ),V

K
t )+Ld(VT D(LK−1

t ),V K−1
t ) (2.11)

The last two terms act as a regularizer to improve the coherence of islands

of agreement as described in Sec. 2.3.1.
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Fine tuning the architecture As shown in Fig. 2.15 Once the network is
pre-trained using the L1 loss, we detach the pre-training losses from the archi-
tecture. To calculate the input to the cross-entropy loss for the classification,
we compute the mean of all d-dimensional lK

t vectors like in [23]. The result-
ing d-dimensional vector is fed through a layer normalization and a linear stage
which reduces the size to c, namely the number of classes to be predicted for
each dataset. Then we apply the standard cross-entropy function:

L2 =CE(y, ŷ) =−1
c

c

∑
i=1

yi log(ŷi) (2.12)

where y and ŷ are the label and the prediction of the sample taken from the
batch, respectively.

2.3.3 Experiments

We perform our experiments on the following datasets:

• SmallNorb (S-NORB) [59] is a dataset for 3D object recognition from
shape.

• MNIST [58] and FashionMNIST [120].

• CIFAR-10 and CIFAR-100 [55].

Our network is trained in an end-to-end fashion on a single NVIDIA GeForce
RTX 3090. All datasets are employed at native resolution, but SmallNorb,
which is resized to 32× 32 pixels as in [43, 91]. The tokenizer embedding
creates n = H/4×W/4 patches represented by n d-dimensional vectors, where
H and W are the pixels dimension of the input image. Thus, the corresponding
number of columns is 8× 8 for CIFAR-10, CIFAR-100, and SmallNorb, and
7×7 for MNIST FashionMNIST. During the pre-training, we set the following
hyper-parameters: 1000 epochs, cyclic learning rate [101] in the range [0,1e−3],
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Figure 2.16: Illustration of the evolving islands of agreement at varying K levels for MNIST
and CIFAR-10 datasets samples. Displaying agreement vectors for each patch at each k level
post 300 epochs of pre-training. Level k = 1 functions akin to a feature extractor with minimal
neighbor agreement. Lastly, at level k = 5, two islands surface representing the object and the
background.

batch size B = 512, levels embedding d = 192, number of levels K = 5, number
of iterations T = 2K = 10, and weight decay 5e−2.

2.3.4 Quantitative results

Quantitative results from Tab. 2.2 indicate our Agglomerator++ performs well
on both simple (SmallNorb, MNIST, Fashion MNIST) and complex datasets
(CIFAR10, CIFAR100) without architecture modification or pre-training. It
matches capsule-based models on simple datasets [43, 91, 93], outperforms
them on complex datasets, yet requires fewer parameters and training time than
transformer-based [23] and MLP-based methods [61, 111]. While convolu-
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tional models [37, 45] generalize well, they lack model interpretability. Ag-
glomerator++ further enhances efficiency by sharing weights among networks
and reducing extra layer requirements, thereby achieving comparable parameter
count to capsule networks and superior performance on complex datasets. Ag-
glomerator [24] has fewer parameters than most transformer-based and MLP-
based methods, and it requires less training time on a much smaller architec-
ture. While improving the numerical results, Agglomerator++ further reduces
the number of parameters by enforcing the sharing of the weights among all
bottom-up and top-down networks, and it avoids building extra layers on top
of the architecture to perform the contrastive pre-training and the classifica-
tion as in [24]. Thus, the number of network parameters is now comparable
with capsule-based networks. The improvement in performance on more com-
plex datasets with respect to capsules highlights the expressive power of our
d-dimensional embeddings with respect to a group of neurons.

Ablation study. Our Agglomerator++ architecture’s key components—attention
A(Lk

t ), positional embedding p(h,w), number of levels K, and embedding di-
mension d—underwent ablation studies, showing their impact on performance.
Tab. 2.3 illustrates how Agglomerator++ (I) surpasses the original network ver-
sion [24] (II) while decreasing parameter count through weight sharing across
all networks and levels. Performance deteriorates when attention A(Lk

t ) (III)
or positional embedding p(h,w) (IV) are removed, indicating their crucial role.
Modifying level number K (V)(VI) also affects performance, yet the expressive
power d remains unchanged.

2.3.5 Qualitative results

The embedding size d crucially affects performance. Reducing d to 128 (VII)
weakens results, while increasing it to 512 (VIII) maintains performance, but
lengthens convergence time and model complexity. The elimination of the two
regularization losses Ld(x,y) (IX) has minor impact on performance, primarily
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affecting island formation. Removing the convolutional tokenizer (X) worsens
results, hindering inter-patch information exchange at the embedding stage.

Our method provides interpretability of the relationships learned by the model

by explicitly modeling the part-whole hierarchy, and of the relationships con-

tained in data through the hierarchical organization of the feature space.

Part-whole hierarchy via island of agreement. During the propagation

phase, neighbor levels on layer Lk
t are driven to form islands of agreement,

showcasing part-whole hierarchies. Examples from MNIST and CIFAR-10
with K = 5 levels are shown. Instead of the convolutional tokenizer, a linear
embedding, although lowering numerical results (Tab. 2.3), is used for better
visualization. Vectors from the same island are grouped by cosine similarity
between each embedding lt

k and all level K embeddings. Embeddings with sim-
ilarity under a set threshold are depicted by same-color squares in Fig. 2.9. As
k for Lk

t increases, neighbors tend to agree on the whole representation. Lower
levels display smaller islands each representing a part. Our Agglomerator++
represents a patch at different abstraction levels and the same level’s patches
agree on the representation.

Latent space organization as the representation of conceptual-semantic
relationship in data. Recent networks aim at maximizing inter-class distances
and minimizing intra-class distances between samples in the latent space. While
the accuracy is high, they provide little interpretability in their data representa-
tion. As a result, mistakes are less likely to happen, but the mistake severity,
defined as the distance between two classes in WordNet lexical hierarchy [72],
does not decrease [7]. As shown in Fig. 2.17, our network semantically or-
ganizes the input data resembling the human lexical hierarchy, even though,
differently from [24], no contrastive loss is enforced.
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2.3.6 Discusssion

We presented Agglomerator++, a method that makes a step forward towards
representing interpretable part-whole hierarchies and conceptual-semantic rela-
tionships in neural networks. We believe that interpretable networks are key
to the success of AI and deep learning. With this work, we show how our
network can obtain better representations using a reconstruction, thus leading
to better results with respect to similar networks trained with contrastive loss.
The biological processes happening in our brains when learning are probably
a combination of the two processes, which we view as the next step to obtain
even richer and better explainable representations.
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(a) ResNet-110 O=12% (b) ViT-L/16 O=24%

(c) Ours O=9% (d) ConvMLP-L O=12%

(e) Matrix-CapsNet O=20% (f) Legend

Figure 2.17: The 2D latent space representation of multiple methods trained on the CIFAR-
10 dataset through PCA is illustrated. The PCA reduces data from multidimensional to 2D.
The legend (f) classifies samples into Vehicles and Animals following WordNet hierarchy [72].
All methods (a,b,c,d,e) cluster samples between super-classes. The MLP-based methods (c,d)
offer superior super-class separation, while placing similar samples together. Our method (c)
optimizes inter-class and intra-class separability. The overlap percentage O denotes areas prone
to severe hierarchical errors [7].
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Chapter 3

Lagrangian Properties for efficient NeRFs

Deep learning has revolutionized the field of computer science. Over the last
decade, it has transitioned from being a theoretical exploration to the core of
various real-world applications, that touch every aspect of our daily lives, from
autonomous vehicles and personalized recommendation engines to advanced
image and speech recognition systems, not to mention the revolution in con-
tent creation through generative AI. These deep learning methods have a huge
impact in our lives and more in general on the society. For instance, text-to-
image models like Stable Diffusion [92] have opened up the art world to the
masses, altering how artists conceive and create their work. Similarly, AI chat-
bots, like ChatGPT, serve as versatile tools that assist in everything from writing
and summarizing to programming and problem-solving.

The integration of deep learning into computer graphics, most importantly
through the development of neural implicit representations, has revolutionized
our approach to processing and manipulating visual information. This field
was previously ”dominated” by explicit representations like voxels and meshes.
However, Neural Radiance Fields (NeRF) [71], as a leading illustration of this
shift, have shown their ability to generate photorealistic images from sparse
data. However, this innovation is doesn’t come without challenges. The in-
herent computational demands associated with NeRFs, characterized by long
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training and inference times, pose significant barriers to their broader applica-
tion and integration into real-time systems.

In this context, the quest for more efficient neural field representations has
led to the exploration of various strategies designed to accelerate these processes
without compromising the quality of the generated outputs. Among these, the
introduction of techniques that leverage an external source of parameters for
fast training and inference has opened new direction for research and devel-
opment. Yet, despite these advancements, an open issue remains the spatially
non-homogeneity structure of 3D data: more features should be allocated for
parts of the data with higher complexity. Achieving this objective would let the
representation use the available memory footprint more efficiently.

These feature grid-based neural fields typically encode data through an Eu-
lerian perspective, using vector fields aligned to a coordinate system. This
methods, despite incorporating sparse or optimized data structures, maintains
a uniform grid distribution for ease of indexing. On the other hand, Lagrangian
methods provide the advantage of spatially adaptive grid point allocation. Yet,
this adaptability comes at the cost of more intricate indexing algorithms, pos-
sibly requiring methods like approximate nearest neighbor searches to manage
the complexity.

In this chapter we first discuss the initial research conducted as an explo-
ration of the computer graphics field, focusing on SinGAN-3D a novel 3D gen-
erative model. This model is capable of unconditionally generate 3D shapes,
utilizing voxels as a representation method for 3D data. Next, we introduce
the core contribution in this chapter, Lagrangian Hashing, a novel approach
that marries the simplicity and performance of Eulerian representations with
the flexible, spatial adaptability of Lagrangian point-based frameworks. Build-
ing on the foundation of hierarchical hashes set by InstantNGP [78], our ap-
proach differs by assigning a set of points, each with its distinct feature rather
than limiting a bucket to a single feature. Most importantly, as point-clouds can
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adaptively allocate representation budget by increasing the density of the point
cloud where needed, our Method is able to learn an effective representation for
storing high frequency information.
In the last section 4.1, we perform a study on the impact of Neural Radiance
Fields based techniques in the field of 3D reconstruction with a against classi-
cal photogrammetry.

3.1 SinGAN-3D

Figure 3.1: Given a single 3D model as input, SinGAN-3D is able to learn its latent structure
and then generate new diverse voxel models, at any aspect ratio.

