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We study the robustness of the quantization of the Hall conductivity in the Harper-Hofstadter model towards
the details of the protocol with which a longitudinal uniform driving force Fx (t ) is turned on. In the vector
potential gauge, through Peierls substitution, this involves the switching on of complex time-dependent hopping
amplitudes e− i

h̄
Ax (t ) in the x̂ direction such that ∂tAx (t ) = Fx (t ). The switching on can be sudden, Fx (t ) =

θ (t )F , where F is the steady driving force, or more generally smooth Fx (t ) = f (t/t0)F , where f (t/t0) is such
that f (0) = 0 and f (1) = 1. We investigate how the time-averaged (steady-state) particle current density jy in
the ŷ direction deviates from the quantized value jy h/F = n due to the finite value of F and the details of the
switching-on protocol. Exploiting the time periodicity of the Hamiltonian Ĥ (t ), we use Floquet techniques to
study this problem. In this picture the (Kubo) linear response F → 0 regime corresponds to the adiabatic limit
for Ĥ (t ). In the case of a sudden quench jy h/F shows F 2 corrections to the perfectly quantized limit. When the
switching on is smooth, the result depends on the switch-on time t0: For a fixed t0 we observe a crossover force
F ∗ between a quadratic regime for F < F ∗ and a nonanalytic exponential e−γ /|F | for F > F ∗. The crossover
F ∗ decreases as t0 increases, eventually recovering the topological robustness. These effects are in principle
amenable to experimental tests in optical lattice cold atomic systems with synthetic gauge fields.
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I. INTRODUCTION

The quantization of the transverse conductivity σH in
the integer quantum Hall effect [1] (IQHE) is probably the
most famous manifestation of a topological invariant, the first
Chern number, in condensed matter physics [2]. Indeed the
celebrated TKNN paper [3] showed that in the linear response
regime, i.e., when the external electric field is small, the Hall
conductivity predicted by the Kubo formula je

y = σHEx is
quantized and can be written as the sum of the Chern numbers
of the occupied bands, and therefore it must be an integer, in
units of e2/h.

The extreme precision of the quantized Hall conductance
revealed in the experiments [1] suggests a remarkable ro-
bustness of the IQH phase against many ingredients, notably
the presence of impurities and interactions, and the strength
of the applied electric field. Concerning the latter issue, the
mathematical physics literature [4] has shown that corrections
to the Kubo formula vanish in quantum Hall systems to all
orders in perturbation theory.

Quite recently, the issue of the topological robustness of a
related phenomenon—Thouless pumping in one-dimensional
insulators [5]—has been re-examined, showing that the details
of the preparation of the quantum nonequilibrium steady
state and of the time-interval in which the pumped charge is
measured deeply influence how the topological τ → ∞ (infi-
nite period) adiabatic limit is approached [6]. In particular,
it was shown that the charge pumped over a finite number
of periods shows nonanalytic corrections—in the form of
faster and faster oscillations as ω = 2π/τ → 0—when the
periodic driving protocol is turned on abruptly starting from

an initial uncorrelated insulating state [6]. Such a nonan-
alytic approach of the adiabatic (topological) limit ω → 0
was indeed predicted by Avron & Kons [7] through rigorous
general arguments. What such rigorous arguments do not tell
is how the limit ω → 0 is approached when one considers
the asymptotic (steady state) single-period pumped charge,
where topological effects should most appropriately look for
[8], because this involves an infinite-time limit. Remarkably,
Ref. [6] shows that nonanalytic corrections present at finite
time turn into quadratic corrections ∼ω2 when the asymptotic
pumped charge is considered.

Modern realizations of the IQHE physics involve artificial
gauge fields in cold atomic systems [9–12]. In the light of
the results of Ref. [6], these experiments raise the nontrivial
issue of the robustness of the quantized Hall conductance
against many details, including primarily the preparation of
the quantum Hall state and the ensuing turning on of the
constant field, as well as the measurement of the transverse
current. To set up and state the problem we will address, let
us assume that the coherence time [9] of these cold atomic
systems is so long that it is legitimate to estimate the time-
average transverse current from its infinite-time limit

jy = lim
T →∞

1

T

∫ t0+T

t0

dt ′ 〈ψ (t ′)| ĵy |ψ (t ′)〉 . (1)

Here ĵy is the space-averaged particle-current density opera-
tor, and |ψ (t )〉 is assumed to evolve unitarily with the system
Hamiltonian Ĥ (t ), including the external uniform force field
Fx (t ) in the x̂ direction, which we represent by an extra
time-dependent vector potential Ax x̂ with ∂tAx (t ) = Fx (t ).
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FIG. 1. Possible schedules for the switching on of the uniform
driving force Fx (t ). The sudden quench case Fx (t ) = θ (t )F , where
θ (t ) is the Heaviside step function, is recovered for t0 → 0.

Furthermore, let us assume that the external uniform force
Fx (t ) is switched on in a time t0 towards a stationary value
F , i.e., Fx (t ) = f (t/t0)F , where f (t/t0) is a switching-on
function with f (0) = 0 and f (1) = 1. The Kubo formula for
the IQHE implies that for small F :

jy = σyxF = n

h
F , (2)

meaning that in the limit F → 0 the quantity jyh/F is
exactly an integer number n. A robust quantization against
the strength of F would appear, in this context, as nonan-
alytic corrections of the form jyh/F 	 n + Ae−γ /|F |, while
the presence of quadratic corrections, jyh/F 	 n + BF 2 +
o(F 2), would signal an ordinary perturbative response.

In this paper we investigate how the finite value of the sta-
tionary driving force F and the details of the driving protocol,
encoded in t0 and in the switching-on function f (s = t/t0),
affect the precision of the measurement of the transverse
Hall response in cold atoms IQHE systems. Our investigation
focuses on the Harper-Hofstadter (HH) model [13], a two-
dimensional tight-binding Hamiltonian for IQHE which is
particularly relevant for experimental realizations with optical
lattices [10–12], providing an excellent tool to study QHE
physics in a tunable and controlled system. The techniques
used involve quite standard Floquet tools to study the time-
periodic dynamics of the transverse current, which can be
formulated as a quantum pumping problem.

We will show that the main responsible for topological
robustness is the switching function f (t/t0). We analyze in
detail three possible schedules: a sudden quench Fx (t ) =
θ (t )F , a linear ramp Fx (t ) = (t/t0)F , and a smoother ramp,
as sketched in Fig. 1. We will show that in the sudden case,
Fx (t ) = θ (t )F , the Hall response of the system is pertur-
bative, and F 2 corrections to jyh/F are present. When the
driving force is turned on linearly in a time t0, Fx (t ) =
(t/t0)F , we find two distinct regimes: For a fixed t0 we
observe a crossover force F ∗(t0) between a quadratic regime
for F < F ∗ and a nonanalytic exponential e−γ /|F | for F >

F ∗. The crossover F ∗(t0) decreases as t0 increases, eventually
recovering the topological robustness. Finally, if the switching
on is smoother (with a continuous derivative), Fx (t ) = 1

2

(1 − cos(πt/t0))F , we observe no qualitative differences
with the linear ramp case, suggesting the main ingredient for
the topological robustness seems to be the continuity of Fx (t )
and a suitably long t0.

