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A B S T R A C T   

Research in pharmacogenomics and precision medicine has recently introduced the concept of Polygenic Scores 
(PGSs), namely, indexes that aggregate the effects that many genetic variants are predicted to have on individual 
disease risk. The popularity of PGSs is increasing rapidly, but surprisingly little attention has been paid to the 
idealisations they make about phenotypic development. Indeed, PGSs rely on quantitative genetics models and 
methods, which involve considerable theoretical assumptions that have been questioned on various grounds. 
This comes with epistemological and ethical concerns about the use of PGSs in clinical decision-making. In this 
paper, I investigate to what extent idealisations in genetics models can impact the data gathering and clinical 
interpretation of genomics findings, particularly the calculation and predictive accuracy of PGSs. Although 
idealisations are considered ineliminable components of scientific models, they may be legitimate or not 
depending on the epistemic aims of a model. I thus analyse how various idealisations have been introduced in 
classical models and progressively readapted throughout the history of genetic theorising. Notably, this process 
involved important changes in the epistemic purpose of such idealisations, which raises the question of whether 
they are legitimate in the context of contemporary genomics.   

1. Introduction 

A major focus of precision medicine and pharmacogenomics is the 
prediction of how individuals’ genetic characteristics affect their 
response to drugs and environmental intervention. Investigation of the 
genetics of complex diseases figures among the core aims of precision 
medicine also to prevent the onset of symptoms at early stages of 
development. Recent work in this area is based on quantitative genetics 
– the branch of genetics focusing on complex traits – which has recently 
introduced the concept of Polygenic Score (PGS) and Polygenic Risk 
Score (PRS). 

Since genetic information on complex traits is often difficult to 
interpret causally, these scores do not aim to provide a better mecha
nistic understanding of the aetiology of diseases, but rather aim to 
predict phenotypic outcomes given an individual’s genetic profile. More 

specifically, Polygenic Risk Scores (PRS) aggregate the contribution of 
many genetic variants to the risk of developing binary (yes/no) diseases; 
PRS are thus more often cited in the medical literature investigating 
disease risk. Polygenic Scores (PGS), instead, represent the role of such 
variants in between-individual variability in quantitative traits like 
human stature, body-mass index (BMI), educational attainment (EA), 
and the Intelligent Quotient (IQ). Since the development of these traits is 
not well captured by the notion of risk, PGS are more often cited in the 
context of this type of traits.1 

The popularity of PGSs is increasing rapidly, especially in the 
behavioural sciences.2 Although the methods for calculating them are 
relatively new and guidelines for their use are still under development 
(Kullo et al., 2022), some applications are already in practice, and more 
are about to come. Private healthcare and direct-to-consumer companies 
are marketing them as part of in vitro fertilisation in countries such as 
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1 To a certain extent, the distinction is however historical and contingent: one can consider either the PRS or the PGS of a trait depending on whether one 
conceptualises such trait as binary (qualitative) or continuous (quantitative). For example, schizophrenia has been conceptualised in both senses in different areas 
and periods of psychiatry genetics (see Serpico, 2020). In this paper, I shall use the term PGS to denote both PRS and PGS.  

2 A bibliometric research on the database of Web of Science (WoS) on the query [TS=((“polygenic score*” OR “polygenic risk score*“))] reveals that, among about 
5.350 research outputs, more than 4.400 have been published between 2019 and 2023 (up to July 2023). In terms of research areas, more than 2.000 results are in 
the behavioural and brain sciences (e.g., psychiatry, neuroscience, neurology, psychology). This research can be replicated through WoS Advanced Search (https 
://www.webofscience.com/wos/woscc/advanced-search). 
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the US and Japan (Nature Editorial, 2022; NHGRI Online Resource). 
Individuals’ genetic data can also be uploaded to online tools to calcu
late the score for specific diseases, such as type 2 diabetes, breast cancer, 
and cardiovascular diseases. The future potential of PGSs is uncertain, 
but scholars have argued that they will eventually become an invaluable 
tool in the medical and social sciences (for an enthusiastic defence, see 
Plomin, 2019). For instance, PGSs would predict the development of 
personality and educational attainment to inform personalised educa
tion (Wang, Tsuo, Kanai, Neale, & Martin, 2022), but it is unclear 
whether PGSs will bring substantial benefits in psychiatry (Giangrande 
et al., 2022). 

While many discussions revolve around the predictive power of 
PGSs, little attention has been paid to the idealisations they involve about 
phenotypic development and to the relationship between idealisations, 
descriptive accuracy, and prediction. Broadly speaking, idealisations are 
theoretical assumptions that deliberately misrepresent a system or a 
phenomenon for some epistemic or practical purpose.3 In this paper, I 
focus on limitations of PGSs deriving from idealisations in quantitative 
genetics models that can generate uncertainty in data gathering and 
clinical interpretation of genomics findings. What types of idealisations 
does quantitative genetics introduce as regards pathological develop
ment? To what extent, if any, do such idealisations impair the predictive 
capability of PGSs? 

Addressing these questions will promote a better understanding of 
the role of idealisations quantitative genetics, with extensive implica
tions in terms of an ethically sensitive use of PGSs. This analysis will also 
help contextualise methodological problems in contemporary genomics 
within a broader theoretical perspective, according to which much of 
the uncertainty relating to the use of PGSs depends on their reliance on 
highly idealised models of the genetic architecture of complex traits. 

Indeed, as in many -omics areas of biology, where scientists are 
dealing with an outstanding degree of complexity, relevant epistemo
logical and ethical questions about contemporary genomics can be easily 
obscured. Moreover, PGSs derive from a branch of genetics where many 
genes are thought to be involved in the development of complex traits. 
This sounds immediately ‘more desirable’ (both ethically and episte
mologically) than the reduction of individual differences to single genes, 
as with the classical notion of Mendelian trait.4 However, quantitative 
genetics involves a core of methodological and theoretical assumptions 
that have been criticised as questionable at the very least, if not strongly 
misleading. 

Models and data in contemporary quantitative genetics draw on 
three main sources: classical additive models (Falconer, 1965; Fisher, 
1918), which describe the combined additive effects of thousands of 
alleles on complex phenotypes; heritability analyses, which provide 
evidence that variation in every human trait has a genetic basis; and 
genome-wide association studies (GWAS), which aim to identify genetic 
variants statistically associated to phenotypic variation. In the last de
cades, there have been extensive debates on all such facets of quanti
tative genetics (Downes & Matthews, 2019; Kempthorne, 1978; 
Lewontin, 1974; Nelson et al., 2013; Serpico et al., 2023), which come 
with concerns on the use of PGSs in medical explanation and 
decision-making (Baverstock, 2019; De La Vega & Bustamante, 2018). 
These criticisms lie at the core of a long-standing divide between 
quantitative genetics and other areas of biology, such as epigenetics and 
developmental biology: while the former has traditionally focused on 

statistical genetic effects, models from the latter are more causally ori
ented and traditionally considered ‘less idealised’ or more descriptively 
accurate due to their reliance on mechanistic explanations. Attempts to 
connect statistical and causal explanations have been made (Lu & 
Bourrat, 2022; Tabery, 2014), but the gap between the two is still un
bridged (Kaplan & Turkheimer, 2021; Matthews, 2022; Matthews & 
Turkheimer, 2021, 2022). 

Limitations of quantitative genetics methods have potential re
flections not only on the estimation of PGSs, but also on the reliability of 
the clinical decisions that they would recommend, with impactful 
ethical implications, too. In the context of genetic screening, future 
parents may make decisions based on evidence from these studies. Ge
netic tests are also directly available to consumers, who can get infor
mation about their genotype without competent supervision, with 
potentially adverse psychological, ethical, and legal consequences (see 
Wang, Tsuo, Kanai, Neale, & Martin, 2022, p. 309). Baverstock (2019), 
for instance, argued that misrepresentation of PGSs may lead to mis
placed confidence in low scores – with the risk that a disease is not 
diagnosed – or misplaced confidence in high scores – which can lead to 
unnecessary treatment (biopsies, operations) or unwarranted repro
ductive decisions. Burt (2022), as another example, invited special 
caution about the use of PGSs in the social sciences. In the context of 
prenatal screening, PGSs “could trigger the unnecessary destruction of 
viable embryos or induce women to undergo extra cycles of ovarian 
stimulation to collect more oocytes” (Nature Editorial, 2022). 

Below is a detailed structure of the paper. 
In §1, I outline how PGSs are calculated based on GWAS data. Then, I 

summarise major limitations in standard GWAS that are source of both 
epistemic and ethical uncertainty; I will suggest, however, that some of 
such limitations may have little relevance for the PGSs’ predictive 
capability. 