Generative adversarial networks (GANs) are deep generative models con-
ceived by Goodfellow et al. in 2014 [28]. GANs have been adopted in many
different domains, including view synthesis, image editing and style transfer
[17] [21] [131], to name a few. A big step forward in the use of GANs for im-
age generation, editing, and resampling, is presented in SinGAN [97]; in their
work, the authors propose a novel generative model capable of learning the
underlying distribution of a single image, allowing to perform any kind of gen-
erative task. The main advantage brought by this solution consists in the ability
to learn from a single image, instead of relying on an expensive and diversified
dataset.
In our work, we present SinGAN-3D, an extension of SinGAN [97] meant to
be applied to 3D data. Our network takes a single voxelized model as input,
and learns the structure of its spatial patches. Once trained, it can generate new
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voxel models, respecting the semantic content of the input model, whilst ex-
hibiting different spatial structures and configurations. While the extension of
the model could be trivially considered as to a ”one-more dimension” problem,
the extension of SinGAN to the 3D domain has shown a number of challenges;
in the first place the increased data complexity, due to the addition of the third
dimension, which poses serious spatial and semantic challenges. In fact, it is
worth noting that the generation of 2D images, as also presented in the origi-
nal work, leaves a certain freedom to the algorithm, sometimes also giving to
the generated model an artistic flavour, which is deliberately unnatural, though
preserving the general layout and appearance of the source model content. 3D
representations, instead, need to comply with strict spatial and semantic con-
straints, in order to look acceptable to a human observer. Another challenge is
posed by the identification of a data representation strategy suitable to reproduce
colors in the 3D domain. To relax memory and computation requirements we
represent density and color (R,G,B) separately obtaining a 4-dimesional rep-
resentation. This 4-dimensional representation is in line with GPU rendering
techniques based on ’mesh + texture’, as voxels occupancy and shapes provide
the geometric information, while colors or texture provide the color informa-
tion for the corresponding volumes or vertices. The original implementation of
SinGAN is composed of a fully convolutional set of GANs, intent on capturing
the distribution of internal patches at a different scale. In our model, we replace
the 2D convolutions with 3D ones; in addition we exploit periodic activation
functions [99] as a supplementary tool to capture the internal structure of the
3D images. We demonstrate the ability of our model to generate samples of a
single voxel model characterized by different resolutions and aspect ratios, as
shown in Figure 3.2. We further demonstrate the applicability of our network
to modify the aspect ratio of the generate model, as well as to perform super
resolution from a single 3D model. Our contribution is summarised as follows:

• we introduce SinGAN-3D, a generative model capable of learning the un-
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Figure 3.2: SinGAN 3D’s multi-scale generation pipeline on the ”simple tree” voxelized model.
At each scale the 3D generator Gn learns to generate voxelized models respecting the latent
structure of the down-sampled training volumetric image xn. The 3D discriminator Dn tries
to distinguish the generated samples from the original ones. Gn takes as input (together with
the downsampled voxelized model) a random 3D Gaussian noise map zn, except for the first
generator G0, which takes as input only the 3D noise map.

derlying structure of voxelized models and generating similar samples at
different resolutions.

• we demonstrate the applicability of sinusoidal activation functions to the
3D generation task, showing promising results.

• we also demonstrate the use of our models for super resolution applica-
tions, with high quality results.

3.1.1 Method

We introduce this section with a brief background description of the original
SinGAN [97] method, and how it is applied to 2D images. We then present in
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detail our solution, showing how the approach can be extended to work with
three dimensional inputs.

Background: SinGAN

SinGAN [97] is an unconditional generative model, capable of learning the la-
tent structure of a single 2-dimensional image and use it to perform both gener-
ative and manipulation tasks. The model consists of a pyramid of Wasserstein
GANs [3] where each layer of the network learns the distribution of patches
in the single image at the corresponding resolution via adversarial learning.
SinGAN sample generation starts from the highest and coarsest layer and pro-
gresses sequentially down to the last layer. The result is then passed through the
generator convolutional network and the output of the latter is summed to the
up-sampled image from the previous layer. As each layer works with increasing
resolutions, details are progressively added as the sample descends the pyramid
and the noise introduced at each layer ensures variance in the generated details.
Finally, as the lowest layer is reached, the fine-grained details are generated and
the output result is a sample having the same size as the original input data. For
an exhaustive explanation we invite the reader to refer to the original SinGAN
manuscript [97].

SinGAN-3D

Our proposal to extend SinGAN to the third dimension allows the use of vox-
elized models as input to the network. We maintain the pyramid of generators
presented in SinGAN; more specifically, each of them is trained against a 3D
image pyramid obtained from the down-sampled version of the input. This is
obtained via adversarial learning, where each generator is responsible of pro-
ducing an output retaining the latent structure of the input. The generation of
an image sample starts at the coarsest scale (which is purely generative) and the
output is iteratively fed through all generators up to the finest scale, as shown in
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Figure 3.3: SinGAN-3D’s training pipeline at single scale. Given a voxelized model at scale n
with spatial dimensions H, W and D, we first upsample it by factor r. The upsampled model
is then added to a 3D Gaussian noise and fed to a 3D CNN, with periodic activation function,
to estimate a residual model, which is added back to the input upsampled model. The obtained
model is trained with adversarial loss from a 3D discriminator, and used as input for the next
scale, iteratively.

Figure 3.2, with noise injected at every scale. The pipeline of SinGAN-3D for
the generation of random samples at a single scale is shown in Figure 3.3. An
important difference with respect to the original work is the transformation from
a continuous to a quantized space. The main implication of this transformation
is that, while pixels in an image carry color intensity information, voxels convey
the volumetric appearance of the object being represented, thus resembling its
3D structure.

3D Data Representation

3D models converted to volumes usually do not carry color information [119]
and the intensity of voxels can be interpreted as how likely it is for them to exist
in that specific location. In the 3D domain colors are represented with a separate
data structure with respect to volumetric occupation. In order to model the dif-
ferent pieces of information jointly (spatial distribution and color), our approach
consists of representing the shape information and color with a 4-dimensional
volume, where one channel (binary) informs about the existence of a certain
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voxel location; the remaining channels model instead the color appearance. The
size of the converted volumes may vary depending on the proportions of the
original 3D model; consequently during the development of our approach we
choose to work with 80x80x80 voxel models. The choice was motivated by the
need of achieving an acceptable level of detail, yet allowing sustainable training
load. This solution proved to be effective, returning qualitatively good results.

Periodic Activation Function

The extension of the SinGAN model to the third dimension requires an addi-
tional tool; to extensively capture the structure of 3D voxel models, we propose
to leverage the periodic activation functions, presented in [99]. Authors of [99]
demonstrated that ReLU-based architectures lack in fine details; furthermore
they do not effectively represent the derivatives of a target signal, turning into
non-optimal results when encoding complex or large scenes with fine details.
On the other hand, periodic activation functions demonstrated to rapidly con-
verge to an accurate fit in complicated scenarios with high frequency details.
The authors of [132] propose a novel activation function, named ”Snake”: they
claim that the proposed activation function is capable to learn periodic func-
tions while still being able to optimize loss functions with competitive results
as conventional activation functions. The snake activation function is defined as:
Snake = x+ sin2(x). The applicability of this activation function to generative
tasks has been proved in [4]; they trained a deep convolutional GAN (DCGAN)
[84] to generate samples of the MNIST dataset. The network trained with Snake
activation generates realistic samples, which are qualitatively indistinguishable
from those generated by a conventional activation function.

Training Procedure

The network is trained sequentially from the coarser scale to the finest one; once
a generator is trained, it is kept fixed until the next generator is optimized. At
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each scale the generator is trained using adversarial loss from its corresponding
discriminator. The implemented loss is calculated in a similar manner to the
original SinGAN paper but extended to the third dimension:

min
Gn

max
Dn

Ladv(Gn,Dn)+αLrec(Gn)+βLcolor(Gn) (3.1)

In Equation 3.1, Gn and Dn denote the Generator and the Discriminator for
the scale n, respectively. Ladv denotes the adversarial loss, defined to penalize
the distance between the patches in the input image xn and the patches in the
generated samples x̂n; Lrec and Lcolor define the reconstruction and color losses
respectively.

Color Loss

The original implementation of SinGAN employs only the adversarial and re-
construction losses; however, for 3D models using only these losses the color
distribution of the generated samples differ significantly from the one of the
training models. Authors of [128] also reported the same issue, and resolved it
by matching the mean and covariance of the colors from the generated images at
progressive resolutions. In our framework, we match the mean and covariance
of the the three color-channels at each spatial resolution by means of a color
loss, defined as:

Lcolor = ||µxi −µẋi||2 + ||Cov(xi)−Cov(ẋi)||2 (3.2)

Where cov is the covariance, µ is the mean, x is the set of training frames, and
ẋ denotes the generated frames.

3.1.2 Results

The proposed SinGAN-3D has been trained with a variety of 3D voxel mod-
els with a resolution ranging from 40x40x40 to 80x80x80 voxels. We selected
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Abstract obj. Samples City Samples Crystal Samples Simple Forest Samples Single Tree Samples
Snake ReLU Snake ReLU Snake ReLU Snake ReLU Snake ReLU

Abstract Obj 0,646 0,573 0,162 0,204 0,279 0,319 0,185 0,302 0,033 0,086
City 0,110 0,166 0,897 0,843 0,201 0,216 0,141 0,244 0,008 0,000

Crystal 0,278 0,330 0,194 0,228 0,985 0,852 0,283 0,307 0,035 0,043
SimpleForest 0,139 0,154 0,131 0,168 0,254 0,241 0,516 0,414 0,074 0,053
Single Tree 0,069 0,081 0,065 0,096 0,079 0,073 0,097 0,050 0,228 0,064

Trees 0,182 0,140 0,052 0,096 0,134 0,140 0,133 0,164 0,130 0,098
Rocks 0,231 0,325 0,202 0,249 0,300 0,268 0,355 0,368 0,061 0,081

Group of palms 0,052 0,060 0,151 0,172 0,181 0,278 0,151 0,105 0,097 0,025
Phormium 0,042 0,049 0,047 0,060 0,000 0,097 0,000 0,031 0,000 0,000
Waterfall 0,000 0,049 0,000 0,088 0,000 0,000 0,000 0,000 0,000 0,000

Trees Samples Rocks Samples G. of Palms Samples Phormium Samples Waterfall Samples
Snake ReLU Snake ReLU Snake ReLU Snake ReLU Snake ReLU

Abstract Obj 0,024 0,117 0,274 0,314 0,103 0,123 0,101 0,110 0,029 0,036
City 0,147 0,151 0,203 0,185 0,156 0,179 0,043 0,027 0,000 0,000

Crystal 0,167 0,162 0,332 0,336 0,169 0,240 0,208 0,198 0,000 0,000
SimpleForest 0,150 0,151 0,351 0,342 0,182 0,149 0,246 0,297 0,007 0,024

Spyrals 0,328 0,168 0,098 0,063 0,124 0,074 0,329 0,344 0,007 0,039
Trees 0,552 0,498 0,144 0,163 0,145 0,227 0,278 0,283 0,004 0,041
Rocks 0,093 0,159 0,676 0,644 0,259 0,223 0,158 0,204 0,000 0,046

