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A B S T R A C T   

Recent years have seen a growing involvement of researchers and practitioners in crafting Deep Neural Networks 
(DNNs) that seem to outperform existing machine learning approaches for solving classification problems as 
anomaly-based error and intrusion detection. Undoubtedly, classifiers may be very diverse among themselves, 
and choosing one or another is typically due to the specific task and target system. Designing and training the 
optimal tabular data classifier requires extensive experimentation, sensitivity analyses, big datasets, and domain- 
specific knowledge that may not be available at will or considered a non-strategical asset by many companies and 
stakeholders. This paper compares, using a total of 23 public datasets: i) traditional (tree-based, statistical) su-
pervised classifiers, ii) DNNs that are specifically designed for classifying tabular data, iii) DNNs for image 
classification that are applied to tabular data after converting data points into images, alone and as ensembles. 
Experimental results and related discussions show clear advantages in adopting tree-based classifiers for 
anomaly-based error and intrusion detection in tabular data as they outperform their competitors, including 
DNNs. Then, individual classifiers are compared against ensembles using different combinations of the classifiers 
considered in this study as base-learners, providing a unified final response through many meta-learning stra-
tegies. Results show that there is no benefit in building ensembles instead of using a tree-based classifier as 
Random Forests, eXtreme Gradient Boosting or Extra Trees. The paper concludes that anomaly-based error and 
intrusion detectors for critical systems should use the old (but gold) tree-based classifiers, which are also easier to 
fine-tune, and understand; plus, they require less time and resources to learn their model.   

1. Introduction 

Nowadays the paradigm of Cyber-Physical Systems (CPSs [1]) guides 
the definition and design of ICT hardware-software systems whose 
functionalities are partially controlled or monitored by computer-based 
sub-systems and/or human beings. Examples include, but are not limited 
to, Auto-Pilot Avionics, Autonomous Driving, Smart Manufacturing, 
Medical Support Systems, Industrial Control Systems, and Environ-
mental Monitoring [2–6]. Noticeably, many of those CPSs (systems from 
now on) might be intended to deliver critical functionalities, whose 
malfunction may lead to fatalities, severe injuries, or major damages to 
the environment: as a result, they must be conceptualized, designed, and 
implemented to ensure that appropriate safety and/or security re-
quirements are met [7,8]. These critical systems need to embed error, 
intrusion, and anomaly detectors that can accurately and promptly 
detect the manifestation of faults or attacks (i.e., anomalies), before 

subsequent cascading effects could create a major damage the encom-
passing system. Detectors process tabular data points containing values 
of specific indicators monitored from the target system (e.g., resource 
usage, active threads, application-specific indicators): once anomalies 
are detected, they trigger reaction strategies that break the 
fault-error-failure chain and ultimately block the system from failing 
uncontrollably [7]. 

The analysis of monitored data is conducted using Machine Learning 
(ML) algorithms that perform binary classification (classifiers from now 
on) and as such can classify the system’s behavior as normal or anom-
alous due to errors or attacks that already happened or are currently 
happening in the system. ML algorithms that rely on Decision Trees or 
tree ensembles (Random Forests, eXtreme Gradient Boosting) were 
traditionally used for classifying tabular data as they build accurate 
models, require limited training and test time, and can be explained 
fairly easily [9,10]. However, there is a growing interest in crafting Deep 
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Neural Networks (DNNs) that have excellent classification capabilities 
when dealing with tabular data, e.g., TabNet [11], NODE [12], and 
FastAI [13]. These algorithms learn complex models that are usually 
adequate for extracting knowledge from big datasets [14–16]. This led 
to comparison and benchmarking studies that show how DNNs outper-
form tree-based classifiers [11,12], or vice-versa [9,17]: the community 
did not reach an agreement yet as different studies seem to suggest 
different outcomes. This is very unfortunate as clear directions could 
rapidly become best practices to speed up any study that aims at crafting 
optimal tabular data classifiers with immediate research and industrial 
relevance. 

To solve this debate, we exercise i) traditional supervised classifiers 
(including Decision Tree classifiers and tree-based ensembles), ii) DNNs 
is specifically designed for the analysis of tabulr data, and iii) DNNs for 
image classification that we exercise after reshaping tabular data points 
as images [18,19] on different scenarios related to anomaly-based error 
and intrusion detection, collecting results and conducting in-depth an-
alyses and discussions. Then, we use them as base-learners to build 
ensembles, which are typically considered a promising option to 
improve classification performance [20–23]. The final experimental 
study using 23 public datasets related to error and intrusion detection, 
relying on 18 classifiers, computing diversity (i.e., disagreement be-
tween base-learners), and classification metrics allows drawing 
conclusive statements that are valid for anomaly-based error and 
intrusion detectors but may also translate to similar domains. Our 
takeovers, supported by experimental results, are as follows. 

• DNNs never outperform tree-based supervised classifiers in intru-
sion, error or anomaly datasets used in this study.  

• DNNs have many hyperparameters that should be assigned after fine- 
tuning through tailored and algorithm-specific sensitivity analyses, 
which are very time-consuming and require domain-specific 
knowledge.  

• DNNs do not outperform tree-based ensembles even when processing 
“big data” tabular training datasets  

• DNNs take at least an order of magnitude (10x) more time for 
learning a model than tree-based ensembles. Tabular DNNs are on 
average faster than image DNNs trained on images converted from 
tabular data points.  

• Choosing base-learners that are likely to disagree, resulting in 
diverse behavior, does not help in building ensembles that outper-
form individual anomaly-based detectors.  

• There is no benefit in using tabular classifiers other than tree-based 
ensembles for anomaly-based error and intrusion detection. This is 
true for classification performance of classifiers alone, and also when 
crafting complex classifiers using ensembles. 

The paper is structured as follows: Section 2 recaps error and 
intrusion detectors and the role of ML in those domains, including a 
discussion of ensembles of classifiers, their diversity, and ways to 
combine them through meta-learning. Section 3 shows motivations of 
this study, while Section 4 conducts a first experimental analysis to 
compare classifiers individually. Section 5 describes ensembles of tree- 
based classifiers and DNNs, which are used for experiments and dis-
cussions in Section 6. Section 7 summarizes threats to validity, and 
Section 8 concludes the paper. 

2. Background 

This section reports the background on tabular datasets and Machine 
Learning (ML) algorithms that suit the classification of such data i.e., 
classifiers. 

2.1. Anomaly-based error and intrusion detection 

Dependability is generally referred to as “the ability to avoid service 

failures that are more frequent or severe than is acceptable” [7]. Attaining 
dependability requires - but is not limited to - a prompt detection of the 
observable manifestations of faults or attacks, which should trigger reac-
tion strategies to avoid uncontrolled system failures. Error [15,16,24] and 
intrusion [25–27] detectors are classifiers that aim at detecting all the 
manifestations of faults (error detection) or attacks (intrusion detection). 
They seek to distinguish between normal behavior and one or more 
anomalous categories of anomalous behaviors due to manifestations of 
errors or intrusions. These manifestations usually occur as behavioral 
anomalies, which are observable when looking at specific performance 
indicators. Detectors may occasionally fail, either by triggering unnec-
essary alerts (False Positives, FPs), or when they miss the detection of an 
ongoing fault or attack (False Negatives, FNs). Usually, error and intrusion 
detectors primarily focus on reducing FNs, which may have a direct 
detrimental impact on a system. On the other hand, a very suspicious 
detector that has very low FNs at the price of increasing FPs will likely 
raise many false alarms, being of no practical use. Crafting error and 
intrusion detectors that output a satisfactorily low amount of FPs and FNs 
is not trivial, and heavily depends on two key tasks: i) precise monitoring 
of the target system, and ii) a suitable data analysis strategy. 