In §2, I explain in what sense idealisations in genetic models can 
impact the calculation, interpretation, and use of PGSs. Idealisations are 
usually considered ineliminable components of scientific models due to 
a variety of epistemic benefits. For instance, they may enhance our 
understanding of complex phenomena by focusing only on certain as
pects of such phenomena, thus having heuristic or explanatory purposes, 
or help exclude irrelevant correlations, simplifying statistical or math
ematical analyses. Nevertheless, scholars agree that an idealisation may 
be legitimate or not depending on the epistemic aims of a model. Since the 
main aim of PGSs is to predict development and individual genetic risk, I 
mostly frame the discussion in terms of how idealisations could impact 
the predictive accuracy of PGSs. However, I also argue that prediction is 
not the only aim of PGSs: within the vision of genomics-based precision 
medicine, the key aim of PGSs is to devise personalised therapeutic and 
environmental interventions. This suggests that the legitimacy of PGSs 
idealisations should consider factors beyond predictive accuracy. 

In §3, I focus on three types of idealisations in quantitative genetics 
models. First, each genetic variant has an additive effect on phenotypic 
variation (the additivity idealisation). Second, genetic risk for most 
complex traits is normally distributed (the normality idealisation). Third, 
variation at the level of single nucleotides represents the appropriate 
level of complexity to investigate genetic variability in complex traits 
(the SNP-causality idealisation). Drawing on the existing historical and 
epistemological literature, I analyse how each of these idealisations has 
been originally introduced in classical models and inherited by 
contemporary genomics throughout the history of genetic theorising. 
Notably, this process involved a progressive re-adaptation of the ideal
isations above and, crucially, of their epistemic purpose. I thus evaluate 
such idealisations in terms of whether they are legitimate given the 
epistemic aims of contemporary genomics, particularly the calculation 
and practical use of PGSs. 

Although much of this analysis intersects with current debates on the 
role of scientific models in data gathering and interpretation, it is mostly 
motivated by the need of an accurate assessment of what contemporary 
quantitative genetics can tell us about phenotypic development, 

3 Here, with Levy (2021), I consider idealisations as misrepresentations of 
some aspect of a phenomenon, in contrast to abstractions, which involve the 
level of details in a scientific representation or model (see also Portides, 2021 
and §2 below).  

4 Indeed, quantitative genetics does not imply any straightforward reduction 
of phenotypes to single genes and seem to prevent popular discourses about the 
‘gene for x,’ where x is any complex trait (see Kendler, 2006; Rutter, 2006; 
Sarkar, 1998). 
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particularly complex medical traits. Indeed, each of the three ideal
isations above reflects precise theoretical and methodological choices 
about how to best describe the biology of living beings, with extensive 
practical consequences. Throughout §3 and the Conclusions, I will 
explore the clinical implications – in terms of prediction and treatment – 
of making such choices. This includes, for instance, the inclusion versus 
the exclusion of non-additive genetic effects from genetics models; the 
assumption that most complex traits have a quantitative genetic archi
tecture or not (that is, if they are quantitative traits or are just oper
ationalised as such); and the question of whether the analysis of single- 
nucleotide genetic variants can help us understand inter-individual 
phenotypic variability. 

2. What is a polygenic score? 

Polygenic Scores express, in one single index, the cumulative effects 
that multiple genetic variants are predicted to have on individual phe
notypes. Statistical associations between genetic and phenotypic varia
tion are established through GWAS, a method that tests up to millions of 
genetic variants in thousands of individuals in case-control designs 
without prior hypotheses about how such genetic variants may affect 
phenotypic variation.5 

The variants that are investigated by GWAS are called single- 
nucleotide polymorphisms (SNPs), that is, mutations in single DNA 
base pairs that are common in most target populations (allele frequency 
>1%) and that occur normally throughout a person’s DNA (NIH Na
tional Library of Medicine, 2022). At the phenotype level, the variability 
under the lenses of GWAS usually involves traits such as human stature, 
cancer, diabetes, obesity, IQ, and major depression, where many genetic 
variants are thought to be involved. In short, if compared to more 
classical forms of genetic prediction aimed at identifying highly pene
trant genes of large effect size, PGSs focus on the impact of many genetic 
variants with small effect on individual differences in complex traits. 

The primary output of GWAS are lists of p-values and effect sizes of 
all the tested genetic variants with variation in the phenotype under 
investigation. Further analyses are then needed to interpret these data 
and determine the most likely causal variants (for a methodological 
review, see Uffelmann et al., 2021). In most cases – especially in psy
chological traits – each SNP identified through GWAS accounts for only 
a small portion of phenotypic variance, usually less than 0.1%, and for 
this reason, geneticists need huge samples to identify significant asso
ciations. For instance, the effect size of SNPs associated with educational 
attainment corresponds to 1.7 weeks of schooling per allele (Lee et al., 
2018). 

This sort of finding is believed to have confirmed classical additive 
models developed at the dawn of modern genetics (Fisher, 1918; 
Mather, 1941, 1943). According to such models, individual differences 
in complex traits are due to many independent alleles (hundreds, 
thousands) that have an additive effect on the phenotype. Quantitative 
traits differ from Mendelian traits, where discontinuous phenotypic 
differences are due to single, highly penetrant alleles: individual dif
ferences in quantitative traits are thought to be determined by the 
average value that many alleles bring about at the phenotype level in 
different individuals (Chabris, Lee, Cesarini, Benjamin, & Laibson, 
2015). 

GWAS allowed scholars to successfully identify SNPs involved in 
traits like obesity, cancer, and autoimmune diseases, which is hoped to 
eventually reveal the genetic basis of complex traits (Marees, de Kluiver, 
Stringer et al., 2018). Due to limitations that I will discuss shortly, the 
data obtained through GWAS are today valued for their predictive po
tential, regardless of knowledge about the causal role of SNPs in devel
opment, and it is here that PGSs come into play: the calculation of these 

scores takes the available information on which SNPs are more present 
in individuals with a given disease and summarise this information into 
single scores that aim to predict individual genetic risk for such disease. 

The construction process of a PGS requires several steps and meth
odological choices. For our purposes, it is worth highlighting a few as
pects (for further details, see Burt, 2022; Fries, 2020; Janssens, 2019; 
Marees et al., 2018; Uffelmann et al., 2021; Wang, Tsuo, Kanai, Neale, & 
Martin, 2022; Woodward & Kendler, 2023). 

First, a PGS is based on data from a previous GWAS, the target or 
discovery sample: the number of risk alleles of an individual needs to be 
weighted by the effect size of each variant detected by the target GWAS, 
and the resulting products are summed up across all genetic loci. Sec
ond, not every SNPs identified in the discovery sample need to be 
included in a PGS: there is rather a selection phase of which variants will 
constitute the score, which depends on what p-value thresholds are 
chosen for the score’s calculation. Such thresholds are manipulated, for 
instance, to exclude SNPs that have little statistical evidence for genome- 
wide association. The predictive accuracy of PGSs generated by different 
p-value thresholds is assessed by comparing the PGS’s phenotypic pre
diction with the phenotypic information available, and only the SNPs 
that have higher predictive accuracy are retained. 

2.1. Epistemological and ethical questions 

The reliance of PGSs on quantitative genetics invite new types of 
epistemological and ethical challenges. 

An often-cited issue is that PGSs are vulnerable to stratification 
biases (e.g., geographic, ancestral, and/or socioeconomic confounders): 
there is a relevant risk that the associations identified through GWAS are 
due to indirect genetic effects mediated by environmental heterogeneity 
in the samples (Trejo & Domingue, 2018; Woodward & Kendler, 2023). 
This connects to ethical questions such as whether PGSs could exacer
bate existing health inequities given that most GWAS are conducted on 
participants of European ancestry (Martin et al., 2019; Nature Editorial, 
2022). In other words, genomics studies have a “strong Eurocentric bias” 
(Giangrande et al., 2022), which implies that PGSs may not be trans
ferable from a population to another (Johnston & Matthews, 2022; Palk, 
Dalvie, De Vries, Martin, & Stein, 2019). 

The ethical significance of PGSs, however, is far more wide-ranging 
than this. Although genetic information is believed to have potential 
relevance for prevention and treatment, there is a question of what type 
of information should be pursued through genetic testing and how such 
information could be communicated. 