The paper is organized as follows: In Sec. II we introduce
the Harper-Hofstadter and the quantum pumping approach we
used to study the nonadiabatic corrections to the transverse
response. In Sec. III we present our results, along with a de-
tailed analysis of the topological nature of the pumped charge,
highlighting the main factors responsible for the correction to
the quantized transverse response. In particular, in Sec. III A
we analyze the topological properties of the transverse current
carried by a Floquet state, in Sec. III B we describe the
response to the sudden quench of the external force, and in
Sec. III C we discuss the continuous switching on of Fx (t ).
Conclusions and outlook are contained in Sec. IV.

II. THE HARPER-HOFSTADTER MODEL

Our starting point is the Harper-Hofstadter Hamiltonian
[13], which describes a tight-binding system of noninteracting
spinless fermions on a two-dimensional (2D) square lattice,
pierced by a uniform magnetic field B = B ẑ perpendicular to
the lattice plane:

Ĥ = −J0

∑
l,m

[ĉ†l+1,mĉl,m + e−i2παl ĉ
†
l,m+1ĉl,m + H.c.]. (3)

Here J0 is the bare hopping amplitude, and (l, m) are inte-
gers labeling the square lattice sites, rl,m = a(lx̂ + mŷ), with
lattice spacing a, with boundary conditions to be discussed
later on. The magnetic field flux per plaquette, in units of the
flux quantum φ0 = hc/e, is here α = a2B/φ0 and results in
a complex hopping amplitude through Peierls’ substitution,

J0 e−i e
h̄c

∫ r′
r A·dx, with a Landau gauge choice for the vector

potential A = Bxŷ, breaking translational invariance along
the x̂ direction. In a condensed matter realization of this model
Hamiltonian, with charged particles in real magnetic fields,
one would not be able to explore the full phase diagram of the
model for α ∈ [0, 1], since the flux per plaquette is too small,
even with large laboratory fields. In modern realizations with
neutral cold atoms in optical lattices [12,14], on the contrary,
synthetic gauge fields are used and all interesting values of
α are possible. Historically, as discovered by Hofstadter [13],
the spectrum is extremely complex, with rational values of
α = p/q leading to q energy subbands with gaps in between.
The crucial realization, due to Thouless and coworkers [3], is
that the insulating states obtained when the Fermi energy lies
inside the gaps between such subbands has a quantized Hall
conductance

σH = −e2

h

occ∑
ν

∫
BZ

d2k
2π

�ν (k) = n
e2

h
, (4)

where �ν (k) = i[〈∂kx
uν,k|∂ky

uν,k〉 − 〈∂ky
uν,k|∂kx

uν,k〉] is the
Berry curvature [2] of the νth occupied band, and uν,k denote
the periodic part of the Bloch wave functions on the (mag-
netic) Brillouin zone (BZ) of the system. This implies that
a Hall current flows, for instance, in the y direction when
an electric field Ex acts in the x direction: jy = σH Ex . The
robustness of this phenomenon is remarkable: Disorder and
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(weak) interactions do not alter the result, thus providing an
exceptionally precise measurement [1] of e2/h. A further
remarkable robustness is offered by the fact that the Kubo
formula, derived from linear response theory, seems to extend
its regime of validity well beyond linear response: As mathe-
matically proven in Ref. [4], and further discussed in Ref. [7],
all power-law corrections in the electric field can be shown,
under suitable hypotheses, to be missing.

The availability of new experiments employing synthetic
gauge fields [12,14], directly sensitive to the time-dependent
transient leading to the transverse response, calls for a further
scrutiny of this issue. Experimentally, the driving force Fx (t )
in the x̂ direction can be turned on, as a function of time, with
some freedom, either abruptly or in a more or less smooth
fashion. On the theory side, we can represent such a force
in different gauges: Quite conveniently, for a finite-length
system Lx with periodic boundary conditions (PBC) in the
x̂ direction, we can choose a vector-potential gauge in which
the force is represented by a time-dependent vector potential
Ax x̂ with ∂tAx (t ) = Fx (t ). The minimal coupling requires, in
a tight-binding scheme, the Peierls’ substitution:

ĉ
†
l+1,mĉl,m −→ e−iaκx (t ) ĉ

†
l+1,mĉl,m , (5)

where κx (t ) = Ax (t )/h̄ and thus we can express the force
Fx (t ) acting in the x direction through Fx (t ) = h̄κ̇x (t ). More
in detail, we chose Fx (t ) = Ff (t/t0), where f (s = t/t0) is a
switch-on function interpolating between 0 and 1, i.e., such
that f (s � 0) = 0 and f (s � 1) = 1, and F is the stationary
value of the force, attained for t � t0. This choice leads to

κx (t ) =

⎧⎪⎨⎪⎩
t0F

h̄

∫ t/t0

0
dsf (s) if t � t0 ,

κx (t0) + F

h̄
(t − t0) if t � t0 .

(6)

The case of a sudden switch on of the force is recovered
by taking t0 = 0. Since κx (t ) appears in the hopping as a
phase factor, see Eq. (5), the Hamiltonian is invariant under
the trivial phase shift κx (t ) → κx (t ) + 2π/a. In particular
when the force is constant, the linear increase of κx (t ) for
t � t0 implies that the Hamiltonian becomes time periodic,
Ĥ (t + τ ) = Ĥ (t ), with the period τ given by

τ = 2πh̄

aF
, (7)

which corresponds to a fundamental frequency h̄ω = aF en-
tering the problem. Here we wish to stress two consequences
of the previous considerations:

(1) The vector potential gauge choice leading to Eq. (5)
introduces a time dependence in the Hamiltonian, even if the
force is constant. Indeed if Fx (t ) = F , as when a DC field is
applied, Ĥ (t ) becomes periodic in time.

(2) Since for a constant force h̄ω = aF , the question of
the validity of linear response in F goes hand in hand with
the issue of adiabaticity of Ĥ (t ), Kubo linear response being
essentially obtained in the fully adiabatic limit ω → 0.
Henceforth we will use the frequency ω, instead of F ,
to measure how far the system is from perfect linear re-
sponse (or adiabatic) regime. Although the latter has clearer
physical meaning, being the driving force amplitude, it is
much more convenient to express our results as a function

of the frequency, or of the period τ , when exploiting the
properties of time-periodic Hamiltonians.

To calculate the current, following Laughlin [15], we use
PBC in the ŷ direction as well, introducing a vector potential,
again with a minimal-coupling Peierls’ substitution:

ĉ
†
l,m+1ĉl,m −→ e−iaκy ĉ

†
l,m+1ĉl,m . (8)

The total current operator is obtained as a derivative of Ĥ with
respect to κy :

Ĵy = 1

h̄

∂Ĥ

∂κy

∣∣∣∣
κy=0

. (9)

The Hall response can now be seen as a nonvanishing
quantum average of Ĵy in the presence of a force Fx , describ-
ing the transport of particles along the ŷ direction. We can
quantify this through the linear density of transported particles
during the interval [t0, t] (dropping the initial switching-on
interval [0, t0]):

Qy (t � t0) =
∫ t

t0

dt ′ 〈ψ (t ′)| ĵy |ψ (t ′)〉 , (10)

where |ψ (t )〉 denotes the time-evolving state of the
system, and ĵy = Ĵy/(LxLy ) is the space-averaged current
density. Notice that Qy , as defined, gives the number of
particles per unit length moving along the ŷ direction in the
interval [t0, t]: We will often refer to it as pumped charge,
although the particles could be neutral.