Group of palms 0,000 0,012 0,248 0,318 0,752 0,697 0,110 0,161 0,000 0,073
Phormium 0,147 0,183 0,000 0,044 0,000 0,005 0,444 0,375 0,000 0,054
Waterfall 0,000 0,008 0,047 0,081 0,000 0,000 0,023 0,008 0,920 0,875

Table 3.1: The following table shows MSSIM scores of all real training voxel volumes com-
pared against 50 generated samples of each class. Results highlight how Snake activation func-
tion better preserve the latent structure of the training image. For space reasons we divided the
table in two parts.
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Figure 3.4: First column: original input voxelized models. Columns 2-4: Generated samples
from the input training model. After training SinGAN-3D on a single voxelized model it can
generate random samples, with arbitrary aspect ratios, characterized by a similar latent structure
with respect to the training voxelized models.

this range of resolutions as it provides an acceptable level of detail yet allowing
a reasonable computational load in training the network. The models we used
contain objects and scenes spanning from urban and nature scenery. Some qual-
itative examples of the randomly generated 3D voxelized samples are shown in
Figure 3.4. We demonstrate the capability of our model to capture the latent
structure of the 3D shapes and the ability to generate new realistic volumes. In
order to quantitatively evaluate the generated 3D voxelized models we calcu-
late the 3D Single Image Fréchet Inception Distance (3D SiFID) score, which
is an extension of the Single Image FID score for 3D models. To compute the
3D SiFID score, we extract the activations from the last convolutional layer of
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the reference Convolutional Neural Network; for this experiment we use Voxnet
[69], as it is explicitly designed for voxel models. The formulation of FID, com-
puted between the original model and the generated one, is defined as follows:

d2 = ||µ1 −µ2||2 +Tr(C1 +C2 −2∗
√

C1 ∗C2) (3.3)

where µ1, µ2, C1 and C2, are the mean values and the covariances of the
activation functions of the last convolutional layer of generated and original
samples respectively. We further evaluate the performances of our model by
computing the Multi Scale Structural Similarity index between samples gener-
ated from different voxelized models. This experiment has been performed to
highlight that samples generated from different training 3D shapes are qualita-
tive different from each other, while being similar to the training input. Results
show a significant value of similarity between samples and the reference vox-
elized model as highlighted in Table 3.1. Lastly, we performed a perceptual
user study using Amazon Mechanical Turk. Images were visible to workers for
3 seconds; they were asked to decide whether the image was obtained from a
real scene or generated by an artificial intelligence algorithm. We generated
10 samples for each of the 10 training voxelized models, having 3 votes for
each sample. To measure the confidence, we used a simple yet effective major-
ity voting. Out of 100 generated samples evaluated from the turkers, 39 were
identified as being obtained from real scenes. This is an encouraging number,
especially considering the low resolution of the generated volumes, confirming
the viability of the proposed solution.

Ablation Study

We further examine the performances of the application of periodic activa-
tion functions in our framework by comparing our scores against SinGAN-3D
trained with a ReLU activation function. For a fair comparison between the two
networks we compared samples generated with the same Gaussian noise seed.
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As shown in Table 3.2, our samples have lower 3D SiFID scores; this indicates
that our approach models the latent structure of the training 3D shapes better
than the trivial 3D extension of SinGAN.

Table 3.2: 3D SiFID scores averaged over 450 voxelized models
(50 samples per each training input).

Model 3D SiFID Score
SinGAN-3D ReLU 0.025
SinGAN-3D Snake 0.019

3.1.3 Applications

We show the application of SinGAN-3D for two important editing applications:
super resolution and change of the aspect ratio. To perform both operations the
original training pipeline is kept unaltered, without further tuning.

Super Resolution

The aim of this task is to increase the resolution of an input 3D model by a
factor k. Authors of [26] prove that patches in a given image tend to recur over
different scales of the image. Thanks to this property we exploit the capability
of our network to perform super resolution by iteratively adding finer details to
the input data. This is done by injecting at each layer of the generators pyramid
the up-sampled low resolution model. To perform this operation we follow
a similar pipeline to the original SinGAN. Consequently, to upsample the 3D
input by a factor k, we set the 3D pyramid scale factor to n

√
k for k ∈ N. A

sample result is shown in Figure 3.5.
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Figure 3.5: Left 3x up-sampling using SinGAN-3D. Right: 3x up-sampling using trilinear
interpolation. The source model has a resolution of 803 voxels. Compared to the trilinear
interpolation, which appears to flatten out the plant leaves, the proposed model preserves a
better texture and a more realistic appearance.

Change of the Aspect Ratio

The objective of this application is to produce voxelized models that maintain
the visual aspect of the original one but vary in spatial resolution. Since our
network is fully convolutional, samples with different spatial resolutions can be
easily generated by changing the dimensions of the Gaussian noise map at the
base of the pyramid. Some real world uses involve the generation of similar
looking 3D images to fit different screen sizes, or data augmentation to obtain a
collection of samples from a single voxelized model. Variations of the original
voxelized models with different spatial resolutions are shown in Figure 3.4.

3.1.4 Discussion

This section of the thesis presents SinGAN-3D the first work conducted as an
exploration of the Computer Graphics field. The developed model is capable
of learning from a single voxelized model and generate samples resembling its
structure. We expand the capabilities of the SinGAN architecture to work with
3D inputs. We demonstrate the applicability of periodic activation functions
for this specific task, achieving promising results. We further propose to model
the 3D inputs as 4-dimensional models to add the RGB color information. An
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Figure 3.6: Neural Radiance fields enables representing the scene with a 5D continuous rep-
resentation, from a set of input images. Volume rendering techniques are used to accumulate
samples along rays inside the 3D scene to render images from every view-point. Image taken
from [71].

existing limitation consists of the limited capability of learning the semantic
meaning of an object, hindering the possibility of generating complex and rich
structures. Integrating the architecture with attention, as authors of [15] propose
for the original SinGAN, is a possible way to overcome this limitation. Overall,
the achieved results are promising, showing the potential of generating arbitrary
shapes starting from single 3D representations.

3.2 Neural Radiance Fields

Neural Radiance Fields (NeRF) have transformed the landscape of view syn-
thesis and scene reconstruction, providing a novel way to capture and render
complex three-dimensional environments. This method differs from conven-
tional approaches since it utilizes a coordinate-based neural network to model
scenes as continuous fields of radiance. Which is optimized directly without the
need for pre-existing training datasets beyond the scene images themselves, as
shown in image 3.6. Unlike traditional local interpolation techniques that once
dominated the field, NeRF’s neural framework requires no additional external
data for training and achieves a representation that is significantly more com-
pact (over a hundredfold) compared to equivalently resolved dense sampling
arrays.
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Figure 3.7: An overview of the neural radiance field scene representation and differentiable
rendering procedure. The output images are synthesized by sampling 3D coordiantes and 2D
input directions along camera rays (a). These locations and directions are fed into an MLP to
produce a color and a volume density (b). Volume rendering is used to produce an image with
those by blending these values. The rendering is differentiable, so it enables a training routine
with automatic differentiation, minimizing the residuals between the produced and the groud-
truth image.(d) Image taken from [71]

At the heart of NeRF’s approach is the concept of representing a scene in a
high-dimensional space, where each location x = (x,y,z) and viewing direction
(θ ,φ), or equivalently, a 3D Cartesian unit vector d, is associated with specific
radiance (color) and density values. This association is captured by an MLP
network, FΘ : (x,d)→ (c,σ), which is optimized to map these 5D coordinates
to their corresponding output values.

To ensure the network accurately represents multi-view consistency—crucial
for realistic rendering—the volume density σ is predicted based on the location
alone, while the RGB color c is determined by both the location and viewing
direction. This differentiation allows NeRF to capture complex view-dependent
effects, such as specular highlights, that are essential for photo-realism.

Rendering from a NeRF involves simulating how light travels through and
interacts with the scene. This process utilizes classical volume rendering tech-
niques, interpreting the volume density σ(x) as a measure of the likelihood that
light is absorbed or scattered at a point in space. The expected color C(r) of
a camera ray r(t) = o+ td is calculated through an integral that accumulates
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Sparse Voxel Grid Multi-scale voxel grid Object-based Neural Field Voronoi Neural Field Mesh + Feature map

Figure 3.8: Examples of hybrid representations: starting from the leftmost Neural Sparse Voxel
Grid [65], multi scale voxel grid with neural 2D image compression [68], object bounding boxes
with neural radiance field [81], Voronoi decomposition with neural radiance fields [86], triangle
mesh and by deep features [16].

radiance along the ray, modulated by the transmittance T (t), which represents
the likelihood of the ray traveling unobstructed through the scene.

A key challenge in rendering NeRF scenes is efficiently estimating the in-
tegral over continuous space, which is addressed through a stratified sampling
strategy. This approach ensures that the MLP is queried at a diverse set of points
within the scene, allowing for a continuous representation despite the discrete
nature of numerical integration.

This rendering process is inherently differentiable, allowing the use of gradi-
ent descent to optimize the model to represent complex scenes. The optimiza-
tion aims to minimize the discrepancy between observed images and views ren-
dered from the neural radiance field, thus encouraging the network to construct
a coherent model of the scene.

3.3 Hybrid NeRF approaches

Recent advancements in neural fields have seen the rise of hybrid neural field
models, which represent combination of classical data structures and neural net-
work methodologies. These models utilize auxiliary grids to arrange additional
trainable parameters, achieving a unique synthesis of global continuity and lo-
cal detail-oriented neural field capabilities, thereby enhancing the accuracy and

63



3.3. HYBRID NERF APPROACHES 64

richness of high-frequency detail representation.

Discrete data structures—ranging from regular and adaptive grids to point
clouds and meshes—are staples in visual computing for their ability to effi-
ciently organize and process spatial information. When these structures are
combined with neural fields, several advantages are realized:

• Computational Efficiency: Utilizing structures like bounding volume hi-
erarchies enables rapid queries, significantly reducing the computational
overhead.

• Network Capacity Optimization: Large, monolithic MLP networks often
suffer from diminishing returns regarding their representation capacity.
Discrete structures help allocate network capacity more effectively.

• Enhanced Rendering: The use of discrete structures facilitates techniques
like empty space skipping, which can substantially accelerate the rendering
process.

• Versatility for Simulation and Editing: Discrete structures are inherently
suitable for simulations (e.g., finite element methods) and provide a solid
basis for manipulation and editing tasks.

The integration of neural fields with discrete data structures typically in-
volves storing neural field parameters within a spatially organized framework,
allowing for efficient parameter retrieval based on input coordinates. This ap-
proach manifests in two primary methodologies: network tiling and embedding.
Network tiling involves employing a collection of distinct neural fields, each
covering a specific region of the input space. Although these networks share an
architectural blueprint, they maintain separate parameters for their assigned re-
gions. A coordinate lookup retrieves the relevant network parameters, enabling
localized processing. Alternatively for embedding, latent variables are stored
within the discrete structure, serving as compact, local representations of the
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neural field parameters. Through a mapping function, these embeddings are
translated into parameters that inform the neural field’s output.