First, as regards the ‘what’ question, epistemic and ethical uncer
tainty can arise in case of information overload. According to Bayefsky 
and Berkman (2022), reproductive decision may need limitation in ac
cess to fetal genetic information: indeed, unrestricted access to immense 
amounts of information, including genetic variants with uncertain 
phenotypic significance, would detract from autonomous 
decision-making. For instance, it will be increasingly unlikely that any 
fetus will be entirely free from potentially harmful gene variants. There 
will be ‘no more perfect babies,’ and parents who pursue expanded 
testing will be forced to come to terms with their children’s genetic risks 
or choose to terminate the pregnancy and roll the genetic dice once 
again (Bayefsky and Berkman 2021: 3). 

It is thus important to consider the psychological burden of the 
parents in making decisions based on uncertain information from GWAS 
and PGS calculation. This requires guidance regarding testing for not 
just harmful diseases, but also learning and cognitive disabilities and 
non-medical traits, which may not turn out to be not immediately useful 

5 In this sense, GWAS differ from classical candidate-gene studies, where the 
identification of genes depends on considerations on their functional role. 
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for decision-making processes.6 Equally important would be for in
dividuals to develop an understating of the many ethical issues at stake, 
e.g., a child’s right to an open future, the risk of implementing eugenic 
regulatory practices, and disability rights (for a discussion, see Bayefsky 
& Berkman 2021). 

Second, there is the problem of how to communicate information 
about risk. Lewis et al. (2021), for instance, identified three potential 
representations of risk assessment through PGSs, each of which with 
different advantages, disadvantages, and applications. Moreover, 
scholars have extensively discussed how to understand the role of ge
netic variants with unknown biological meaning and the impact of ‘data 
tsunami’ in medical communication. Indeed, like other -omics tech
nologies, GWAS generate data that are not easily translatable into 
greater explanatory details. In particular, the small effect size of SNPs 
comes with notoriously unclear biological insights (Uffelmann et al., 
2021), and it is debated whether SNPs data can have any causal value 
and potential for treatment (Craver et al., 2020; Kaplan & Turkheimer, 
2021; Oftedal, 2022; Turkheimer, 2011; Woodward & Kendler, 2023). 
For instance, Giangrande et al. noted that GWAS helped to prioritise 
research on alleles involved in various psychiatric disorders but 
uncovering causal mechanisms “would require experimental studies 
that either are in nascent stages or are not yet possible” (2022: 14).7 

The SNPs’ small effect size connects to another major issue of GWAS 
known as the Missing Heritability Problem (MHP). The missing herita
bility is the gap between the heritability of a trait estimated through 
classical family studies (h2

TWIN) and the heritability accounted for by the 
SNPs detected through GWAS (h2

GWAS) (Matthews & Turkheimer, 2021, 
2022).8 For instance, an impressive study of schizophrenia (37,000 
subjects and 113,000 controls) identified 128 SNPs that accounted for 
about 3.4% of the estimated genetic risk (Schizophrenia Working Group, 
2014). The MHP arises as the SNPs associated with variation in 
schizophrenia cannot account for the totality of the heritability of the 
trait: the h2

TWIN of schizophrenia is about 80%, but the SNPs identified 
account for just a small percentage. 

Uncertainty about the causal role of a genetic variant in development 
can have unpredictable consequences in the selection of embryos (see 
Turley et al., 2021). As Wang and colleagues warn, a previous study 
reported that embryo selection based on higher polygenic scores for 
educational attainment would increase the risk of bipolar disorder by 
16% from an absolute risk of 1%–1.16%. The magnitude of this unin
tended consequence depends on many parameters, including heritabil
ity, genetic correlation, PRS predictive performance, the number of 

embryos for selection, and the prevalence of the traits in the population 
(2022: 302). 

Overall, PGSs information comes with clinical, epistemological, and 
ethical uncertainty. Even physicians and practitioners may be uncertain 
about what information is ‘certain’ or ‘uncertain’ and how to commu
nicate this. It is thus unsurprising that the current literature is so deeply 
concerned with the clinical potential of PGSs. 

The raising connection between quantitative genetics, PGSs, repro
ductive, and clinical decision-making leads us to the main target of this 
article: in what sense idealisations in quantitative genetics may impact 
the predictive accuracy, calculation, and use of PGSs? 

It is worth stressing that epistemological and methodological limi
tations in GWAS may not affect the predictive power of PGSs. For 
instance, as I discuss below, the limited mechanistic information of SNPs 
may be irrelevant for predictive purposes since prediction is based on 
the aggregation of statistical effects of SNPs, rather than on under
standing their causal role. By contrast, the MHP may be relevant for 
PGSs because the predictive power of a PGS is limited by the amount of 
variance that the identified SNPs can explain. 

3. How predictive are polygenic scores? 

Recent theorising on scientific modelling converges on the idea that 
scientific models typically – and deliberately – involve idealisations that 
misrepresent or distort some characteristics of the system they depict 
(Levy, 2021; Portides, 2021). Not only idealisations are somewhat 
inevitable components of scientific models but are, in many cases, 
desirable means to achieve certain aims. Idealisations are thus often 
connected with different aims of scientific research: for instance, they 
may enhance our understanding of complex phenomena, thus having 
heuristic or explanatory purposes, or help exclude minor correlations 
that are considered irrelevant, simplifying statistical or mathematical 
analyses (Brigandt, 2013; Jacquart, Shech, & Zach, 2022; Potochnik, 
2020; Strevens, 2021; Weisberg, 2012). 

This also implies that complete descriptive accuracy may not be 
required for a model to be explanatorily useful in the context of some 
reasonably well-constrained research programme. Indeed, the role of 
idealisations should be evaluated in the context of the specific epistemic 
and practical goals of a given model. According to Brigandt (2013), an 
idealisation can be legitimate “if the model ignores only those empirical 
details that do not contribute to the explanatory aim.” More recently, 
Strevens (2021) provided a framework to assess whether an idealisation 
is safe to make, that is, whether it impairs a model’s ability to achieve its 
goals: according to this framework, the safety of an idealisation depends 
on whether its inclusion/exclusion makes a difference to the epistemic 
aim of the model. 

Since the main epistemic aim of PGSs is prediction, the question of 
how idealisations can impact PGSs may need to be mostly framed in 
terms of empirical accuracy (Camacho, 2021; Hitchcock & Sober, 2004; 
Van Fraassen, 1980). On this view, the possibility of making successful 
predictions with PGSs would be more important than their ability to 
capture ‘real’ causal relationships between the genotype and the 
phenotype or explain how the phenotype develops over time – Janssens 
(2019) puts this in terms of the criterion validity of PGSs; Plomin and von 
Stumm (2022) argued that “the goal of prediction is to account for as 
much variance as possible, without regard for explanation”; Matthews 
and Turkheimer (2022) suggest that bridging the “prediction gap” is 
somewhat independent from the causal explanation of the 
genotype-phenotype relationship. Moreover, the connection between 
causality and prediction of PGSs might be irrelevant in certain areas – e. 
g., in animal breeding – or given certain objectives (Kaplan & Tur
kheimer, 2021). One may also suppose that some idealisations do not 
impact polygenic prediction in significant ways. For instance, Briley 
et al. (2019) suggest that the question of the gene-environment interplay 
might be unimportant in genetics models as long as such models do not 
attempt to explain how genetic variation causes phenotypic variation. 

6 There is, in fact, a sense in which genetic characteristics can be assimilated 
into an individual’s “sense of self” or personal identity (Palk, Dalvie, De Vries, 
Martin, & Stein, 2019, p. 8). Relatedly, researchers and individuals diagnosed 
with a mental condition disagree about whether psychiatric diagnoses should 
be seen as harmful, humanizing, or liberating (Botha et al., 2020; Kenny et al., 
2016). This suggests that genetic information on future pathological develop
ment may not have straightforward implications for clinical decisions.  

7 More generally on making causal claims based on quantitative genetics 
methods, Madole and Harden (2022) have recently argued that the genetic 
causes of complex traits (particularly behaviours) are to be intended as shallow 
causes: many variants from across the genome relate statistically to phenotypic 
outcomes, but they are non-unitary (they operate within intricate causal sys
tems), non-uniform (produce heterogeneous effects across individuals), and not 
immediately explanatory in mechanistic terms. For example, individuals 
diverge at many points along the causal pathway from genes to behaviour, 
beginning already at the gene-function level; moreover, the probability that 
single genes matter for phenotypic variation depends on individual-level 
environmental exposures.  

8 Matthews and Turkheimer take into account three independent facets of the 
MHP: the numerical gap, the mechanism gap, and the prediction gap. The au
thors argue that the MHP, rather than being a merely technical problem, de
pends on profound theoretical differences between traditional and molecular 
methods in quantitative genetics. 
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In short, if just prediction is the aim of PGSs, then the exclusion/ 
inclusion of some causal details from genetics models might have 
negligible effects on a score’s predictive accuracy. 