We can ask for the charge pumped in the mth period:

Qm = Qy (t0 + mτ ) − Qy (t0 + (m − 1)τ ) . (11)

We expect that the charge pumped in the initial periods
Q1,Q2, . . . might be affected by transient effects, depending
on the details of the switching-on function f (t/t0) and time
t0. These transient effects are expected to decay for m → ∞,
so that the infinite-time average

Q = lim
M→∞

1

M

M∑
m=1

Qm (12)

should effectively capture the asymptotic (steady state) single-
period pumped charge, where topological effects should most
appropriately be looked for [8]. The Floquet theorem enor-
mously simplifies the calculation of the infinite-time average
Q. Indeed, the state of the system at any time t � t0 can
be expanded in terms of Floquet modes and quasienergies
[16,17] as:

|ψ (t )〉 =
∑

ν

e−iεν (t−t0 )/h̄|uν (t )〉〈uν (t0)|ψ (t0)〉, (13)

where εν are the Floquet quasienergies and |uν (t )〉 the asso-
ciated time-periodic Floquet modes, |uν (t + τ )〉 = |uν (t )〉. A
rather standard derivation [7,18] shows that the infinite-time
average pumped charge is dominated by the Floquet diagonal
ensemble value:

Q ≡ Qd =
∑

ν

nν

∫ t0+τ

t0

dt ′ 〈uν (t ′)| ĵy |uν (t ′)〉 , (14)

where nν = |〈uν (t0)|ψ (t0)〉|2 is the “occupation” of the νth
Floquet mode. This clearly shows that the initial preparation,
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with the transient loading interval [0, t0], is all contained in
the occupation factors nν .

So far, we have made use of time periodicity but not
of translational invariance. To proceed, we make a rational
choice of the magnetic flux, α = p/q with p and q co-prime
integers, which leads to an enlarged “magnetic” unit cell
of size qa in the x direction. We now label the sites in
the x direction with a cell index j = 0 . . . Nx − 1 and an
intracell index b = 0, 1, . . . q − 1, so that l = qj + b, while
m = 0 . . . Ny − 1 labels sites in the y direction. Hence, Lx =
Nxqa, and Ly = Nya. We then define appropriate Bloch
combinations of the form:

ĉ
†
k,b = 1√

N

Nx−1∑
j=0

Ny−1∑
m=0

eia(kx (qj+b)+kym)ĉ
†
qj+b,m

ĉ
†
qj+b,m = 1√

N

BZ∑
k

e−ia(kx (qj+b)+kym)ĉ
†
k,b, (15)

where k = 2π
a

( nx

qNx
x̂ + ny

Ny
ŷ), with nx = 0, . . . , Nx − 1 and

ny = 0, . . . , Ny − 1, define the N = NxNy wave vectors
inside the Brillouin zone (BZ): [0, 2π

qa
] × [0, 2π

a
]. The

Hamiltonian for the system can then be written in the form:

Ĥ (t ) = −J0

BZ∑
k

q−1∑
b=0

{
2 cos

(
aky + 2πp

q
b
)
ĉ
†
k,bĉk,b

+ [e−ia(kx+κx (t ))ĉ
†
k,b+1ĉk,b + H.c.]

}
=

BZ∑
k

(ĉ†k,0 · · · ĉ†k,q−1) · H(k, t ) ·

⎛⎜⎝ ĉk,0
...
ĉk,q−1

⎞⎟⎠ , (16)

i.e., effectively a q × q matrix problem H(k, t ) for every k
vector in the BZ. The total current operator has a similar
expression:

Ĵy = 2aJ0

h̄

BZ∑
k

q−1∑
b=0

sin
(
aky + 2πp

q
b
)
ĉ
†
k,bĉk,b

=
BZ∑
k

(ĉ†k,0 · · · ĉ†k,q−1) · J(k) ·

⎛⎜⎝ ĉk,0
...
ĉk,q−1

⎞⎟⎠, (17)

where J(k) = (1/h̄)∂H/∂ky .
From now on, we will concentrate our study on the case

α = 1/3, where the Hamiltonian becomes a 3 × 3 problem
for every k. Exploiting the k factorization of the initial state
|ψ (0)〉 and of the subsequent dynamics, using that the space-
averaged current density is ĵy = Ĵy/(LxLy ), and transforming
the sum over k into an integral on the BZ in the usual fashion
for a large system, we can rewrite the asymptotic pumped
charge as:

Qd =
∑

ν

∫
BZ

d2k
(2π )2

nk,ν

∫ t0+τ

t0

dt ′ 〈uk,ν (t ′)| 1

h̄

∂H

∂ky

|uk,ν (t ′)〉 ,

(18)

where

nk,ν = |〈uk,ν (t0)|ψk(t0)〉|2 . (19)

A generalization of the Hellman-Feynman theorem for the
Floquet case [16] shows that the average current carried by a
Floquet mode is easily expressed in terms of the quasienergy
velocity:∫ t0+τ

t0

dt ′ 〈uk,ν (t ′)| ∂H
∂ky

|uk,ν (t ′)〉 = τ
∂εk,ν

∂ky

. (20)

Hence Qd in Eq. (18) can be re-expressed as:

Qd = τ

h̄

∑
ν

∫
BZ

d2k
(2π )2

nk,ν

∂εk,ν

∂ky

. (21)

Henceforth we will refer to the quantity defined in Eq. (21)
as the diagonal pumped charge. We should stress that both
the occupation factors nk,ν and the quasienergies εk,ν are
dependent on the time periodicity τ , or the frequency ω, a
dependence that we have not explicitly indicated.

It is useful to make here the connection with the time-
averaged current density mentioned in the introduction,
Eq. (1). Using Eq. (12) and the fact that Q ≡ Qd, see Eq. (14),
it is straightforward to derive that

jy = lim
T →∞

1

T

∫ t0+T

t0

dt ′ 〈ψ (t ′)| ĵy |ψ (t ′)〉 ≡ Qd

τ
. (22)

Hence, using the relationship (7) between the period τ and the
force F , it is simple to show that:

jy = σyxF = aQd

h
F . (23)

Hence, the transverse Hall “conductance” is here given by
σyx = (aQd )/h. Its quantization, in units of 1/h, would
require that aQd = n, an integer.

A final comment concerning transient effects. To appre-
ciate them, the asymptotic pumped charge Qd should be
contrasted with the charge pumped in the mth period, which
would read:

Qm = 1

h̄

∫
BZ

d2k
(2π )2

∫ t0+mτ

t0+(m−1)τ
dt ′ 〈ψk(t ′)| ∂H

∂ky

|ψk(t ′)〉 .

(24)

III. RESULTS

To illustrate the previous general considerations, let us
consider the case of a sudden switch on of a constant force
Fx (t ) = θ (t )F , which effectively amounts to taking t0 = 0
in the previous expressions. The bands of the unperturbed
Hamiltonian are shown in Fig. 2 (top), for Nx = 30, as a
function of ky ∈ (−π/a, π/a]: We see q = 3 distinct bands,
obtained by projecting the Nx different values of kx . The
initial insulating state is a Slater determinant |ψ (0)〉 obtained
by completely filling one such band, for instance the lowest
one. We then calculate the charge pumped in the first period:

Q1 = 1

h̄

∫
BZ

d2k
(2π )2

∫ τ

0
dt ′ 〈ψk(t ′)| ∂H

∂ky

|ψk(t ′)〉 . (25)

Figure 2 (bottom) shows the value of Q1 as a function of the
driving F , expressed in terms of h̄ω = aF . Notice that for
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FIG. 2. Top: Energy bands of the Harper-Hofstadter model for
α = 1/3 vs ky for Nx = 30. The dashed red lines represent the
energy averaged over the phase kx + κx (t ). Bottom: Charge pumped
in the first period in each magnetic cell, 3aQ1, as a function of the
driving field aF/J0, where h̄ω = aF , after a sudden switch on of the
driving. For F → 0, 3aQ1 is quantized to the first Chern number,
respectively +3, −6, +3, of the band in which the system is initially
prepared. (The simulation has been repeated by preparing the initial
Slater determinant insulating state to be one of the three completely
filled bands, in order to compute the Chern numbers.) The first
and the third band give exactly the same response. This figure is
essentially equivalent to Fig. 1 of Ref. [7], where the abscissa is 1/ω.

