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River Bathymetry Retrieval From Landsat-9 Images
Based on Neural Networks and Comparison to
SuperDove and Sentinel-2

Milad Niroumand-Jadidi

Abstract—The Landsat mission has kept an eye on our planet,
including water bodies, for 50 years. With the launch of Landsat-9
and its onboard Operational Land Imager 2 (OLI-2) in September
2021, more subtle variations in brightness (14-bit dynamic range)
can be captured than previous sensors in the Landsat series (e.g.,
12-bit Landsat-8). The enhanced radiometric resolution of OLI-2
appeals to the aquatic remote sensing community because the
instrument might be capable of resolving smaller differences in
water-leaving radiance. This study evaluates the potential to map
river bathymetry from Landsat-9 imagery. We employ a neural
network (NN)-based regression model for bathymetry retrieval
and compare the results with optimal band ratio analysis (OBRA).
The effect of Landsat-9 pan-sharpening on depth retrieval is also
examined. In addition, we perform an intersensor comparison
with Sentinel-2 and newly available 8-band SuperDoves from the
PlanetScope constellation. Depth retrieval results from the Col-
orado and Potomac Rivers imply that Landsat-9 provided more
accurate bathymetry across a range of depths up to 20 m, partic-
ularly when pan-sharpened. Downsampling the SuperDove data
improved bathymetry retrieval due to enhanced signal-to-noise
ratio, most notably in deep waters (maximum detectable depth
increased from ~15 to ~20 m). Similarly, the enhanced spectral
resolution of 8-band SuperDoves improved depth retrieval relative
to 4-band Doves. The NN-based model outperformed OBRA by
incorporating more spectral information.

Index Terms—Bathymetry, CubeSats, landsat-9, machine
learning, neural networks (NNs), pan-sharpening, planetscope,
rivers, sentinel-2, superdove.

I. INTRODUCTION

HE Landsat satellite mission is well-known as the longest
T continuous means of monitoring Earth resources from
space, dating back to 1972. The sensors onboard Landsat satel-
lites have evolved significantly over the past five decades [1].
Since the launch of Landsat-8 in 2013, retrieval of biophysical
parameters, such as water quality and bathymetry in inland and
nearshore coastal waters has entered a new era enabled by the
enhanced radiometric resolution relative to previous sensors
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(i.e., 12-bit versus 6-8-bits) [2], [3]. Radiometric resolution
is particularly important in aquatic applications given the low
signal-to-noise ratio (SNR) over water bodies due to strong
absorption of downwelling irradiance by pure water [4], [5].
The new Landsat-9 carrying the Operational Land Imager 2
(OLI-2) goes a step beyond the OLI aboard Landsat-8 by
providing data with a 14-bit dynamic range. The improved
radiometric resolution of OLI-2 could open up new opportu-
nities for monitoring inland and coastal waters by providing
higher sensitivity to water-leaving radiance. Similar to OLI,
OLI-2 captures visible, near, and shortwave- infrared bands
at 30-m spatial resolution, along with a 15-m panchromatic
band. This study presents the first evaluation of the potential
of the new Landsat-9 mission for bathymetry retrieval in fluvial
systems. The spatially and temporally distributed bathymetric
information provided by space-borne remote sensing plays an
indispensable role in hydro-morphological studies, as well as
stream habitat assessment and ecological modeling [6], [7].