How could we know that a highly idealised model is empirically 
adequate? In the case of models that inform the calculation of PGSs, a 
plausible test would be to check how much phenotypic variance is 
accounted for by the genetic variants detected through GWAS that are 
aggregated in PGSs. If the answer is ‘very much’ or ‘about 100%,’ then it 
might be less interesting to make a philosophical analysis of how ide
alisations impact the calculation of PGSs – based on the pragmatic 
assumption that we may not need to know much mechanistic details if 
PGSs have already proved to be highly predictive. However, to the best 
of our knowledge, the real answer is that the predictive capability of 
PGSs is a matter of degree, and there is wide disagreement about whether 
it is adequate for their application in the medical and social sciences. 

Palk et al. (2019: 4), for example, explain that PGSs are currently 
able to explain between 1 and 15% of the variance between cases and 
controls, and argue that such percentages should not be underestimated. 
Wang, Tsuo, Kanai, Neale, & Martin, 2022 consider in more detail the 
areas of medicine where PGSs have demonstrated better performance – 
breast and prostate cancer, type 1 and 2 diabetes, and cardiovascular 
diseases. Plomin and Von Stumm (2022) reviewed recent increases in 
the PGS’s predictive accuracy for behavioural traits: 

[PGSs] for schizophrenia, which predicted up to 3% of the liability 
variance in 2009, can now predict 6%. [PGSs] can predict 2% of the 
liability variance for major depressive disorder, 5% for bipolar dis
order, 3% for neuroticism, 6% for attention deficit hyperactivity 
disorder and 10% for externalising behaviours. […] variance pre
dicted by [PGSs] is 7% for general cognitive ability (intelligence), 
11% for years of schooling (educational attainment (EA)) and 15% 
for tested school performance at age 16, which is the most predictive 
[PGS] in the behavioural sciences. 

Various scholars have nonetheless expressed concerns about the 
performance of PGSs. According to Janssens (2019: 144), the predictive 
validity of PGSs is modest except when they include one or more SNPs 
that have a strong impact on disease risk. Janssens and Joyner (2019) 
argue that the aggregation of millions of SNPs (with close to zero sta
tistical effects) into a single score may be unsuited to informing about 
the risk of developing a disease.9 Mostafavi et al. (2020) and Wang, 
Tsuo, Kanai, Neale, & Martin, 2022 point out various limitations in the 
performance of PGSs, including inconsistency across studies due to 
ancestry, population stratification, and trait-specific genetic architec
tures. Turkheimer (2022) discusses differences in the PGSs’ predictive 
capability in different study designs of educational attainment. Burt 
(2022: 24), too, disregards the predictive utility of PGSs in education. 

I do not aim to take a firm position on whether PGSs are predictive 
enough: the above disagreements suggest already that further investi
gation of the epistemological basis of polygenic prediction would be 
beneficial to secure that idealisations carried out by PGSs are legitimate 
given their predictive aims. However, there is more than just prediction 
in PGSs. 

3.1. Polygenic scores have many aims 

One may defend an instrumentalist perspective according to which, 
among the various goals that can motivate a scientific model, predictive 
accuracy is all that matters for PGSs. However, the relationship between 
idealisations and descriptive accuracy may be somewhat relevant in the 
case of PGSs. Below, I make the case that a solely predictive view of PGSs 
– detached from explanatory aspects – would impair the very calcula
tion, interpretation, and application of PGSs. 

For a start, we know that the development of a model involves 
choices as regards what to represent and how (Harvard et al., 2021; 
Harvard & Winsberg, 2022), and it is here that idealisations usually 
come along. As I mentioned, such choices depend on what is expected to 
better fit with the epistemic aims of a model. Even in cases where 
descriptive accuracy is not the main target, a highly idealised model may 
be committed to capturing some ontological aspects, such as what en
tities ‘exist’ and how they interact to generate a phenomenon. For 
instance, mechanistic models idealise several details and usually choose 
specific ways to decompose a system (Craver & Kaplan, 2020; Love & 
Nathan, 2015; Piccinini & Craver, 2011). This provides a somewhat 
‘static’ and simplified picture of how the components of a system 
(molecules, cells, etc.) interact with each other but are nonetheless 
intended to represent real causal processes and interactions. 

Something similar may be true for predictive models. As Strevens 
(2021: 93) explains, predictive models do often ‘black-box’ some causal 
elements but, in other cases, they are “causal in character, that is, […] 
attempt to predict phenomena using a representation of certain causal 
structures that characteristically produce those phenomena.” If so, one 
may wonder how descriptively inaccurate a model can be without losing 
some relevant epistemic properties, predictive accuracy included. In the 
case of PGSs, their prediction certainly has some causal characteristics, 
that is, they aim to predict phenotypic development from knowledge 
about the genotype. One can thus agree that their predictive accuracy 
could in part depend on their ability to capture actual causal interactions 
between the genotype and the phenotype, such as the role of 
genotype-environment interactions (G × E) that can mediate genetic 
effects (I return to this point in §3).10 

Moreover, the prediction of phenotypic development is far from 
being the only aim of PGSs: rather, they probably have some explanatory 
and practical aims, too. 

Starting with explanatory aims: although GWAS do not usually 
explain how the genotype brings about phenotypic traits, they none
theless provide data to stratify risk. This is one key aim of PGSs: 
assessing whether an individual is at the low or high end of a normal 
distribution of genetic risk (NHGRI Online Resource). For this reason, it 
might be important that the SNPs aggregated in a PGS are causally 
relevant for the genetic risk of an individual: they should be actual (or 
plausible) difference makers. 

There are also more practical reasons to ask for some degree of 
descriptive accuracy in genetics models: in genomics-based precision 
medicine, the calculation of individual scores would ultimately guide 
clinical decision-making in prevention and personalised treatment. 
Importantly, even if prediction with PGSs was nearly perfect, this alone 
could not guide clinical decisions: indeed, to intervene at any level 
(pharmacological, psychotherapeutic, educational), we need to achieve 
some reliable causal knowledge. For instance, to prevent the onset of a 
complex disease like obesity, we need to know what G × E interactions 
matter (not just that some G × E probably matter) to prevent potentially 
obesogenic environmental factors (for similar considerations, see Briley 
et al., 2019; Génin & Clerget-Darpoux, 2015; this move away from 

9 Notably, the inclusion of millions of SNPs that do not meaningfully change 
risk prediction may have consequences in medical communication: the score 
would suggest that such SNPs do in fact matter in the development of a disease 
and that scientists know how SNPs affect diseases. However, neither of these 
conclusions would be correct: only 10s–100s SNPs have been reliably associated 
with any disease, and most of them have no clear mechanistic or causal rela
tionship with phenotypic outcomes. Khera et al. (2018) claimed that PGSs using 
millions of SNPs outperformed those based on statistically significant SNPs and 
that the scores identified individuals with risk equivalent to monogenic muta
tions. Janssens and Joyner (2019) argued that none of these conclusions is 
warranted. 

10 Woodward and Kendler (2023) have recently made a similar point: “a good 
PRS is not just predictively successful but must also satisfy the stronger con
dition that it is predictively successful because it tracks underlying genetic in
fluences that are causal.” 
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predictive capability was also advised by Janssens and Joyner (2019) 
concerning genetic consultancy). 

To summarise, even if the main epistemic focus of PGSs is prediction, 
not every type of idealisation in genetic models is, in principle, equally 
legitimate: while some of them may have little impact on prediction, 
others may alter a model’s capacity of representing causal relationships 
between genetic and phenotypic variance and, in turn, the PGSs pre
dictive capability. If so, it would be a mistake not to investigate what 
idealisations may possibly make a difference in polygenic prediction. 
That said, prediction is probably not the only epistemic aim of PGSs: to 
stratify risk and inform clinical decisions, genetics models need to meet 
some degree of descriptive accuracy – regardless of the brute predictive 
power of PGS. 

In the next section, I discuss three types of idealisations involved in 
quantitative genetics models and in the calculation of PGSs. For each 
idealisation, I analyse questions such as: how does this idealisation enter 
models and methods? how does it impact the interpretation of the data? 
does it impair the predictive and descriptive accuracy of PGSs? 

4. Idealisations in polygenic scores 

As I mentioned in the Introduction, the idea that complex traits are 
highly polygenic is widely uncontroversial and is probably a key reason 
behind the success of quantitative genetics. There are, however, several 
corollaries of polygenic models that have instead attracted criticism. 
Here, I focus on aspects that relate to the following three idealisations: a) 
each SNP has an additive effect on phenotypic variation; b) genetic risk 
for most complex traits is normally distributed; c) variation in single 
nucleotides represents the appropriate level of causal complexity to 
investigate genetic variability in complex traits. 