F → 0 we recover, as expected, a pumped charge which is
quantized to the integer Chern numbers (+3, −6, and +3)
of the three completely filled bands. Deviations from perfect
quantization are clearly visible at finite ω: The remaining part
of the paper is precisely devoted to understanding the nature
and size of these deviations.

In order to proceed with the analysis of the deviations
from perfect quantization for small ω, we shift our attention
to the infinite-time average of the pumped charge, where the
Floquet theory helps in elucidating the crucial ingredients.
Our starting point is hence Eq. (21), which we rewrite below
for convenience in a slightly different form:

Qd = 1

h̄ω

∑
ν

∫
BZ

d2k
2π

nk,ν

∂εky,ν

∂ky

. (26)

In this rewriting we have used the trivial fact that τ = 2π/ω

and that the Floquet quasienergies εk,ν are dependent only on
ky : To appreciate the last fact, observe that the dependence
of the Hamiltonian, see Eq. (16), on kx and t is all contained
in the phase-factor e−ia(kx+κx (t )) = e−iaκx (t0 )e−iω(t−tx ),

with tx = t0 − akx/ω. Hence, different values of kx

effectively correspond to a shift in time t0 → t0 − tx , which
in turn amounts to a unitary transformation on the Floquet
operator Ûk(t0 + τ, t0), whose eigenvector/eigenvalues are
the Floquet modes/quasienergies:

Ûk(t0 + τ, t0)|uk,ν (t0)〉 = e−iεk,ν τ/h̄|uk,ν (t0)〉 . (27)

As discussed in Appendix B, the fact that the Floquet opera-
tors at different kx are unitarily equivalent implies that their
eigenvalues are kx independent, i.e., e−iεky ,ν τ/h̄. Notice that,
on the contrary, the Floquet modes |uk,ν (t )〉, and hence the
occupations nk,ν = |〈uk,ν (t0)|ψk(t0)〉|2, do depend on kx .

A. Pumping of Floquet states

The first issue we address is what happens to the pumped
charge if the initial state |ψ (t0)〉 is precisely prepared to be
the νth Floquet state, i.e., such that nk,ν ′ = δν,ν ′ . Then, the
corresponding value of the pumped charge is:

QF
ν = 1

3ah̄ω

∫ 2π
a

0
dky

∂εky,ν

∂ky

, (28)

where we eliminated the trivial integral on kx ∈ [0, 2π
3a

]. To
better understand the physical implications of this formula,
let us start from the extreme adiabatic limit ω → 0, where
the predictions of the adiabatic theorem give us a 0th-order
expression for the quasienergies, in an extended Floquet BZ
scheme [17], in the form:

ε
(0)
k,ν = 1

τ

∫ τ

0
dt[Ek,ν (t ) − ih̄〈φk,ν (t )|∂tφk,ν (t )〉]

= εd
k,ν + ε

g

k,ν . (29)

Here φk,ν (t ) and Ek,ν (t ) are the instantaneous eigen-
states/eigenvalues of Ĥ (t ), while εd

k,ν and ε
g

k,ν denote dynam-
ical and geometric contributions [2]. These contributions are
in turn expressed as:

εd
ky,ν

= a

∫ 2π
a

0

dkx

2π
Ek,ν (0)

ε
g

ky,ν
= −h̄ω

∫ 2π
a

0

dkx

2π
A(ν)

x (k) , (30)

where A(ν)
x (k) = i〈φk,ν (0)|∂kx

φk,ν (0)〉 is the Berry connec-
tion of the νth band. In both terms, the time integral has
been transformed into a kx integral using the fact that the
dependence on t is through the variable akx + ωt . As a con-
sequence, both terms are functions of ky only. The dynamical
contribution is the kx-averaged Bloch band and is strictly
periodic in ky of the BZ, see dashed red line in Fig. 2. On
the contrary, the geometric term winds over the BZ, ending up
acquiring an overall integer equal to the Chern number of the
corresponding band:

ε
g
2π
a

,ν
− ε

g

0,ν = h̄ωCν . (31)

This immediately leads to the expected integer quantization

3aQ(0)
ν = 1

h̄ω

∫ 2π
a

0
dky

∂ε
(0)
ky ,ν

∂ky

= Cν . (32)
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FIG. 3. Adiabatic quasienergies ε
(0)
ky ,ν in units of h̄ω for the three

bands of the Harper-Hofsdtadter model. The frequency is h̄ω =
0.1J0. ε

(0)
ky ,ν is the sum of the kx-averaged band, dashed line in Fig. 2

(upper panel), plus the geometric contribution, giving rise to the loss
of periodicity for ε

(0)
ky ,ν in the BZ: ε

(0)
2π
a ,ν

= ε
(0)
0,ν + h̄ωCν , where Cν is

the Chern number of the νth band.

We now consider finite-ω effects beyond the adiabatic
limit. Figure 4 shows the Floquet quasienergy bands for
h̄ω/J0 = 0.1, plotted versus ky in the region [0, 2π/(3a)],
due to a periodicity εky+ 2π

3a
,ν = εky,ν discussed in Appendix B.

Notice that the quasienergies are here naturally represented
in the Floquet Brillouin zone [17] [−h̄ω/2, h̄ω/2], as they
are obtained by a numerical diagonalization of the Floquet
operator. The thick line represents the quasienergy band
emerging from the low-energy band of Fig. 3. We observe two
conspicuous features:

(i) an apparent winding over the Floquet Brillouin zone,
as a quasienergy crossing h̄ω/2 re-enters at −h̄ω/2 (and
vice versa). This is the winding expected from the geometric
contribution to the adiabatic quasienergies shown in Fig. 3. It
would lead to:

1

h̄ω

∫ 2π
a

0
dky

∂εky,ν

∂ky

= Cν , (33)

where Cν is the Chern number of the νth band (Cν = +3, for
the thick band shown in Fig. 4).

(ii) an apparent crossing of quasienergies belonging to
different Floquet bands.
The crossings between different Floquet bands can develop
very small anticrossing gaps [7,19], as indeed we find at the
points signalled by a square (see inset of Fig. 4). To better
understand the nature of such anticrossing gaps, we reconsider
again the adiabatic bands. The central panel of Fig. 4 shows a
plot of the adiabatic bands ε

(0)
ky ,ν

folded back into the Floquet
BZ: Quite evidently, they are a good approximation to the
true quasienergies for such value of ω. Notice, however, that
here all the band crossings are genuine ones. The bottom
panel of Fig 4, finally, shows ε

(0)
ky ,2 − ε

(0)
ky ,1, the energy differ-

ence between the two lowest adiabatic bands, which clearly
suggests that the anticrossing points—signalled by vertical
dashed lines—are associated to Floquet resonances when
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(
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−
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ω

0 π/6 π/3 π/2 2π/3
kya

(a)

(b)

(c)

FIG. 4. (a) Floquet spectrum as a function of ky , for h̄ω/J0 =
0.1. The squares signal the Floquet resonance avoided crossings, the
circle an ordinary avoided crossing. Both are magnified in the top
insets, where the size of the points is proportional to the kx-averaged
occupation nky ,ν , see Eq. (34). (b) Floquet adiabatic quasienergies,

Eq. (29), folded in the Floquet BZ. (c) (ε (0)
ky ,2 − ε

(0)
ky ,1)/h̄ω, the energy

difference between the two lowest adiabatic bands in the extended-
zone scheme, for h̄ω = 0.1J0. The vertical lines indicate the Floquet
resonances, ε (0)

ky ,2 − ε
(0)
ky ,1 = mh̄ω with m = 29, 26, 23, 20, giving rise

to the avoided crossing gaps of panel (a).

