
Future Generation Computer Systems 160 (2024) 951–965

Available online 29 June 2024
0167-739X/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Anomaly-based error and intrusion detection in tabular data: No DNN
outperforms tree-based classifiers

Tommaso Zoppi a,*, Stefano Gazzini b, Andrea Ceccarelli b

a Department of Information Engineering & Computer Science, University of Trento, Via Sommarive 9, Povo (Trento), Italy
b Department of Mathematics and Informatics, University of Florence, Viale Morgagni 65, Florence, 50134, Florence, Italy

A R T I C L E I N F O

Keywords:
Tabular data
Classification
Error detection
Anomaly detection
Intrusion detection
Ensembles

A B S T R A C T

Recent years have seen a growing involvement of researchers and practitioners in crafting Deep Neural Networks
(DNNs) that seem to outperform existing machine learning approaches for solving classification problems as
anomaly-based error and intrusion detection. Undoubtedly, classifiers may be very diverse among themselves,
and choosing one or another is typically due to the specific task and target system. Designing and training the
optimal tabular data classifier requires extensive experimentation, sensitivity analyses, big datasets, and domain-
specific knowledge that may not be available at will or considered a non-strategical asset by many companies and
stakeholders. This paper compares, using a total of 23 public datasets: i) traditional (tree-based, statistical) su-
pervised classifiers, ii) DNNs that are specifically designed for classifying tabular data, iii) DNNs for image
classification that are applied to tabular data after converting data points into images, alone and as ensembles.
Experimental results and related discussions show clear advantages in adopting tree-based classifiers for
anomaly-based error and intrusion detection in tabular data as they outperform their competitors, including
DNNs. Then, individual classifiers are compared against ensembles using different combinations of the classifiers
considered in this study as base-learners, providing a unified final response through many meta-learning stra-
tegies. Results show that there is no benefit in building ensembles instead of using a tree-based classifier as
Random Forests, eXtreme Gradient Boosting or Extra Trees. The paper concludes that anomaly-based error and
intrusion detectors for critical systems should use the old (but gold) tree-based classifiers, which are also easier to
fine-tune, and understand; plus, they require less time and resources to learn their model.

1. Introduction

Nowadays the paradigm of Cyber-Physical Systems (CPSs [1]) guides
the definition and design of ICT hardware-software systems whose
functionalities are partially controlled or monitored by computer-based
sub-systems and/or human beings. Examples include, but are not limited
to, Auto-Pilot Avionics, Autonomous Driving, Smart Manufacturing,
Medical Support Systems, Industrial Control Systems, and Environ-
mental Monitoring [2–6]. Noticeably, many of those CPSs (systems from
now on) might be intended to deliver critical functionalities, whose
malfunction may lead to fatalities, severe injuries, or major damages to
the environment: as a result, they must be conceptualized, designed, and
implemented to ensure that appropriate safety and/or security re-
quirements are met [7,8]. These critical systems need to embed error,
intrusion, and anomaly detectors that can accurately and promptly
detect the manifestation of faults or attacks (i.e., anomalies), before

subsequent cascading effects could create a major damage the encom-
passing system. Detectors process tabular data points containing values
of specific indicators monitored from the target system (e.g., resource
usage, active threads, application-specific indicators): once anomalies
are detected, they trigger reaction strategies that break the
fault-error-failure chain and ultimately block the system from failing
uncontrollably [7].

The analysis of monitored data is conducted using Machine Learning
(ML) algorithms that perform binary classification (classifiers from now
on) and as such can classify the system’s behavior as normal or anom-
alous due to errors or attacks that already happened or are currently
happening in the system. ML algorithms that rely on Decision Trees or
tree ensembles (Random Forests, eXtreme Gradient Boosting) were
traditionally used for classifying tabular data as they build accurate
models, require limited training and test time, and can be explained
fairly easily [9,10]. However, there is a growing interest in crafting Deep

* Corresponding author.
E-mail address: tommaso.zoppi@unitn.it (T. Zoppi).

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

https://doi.org/10.1016/j.future.2024.06.051
Received 11 January 2024; Received in revised form 3 June 2024; Accepted 22 June 2024

mailto:tommaso.zoppi@unitn.it
www.sciencedirect.com/science/journal/0167739X
https://www.elsevier.com/locate/fgcs
https://doi.org/10.1016/j.future.2024.06.051
https://doi.org/10.1016/j.future.2024.06.051
https://doi.org/10.1016/j.future.2024.06.051
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2024.06.051&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Future Generation Computer Systems 160 (2024) 951–965

952

Neural Networks (DNNs) that have excellent classification capabilities
when dealing with tabular data, e.g., TabNet [11], NODE [12], and
FastAI [13]. These algorithms learn complex models that are usually
adequate for extracting knowledge from big datasets [14–16]. This led
to comparison and benchmarking studies that show how DNNs outper-
form tree-based classifiers [11,12], or vice-versa [9,17]: the community
did not reach an agreement yet as different studies seem to suggest
different outcomes. This is very unfortunate as clear directions could
rapidly become best practices to speed up any study that aims at crafting
optimal tabular data classifiers with immediate research and industrial
relevance.

To solve this debate, we exercise i) traditional supervised classifiers
(including Decision Tree classifiers and tree-based ensembles), ii) DNNs
is specifically designed for the analysis of tabulr data, and iii) DNNs for
image classification that we exercise after reshaping tabular data points
as images [18,19] on different scenarios related to anomaly-based error
and intrusion detection, collecting results and conducting in-depth an-
alyses and discussions. Then, we use them as base-learners to build
ensembles, which are typically considered a promising option to
improve classification performance [20–23]. The final experimental
study using 23 public datasets related to error and intrusion detection,
relying on 18 classifiers, computing diversity (i.e., disagreement be-
tween base-learners), and classification metrics allows drawing
conclusive statements that are valid for anomaly-based error and
intrusion detectors but may also translate to similar domains. Our
takeovers, supported by experimental results, are as follows.

• DNNs never outperform tree-based supervised classifiers in intru-
sion, error or anomaly datasets used in this study.

• DNNs have many hyperparameters that should be assigned after fine-
tuning through tailored and algorithm-specific sensitivity analyses,
which are very time-consuming and require domain-specific
knowledge.

• DNNs do not outperform tree-based ensembles even when processing
“big data” tabular training datasets

• DNNs take at least an order of magnitude (10x) more time for
learning a model than tree-based ensembles. Tabular DNNs are on
average faster than image DNNs trained on images converted from
tabular data points.

• Choosing base-learners that are likely to disagree, resulting in
diverse behavior, does not help in building ensembles that outper-
form individual anomaly-based detectors.

• There is no benefit in using tabular classifiers other than tree-based
ensembles for anomaly-based error and intrusion detection. This is
true for classification performance of classifiers alone, and also when
crafting complex classifiers using ensembles.

The paper is structured as follows: Section 2 recaps error and
intrusion detectors and the role of ML in those domains, including a
discussion of ensembles of classifiers, their diversity, and ways to
combine them through meta-learning. Section 3 shows motivations of
this study, while Section 4 conducts a first experimental analysis to
compare classifiers individually. Section 5 describes ensembles of tree-
based classifiers and DNNs, which are used for experiments and dis-
cussions in Section 6. Section 7 summarizes threats to validity, and
Section 8 concludes the paper.

2. Background

This section reports the background on tabular datasets and Machine
Learning (ML) algorithms that suit the classification of such data i.e.,
classifiers.

2.1. Anomaly-based error and intrusion detection

Dependability is generally referred to as “the ability to avoid service

failures that are more frequent or severe than is acceptable” [7]. Attaining
dependability requires - but is not limited to - a prompt detection of the
observable manifestations of faults or attacks, which should trigger reac-
tion strategies to avoid uncontrolled system failures. Error [15,16,24] and
intrusion [25–27] detectors are classifiers that aim at detecting all the
manifestations of faults (error detection) or attacks (intrusion detection).
They seek to distinguish between normal behavior and one or more
anomalous categories of anomalous behaviors due to manifestations of
errors or intrusions. These manifestations usually occur as behavioral
anomalies, which are observable when looking at specific performance
indicators. Detectors may occasionally fail, either by triggering unnec-
essary alerts (False Positives, FPs), or when they miss the detection of an
ongoing fault or attack (False Negatives, FNs). Usually, error and intrusion
detectors primarily focus on reducing FNs, which may have a direct
detrimental impact on a system. On the other hand, a very suspicious
detector that has very low FNs at the price of increasing FPs will likely
raise many false alarms, being of no practical use. Crafting error and
intrusion detectors that output a satisfactorily low amount of FPs and FNs
is not trivial, and heavily depends on two key tasks: i) precise monitoring
of the target system, and ii) a suitable data analysis strategy.

2.2. Monitoring and tabular datasets

Over the years, research and practice have devised different ways to
install monitoring probes into a system. Those probes aim at retrieving
the value of several performance indicators of the target system at a
given instant, averaged over a time frame, or signaled when specific
events occur. The results of monitoring activities [3,4] constitute a
structured tabular data baseline. Different performance indicators, or
system features, can be targeted depending on the specific task, ranging
from hardware or low-level [3], system-level [28], environment [4], or
application-level monitoring [29]. Noticeably, features should describe
the behavior of the system without being affected by the specific setup of
an experimental campaign. As a specific case, IP Addresses should be
disregarded when training intrusion detectors, since we can hardly as-
sume to know the IP address of the attacker(s).

The resulting tabular dataset has specific properties compared to
other tabular datasets. Particularly, features can hardly be considered
independent as they describe different viewpoints of the same system or
different areas of the same system. This may become a problem when-
ever applying classifiers that are known to perform well under the
assumption of (linear) independence amongst features. Moreover,
anomaly-based error and intrusion detection datasets for critical systems
are usually collected by exercising a monitoring system over a quite
stretched timespan: thus, they will have many data points but not as
many features, which hardly exceed hundreds. Monitoring thousands of
features every time may be possible, but it will critically slow down the
execution of the regular tasks of the system, which should not be
negatively impacted by monitoring and logging activities.

2.3. Classification of tabular data

A tabular dataset can be analyzed for different purposes, either to
learn optimization processes [30,31] or to learn models that can be used
for predicting properties of unseen data points. Within this paper,
tabular data is meant to be provided to ML algorithms, which will use it
to learn how to classify normal against anomalous system behavior, and
ultimately detect errors or intrusions through binary or multi-class
classification. The vast majority of ML algorithms that have been used
for decades to tackle classification tasks are supervised classifiers [20,
32–34]. Those classifiers require training data for which the label (also
called class) is known. Depending on the way they learn their model,
supervised classifiers are usually partitioned into tree-based classifiers
(mostly Decision Trees to build ensembles as Random Forests [35,36] or
XGBoost [37]), statistical techniques [38], distance-based learners [39],
or neural networks (DNNs, [32,40]).

T. Zoppi et al.

Future Generation Computer Systems 160 (2024) 951–965

953

DNNs are supervised classifiers that contain multiple hidden layers
(deep networks) to learn different features with multiple levels of
abstraction [41]. Those classifiers learn complex representations of
features during training, creating a neural network composed of multi-
ple layers that build upon such increasingly informative features. This
guarantees excellent performance when classifying unstructured data
such as images, streaming data, or for object detection. However, many
studies argue about their performance in classifying tabular data. For
instance, Intel advocates [17] that XGBoost shows better classification
performance than DNNs when dealing with tabular data. This is
confirmed by [9], where authors justify the supremacy of tree-based
classifiers with respect to deep learners when processing tabular data
stating that they adapt well to specific features of tabular data: irregular
patterns in the target function, uninformative features, and
non-rotationally-invariant data where linear combinations of features
misrepresent the information. Conversely, authors of [11] present a DNN
which is optimized for tabular data and outperforms tree-based classi-
fiers in some datasets. Similarly, authors of NODE [12] claim that their
method is the first successful example of DNN that substantially out-
performs gradient-boosting classifiers on tabular data. FastAI [13] can
efficiently classify tabular data thanks to a custom pre-processing of
features, which are treated differently whenever they describe cate-
gories or continuous numerical values.