2.2. Monitoring and tabular datasets 

Over the years, research and practice have devised different ways to 
install monitoring probes into a system. Those probes aim at retrieving 
the value of several performance indicators of the target system at a 
given instant, averaged over a time frame, or signaled when specific 
events occur. The results of monitoring activities [3,4] constitute a 
structured tabular data baseline. Different performance indicators, or 
system features, can be targeted depending on the specific task, ranging 
from hardware or low-level [3], system-level [28], environment [4], or 
application-level monitoring [29]. Noticeably, features should describe 
the behavior of the system without being affected by the specific setup of 
an experimental campaign. As a specific case, IP Addresses should be 
disregarded when training intrusion detectors, since we can hardly as-
sume to know the IP address of the attacker(s). 

The resulting tabular dataset has specific properties compared to 
other tabular datasets. Particularly, features can hardly be considered 
independent as they describe different viewpoints of the same system or 
different areas of the same system. This may become a problem when-
ever applying classifiers that are known to perform well under the 
assumption of (linear) independence amongst features. Moreover, 
anomaly-based error and intrusion detection datasets for critical systems 
are usually collected by exercising a monitoring system over a quite 
stretched timespan: thus, they will have many data points but not as 
many features, which hardly exceed hundreds. Monitoring thousands of 
features every time may be possible, but it will critically slow down the 
execution of the regular tasks of the system, which should not be 
negatively impacted by monitoring and logging activities. 

2.3. Classification of tabular data 

A tabular dataset can be analyzed for different purposes, either to 
learn optimization processes [30,31] or to learn models that can be used 
for predicting properties of unseen data points. Within this paper, 
tabular data is meant to be provided to ML algorithms, which will use it 
to learn how to classify normal against anomalous system behavior, and 
ultimately detect errors or intrusions through binary or multi-class 
classification. The vast majority of ML algorithms that have been used 
for decades to tackle classification tasks are supervised classifiers [20, 
32–34]. Those classifiers require training data for which the label (also 
called class) is known. Depending on the way they learn their model, 
supervised classifiers are usually partitioned into tree-based classifiers 
(mostly Decision Trees to build ensembles as Random Forests [35,36] or 
XGBoost [37]), statistical techniques [38], distance-based learners [39], 
or neural networks (DNNs, [32,40]). 
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DNNs are supervised classifiers that contain multiple hidden layers 
(deep networks) to learn different features with multiple levels of 
abstraction [41]. Those classifiers learn complex representations of 
features during training, creating a neural network composed of multi-
ple layers that build upon such increasingly informative features. This 
guarantees excellent performance when classifying unstructured data 
such as images, streaming data, or for object detection. However, many 
studies argue about their performance in classifying tabular data. For 
instance, Intel advocates [17] that XGBoost shows better classification 
performance than DNNs when dealing with tabular data. This is 
confirmed by [9], where authors justify the supremacy of tree-based 
classifiers with respect to deep learners when processing tabular data 
stating that they adapt well to specific features of tabular data: irregular 
patterns in the target function, uninformative features, and 
non-rotationally-invariant data where linear combinations of features 
misrepresent the information. Conversely, authors of [11] present a DNN 
which is optimized for tabular data and outperforms tree-based classi-
fiers in some datasets. Similarly, authors of NODE [12] claim that their 
method is the first successful example of DNN that substantially out-
performs gradient-boosting classifiers on tabular data. FastAI [13] can 
efficiently classify tabular data thanks to a custom pre-processing of 
features, which are treated differently whenever they describe cate-
gories or continuous numerical values. 

There are even studies that aim at converting tabular data into im-
ages to transfer the potential of DNN in processing images to tabular 
data [18,19]. One of the most promising approaches is DeepInsight, 
which “converts non-image samples into a well-organized image form. 
Thereby, the power of DNNs, including GPU utilization, can be realized 
for non-image samples”. DeepInsight enables feature extraction through 
“the application of convolutions for non-image samples to seize imper-
ative information and shown promising results” [19]. This approach is 
radically different from any DNN for tabular data that was invented to 
date, as it does not act on the classifier, but on the input data. As shown 
in Fig. 1, DeepInsight can transform any tabular data into a pixel matrix 
through a feature re-ordering according to correlation, subspace map-
ping (using either t-SNE or PCA [42]), basic sub-setting, shifting and 
rotation image manipulations, and finalization of the pixel map. 
Noticeably, this process does not depend at all on the (image) to be used 
at a later stage, which can be any image classifier, either customized or 
obtained by transfer-learning from available models. Also, this meth-
odology enables the classification of tabular data by using DNNs that are 

meant to classify images, thus exploiting their full convolution potential. 

2.4. Diversity and machine learning 

A common way of enhancing classification relies on ensemble 
learning: creating ensembles of individual classifiers for building a 
unified meta-classifier [43] or pipeline [44] often improves classifica-
tion performance at a cost of increased processing time and model 
complexity. On the other hand, adopting ensembles of similar classifiers 
may not improve classification accuracy [39], because they will 
misclassify the same data points in the same way. Intuitively, if an error 
or intrusion is not detected by any of the classifiers in an ensemble, it is 
not possible to detect it by just ensembling independent classifiers, no 
matter how we combine their results. Using terminology specific to error 
and intrusion detectors, we refer to this event as a common mode failure 
[7], where all components tasked with detection agree on a prediction 
that is wrong. a 

That is why studies as [45–47] define and establish different ways to 
quantitatively estimate how a given pair of classifiers is similar or 
diverse based on their scores on one or more datasets. Moreover, the 
study [48] summarizes three different principles that drive the diversity 
of classifiers: Data, Model, and Inference Diversification. Data diversi-
fication provides different training data to many instances of the same 
classifier, or single instances of many classifiers. This concept is widely 
applied in Bagging (e.g., Random Forests) or Boosting (e.g., XGBoost) 
classifiers, and makes them more accurate than their Decision Tree 
baseline [49,50]. Model diversification can be implemented either by 
creating different instances of the same classifiers that are trained using 
different parameters (e.g., a different k value for kNN) or by using en-
sembles of different classifiers. Lastly, inference diversification is con-
cerned with obtaining multiple outputs in the inference of the classifier. 
Practically speaking, the classifier should output a set of possible outputs 
alongside a ranking or confidence scores. Whereas this last diversifica-
tion approach has been proven useful for image classification, it does not 
apply to the analysis of tabular data and especially to error and intrusion 
detectors, which require a single unambiguous prediction. On the other 
hand, two different classifiers may behave similarly on specific input 
data, with detrimental effects on the discriminative power of the 
ensemble. 

Once a diverse set of classifiers gets defined, there needs to be a way 
to combine them to obtain a unified prediction for the ensemble of 

Fig. 1. DeepInsight methodology for converting tabular data to images [19].  
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classifiers. A meta-learner is a complex classifier that uses knowledge 
acquired during base-learning episodes, to improve meta-level classifi-
cation capabilities [43]. Its base-learning process feeds dataset features 
into one or more classifiers that will output model-based meta-features 
[51] to be provided alongside other features to the meta-classifier, 
which computes a unified result. Different ways to combine ensembles 
of classifiers such as cascading, stacking, (weighted) voting, delegating, 
and arbitrating have been proposed through the years and recently 
summarized in [21]. Majority voting is used to combine results obtained 
by bagging and boosting ensembles. Stacking has been proven to be 
effective for combining ensembles of heterogeneous classifiers [52,53], 
whereas cascading, delegating, and arbitrating are not easy to orches-
trate and as a result have been used sparingly. In [54] authors conduct 
experiments and conclude that stacking outperforms voting for model 
combination, and has comparable classification performance with 
bagging. Conversely, combining ensembles of classifiers to obtain a 
unified class prediction is not trivial and does not always result in 
improved capabilities as some misleading classifiers may let the 
meta-learner lean towards a misclassification [52]. 