As defined in the survey ”Neural Fields in Visual Computing” [121] the dis-
crete datastructure g can be defined as vector field that maps coordinates to
quantities using a sum of Dirac delta functions δ :

g(x) = α0δ (x0 − x)+α1δ (x1 − x)+ . . .+αnδ (xn − x) (3.4)

where coefficients αi (scalar or vector) are the quantities stored at coordi-
nates xi. For uniform voxels, the coordinates xi are distributed on a regular grid,
whereas for a point cloud the coordinates xi are distributed arbitrarily. For net-
work tiling, αi is an entire set of network parameters Θi; for embedding, αi is
latent variable zi.

The discrete data structure g may use an interpolation scheme to define g

outside the coordinates xi of the Dirac deltas, such as nearest neighbor, linear, or
cubic interpolation. If so, instead of Dirac deltas, function δ are basis functions
of non-zero, compact, and local support. For instance, voxel grids are regularly
combined with nearest-neighbor interpolation, where g(x) is defined as αi at the
xi closest to x.

3.3.1 Regular Grid

The most common for of data-structure used in the context of hybrid represen-
tation to enhance NeRF’s representation is the regular grid, defined as 2D pixels
for images and voxels in 3D modeling. This grid form partition the coordinate
domain uniformly, simplifying indexing and processing. However, their scala-
bility is challenged by dimensional and frequency demands. Addressing this,
adaptive and sparse grids concentrate capacity on regions of interest, benefiting
from hierarchical and texture-based implementations. Grid tiling, by deploy-
ing smaller neural networks across segmented spaces, and embedding grids, by
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localizing model parameters or latent variables, present effective strategies to
manage large-scale, high-frequency signals. Following the framework of grid
tiling the coordinate domain is discretized with a grid and each location is de-
fined with a small neural network [89]. In this way this class of methods enable
the representation of larger signals [47] or fasten their inference [87]. An known
limitation of network tiling is the increased risk of creation of visual artifacts
caused by overfitting to sparse data. This limitation is relaxed by the usage of
parameter interpolation [19, 76].

The use of regular embedding grids, which are organized in a consistent
pattern, requires interpolation methods to maintain smooth transitions across
boundaries. This class of methods is particularly suitable for modeling large-
scale signals [11]. However, this approach comes with a trade-off: the high
quantity of parameters stored within these grids may restrict their application
for extremely large signals due to memory constraints. Despite this, the ad-
vantage of having parameters directly embedded in the grid is the possibility
of the deployment of smaller, more efficient networks, enhancing speed during
inference [25, 65, 107]. Moreover, the structure of embedding grids proves to
be beneficial for generative models [46, 94, 112] focused on both imagery and
three-dimensional content, leveraging the detailed storage capacity of the grids
for high-quality content generation.

3.3.2 Irregular Grids

Irregular grids partition the coordinate space in a non-uniform manner, relax-
ing the constraints of regular sampling patterns like the Nyquist-Shannon limit.
This flexibility allows them to be dynamically reshaped, enhancing their capac-
ity to accurately represent areas of data complexity. Connectivity among points
can be established either explicitly through structures like meshes [16] or im-
plicitly via Voronoi diagrams [86]. Additionally, these grids can be structured
into hierarchical frameworks, including bounding volume hierarchies (BVH) or
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scene graphs, to further optimize data representation and processing efficiency
[29, 81].

Object-Centric Representations

Object-centric representations refine the granularity of scene understanding by
focusing on individual objects rather than the scene as a whole. Unlike tradi-
tional point-based representations, each point in an object-centric framework is
equipped with an orientation and a bounding box or volume, enabling detailed
spatial reasoning and manipulation at the object level. This approach is exem-
plified in works such as [116] which introduces a method for estimating objects’
poses and sizes across various categories using a normalized coordinate space.
Neural field parameters, critical to defining the appearance and geometry of
objects within a scene. These parameters can represent embeddings or neural
networks themselves, facilitating a wide range of manipulations and interac-
tions with the scene. Authors of [81] explores the use of neural scene graphs
to manage dynamic scenes in an interpretable and manipulable format, allow-
ing for individual object adjustments without compromising the scene’s overall
integrity. Further extending the utility of object-centric approaches, [32] fo-
cuses on rendering scenes by prioritizing individual objects. This prioritization
enables precise control over object appearances and spatial relations, thereby
enhancing the quality and flexibility of scene composition.

Mesh representations

Meshes serve as a fundamental data structure in computer graphics, knwon for
their well-understood properties and a broad range of processing operations.
Particularly in the realm of triangle meshes, the utility of embeddings stored on
vertices is highlighted in applications such as novel view synthesis of dynamic
human figures, as explored in [83]. In this context, barycentric interpolation
emerges as a critical technique for achieving smooth and continuous represen-
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tations across the mesh surface, enabling the precise manipulation and render-
ing of complex shapes and movements. Beyond triangle meshes, the challenge
of representing and processing more complex polygons necessitates the adop-
tion of more sophisticated coordinate systems. Mean-value coordinates and
harmonic coordinates represent two such systems, offering enhanced flexibility
and accuracy in the handling of complex polygonal shapes. A standout example
of innovation in this area is Mobile NeRF by Chen et al.[16], which trains a 3D
neural representation based on a polygonal mesh with color, feature and opac-
ity connected to each mesh point. By discretizing alpha values and enhancing
features for anti-aliasing, this method allows for the mesh’s rasterization con-
tingent on the viewing angle, utilizing a small MLP for pixel shading. This
method proved to be around 200 times faster and nerf.

Point-based representations

Point-based representations have been widely explored as a representation in
computer graphics[31, 52, 102]. However, rendering point clouds through ray-
tracing presents a challenge due to the lack of a defined surface, complicating
ray and point cloud interactions. Early solutions employed splatting techniques
using disks [62] or ellipsoids [10, 88] to address this issue. Recent methods have
also been used in reconstruction settings in conjunction with neural fields, but
they frequently either require careful initialization, such as points from depth [2,
53, 80, 85, 124], COLMAP point cloud [48] and LiDAR [12, 105].

Recently, point-based neural rendering [48, 57, 129, 130] enabled the render-
ing of 3D point clouds onto images via differentiable rasterization. Particularly,
Gaussian Splatting [48] and its follow-ups [118, 125, 126, 127] have achieved
impressive results in rendering quality and test-time efficiency. Despite their
quick adoption, these methods still rely on COLMAP for point initialization,
and carefully tuned heuristics to grow and prune points. More importantly suf-
ferfrom gradient vanishing when points are far from target pixels, thus these
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methods require a large number of points to accurately model scene details typ-
ically requiring large storage, with millions of points needed to accurately rep-
resent a scene. A critical issue remains the diminishing gradients when points
are far from target pixels, forcing reliance on a large number of to accurately
model scene details, thus requiring considerable storage requirements.

3.4 Lagrangian Hashing for Compressed Neural Field Rep-
resentations

As immersive mixed reality interfaces and volumetric content capture systems
become popular, there is an increasing demand for a multimedia format that can
compactly represent and transmit various types of multimedia. The diversity
of multimedia formats (images, videos, volumetric 3D, radiance fields, etc) in
mixed reality systems necessitates the codecs themselves to also be flexible to
handle different types of formats.

Neural fields [121] have emerged as a general data format that can repre-
sent different multimedia formats with a unified codec based on model fitting.
They have been popular in recent literature for representing all sorts of data, but
in particular have been widely used for radiance field reconstruction [71]. In
contrast to traditional multimedia formats that convert data into alternate for-
mats through transformations, neural fields convert data by fitting a model to
the data via optimization. This adds to the flexibility of the transformation by
allowing the integration of additional objective functions and scenarios, like 3D
reconstruction in an inverse problem setting.

A class of neural field models that have been particularly successful are fea-

ture grids, which uses a differentiable data structure holding features and a small
multi-layer perceptron (MLP) as the model. These models inherit the strengths
of highly performant data structure (such as an octree [107] or hash grid [78])
which allow the neural fields to fit complex data with large spatial extent with-
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PNSR: 35.60 dB, # Params: 6.68M PNSR: 27.31 dB, # Params: 6.68M

Figure 3.9: We introduce a hybrid representation that is simultaneously Eulerian (grids) and
Lagrangian (points), which realizes high-quality novel view synthesis as shown above, while at
the same time being more memory efficient.

out sacrificing performance. These feature grids methods, however, typically
come at the cost of a larger memory footprint.

Although many data structure tricks like sparsity [68, 107], low-rank factor-
ization [13], linear transforms [90], and hash probing [108] have been proposed
to improve the memory-quality tradeoff curve of feature grids, these works do
not fundamentally address the spatially non-homogeneous structure of 3D data:
more features should be allocated for parts of the data with higher complexity.
Achieving this objective would let the representation use the available memory
footprint more efficiently.

These feature grid-based neural fields typically represent data in an Eulerian

way, as a vector field over some coordinate system. Even if they use sparse
or factorized data structures, they generally use a grid where vertices are laid
out in uniform intervals which allows for simple implementations of indexing
algorithms.

Lagrangian ways of representing data, on the other hand, would allow the
representation to flexibly allocate the grid points in space, but may suffer from
more complex indexing algorithms that may involve techniques like approxi-
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mate nearest neighbour searches. 1

Our work, Lagrangian Hashing (LagHash), marries the simplicity and per-
formance of Eulerian representations where features are laid out on uniform
grids with a Lagrangian representation that employs a point-based representa-
tion in which features can freely move around in space. In more details, our
representation builds upon hierarchical hashes introduced by InstantNGP [78],
but, in each hash bucket, rather than just storing a feature, we store a small
set of points, each equipped with a feature. 2 While other point-based repre-
sentations require acceleration data structures to access the points, our repre-
sentation reuses the hash implementation. Most importantly, as point-clouds
can adaptively allocate representation budget by increasing the density of the
point cloud where needed, they are a more effective representation for storing
high-frequency information, which results in smaller models that achieve simi-
lar visual performance.

3.4.1 Method

We introduce a new representation that combines the Eulerian nature of fast-
training NeRF methods [78] to the Lagrangian nature of emergent 3D Gaussian
Splatting (3DGS) representations [48]. Building directly on top of the hierar-
chical Eulerian representation introduced by InstantNGP [78], we achieve this
by incorporating a point-based representation in the high-resolution layers of
its hash tables. We select the high-resolution layers as to let the model focus its
representation power to precise locations in space, akin to how 3DGS [48] em-
ploys small Gaussians to capture fine-grain details of the scene. We (implicitly)
equip each point with a standard deviation proportional to the grid resolution,
hence our representation can be interpreted as a mixture of Gaussian with non-

1We refer to Eulerian and Lagrangian representations in numerical physics, where one can store the state of
the system (as an example, velocity of a fluid) on either grids (Eulerian) or on particles (Lagrangian).