To highlight the risks of introducing these idealisations in PGSs, I 
draw on Strevens’ (2021) framework to assess the safety of idealisations 
in scientific models, particularly the logical difference-maker criterion: an 
aspect x is a non-difference-maker for the prediction of a target phe
nomenon y if x can be removed from the model without affecting the 
model’s predictions. By contrast, if x is a difference-maker for predic
tion, idealising x is not safe. In our case, idealisations in quantitative 
genetics models are legitimate if they do not affect the calculation of 
PGSs in such a way as to impair their predictive accuracy and potential 
use in clinical contexts. 

4.1. Classical models 

Idealisations in contemporary GWAS and PGSs derive historically 
from idealisations made in early quantitative models (Falconer, 1965; 
Fisher, 1918; Mather, 1941, 1943), which developed both the polygenic 
theory and the methods to analyse genetic sources of variance that ge
neticists used for many decades. GWA data and their typical interpre
tation are tied to the acceptance of such classical models and, at the 
same time, provide empirical support for such models. It is thus from 
such classical models that we need to reconstruct the origins of the 
idealisations involved in the calculation of PGSs. 

In the context of early genetics, where most data on genetic causality 
were gathered in experiments on plant and animal models, the architects 
of modern genetics were committed to reconciling Mendelian data with 
the statistical analyses of phenotypes developed by biometricians for the 
study of complex traits in humans. This required explaining how single 
genes could generate the continuous and normal distribution of such 
traits (Downes & Turkheimer, 2021). Fisher (1918: 402) argued that the 
continuous distribution of phenotype values could depend on the 
involvement of many small and additive genetic effects: 

Let us suppose that the difference caused by a single Mendelian 
factor is represented in its three phases by the difference of the 
quantities a, d, -a, and that these phases exist in any population with 
relative frequency P, 2Q, R where P + 2Q + R = 1. […] a2 then is the 

variance due to this factor, for it is easily seem that when two such 
factors are combined at random, the mean square deviation from the 
new mean is equal to the sum of the values of a2 for the two factors 
separately. […] To justify our statement that a2 is the contribution 
which a single factor makes to the total variance, it is only necessary 
to show that when the number of such factors is large the distribu
tions will take the normal form. 

It is on this hypothesis that quantitative genetics is based: it is 
assumed that variation in complex traits is caused by a large (infinite, in 
Fisher’s model) number of alleles (SNPs, in contemporary terms), each 
of which with (infinitesimally) small effects on the phenotype. More
over, genetic variation is normally distributed, and, at the population 
level, the average effects of alleles are reflected linearly on average 
phenotypic differences. In many mathematical descriptions (e.g., Panse, 
1940, p. 104; Purcell, 2013, p. 374), a fixed coefficient is attributed to 
each allele. For instance, Mather (1943: 39–40) explains: 

With only three polygenes of equal effect, the genotypes AABBcc, 
AAbbCC and aaBBCC will, for example, give the same phenotype. 
This phenotype would also characterize the genotypes AaBBcc, 
AABbcc, AaBbcc, etc., if dominance were the rule, or AABbCc, 
AaBBCc, and AaBbCC in the absence of dominance. […] The alle
lomorphs designated by small letters are assumed to add nothing to 
the expression of the character, while each allelomorph designated 
by a capital letter adds 1 unit. […] As the number of genes involved 
increases, more phenotypes are possible, and the distribution be
comes more nearly continuous […] as observed, for example, in 
human stature. 

As I show below, with the development of genetic epidemiology and 
molecular biology, geneticists capitalised on these additive models to 
explain far more than just how the normal distribution of phenotype 
values could originate from the combination of many independent 
genes: the model was recruited to analyse heritability (the portion of 
phenotypic variance accounted for by additive genetic variance) and, 
later, provided the basis for GWAS aimed at identifying the genes that 
account for a trait’s heritability. Over time, the idealisations made by 
early geneticists have thus been re-adapted across different types of 
methods, data, and research contexts. Remarkably, such idealisations 
were originally introduced in a different explanatory and methodolog
ical context to serve specific epistemic aims, which raises the question of 
whether their re-adaptation is legitimate given the aims of contempo
rary genomics. 

4.2. Additivity 

After Fisher defined non-additive effects as the mere “deviation” 
from the expectation of typical allelic effects (Fisher, 1918, pp. 403–408; 
Phillips, 2008), the additivity idealisation was often made to make ge
netic and environmental variation more tractable and exclude 
non-additive sources of variance that would generate higher complexity. 
The first step was operationalising phenotypic variance in terms of the 
additive effect of two, independent sources of variance (nature and 
nurture): the total phenotypic variance (VP) is modelled as the sum of 
genetic (VG) and environmental variance (VE), meaning that phenotypic 
values depend on an organism’s alleles plus additive environmental 
factors. 

This allowed the application of analysis-of-variance techniques 
(ANOVA) and the estimation of the popular statistics known as narrow- 
sense heritability (h2), namely, the proportion of a trait’s variance 
associated with additive genetic variance. In plant and animal breeding, 
h2 provided a useful breeding value coefficient to predict how much a 
population will change over generations (Downes & Turkheimer 2021; 
Falconer & Mackay, 1996; Schaffner, 2016). 

Eventually, it became routine to make sense of quantitative traits in 
biochemical terms, translating statistical additive effects into 
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biochemical additive effects. For instance, Pierce (2017, chapter 24): 

If the characteristic is polygenic, many different genotypes are 
possible, several of which may produce the same phenotype. For 
instance, consider a plant whose height is determined by three loci 
(A, B, and C), each of which has two alleles. Assume that one allele at 
each locus (A+, B+, and C+) encodes a plant hormone that causes 
the plant to grow 1 cm above its baseline height of 10 cm. The other 
allele at each locus (A− , B− , and C− ) does not encode a plant hor
mone and thus does not contribute to additional height. If we 
consider only the two alleles at a single locus, 3 genotypes are 
possible (A + A+, A + A− , and A− A− ). If all three loci are taken into 
account, there are a total of 33 = 27 possible multilocus genotypes 
(A + A + B + B + C + C+, A + A− B + B + C + C+, etc.). 

Similar descriptions of biochemical additivity regard enzymatic ef
fects on pea seeds pigmentation, where continuous variation can be 
explained in terms of different pigments – encoded by different genes – 
that additively generate colour (for an interpretation of additivity in pea 
seeds texture, see Jamieson & Radick, 2013, pp. 583–584). 

In short, the development of quantitative genetics reflects a transi
tion from a statistical interpretation of additivity to a causal (biochem
ical, molecular) one. Notably, this transition comes with changes in the 
epistemic aims of genetics models: on the one hand, Fisher’s model 
aimed at modelling continuous variation under the assumption that 
phenotypic variation is caused by Mendelian alleles; on the other hand, 
recent models attempt to explain how the genotype and the phenotype 
interact in molecular terms. Over time, the necessity to emphasise the 
pragmatic origin of the additivity idealisation seems to have gradually 
faded: for instance, Bouchard (2004) claimed that there is no evidence of 
non-additive genetic effects for IQ and mental disorders; Plomin et al. 
(2013: 199) then stated that the absence of non-additive variance is very 
fortunate for the attempts to identify intelligence genes because this 
allows studying intelligence with statistical methods within a purely 
quantitative framework. 

In contemporary genomics, the additivity idealisation translates into 
the practice of focusing exclusively on average SNPs’ effects on a trait’s 
distribution and into the assumption that SNPs are nearly inter- 
independent and can be fit additively (Wang, Tsuo, Kanai, Neale, & 
Martin, 2022, p. 296). When it comes to the construction of PGSs, 
relaxing the p-value threshold below the genome-wide significance (§1) 
seems to depend in part on an endorsement of Fisher’s infinitesimal 
model (see also below). 

Crucially, the additivity idealisation underestimates the role of non- 
additive gene-gene (G × G) and gene-environment interactions (G × E). 
Both types of interactions concern background effects where the 
phenotypic outcome of a genetic variant depends on other independent 
variables (mutations at other loci or environmental exposures). An 
example of G × G is epistasis, where an individual with a particular 
combination of alleles can display a phenotype beyond what is expected 
from the effects of such alleles if they were independent (Carlborg & 
Haley, 2004; Phillips, 2008; Webber, 2017). This type of interaction can 
mask dramatically the G-P map even in single-gene diseases (Campbell 
et al., 2018). Likewise, G × E are known to be an important source of 
individual differences (Champagne & Mashoodh, 2009; Nagpal et al., 
2018; Sauce & Matzel, 2018; Schaffner, 2016; Tabery, 2014; Wahlsten, 
1994). 