2.5. Machine learning for (Safety) critical systems 

The development of (safety-)critical systems relies on stringent safety 
methodologies, designs, verification, and validation activities to prevent 
the occurrence of catastrophic failures. These activities are regulated by 
various standards: ISO26262 and ISO/PAS 21,448 (SOTIF – Safety Of 
The Intended Functionality) for automotive, CENELEC EN5012x for 
railways, DO178x for avionics, and the general IEC61508 for generic 
hardware-software systems. Specifically for software development, the 
process ensures traceability across requirements, architectural and unit 
design, code, and verification. System-wise, the likelihood of critical 
failures should not exceed a specific threshold, usually a Safety Integrity 
Level (SIL). This is a system-level property, but it is tightly coupled with 
the behavior and the interconnections of individual components [7]. 
Thus, sub-systems or components – including classifiers - should be 
proven to have a rate of critical errors or failures below a specific 
threshold. Particularly, the SOTIF standard recognizes performance 
limitations of software (including and especially for ML-based compo-
nents) and expects that the scenarios/inputs that belong to 
unsafe-unknown (e.g., samples out of training distribution) and 
unsafe-known (e.g., samples out of operational design domain) situa-
tions shall be reduced to the extent that the frequency of mis-
classifications due to these events is considered acceptable [55]. This is 
very important as the robustness of classifiers to unexpected, or 
non-Independent and Identically Distributed (non-IID) data, is usually 
very challenging to achieve [10,56,57]. 

Importantly, critical systems are first designed with safety, security 
or reliability in mind. This means that the system has to be conceptu-
alized and designed in a way that does not expose users to critical 
hazards or threats. Once these properties are guaranteed, system ar-
chitects and engineers start optimizing desirable properties as avail-
ability and quality of service. This has an important cascading effect on 
the way classifiers can be integrated into a critical system: we don’t want 
classifiers that are always correct, but we favor those that have the least 
amount of misclassifications, especially those that have direct conse-
quences for the encompassing system. Having a high percentage of 
correct classifications is clearly desirable, but it is not a must-have 
condition for bringing classifiers into critical systems. 

3. Motivation and novelty of the paper 

In real-world applications and especially critical systems, the most 
common data type is tabular data, comprising samples (rows) with the 
same set of features (columns) monitored from a system. Thus, recent 
years have seen a growing interest of critical system architects and en-
gineers in exploring classifiers for solving complex problems including, 

but not limited to, anomaly-based error and intrusion detection. 
Deploying a classifier for a critical system is already very challenging 
due to compliance with standards. Moreover, designing, training, and 
testing classifiers that suit a given functional and non-functional re-
quirements is always a problem-specific task that requires many ex-
periments, sensitivity analyses, and fine-tuning which cannot be 
avoided. 

This paper aims to minimize the effort in devising the optimal 
tabular data classifier for a specific system and task. Although the no free 
lunch theorem (“there is no algorithm that can solve all optimization 
problems better than others” [58]) universally holds, we aim at identi-
fying a subset of classifiers that regularly (but not always) outperform 
others for anomaly-based error and intrusion detection, either for clas-
sification performance, faster training times or lesser resource (e.g., 
storage) consumption. Our comparison includes individual classifiers 
and ensembles that use diverse base-learners, and adequate 
meta-learning strategies. 

This study has obvious practical implications: reducing the set of 
candidate classifiers for building detectors is going to speed up experi-
mental analyses, allowing an early completion of the process, or freeing 
up time that could be used to fill documentation for standards compli-
ance. To accomplish that, we gather many tabular data classifiers, and 
exercise them alone and in conjunction, trying to reach clear and 
conclusive statements that build upon recent conjectures from various 
papers, most notably [9,17]. 

4. Comparison of tabular data classifiers 

This section compares individual classifiers on different tabular 
datasets that relate to binary and multi-class classification problems in 
critical systems. To accomplish that, we gather and preprocess 23 public 
datasets containing data monitored from ICT systems that report normal 
data points alongside data collected during the occurrence of errors, 
attacks, or failures (see Section 4.1). Then, we prepare tree-based, 
Tabular DNN and Image classifiers that will be exercised on each of 
the datasets above using a 50–10–40 train-validation-test split. Details 
on the classifiers and hyper-parameters are in Section 4.2. Lastly, we will 
collect metrics about the classification performance in Section 4.3. 

Experiments have been executed on a Dell Precision 5820 Tower 
with an Intel Xeon Gold 6250, GPU NVIDIA Quadro RTX6000 with 24GB 
VRAM, 192GB RAM and Ubuntu 18.04, NVIDIA driver 45.119.03 with 
CUDA 11. 

4.1. Error, attack and failure datasets 

There are a wide variety of data to be classified to improve ICT 
systems, ranging from devices data in Internet-of-Things (IoT) or In-
dustrial Control Systems (ICS), network data for intrusion detection, or 
hardware monitoring data. Amongst those many alternatives, we 
consider 23 datasets as data baseline for this study: 11 datasets of 
network intrusion detection, 5 datasets related to hardware monitoring 
for failure prediction, and 6 datasets related to error and anomaly 
detection in IoT and ICS systems. Table 1 summarizes the datasets 
involved in this study, reporting domain, name, year, number of data 
points, number of features, and categories of anomalies, errors or at-
tacks. All datasets are labelled, in CSV format, and were cropped to 200 
000 items for the feasibility of our study, which would have taken 
months of server execution otherwise. However, we exercise classifiers 
in a big portion of two datasets for big data performance analyses in 
Section 4.5. 

4.1.1. Network intrusion detection (NIDS) 
We selected labelled datasets on network intrusions looking in sur-

veys [59], Kaggle, UCI, Zenodo, IEEEDataport and other online portals. 
Our selection process resulted in the following datasets: ADFANet [60], 
AndMal17 [61], BAIoT Doorbell [62], CICIDS17 [63], CICIDS18 [63], 
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CIDDS [64], IoT Network [65], ISCX12 [66], NSLKDD [67], UGR16 
[68], UNSW-NB15 [69]. All those datasets report normal data points and 
data points collected while the system is under attack. Features are 
mostly numeric features extracted by monitoring network flows and 
packets (e.g., bytes received per second, number of packets). 

4.1.2. Hardware failure prediction 
Classifiers may also spot anomalies that could potentially anticipate 

the failure of hardware components. To include that, we gathered 
datasets related to performance monitoring of hard disks that label each 
data point as corresponding to failure if the monitored hard drive was in 
a fail state or going to fail thereafter. BackBlaze [70] makes many years 
of hard drive data available to the public, reporting labeled data related 
to many SMART indicators of hard drives, while another source of hard 
drive data came from the BAIDU [71] competition whose input datasets 
are still available for download. 

4.1.3. Error/Anomaly detection 
The last group of datasets we consider comes from IoT or ICS sys-

tems: a distributed control systems of a power plant controlling a turbine 
[72,73], malfunctions of metros in Portugal [74], railroad trucks 
equipped for sensors to monitor brake pressure [75], an edge device 
monitored for errors [76], the mechanical failure of electrical machinery 
in power plants [77], and a simulated multivariate time-series acquired 
by sensors on a SpectraQuest’s Machinery Fault Simulator [78]. 

4.1.4. Preprocessing 
We transform the tabular datasets into CSV files with a tabular 

structure. ISCX12, IoT Network, and UNSWNB15 are available only as a 
collection of monitored PCAP network packets, which we convert in CSV 
format using tshark. Then, we remove features that are specific of the 
setup that was followed to gather data, namely: Timestamp, ID, 

experiment number, if any. Those features should be disregarded for 
classification purposes as they carry information about the experiments 
to build the dataset: classifiers using these features may learn how ex-
periments were made instead of how the system behaves. 