There are even studies that aim at converting tabular data into im-
ages to transfer the potential of DNN in processing images to tabular
data [18,19]. One of the most promising approaches is DeepInsight,
which “converts non-image samples into a well-organized image form.
Thereby, the power of DNNs, including GPU utilization, can be realized
for non-image samples”. DeepInsight enables feature extraction through
“the application of convolutions for non-image samples to seize imper-
ative information and shown promising results” [19]. This approach is
radically different from any DNN for tabular data that was invented to
date, as it does not act on the classifier, but on the input data. As shown
in Fig. 1, DeepInsight can transform any tabular data into a pixel matrix
through a feature re-ordering according to correlation, subspace map-
ping (using either t-SNE or PCA [42]), basic sub-setting, shifting and
rotation image manipulations, and finalization of the pixel map.
Noticeably, this process does not depend at all on the (image) to be used
at a later stage, which can be any image classifier, either customized or
obtained by transfer-learning from available models. Also, this meth-
odology enables the classification of tabular data by using DNNs that are

meant to classify images, thus exploiting their full convolution potential.

2.4. Diversity and machine learning

A common way of enhancing classification relies on ensemble
learning: creating ensembles of individual classifiers for building a
unified meta-classifier [43] or pipeline [44] often improves classifica-
tion performance at a cost of increased processing time and model
complexity. On the other hand, adopting ensembles of similar classifiers
may not improve classification accuracy [39], because they will
misclassify the same data points in the same way. Intuitively, if an error
or intrusion is not detected by any of the classifiers in an ensemble, it is
not possible to detect it by just ensembling independent classifiers, no
matter how we combine their results. Using terminology specific to error
and intrusion detectors, we refer to this event as a common mode failure
[7], where all components tasked with detection agree on a prediction
that is wrong. a

That is why studies as [45–47] define and establish different ways to
quantitatively estimate how a given pair of classifiers is similar or
diverse based on their scores on one or more datasets. Moreover, the
study [48] summarizes three different principles that drive the diversity
of classifiers: Data, Model, and Inference Diversification. Data diversi-
fication provides different training data to many instances of the same
classifier, or single instances of many classifiers. This concept is widely
applied in Bagging (e.g., Random Forests) or Boosting (e.g., XGBoost)
classifiers, and makes them more accurate than their Decision Tree
baseline [49,50]. Model diversification can be implemented either by
creating different instances of the same classifiers that are trained using
different parameters (e.g., a different k value for kNN) or by using en-
sembles of different classifiers. Lastly, inference diversification is con-
cerned with obtaining multiple outputs in the inference of the classifier.
Practically speaking, the classifier should output a set of possible outputs
alongside a ranking or confidence scores. Whereas this last diversifica-
tion approach has been proven useful for image classification, it does not
apply to the analysis of tabular data and especially to error and intrusion
detectors, which require a single unambiguous prediction. On the other
hand, two different classifiers may behave similarly on specific input
data, with detrimental effects on the discriminative power of the
ensemble.

Once a diverse set of classifiers gets defined, there needs to be a way
to combine them to obtain a unified prediction for the ensemble of

Fig. 1. DeepInsight methodology for converting tabular data to images [19].

T. Zoppi et al.

Future Generation Computer Systems 160 (2024) 951–965

954

classifiers. A meta-learner is a complex classifier that uses knowledge
acquired during base-learning episodes, to improve meta-level classifi-
cation capabilities [43]. Its base-learning process feeds dataset features
into one or more classifiers that will output model-based meta-features
[51] to be provided alongside other features to the meta-classifier,
which computes a unified result. Different ways to combine ensembles
of classifiers such as cascading, stacking, (weighted) voting, delegating,
and arbitrating have been proposed through the years and recently
summarized in [21]. Majority voting is used to combine results obtained
by bagging and boosting ensembles. Stacking has been proven to be
effective for combining ensembles of heterogeneous classifiers [52,53],
whereas cascading, delegating, and arbitrating are not easy to orches-
trate and as a result have been used sparingly. In [54] authors conduct
experiments and conclude that stacking outperforms voting for model
combination, and has comparable classification performance with
bagging. Conversely, combining ensembles of classifiers to obtain a
unified class prediction is not trivial and does not always result in
improved capabilities as some misleading classifiers may let the
meta-learner lean towards a misclassification [52].

2.5. Machine learning for (Safety) critical systems

The development of (safety-)critical systems relies on stringent safety
methodologies, designs, verification, and validation activities to prevent
the occurrence of catastrophic failures. These activities are regulated by
various standards: ISO26262 and ISO/PAS 21,448 (SOTIF – Safety Of
The Intended Functionality) for automotive, CENELEC EN5012x for
railways, DO178x for avionics, and the general IEC61508 for generic
hardware-software systems. Specifically for software development, the
process ensures traceability across requirements, architectural and unit
design, code, and verification. System-wise, the likelihood of critical
failures should not exceed a specific threshold, usually a Safety Integrity
Level (SIL). This is a system-level property, but it is tightly coupled with
the behavior and the interconnections of individual components [7].
Thus, sub-systems or components – including classifiers - should be
proven to have a rate of critical errors or failures below a specific
threshold. Particularly, the SOTIF standard recognizes performance
limitations of software (including and especially for ML-based compo-
nents) and expects that the scenarios/inputs that belong to
unsafe-unknown (e.g., samples out of training distribution) and
unsafe-known (e.g., samples out of operational design domain) situa-
tions shall be reduced to the extent that the frequency of mis-
classifications due to these events is considered acceptable [55]. This is
very important as the robustness of classifiers to unexpected, or
non-Independent and Identically Distributed (non-IID) data, is usually
very challenging to achieve [10,56,57].

Importantly, critical systems are first designed with safety, security
or reliability in mind. This means that the system has to be conceptu-
alized and designed in a way that does not expose users to critical
hazards or threats. Once these properties are guaranteed, system ar-
chitects and engineers start optimizing desirable properties as avail-
ability and quality of service. This has an important cascading effect on
the way classifiers can be integrated into a critical system: we don’t want
classifiers that are always correct, but we favor those that have the least
amount of misclassifications, especially those that have direct conse-
quences for the encompassing system. Having a high percentage of
correct classifications is clearly desirable, but it is not a must-have
condition for bringing classifiers into critical systems.

3. Motivation and novelty of the paper

In real-world applications and especially critical systems, the most
common data type is tabular data, comprising samples (rows) with the
same set of features (columns) monitored from a system. Thus, recent
years have seen a growing interest of critical system architects and en-
gineers in exploring classifiers for solving complex problems including,

but not limited to, anomaly-based error and intrusion detection.
Deploying a classifier for a critical system is already very challenging
due to compliance with standards. Moreover, designing, training, and
testing classifiers that suit a given functional and non-functional re-
quirements is always a problem-specific task that requires many ex-
periments, sensitivity analyses, and fine-tuning which cannot be
avoided.

This paper aims to minimize the effort in devising the optimal
tabular data classifier for a specific system and task. Although the no free
lunch theorem (“there is no algorithm that can solve all optimization
problems better than others” [58]) universally holds, we aim at identi-
fying a subset of classifiers that regularly (but not always) outperform
others for anomaly-based error and intrusion detection, either for clas-
sification performance, faster training times or lesser resource (e.g.,
storage) consumption. Our comparison includes individual classifiers
and ensembles that use diverse base-learners, and adequate
meta-learning strategies.

This study has obvious practical implications: reducing the set of
candidate classifiers for building detectors is going to speed up experi-
mental analyses, allowing an early completion of the process, or freeing
up time that could be used to fill documentation for standards compli-
ance. To accomplish that, we gather many tabular data classifiers, and
exercise them alone and in conjunction, trying to reach clear and
conclusive statements that build upon recent conjectures from various
papers, most notably [9,17].

4. Comparison of tabular data classifiers

This section compares individual classifiers on different tabular
datasets that relate to binary and multi-class classification problems in
critical systems. To accomplish that, we gather and preprocess 23 public
datasets containing data monitored from ICT systems that report normal
data points alongside data collected during the occurrence of errors,
attacks, or failures (see Section 4.1). Then, we prepare tree-based,
Tabular DNN and Image classifiers that will be exercised on each of
the datasets above using a 50–10–40 train-validation-test split. Details
on the classifiers and hyper-parameters are in Section 4.2. Lastly, we will
collect metrics about the classification performance in Section 4.3.

Experiments have been executed on a Dell Precision 5820 Tower
with an Intel Xeon Gold 6250, GPU NVIDIA Quadro RTX6000 with 24GB
VRAM, 192GB RAM and Ubuntu 18.04, NVIDIA driver 45.119.03 with
CUDA 11.

4.1. Error, attack and failure datasets

There are a wide variety of data to be classified to improve ICT
systems, ranging from devices data in Internet-of-Things (IoT) or In-
dustrial Control Systems (ICS), network data for intrusion detection, or
hardware monitoring data. Amongst those many alternatives, we
consider 23 datasets as data baseline for this study: 11 datasets of
network intrusion detection, 5 datasets related to hardware monitoring
for failure prediction, and 6 datasets related to error and anomaly
detection in IoT and ICS systems. Table 1 summarizes the datasets
involved in this study, reporting domain, name, year, number of data
points, number of features, and categories of anomalies, errors or at-
tacks. All datasets are labelled, in CSV format, and were cropped to 200
000 items for the feasibility of our study, which would have taken
months of server execution otherwise. However, we exercise classifiers
in a big portion of two datasets for big data performance analyses in
Section 4.5.

4.1.1. Network intrusion detection (NIDS)
We selected labelled datasets on network intrusions looking in sur-

veys [59], Kaggle, UCI, Zenodo, IEEEDataport and other online portals.
Our selection process resulted in the following datasets: ADFANet [60],
AndMal17 [61], BAIoT Doorbell [62], CICIDS17 [63], CICIDS18 [63],

T. Zoppi et al.

Future Generation Computer Systems 160 (2024) 951–965

955

CIDDS [64], IoT Network [65], ISCX12 [66], NSLKDD [67], UGR16
[68], UNSW-NB15 [69]. All those datasets report normal data points and
data points collected while the system is under attack. Features are
mostly numeric features extracted by monitoring network flows and
packets (e.g., bytes received per second, number of packets).

4.1.2. Hardware failure prediction
Classifiers may also spot anomalies that could potentially anticipate

the failure of hardware components. To include that, we gathered
datasets related to performance monitoring of hard disks that label each
data point as corresponding to failure if the monitored hard drive was in
a fail state or going to fail thereafter. BackBlaze [70] makes many years
of hard drive data available to the public, reporting labeled data related
to many SMART indicators of hard drives, while another source of hard
drive data came from the BAIDU [71] competition whose input datasets
are still available for download.

4.1.3. Error/Anomaly detection
The last group of datasets we consider comes from IoT or ICS sys-

tems: a distributed control systems of a power plant controlling a turbine
[72,73], malfunctions of metros in Portugal [74], railroad trucks
equipped for sensors to monitor brake pressure [75], an edge device
monitored for errors [76], the mechanical failure of electrical machinery
in power plants [77], and a simulated multivariate time-series acquired
by sensors on a SpectraQuest’s Machinery Fault Simulator [78].

4.1.4. Preprocessing
We transform the tabular datasets into CSV files with a tabular

structure. ISCX12, IoT Network, and UNSWNB15 are available only as a
collection of monitored PCAP network packets, which we convert in CSV
format using tshark. Then, we remove features that are specific of the
setup that was followed to gather data, namely: Timestamp, ID,

experiment number, if any. Those features should be disregarded for
classification purposes as they carry information about the experiments
to build the dataset: classifiers using these features may learn how ex-
periments were made instead of how the system behaves.

The BackBlaze manufacturer provides data in CSV files aggregating
three months of log data in each file. Each of these CSVs contains
extremely unbalanced data with just a few failure logs (<0.01 %). To
create the datasets for a specific year, we merged 4 CSV files referring to
all the months of 2017, 2019, 2021, 2023 years and we down-sampled
the normal observations to reach a balance of 98 % normal – 2 %
failed data. Then, we zero-filled all blank values. This allows for miti-
gating the data imbalance problem and provide solid data for classifi-
cation. The error/anomaly detection datasets mostly come structured as
single CSV files that are ready to be used for classification. The only
exception being the MetroPT dataset, which contains separate files for
different monitoring periods. To obtain a single dataset containing
normal data plus OilLeak and AirLeak failures we concatenate 3
different files containing i) only normal data, ii) normal data plus Oil-
Leak data, iii) normal data plus AirLeak.