2Note this is done on a selection of levels, and therefore our representation is an Eulerian-Lagrangian hybrid.
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Figure 3.10: (1) Hashing of voxel vertices: For any given input coordinate xi, our method
identifies surrounding voxels across L Levels of detail (Lods) (Only one Lod is showed for con-
venience). Indices are then assigned to the vertices of these voxels, through hashing procedure.
(2) Lookup to buckets: for all resulting corner indices, we look up the corresponding B buckets,
containing K feature vector and their corresponding µk position. (3) Gaussian interpolation:
We compute Gaussian weights with respect to the input position for every feature vector in the
bucket. (4) Feature aggregation: We multiply the Gaussian weights for the feature correspond-
ing to the feature vector and aggregate them from every level of detail. (5) Neural Network: the
resulting concatenated features are mapped to the input domain by the Neural Network.

trainable standard deviation and mixture weights. Differently from 3DGS, we
employ isotropic Gaussians, and the standard deviation associated with each
point describes the portion of space that the feature stored alongside the point
position is meant to represent.

Overview A visual overview of our representation can be found in Figure 3.10.
We reviewing the hashed multi-scale representation in section 3.4.1, how fea-
tures are interpolated within each level in section 3.4.1, and then detail how
to augment hash buckets with a mixture-of-Gaussians representation in sec-
tion 3.4.1. We discuss our training methodology in section 3.4.2, including the
introduction of a loss that is critical to guide the MoG towards regions of space
that require additional representation power.
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Multi-scale representation

Analogous to InstantNGP [78], our architecture generates a field value F(x) at
any arbitrary position x in space by interpolating feature vectors at the vertices
of a stack l = 1, . . . ,L of regular grids. The resolution of these grids follows a ge-
ometric progression: Nl = Nmin ·bl, where L, Nmin, and b are hyper-parameters.
This progression ensures that each level has a distinct resolution, enabling the
capture of multi-scale features.

To compute the field value, we concatenate (⊕) the features across all levels
and pass this combined vector through a shared decoder parameterized by θ:

F(x) = MLP(f1(x)⊕ f2(x)⊕ ...⊕ fL(x);θ), F(x) : RD → RF (3.5)

Per-level feature – fl(x)

Each feature fl(x) is computed as follows: Let F be a tensor of features in mem-
ory, and let H(x) be an indexing function that retrieves the indices of F corre-
sponding to the grid corners vv of the field query position x. The corresponding
grid interpolation weights are denoted as αv, where v = 1, . . . ,V=2D.

We interpolate features at position x as:

fl(x) = ∑
v∈Hl(x)

αv ·Fl[v](x) (3.6)

Similarly to InstantNGP [78], we implement Hl as an injective map when-
ever Nl < B, and as a hash function otherwise. In other words, Hl : RD →
[1,Nl − 1] if Nl < B, and Hl : RD → [0,B− 1] otherwise, and respectively the
feature tensor F ∈ RNl×F or F ∈ RB×F . As we closely follow InstantNGP [78]
to enable fair comparisons, we refer the reader to this paper for additional de-
tails regarding the implementation of H. As at finer levels v indexes the buckets
of a hashing operation, we refer to Fl[v] as a “per-bucket” feature.
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Eulerian vs. Lagrangian features. Note that, differently from InstantNGP [78],
the notation in eq. (3.6) hints at the fact that the feature grid is evaluated at the
position x. The feature evaluation depends on the depth of the corresponding
level. Consider a hierarchical hash of L levels where the last L̃ are Lagrangian.
At shallow levels, that is l<(L−L̃), the feature F follows InstantNGP [78],
that is, the feature is retrieved from the hashed Eulerian grid. In other words,
Fl[v](x) ≡ Fl[v]. At deeper levels, we retrieve the features from a Lagrangian
representation that takes the form of a Gaussian mixture, which we will detail
next in section 3.4.1.

Per-bucket feature (Lagrangian) – Fl[v](x)

To simplify notation, and without loss of generality, let us drop the bucket in-
dex [v] and the level index l. Within each bucket, we store an isotropic Gaussian
mixture consisting of k = {1, . . . ,K} elements, parameterized by mean µk, stan-
dard deviation σ2

k , and corresponding feature vector fk. The feature is computed
by evaluating the Gaussian mixture at position x:

F(x) = ∑
k
Nk(x) · fk, Nk(x) =

1
(2π)1/2σk

exp

(
−
∥x−µk∥2

2
2σ2

k

)
. (3.7)

3.4.2 Training

During training, we jointly optimize the shared decoder parameters, the Eule-
rian representation for levels l<(L−L̃), and the Lagrangian representation for
the last L̃ levels. The latter includes the mean and feature, and (optionally) the
standard deviation of each Gaussian. To train our representation, we optimize
the loss:

L= Lrecon +λdistLdist +λguideLguide (3.8)

where Lrecon is the pixel reconstruction loss computed by volume rendering [71],
evaluated via a Huber loss analogously to InstantNGP [78], Ldist is the distortion
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loss proposed in [6] to promote the formation of surfaces within the volume, and
Lguide avoids vanishing gradients in the optimization of the Lagrangian portion
of our representation by guiding the movement of Gaussians towards surfaces.

Guidance loss. During training, whenever we back-propagate a position x with
respect to a Gaussian whose mean µ that is too far from x (scaled by the stan-
dard deviation σ2), the computed gradients become very small, which interferes
with effective optimization of our representation. Note that a very similar prob-
lem is found in the training of Gaussian Mixture Models, for which Expectation-
Maximization (EM) is typically employed to address this issue [103]. In defin-
ing our loss, we take inspiration from EM training of GMMs. For the moment
being, consider having Gaussians at a single level, as we will extend this later to
the multi-level setting. In the E-step, given a query point x we identify the Gaus-
sian (across buckets and Gaussians therein) whose PDF (scaled by the mixture
weights) is maximal:

G(x) = αv∗ ·N (x;µk∗,v∗,σ
2
k∗,v∗), k∗,v∗ = maxk,v αv ·Nk,v(x) (3.9)

Then, in the M-step, we optimize the parameters so to minimize the discrepancy
between G(x) and the NeRF integration weights W (x) = T (x) ·τ(x), which is a
PDF along the ray, as derived in [106, Eq. (29)]. 3 We measure the discrepancy
between the two PDFs via the KL-divergence, and after dropping the subscripts
(k∗,v∗) to simplify notation we note that the equality:

maxµ,σ2 KL(W (x)||G(x))≡ maxµ,σ2 −W (x) · log(G(x)) (3.10)

holds due to the definition of KL divergence, and that the term W (x) · log(W (x))
is constant with respect to the Gaussian means, and hence can be dropped. Sim-
ilarly to the EM algorithm, our approach involves alternating between two key
steps: 1) determining the posterior distribution of latent variables by assigning

3We denote density with τ(x) to avoid confusion with the Gaussian’s variance σ2.
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each point to a Gaussian, and 2) maximizing the KL divergence based on the
defined correspondence. This two-step process can be written as a loss: 4

Ll
guide(x) =−W (x) · log

(
max

k,v
αv,l ·Nk,v,l(x)

)
(3.11)

and as the max commutes with the (monotonic) log operator, after some straight-
forward algebraic manipulations, we define our loss to its final form:

Lguide(x) = ∑
l
Ll

guide(x), Ll
guide(x) =W (x)

(
min
k,v

αv,l ·
∥x−µk,v,l∥2

2

2σ2
k,v,l

)
(3.12)

Note that this loss has a very intuitive interpretation. It states that, while inte-
grating along a ray, if we find a position x that is likely to lie on a surface (i.e.
W (x) ≈ 1), then there should be one Gaussian nearby (i.e. µ ≈ x). Further, if
we assume constant α and σ2, note that amongst all possible Gaussians the loss
will select the closest Gaussian. In other words, our loss is a (scaled) one-sided
Chamfer loss between Eulerian and Lagrangian representations.

3.4.3 Implementation

We now provide an overview of the key implementation details of our method.
5 We based our NeRF implementation on the nerfacc framework [63] and our
2D image fitting on the Kaolin-wisp library [109]. For our experiments, we
chose a feature dimension, F=2, and L=16 levels of detail (LoDs) for all the
experiments in the paper as proposed in InstantNGP. As the decoder in our
architecture, we employ a Multi-layer Perceptron (MLP) with one hidden layer,
containing 64 neurons for all the tasks.

For initialization of our decoder, we employ a classical Xavier uniform dis-
tribution [27]. The hash table features are initialized using a normal distribution

4We draw inspiration from EM algorithm, but there are distinctions. Our implementation does not incorporate
optimizable mixture weights, and we employ a hard assignment between points and Gaussians. Finally, each point
in our model is weighted, contrasting with the EM algorithm in GMM where all points have equal weights.

5We provide a copy of our source code in the supplementary materials.
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with zero mean and standard deviation of 1e−3. We parameterize the Gaussians
with a learnable mean and a fixed standard deviation. The initialization of Gaus-
sian means for the image tasks is randomized within the image space, while for
Neural Radiance Field (NeRF) reconstruction, they are uniformly distributed
within a sphere of radius 0.75. In our framework, the standard deviation of each
Gaussian defines a field of influence for each feature vector. The standard devi-
ations are directly related to the spatial domain of the grid vertices. We initialize
the standard deviations as 50× the measure of the grid cells for each LoD, and
then exponentially decay their size during training to 5× the measure of the
grid cell for each LoD. This approach proved to be beneficial, particularly at the
initial stages of training; allowing for smooth convergence of the Gaussians to
regions with high surface density weights.

3.4.4 Experiments

We demonstrate the efficiency of our method in building compact representa-
tions with two distinct applications: 2D image fitting (section 3.4.4), and 3D
radiance reconstruction from inverse rendering (section 3.4.4, section 3.4.4).
We evaluate image reconstruction on four complex high-resolution images, and
NeRF reconstruction on the Synthetic blender dataset [71] and the Tanks &
Temples dataset [51]. We conclude by ablating our design choices (section 3.4.5).

2D image fitting (gigapixel)

The image fitting task involves learning a mapping between 2D coordinates and
image colors, and is a popular benchmark for evaluating neural field methods
capabilities in representing high-frequency signals. We train with an L2 recon-
struction loss, and parameterize our models with codebook containing B = 217

and B = 218 buckets, utilize a maximum of K=4 Gaussian feature per bucket,
and set the maximum resolution Nmax to half the width of the image. For this

77



3.4. LAGRANGIAN HASHING 78

Albert Summer Day Pluto Girl with a Pearl Earring
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54.55 dB, 3.71M

53.47 dB, 5.75M 36.31 dB, 6.57M 41.48 dB, 23.96M 33.21 dB, 86.2M

37.08 dB, 4.82M 45.46 dB, 17.28M 33.74 dB, 62.7M

Figure 3.11: Qualitative comparisons on the giga-pixel images. On each image, we show the
reconstruction quality (PSNR) together with the number of parameters.