The BackBlaze manufacturer provides data in CSV files aggregating 
three months of log data in each file. Each of these CSVs contains 
extremely unbalanced data with just a few failure logs (<0.01 %). To 
create the datasets for a specific year, we merged 4 CSV files referring to 
all the months of 2017, 2019, 2021, 2023 years and we down-sampled 
the normal observations to reach a balance of 98 % normal – 2 % 
failed data. Then, we zero-filled all blank values. This allows for miti-
gating the data imbalance problem and provide solid data for classifi-
cation. The error/anomaly detection datasets mostly come structured as 
single CSV files that are ready to be used for classification. The only 
exception being the MetroPT dataset, which contains separate files for 
different monitoring periods. To obtain a single dataset containing 
normal data plus OilLeak and AirLeak failures we concatenate 3 
different files containing i) only normal data, ii) normal data plus Oil-
Leak data, iii) normal data plus AirLeak. 

4.2. Classifiers and hyper-parameters 

Our experimental campaign compares classifiers belonging to three 
groups: traditional (non-DNN) supervised classifiers, tabular DNN clas-
sifiers, and image DNN classifiers that we apply after transforming 
tabular data points into images. 

4.2.1. Traditional supervised classifiers 
According to the results in [20], we selected non-DNN supervised 

classifiers that are known to have good classification performance. We 
ended up selecting eight classifiers, briefly described in the following. 
For each classifier, we include an acronym, that we will use in the rest of 
the paper.  

• A Decision Tree (DT, [79]) learns simple decision rules inferred from 
the data features, by building a tree that can be seen as a piecewise 
constant approximation.  

• Random Forests (RF, [35]) is a combination of Decision Trees 
through Bagging, which independently samples random vectors with 
the same distribution for all trees in the forest, and aggregates results 
by voting or averaging.  

• XGBoost (XGB, [80]) is an optimized gradient boosting method, i.e., 
gives a prediction model in the form of an ensemble of weak learners 
called decision stumps.  

• ExtraTrees (ET, [36]) is an ensemble of randomized decision trees (a. 
k.a. extra-trees) that are fit on various sub-samples of the dataset and 
– similarly to Random Forests - use averaging to improve the pre-
dictive accuracy and control over-fitting. 

• LogitBoost (LB, [81]) is a boosting algorithm based on additive lo-
gistic regression, where the objective is to minimize the logistic loss 
trough subsequent training of weak logistic regression models.  

• Naïve Bayes (GNB, [82]) exploits the Bayes’ theorem under the naïve 
assumption that the features are conditionally independent, given 
the target class, to build a classifier.  

• Logistic Regression (LR, [82]) is a statistical supervised classifier that 
models the logit of an event as a linear combination of one or more 
independent variables.  

• Linear Discriminant Analysis (LDA, [83]) assumes that all classes are 
linearly separable. Then, multiple linear discrimination functions (i. 
e., Fisher’s Discriminants) representing hyperplanes in the feature 
space are created to distinguish the classes. 

Most of these classifiers can be run using scikit-learn, xgboost, logi-
tboost libraries with default parameters and minimal customization, 
avoiding potential misconfigurations by the user. Thus, we will not be 
performing sensitivity analyses to choose the optimal value of 

Table 1 
Name, release year, number of attack types, number of portions, and the amount 
of ordinal features f of used datasets.  

Domain Dataset 
Name 

Year Categories of 
Anomalies 

# 
Features 

Number of 
Data 
Points 

Network 
Intrusion 
Detection 

ADFANet 2015 5 3 132 002 
AndMal17 2017 4 75 100 522 
BAIoT 
Doorbell 

2018 5 115 75 165 

CICIDS17 2017 4 75 200 000 
CICIDS18 2018 5 75 200 000 
CIDDS 2015 4 7 200 000 
IoT Network 2019 9 8 210 425 
ISCX12 2013 4 6 200 000 
NSLKDD 2009 4 37 148 517 
UGR16 2016 5 7 207 256 
UNSW-NB15 2015 8 38 165 461 

HW Monitor BackBlaze 
2017 

2017 1 50 32 678 

BackBlaze 
2019 

2019 1 44 47 525 

BackBlaze 
2021 

2021 1 37 44 950 

BackBlaze 
2023 

2023 1 35 70 512 

BAIDU 2017 1 12 186 049 
Error / 

Anom. 
Detection 

Arancino 
Device 

2023 9 119 154 000 

HAI Pressure 2019 1 54 200 000 
HAI ICS 2023 1 224 54 000 
MAFAULDA 2018 1 8 200 000 
Mechanical 
Failure 

2018 1 18 7 906 

Metro PT 2022 2 20 173 824 
Scania 
Trucks 

2016 1 170 76 000  
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Table 2 
MCC Scores for each classifier in each of the datasets. Average MCC and training time (in seconds) at the bottom.    

Traditional Supervised (non-DNN) Tabular DNN Image DNN 

Domain Dataset Name GNB LDA LR DT RF XGB ET LB FAI TN NODE Tnet GATE CE DI_ PCA DI_TSNE DI_MN DI_MNIST 

Network Intrusion Detection ADFANet .477 .124 .695 .903 .904 .905 .903 .904 .070 .050 .437 .250 .310 .484 .875 .864 .458 .105 
AndMal17 .014 .049 .022 .557 .511 .459 .543 .203 .176 .000 .000 .000 .199 .153 .143 .142 .000 .000 
BAIoT Doorbell .855 .998 .000 1.0 1.0 1.0 1.0 1.0 .998 .926 .880 .636 .935 .937 .999 .999 .998 .483 
CICIDS17 .618 .849 .667 .995 .996 .998 .990 .983 .947 .922 .940 .764 .910 .939 .958 .956 .950 .381 
CICIDS18 .760 .852 .736 .889 .899 .905 .895 .906 .896 .881 .891 .459 .892 .896 .896 .896 .898 .510 
CIDDS .187 .011 .337 .976 .976 .976 .975 .968 .468 .482 .664 .465 .684 .443 .799 .812 .482 .017 
IoT Network .128 .501 .286 .959 .959 .960 .959 .964 .871 .803 .682 .534 .766 .851 .830 .871 .866 .098 
ISCX12 .120 .004 .025 .861 .868 .867 .867 .753 .517 .026 .348 .003 .558 .580 .560 .566 .397 .000 
NSLKDD .280 .872 .633 .992 .996 .996 .995 .986 .991 .979 .941 .909 .971 .970 .984 .984 .979 .664 
UGR16 .043 .000 .004 .879 .884 .883 .883 .790 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 
UNSW-NB15 .253 .427 .076 .706 .729 .717 .733 .615 .648 .565 .545 .413 .470 .598 .587 .621 .588 .000 

HW Monitor BackBlaze 2017 .499 .439 .000 .481 .642 .641 .642 .629 .624 .470 .618 .527 .596 .459 .514 .576 .573 .000 
BackBlaze 2019 .470 .436 .000 .506 .662 .669 .636 .659 .587 .479 .578 .272 .580 .445 .554 .631 .558 .000 
BackBlaze 2021 .442 .379 .000 .718 .773 .765 .793 .660 .676 .449 .525 .227 .382 .555 .660 .629 .604 .000 
BackBlaze 2023 .299 .375 .000 .692 .765 .784 .770 .704 .607 .575 .546 .354 .010 .547 .654 .631 .604 .000 
BAIDU .791 .792 .834 .995 .995 .996 .996 .983 .990 .968 .963 .948 .973 .982 .990 .988 .981 .566 