Although several studies on model organisms – and a few studies on 
humans – attest these interactions, GWAS provide little evidence of their 
relevance and, probably for this reason, G × E are rarely addressed in 
quantitative genetics literature.11 But this depends in part on method
ological limitations: interactions are difficult to capture in non- 

experimental studies due to their contextual nature, their small effect 
size and, in the case of G × E, the lack of standardised measures of 
environmental influences (Assary et al., 2018; Matthews & Turkheimer, 
2022).12 

For our analysis, the key aspect is that quantitative genetics models 
are designed to exclude non-additive sources of variance for the prag
matic reasons outlined above. In this sense, the observation that in
teractions have a negligible role might be model-dependent, meaning that 
it could depend on how data are gathered and interpreted based on the 
model. 

As Nelson et al. (2013: 673) noted, “the current quantitative genetics 
framework has a built-in bias against inferring epistasis, making it 
insufficient for identifying and interpreting epistatic effects.” Burt 
(2022: 19) acknowledged that “evidence for a substantial role of inter
actionism is lacking; however, the current evidence is primarily based 
on low resolution tag SNP methodologies [that] have not yet substan
tiated the importance of gene-gene interactions [but do] not suggest 
they are not biologically important.” If compared with the multitude of 
quantitative geneticists advocating the negligible role of non-additive 
phenomena, these are sparse voices. They nonetheless suggest that the 
calculation of PGSs may be model-dependent to such an extent that it 
overlooks phenomena that are not predicted by the additive model. 

If additivity misrepresents the complexity of the genotype- 
phenotype-environment relationship and masks the complexity of dis
ease aetiology, this may have major consequences for the predictive 
accuracy of PGSs and their potential to inform treatment. 

As regards prediction, Woodward and Kendler (2023) recently noted 
that it may seem surprising that PGSs are predictively successful given 
that they combine SNPs information according to a simple additive 
formula. As I explained in §2, however, the predictive power of PGSs 
comes in degree and is subject of controversy, so it worth considering 
whether prediction could be improved by not making the additivity 
assumption. Our knowledge of G × E does suggest that the additivity 
assumption might be a difference-maker for prediction. Studies on 
obesity, for instance, show that PGSs explain different amounts of 
variance in groups of individuals exposed to different environmental 
factors such as smoking, physical activity, or sugar consumption (Nagpal 
et al., 2018, p. 2; on diabetes, see Génin & Clerget-Darpoux, 2015). 
Furthermore, neglecting interactions can decrease our ability to predict 
how the presence/absence of a genetic variant will impact other 
(apparently unrelated) traits. For instance, if one selects an embryo with 
a lower risk of developing a disease, the embryo may have a higher 
susceptibility to other conditions that are pleiotropically affected by the 
excluded genetic variant (Nature 2022: 549). So, should be proved that 
non-additive phenomena are difference-makers for prediction, then the 
additivity idealisation would turn out to be illegitimate. 

As regards intervention, the idealisation arguably impairs our ability 
to target effectively pathological conditions through environmental 
intervention: by default, PGSs data will not include information 
regarding how pathologies could interact with the environment – rather, 
they tend to obscure the importance of non-genetic aspects. If we aim to 
use PGSs in real-world clinical scenarios, we need to understand the 

11 For example, Plomin and Von Stumm (2022) only discuss the role of G × E 
correlations, which represent a statistical association between genetic and 
environmental variances, rather than causal interactions. 

12 Association studies would need much higher statistical power than regular 
GWAS to detect such interactions (Carlborg & Haley, 2004; Dai et al., 2018; 
Giangrande et al., 2022; Nagpal et al., 2018); however, increasing sample size 
introduces more heterogeneity and may thus impair the results further (Hell
wege, Keaton, Giri et al., 2017; Marchini et al., 2004; Webber, 2017). This also 
connects to the problem of the portability of PGSs across populations: like 
classical heritability analyses (Block, 1995), the effects of SNPs on the pheno
type are mediated by context-relative interactions between genetic and envi
ronmental variation (Burt, 2022; Janssens, 2019; Johnston & Matthews, 2022; 
Wang, Tsuo, Kanai, Neale, & Martin, 2022). Note that the PGSs predictive ac
curacy can also differ substantially across groups of similar ancestry (Mostafavi 
et al., 2020). 
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context-dependent role of genes as well as potential sources of stratifi
cation biases (literature on G × E and heterogeneous response to treat
ment testifies this clearly, see Farzan, Vijverberg, Kabesch, Sterk, & 
Maitland-van der Zee, 2018; Kersten & Koppelman, 2017; Chang, Won, 
Lee, Ham, & Lee, 2015; Keers & Uher, 2012; Pedersen, 2017; Uffelmann 
et al., 2021). Plomin and Von Stumm (2022: 51) argued that “the issue of 
whether population stratification confounds polygenic score prediction 
in a particular population is separate from the ability of polygenic scores 
to predict in different populations”. However, as I argued in §2.1, 
intervention cannot be completely detached from mechanistic expla
nation: since polygenic prediction would ultimately guide personalised 
intervention (e.g., pharmacological, psychotherapeutic, educational), 
we need to know what G × E interactions matter for individual risk, that 
is, why – and in what contexts – a genetic variant can lead an individual 
to develop a disease or not. 

I am not suggesting that additive genetic effects do not exist at all, 
but I am making the case that a non-statistical interpretation of addi
tivity makes probably sense in the case of simple biochemical in
teractions, where the phenotype is the result of a biochemical cascade of 
pigments. And these are, in fact, the cases where the additivity ideal
isation was originally introduced (see above). However, additivity is 
often taken literally, as a ‘concrete’ aspect of the G-P relationship, even 
though this does not match our knowledge of biological systems char
acterised by multiplicative interactions between molecular, cellular, and 
environmental variables. 

4.3. Normality 

A second idealisation that derives from classical models is that genetic 
risk is normally distributed. As in the case of the additivity idealisation, 
normality depends on theoretical choices that have been introduced for 
pragmatic reasons, such as the aim to estimate quantitative genetic 
parameters in animal breeding. In fact, Fisher already posed some 
constraints on the model’s applicability: he aimed to characterise vari
ation among relatives and to show that, “under the infinitesimal model, 
the distribution of genetic components within families remains normal, 
with variance that evolves in a way that is entirely determined by 
relatedness” (Barton et al., 2017, p. 50). As Fisher (1918: 400) puts it: 

Speaking always of normal populations, when the coefficient of 
correlation between father and son, in stature let us say, is r, it fol
lows that for the group of sons of fathers of any given height the 
variance is a fraction, 1 - r2, of the variance of sons in general. 

After Fisher, the normality idealisation had also much potential for 
the application of variance-partitioning studies to yes/no traits, like 
pathologies that are either diagnosed or not. In 1965, Falconer extended 
Fisher’s infinitesimal model assuming that genetic liability is polygenic 
and continuously distributed even for these traits, thus reducing 
discontinuity at the phenotype level to continuity at the genotypic level. 
More recently, geneticists like Plomin et al. (2009) and Knopik et al. 
(2017) argued that continuity is not only observed at the genotype level, 
but also at the phenotype level (e.g., each of us feels occasionally more 
or less ‘sad’, and for some of us this translates into clinical conditions 
like major depression). 

In PGSs, normality comes as a heuristic to stratify genetic risk: 
starting from the mathematical models above – where a fixed coefficient 
is attributed to each allele – PGSs aggregate the additive effects of 
GWAS-weighted allele risk and normalise such risk to obtain scores with 
a mean of 0 and standard deviation of 1 ( Lewis & Vassos, 2017). As the 
Broad Institute Online Resource explains: 

Some people will have a higher or lower score, depending on their 
number of risk-increasing or risk-decreasing variants, and the 
magnitude of impact of each variant. People with an approximately 
even number of risk-increasing and risk-decreasing variants are at an 
average risk of disease based on their genetics. People with more 

risk-increasing variants are at an increased risk of disease based on 
their genetics. People with more risk-decreasing variants are at a 
decreased risk of disease based on their genetics. 

Essentially, this provides a “human equivalent of the ‘breeding value’ 
in selective plant and animal breeding” or a single quantitative measure 
of genetic risk (Burt, 2022, p. 10) that is convenient for many reasons. 
Among them, normalised PGSs allow one to determine an individual’s 
position on the distribution of risk and whether she crosses a sufficiently 
high threshold (e.g., beyond the 5% of the population-wide risk) and 
thus requires clinical attention (Palk, Dalvie, De Vries, Martin, & Stein, 
2019). 