4.2. Classifiers and hyper-parameters

Our experimental campaign compares classifiers belonging to three
groups: traditional (non-DNN) supervised classifiers, tabular DNN clas-
sifiers, and image DNN classifiers that we apply after transforming
tabular data points into images.

4.2.1. Traditional supervised classifiers
According to the results in [20], we selected non-DNN supervised

classifiers that are known to have good classification performance. We
ended up selecting eight classifiers, briefly described in the following.
For each classifier, we include an acronym, that we will use in the rest of
the paper.

• A Decision Tree (DT, [79]) learns simple decision rules inferred from
the data features, by building a tree that can be seen as a piecewise
constant approximation.

• Random Forests (RF, [35]) is a combination of Decision Trees
through Bagging, which independently samples random vectors with
the same distribution for all trees in the forest, and aggregates results
by voting or averaging.

• XGBoost (XGB, [80]) is an optimized gradient boosting method, i.e.,
gives a prediction model in the form of an ensemble of weak learners
called decision stumps.

• ExtraTrees (ET, [36]) is an ensemble of randomized decision trees (a.
k.a. extra-trees) that are fit on various sub-samples of the dataset and
– similarly to Random Forests - use averaging to improve the pre-
dictive accuracy and control over-fitting.

• LogitBoost (LB, [81]) is a boosting algorithm based on additive lo-
gistic regression, where the objective is to minimize the logistic loss
trough subsequent training of weak logistic regression models.

• Naïve Bayes (GNB, [82]) exploits the Bayes’ theorem under the naïve
assumption that the features are conditionally independent, given
the target class, to build a classifier.

• Logistic Regression (LR, [82]) is a statistical supervised classifier that
models the logit of an event as a linear combination of one or more
independent variables.

• Linear Discriminant Analysis (LDA, [83]) assumes that all classes are
linearly separable. Then, multiple linear discrimination functions (i.
e., Fisher’s Discriminants) representing hyperplanes in the feature
space are created to distinguish the classes.

Most of these classifiers can be run using scikit-learn, xgboost, logi-
tboost libraries with default parameters and minimal customization,
avoiding potential misconfigurations by the user. Thus, we will not be
performing sensitivity analyses to choose the optimal value of

Table 1
Name, release year, number of attack types, number of portions, and the amount
of ordinal features f of used datasets.

Domain Dataset
Name

Year Categories of
Anomalies

Features

Number of
Data
Points

Network
Intrusion
Detection

ADFANet 2015 5 3 132 002
AndMal17 2017 4 75 100 522
BAIoT
Doorbell

2018 5 115 75 165

CICIDS17 2017 4 75 200 000
CICIDS18 2018 5 75 200 000
CIDDS 2015 4 7 200 000
IoT Network 2019 9 8 210 425
ISCX12 2013 4 6 200 000
NSLKDD 2009 4 37 148 517
UGR16 2016 5 7 207 256
UNSW-NB15 2015 8 38 165 461

HW Monitor BackBlaze
2017

2017 1 50 32 678

BackBlaze
2019

2019 1 44 47 525

BackBlaze
2021

2021 1 37 44 950

BackBlaze
2023

2023 1 35 70 512

BAIDU 2017 1 12 186 049
Error /

Anom.
Detection

Arancino
Device

2023 9 119 154 000

HAI Pressure 2019 1 54 200 000
HAI ICS 2023 1 224 54 000
MAFAULDA 2018 1 8 200 000
Mechanical
Failure

2018 1 18 7 906

Metro PT 2022 2 20 173 824
Scania
Trucks

2016 1 170 76 000

T. Zoppi et al.

FutureGenerationComputerSystems160(2024)951–965

956

Table 2
MCC Scores for each classifier in each of the datasets. Average MCC and training time (in seconds) at the bottom.

Traditional Supervised (non-DNN) Tabular DNN Image DNN

Domain Dataset Name GNB LDA LR DT RF XGB ET LB FAI TN NODE Tnet GATE CE DI_ PCA DI_TSNE DI_MN DI_MNIST

Network Intrusion Detection ADFANet .477 .124 .695 .903 .904 .905 .903 .904 .070 .050 .437 .250 .310 .484 .875 .864 .458 .105
AndMal17 .014 .049 .022 .557 .511 .459 .543 .203 .176 .000 .000 .000 .199 .153 .143 .142 .000 .000
BAIoT Doorbell .855 .998 .000 1.0 1.0 1.0 1.0 1.0 .998 .926 .880 .636 .935 .937 .999 .999 .998 .483
CICIDS17 .618 .849 .667 .995 .996 .998 .990 .983 .947 .922 .940 .764 .910 .939 .958 .956 .950 .381
CICIDS18 .760 .852 .736 .889 .899 .905 .895 .906 .896 .881 .891 .459 .892 .896 .896 .896 .898 .510
CIDDS .187 .011 .337 .976 .976 .976 .975 .968 .468 .482 .664 .465 .684 .443 .799 .812 .482 .017
IoT Network .128 .501 .286 .959 .959 .960 .959 .964 .871 .803 .682 .534 .766 .851 .830 .871 .866 .098
ISCX12 .120 .004 .025 .861 .868 .867 .867 .753 .517 .026 .348 .003 .558 .580 .560 .566 .397 .000
NSLKDD .280 .872 .633 .992 .996 .996 .995 .986 .991 .979 .941 .909 .971 .970 .984 .984 .979 .664
UGR16 .043 .000 .004 .879 .884 .883 .883 .790 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
UNSW-NB15 .253 .427 .076 .706 .729 .717 .733 .615 .648 .565 .545 .413 .470 .598 .587 .621 .588 .000

HW Monitor BackBlaze 2017 .499 .439 .000 .481 .642 .641 .642 .629 .624 .470 .618 .527 .596 .459 .514 .576 .573 .000
BackBlaze 2019 .470 .436 .000 .506 .662 .669 .636 .659 .587 .479 .578 .272 .580 .445 .554 .631 .558 .000
BackBlaze 2021 .442 .379 .000 .718 .773 .765 .793 .660 .676 .449 .525 .227 .382 .555 .660 .629 .604 .000
BackBlaze 2023 .299 .375 .000 .692 .765 .784 .770 .704 .607 .575 .546 .354 .010 .547 .654 .631 .604 .000
BAIDU .791 .792 .834 .995 .995 .996 .996 .983 .990 .968 .963 .948 .973 .982 .990 .988 .981 .566

Error / Anom. Detection Arancino Device .116 .579 .344 .686 .774 .793 .808 .664 .720 .641 .626 .469 .683 .640 .660 .593 .579 .123
HAI Pressure .749 .785 .788 .964 .984 .983 .992 .888 .985 .940 .872 .818 .971 .973 .964 .971 .955 .000
HAI ICS .614 .617 .630 .946 .958 .952 .979 .796 .961 .848 .838 .587 .947 .938 .945 .943 .842 .000
MAFAULDA .657 .000 .000 .793 .867 .884 .874 .785 .884 .859 .713 .000 .841 .723 .866 .864 .798 .158
Mechanical Failure .765 .798 .780 .606 .849 .849 .470 .881 .816 .000 .780 .000 .000 .472 .745 .798 .248 .000
Metro PT .755 .795 .814 .981 .992 .994 .993 .897 .906 .823 .785 .725 .823 .870 .846 .896 .845 .218
Scania Trucks .538 .723 .643 .706 .788 .807 .780 .762 .718 .383 .539 .026 .706 .438 .731 .670 .614 .000

Average MCC .454 .496 .362 .817 .861 .860 .847 .799 .698 .568 .640 .408 .618 .648 .729 .735 .644 .144
Average Train Time (s) < 0.1 < 1 116 1 7 10 8 77 51 64 32 54 1882 31 108 133 967 276

T. Zoppi et al.

Future Generation Computer Systems 160 (2024) 951–965

957

parameters of these classifiers, and just use them with their default pa-
rameters. An exception is represented by GNB, which requires scaling
the value of dataset features for optimizing the decision boundaries.
Also, LR delivered many warnings about a failed convergence using its
default setup. Thus, we ran grid searches with HyperOpt [84], which uses
Bayesian optimization and has pre-built interfaces for many classifiers in
scikit-learn. Even in this case, we could not avoid this problem of failed
convergence in all cases; however, the combination of parameters that
minimized them was using solver = ’sag’, max_iter = 1000 and tol =
0.001.

4.2.2. DNN for tabular data
After surveying recent works and frameworks, we selected a set of 6

DNNs for tabular data using six different frameworks.

• FastAI (FAI [13]), used through the implementation available for
tabular data autogluon-tabular, available at https://auto.gluon.
ai/stable/api/autogluon.tabular.models.html#autogluon.tabular.
models.NNFastAiTabularModel). FastAI is a deep learning library
that automates the creation of models; it includes a set of optimi-
zations that are automatically selected to apply DNN on tabular data.

• TabNet [11] (Tnet, pytorch-tabnet implementation at https://drea
mquark-ai.github.io/tabnet/) is a DNN for tabular data which,
amongst the innovative aspects, uses sequential attention to choose
which features to reason from at each decision step.

• NODE [12] (pytorch-tabular implementation https://pytorch-tabular.
readthedocs.io/en/latest/models/) is a DNN which exploit ensem-
bles of oblivious decision trees, in a CatBoost-like fashion.

• GATE [85] (pytorch-tabular implementation) exploits a gating
mechanism as a feature representation learning unit with an in-built
feature selection mechanism. The authors combine it with an
ensemble of differentiable, non-linear decision trees, re-weighted
with simple self-attention to predict the desired output.

• Category Embedding (CE, pytorch-tabular implementation) is a feed-
forward network where the categorical features are embedded
through a learnable embedding layer.

• TabNet from Pytorch-tabular: the library Pytorch-tabular includes
another implementation of TabNet, which we include as well (TN).

The DNNs above use the following hyperparameters:

• FastAI performs an internal hyper-parameter optimization process,
which is connected to the pre-processing and feature learning stages
in the early steps of the training process.

• For Tnet, we ran grid searches with 54 combinations of the following
parameters and values:
• Learning rate [e − 5, e − 3, e − 1],
• Batch size [128, 256, 512]; bigger batch sizes were likely to create

GPU memory issues,
• Max Epochs [20,50, 100],
• patience (for early stopping) [2,5].

The pytorch-tabular framework does not allow setting patience, thus
we discarded that option for TN, performing grid searches only on other
parameters (total of 27 combinations).

• For NODE and GATE we used the values of parameters suggested in
the respective studies [12,85], as authors explain that they provide a
good tradeoff between classification speed and classification
performance.

• CE was set to use the following parameters:
• Learning rate [e − 5, e − 3, e − 1],
• Layers [1024–512–256, 512–256–128]

For each classifier and each dataset, we selected the configuration
that ended up having the highest MCC (see Section 4.3) on the validation

set.

4.2.3. DNN for image classification
We first explain the setup of DeepInsight. As already motivated in

Section 2.2, tabular datasets related to errors, intrusions, and failures of
systems do not usually have thousands of features. Thus, it does not
make sense to transform tabular data into big images. Ideally, we want
our informative content to be readily available to classifiers instead of
being scattered far away in big images. Thus, we set DeepInsight to
convert tabular data into images of 32 × 32 × 3 size, using either t-SNE
or PCA in the process. Then, we design a custom DNN composed of a
conv2d 32 × 32 × 3 layer, output, a batch normalization, maxpoo-
ling2d, flattening step, a dense layer of size 32, a dense layer of size 16,
and then a final layer that has the same number of neurons as the
number of classes of the problem. To limit overfitting, we employ a 20 %
dropout between dense layers. These classifiers are called DI_TSNE and
DI_PCA, depending on whether the tabular-to-image process uses t-SNE
(DI_TSNE) or PCA (DI_PCA).

Then, we are interested in having classifiers that are not trained from
scratch, but that transfer learn from existing models trained on common
benchmark datasets. Out of the many available models, we opt for small
DNNs as MobileNetV3 since, again, the information density in images
obtained by DeepInsight may be scarce and thus using a complex DNN
may i) be classification overkill, and ii) result in a training process that
overfits on the training set, having very good train loss but poor clas-
sification performance on a different test set. We use imagenet weights
from Keras with the smallest image size (128) available, which is also
the target image size we set DeepInsight to work on in this specific case.