Error / Anom. Detection Arancino Device .116 .579 .344 .686 .774 .793 .808 .664 .720 .641 .626 .469 .683 .640 .660 .593 .579 .123 
HAI Pressure .749 .785 .788 .964 .984 .983 .992 .888 .985 .940 .872 .818 .971 .973 .964 .971 .955 .000 
HAI ICS .614 .617 .630 .946 .958 .952 .979 .796 .961 .848 .838 .587 .947 .938 .945 .943 .842 .000 
MAFAULDA .657 .000 .000 .793 .867 .884 .874 .785 .884 .859 .713 .000 .841 .723 .866 .864 .798 .158 
Mechanical Failure .765 .798 .780 .606 .849 .849 .470 .881 .816 .000 .780 .000 .000 .472 .745 .798 .248 .000 
Metro PT .755 .795 .814 .981 .992 .994 .993 .897 .906 .823 .785 .725 .823 .870 .846 .896 .845 .218 
Scania Trucks .538 .723 .643 .706 .788 .807 .780 .762 .718 .383 .539 .026 .706 .438 .731 .670 .614 .000 

Average MCC .454 .496 .362 .817 .861 .860 .847 .799 .698 .568 .640 .408 .618 .648 .729 .735 .644 .144 
Average Train Time (s) < 0.1 < 1 116 1 7 10 8 77 51 64 32 54 1882 31 108 133 967 276  
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parameters of these classifiers, and just use them with their default pa-
rameters. An exception is represented by GNB, which requires scaling 
the value of dataset features for optimizing the decision boundaries. 
Also, LR delivered many warnings about a failed convergence using its 
default setup. Thus, we ran grid searches with HyperOpt [84], which uses 
Bayesian optimization and has pre-built interfaces for many classifiers in 
scikit-learn. Even in this case, we could not avoid this problem of failed 
convergence in all cases; however, the combination of parameters that 
minimized them was using solver = ’sag’, max_iter = 1000 and tol =
0.001. 

4.2.2. DNN for tabular data 
After surveying recent works and frameworks, we selected a set of 6 

DNNs for tabular data using six different frameworks.  

• FastAI (FAI [13]), used through the implementation available for 
tabular data autogluon-tabular, available at https://auto.gluon. 
ai/stable/api/autogluon.tabular.models.html#autogluon.tabular. 
models.NNFastAiTabularModel). FastAI is a deep learning library 
that automates the creation of models; it includes a set of optimi-
zations that are automatically selected to apply DNN on tabular data.  

• TabNet [11] (Tnet, pytorch-tabnet implementation at https://drea 
mquark-ai.github.io/tabnet/) is a DNN for tabular data which, 
amongst the innovative aspects, uses sequential attention to choose 
which features to reason from at each decision step.  

• NODE [12] (pytorch-tabular implementation https://pytorch-tabular. 
readthedocs.io/en/latest/models/) is a DNN which exploit ensem-
bles of oblivious decision trees, in a CatBoost-like fashion.  

• GATE [85] (pytorch-tabular implementation) exploits a gating 
mechanism as a feature representation learning unit with an in-built 
feature selection mechanism. The authors combine it with an 
ensemble of differentiable, non-linear decision trees, re-weighted 
with simple self-attention to predict the desired output.  

• Category Embedding (CE, pytorch-tabular implementation) is a feed- 
forward network where the categorical features are embedded 
through a learnable embedding layer.  

• TabNet from Pytorch-tabular: the library Pytorch-tabular includes 
another implementation of TabNet, which we include as well (TN). 

The DNNs above use the following hyperparameters:  

• FastAI performs an internal hyper-parameter optimization process, 
which is connected to the pre-processing and feature learning stages 
in the early steps of the training process.  

• For Tnet, we ran grid searches with 54 combinations of the following 
parameters and values:  
• Learning rate [e − 5, e − 3, e − 1],  
• Batch size [128, 256, 512]; bigger batch sizes were likely to create 

GPU memory issues,  
• Max Epochs [20,50, 100],  
• patience (for early stopping) [2,5]. 

The pytorch-tabular framework does not allow setting patience, thus 
we discarded that option for TN, performing grid searches only on other 
parameters (total of 27 combinations).  

• For NODE and GATE we used the values of parameters suggested in 
the respective studies [12,85], as authors explain that they provide a 
good tradeoff between classification speed and classification 
performance.  

• CE was set to use the following parameters:  
• Learning rate [e − 5, e − 3, e − 1],  
• Layers [1024–512–256, 512–256–128] 

For each classifier and each dataset, we selected the configuration 
that ended up having the highest MCC (see Section 4.3) on the validation 

set. 

4.2.3. DNN for image classification 
We first explain the setup of DeepInsight. As already motivated in 

Section 2.2, tabular datasets related to errors, intrusions, and failures of 
systems do not usually have thousands of features. Thus, it does not 
make sense to transform tabular data into big images. Ideally, we want 
our informative content to be readily available to classifiers instead of 
being scattered far away in big images. Thus, we set DeepInsight to 
convert tabular data into images of 32 × 32 × 3 size, using either t-SNE 
or PCA in the process. Then, we design a custom DNN composed of a 
conv2d 32 × 32 × 3 layer, output, a batch normalization, maxpoo-
ling2d, flattening step, a dense layer of size 32, a dense layer of size 16, 
and then a final layer that has the same number of neurons as the 
number of classes of the problem. To limit overfitting, we employ a 20 % 
dropout between dense layers. These classifiers are called DI_TSNE and 
DI_PCA, depending on whether the tabular-to-image process uses t-SNE 
(DI_TSNE) or PCA (DI_PCA). 

Then, we are interested in having classifiers that are not trained from 
scratch, but that transfer learn from existing models trained on common 
benchmark datasets. Out of the many available models, we opt for small 
DNNs as MobileNetV3 since, again, the information density in images 
obtained by DeepInsight may be scarce and thus using a complex DNN 
may i) be classification overkill, and ii) result in a training process that 
overfits on the training set, having very good train loss but poor clas-
sification performance on a different test set. We use imagenet weights 
from Keras with the smallest image size (128) available, which is also 
the target image size we set DeepInsight to work on in this specific case. 

Last, we create a classifier that transfer learns from a DNN from 
MNIST, which is an old and well-known benchmark dataset of 28 × 28 

Fig. 2. MCC scores of Supervised (blue bar), tabular DNN (orange-sliced bar) 
and image DNN classifiers (empty bar with gray border) on each dataset in 
the study. 
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images. The resulting classifier DI_MNIST will load weights from a 
model trained on MNIST [86], and top it with a single dense layer with 
as many neurons as the number of classes in the problem (which are 
always less than 10 in our datasets). This last classifier is the only one 
that processes 2D-pixel maps and uses a simpler model than DI_MN: it 
will not likely overfit during re-training, but it may not be complex 
enough to catch all the nuances of a tabular classification task. 

4.3. Evaluation metrics 

Classification performance is usually measured through the confu-
sion matrix and compound metrics such as accuracy, i.e., the fraction of 
correct predictions over all predictions. However, accuracy (ACC) may 
deliver misleading results when datasets are unbalanced [87,88], which 
happens frequently in error and intrusion detection: therefore, we will 
mostly rely upon the Matthews Coefficient (MCC), which does not suffer 
of the above problem and has a flexible formulation that scales well to 
both binary classification and multi-class classification problems. 

4.4. Results and discussion 

Exercising the experimental methodology led to a massive amount of 
results about the classification performance of different classifiers. We 
examine these results using Table 2 and Fig. 2. 

Table 2 shows MCC scores achieved by each traditional (non-DNN) 
supervised, tabular DNN, and image DNN classifier on each of the 23 
datasets considered in this study. The two rows on the bottom of the 
table report the average of these MCCs over datasets, and the average 
training time (in seconds) required to train these models. Traditional 
tree-base classifiers DT, RF, ET, XGB and LB show the best classification 
performance with an average MCC over 0.8 and typically require only a 
few seconds to train (e.g., an average of 10 s is needed to train an XGB 
classifier). Classifiers as LR. GNB and LDA show very fast training times 
(often below one second), but they output more misclassifications than 
their competitors, thus they have a sub-optimal MCC. MCCs of tabular 
DNNs appear in the middle of Table 2, with FastAI having the highest 
MCC of the group. GATE is the classifier that takes the most time to train 
(1882 s), with an MCC that is inferior to those of other tabular DNNs 
and, consequently, of tree-based supervised classifiers. 