As I mentioned above, Fisher’s model does not imply that a trait’s 
distribution in the whole population (which is the target of GWAS) is 
normal. But there are three specific reasons to think that genetic risk is 
not distributed normally as classical models predicted. 

First, while single-nucleotide variants might be distributed normally, 
this is probably not the case for other types of genetic variants, partic
ularly rare and copy-number variants (the role of which is becoming 
increasingly clear in mental conditions, see Giangrande et al., 2022). 
PGSs exclude systematically the role of non-common variants that often 
account for a larger proportion of phenotypic variance: indeed, for the 
most part, these variants are difficult to capture through GWAS as they 
may be found only in small subgroups – so that they are not sufficiently 
represented in GWA large cohorts – and have imperfect penetrance 
(Baverstock, 2019; Burt, 2022; Fries, 2020; Génin, 2020; Giangrande 
et al., 2022; McClellan & King, 2010; Zaidi & Mathieson, 2020). Thus, 
the normality idealisation risks masking the heterogeneity of genetic 
effects on population variance. 

Second, it should be noted that, beyond theoretical models, the main 
piece of evidence for the normal distribution of genetic risk is the 
presence of disease-associated SNPs in non-clinical populations (e.g., 
Owen et al., 2007; Riglin et al., 2016; Robinson et al., 2016). These data 
are interpreted as evidence that the genetic basis of complex traits, 
including behaviours, is continuously distributed (e.g., for Plomin et al., 
2009, p. 877, evidence of polygenicity seems enough to conclude that a 
trait is quantitative). But in fact, GWAS only suggest that complex traits 
are highly polygenic and that their distribution does not follow simple 
patterns (i.e., there is no specific genetic variant that only ‘diseased in
dividuals’ have and ‘healthy’ individuals don’t). In other words, these 
data do not imply that there are individuals with an average number of 
‘average-value’ alleles (e.g., alleles that bring 0 as a phenotypic value in 
the mathematical models above) and that fewer individuals have a 
smaller number of ‘good-value alleles’ (+1) and ‘bad-value alleles’ (− 1) 
(note that recent theories account for complex traits beyond a quanti
tative characterisation, see Boyle et al., 2017; Serpico, 2020; Serpico & 
Petrolini, 2023). This is a case where the normality idealisation forces 
the interpretation of the data under a Fisherian framework even if the 
data have other plausible interpretations. 

A final aspect is that the normality of phenotypes was, in classical 
models, a key reason to assume normality at the genetic level. However, 
this depends on whether a phenotypic trait is actually quantitative or is 
rather operationalised as such. As I mentioned above, classical models 
have been intended to provide a genetic account of physical traits like 
human stature (expressed in cm), body-fat content (expressed in BMI 
values), and behavioural traits like intelligence (operationalised through 
IQ scores). The normality idealisation was suggested by the observation 
that phenotype values vary continuously in populations, rather than by 
empirical data on the actual distribution of genetic factors. Fisher him
self had no empirical reason to believe that genetic variation is contin
uous: he aimed to provide a plausible – though idealised – explanation of 
how underlying genetic variability can generate phenotypic continuity. 
On this view, values in quantitative traits are assumed to be normally 
distributed because genetic variation is assumed to be distributed as such. 

This can be further clarified by Falconer’s model, which introduced a 
theoretical concept called liability denoting “an underlying gradation of 
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some attribute immediately related to the causation of the disease” 
(1965: 52). Notably, Falconer did not make any “unwarranted 
assumption about the real nature of the liability.” Such a notion “simply 
specifies that in order to express the degree of liability we shall choose a 
scale of measurement which, if we could measure the liability, would 
yield a normal distribution” (1965: 53). In this sense, the normality 
idealisation was not made to describe the ‘real’ relationship between 
genetic risk and phenotypic variation, but rather to provide a quanti
tative interpretation of the genetics of discontinuous traits that would 
allow for the application of ANOVA and heritability analyses to yes/no 
traits like diseases. 

The normal distribution of genetic liability is, in other words, pre
dicted or postulated by such models, rather than simply observed. While 
a quantitative description makes sense in the case of human stature, 
quantitative variation in other traits can depend on how we operation
alise and normalise them. For instance, operationalising body-fat con
tent through BMI (as well as intelligence through IQ scores) may be 
convenient to analyse individual differences: the data get more tractable 
and can be inspected through ANOVA. However, this operationalisation 
involves precise methodological choices about how to normalise indi
vidual raw values/scores and ultimately requires reducing individual 
variation in such complex traits to unidimensional metrics. One should 
not confuse the phenotypic continuity generated by our measurement 
methods with continuity in a stronger, ontological sense (Hibberd, 2014; 
Koi, 2021; Meehl, 1992, 1999; Michell, 1997, 2012; Serpico, 2018, 
2020; Serpico & Borghini, 2021; Serpico & Petrolini, 2023). 

If we begin to cast doubts on the very possibility that genetic risk is 
normally distributed as quantitative genetics have initially postulated – 
and repeatedly assumed – the attempt to predict the ‘position’ of an 
individual on the ‘normal distribution of risk’ through PGSs loses part of 
its appeal. Moreover, an immediate implication of the normality ideal
isation is that PGSs would mask heterogeneity effects at different posi
tions of the distribution of risk. Indeed, together with the additivity 
idealisation (§3.2), it is assumed that, on average, additive genetic ef
fects will be similar for individuals at the low and high end of the dis
tribution. This prevents accounting for individual differences in 
response to environmental influences (for similar considerations, see 
Wehby, 2018). 

The normality idealisation is probably not a difference-maker for 
prediction, in the sense that its inclusion in genetic models may not 
affect the predictive power of a PGS. However, this idealisation justifies 
the very idea of a quantitative score of genetic liability: only if we 
embrace the view that genetic risk is normally distributed does poly
genic prediction make sense. If we instead exclude this idealisation from 
genetics models, different types of genetic prediction – not involving the 
normalised effects of GWAS allele risks – happen to make much more 
sense. 

4.4. SNPs causality 

There is extensive literature about whether GWAS data can be 
interpreted causally. But less explored is the question of whether single- 
nucleotide variants (SNVs), the simplest type of genetic variation, 
represent the appropriate level of complexity to analyse genetic causes. 
The fundamental assumption of contemporary genomics is that the ef
fects of these genetic variants can be observed at the phenotype level 
because these are the variants that, ultimately, generate phenotypic 
variation. Or they are just easier to detect. Either way, these variants are 
investigated in case-control studies where the DNA of a population with 
a trait is statistically compared with the DNA of a population without the 
trait: the expectation is that the SNPs that are causally relevant for that 
pathological phenotype will be more common in the case group. What if, 
however, GWAS have significantly idealised the role of SNVs in 
development? 

Let us return once again to classical models. Fisher speaks of Men
delian factors which, back then, did not have a clear material nature. 

With the development of molecular genetics, genetic variation was 
characterised in terms of DNA point mutations. It seems reasonable to 
think that such small mutations would correspond to Fisher’s alleles – 
the infinitesimally small genetic causes that would explain the normal 
distribution of traits. So, one may think that the transition from classical 
models to contemporary genetics is a case of successful reduction of one 
scientific theory to another: it just turned out that the abstract concept of 
allele used by early geneticists was to be reduced to SNPs. On this 
interpretation, it is also natural to interpret the small effect size of SNPs 
as a confirmation of classical models, because genetic effects are so small 
that standard GWAS cannot identify them easily (§1). 

Many critics argued that most SNPs may have little relevance for 
phenotypic variation as they are probably functionally irrelevant 
(Baverstock, 2019; Oftedal, 2022; Richardson & Jones, 2019). Here, I 
want to emphasise a different aspect: although the SNPs identified by 
GWAS may have some functional – yet unknown – role in phenotypic 
variation, they may not be the genetic causes that we are looking for 
when we talk about alleles. There are in fact various reasons to think that 
the concept of allele does not correspond to the concept of SNP but can 
rather reflect genetic variation of different sorts. 

To illustrate, let us consider a few cases of single-gene conditions. 
Sickle-cell anaemia is due to single-nucleotide substitution (A with T) in 
the gene encoding haemoglobin. In the resulting peptide of individuals 
carrying the allele, a GAG codon is substituted with a GTG codon, which 
encodes for a valine amino acid at position 6 instead of glutamate. This is 
a case where analysing variation at the SNV level makes perfect sense 
because a single-nucleotide difference generates the observed pheno
typic difference. 