ε
(0)
ky ,2 − ε

(0)
ky ,1 = mh̄ω. Surprisingly, not all possible resonances

actually lead to the opening of an anticrossing gap, but only
a sequence of them, here with m = 29, 26, 23, 20. The peri-
odicity of �m = 3 is likely associated to our choice of flux
α = 1/3, but the precise location of the resonance is not fully
understood. One thing that we can say, however, is that the
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FIG. 5. The deviation of 3aQF
ν , Eq. (28), from integer quanti-

zation, 3 − 3aQF
ν , for the lowest Floquet band, assuming nk,ν′ =

δν,ν′ , showing that the exponentially small gaps in the quasienergy
spectrum at finite ω lead to exponentially small deviations.

resonances open up gaps [20] in the quasienergy spectrum that
are exponentially small in 1/ω. This makes such gaps quite
difficult to pinpoint precisely, but our numerical evidence is
reasonably robust on that issue. Figure 5 shows the deviation
from integer quantization, 3 − 3aQF

ν ,—calculated assuming
nk,ν = 1 and using Eq. (18), which, as opposed to Eq. (28),
avoids derivatives of numerically determined quasienergies—
as a function of J0/h̄ω: In the ω region we plot, an overall ex-
ponential decay is clearly visible for 3 − 3aQF

ν ∼ e−γ J0/(h̄ω),
with γ ∼ 0.5, superimposed on a sawtooth behavior due to
the sudden formation of larger gaps when two nearby gaps
coalesce together upon decreasing ω. Summarizing, if the
quasienergy avoided-crossing gaps opening was the main
reason for finite-frequency/field corrections to the quantized
pumped charge, such deviations would be exponentially small
in 1/ω ∝ 1/F : therefore nonanalytic in the field strength
[7] and exceedingly small for most practical purposes. For
instance, in an experiment in which h̄ω = 10−2J0, we would
estimate 3 − 3aQF

ν ≈ 10−22.

B. Effect of the occupation factors: Sudden switch on

The second source of deviations from perfect quantization
arises from the fact that the prepared state |ψ (t0)〉 is not
precisely a Floquet state, i.e., that Floquet occupation factors
deviate from nk,ν ′ = δν,ν ′ . The inset of Fig. 4, where the
size of the dots is proportional to the Floquet occupation,
shows that sizable deviations occur whenever ω > 0, even if
small, at the quasienergy avoided level crossing. Indeed, for a
quasiadiabatic evolution, the Floquet modes will be “close” to
the eigenstates of the Hamiltonian, to which they reduce for
ω → 0. If we initialize the system in an insulating phase by
filling the lowest-energy band, one of the Floquet occupation
numbers nk,ν will be close to 1 and much higher than the
others: The corresponding Floquet mode will be the main one
responsible for charge transport. In the following, we will
refer to such a state as adiabatic or lowest-energy Floquet
state: It is indeed the Floquet state which has the largest
overlap with the instantaneous Hamiltonian ground state. This

10−4

10−3

10−2

5 10 20 30

0.08 ω
J0

2

1
−

n
ν

J0/ ω

FIG. 6. Correction to the k-averaged adiabatic Floquet mode
occupation nν , Eq. (37), vs 1/ω, showing the good agreement
between the numerical data and the perturbation theory prediction
from Eq. (35).

is highlighted in Fig. 4, where the Floquet spectrum is plotted
vs ky with thickness proportional to kx-averaged occupation
factor

nky,ν = 3a

2π

∫ 2π
3a

0
dkx nk,ν . (34)

Let us now focus on the occupation of such an “adiabatic”
Floquet state. If the driving field is suddenly turned on from
Fx (t � 0) = 0 to Fx (t > 0) = F , |ψ (t0 = 0)〉 coincides with
a Slater determinant Bloch eigenstate of Ĥ (0), and nk,ν is
given by the overlap of such a state with the adiabatic Flo-
quet state: nk,ν = |〈uk,ν (0)|φk,ν〉|2. When ω is small, we can
combine adiabatic perturbation theory [21] (APT) to obtain an
approximate expression for the Floquet modes |uk,ν (0)〉, see
Appendix A for details. Following this approach nk,ν can be
calculated to be:

nk,ν = 1 −
(

h̄ω

2π

)2 ∑
μ �=ν

∣∣∣∣M (k)
μ,ν

�
(k)
μ,ν

∣∣∣∣2

+ O(ω3) . (35)

Here M (k)
μ,ν and �(k)

μ,ν are calculated from instantaneous
Hamiltonian eigenvalues/eigenstates, Ĥk(s)|φk,ν (s)〉 =
Ek,ν (s)|φk,ν (s)〉 where s = ωt is the rescaled time, as:

�(k)
μ,ν (s) = Ek,μ(s) − Ek,ν (s),

M (k)
μ,ν (s) = 〈φk,μ(s)|∂sĤk(s)|φk,ν (s)〉

�
(k)
ν,μ

. (36)

In Eq. (35) all quantities are evaluated at s = 2π , correspond-
ing to t = τ , a full period. Therefore, if the matrix elements
Mμ,ν are not all equal to zero, which in general they are
not, we expect to see power-law corrections to the occupation
number of the Floquet states, leading to a similar behavior for
the pumped charge. Figure 6 shows the k-averaged occupation

nν = 3a2
∫

BZ

d2k
(2π )2

nk,ν , (37)
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FIG. 7. Pumped charge vs ω, both for one period (solid line)
3aQ1, Eq. (25), and in the diagonal ensemble (dashed line) 3aQd,
Eq. (26). Notice the oscillations in Q1, signaling an essential sin-
gularity in ω = 0. The inset shows the deviation from the quantized
value 3aQ1(ω → 0) = 3 vs 1/ω. For small frequency this deviation
is quadratic in ω.

calculated numerically, compared to the perturbation theory
estimate in Eq. (35), as a function of ω: The ω2 deviation is
quite clearly visible. This quadratic correction to the occupa-
tion factors reflects itself into the pumped charge, both the
single-period charge Q1, Eq. (25), as well as the infinite-time
average Qd, Eq. (26), as seen from Fig. 7. The faster-and-
faster oscillations seen in Q1 for ω → 0 originate from the
essential singularity in ω = 0 of the expectation value of the
current operator [7]; the oscillations are smeared in Qd, due
to the infinite-time average. This behavior is very similar to
that reported in Ref. [6] for adiabatic quantum pumping in the
Rice-Mele model.