Image classifiers applied after tabular-to-image conversion take 
more time to train compared to tabular DNN classifiers. DI_PCA and 
DI_TSNE, the image classifiers trained from scratch, have higher MCC 
than any tabular DNN. Image classifiers obtained using transfer learning 
from the MobileNet model (DI_MN) perform similarly to tabular DNNs 
ad CE or NODE, but take far more time for training (average of 967 s for 
DI_MN against 31 and 32 for CE and NODE, respectively). The DI_MNIST 
classifier shows poor classification performance as the transfer learning 
process often results in learning a model that always predicts the same 
class, thus obtaining many MCC = 0 (see last column of Table 2). This is 
probably due to the trivial complexity of a network trained on MNIST 
and having only an additional dense layer on top. 

Generally speaking, whenever a classifier shows an MCC = 0 in 
Table 2 it means that the training process did not converge to a model 
that is capable of classification. This happens quite frequently with 
DI_MNIST (as discussed above), but also occurs for LR in all BackBlaze 
datasets due to the extremely low amount of “anomalous” data point 
instances (approximately 2 %), which is a well-known weakness of this 
classifier [89]. Poor classification performance can be observed for the 
UGR16 dataset, where all DNNs have an MCC of 0. Our explanation is as 
follows: while training tabular and image DNNs, the validation loss is 
gradually converging to the final value, but has an erratic behavior 
instead. Changing the loss function allows for not having an MCC = 0 in 
this dataset, but worsens the classification performance in all other 
datasets. Thus, we decided to keep results as in Table 2. 

Another viewpoint on these experimental results is provided by 
Fig. 2, which is a bar chart that reports, for each dataset, MCC scores of 

RF, FastAI, DI_TSNE, which have the highest average MCCs of 0.861, 
0.698, 0.735 in their respective categories (traditional supervised, 
tabular DNN, image DNN). While average scores in Fig. 2 provide a first 
view of classification performance, it is beneficial to look at the scores on 
each dataset to get insights and explain specific trends. Particularly we 
can observe that the blue solid line of RF is always the longest, or it 
always shows the best MCC (often on par) on each dataset. The only 
counter-example is the MAFAULDA dataset, where FastAI slightly out-
performs RF. However, even if not shown in the bar chart for brevity, 
XGB outperforms both RF and FastAI in MAFAULDA. The direct conse-
quence of this observation is highlighted below. 

Takeover 1. DNNs never outperform tree-based supervised classifiers 
in intrusion/error/anomaly detection datasets used in this study. 

Moreover, it turns out evident that there are datasets in which the 
superiority of RF against FastAI and DI_TSNE is astounding: it is the case 
of AndMal17, ISCX12, UGR16 and, to a lesser extent, ADFANet and 
CIDDS (especially comparing against FastAI). All these datasets report 
on packet or network flow data for intrusion detection, and have a 
normal class plus many labels corresponding to attacks: 4 for CIDDS, 
AndMal17 and ISCX12, 5 for ADFANet and UGR16. Also, they have a 
varying number of features that ranges from 3 (ADFANet) to 75 (And-
Mal17). However, other datasets such as CICIDS18 have labels corre-
sponding to 5 attacks and 75 features – thus comparable with those 
above – but the classification performance of RF, FastAI, and DI_TSNE is 
very similar. Thus, the difference in classification performance between 
these three classifiers is not solely due to the number of features nor to 
the number of classes of the problem. Also, the difference in the UGR16 
dataset is due to the training phase of DNNs not converging at all, 
resulting in a model that is always predicting the normal class for any 
data point, thus MCC = 0, or random guessing for a 6-class problem. 
When this happens, it is usually a matter of DNN structure or values of 
the hyperparameters, including loss function, epochs, batch size, stop 
conditions, or even pre-processing of data (e.g., normalizing). However, 
the structure of tabular DNNs is either automatically devised by 
frameworks or coded to be optimal for classifying tabular data, and the 
grid searches we ran using different values for hyperparameters did not 
lead to better performance. Thus, the failed convergence of DNNs could 
be due to many different problems that are not easy to address and lead 
to our Takeover 2. 

Takeover 2. DNNs have many hyperparameters that should be 
assigned after fine-tuning through tailored and algorithm-specific 
sensitivity analyses. These may be very time-consuming and require 
domain-specific knowledge that may be not available or costly. 

This is another reason why tree-based classifiers, which require 
minimal parameter tuning (e.g., number of trees in a RF, max depth of 
trees) and build models that are easier to understand [90], should be the 
preferred choice when classifying tabular data. 

4.5. Is it a matter of data size? 

These results may raise legitimate questions about the impact of the 
size of the training set used in experiments. The expectation is that DNNs 
would perform better when more features or more training data are 
available since they are complex models with potentially millions of 
weights. Providing more data is not always the solution and may result 
in overfitting; on the other side results in the previous section may be 
subject to underfitting. 

Thus, we re-ran the classifiers that had better classification perfor-
mance from the previous section using subsets of the ISCX12 and 
MAFAULDA datasets containing a growing amount of data points, 
having a train set size of {1 000, 2 000, 5 000, 10 000, 20 000, 50 000, 
100 000, 200 000, 500 000, 1 000 000}. We chose these two datasets as 
they belong to two different domains and are big enough in their raw 
formulation to extract up to almost two million data points (train, 
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validation, and test). Also, while for ISCX12 there is a clear difference 
between the performance of tree-based classifier and DNNs, for 
MAFAULDA the classification performance is almost on par. 

The results of this study are in Fig. 3, which reports 6 plots. From left 
to right of the figure, we observe the evolution of MCC scores, train time 
(ms) and model size (MB) while using training sets of growing size for 
ISCX12 (up in the figure, Fig. 3a to Fig. 3c) and MAFAULDA (Fig. 3d to 
Fig. 3f). Compared to results on the 100 000 x-axis mark, which were 
presented in the previous section, we can observe quite common trends 
for all classifiers. All of them generally had a higher MCC when trained 
using big train datasets (aside from small fluctuations), meaning that all 
classifiers still had room to learn without overfitting on the training set 
(see Fig. 3a, Fig. 3d). Trends observed while using a training set of 100 
000 items hold also using bigger train sets: there is no competitor that 
was behind others using smaller train sets and jumps ahead when using 
big datasets. 

Takeover 3. DNNs do not outperform tree-based ensembles even 
when processing “big data” tabular training datasets. While the size of 
the training set matters for the overall classification performance, using 
training sets containing more or less items does not change the relative 

ordering of classifiers for a specific problem (using MCC as reference) 

The train time in Fig. 3b and Fig. 3e, and the model size in Fig. 3c and 
Fig. 3f grow homogeneously, without showing erratic trends nor 
anomalous spikes. Whereas the size of the model learned at the end of 
the training phase is very classifier-dependent, it is easy to observe how 
the training time required by DNNs (both tabular and image) is at least 
an order of magnitude more compared to tree-based classifiers, even 
using a server with adequate computing resources. 

Takeover 4. DNNs take at least an order of magnitude (10x) more time 
for training than tree-based ensembles. Tabular DNNs are on average 
faster than image DNNs trained on images converted from tabular data 
points using DeepInsight. 

5. Classifier ensembles and meta-learning 

Whereas it is pretty clear that tree-based classifiers outperform DNN 
classifiers for tabular data, we want to take our analysis one step further. 
Instead of considering DNNs and tree-based classifiers as challengers, we 
conjecture that they may team up particularly well and build anomaly- 
based error and intrusion detection with potentially lower 

Fig. 3. Evolution of MCC scores (left), train time (center), model size (right) for varying train sizes. On top of the figure (4a, 4b, 4c) are results for ISCX12, bottom 
(4d, 4e, 4f) are results for MAFAULDA. 