Last, we create a classifier that transfer learns from a DNN from
MNIST, which is an old and well-known benchmark dataset of 28 × 28

Fig. 2. MCC scores of Supervised (blue bar), tabular DNN (orange-sliced bar)
and image DNN classifiers (empty bar with gray border) on each dataset in
the study.

T. Zoppi et al.

https://auto.gluon.ai/stable/api/autogluon.tabular.models.html#autogluon.tabular.models.NNFastAiTabularModel
https://auto.gluon.ai/stable/api/autogluon.tabular.models.html#autogluon.tabular.models.NNFastAiTabularModel
https://auto.gluon.ai/stable/api/autogluon.tabular.models.html#autogluon.tabular.models.NNFastAiTabularModel
https://dreamquark-ai.github.io/tabnet/
https://dreamquark-ai.github.io/tabnet/
https://pytorch-tabular.readthedocs.io/en/latest/models/
https://pytorch-tabular.readthedocs.io/en/latest/models/

Future Generation Computer Systems 160 (2024) 951–965

958

images. The resulting classifier DI_MNIST will load weights from a
model trained on MNIST [86], and top it with a single dense layer with
as many neurons as the number of classes in the problem (which are
always less than 10 in our datasets). This last classifier is the only one
that processes 2D-pixel maps and uses a simpler model than DI_MN: it
will not likely overfit during re-training, but it may not be complex
enough to catch all the nuances of a tabular classification task.

4.3. Evaluation metrics

Classification performance is usually measured through the confu-
sion matrix and compound metrics such as accuracy, i.e., the fraction of
correct predictions over all predictions. However, accuracy (ACC) may
deliver misleading results when datasets are unbalanced [87,88], which
happens frequently in error and intrusion detection: therefore, we will
mostly rely upon the Matthews Coefficient (MCC), which does not suffer
of the above problem and has a flexible formulation that scales well to
both binary classification and multi-class classification problems.

4.4. Results and discussion

Exercising the experimental methodology led to a massive amount of
results about the classification performance of different classifiers. We
examine these results using Table 2 and Fig. 2.

Table 2 shows MCC scores achieved by each traditional (non-DNN)
supervised, tabular DNN, and image DNN classifier on each of the 23
datasets considered in this study. The two rows on the bottom of the
table report the average of these MCCs over datasets, and the average
training time (in seconds) required to train these models. Traditional
tree-base classifiers DT, RF, ET, XGB and LB show the best classification
performance with an average MCC over 0.8 and typically require only a
few seconds to train (e.g., an average of 10 s is needed to train an XGB
classifier). Classifiers as LR. GNB and LDA show very fast training times
(often below one second), but they output more misclassifications than
their competitors, thus they have a sub-optimal MCC. MCCs of tabular
DNNs appear in the middle of Table 2, with FastAI having the highest
MCC of the group. GATE is the classifier that takes the most time to train
(1882 s), with an MCC that is inferior to those of other tabular DNNs
and, consequently, of tree-based supervised classifiers.

Image classifiers applied after tabular-to-image conversion take
more time to train compared to tabular DNN classifiers. DI_PCA and
DI_TSNE, the image classifiers trained from scratch, have higher MCC
than any tabular DNN. Image classifiers obtained using transfer learning
from the MobileNet model (DI_MN) perform similarly to tabular DNNs
ad CE or NODE, but take far more time for training (average of 967 s for
DI_MN against 31 and 32 for CE and NODE, respectively). The DI_MNIST
classifier shows poor classification performance as the transfer learning
process often results in learning a model that always predicts the same
class, thus obtaining many MCC = 0 (see last column of Table 2). This is
probably due to the trivial complexity of a network trained on MNIST
and having only an additional dense layer on top.

Generally speaking, whenever a classifier shows an MCC = 0 in
Table 2 it means that the training process did not converge to a model
that is capable of classification. This happens quite frequently with
DI_MNIST (as discussed above), but also occurs for LR in all BackBlaze
datasets due to the extremely low amount of “anomalous” data point
instances (approximately 2 %), which is a well-known weakness of this
classifier [89]. Poor classification performance can be observed for the
UGR16 dataset, where all DNNs have an MCC of 0. Our explanation is as
follows: while training tabular and image DNNs, the validation loss is
gradually converging to the final value, but has an erratic behavior
instead. Changing the loss function allows for not having an MCC = 0 in
this dataset, but worsens the classification performance in all other
datasets. Thus, we decided to keep results as in Table 2.

Another viewpoint on these experimental results is provided by
Fig. 2, which is a bar chart that reports, for each dataset, MCC scores of

RF, FastAI, DI_TSNE, which have the highest average MCCs of 0.861,
0.698, 0.735 in their respective categories (traditional supervised,
tabular DNN, image DNN). While average scores in Fig. 2 provide a first
view of classification performance, it is beneficial to look at the scores on
each dataset to get insights and explain specific trends. Particularly we
can observe that the blue solid line of RF is always the longest, or it
always shows the best MCC (often on par) on each dataset. The only
counter-example is the MAFAULDA dataset, where FastAI slightly out-
performs RF. However, even if not shown in the bar chart for brevity,
XGB outperforms both RF and FastAI in MAFAULDA. The direct conse-
quence of this observation is highlighted below.

Takeover 1. DNNs never outperform tree-based supervised classifiers
in intrusion/error/anomaly detection datasets used in this study.

Moreover, it turns out evident that there are datasets in which the
superiority of RF against FastAI and DI_TSNE is astounding: it is the case
of AndMal17, ISCX12, UGR16 and, to a lesser extent, ADFANet and
CIDDS (especially comparing against FastAI). All these datasets report
on packet or network flow data for intrusion detection, and have a
normal class plus many labels corresponding to attacks: 4 for CIDDS,
AndMal17 and ISCX12, 5 for ADFANet and UGR16. Also, they have a
varying number of features that ranges from 3 (ADFANet) to 75 (And-
Mal17). However, other datasets such as CICIDS18 have labels corre-
sponding to 5 attacks and 75 features – thus comparable with those
above – but the classification performance of RF, FastAI, and DI_TSNE is
very similar. Thus, the difference in classification performance between
these three classifiers is not solely due to the number of features nor to
the number of classes of the problem. Also, the difference in the UGR16
dataset is due to the training phase of DNNs not converging at all,
resulting in a model that is always predicting the normal class for any
data point, thus MCC = 0, or random guessing for a 6-class problem.
When this happens, it is usually a matter of DNN structure or values of
the hyperparameters, including loss function, epochs, batch size, stop
conditions, or even pre-processing of data (e.g., normalizing). However,
the structure of tabular DNNs is either automatically devised by
frameworks or coded to be optimal for classifying tabular data, and the
grid searches we ran using different values for hyperparameters did not
lead to better performance. Thus, the failed convergence of DNNs could
be due to many different problems that are not easy to address and lead
to our Takeover 2.

Takeover 2. DNNs have many hyperparameters that should be
assigned after fine-tuning through tailored and algorithm-specific
sensitivity analyses. These may be very time-consuming and require
domain-specific knowledge that may be not available or costly.

This is another reason why tree-based classifiers, which require
minimal parameter tuning (e.g., number of trees in a RF, max depth of
trees) and build models that are easier to understand [90], should be the
preferred choice when classifying tabular data.

4.5. Is it a matter of data size?

These results may raise legitimate questions about the impact of the
size of the training set used in experiments. The expectation is that DNNs
would perform better when more features or more training data are
available since they are complex models with potentially millions of
weights. Providing more data is not always the solution and may result
in overfitting; on the other side results in the previous section may be
subject to underfitting.

Thus, we re-ran the classifiers that had better classification perfor-
mance from the previous section using subsets of the ISCX12 and
MAFAULDA datasets containing a growing amount of data points,
having a train set size of {1 000, 2 000, 5 000, 10 000, 20 000, 50 000,
100 000, 200 000, 500 000, 1 000 000}. We chose these two datasets as
they belong to two different domains and are big enough in their raw
formulation to extract up to almost two million data points (train,

T. Zoppi et al.

Future Generation Computer Systems 160 (2024) 951–965

959

validation, and test). Also, while for ISCX12 there is a clear difference
between the performance of tree-based classifier and DNNs, for
MAFAULDA the classification performance is almost on par.

The results of this study are in Fig. 3, which reports 6 plots. From left
to right of the figure, we observe the evolution of MCC scores, train time
(ms) and model size (MB) while using training sets of growing size for
ISCX12 (up in the figure, Fig. 3a to Fig. 3c) and MAFAULDA (Fig. 3d to
Fig. 3f). Compared to results on the 100 000 x-axis mark, which were
presented in the previous section, we can observe quite common trends
for all classifiers. All of them generally had a higher MCC when trained
using big train datasets (aside from small fluctuations), meaning that all
classifiers still had room to learn without overfitting on the training set
(see Fig. 3a, Fig. 3d). Trends observed while using a training set of 100
000 items hold also using bigger train sets: there is no competitor that
was behind others using smaller train sets and jumps ahead when using
big datasets.

Takeover 3. DNNs do not outperform tree-based ensembles even
when processing “big data” tabular training datasets. While the size of
the training set matters for the overall classification performance, using
training sets containing more or less items does not change the relative

ordering of classifiers for a specific problem (using MCC as reference)

The train time in Fig. 3b and Fig. 3e, and the model size in Fig. 3c and
Fig. 3f grow homogeneously, without showing erratic trends nor
anomalous spikes. Whereas the size of the model learned at the end of
the training phase is very classifier-dependent, it is easy to observe how
the training time required by DNNs (both tabular and image) is at least
an order of magnitude more compared to tree-based classifiers, even
using a server with adequate computing resources.

Takeover 4. DNNs take at least an order of magnitude (10x) more time
for training than tree-based ensembles. Tabular DNNs are on average
faster than image DNNs trained on images converted from tabular data
points using DeepInsight.

5. Classifier ensembles and meta-learning

Whereas it is pretty clear that tree-based classifiers outperform DNN
classifiers for tabular data, we want to take our analysis one step further.
Instead of considering DNNs and tree-based classifiers as challengers, we
conjecture that they may team up particularly well and build anomaly-
based error and intrusion detection with potentially lower

Fig. 3. Evolution of MCC scores (left), train time (center), model size (right) for varying train sizes. On top of the figure (4a, 4b, 4c) are results for ISCX12, bottom
(4d, 4e, 4f) are results for MAFAULDA.

Fig. 4. MAND (left) and MAND* (right) classifiers for combining different classifiers and enhance error and intrusion detection.

T. Zoppi et al.

Future Generation Computer Systems 160 (2024) 951–965

960

misclassifications than considering them individually. To test our conjec-
ture, we craft ensembles that include a tree-based classifier and a tabular
DNN as base-learners. The classifiers above guarantee model diversifica-
tion [48] of our ensemble: trees and DNNs are conceptually diverse since
they i) build different models, ii) only DNNs learn complex features during
training, and iii) decision trees are often used to build ensemble classifiers,
whereas DNNs contain a single strong model for classification. On the
negative side, providing the same data to trees and tabular DNNs does not
guarantee strong data diversification, albeit tree-based ensembles perform
bagging or boosting processes that implement a weak type of data diver-
sification. As such, we foresee the usage of a third base-learner: an image
DNN that performs image classification which we apply to tabular data
after transforming data points to images.

Then, we combine the three base-learners using a meta-learning
strategy. Obviously, this creates two levels of classification which are
sequential by design: thus, the prediction time of the meta-classifier
should be fast enough to avoid additional timing overheads to the
error and intrusion detection tasks, which often operate in systems that
deal with (hard) real-time settings [29,91]. We extract the following
model-based features by processing the class probabilities provided by
each classifier in the ensemble:

• probas: the array of probabilities
• maxp: the maximum probability assigned to any class;
• ent: the entropy of the array of probabilities;
• class: the class corresponding to the argmax of probabilities.

In a binary classification problem, the maxp and ent quantities
convey the same information. However, this formulation applies to both
binary and multi-class problems, for which the two quantities carry
different information.