C. Effect of the occupation factors: Continuous switch on

The picture becomes richer if we switch on the driving in a
continuous fashion, taking Fx (t ) = Ff (t/t0) with a suitably
smooth function f (s = t/t0). The first obvious choice is a
linear switch on, f (s) = s, with a fixed switch-on time t0. As
shown in Fig. 8, we now observe two regimes: a first one,
for relatively large ω, where the corrections to the occupation
nν of the adiabatic Floquet band appear to be exponentially
small in 1/ω, and a second regime, for small ω, where the
corrections are ∝ ω2:

1 − nν ∼

⎧⎪⎪⎨⎪⎪⎩
Ae− γ J0

h̄ω for ω > ω∗

B
h̄4ω2

J 4
0 t2

0

for ω < ω∗
. (38)

The two regimes have markedly different behaviors. The non-
analytic exponential observed at higher ω is universal—with
γ 	 0.5 from our data, and at most a very mild dependence
of A on t0—and, as we will argue, it is directly related to the
width of the resonances of the Floquet spectrum. The power-
law regime is nonuniversal, with an amplitude decreasing as
1/t2

0 : hence the crossover frequency ω∗ between these two
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A exp(−γJ0/ ω)

B
2ω

J2
0 t0

2

FIG. 8. Correction to the occupation of the lowest energy Flo-
quet band for different switch-on times t0. The inset highlights the
crossover from an exponential regime e−1/ω to the quadratic one ω2

for finite ramp time t0. The solid lines correspond to the functions

0.05e− 0.5J0
h̄ω and 0.002(h̄ω/J0 )2.

regimes, which is approximately given by:

J0

h̄ω∗ 	 log

(√
A

B

J0t0

h̄

)
, (39)

is shifted towards smaller ω as t0 increases. Notice that the

crossover ω∗ exists only if J0t0
h̄

�
√

B
A

e
4 ; indeed if t0 is too

small, only the power law regime survives, leading to the
ordinary “perturbative response” observed for the sudden
quench case.

It is interesting to ask why the continuity in time of the
force field Fx (t ) is so important. As explained in Sec. III A
the topological properties at finite frequency are related to the
Floquet states, while the system is initially prepared in a state
|ψ (0)〉 which coincides with the Hamiltonian ground state.
By switching on the driving force in a continuous manner,
Fx (t ) = Ff (t/t0), the initial state is continuously deformed
into a state which is “closer” to the “lowest-energy” Floquet
state at the final frequency ω. Figure 9 helps to illustrate
what happens as we turn on the driving frequency: As the
instantaneous ω(t ) = aFx (t )/h̄ increases, each Floquet mode
winds around the expanding Floquet-Brillouin zone (FBZ)
and encounters a series of (avoided) level crossings in the
quasienergy spectrum, with exponentially small gaps �. Since
the gaps � are exponentially small, however, a finite value of
t0 will lead the system to cross them diabatically. The final
Floquet state will show an occupation which can be inter-
preted [22] as the excitation probability after many Landau-
Zener [23,24] events. Following Ref. [22], at each avoided
crossing we obtain a transition probability

Pex(ω, t0) = e
− �2 t0

4h̄2ζω , (40)

where we used the fact that the speed at which the gap is
crossed can be estimated as ∂t (ε2 − ε1) 	 ζ h̄ω/t0, ζ being
the difference in slope between the two quasienergy bands as
they wind around the Floquet BZ. Since the gaps �(ω) ∼
J0e

−γ J0/h̄ω are the smallest quantities, it is legitimate to
expand the exponential in Eq. (40) to lowest order in �2.
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FIG. 9. Floquet quasienergies in k = 0 as a function of the
frequency. The width of the line is proportional to the occupation
of the state when the system is in the ground state with filling factor
1/3. The inset zooms on a level crossing to highlight the presence of
gaps, showing also that the adiabatic band is the “excited” state after
the avoided crossing. The solid black lines are the boundary of the
first Floquet-Brillouin zone.

A further simplification is due to the fact that the dominant
contribution to the sequence of LZ processes comes from
the largest gap encountered, which correspond to the end of
the ramp, when the frequency is maximum. Hence we obtain
the following estimate for the corrections to nν

1 − nν ∼ �2t0

4h̄2ζω
∼ J 2

0 t0

4h̄2ζω
e−2γ J0/h̄ω . (41)

This rather crude estimate gives a hint on the physical mech-
anism behind the nonperturbative corrections to the integer
occupation of the Floquet mode observed when the electric
field is turned on at a finite rate 1/t0. Incidentally, Eq. (41)
also suggests that increasing the ramp time t0 would lead to
larger corrections to both nν and Qd, although our numerical
data do not show this, possibly because of the limited range
of t0 explored. Indeed, at the level crossing, a larger t0 would
increase the adiabaticity of the process, therefore decreasing
the occupation of the lowest energy Floquet mode, which cor-
responds to the “excited” state in the quasienergy spectrum,
as shown in Fig. 9. An alternative explanation is given in
Ref. [25], where it is suggested that the increasing deviations
from the adiabatic preparation of Floquet states for very large
ramp times t0 is related to the absorption of energy from the
external field, leading to heating of the system.

This picture breaks down for small ω, where the crossover
with the quadratic regime occurs. The observed ω2 scaling
suggests that a Floquet adiabatic perturbation theory (FAPT)
[25–27] might be appropriate here. Unfortunately, the stan-
dard framework of application of such a theory is when the
slowly changed parameters λ(t ) do not involve the crossing
of Floquet resonances [25], which is certainly not the case
for ω → 0. So, we construct here a simplified version of
FAPT which should capture the ω → 0 regime. To do so,
we start from an expansion of the state |ψk(t )〉 in terms
of instantaneous Floquet modes |uk,μ(ω(t ), t )〉 corresponding
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J0t0/ = 5
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1

/

FIG. 10. Correction to the occupation of the νth Floquet mode
compared with the prediction of Eq. (43) (solid black lines).

to a frequency ω(t ) (which is slowly evolving in time),
with associated phase factor given by the adiabatic Floquet
quasienergy ε

(0)
k,μ(ω(t )):

|ψk(t )〉 =
∑

μ

ck,μ(t )e− i
h̄

∫ t

0 ε
(0)
k,μ(ω(t ′ ))|uk,μ(ω(t ), t )〉 . (42)

Proceeding as in the standard APT, assuming that at t = 0 we
have ck,μ(0) = δμ,ν and keeping only the lowest-order terms
we end up writing:

ck,μ �=ν (t0) ≈ −
∫ ω

0
dω′ 〈uk,μ|∂ω′uk,ν〉e− it0

h̄ω

∫ ω′
0 (ε (0)

k,ν−ε
(0)
k,μ ),

where we assumed a linear adiabatic switch on, ω(t ) =
(t/t0) ω, and changed variable to an integral over frequency.
Here |uk,μ〉 stands for |uk,μ(ω′, t (ω′)〉, where t (ω′) = t0ω

′/ω.
Noticing now that the adiabatic quasienergy differences
(ε (0)

k,ν − ε
(0)
k,μ) are large compared to ω′, we integrate by part,

as in standard APT, ending up with:

ck,μ �=ν (t0) ≈ ih̄ω

t0

〈uk,μ(ω′, t (ω′))|∂ω′uk,ν (ω′, t (ω′))〉
ε

(0)
k,ν (ω′) − ε

(0)
k,μ(ω′)

× e− it0
h̄ω

∫ ω′
0 (ε (0)

k,ν−ε
(0)
k,μ )

∣∣∣∣ω′=ω

ω′=0

. (43)

Finally we compute the scalar products 〈uk,μ|∂ω′uk,ν〉 by
using the expansion derived in Appendix A, in particular
Eq. (A8), which allows us to write:

〈uk,μ|∂ω′uk,ν〉 = M (k)
μ,ν

�
(k)
μ,ν

+ O(ω′) . (44)

Substituting back into Eq. (43), we get an expression that can
be computed numerically. Once the projections ck,μ �=ν have
been computed, the correction to the occupation number of
the “adiabatic” Floquet state reads

1 − nν = 3a2
∑
μ �=ν

∫
BZ

d2k
(2π )2

|ck,μ|2 . (45)

As shown in Fig. 10 this simplified FAPT describes quite
well the quadratic regime and its scaling with t0. We observe
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FIG. 11. Correction to the occupation number of the adiabatic
Floquet state, when the driving force is smoothly turned on with the
switching function f (s = t/t0) = 1

2 (1 − cos (πs )). Equation (43),
with a slight modification due to the different driving schedule, still
gives a good estimate of the quadratic regime for small ω.

that the accuracy of the approximation seems to decrease as
t0 grows, probably because nonadiabatic corrections to the
time-evolved eigenstates need to be taken into account in
computing Eq. (44).