Fig. 4. MAND (left) and MAND* (right) classifiers for combining different classifiers and enhance error and intrusion detection.  
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misclassifications than considering them individually. To test our conjec-
ture, we craft ensembles that include a tree-based classifier and a tabular 
DNN as base-learners. The classifiers above guarantee model diversifica-
tion [48] of our ensemble: trees and DNNs are conceptually diverse since 
they i) build different models, ii) only DNNs learn complex features during 
training, and iii) decision trees are often used to build ensemble classifiers, 
whereas DNNs contain a single strong model for classification. On the 
negative side, providing the same data to trees and tabular DNNs does not 
guarantee strong data diversification, albeit tree-based ensembles perform 
bagging or boosting processes that implement a weak type of data diver-
sification. As such, we foresee the usage of a third base-learner: an image 
DNN that performs image classification which we apply to tabular data 
after transforming data points to images. 

Then, we combine the three base-learners using a meta-learning 
strategy. Obviously, this creates two levels of classification which are 
sequential by design: thus, the prediction time of the meta-classifier 
should be fast enough to avoid additional timing overheads to the 
error and intrusion detection tasks, which often operate in systems that 
deal with (hard) real-time settings [29,91]. We extract the following 
model-based features by processing the class probabilities provided by 
each classifier in the ensemble:  

• probas: the array of probabilities  
• maxp: the maximum probability assigned to any class;  
• ent: the entropy of the array of probabilities;  
• class: the class corresponding to the argmax of probabilities. 

In a binary classification problem, the maxp and ent quantities 
convey the same information. However, this formulation applies to both 
binary and multi-class problems, for which the two quantities carry 
different information. 

This conceptualization opens two possible design patterns for an 
ensemble classifier (see Fig. 4). The meta-classifier may use i) model- 
based features only, or ii) dataset features plus model-based features. 
The former approach builds a MAND (enseMble of trees ANd Dnns) 
classifier, while the latter ensemble classifiers are referred to as MAND*. 
Both classifiers are based on the Stacking architecture that was first 
presented by Wolpert in [22]. 

6. Ensemble assessment 

The methodology for exercising MAND and MAND* classifiers uses 
the same datasets and the same classifiers in Section 4. This allows for 
comparisons and minimizes the risk for biasing experiments in one way 
or another. 

6.1. Choice of the base-learners 

MAND and MAND* classifiers require a set of three base-learners: a 
tree-based ensemble, a tabular DNN and an image DNN. Results from 
Section 4.5 can already suggest good candidates and classifiers that may 
be avoided as they have very poor classification performance. This is the 
case of LDA, LR, DI_MNIST, TN, whose average MCC in Fig. 2 is lower 
than 0.6. Moreover, we do not consider LB as a good candidate for su-
pervised classifiers as it is similar to XGB but has lower classification 
performance. DT and GNB are left out as well since the first base-learners 
for MAND and MAND*ensembles has to be a tree-based ensemble. We 
also avoid the usage of NODE, which already constitutes a mixture of 
neural networks and decision trees and as such it may behave very 
similar to tree-based ensembles. 

While this selection process guarantees the choice of different clas-
sifiers, there are no guarantees that they are diverse i.e., their output is 
really diverse for a relevant set of predictions. Thus, we compute the 
disagreement metric from [47], which authors define as “the ratio be-
tween the number of observations on which one classifier is correct and 
the other is incorrect to the total number of observations”. This can be 
easily obtained by using the results from Section 4, simply comparing 
predictions of couples of classifiers with respect to the label. Result in 
Table 3 show that the disagreement between classifiers from the same 
group is generally low: lower than 0.02 for tree ensembles (top left of the 
table), lower than 0.07 for tabular DNNs (center of the table) and lower 
than 0.04 for image DNNs (bottom right of the table). However, we can 
notice how FastAI and Tnet have very high disagreement compared to 
tree ensembles and, to a lesser extent, with image DNNs. The expecta-
tion is that MAND and MAND* ensembles using these two tabular DNNs 
have the best potential to outperform individual classifiers as they 
guarantee more behavioral diversity (i.e., disagreement) compared to, 
for example, GATE and CE. 

6.2. Choice of meta-classifiers 

As motivated in Section 5, the meta-classifier for MAND and MAND* 
ensembles should add a minimal overhead to the prediction process; 
thus, it has to be implemented as a rather simple function. Our options 
are the followings:  

• A stacking [22,52] meta-level classifier: DT and statistical classifiers 
as GNB and LDA, which we excluded from base-learners, are fast and 
have good classification performance. We call these meta-classifiers 
c:DT, c:GNB, c:LDA. 

Table 3 
Disagreement between couples of classifiers to be used as base-learners for MAND and MAND* ensembles.  
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• Alternatively, the meta-classifier may be i) a simple majority voter 
(vot), ii) an aggregator of probabilities e.g., average (avg), or iii) a 
selection of the most confident of the three learners (conf, i.e., the 
output of the ensemble is the output of the most confident of the 
three base-level classifiers [92]). 

6.3. Experiment execution 

Experiments used the same software and hardware used in Section 4. 
Overall, we gathered a total of 36 combinations of base learners (3 

supervised classifiers, 4 tabular DNN, 3 image DNN, 3 * 4 * 3 = 36) for 
creating MAND classifiers using each of the 6 meta-level strategies, for a 
total of 36×6 = 216 MAND classifiers. Also, we created 36×3 = 108 
MAND* classifiers, letting the meta-learners c:DT, c:GNB, c:LDA learn 
from both dataset features and features proba, maxp, ent, label from each 
of the 3 base-classifiers. Noticeably, using vot, avg, conf meta-learners 
makes MAND and MAND* classifiers behave the same, thus we did 
not repeat these experiments. We compute metrics from previous ex-
periments for each MAND and MAND* classifier and repeat the 
computation of the disagreement metric for groups of three classifiers 

Table 4 
MCC scores of different MAND and MAND* classifiers varying base learners and meta-classifiers.  

Table 5 
Feature importance assigned by meta classifiers in building MAND and MAND* ensembles.  
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instead of couples. Also, we compute the importance each feature has in 
building c:DT, c:GNB, c:LDA; this applies to MAND and MAND* classi-
fiers, which will use features differently during their learning process i. 
e., MAND* classifiers also use dataset features. This will allow us to 
explain why MAND and MAND* have specific behavior and contribute 
to the overall discussion. 

6.4. Classification performance of mand and MAND* 

Most of the results of the experiments performed in this section are 
summarized in Table 4. From left to right and for each combination of 
base learners, the table shows the disagreement between the three base 
classifiers (the higher, the more diverse two classifiers are) and the MCC 
scores averaged on all datasets using a specific meta-classifier. We 
painted the background of the table with a gradient of green color: the 
darker, the higher the average MCC. This makes evident that the highest 
MCC (or better classification performance) is due to using either c:DT or 
c:LDA as meta-classifiers: other options are not as good as these two. 
There are 4 distinct combinations of base classifiers and meta-classifiers 
that allow MAND and MAND* ensembles to reach the best MCC of 0.864 
in the table, and all use RF and DI_PCA. 

Base-classifiers in Table 4 are sorted from top to bottom according to 
a decreasing disagreement score: the expectation is that base-classifiers 
close to the top of the table will build MAND and MAND* classifiers that 
have better classification performance as they use diverse classifiers. 
However, this expectation is not confirmed by results, leading to Take-
over 5. 

Takeover 5. The disagreement metric is not a good indicator of good 
classification performance of ensembles. The best MAND and MAND* 
classifiers are simply those that use base-learners that have excellent 
classification performance (RF in this case). 