This conceptualization opens two possible design patterns for an
ensemble classifier (see Fig. 4). The meta-classifier may use i) model-
based features only, or ii) dataset features plus model-based features.
The former approach builds a MAND (enseMble of trees ANd Dnns)
classifier, while the latter ensemble classifiers are referred to as MAND*.
Both classifiers are based on the Stacking architecture that was first
presented by Wolpert in [22].

6. Ensemble assessment

The methodology for exercising MAND and MAND* classifiers uses
the same datasets and the same classifiers in Section 4. This allows for
comparisons and minimizes the risk for biasing experiments in one way
or another.

6.1. Choice of the base-learners

MAND and MAND* classifiers require a set of three base-learners: a
tree-based ensemble, a tabular DNN and an image DNN. Results from
Section 4.5 can already suggest good candidates and classifiers that may
be avoided as they have very poor classification performance. This is the
case of LDA, LR, DI_MNIST, TN, whose average MCC in Fig. 2 is lower
than 0.6. Moreover, we do not consider LB as a good candidate for su-
pervised classifiers as it is similar to XGB but has lower classification
performance. DT and GNB are left out as well since the first base-learners
for MAND and MAND*ensembles has to be a tree-based ensemble. We
also avoid the usage of NODE, which already constitutes a mixture of
neural networks and decision trees and as such it may behave very
similar to tree-based ensembles.

While this selection process guarantees the choice of different clas-
sifiers, there are no guarantees that they are diverse i.e., their output is
really diverse for a relevant set of predictions. Thus, we compute the
disagreement metric from [47], which authors define as “the ratio be-
tween the number of observations on which one classifier is correct and
the other is incorrect to the total number of observations”. This can be
easily obtained by using the results from Section 4, simply comparing
predictions of couples of classifiers with respect to the label. Result in
Table 3 show that the disagreement between classifiers from the same
group is generally low: lower than 0.02 for tree ensembles (top left of the
table), lower than 0.07 for tabular DNNs (center of the table) and lower
than 0.04 for image DNNs (bottom right of the table). However, we can
notice how FastAI and Tnet have very high disagreement compared to
tree ensembles and, to a lesser extent, with image DNNs. The expecta-
tion is that MAND and MAND* ensembles using these two tabular DNNs
have the best potential to outperform individual classifiers as they
guarantee more behavioral diversity (i.e., disagreement) compared to,
for example, GATE and CE.

6.2. Choice of meta-classifiers

As motivated in Section 5, the meta-classifier for MAND and MAND*
ensembles should add a minimal overhead to the prediction process;
thus, it has to be implemented as a rather simple function. Our options
are the followings:

• A stacking [22,52] meta-level classifier: DT and statistical classifiers
as GNB and LDA, which we excluded from base-learners, are fast and
have good classification performance. We call these meta-classifiers
c:DT, c:GNB, c:LDA.

Table 3
Disagreement between couples of classifiers to be used as base-learners for MAND and MAND* ensembles.

T. Zoppi et al.

Future Generation Computer Systems 160 (2024) 951–965

961

• Alternatively, the meta-classifier may be i) a simple majority voter
(vot), ii) an aggregator of probabilities e.g., average (avg), or iii) a
selection of the most confident of the three learners (conf, i.e., the
output of the ensemble is the output of the most confident of the
three base-level classifiers [92]).

6.3. Experiment execution

Experiments used the same software and hardware used in Section 4.
Overall, we gathered a total of 36 combinations of base learners (3

supervised classifiers, 4 tabular DNN, 3 image DNN, 3 * 4 * 3 = 36) for
creating MAND classifiers using each of the 6 meta-level strategies, for a
total of 36×6 = 216 MAND classifiers. Also, we created 36×3 = 108
MAND* classifiers, letting the meta-learners c:DT, c:GNB, c:LDA learn
from both dataset features and features proba, maxp, ent, label from each
of the 3 base-classifiers. Noticeably, using vot, avg, conf meta-learners
makes MAND and MAND* classifiers behave the same, thus we did
not repeat these experiments. We compute metrics from previous ex-
periments for each MAND and MAND* classifier and repeat the
computation of the disagreement metric for groups of three classifiers

Table 4
MCC scores of different MAND and MAND* classifiers varying base learners and meta-classifiers.

Table 5
Feature importance assigned by meta classifiers in building MAND and MAND* ensembles.

T. Zoppi et al.

Future Generation Computer Systems 160 (2024) 951–965

962

instead of couples. Also, we compute the importance each feature has in
building c:DT, c:GNB, c:LDA; this applies to MAND and MAND* classi-
fiers, which will use features differently during their learning process i.
e., MAND* classifiers also use dataset features. This will allow us to
explain why MAND and MAND* have specific behavior and contribute
to the overall discussion.

6.4. Classification performance of mand and MAND*

Most of the results of the experiments performed in this section are
summarized in Table 4. From left to right and for each combination of
base learners, the table shows the disagreement between the three base
classifiers (the higher, the more diverse two classifiers are) and the MCC
scores averaged on all datasets using a specific meta-classifier. We
painted the background of the table with a gradient of green color: the
darker, the higher the average MCC. This makes evident that the highest
MCC (or better classification performance) is due to using either c:DT or
c:LDA as meta-classifiers: other options are not as good as these two.
There are 4 distinct combinations of base classifiers and meta-classifiers
that allow MAND and MAND* ensembles to reach the best MCC of 0.864
in the table, and all use RF and DI_PCA.

Base-classifiers in Table 4 are sorted from top to bottom according to
a decreasing disagreement score: the expectation is that base-classifiers
close to the top of the table will build MAND and MAND* classifiers that
have better classification performance as they use diverse classifiers.
However, this expectation is not confirmed by results, leading to Take-
over 5.

Takeover 5. The disagreement metric is not a good indicator of good
classification performance of ensembles. The best MAND and MAND*
classifiers are simply those that use base-learners that have excellent
classification performance (RF in this case).

Section 4.5 already discussed classification performance of individ-
ual classifiers, seeing that RF, FastAI, DI_TSNE, had the highest average
MCCs of 0.865, 0.703, 0.729 in their respective categories (supervised,
tabular DNN, image DNN). Table 4 tells us that no matter how hard we
try to combine base learners and meta-classifiers, even the best MAND
and MAND* classifier does not exceed the MCC of 0.865 of RF. There’s
more: no MAND and MAND* classifier using XGBoost exceeds 0.855,
while XGBoost alone has an average MCC of 0.859; same for ET, who has
an MCC of 0.855 alone, with MAND and MAND* ensembles using ET
that reach at most 0.845.

Takeover 6. There is no benefit in using tabular classifiers other than
tree-based ensembles. This is true for classification performance of
classifiers alone, and also when crafting complex classifiers using
ensembles.

Summarizing, there is no overall benefit in combining different (and
diverse) classifiers when classifying tabular data. We are aware that this
goes against intuitions of solid papers in the past, but we believe that
these results will finally make a conclusive statement on this research
direction, letting researchers focus on other topics and using our results
as a baseline to speedup future experimental studies.

6.5. Importance of features for the meta-classifier

While the results presented in the previous section clearly show that
ensembling is pointless in this context, we are still interested in under-
standing why. A useful insight is provided by the importance given to
each feature by the meta-classifiers that aggregate scores of base
learners through another independent classifier: c:DT, c:LDA, c:GNB.
Table 5 quantifies the importance each feature has in learning the model
of the meta-classifier for MAND and MAND* ensembles, averaged over
all triples of base learners and all datasets. All ensembles use proba, label,
maxp, ent features from each of the three classifiers: clf1) tree-based
ensemble, clf2) tabular DNN, clf3) image DNN; additionally, MAND*

ensembles use also dataset features. The right of the table we report
totals, where we aggregate the importance given to all features related
to clf1, clf2, clf3 into a unique cumulative value.

This is very helpful for identifying how the final decision of MAND
and MAND* ensembles is produced. In case of MAND, the decision is
mostly due to the output of the tree-based ensemble (see the column
total-clf1 in the first three rows of Table 5). In this situation, the MAND
will behave almost exactly as the tree-based ensembles, with a very poor
likelihood of making other decisions. For MAND*, the decision is pri-
marily taken using dataset features but, when using c: lda and c:gnb as
meta-classifiers, it accounts also for results of clf1, clf2 and, to a lesser
extent, clf3, the image DNN. On paper, this gives fair importance to all
base learners and dataset features, setting the ensemble for success.
However, as already discussed in the previous section and in Table 4,
MAND* ensembles never achieve peak classification performance. For
these ensembles, we can conclude that diversity in the base-learning
process is more confusing than helpful as it leads to more mis-
classifications instead of lowering them.

7. Threats to validity and reproducibility

Internal validity is concerned with factors that may have influenced
the results, but they have not been thoroughly considered in the study. A
first threat is due to the usage of public datasets, since a poor choice of
datasets may invalidate the results [93]. To mitigate this risk, we used
many datasets (23) for intrusion and error detection, that have been
created from diverse systems by diverse authors. These are very
well-known datasets, and they are largely studied and used by the sci-
entific community. The usage of many dataset is a key to mitigate in-
dividual bias and guarantee validity of our results.

Another concern is that classifiers have hyperparameters whose
tuning critically affects results. To find the appropriate tuning, we
exercised sensitivity analyses for the main parameters of DNN classifiers
considered in this study plus GNB and LR classifiers, using the HyperOpt
[84] library for the latter algorithm. Third, each classifier may
encounter a wide variety of problems when learning a model for each
dataset during training (e.g., under/overfitting, poor quality of features,
feature selection to leave out noisy features). We believe that these
events are mostly situational and do not have a noticeable impact when
looking at the detection performance of the same classifier or ensemble
of classifiers over a span of many datasets. Another concern is the po-
tential lack of computational resources. The proper configuration and
execution of classifiers is unavoidably linked to the availability of suf-
ficient computational resources. The resource usage of the classifiers has
been properly monitored, so that we can guarantee that exhaustion of
resources, especially RAM and GPU memory, was never experienced
during our experiments.

An important threat to the internal validity relies upon the fairness
of the evaluation due to possible biases that authors of the paper may
have due to conflict of interest that may shift the preference from a
classifier to another, or cherry-picking specific results to support a
personal belief. Authors of the paper are not authors nor know any of the
creators of the classifiers presented herein, and use them as independent
researchers. Thus, there is no conflict of interest and there will be no
reason for us to favor a classifier or another. Results and discussions
presented here are solely based on our observations over a span of many
years in different scenarios and research projects, and climax here to
help the scientific community grow. Also, our observations are in no way
intended to discredit others’ work.

External validity. We cannot claim the validity of this study beyond
anomaly, error and intrusion detection for tabular datasets. However,
the methodology applied in this study suits any binary and multi-class
classification problem without really relying on any assumption that is
specific to error and intrusion detectors. Therefore, we expect our results
to generalize well to other datasets and case studies for which the
classification of tabular data is a relevant task. An exception may be

T. Zoppi et al.

Future Generation Computer Systems 160 (2024) 951–965

963

represented by microarray datasets [94], where the number of features
exceeds the number of data points.

The usage of public data and public tools to run classifiers was a
prerequisite of our analysis to allow reproducibility and to rely on
proven-in-use data. We publicly shared scripts, methodologies, and all
metric scores, allowing any researcher or practitioner to repeat the ex-
periments. We do not use any custom or private dataset: all datasets are
referenced in the papers, and all code is available at https://github.com/
tommyippoz/MANDALA [95]. The folder “tests” of the GitHub above
contains all scripts and data needed to reproduce results presented and
discussed in the paper.

8. Concluding remarks

Whereas the popularity of image classification and robustness to
adversarial attacks has never been higher, the classification of (big)
tabular data gathered after monitoring activities of ICT systems is still
one of the most important challenges that still lacks key contributions.
One of the biggest problems is the setup of anomaly-based error and
intrusion detection in critical systems, which is a tedious, time-
consuming, and difficult process that may not even reach satisfactory
classification performance, making companies and stakeholders reluc-
tant to adopt classifiers at all.