However, conditions of this sort constitute a relatively small set of 
single-gene diseases. More often, such conditions involve mutations at 
many sites of one gene (not just one mutation) and such mutations are 
usually not the same in every individual diagnosed with the condition. 
For instance, hundreds of different mutations are responsible for 
phenylketonuria (Kronfeldner, 2009; Scriver, 2007). As another 
example, most cases of Huntington’s disease are caused by multiple 
copies of the CAG codon (Plomin et al., 2013, p. 130). That is, what is 
similar in different individuals is not a single-nucleotide mutation, but 
rather the impaired functionality of an encoded protein, which can be 
also determined by factors beyond the DNA sequence (e.g., ranging from 
cellular to environmental interactions). So, even in relatively ‘simple 
traits’ like Mendelian diseases, phenotypic variability can be realised by 
different mutations and be mediated by background effects. 

The key point is that the theoretical concept of allele of classical 
models does not strictly correspond to the concept of single-nucleotide 
variant. Alleles, intended as genetic variants that bring about a protein 
with impaired functionality, are multiply realised: they can have similar 
phenotypic effects (e.g., encoding of a dysfunctional protein, disrupting 
cellular functionality) despite different underlying structures or chemi
cal bases, e.g., they can involve different types of variation, such as 
repeated codons or point mutations (a similar point was raised by Craver 
et al., 2020, p. 1090; see also Bourrat, 2020; Oftedal, 2022). 

One consequence is that most SNPs may have little or no phenotypic 
effect in many individuals. If so, the GWAS strategy of dividing a pop
ulation into case and control groups can be risky: if the SNP-causality 
idealisation is inaccurate – and allelic variation is not reducible to 
single-nucleotide variation – we cannot expect stable correlations be
tween the presence of a disease and the presence of simple variants like 
SNPs. 

While in most GWAS this risk is mitigated given standard re
quirements regarding the genome-wide threshold of statistical signifi
cance for the inclusion of SNPs, PGSs are usually calculated by lowering 
p-value thresholds to include as many SNPs as possible (§1). Through 
this methodological choice, the selected p-value threshold of SNPs often 
is < 1, which is below the typical threshold of genome-wide significance. 
Unsurprisingly, as Burt (2022) and Janssens (2019) warned, PGSs often 
end up including every available SNPs regardless of their statistical 
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significance in the target GWAS, that is, genome-wide significant ones 
plus many others that have (arguably) little or indirect connections with 
variation in the trait of interest. 

Crucially, relaxing p-value thresholds may lead to including in a PGS 
also variants with low penetrance, i.e., variants that have phenotypic 
effects only in a small number of individuals. For many of such variants, 
the penetrance might be so low to make them practically irrelevant for 
prediction. In this sense, the SNP-causality idealisation likely is a 
difference-maker for the PGSs’ predictive power: if SNPs are not to be 
taken as alleles, then there is no clear sense in which a PGS based on SNPs 
information should be able to predict phenotypic development. 

To sum up: based on classical models, SNPs have been taken to 
represent genetic variability at the relevant causal level: the inference 
was that the alleles in such models correspond to the smaller units of 
genetic variability. Given the idealised characteristics of such alleles 
(small additive effects and normal distribution), SNPs investigated 
through GWAS are clearly natural candidates for the role of the “infinite 
number of Mendelian factors” that generate the continuous distribution 
of traits. This conclusion, however, is legitimate only if we take Fisher’s 
model literally and try to translate the idea of an “infinite number of 
Mendelian factors” into a concept from molecular biology. 

From what we know about biological systems, SNVs might not be the 
relevant genetic factors to investigate the impact of genetic variability 
on variability in complex traits. This is testified by the fact that genetic 
effects identified through GWAS are so small that the calculation of PGSs 
requires manipulating p-value thresholds. But what if we are not looking 
at the right level of complexity? 

5. Conclusions 

The calculation of PGSs relies on highly idealised models of the ge
netic architecture of complex phenotypes that have been developed in 
the early days of quantitative genetics. In this paper, I explored whether 
idealisations in such models can impact polygenic prediction and the use 
of SNPs information in clinical decision-making. I focused on three types 
of idealisations: a) each allele has an additive effect on phenotypic vari
ation; b) genetic risk for most complex traits is normally distributed; c) 
variation in single nucleotides represents the appropriate level of 
complexity to investigate genetic variability in complex traits. Since the 
PGSs’ capability of predicting individual development is still a contro
versial topic, I argued that the inclusion of some idealisations in genetic 
models makes a difference to the predictive accuracy of PGSs and their 
ability to capture the relationship between genetic and phenotypic 
variation. 

These idealisations have played a crucial role in the development of 
quantitative genetics methods, but it is important to stress that their role 
have changed throughout the historical development of quantitative 
genetics. 

Idealisations in early models deliberately misrepresented the G-P 
relationship in a way that decreased their descriptive accuracy, but the 
pragmatic aims of early geneticists seem to have abundantly justified 
such representational choices. Over time, classical models have been 
translated into more literal models with stronger descriptive aims: GWAS 
ultimately aims at capturing causal relations between genetic and 
phenotypic variation to inform medical decision-making. PGSs have 
similar objectives: some forms of therapeutic or environmental inter
vention would follow from prediction. The progressive re-adaptation of 
genetics idealisations risks making contemporary methods incapable of 
achieving the epistemic and practical aims of genomics-based precision 
medicine. Since such aims differ from those of the models where the 
idealisations were originally introduced, quantitative genetics ideal
isations seem now less legitimate than they probably were in the early 
days of genetic theorising. 

The presence of idealisations in PGSs conflates with the view that 
GWAS is a hypothesis-free method: at the very least, GWAS is not a 
theory-free method given that they presuppose a model with specific 

choices regarding what to represent and how. I suggested that such 
choices determine both the data that we can reasonably get from GWAS 
as well as their interpretation. 

To illustrate how idealisations can mislead the generation and 
interpretation of empirical data, let us consider a hypothetical case. Let 
us say that 90% of people overestimate their driving skills. One could 
design a psychometric test including various sub-tests assessing indi
vidual differences in such a trait; individuals’ sub-test performance 
could then be summarised into a single score (say, the Proud Driver 
Quotient, PDQ), and such scores could be normalised to get a normal 
distribution. Through this procedure, it becomes possible to analyse the 
involvement of genetic variation in PDQ differences among individuals 
through analysis-of-variance techniques: first, twin studies could esti
mate the percentage of variance in PDQ that is associated with genetic 
variance (h2

TWIN); second, GWAS could search for the SNPs that account 
for h2

TWIN (getting a h2
GWAS estimation for PDQ). If there is a gap between 

h2
TWIN and h2

GWAS for this trait, one can manipulate p-value thresholds to 
include every SNP below the threshold of genome-wide significance into 
a PGS. 

The question is: would this PGS capture the genetic liability of 
people’s attitude to overestimate their driving skills and predict where, 
on the normal distribution of PDQ scores, an individual will be? 

First, if the additivity and SNP-causality idealisations involve aspects 
that are difference makers for prediction, then the exclusion of non- 
additive and non-common effects would decrease the predictive power 
of the PGS. We could thus find out that the inclusion of such effects in the 
calculation of PGSs explains PDQ variance better than their exclusion. 

Second, by dropping the SNP-causality idealisation, it may turn out 
that focusing on different (less common and more complex) types of 
genetic variants have a higher potential in terms of individual-level 
prediction of response to environmental and background conditions. 

Third, by dropping the normality idealisation, one could realise that 
the trait ‘overestimating one’s driving skills’ is not normally distributed; 
perhaps, it is not even a quantitative trait in the standard sense: it is only 
operationalised as such. In that case, assuming that genetic liability is 
normally distributed would be misleading, and the very attempt to po
sition individuals on a Gaussian curve of genetic risk would make little 
sense. 

The main problem is that data and theories in contemporary quan
titative genetics are heavily model-dependent. Sometimes, idealisations 
enter scientific models in subtle ways, and we may easily lose sight of the 
relationship between models and empirical findings. For this reason, 
none of the three idealisations above can be easily ruled out until we 
stick to standard models. For instance, ever since Lewontin’s (1974) 
seminal paper on the difficulty of making causal claims based on the 
analysis of variance, scholars have never achieved a consensus on 
whether additivity is ‘the norm’ or just ‘an exception.’ It is beyond my 
aims to discuss potential ways to improve the ability of GWAS to detect 
non-additive or non-common sources of variation (on rare variants 
identification through family-based whole-genome sequencing, see 
Giangrande et al., 2022; Uffelmann et al., 2021). Until such methods 
become widely available, the calculation of PGSs based on GWAS should 
acknowledge the impact of theoretical idealisation on the descriptive 
and predictive accuracy of PGSs. 
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