Section 4.5 already discussed classification performance of individ-
ual classifiers, seeing that RF, FastAI, DI_TSNE, had the highest average 
MCCs of 0.865, 0.703, 0.729 in their respective categories (supervised, 
tabular DNN, image DNN). Table 4 tells us that no matter how hard we 
try to combine base learners and meta-classifiers, even the best MAND 
and MAND* classifier does not exceed the MCC of 0.865 of RF. There’s 
more: no MAND and MAND* classifier using XGBoost exceeds 0.855, 
while XGBoost alone has an average MCC of 0.859; same for ET, who has 
an MCC of 0.855 alone, with MAND and MAND* ensembles using ET 
that reach at most 0.845. 

Takeover 6. There is no benefit in using tabular classifiers other than 
tree-based ensembles. This is true for classification performance of 
classifiers alone, and also when crafting complex classifiers using 
ensembles. 

Summarizing, there is no overall benefit in combining different (and 
diverse) classifiers when classifying tabular data. We are aware that this 
goes against intuitions of solid papers in the past, but we believe that 
these results will finally make a conclusive statement on this research 
direction, letting researchers focus on other topics and using our results 
as a baseline to speedup future experimental studies. 

6.5. Importance of features for the meta-classifier 

While the results presented in the previous section clearly show that 
ensembling is pointless in this context, we are still interested in under-
standing why. A useful insight is provided by the importance given to 
each feature by the meta-classifiers that aggregate scores of base 
learners through another independent classifier: c:DT, c:LDA, c:GNB. 
Table 5 quantifies the importance each feature has in learning the model 
of the meta-classifier for MAND and MAND* ensembles, averaged over 
all triples of base learners and all datasets. All ensembles use proba, label, 
maxp, ent features from each of the three classifiers: clf1) tree-based 
ensemble, clf2) tabular DNN, clf3) image DNN; additionally, MAND* 

ensembles use also dataset features. The right of the table we report 
totals, where we aggregate the importance given to all features related 
to clf1, clf2, clf3 into a unique cumulative value. 

This is very helpful for identifying how the final decision of MAND 
and MAND* ensembles is produced. In case of MAND, the decision is 
mostly due to the output of the tree-based ensemble (see the column 
total-clf1 in the first three rows of Table 5). In this situation, the MAND 
will behave almost exactly as the tree-based ensembles, with a very poor 
likelihood of making other decisions. For MAND*, the decision is pri-
marily taken using dataset features but, when using c: lda and c:gnb as 
meta-classifiers, it accounts also for results of clf1, clf2 and, to a lesser 
extent, clf3, the image DNN. On paper, this gives fair importance to all 
base learners and dataset features, setting the ensemble for success. 
However, as already discussed in the previous section and in Table 4, 
MAND* ensembles never achieve peak classification performance. For 
these ensembles, we can conclude that diversity in the base-learning 
process is more confusing than helpful as it leads to more mis-
classifications instead of lowering them. 

7. Threats to validity and reproducibility 

Internal validity is concerned with factors that may have influenced 
the results, but they have not been thoroughly considered in the study. A 
first threat is due to the usage of public datasets, since a poor choice of 
datasets may invalidate the results [93]. To mitigate this risk, we used 
many datasets (23) for intrusion and error detection, that have been 
created from diverse systems by diverse authors. These are very 
well-known datasets, and they are largely studied and used by the sci-
entific community. The usage of many dataset is a key to mitigate in-
dividual bias and guarantee validity of our results. 

Another concern is that classifiers have hyperparameters whose 
tuning critically affects results. To find the appropriate tuning, we 
exercised sensitivity analyses for the main parameters of DNN classifiers 
considered in this study plus GNB and LR classifiers, using the HyperOpt 
[84] library for the latter algorithm. Third, each classifier may 
encounter a wide variety of problems when learning a model for each 
dataset during training (e.g., under/overfitting, poor quality of features, 
feature selection to leave out noisy features). We believe that these 
events are mostly situational and do not have a noticeable impact when 
looking at the detection performance of the same classifier or ensemble 
of classifiers over a span of many datasets. Another concern is the po-
tential lack of computational resources. The proper configuration and 
execution of classifiers is unavoidably linked to the availability of suf-
ficient computational resources. The resource usage of the classifiers has 
been properly monitored, so that we can guarantee that exhaustion of 
resources, especially RAM and GPU memory, was never experienced 
during our experiments. 

An important threat to the internal validity relies upon the fairness 
of the evaluation due to possible biases that authors of the paper may 
have due to conflict of interest that may shift the preference from a 
classifier to another, or cherry-picking specific results to support a 
personal belief. Authors of the paper are not authors nor know any of the 
creators of the classifiers presented herein, and use them as independent 
researchers. Thus, there is no conflict of interest and there will be no 
reason for us to favor a classifier or another. Results and discussions 
presented here are solely based on our observations over a span of many 
years in different scenarios and research projects, and climax here to 
help the scientific community grow. Also, our observations are in no way 
intended to discredit others’ work. 

External validity. We cannot claim the validity of this study beyond 
anomaly, error and intrusion detection for tabular datasets. However, 
the methodology applied in this study suits any binary and multi-class 
classification problem without really relying on any assumption that is 
specific to error and intrusion detectors. Therefore, we expect our results 
to generalize well to other datasets and case studies for which the 
classification of tabular data is a relevant task. An exception may be 
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represented by microarray datasets [94], where the number of features 
exceeds the number of data points. 

The usage of public data and public tools to run classifiers was a 
prerequisite of our analysis to allow reproducibility and to rely on 
proven-in-use data. We publicly shared scripts, methodologies, and all 
metric scores, allowing any researcher or practitioner to repeat the ex-
periments. We do not use any custom or private dataset: all datasets are 
referenced in the papers, and all code is available at https://github.com/ 
tommyippoz/MANDALA [95]. The folder “tests” of the GitHub above 
contains all scripts and data needed to reproduce results presented and 
discussed in the paper. 

8. Concluding remarks 

Whereas the popularity of image classification and robustness to 
adversarial attacks has never been higher, the classification of (big) 
tabular data gathered after monitoring activities of ICT systems is still 
one of the most important challenges that still lacks key contributions. 
One of the biggest problems is the setup of anomaly-based error and 
intrusion detection in critical systems, which is a tedious, time- 
consuming, and difficult process that may not even reach satisfactory 
classification performance, making companies and stakeholders reluc-
tant to adopt classifiers at all. 

Our study summarized the main features of anomaly-based error and 
intrusion detectors for critical systems, and conducted experimental 
campaigns that analyzed, compared, and discussed the performance of 
different classifiers on a total of 23 public datasets, even ensembling 
different classifiers seeking an improvement of classification perfor-
mance compared to baselines. We used a wide set of classifiers, ranging 
from traditional supervised classifiers to tabular DNNs to image DNNs 
that we applied after transforming tabular data into images. 

The conclusions of our study, highlighted by Takeovers 1 to 6 
throughout the paper, allow debunking the problem of crafting a su-
pervised anomaly-based error and intrusion detector for a given system. 
Classifiers using Decision Trees (tree-based ensembles) as bagging and 
boosting classifiers outperform DNNs, are faster to train, and have a very 
small set of hyperparameters that are easy to understand and tune. 
Ensembling tree-based classifiers and DNNs did not lead to any 
improvement in classification performance, nor did the usage of image 
DNNs after data transformation. These observations hold for all datasets 
used in this study, and there is no reason to think that our conclusions 
will not hold for other tabular (big) data classification problems. 

We believe that this study could provide a solid baseline upon which 
practitioners willing to solve a specific tabular data classification 
problem could rely to guide the design and implementation of their 
solution. Anomaly-based error and intrusion detection in tabular data 
should be carried out through tree-based ensembles disregarding DNNs 
– either tabular DNNs or image DNNs exercised on a transformed tabular 
input -, saving key time when setting up these classifiers. Also, the 
MANDALA public library [95] can be used by any practitioner to 
cross-check if the findings of the paper also apply to their case study. 
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