Our study summarized the main features of anomaly-based error and
intrusion detectors for critical systems, and conducted experimental
campaigns that analyzed, compared, and discussed the performance of
different classifiers on a total of 23 public datasets, even ensembling
different classifiers seeking an improvement of classification perfor-
mance compared to baselines. We used a wide set of classifiers, ranging
from traditional supervised classifiers to tabular DNNs to image DNNs
that we applied after transforming tabular data into images.

The conclusions of our study, highlighted by Takeovers 1 to 6
throughout the paper, allow debunking the problem of crafting a su-
pervised anomaly-based error and intrusion detector for a given system.
Classifiers using Decision Trees (tree-based ensembles) as bagging and
boosting classifiers outperform DNNs, are faster to train, and have a very
small set of hyperparameters that are easy to understand and tune.
Ensembling tree-based classifiers and DNNs did not lead to any
improvement in classification performance, nor did the usage of image
DNNs after data transformation. These observations hold for all datasets
used in this study, and there is no reason to think that our conclusions
will not hold for other tabular (big) data classification problems.

We believe that this study could provide a solid baseline upon which
practitioners willing to solve a specific tabular data classification
problem could rely to guide the design and implementation of their
solution. Anomaly-based error and intrusion detection in tabular data
should be carried out through tree-based ensembles disregarding DNNs
– either tabular DNNs or image DNNs exercised on a transformed tabular
input -, saving key time when setting up these classifiers. Also, the
MANDALA public library [95] can be used by any practitioner to
cross-check if the findings of the paper also apply to their case study.

CRediT authorship contribution statement

Tommaso Zoppi: Writing – review & editing, Writing – original
draft, Validation, Software, Methodology, Data curation, Conceptuali-
zation. Stefano Gazzini: Software, Methodology. Andrea Ceccarelli:
Writing – review & editing, Validation, Supervision, Project adminis-
tration, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

datasets are publicly available (not ours) and the code is publicly
available on the GitHub repository linked in the paper

Acknowledgements

This work was supported in part by the B53D23012930006 PRIN
2022 project FLEGREA, the 202297YF75 PRIN 2022 project S2, and by
the project P2022K7ERB PRIN PNRR 2022 BREADCRUMBS and by the
project SERICS (PE00000014) under the MUR National Recovery and
Resilience Plan funded by the European Union – NextGenerationEU.

References

[1] M. Gil, M. Albert, J. Fons, V. Pelechano, Designing human-in-the-loop autonomous
Cyber-Physical Systems, Int. J. Hum. Comput. Stud. 130 (2019) 21–39, https://doi.
org/10.1016/j.ijhcs.2019.04.006.

[2] I.F. Akyildiz, A. Kak, The Internet of Space Things/CubeSats: a ubiquitous cyber-
physical system for the connected world, Comput. Networks 150 (Feb. 2019)
134–149, https://doi.org/10.1016/j.comnet.2018.12.017.

[3] G. Wang, L. Zhang, W. Xu, What can we learn from four years of data center
hardware failures?, in: 2017 47th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN) IEEE, 2017, pp. 25–36, https://doi.org/
10.1109/DSN.2017.26.

[4] G. Jesus, A. Casimiro, A. Oliveira, Using machine learning for dependable outlier
detection in environmental monitoring systems, ACM Transactions on Cyber-Phys.
Syst. 5 (3) (2021) 1–30, https://doi.org/10.1145/3445812.

[5] J. Zhang, B. Zhang, N. Zhang, C. Wang, Y. Chen, A novel robust event-triggered
fault tolerant automatic steering control approach of autonomous land vehicles
under in-vehicle network delay, Int. J. Robust Nonlinear Control 31 (7) (2021)
2436–2464, https://doi.org/10.1002/rnc.5393.

[6] C. Abbey, et al., Powering through the storm: microgrids operation for more
efficient disaster recovery, IEEE Power Energ. Mag. 12 (3) (2014) 67–76, https://
doi.org/10.1109/MPE.2014.2301514.

[7] A. Avizienis, J.-C. Laprie, B. Randell, C. Landwehr, Basic concepts and taxonomy of
dependable and secure computing, IEEE Trans. Dependable Secure Comput. 1 (1)
(2004) 11–33, https://doi.org/10.1109/TDSC.2004.2.

[8] Z. Xu, J.H. Saleh, Machine learning for reliability engineering and safety
applications: review of current status and future opportunities, Reliab. Eng. Syst.
Saf. 211 (2021) 107530, https://doi.org/10.1016/j.ress.2021.107530.

[9] L. Grinsztajn, E. Oyallon, G. Varoquaux, Why do tree-based models still outperform
deep learning on typical tabular data? Adv. Neural. Inf. Process. Syst. 35 (2022)
507–520.

[10] D.-T. Nguyen, K.-H. Le, The robust scheme for intrusion detection system in
Internet of Things, Internet. Things 24 (2023) 100999, https://doi.org/10.1016/j.
iot.2023.100999.

[11] S. Ö. Arik, T. Pfister, TabNet: attentive Interpretable Tabular Learning, in:
Proceedings of the AAAI Conference on Artificial Intelligence 35, 2021,
pp. 6679–6687, https://doi.org/10.1609/aaai.v35i8.16826.

[12] S. Popov, S. Morozov, A. Babenko, Neural oblivious decision ensembles for deep
learning on tabular data, in: International Conference on Learning Representations,
2020 [Online]. Available: https://openreview.net/forum?id=r1eiu2VtwH.

[13] J. Howard, S. Gugger, Fastai: a layered API for deep learning, Information 11 (2)
(2020) 108, https://doi.org/10.3390/info11020108.

[14] D. Ardagna, C. Cappiello, W. Samá, M. Vitali, Context-aware data quality
assessment for big data, Future Generat. Comput. Syst. 89 (2018) 548–562,
https://doi.org/10.1016/j.future.2018.07.014.

[15] M. Molan, A. Borghesi, D. Cesarini, L. Benini, A. Bartolini, RUAD: unsupervised
anomaly detection in HPC systems, Future Generat. Comput. Syst. 141 (2023)
542–554, https://doi.org/10.1016/j.future.2022.12.001.

[16] S. Leroux, P. Simoens, Sparse random neural networks for online anomaly
detection on sensor nodes, Future Generat. Comput. Syst. 144 (2023) 327–343,
https://doi.org/10.1016/j.future.2022.12.028.

[17] R. Shwartz-Ziv, A. Armon, Tabular data: deep learning is not all you need,
Information Fusion 81 (2022) 84–90, https://doi.org/10.1016/j.
inffus.2021.11.011.

[18] Y. Zhu, et al., Converting tabular data into images for deep learning with
convolutional neural networks, Sci. Rep. 11 (1) (2021) 11325, https://doi.org/
10.1038/s41598-021-90923-y.

[19] A. Sharma, E. Vans, D. Shigemizu, K.A. Boroevich, T. Tsunoda, DeepInsight: a
methodology to transform a non-image data to an image for convolution neural
network architecture, Sci. Rep. 9 (1) (2019) 11399, https://doi.org/10.1038/
s41598-019-47765-6.

[20] S. González, S. García, J. Del Ser, L. Rokach, F. Herrera, A practical tutorial on
bagging and boosting based ensembles for machine learning: algorithms, software
tools, performance study, practical perspectives and opportunities, Information
Fusion 64 (2020) 205–237, https://doi.org/10.1016/j.inffus.2020.07.007.

T. Zoppi et al.

https://github.com/tommyippoz/MANDALA
https://github.com/tommyippoz/MANDALA
https://doi.org/10.1016/j.ijhcs.2019.04.006
https://doi.org/10.1016/j.ijhcs.2019.04.006
https://doi.org/10.1016/j.comnet.2018.12.017
https://doi.org/10.1109/DSN.2017.26
https://doi.org/10.1109/DSN.2017.26
https://doi.org/10.1145/3445812
https://doi.org/10.1002/rnc.5393
https://doi.org/10.1109/MPE.2014.2301514
https://doi.org/10.1109/MPE.2014.2301514
https://doi.org/10.1109/TDSC.2004.2
https://doi.org/10.1016/j.ress.2021.107530
http://refhub.elsevier.com/S0167-739X(24)00351-0/sbref0009
http://refhub.elsevier.com/S0167-739X(24)00351-0/sbref0009
http://refhub.elsevier.com/S0167-739X(24)00351-0/sbref0009
https://doi.org/10.1016/j.iot.2023.100999
https://doi.org/10.1016/j.iot.2023.100999
https://doi.org/10.1609/aaai.v35i8.16826
https://openreview.net/forum?id=r1eiu2VtwH
https://doi.org/10.3390/info11020108
https://doi.org/10.1016/j.future.2018.07.014
https://doi.org/10.1016/j.future.2022.12.001
https://doi.org/10.1016/j.future.2022.12.028
https://doi.org/10.1016/j.inffus.2021.11.011
https://doi.org/10.1016/j.inffus.2021.11.011
https://doi.org/10.1038/s41598-021-90923-y
https://doi.org/10.1038/s41598-021-90923-y
https://doi.org/10.1038/s41598-019-47765-6
https://doi.org/10.1038/s41598-019-47765-6
https://doi.org/10.1016/j.inffus.2020.07.007

Future Generation Computer Systems 160 (2024) 951–965

964

[21] T. Zoppi, M. Gharib, M. Atif, A. Bondavalli, Meta-learning to improve unsupervised
intrusion detection in cyber-physical systems, ACM Transact. Cyber-Phys. Syst. 5
(4) (2021), https://doi.org/10.1145/3467470.

[22] D.H. Wolpert, Stacked generalization, Neural Netw. 5 (2) (1992) 241–259, https://
doi.org/10.1016/S0893-6080(05)80023-1.

[23] Y. Freund, Boosting a weak learning algorithm by majority, Inf. Comput. 121 (2)
(1995) 256–285, https://doi.org/10.1006/inco.1995.1136.

[24] T. Zoppi, A. Ceccarelli, A. Bondavalli, MADneSs: a multi-layer anomaly detection
framework for complex dynamic systems, IEEE Trans. Dependable Secure Comput.
18 (2) (2021), https://doi.org/10.1109/TDSC.2019.2908366.

[25] A. Khraisat, I. Gondal, P. Vamplew, J. Kamruzzaman, Survey of intrusion detection
systems: techniques, datasets and challenges, Cybersecur. 2 (1) (2019) 20, https://
doi.org/10.1186/s42400-019-0038-7.

[26] H. Rajadurai, U.D. Gandhi, A stacked ensemble learning model for intrusion
detection in wireless network, Neural. Comput. Appl. 34 (18) (2022)
15387–15395, https://doi.org/10.1007/s00521-020-04986-5.

[27] R.H. Randhawa, N. Aslam, M. Alauthman, M. Khalid, H. Rafiq, Deep reinforcement
learning based Evasion Generative Adversarial Network for botnet detection,
Future Generat. Comput. Syst. 150 (2024) 294–302, https://doi.org/10.1016/j.
future.2023.09.011.

[28] C. Pham, Z. Estrada, P. Cao, Z. Kalbarczyk, R.K. Iyer, Reliability and security
monitoring of virtual machines using hardware architectural invariants, in: 2014
44th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, IEEE, 2014, pp. 13–24, https://doi.org/10.1109/DSN.2014.19.

[29] E. De Giovanni, A.A. Valdes, M. Peon-Quiros, A. Aminifar, D. Atienza, Real-time
personalized atrial fibrillation prediction on multi-core wearable sensors, IEEE
Trans. Emerg. Top. Comput. 9 (4) (2021) 1654–1666, https://doi.org/10.1109/
TETC.2020.3014847.

[30] G. Hu, Y. Guo, G. Wei, L. Abualigah, Genghis Khan shark optimizer: a novel nature-
inspired algorithm for engineering optimization, Adv. Eng. Inf. 58 (2023) 102210,
https://doi.org/10.1016/J.AEI.2023.102210.

[31] J.O. Agushaka, A.E. Ezugwu, L. Abualigah, Dwarf mongoose optimization
algorithm, Comput. Methods Appl. Mech. Eng. 391 (2022) 114570, https://doi.
org/10.1016/J.CMA.2022.114570.