Method # Params Girl Pluto Summer Albert Avg.

InstantNGP(B = 219) 11.91M 28.73 38.59 37.26 53.81 39.60
Ours(B = 217) 4.56M 27.60 37.53 37.08 54.55 39.19
Ours(B = 218) 8.41M 28.83 39.72 38.93 55.35 40.71

Table 3.3: We quantitatively compare our method with InstantNGP [78] on four giga-pixel im-
ages: Girl with a Pearl Earring (Girl), Pluto, Summer Day(Summer), and Albert. We compare
average PSNR↑ and average # paramaters↓.

task, the spatial gradient norm of pixel values ∥∇I(xi)∥ is employed for W (x)
in Lguide eq. (3.12), hence prioritizing representation of areas within the image
containing high-frequency details.

Dataset and baselines. We evaluate our method qualitatively and quantitatively
on publicly available gigapixel images, where the total number of pixels ranges
from 4 M to 213 M, with InstantNGP as a representative baseline. We train both
our network and InstantNGP with Adam [50] for 350 epochs with a learning rate
of 1e−2 and parameters β1=0.9, β2=0.99, ε=10−15, while the learning rate for
Gaussian positions is set to 1e−3. We use a batch size of 216.
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Discussion. As shown in Figure 3.15 and Table 3.3 our method reconstructs
high-fidelity gigapixel images in comparison to InstantNGP while also being a
2.6× more compact representation. Note the superior performance on images
characterized by localized high-frequency features (e.g. Pluto) This aspect of
our method is also highlighted in the pareto plot in Figure 3.14, where our
method consistently outperforms InstantNGP on different parameters counts.

Novel view synthesis

We now demonstrate the applicability of our method in a NeRF [71] setup. Dif-
ferently from the 2D image fitting task, in the NeRF setting, a volumetric shape
is parameterized by a spatial (3D) density function and a spatio-directional (5D)
radiance. We demonstrate that our method is capable of solving this problem
better than baselines while requiring fewer parameters.

Dataset and baselines. We evaluate our method qualitatively and quantitatively
with InstantNGP on two widely used benchmarks: the NeRF synthetic dataset
[71] and the Tanks & Temples real-world dataset [51]. For Tanks & Temples,
for both our method and InstantNGP, we use mask supervision and train with-
out background modeling. We evaluate each method both qualitatively (Fig-
ure 3.12), and quantitatively (Tables 3.4 and 3.5), using peak signal-to-noise
ratio (PSNR) as the metric.

Implementation. For this task, we train our models with codebook containing
B=217 and B=217.9 (i.e. we match the number of parameters of InstantNGP)
buckets. We employ K=4 Gaussian features per bucket for both datasets. We
evaluate our method’s performance with a maximum grid resolution Nmax=1024.
We fix the weights of distortion loss (λdist) to 1e−3 for the NeRF Synthetic
dataset and 1e−2 for the Tanks & Temples dataset, for both InstantNGP and our
model. Additionally, we train our network with a guidance loss weight (λguide)
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Reconstruction Ours I-NGP Lagrangian RepresentationGT

Figure 3.12: Qualitative comparisons on the Synthetic NeRF Dataset [71]. The leftmost column
(reconstruction) shows the full-image results of our method and the rightmost column shows the
Lagrangian Representation which is learned by our model for the particular scene.
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Reconstruction Ours I-NGP Lagrangian RepresentationGT

Figure 3.13: Qualitative comparisons on the Tanks and Temples dataset [51]. The leftmost
column (reconstruction) shows the full-image results of our method and the Rightmost column
shows the Lagrangian Representation which is learned by our model.

Method # Params Lego Mic Materials Chair Hotdog Ficus Drums Ship Avg.

InstantNGP(B = 219) 12.10M 35.67 36.85 29.60 35.71 37.37 33.95 25.44 30.29 33.11
Ours(B = 217) 6.68M 35.60 36.45 29.63 35.61 37.23 33.89 25.67 30.84 33.12

Ours(B = 217.9) 12.13M 35.74 36.78 29.66 35.76 37.30 34.02 25.75 31.01 33.25

Table 3.4: We compare our method with InstantNGP on the Nerf Synthetic dataset [71]. We
report PSNR↑ and the parameter count ↓. Our method matches the performances of this state-
of-the-art method with considerably fewer parameters.

of 1e−1 and a warm-up schedule to allow for the coarse structure of the scene to
be learnt first. We train both the models with an Adam optimizer for 20K itera-
tions with a learning rate of 1e−2 and parameters β1=0.9, β2=0.99, ε=10−15.
The learning rate of Gaussian positions is set to 1e−3.

Discussion. As shown in Tables 3.4 and 3.5 our method matches the quality
of reconstruction of InstantNGP while achieving a 1.8× more compact repre-
sentation. In Figure 3.13, we qualitatively evaluate our method on real data
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Method # Params Truck Barn Family Caterpillar Avg.

InstantNGP(B = 219) 12.10M 27.42 27.10 33.23 26.27 28.51
Ours(B = 217) 6.68M 27.31 27.36 33.22 26.31 28.55

Ours(B = 217.9) 12.13M 27.38 27.66 33.36 26.33 28.68

Table 3.5: We quantitatively compare our method with InstantNGP on the Tanks and Temple
dataset [51]. We compare the PSNR↑ and the parameter count ↓. Notably, we are able to match
the performances of this state-of-the-art method with considerably fewer parameters.

containing complex structures and reflections. These evaluations highlight our
method’s superior performance in handling complex scenes. Notably, our ap-
proach demonstrates its capability to resolve collisions that, within the Instant-
NGP framework, lead to the formation of micro-structures on smooth surfaces
(as observed on the truck model, and wheels of the truck). In Figure 3.12, we
present a visual comparison that highlights the improved rendering of thin struc-
tures, such as the legs of a drum instrument, the mast of a ship, and the structure
of a hotdog. Figure 3.12 also illustrates our Lagrangian representation, where
we demonstrate how the Gaussian in our model converge to regions of high
surface density in 3D space.

Compact representation

We now demonstrate the efficacy of our model in developing compact repre-
sentation in both Image fitting and NeRF reconstruction applications. In this
experiment, we study decreasing the number of parameters to demonstrate the
capability of our method to focus the limited capacity of the codebook towards
capturing the high-frequency details of the signal.

Dataset and baselines. We evaluate our method quantitatively with Compact-
NGP [108], a compressed variant of InstantNGP, on the NeRF synthetic dataset.
Since the source code for CompactNGP is not publicly available, we compare

82



83 CHAPTER 3. LAGRANGIAN PROPERTIES FOR EFFICIENT NERFS

Method # Params Lego Mic Materials Chair Hotdog Ficus Drums Ship Avg.

InstantNGP(B = 214) 0.50M 32.03 35.08 28.73 32.59 34.99 30.99 25.36 27.71 30.94
CompactNGP(from [108]) 0.18M 32.31 33.88 28.32 32.05 34.26 32.05 24.71 27.71 30.66

Ours(B = 211) 0.18M 31.15 32.65 28.52 32.44 35.67 31.98 25.07 28.26 30.72

Table 3.6: We quantitatively compare our method with CompactNGP [108] on the Nerf Syn-
thetic Dataset [71]. We compare the PSNR↑ and the parameter count ↓. We outperform the
recently published CompactNGP while matching in parameter count.
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Figure 3.14: Pareto plot: Tanks and temples. We demonstrate that our method consistently
outperforms InstantNGP in terms of quality vs number of parameters.

our framework with the scores directly taken from the paper. We also include
in our analysis a comparison with InstantNGP, focusing on the quality of the
reconstruction and compactness of the representation, across a range of hyper-
parameter configurations on NeRF reconstruction and 2D image fitting. For
plotting our compression graph, we evaluate both our model and InstantNGP
on Tanks & Temples for NeRF reconstruction and gigapixel images fitting.

Implementation. For these experiments, we train our models with codebook
containing B = 211 buckets, and we employ a maximum of K=6 Gaussian fea-
tures per bucket and evaluate the model at a maximum grid resolution Nmax=256.
We disable the distortion loss (λdist=0) for our network to enable a fair com-
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Figure 3.15: Pareto plot: Gigappixel Images. We demonstrate that our method consistently
outperforms InstantNGP in terms of quality vs number of parameters.

parison with CompactNGP, that did not use this loss. Additionally, we train
our network with a guidance loss weight (λguide) of 1e−1 and a warm-up sched-
uler. Following CompactNGP, we train our model with an Adam optimizer for
35K iterations with a learning rate of 1e−2 and parameters β1=0.9, β2=0.99,
ε=10−15. The learning rate of Gaussians is set to 1e−3.

Discussion. As shown in table 3.6, our method quantitatively outperforms the
recently proposed CompactNGP method on its primary task, while achieving
the same level of compression, a 2.8× more compact representation when com-
pared to InstantNGP. In Figure 3.14, we show that our pareto front lies ahead
of InstantNGP in both NeRF application and image fitting, meaning that our
model consistently outperforms InstantNGP in terms of quality vs. number of
parameters.

3.4.5 Ablations

We validate our method in the NeRF reconstruction on the real-world scenes
from Tanks & Temples. We investigate the importance of the losses, the number
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PSNR

Full 27.94
w/o Ldist 27.70
w/o Lguide 27.75

(a) Impact on PSNR

(b) w/o Lguide (c) w/ Lguide

Figure 3.16: Impact of losses. We show the proposed losses are essential to have the optimal
PSNR. We also show that Lguide is critical to place points onto the surface (i.e., locations in
space that need more capacity to be represented), which is the key to achieve a good compres-
sion rate. The quality of the results without the guidance Loss since we fall in the Instant-NGP
framework.

of Gaussian features per codebook, and the number of Lagrangian levels.

Loss function – fig. 3.16. We analyze the importance of each loss term except
for Lrecon. Note both losses beneficially contribute to the final performance. We
also qualitatively examine how losses impact point learning, which is a key to
learning a compact representation – by design, we achieve a high compression
rate by allocating more points near the object’s surface. We observe that both
losses are essential for points, and therefore features, to focus on these surfaces.
Particularly, Lguide as shown in fig. 3.16, guide random points towards the sur-
face. We also observe that Ldist, as discussed in MipNeRF360 [6], eliminates
floaters.

Number of Gaussian features per bucket (K) – table 3.7. We study the impact of
the number of Gaussians in each bucket on reconstruction performance. And
we show that 4 Gaussians achieve a good trade-off between the number of pa-

85



3.4. LAGRANGIAN HASHING 86

# of Gauss. No mixture 2 4 8

# Params. (M) 0.50 0.67 0.92 1.41
PSNR 27.49 27.82 27.94 27.99

Table 3.7: Num. of Gaussian (K). We report the storage (the number of parameters) and PSNR
with the different number of Gaussian in each bucket. We observe that 4 Gaussians achieve a
better trade-off between performance and storage.