As a final check, we have considered whether imposing
continuity also on the first derivative of ω(t ) makes any
difference or not. Figure 11 shows the occupation of the “adia-
batic” Floquet state when the frequency is increased smoothly
from 0 to its final value ω with a switching function f (s) =
1
2 (1 − cos (πs)). Beside some small numerical difference, the
situation is qualitatively similar to the one obtained with the
linear ramp (Fig. 8), with a crossover between an exponential
regime for ω > ω∗(t0) and a power law tail for ω < ω∗(t0).
This suggests that while a necessary condition—albeit not
sufficient—to obtain nonperturbative corrections is indeed the
continuity of the force field Fx (t ), its differentiability seems
not to be required.

IV. CONCLUSIONS

In this paper we investigated the robustness of the quantiza-
tion of the Hall conductivity beyond the validity range of lin-
ear response theory (adiabatic limit), in the Harper-Hofstadter
model. This work was mainly motivated by the possibility
of realizing simple tight-binding Hamiltonians, such as the
HH one, in cold atoms experiments with synthetic gauge
fields, where the model parameters can be easily fine tuned.
By employing Floquet theory for time-periodic systems, we
showed that the quantization of the transverse pumped charge
Qd depends mainly on the occupation factor nν of the lowest
energy Floquet state. In particular, we found that a continuous
and sufficiently slow switching on of the driving force is
necessary to obtain corrections to the Kubo formula which
are nonanalytic in the force amplitude F , scaling as e−γ /|F |.
If the switching time t0 is too small, or the force is turned on
abruptly, corrections of the order O(F 2) are always recovered
when F → 0. A crossover force amplitude F ∗(t0) between

the quadratic and the exponential regimes is clearly shown by
our numerical analysis for any finite switching time t0, and
it would be interesting to see if this crossover can indeed be
observed in experimental realizations of IQHE or quantum
pumping in optical lattices experiments.

Future investigations could focus on how the robustness of
the topological phase and the crossover with a perturbative
regime are affected by the presence of disorder or dissipation.
With regard to disorder, it is well known that in solid state
realizations of IQHE a certain amount of impurities, with
associated localized states, are crucial to the robustness of the
Hall plateaus. The robustness of the topological state against
disorder [28] or absence of translational invariance [29] has
also been tested in simple tight-binding models: The crucial
question, for what concerns our story, is if disorder tends to
increase the “robustness” of the time response, as we have
formulated it, by increasing the extent of the region in which
nonanalytic corrections to the Kubo formula dominate. We
observe that the dimensionality might play a role: While for
clean samples a two-dimensional (2D) lattice model with a
constant drift is essentially equivalent to a one-dimensional
(1D) chain with a time periodic driving, such as the Rice-
Mele model [6], disorder could affect a 1D and 2D system
in different ways.

Similar questions can be formulated concerning the role
of dissipation: While the linear response regime is quite
well understood [30,31], the interplay between nonadiabatic
effects and the coupling with a thermal bath still requires a
precise characterization. Preliminary results on the effect of
dissipation in the periodically driven Rice-Mele model [32]
show that dissipation towards a low-temperature bath can be
beneficial in increasing the occupation of the lowest-energy
Floquet states, thus making the pumped charge closer to the
Thouless adiabatic limit.
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APPENDIX A: ADIABATIC EXPANSION OF FLOQUET
EIGENSTATES

In this appendix we derive an expansion in powers of 1/τ

for the Floquet modes, looking in particular for their overlap
with the Hamiltonian eigenstates. To obtain this expansion,
we first exploit adiabatic perturbation theory [21] (APT) to
compute the Floquet operator and then we use ordinary pertur-
bation theory (PT) to calculate the corrections to the Floquet
modes.

Given a gapped periodic Hamiltonian Ĥ (t + τ ) = Ĥ (t ),
and Ĥ (t )|φν (t )〉 = Eν (t )|φν (t )〉 denotes instantaneous eigen-
states/eigenvalues, the adiabatic theorem states that, if the
evolution is slow enough, we can write the time evolved state
|ψν (τ )〉 originating from |ψν (t = 0)〉 ≡ |φν (0)〉, to 0th order
in 1/τ , as:

|ψν (τ )〉 ≈ |ψ (0)
ν (τ )〉 = e−iεντ/h̄|φν (0)〉 , (A1)
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where

εντ =
∫ τ

0
dt (Eν (t ) − ih̄〈φν (t )|∂tφν (t )〉) .

Hence, writing the Floquet operator as

F̂ (τ ) ≡ Û (τ, 0) =
∑

ν

|ψν (τ )〉〈φν (0)| , (A2)

the adiabatic theorem tells us that it reduces when ω = 2π
τ

→
0 to the expression

F̂ (0)(τ ) =
∑

ν

e−iεντ/h̄|φν (0)〉〈φν (0)| . (A3)

Notice that |φν (τ )〉 = |φν (0)〉 due to the time periodicity
of the Hamiltonian. Equation (A3) means that in this limit
the Floquet modes |uν (0)〉 and the instantaneous eigenstates
|φν (0)〉 at the end of each period coincide. To obtain finite
frequency corrections, we need to write |ψν (τ )〉 through an
adiabatic perturbation series [21]

|ψν (τ )〉 =
∞∑

p=0

(
h̄

τ

)p

|ψ (p)(τ )〉 , (A4)

which leads to a similar expression for the Floquet operator

F̂ (τ ) =
∞∑

p=0

(
h̄

τ

)p

F̂ (p)(τ ) . (A5)

Now we assume that at t = 0 the system is prepared in the νth
eigenstate |φν (0)〉 of the Hamiltonian. From Eq. (A3) we ex-
pect a single Floquet state to have a large overlap with |φν (0)〉
if the period τ is large, and therefore its occupation number nν

should be close to one. We wish to exploit perturbation theory
to compute the lowest order corrections in 1

τ
, to

nν = |〈φν (0)|uν (0)〉|2 = |〈φν (τ )|uν (τ )〉|2 . (A6)

As we will show in the following, the lowest order terms
are quadratic in 1

τ
—or equivalently in ω—and they originate

from second order corrections due to F̂ (1)(τ ). Indeed first
order corrections to a given eigenstate in perturbation theory
are always orthogonal to the unperturbed one and therefore
F̂ (2)(τ ) can only give contribution of order O( 1

τ 4 ). Thus we
just need to compute F̂ (1)(τ ). Before proceeding we define
the following quantities depending on a rescaled time s = t/τ