[32] L. Le, A. Patterson, M. White, Supervised autoencoders: improving generalization
performance with unsupervised regularizers, in: S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, R. Garnett (Eds.), ADVANCES IN NEURAL

INFORMATION PROCESSING SYSTEMS, Curran Associates, Inc., 2018 [Online]. Available:
https://proceedings.neurips.cc/paper_files/paper/2018/file/2a38a4a9316c49e
5a833517c45d31070-Paper.pdf.

[33] Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu, Z. Chen, SySeVR: a framework for using deep
learning to detect software vulnerabilities, IEEE Trans. Dependable Secure Comput.
19 (4) (2022) 2244–2258, https://doi.org/10.1109/TDSC.2021.3051525.

[34] G. Li, J.J. Jung, Deep learning for anomaly detection in multivariate time series:
approaches, applications, and challenges, Informat. Fusion 91 (2023) 93–102,
https://doi.org/10.1016/j.inffus.2022.10.008.

[35] L. Breiman, Random forests, Mach Learn 45 (1) (2001) 5–32, https://doi.org/
10.1023/A:1010933404324.

[36] P. Geurts, D. Ernst, L. Wehenkel, Extremely randomized trees, Mach Learn 63 (1)
(2006) 3–42, https://doi.org/10.1007/s10994-006-6226-1.

[37] T. Chen, C. Guestrin, XGBoost: a Scalable Tree Boosting System, in: Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, ACM, New York, NY, USA, 2016, pp. 785–794, https://doi.org/
10.1145/2939672.2939785.

[38] W.J. Krzanowski, T.C. Bailey, D. Partridge, J.E. Fieldsend, R.M. Everson,
V. Schetinin, Confidence in classification: a bayesian approach, J Classif 23 (2)
(2006) 199–220, https://doi.org/10.1007/s00357-006-0013-3.

[39] Y. Liao, V.R. Vemuri, Use of K-Nearest Neighbor classifier for intrusion detection,
Comput. Secur. 21 (5) (2002) 439–448, https://doi.org/10.1016/S0167-4048(02)
00514-X.

[40] M.A. Souza, R. Sabourin, G.D.C. Cavalcanti, R.M.O. Cruz, A dynamic multiple
classifier system using graph neural network for high dimensional overlapped data,
Informat. Fusion 103 (2024) 102145, https://doi.org/10.1016/j.
inffus.2023.102145.

[41] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (7553) (2015) 436–444,
https://doi.org/10.1038/nature14539.

[42] L. van der Maaten, G. Hinton, Visualizing Data using t-SNE, J. Mach. Learn Res. 9
(86) (2008) 2579–2605 [Online]. Available: http://jmlr.org/papers/v9/vande
rmaaten08a.html.

[43] R. Vilalta, C. Giraud-Carrier, P. Brazdil, Meta-Learning - Concepts and Techniques.
Data Mining and Knowledge Discovery Handbook, Springer US, Boston, MA, 2009,
pp. 717–731, https://doi.org/10.1007/978-0-387-09823-4_36.

[44] N.O. Nikitin, et al., Automated evolutionary approach for the design of composite
machine learning pipelines, Future Generat. Comput. Syst. 127 (2022) 109–125,
https://doi.org/10.1016/j.future.2021.08.022.

[45] T. Windeatt, Diversity measures for multiple classifier system analysis and design,
Informat. Fusion 6 (1) (2005) 21–36, https://doi.org/10.1016/j.
inffus.2004.04.002.

[46] E.K. Tang, P.N. Suganthan, X. Yao, An analysis of diversity measures, Mach Learn
65 (1) (2006) 247–271, https://doi.org/10.1007/s10994-006-9449-2.

[47] L.I. Kuncheva, C.J. Whitaker, Measures of diversity in classifier ensembles and
their relationship with the ensemble accuracy, Mach Learn 51 (2) (2003) 181–207,
https://doi.org/10.1023/A:1022859003006.

[48] Z. Gong, P. Zhong, W. Hu, Diversity in machine learning, IEEE Access 7 (2019)
64323–64350, https://doi.org/10.1109/ACCESS.2019.2917620.

[49] L. Breiman, Bagging predictors, Mach Learn 24 (2) (1996) 123–140, https://doi.
org/10.1007/BF00058655.

[50] R.E. Schapire, The strength of weak learnability, Mach Learn 5 (2) (1990)
197–227, https://doi.org/10.1007/BF00116037.

[51] C. Lemke, M. Budka, B. Gabrys, Metalearning: a survey of trends and technologies,
Artif. Intell. Rev. 44 (1) (2015) 117–130, https://doi.org/10.1007/s10462-013-
9406-y.

[52] S. Džeroski, B. Ženko, Is combining classifiers with stacking better than selecting
the best one? Mach Learn 54 (3) (2004) 255–273, https://doi.org/10.1023/B:
MACH.0000015881.36452.6e.

[53] T. Zoppi and A. Ceccarelli, “Prepare for trouble and make it double. supervised and
unsupervised stacking for anomalybased intrusion detection,” arXiv. 2022. htt
ps://doi.org/10.48550/arxiv.2202.13611.

[54] K.M. Ting, I.H. Witten, Issues in Stacked Generalization, J. Artificial Intelligence
Res. 10 (1999) 271–289, https://doi.org/10.1613/jair.594.

[55] Sina Mohseni, Mandar Pitale, Vasu Singh, Zhangyang Wang, Practical solutions for
machine learning safety in autonomous vehicles. SAFEAI WORKSHOP @ AAAI, 2019.

[56] X. Ma, J. Zhu, Z. Lin, S. Chen, Y. Qin, A state-of-the-art survey on solving non-IID
data in Federated Learning, Future Generat. Comput. Syst. 135 (Oct. 2022)
244–258, https://doi.org/10.1016/j.future.2022.05.003.

[57] J. Luo, Y. Quan, S. Xu, Robust-GBDT: A Novel Gradient Boosting Model for Noise-
Robust Classification, 2023 [Online]. Available: http://arxiv.org/abs/2310.05067.

[58] D.H. Wolpert, W.G. Macready, No free lunch theorems for optimization, IEEE
Trans. Evol. Comput. 1 (1) (1997) 67–82, https://doi.org/10.1109/4235.585893.

[59] M. Ring, S. Wunderlich, D. Scheuring, D. Landes, A. Hotho, A survey of network-
based intrusion detection data sets, Comput. Secur. 86 (2019) 147–167, https://
doi.org/10.1016/j.cose.2019.06.005.

[60] M. Ring, S. Wunderlich, D. Grüdl, D. Landes, and A. Hotho, “Flow-based
benchmark data sets for intrusion detection,” 2017.

[61] A.H. Lashkari, A.F.A. Kadir, L. Taheri, A.A. Ghorbani, Toward developing a
systematic approach to generate benchmark android malware datasets and
classification, in: 2018 International Carnahan Conference on Security Technology
(ICCST), IEEE, 2018, pp. 1–7, https://doi.org/10.1109/CCST.2018.8585560.

[62] B.M.M.Y.M.Y.B.D.A. Meidan Yair, A. Shabtai, Detection_Of_Iot_Botnet_Attacks_N_
BaioT, 2018.

[63] W. Haider, J. Hu, J. Slay, B.P. Turnbull, Y. Xie, Generating realistic intrusion
detection system dataset based on fuzzy qualitative modeling, J. Netw. Comput.
Appl. 87 (2017) 185–192, https://doi.org/10.1016/j.jnca.2017.03.018.

[64] I. Sharafaldin, A. Habibi Lashkari, A.A. Ghorbani, Toward generating a new
intrusion detection dataset and intrusion traffic characterization, in: Proceedings of
the 4th International Conference on Information Systems Security and Privacy,
SCITEPRESS - Science and Technology Publications, 2018, pp. 108–116, https://
doi.org/10.5220/0006639801080116.

[65] H. Kang, D.H. Ahn, G.M. Lee, J. Do Yoo, K.H. Park, H.K. Kim, IoT network intrusion
dataset, IEEE Dataport (2019), https://doi.org/10.21227/q70p-q449.

[66] A. Shiravi, H. Shiravi, M. Tavallaee, A.A. Ghorbani, Toward developing a
systematic approach to generate benchmark datasets for intrusion detection,
Comput. Secur. 31 (3) (2012) 357–374, https://doi.org/10.1016/j.
cose.2011.12.012.

[67] M. Tavallaee, E. Bagheri, W. Lu, A.A. Ghorbani, A detailed analysis of the KDD CUP
99 data set, in: 2009 IEEE Symposium on Computational Intelligence for Security
and Defense Applications, IEEE, 2009, pp. 1–6, https://doi.org/10.1109/
CISDA.2009.5356528.

[68] G. Maciá-Fernández, J. Camacho, R. Magán-Carrión, P. García-Teodoro, R. Therón,
UGR‘16: a new dataset for the evaluation of cyclostationarity-based network IDSs,
Comput. Secur. 73 (2018) 411–424, https://doi.org/10.1016/j.cose.2017.11.004.

[69] N. Moustafa, J. Slay, UNSW-NB15: a comprehensive data set for network intrusion
detection systems (UNSW-NB15 network data set, in: 2015 Military
Communications and Information Systems Conference (MilCIS), IEEE, 2015,
pp. 1–6, https://doi.org/10.1109/MilCIS.2015.7348942.

[70] BackBlaze, “BackBlaze HDD Data,” https://www.backblaze.com/cloud-storage/re
sources/hard-drive-test-data [accessed: June 7th, 2024].

[71] Baidu Inc, “Baidu HDD - Baidu SMART Dataset for Seagate ST31000524NS Drive
Model,” 2022. https://www.kaggle.com/datasets/drtycoon/hdds-dataset-baidu-
inc.

[72] W.C.S.Y.J.-H. Shin Hyeok-Ki, Lee, B.-G. Min, HAI Security Datasets, 2023 [Online].
Available: https://github.com/icsdataset/hai.

[73] H.-K. Shin, W. Lee, J.-H. Yun, H. Kim, HAI 1.0: hIL-based Augmented ICS Security
Dataset, in: 13th USENIX Workshop on Cyber Security Experimentation and Test
(CSET 20), USENIX Association, 2020 [Online]. Available: https://www.usenix.or
g/conference/cset20/presentation/shin.

[74] N. Davari, B. Veloso, R.P. Ribeiro, P.M. Pereira, J. Gama, Predictive maintenance
based on anomaly detection using deep learning for air production unit in the
railway industry, in: 2021 IEEE 8th International Conference on Data Science and
Advanced Analytics (DSAA), IEEE, 2021, pp. 1–10, https://doi.org/10.1109/
DSAA53316.2021.9564181.

[75] APS Failure at Scania Trucks, 2017.
[76] T. Zoppi, G. Merlino, A. Ceccarelli, A. Puliafito, A. Bondavalli, Anomaly Detectors

for Self-Aware Edge and IoT Devices, in: IEEE International Conference on
Software Quality, Reliability and Security (QRS), IEEE, 2023, p. 23AD.

[77] A. Agarwal, Machine Failure Prediction, Kaggle (2018) [Online]. Available: http
s://kaggle.com/competitions/machine-failure-prediction.

[78] M.A. Marins, F.M.L. Ribeiro, S.L. Netto, E.A.B. da Silva, Improved similarity-based
modeling for the classification of rotating-machine failures, J. Franklin Inst. 355
(4) (2018) 1913–1930, https://doi.org/10.1016/j.jfranklin.2017.07.038.