# of levels 0 2 4 8

# Params. (M) 0.5 0.92 1.34 2.2
PSNR 27.49 27.94 28.00 28.03

Table 3.8: Num. of levels (L). We report the storage (the number of parameters) and PSNR with
the different number of Lagrangian levels. We observe that the model of 2 Lagrangian levels at
the finest level Gaussians achieves the better trade-off between performance and storage.

rameters and performance. As shown in table 3.7, 8 or even more Gaussians
in each bucket, while leading to better performance, start to introduce redun-
dant parameters since the spatial collision is already well addressed with only 4
Gaussians.

Number of Lagrangian levels (L̃). We further investigate the impact of the num-
ber of Lagrangian levels. We observe that two Lagrangian levels in the finest
levels where the majority of spatial collisions happen achieve the best trade-off
between reconstruction and storage.

3.4.6 Discussion

We introduce a neural representation that unifies Eulerian with Lagrangian schools
of thought. We take advantage of the Eulerian grids that allow the use of hash
tables, which we extend with the Lagrangian point clouds, imbuing them with
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the flexibility of point representations. Taking the best of both worlds, we out-
perform the state of the art, and provide a better PSNR - parameter count ratio
than InstantNGP across various neural field workloads, including real-world
scenes.

Our method is currently restricted to object-centric scenes. Our approach
does not achieve an effective Eulerian-Lagrangian hybrid representation for un-
bounded scenes when trained with the scene contraction function. Due to our
emphasis on learning a compact representation of 3D objects, we left further ex-
ploration of Lagrangian representations for unbounded scenes to future work.

We show our lagrangian representation across L̃ LoDs. As shown in fig. 3.17,
both scales learn the complete point representation and the fine LoD scale tends
to capture more high-frequency details.

Pre-final LoD Final LoD Rendered RGB image

Figure 3.17: Notice the mast of the ship(highlighted region), where we see that the final LoD
represents high-frequency details better than the pre-final LoD.
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Chapter 4

Comparative study for 3D Radiance Fields
based methods

In recent years, the advancement of 3D reconstruction technologies has revolu-
tionized the documentation and analysis of industrial and archaeological sites.
Among these, photogrammetry has long been established as the baseline for
precise, high-resolution mapping and modeling. However, the recent advent of
Artificial Intelligence (AI) in the 3D field, thanks to the introduction of Neural
Radiance Fields (NeRF) and more recently 3D Gaussian splatting techniques
presents a novel paradigm. These powerful technologies show a potential for
overcoming some of the inherent limitations faced by traditional methods. This
paper provide a comprehensive comparison between these cutting-edge tech-
niques, focusing on their application in the industrial context of excavation sites,
a domain where precision in the reconstruction play a pivotal role.
Excavation sites properties introduce unique challenges for 3D reconstruction
due to their dynamic nature, intricate details, and the need for precise georef-
erencing. The acquisition of data, requires methods that can adapt to these
challenges, ensuring a high level of fidelity in the reconstruction of occluded
regions. For utility companies and other stakeholders, the integration of geospa-
tial data with 3D reconstructions facilitates a deeper understanding of the sur-
face infrastructure, allowing for the precise location of pipes and other assets
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Figure 4.1: Overview of the proposed methodology

with centimeter accuracy. This capability not only aids in the efficient planning
and management of utilities but also significantly reduces the risk of accidental
damage during excavation activities. Moreover, the usage of georeferenced data
in the 3D reconstruction enable the usage of augmented reality (AR) technolo-
gies to offer an additional layer of information, enhancing operational safety
and efficiency. By overlaying digital models onto the physical world, operators
can gain real-time insights, further preventing the accidental severing of critical
infrastructure.

4.1 3D reconstruction methods in industrial settings

This section explores the comparative advantages and potential limitations of
photogrammetry, NeRF, and Gaussian splatting in the field of excavation sites
reconstruction equipped with geographical positioning information. By lever-
aging datasets composed of images and precise geographic coordinates, this
study aims to highlight the strengths and weaknesses of each method, especially
in scenarios where traditional photogrammetry may not be enough. Further, the
study extends the evaluation to playground scenarios, which resemble excava-
tion sites in terms of their unbounded spatial characteristics and presence of
detailed features.
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Motivation

Neural Radiance Fields based methods have recently emerged as an alternative
to traditional photogrammetry in the field of image-based 3D reconstruction.
This innovation is especially significant for the challenging scenarios of ex-
cavation sites, which are often characterized by their unbounded and outdoor
settings, making them susceptible to complex view-dependent effects This re-
search is motivated by the potential of NeRF to enhance the compression and
precision of reconstructions in such complex settings. By comparing NeRF
with traditional photogrammetry across varied scenes, this study aims to pre-
cisely assess their efficacy in capturing intricate details, surface textures, and
overall geometric accuracy. Our goal is to evaluate the suitability of NeRF and
related techniques to be adopted in real-world applications.

4.1.1 Background

3D reconstruction techniques are becoming increasingly important across con-
struction, excavation, and broader worksite management fields. These methods
not only facilitate comprehensive tracking of the state of the work, but also,
through georeferencing and virtual reality, offer the capability for operators to
virtually navigate sites, both during and after project completion. In such con-
texts, capturing the scene using 2D images from multiple viewpoints is a prac-
tical approach, falling under the category of multi-view reconstruction.

Among photogrammetric solutions for view synthesis, we focus on Colmap
[95] for its open-access policy and continual improvements. This method en-
ables the conversion of 2D images into comprehensive 3D models, including
point clouds and textured meshes, enabling advanced spatial analyses.

However, the application of photogrammetric reconstruction encounters sev-
eral challenges, particularly when dealing with objects that possess complex
optical properties such as high absorbency, reflectivity, or scattering. These
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methods can also be hindered by varying lighting conditions, including shad-
ows, glare, or inconsistent illumination, as well as by surfaces with uniform or
repetitive textures and complex shapes or geometries.

In this context Radiance Fields based technologies emerge as powerful solu-
tion that show the capabilities necessary for addressing some of these inherent
limitations. They rely on an innovative scene representation containing parti-
cles, each of them characterized by density and color. In this study we will
compare with the photogrammetry two radiance fields based techniques: Ner-
facto, a variations of InstantNGP available in Nerfstudio and SuGAR a variation
of 3D Gaussian Splatting.

Neural Radiance Fields Neural Radiance Fields (NeRF) have emerged as a sig-
nificant advancement in the field of 3D scene reconstruction. The scene is rep-
resented with a novel 5D function. This function correlates each spatial point
(x,y,z) with the radiance emitted in any direction, defined by azimuthal and po-
lar angles (θ ,φ). The outcome, characterized by volume density σ and RGB
color values c, varies with the viewing direction.

Building this scene representation, nerfstudio [110] introduces an innovative
platform designed to streamline and enhance the creation and manipulation of
NeRF-based models. At the heart of NeRFStudio’s methods is the Nerfacto
model, which incorporate insights from a state-of-the-art research, including
works such as MipNeRF-360 [6], Instant-NGP [78], and Ref- [115]. Nerfacto’
focus is in optimizing camera views and sampling processes, utilizing a piece-
wise sampler and a proposal network sampler for efficient and effective scene
reconstruction. Additionally, it employs a novel scene contraction technique
and a refined NeRF field that incorporates appearance embeddings and normal
predictions, all implemented in PyTorch for ease of use and customization. This
method not only accelerates the reconstruction process but also improves the fi-
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delity and versatility of the generated scenes.

3D Gaussian Splatting for Real-Time Radiance Field Rendering 3D Gaussian Splat-
ting, a novel approach to scene representation, contrasts with neural fields by
optimizing an explicit point-based scene model. Each point in this representa-
tion is associated with various attributes: a position p ∈ R3, opacity o ∈ [0,1],
third-degree spherical harmonics (SH) coefficients k ∈ R16, 3D scale s ∈ R3,
and 3D rotation R ∈ SO(3) represented by 4D quaternions q ∈ R4. Rendering
to the image plane involves accumulating the color cGS from correctly-sorted
points using the equation:

cGS =
Np

∑
j=1

c jα jτi where τi =
j−1

∏
i=1

(1−αi) (4.1)

with c j determined by SH coefficients k and α j calculated from the projected
2D Gaussian with covariance Σ′ = JMΣMT JT , incorporating per-point opacity
o, viewing transformation M, and Jacobian J of the affine approximation of
the projective transformation. The 3D covariance matrix Σ ensures positive
semi-definiteness through the scale matrix S = diag(s1,s2,s3) and rotation R,
following Σ = RSST RT .

Building upon the principles of 3D Gaussian Splatting, Surface Gaussian
Approximation for Rendering (SuGAR) leverages Gaussian functions to model
object surfaces within a scene, achieving precision in handling occlusions and
detailed surface texturing through Gaussian ”splats” projected onto a volume
grid. Each splat influences the volume’s density and color based on its spatial
location and Gaussian distribution, described mathematically as:

G(x; µ,Σ) =
1

(2π)
3
2 |Σ|1

2
exp
(
−1

2
(x−µ)T

Σ
−1(x−µ)

)
(4.2)
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where x denotes a point in space, µ the mean location (center of the splat),
and Σ the covariance matrix shaping the Gaussian distribution. SuGAR’s method
for accumulating multiple splats across a scene constructs a volumetric rep-
resentation capturing density and color information, enabling precise shading
and depth rendering. This approach is beneficial for visualizing medical data,
archaeological site reconstructions, and more, where precision and detail are
critical.

4.1.2 Methodology

This study aims to evaluate the effectiveness and potential benefits of Neural
Radiance Fields (NeRF) and 3D Gaussian Splatting against traditional image-
based reconstruction techniques, in the context of augmented/virtual reality ap-
plications. Our focus is on scenarios with specific challenges, including ex-
cavation sites and playground objects, which are characterized by unbounded
environments and non-Lambertian surfaces or composed of fine materials.

To facilitate a direct comparison, the same dataset of images, captured with
georeferencing, is utilized across all reconstruction methods. This standardized
approach ensures that differences in the reconstruction quality and efficiency
can be attributed solely to the methodologies rather than errors that can be at-
tributed to the alignment of the results.

Dataset acquisition

The datasets are collected using a system comprised of two devices: a smart-
phone and an RTK-GNSS spatially calibrated as we can see from the figure
4.2. These devices ensure highly accurate pose information for all the images
we have collected. The study aims to analyze utility case studies, therefore, as
scenarios, we have selected some simple playground games mixed with real ex-
cavation scenarios where the reconstruction is more challenging. Our datasets
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consist of 7 playground scenarios and 3 excavation scenarios.