τεν = τ

∫ 1

0
dsEν (s) − ih̄

∫ 1

0
ds〈φν (s)|∂sφν (s)〉 ,

�ν,μ(s) = Eν (s) − Eμ(s) ,

where {Eν (s)} is the set of instantaneous eigenvalues of Ĥ (s)
and {|φν (s)〉} the corresponding eigenvectors. The adiabatic
expansion of the time evolved state ψν (t ) will be written in
terms of

Mμ,ν (s) = 〈φμ(s)|∂sĤ (s)|φν (s)〉
�ν,μ

,

Jμ,ν =
∫ 1

0
ds

|Mμ,ν (s)|2
�μ,ν (s)

,

which again depend only on the instantaneous spectrum of the
Hamiltonian. Following Ref. [21] we can write the first-order
correction to the evolved eigenstate |ψν (τ )〉 as:

|ψ (1)
ν 〉 = i

∑
μ �=ν

e−iτεν/h̄Jμ,ν |φν〉

+ i
∑
μ �=ν

Mμ,ν

�μ,ν

(e−iτεν/h̄ − e−iτεμ/h̄)|φμ〉 , (A7)

where the s dependence is omitted since all quantities are
computed in s = 1. The “perturbation” of order 1/τ to
the Floquet operator consists of a diagonal part [first term
of the RHS in Eq. (A7)] and an off-diagonal part (second
term). The former acts only as a renormalization of the
eigenvalues (the Floquet quasienergies) of the operator but
does not change the eigenvector, since it is diagonal in the
original basis. We can now apply perturbation theory for linear
operators to obtain the correction to the Floquet modes. The
first order term reads∣∣u(1)

ν

〉 = h̄

τ

∑
μ �=ν

|φμ〉 〈φμ|F̂ (1)(τ )|φν〉
e−iτεν/h̄ − e−iτεμ/h̄

= i
h̄

τ

∑
μ �=ν

Mμ,ν

�μ,ν

|φμ〉 , (A8)

where the off diagonal elements of F (1)(τ ) are obtained by
combining Eq. (A2) and Eq. (A7), leading to

F (1)
μ,ν (τ ) = i

Mμ,ν

�μ,ν

(e−iτεν/h̄ − e−iτεμ/h̄)|φμ〉〈φν | . (A9)

Since we are interested in computing the projection 〈φν |uν〉,
only the terms proportional to |φν〉 are needed. Clearly
Eq. (A8) gives no contribution—all terms are orthogonal to
|φν〉—but it can be used to obtain the next order by imposing
the normalization condition 〈uν |uν〉 = 1∣∣u(2)

ν

〉 = − h̄2

2τ 2
|φν〉

∑
μ �=ν

∣∣∣∣Mμ,ν

�μ,ν

∣∣∣∣2

+ terms orthogonal to |φν〉.

(A10)
Hence the occupation at finite frequency of the targeted Flo-
quet mode reads

nν =
∣∣∣∣∣∣1 − h̄2

2τ 2

∑
μ �=ν

∣∣∣∣Mμ,ν

�μ,ν

∣∣∣∣2
∣∣∣∣∣∣
2

+ o(1/τ 2)

= 1 − h̄2

τ 2

∑
μ �=ν

∣∣∣∣Mμ,ν

�μ,ν

∣∣∣∣2

+ o(1/τ 2) . (A11)

Therefore, if the matrix elements Mμ,ν are not all equal to
zero, we expect to see power law correction to the occupation
number of Floquet modes, when the system is prepared in the
νth state |φν (0)〉 of Ĥ (t = 0).

APPENDIX B: DEPENDENCE ON kx OF FLOQUET
QUASIENERGIES AND OCCUPATIONS

Here we discuss the dependency of Floquet modes and
quasienergies from kx and how the system can be effectively
described in only 1 + 1 dimensions (space + time). The
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starting point is the block diagonal Hamiltonian in momentum
space, which reads

Ĥk(t ) = J0

q−1∑
b=0

{
2 cos

(
aky + 2πp

q
b
)
ĉ
†
k,bĉk,b

+ [e−ia(kx+κx (t ))ĉ
†
k,b+1ĉk,b + H.c.]

}
, (B1)

where ĉk,q = ĉk,0 and aκx (t ) = ω(t − t0) when the force field

F = h̄ω
a

is stationary. t0 is the initial time for which the system
is prepared with a nonperiodic driving. Notice that Ĥk(t )
depends on kx and time only through the phase akx + ω(t −
t0). Hence we can define tx = t0 − kx/ω, so that the evolution
operator over one period (the Floquet operator) for a given t0
can be written as

F̂k(τ ) = Ûk(τ + t0, t0) = Ûky
(τ + tx, tx ) . (B2)

Here a subscript ky indicates that the associated quantity is
evaluated in k = (0, ky ). By applying the composition prop-
erty of evolution operator and exploiting Floquet theorem in
the form

Û (t0 + t + τ, t0) = Û (t + t0, t0)Û (τ + t0, t0) ,

one obtains

F̂k(τ ) = Ûky
(tx, t0)F̂ky

(τ )Û †
ky

(tx, t0) , (B3)

which can be written explicitly as

F̂k(τ ) =
∑

ν

e−iεky ,ν τ/h̄|uky,ν (tx )〉〈uky,ν (tx )| , (B4)

since the phase factors arising from the action of Ûky
(tx, t0)

and Û
†
ky

(tx, t0) exactly cancel each other. Therefore the

Floquet modes shifted along kx are

|uk,ν (t0)〉 =
∣∣∣∣uky,ν

(
t0 − akx

ω

)〉
= eiεky ,ν (tx−t0 )/h̄Ûky

(tx, t0)|uky,ν (t0)〉, (B5)

i.e., the periodic part of the νth Floquet state in k = (0, kx )
evolved for a time tx − t0 < τ . Thus the Floquet operator at
any point in the k space with kx �= 0 can be obtained by a
unitary transformation applied on F̂ky

. The most important
implication is that the quasienergies εk,ν = εky,ν are indepen-
dent from kx . The Floquet modes instead still depend on kx

because of Eq. (B5). Hence when computing the infinite time
average pumped charge

Qd = τ

h̄

∑
ν

∫
BZ

d2k
(2π )2

nk,ν

∂εky,ν

∂ky

, (B6)

the only remaining dependence on kx is in the occupation
number nk,ν = |〈ψk|uky,ν (tx )〉|2.

Another interesting property of the Hamiltonian as written
in Eq. (B1) is that the spectrum is invariant for a discrete shift
of the momentum in the ŷ direction ky → ky + 2πp

qa
. Indeed

this transformation is equivalent to a shift of a in real space
of the magnetic unit cell, leading to a simple relabelling of
the internal index b → b + 1. For the case under investigation
(p = 1, q = 3), this property is clearly shown in Fig. 2, where
the invariance for ky → ky + 2π

3a
is evident. This symmetry in

the Hamiltonian is inherited also by the quasienergy spectrum,
which is also repeated three times inside the Brillouin zone.
This symmetry is nothing else than gauge invariance: The
spectrum must depend on the same way by kx and ky , because
the braking of translational invariance along the x̂ direction
is only due to the gauge choice, which cannot influence any
observable. If we had chosen A = −Byx̂, the magnetic unit
cell would have consisted of three sites along the ŷ direction
and thus the first Brillouin zone would have been [0, 2π

a
) ×

[0, 2π
3a

), leading to a periodicity of 2π
3a

in ky .
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