T. Zoppi et al.

https://doi.org/10.1145/3467470
https://doi.org/10.1016/S0893-6080(05)80023-1
https://doi.org/10.1016/S0893-6080(05)80023-1
https://doi.org/10.1006/inco.1995.1136
https://doi.org/10.1109/TDSC.2019.2908366
https://doi.org/10.1186/s42400-019-0038-7
https://doi.org/10.1186/s42400-019-0038-7
https://doi.org/10.1007/s00521-020-04986-5
https://doi.org/10.1016/j.future.2023.09.011
https://doi.org/10.1016/j.future.2023.09.011
https://doi.org/10.1109/DSN.2014.19
https://doi.org/10.1109/TETC.2020.3014847
https://doi.org/10.1109/TETC.2020.3014847
https://doi.org/10.1016/J.AEI.2023.102210
https://doi.org/10.1016/J.CMA.2022.114570
https://doi.org/10.1016/J.CMA.2022.114570
https://proceedings.neurips.cc/paper_files/paper/2018/file/2a38a4a9316c49e5a833517c45d31070-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/2a38a4a9316c49e5a833517c45d31070-Paper.pdf
https://doi.org/10.1109/TDSC.2021.3051525
https://doi.org/10.1016/j.inffus.2022.10.008
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1007/s00357-006-0013-3
https://doi.org/10.1016/S0167-4048(02)00514-X
https://doi.org/10.1016/S0167-4048(02)00514-X
https://doi.org/10.1016/j.inffus.2023.102145
https://doi.org/10.1016/j.inffus.2023.102145
https://doi.org/10.1038/nature14539
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.1007/978-0-387-09823-4_36
https://doi.org/10.1016/j.future.2021.08.022
https://doi.org/10.1016/j.inffus.2004.04.002
https://doi.org/10.1016/j.inffus.2004.04.002
https://doi.org/10.1007/s10994-006-9449-2
https://doi.org/10.1023/A:1022859003006
https://doi.org/10.1109/ACCESS.2019.2917620
https://doi.org/10.1007/BF00058655
https://doi.org/10.1007/BF00058655
https://doi.org/10.1007/BF00116037
https://doi.org/10.1007/s10462-013-9406-y
https://doi.org/10.1007/s10462-013-9406-y
https://doi.org/10.1023/B:MACH.0000015881.36452.6e
https://doi.org/10.1023/B:MACH.0000015881.36452.6e
http://doi.org/10.48550/arxiv.2202.13611
http://doi.org/10.48550/arxiv.2202.13611
https://doi.org/10.1613/jair.594
http://refhub.elsevier.com/S0167-739X(24)00351-0/sbref0055
http://refhub.elsevier.com/S0167-739X(24)00351-0/sbref0055
https://doi.org/10.1016/j.future.2022.05.003
http://arxiv.org/abs/2310.05067
https://doi.org/10.1109/4235.585893
https://doi.org/10.1016/j.cose.2019.06.005
https://doi.org/10.1016/j.cose.2019.06.005
https://doi.org/10.1109/CCST.2018.8585560
http://refhub.elsevier.com/S0167-739X(24)00351-0/sbref0062
http://refhub.elsevier.com/S0167-739X(24)00351-0/sbref0062
https://doi.org/10.1016/j.jnca.2017.03.018
https://doi.org/10.5220/0006639801080116
https://doi.org/10.5220/0006639801080116
https://doi.org/10.21227/q70p-q449
https://doi.org/10.1016/j.cose.2011.12.012
https://doi.org/10.1016/j.cose.2011.12.012
https://doi.org/10.1109/CISDA.2009.5356528
https://doi.org/10.1109/CISDA.2009.5356528
https://doi.org/10.1016/j.cose.2017.11.004
https://doi.org/10.1109/MilCIS.2015.7348942
https://www.backblaze.com/cloud-storage/resources/hard-drive-test-data
https://www.backblaze.com/cloud-storage/resources/hard-drive-test-data
https://www.kaggle.com/datasets/drtycoon/hdds-dataset-baidu-inc
https://www.kaggle.com/datasets/drtycoon/hdds-dataset-baidu-inc
https://github.com/icsdataset/hai
https://www.usenix.org/conference/cset20/presentation/shin
https://www.usenix.org/conference/cset20/presentation/shin
https://doi.org/10.1109/DSAA53316.2021.9564181
https://doi.org/10.1109/DSAA53316.2021.9564181
http://refhub.elsevier.com/S0167-739X(24)00351-0/sbref0075
http://refhub.elsevier.com/S0167-739X(24)00351-0/sbref0076
http://refhub.elsevier.com/S0167-739X(24)00351-0/sbref0076
http://refhub.elsevier.com/S0167-739X(24)00351-0/sbref0076
https://kaggle.com/competitions/machine-failure-prediction
https://kaggle.com/competitions/machine-failure-prediction
https://doi.org/10.1016/j.jfranklin.2017.07.038

Future Generation Computer Systems 160 (2024) 951–965

965

[79] S.R. Safavian, D. Landgrebe, A survey of decision tree classifier methodology, IEEE
Trans. Syst. Man Cybern. 21 (3) (1991) 660–674, https://doi.org/10.1109/
21.97458.

[80] T. Chen, C. Guestrin, XGBoost, in: Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, ACM, New
York, NY, USA, 2016, pp. 785–794, https://doi.org/10.1145/2939672.2939785.

[81] L. Jiang, D. Wang, Z. Cai, X. Yan, Survey of Improving Naive Bayes for
Classification, 2007, pp. 134–145, https://doi.org/10.1007/978-3-540-73871-8_
14.

[82] J. Friedman, T. Hastie, R. Tibshirani, Additive logistic regression: a statistical view
of boosting (With discussion and a rejoinder by the authors, The Annals of Statistics
28 (2) (2000), https://doi.org/10.1214/aos/1016218223.

[83] P. Xanthopoulos, P.M. Pardalos, T.B. Trafalis, Robust Data Mining, Springer New
York, New York, NY, 2013, https://doi.org/10.1007/978-1-4419-9878-1.

[84] B. Komer, J. Bergstra, C. Eliasmith, Hyperopt-sklearn: automatic hyperparameter
configuration for scikit-learn. ICML WORKSHOP ON AUTOML, 2014, p. 50.

[85] M. Joseph, H. Raj, GANDALF: Gated Adaptive Network for Deep Automated
Learning of Features, 2022.

[86] A. Yang, MNIST Tutorial by Kaggle, 2020, https://www.kaggle.com/code/
amyjang/tensorflow-mnist-cnn-tutorial.

[87] D. Chicco, G. Jurman, The advantages of the Matthews correlation coefficient
(MCC) over F1 score and accuracy in binary classification evaluation, Bmc
Genomics [Electronic Resource] 21 (1) (2020) 6, https://doi.org/10.1186/s12864-
019-6413-7.

[88] K.H. Brodersen, C.S. Ong, K.E. Stephan, J.M. Buhmann, The balanced accuracy and
its posterior distribution, in: 2010 20th International Conference on Pattern
Recognition, IEEE, 2010, pp. 3121–3124, https://doi.org/10.1109/
ICPR.2010.764.

[89] M. Maalouf, M. Siddiqi, Weighted logistic regression for large-scale imbalanced
and rare events data, Knowl Based Syst 59 (2014) 142–148, https://doi.org/
10.1016/J.KNOSYS.2014.01.012.

[90] N. Burkart, M.F. Huber, A Survey on the Explainability of Supervised Machine
Learning, J. Artificial Intelligence Res. 70 (2021) 245–317, https://doi.org/
10.1613/jair.1.12228.

[91] A. Biondi, F. Nesti, G. Cicero, D. Casini, G. Buttazzo, A safe, secure, and predictable
software architecture for deep learning in safety-critical systems, IEEE Embed Syst
Lett 12 (3) (2020) 78–82, https://doi.org/10.1109/LES.2019.2953253.

[92] C. Ferri, P. Flach, J. Hernández-Orallo, Delegating classifiers, in: Twenty-first
international conference on Machine learning - ICML ’04, ACM Press, New York,
New York, USA, 2004, p. 37, https://doi.org/10.1145/1015330.1015395.

[93] M. Catillo, A. Pecchia, M. Rak, U. Villano, Demystifying the role of public intrusion
datasets: a replication study of DoS network traffic data, Comput. Secur. 108
(2021) 102341, https://doi.org/10.1016/j.cose.2021.102341.

[94] V. Bolón-Canedo, N. Sánchez-Maroño, A. Alonso-Betanzos, J.M. Benítez,
F. Herrera, A review of microarray datasets and applied feature selection methods,
Inf Sci (N Y) 282 (2014) 111–135, https://doi.org/10.1016/j.ins.2014.05.042.

[95] T. Zoppi, MANDALA GitHub Repository, 2024. https://github.com/tommyippoz/
MANDALA.

Tommaso Zoppi: received his Ph.D. in Computer Science from
the University of Firenze (Italy) in 2018. He is currently a
tenure-tracked Research associate (RTD-B) at the University of
Trento, mainly working on critical systems engineering and the
implications of the usage of machine learning in these systems.
Throughout years, he participated in a wide variety of regional,
national, EU, and industrial research projects in the broad
domain of architectures, verification and validation of critical
systems. He serves as TPC member in various international
conferences and as a reviewer of top-rated journals, and he co-
authored more than 40 papers to date.

Stefano Gazzini: is a computer science student with a strong
passion in data and artificial intelligence. During his studies he
has delved into the main topics of the discipline, such as
computer architecture, databases and programming but in the
final thesishe has explored the field of artificial intelligence
with a project whose main goal was totest the performance of
several algorithms in computing tabular data.

Andrea Ceccarelli: received the Ph.D. degree in informatics
and automation engineering from the University of Florence,
Florence, Italy, in 2012. He is currently an Associate Professor
of computer science with the University of Florence. His
research interests include the design, monitoring, and evalua-
tion of dependable and secure systems, with a preference for
experimental approaches, and his scientific activities origi-
nated more than 120 papers. He is regularly involved in the
TPC of International Conferences in the domain of depend-
ability and reliability engineering, and he has been the TPC
CoChair of LADC and SRDS. He has been involved in multiple
research projects and he is currently leading his unit in the
MUR projects BREADCRUMBS and FLEGREA. He is a member

of the IFIP WG 10.4 on “Dependable Computing and Fault-Tolerance.”

T. Zoppi et al.

https://doi.org/10.1109/21.97458
https://doi.org/10.1109/21.97458
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1007/978-3-540-73871-8_14
https://doi.org/10.1007/978-3-540-73871-8_14
https://doi.org/10.1214/aos/1016218223
https://doi.org/10.1007/978-1-4419-9878-1
http://refhub.elsevier.com/S0167-739X(24)00351-0/sbref0085
http://refhub.elsevier.com/S0167-739X(24)00351-0/sbref0085
http://refhub.elsevier.com/S0167-739X(24)00351-0/sbref0086
http://refhub.elsevier.com/S0167-739X(24)00351-0/sbref0086
https://www.kaggle.com/code/amyjang/tensorflow-mnist-cnn-tutorial)
https://www.kaggle.com/code/amyjang/tensorflow-mnist-cnn-tutorial)
https://doi.org/10.1186/s12864-019-6413-7
https://doi.org/10.1186/s12864-019-6413-7
https://doi.org/10.1109/ICPR.2010.764
https://doi.org/10.1109/ICPR.2010.764
https://doi.org/10.1016/J.KNOSYS.2014.01.012
https://doi.org/10.1016/J.KNOSYS.2014.01.012
https://doi.org/10.1613/jair.1.12228
https://doi.org/10.1613/jair.1.12228
https://doi.org/10.1109/LES.2019.2953253
https://doi.org/10.1145/1015330.1015395
https://doi.org/10.1016/j.cose.2021.102341
https://doi.org/10.1016/j.ins.2014.05.042
https://github.com/tommyippoz/MANDALA
https://github.com/tommyippoz/MANDALA

	Anomaly-based error and intrusion detection in tabular data: No DNN outperforms tree-based classifiers
	1 Introduction
	2 Background
	2.1 Anomaly-based error and intrusion detection
	2.2 Monitoring and tabular datasets
	2.3 Classification of tabular data
	2.4 Diversity and machine learning
	2.5 Machine learning for (Safety) critical systems

	3 Motivation and novelty of the paper
	4 Comparison of tabular data classifiers
	4.1 Error, attack and failure datasets
	4.1.1 Network intrusion detection (NIDS)
	4.1.2 Hardware failure prediction
	4.1.3 Error/Anomaly detection
	4.1.4 Preprocessing

	4.2 Classifiers and hyper-parameters
	4.2.1 Traditional supervised classifiers
	4.2.2 DNN for tabular data
	4.2.3 DNN for image classification

	4.3 Evaluation metrics
	4.4 Results and discussion
	4.5 Is it a matter of data size?

	5 Classifier ensembles and meta-learning
	6 Ensemble assessment
	6.1 Choice of the base-learners
	6.2 Choice of meta-classifiers
	6.3 Experiment execution
	6.4 Classification performance of mand and MAND*
	6.5 Importance of features for the meta-classifier

	7 Threats to validity and reproducibility
	8 Concluding remarks
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