Figure 4.2: System acquisition composed by Stonex and Smartphone for obtaining high accu-
racy geo-referenced images

Acquisition Process: Our analysis focuses on handheld acquisitions per-
formed by operators in the field. The trajectory involves rotating around the
object when it is possible, maintaining a capture at eye level with the camera
facing downward. The angle varies depending on whether the scenario is an
excavation or a playground game. During acquisition, the frame rate is fixed
at 5 frames per second with a resolution of 1280 x 720. The accuracy of the
geopose data is approximately 3 cm and less than 1 degree for each acquired
image. We maintain a uniform velocity during acquisition, so the number of
images for each scenario depends on the length of the trajectory. In table 4.1,
we provide the main information about all the acquisitions scenarios.

Methodologies Employed

Three distinct reconstruction methodologies were applied to the captured datasets,
an overview of the methodology is shown in Figure 4.1:
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Number Images Geo tras. acc. Resolution
Parcogiochi1 153 <2cm 1280x720
Parcogiochi2 218 <2cm 1280x720
Parcogiochi3 159 <2cm 1280x720
Parcogiochi4 149 <3cm 1280x720
Parcogiochi5 151 <3cm 1280x720
Parcogiochi6 152 <2cm 1280x720
Parcogiochi7 245 <3cm 1280x720
Scavo5 565 <3cm 1280x720
Scavo7 468 <3cm 1280x720
Scavo13 745 <3cm 1280x720

Table 4.1: From this table, we describe the number of images and their resolution for all ac-
quisitions, then we also include, for each scene, the accuracy of translation with respect to the
Geographical Coordinate System (GCS) of the images.

1. Photogrammetry: The classical photogrammetric procedure involves es-
timating camera orientation parameters for sparse point cloud construc-
tion, generating a dense point cloud. Then followed by mesh creation and
texture extraction. For this purpose we used the Colmap software with
all phases conducted in high-quality mode to ensure maximum detail and
accuracy.

2. NeRF-Based Reconstruction: The training of Neural Radiance Field re-
construction requires known camera poses as input. As the software for
this methodology we used nerfstudio [110], inside this framework we used
”nerfacto” a model strongly based on InstantNGP [78] used for its fast
training and inference. We then extracted the dense point clouds and tex-
tured mesh from nerfstudio’s API, in particular for mesh extraction we
expoited Poisson reconstruction.

3. Gaussian Splatting (SuGaR): Similarly to NeRF this methods requires
know camera poses as input. This explicit model is then trained to approx-
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imate the radiance field of the scene. The training of SuGAR involves more
than one step. The training starts with 7k iterations of normal 3D gaussian
Splatting and 7k iterations of SuGAR fine-tuning to extract a more precise
geometry.

The acquisition of our dataset incorporated georeferencing, simplifying the
alignment process for the reconstructions. The only exception is NeRF, which
as an implicit framework normalizes its coordinates between -1 and 1. This
aspect of NeRF requires an additional step to calibrate the model, to incorporate
scale and translation derived from the georeferenced input to ensure accurate
alignment.

For the dataset to be used in training, we first need to estimate the camera pa-
rameters from the input images. This estimation is necessary because the NeRF
based techniques requires knowledge of both the camera’s positions and the cor-
responding images to accurately generate the scene’s representation. To achieve
this, we utilized COLMAP, a known software for its application of Structure
from Motion (SfM) techniques [104], for estimating three-dimensional struc-
tures from two-dimensional image sequences.

To facilitate comparison, given that outputs from photogrammetry are not
directly comparable with those from neural fields or Gaussian splatting, we in-
corporate an additional conversion phase. Nerfstudio provides functionality to
convert NeRF outputs into point clouds and meshes. The point clouds are eas-
ily exported since the neural representation can be inspected at any 3D point.
For the meshes this conversion employs the marching cubes algorithm and the
Poisson surface reconstruction method. In the SuGAR framework the mesh
extraction phase it also done through marching cubes or Poisson surface recon-
struction, in this case the reconstruction is enhanced thanks to the precise esti-
mation of the normals of the sampled points. To obtain a measure of precision
we derive a cloud-to-cloud comparison using the CloudCompare software.
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Comparative Analysis Framework

The comparative analysis between these methods focuses on the following key
metrics: Accuracy and Detail Resolution: Evaluating the fidelity of the re-
constructed models to the original scenes. Processing Time: Assessing the
efficiency of each methodology in terms of computational resources and time
required for reconstruction. To compare the level of fidelity of the reconstructed
models we propose using the point clouds generated by the studied methods. In
this way we can obtain a quantitative metric. To be more specific we measure
the cloud to cloud deviation of the methods based on radiance fields with re-
spect to the recontruction using classical photogrammetry, in this case Colmap.
Since this measure is an absolute value which doesn’t tell which method is do-
ing better but just the deviation from one to the other we also show the rendering
results in order to see the best performing in Figure 4.4 and 4.5. In addition to
this quantitative result we also propose a qualitative comparison of the resulting
meshes, comparing the three proposed methodologies in Figure 4.3.

4.1.3 Discussion

We show a comparison of NeRF based techniques against traditional photogram-
metry utilizing Colmap software, all models are trained on an NVIDIA RTX
3090 GPU. The assessment focuses on their effectiveness in view synthesis and
3D reconstruction, particularly in expansive, unbounded environments.
The results of our analysis highlights that the three methodologies produce high
quality point clouds, with very close results especially in the fine structures
of the 3D scene, as illustrated in in Figures 4.4, 4.5. Notably, NeRF’s output
shows a denser point cloud around high-frequency scene features but has gaps
in smoother regions. In the presented comparison, the radiance field render-
ing results demonstrate the exceptional quality of view synthesis provided by
nerfacto and SuGaR in varying scenarios. Both methods display impressive re-
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Colmap nerfstudio SuGaR

Generated meshes

Figure 4.3: Comparison of the mesh obtained with the proposed methodologies on the play-
grouds dataset.
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Figure 4.4: Comparison of the cloud to cloud distance of the proposed methodologies on the
playground dataset.
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Colmap - Nerf Colmap - SuGaR

Cloud to Cloud distance

Rendering results

NeRF SuGaR

10 cm

0 cm

Figure 4.5: Comparison of the cloud to cloud distance of the proposed methodologies on the
playground dataset.

alism, yet the results showed in Figure 4.6 point out the higher quality of SuGaR
in the reconstruction of the reflections is the puddle. This highlights the capabil-
ity of an explicit method like 3D Gaussian Splatting to handle view dependent
effects. The comparison illustrated in Figure 4.5 highlights a failure case of
nerfstudio, with a red area within the scene’s object of interest indicating a high
cloud-to-cloud distance. This issue not only produce a discrepancy in the point
cloud representation but also results in blurring within the targeted region of the
neural reconstruction.
Considering the extensive usage of meshes in VR and AR applications, for their
simplicity and low memory footprint, we present a comparison of the meshes
produced with the three methodologies. In Figure 4.3 we show the obtained
meshes also showing a detail of the reconstruction in the region of the 3D scene
with finer details. As depicted in Figure 4.7, there’s a noticeable variance in de-
tail and texture among the outputs. The colmap mesh, while being consistent,
falls short on representing thin structures. In contrast, the NeRF mesh shows
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Figure 4.6: Comparison of the mesh obtained with the proposed methodologies on the excava-
tion sites dataset.
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Colmap nerfstudio SuGaR

Generated meshes

Figure 4.7: Comparison of the mesh obtained with the proposed methodologies on the excava-
tion sites dataset.
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greater detail but presents some holes. The SuGaR mesh stands out for its supe-
rior detail, accurately capturing complex structures where others falter, thanks
to its precise normal calculations.

In this paper we provide a comparative analysis of Neural radiance fields
based reconstruction methods and classical photogrammetry for unbounded sce-
narios. We show results in playgrounds and excavations sites, to access the
performances in increasingly complex scenarios In our set-up, photogrammetry
has provided superior reliability in complex scenes, especially on the excava-
tion sites. Proving also better results in modeling completely flat area which
in the NeRF methods presents some artifacts. Although training/reconstruction
times are generally not the main concern in the reconstruction of working areas,
some application might benefit from fast reconstruction times. In this aspect
nerfstudio provided the best speed in the reconstruction, requiring just 15 min-
utes for the training of a scene. An important aspect that needs to be analyzed
is the reliance of the current rendering pipelines for virtual and augmented re-
ality on meshes representations. This advantages the classical photogrammetry
which specifically built upon the requirements of this type of output. In con-
trast, neural rendering technologies focus primarily on view synthesis, offering
an alternative that eliminates the need for mesh generation. SuGaR and more
in general 3D Gaussian Splatting techniques produce an explicit representation
that allow for the splatting of gaussians in the same way traditional methods
splat triangle. This feature enable SuGaR and 3D Gaussian Splatting to ren-
der the scene in real time, making it possible to use it into existing pipelines.
In the future, we see 3D Gaussian Splatting to be a potential replacement for
for meshes representations, especially in scenarios requiring the realistic recon-
struction of complex environment containing view dependent effects.
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Chapter 5

Conclusions and Future Research

In this thesis we focused on the role and the potentialities of explainable and
efficient structures in two distinct macro fields: Part-whole hierarchies in neu-
ral networks and Lagrangian properties in 3D neural reconstruction. Within
the context of 3D reconstruction we also conduct a comparative analysis of
the latest implicit reconstruction methodologies against traditional photogram-
metry techniques to assess their usability in practical, real-world settings. We
introduced ”Agglomerator” and its extension ”Agglomerator++” presenting an
innovative learning paradigm that draws inspiration from the brain’s cortical
columns, that can learn to build parse trees of part-whole hierarchies in an unsu-
pervised way. We showcase how these approaches enable the dynamic parsing
of ”islands of agreement,” showcasing how Agglomerator and Agglomerator++
can maintain the same properties of state-of-the-art capsule networks, such as
viewpoint-equivariance, but with enhanced efficiency and simplicity. We fur-
ther demonstrated that the usage of a more adaptive and interpretable architec-
ture can overcome the limitations of fast training NeRF methods, significantly
enhancing the efficiency of neural implicit reconstructions. We compare our
results to state-of-the-art models for 3D reconstruction to prove we can achieve
a more compact representation. This results are motivated by the ability of
our method to adapt to the input signal, while still leveraging the speed of fast
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training NeRF methodologies, thanks to our utilization of a hierarchical hashing
structure.

We believe that the development of Agglomerator-like models represents
a significant step towards neural networks that more closely replicate human
brain functions. The ability of parsing articulated objects in an unsupervised
way with part-whole hierarchies could drastically simplify the network archi-
tecture, as well as reduce the amount of training data, inherently capturing the
relationships between viewpoints and the scenes observed. As for possible fu-
ture research directions, a natural progression of the presented work on 3D rep-
resentation is the extension of Lagrangian Hashing to work on unbounded sce-
narios. The application to unbounded scenes, characterized by their significant
sparsity, perfectly matches our method’s capability to obtain highly compact
representations. Additionally, the potential of Lagrangian Hashing to preserve
spatial coherence into its representation opens up possibilities for its application
in tasks requiring precise manipulation capabilities, like scene editing. We also
believe that our hybrid hash architecture could be exploited for different field
requiring adaptability to complex signals.
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