We perform an intersensor comparison to quantify the depth
retrieval performance of Landsat-9 relative to Sentinel-2 and
CubeSat data from the PlanetScope constellation. Eight-band
SuperDove data have been made available only recently, and
thus, this study also presents the first analysis of the utility
of this type of PlanetScope data for river bathymetry retrieval.
SuperDove CubeSats provide four additional bands compared
to standard Doves. Both Dove and SuperDove CubeSats pro-
vide daily and sometimes subdaily imagery at ~3-m spatial
resolution. The unprecedented high spatiotemporal resolution of
PlanetScope CubeSats can facilitate near real-time monitoring
of inland water bodies, including small rivers [8]-[10]. The
enhanced spectral resolution offered by SuperDoves makes these
new CubeSats more conducive to aquatic applications. Although
Doves and SuperDoves capture spectral information with 12-bit
radiometric resolution, concerns have been raised regarding the
radiometric quality of CubeSat data because the sensors are
small and inexpensive [9], [11]. The multispectral imager (MSI)
onboard Sentinel-2A/B, also considered in this study, is another
satellite-based instrument that has been utilized for aquatic
remote sensing because it provides suitable spatial (10—20-m),
radiometric (12-bit), spectral (13 bands), and temporal (2-3
days) resolutions [12]. Thus, three sensors covering a wide range
of spatial and spectral resolutions are evaluated in the intersensor
comparison.
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Spectrally based bathymetry retrieval methods fall into the
following two main categories: empirical and physics-based
[13], [14]. Empirical approaches rely on training a regression
model between image-derived spectral features (e.g., band ra-
tios) and associated in sifu bathymetry data [15], [16]. Optimal
band ratio analysis (OBRA) is a widely used empirical model
that seeks an optimal pair of bands, among all possible band
combinations, to establish a model for depth retrieval [17].
OBRA is utilized in several studies to map river bathymetry,
particularly using high spatial resolution imagery from either
airborne sensors [ 18] or spaceborne instruments, such as World-
View [16]. Empirical models have been used to derive nearshore
bathymetry from Sentinel-2 imagery [19]-[21]. Band ratio mod-
els have also been applied to Landsat-8 imagery to derive the
bathymetry of lakes in northern Alaska [22]. Similarly, poly-
nomial regression models have been applied to PlanetScope
4-band imagery for bathymetry estimation in coastal waters
[11], [23]. On the other hand, physics-based approaches invert a
radiative transfer model to derive bathymetric information [24].
Radiative transfer simulations are the basis for inversion models
that account for absorption and backscattering properties of
pure water, in-water constituents, and the substrate [25]-[27].
The observed (image) spectra are compared with simulated
spectra generated based on a range of parameters, including
water depth, to find the optimal match [28], [29]. To achieve
reliable retrievals, physics-based models require precise atmo-
spheric correction of imagery data and need to be parameterized
with site-specific inherent optical properties [9]. Empirical and
physics-based models have their pros and cons, but the former
approach remains a common choice in bathymetric studies,
particularly in riverine environments [6], [14], [30]. This study
also considered an alternative regression-based depth retrieval
model based on machine learning. We leverage neural network
(NN)-based models to retrieve bathymetry and compare the
results with standard OBRA. NNs are powerful tools for learning
complex, nonlinear relations between input features (spectral
data) and the target parameter (water depth) [31].

This study pursues the following objectives:

1) examine river bathymetry retrieval from newly available

Landsat-9 imagery;

2) perform an intersensor comparison of the depth retrieval
capabilities of the new Landsat-9 and SuperDove Cube-
Sats, as well as Sentinel-2;

3) investigate the impact on river bathymetry retrieval of
enhancing the spatial resolution of Landsat-9 by pan-
sharpening;

4) 1isolate the effect of spatial resolution on depth retrieval by
resampling imagery from different sensors to a common
(15-m) resolution, which also provides insight regarding
the impact of enhancing the SNR of CubeSat imagery by
downsampling the data;

5) apply a machine learning-based model for depth retrieval
from various sensors and compare the results with OBRA.

Section II introduces the studied rivers and associated in
situ and imagery datasets. The methods, including the NN and
OBRA, are described in Section III. The results and discussion
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Fig. 1. Location of the studied river reaches on a map of the United States.

Fig. 2. (a) Landsat-9 (30 m pixels, 865 nm band) and (b) SuperDove (3 m
pixels, 866 nm band) imagery of the study area on the Colorado River. The
location of the zoomed-in subsets, which are included to show differences in
spatial resolution, and the in situ depths are shown on the SuperDove image.

are provided in Section IV. Finally, Section V concludes this
article.

II. CASE STUDIES AND DATASETS

This study used data from two clear-flowing rivers that span a
wide range of depths to examine the bathymetry retrieval from
Landsat-9 imagery compared to Sentinel-2 and SuperDove. The
selected river reaches are located on the Colorado and Potomac
Rivers in the United States (see Fig. 1). The selected rivers
are relatively wide (~100 m), and thus, allow for analyzes at
different spatial resolutions. The Colorado reach exhibits depths
up to ~20 m, whereas four different reaches with field-measured
depths along the Potomac River are up to ~ 5 m deep. The broad
range of water depths provided by the two case studies allows for
a thorough cross-sensor assessment of bathymetry retrieval. In
addition, these two rivers had very low turbidity, as required for
spectrally based depth retrieval [17]. The river reaches and in situ
data are shown in Figs. 2 and 3. For each studied river, Landsat-9
with the original spatial resolution (30-m) and SuperDove (3-m)
images are illustrated to enable visualization of the differences
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(d) :

Fig. 3. (a), (c) Landsat-9 (30 m resolution, 865 nm band) and (b), (d)
SuperDove (3 m resolution, 866 nm band) imagery of the study area on the
Potomac River. The location of the zoomed-in subsets, which are included to
show differences in spatial resolution, and the in situ depths are shown on the
SuperDove image.
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TABLE I
CHARACTERISTICS OF THE CASE STUDIES AND A SUMMARY OF THE IMAGERY
AND IN SITU DATA
Colorado Potomac

Clear-flowing, confined Bedrock-controlled
river below Glen Canyon; channel; depths up to 5 m

Characteristics depths up to 20 m in multiple study reaches
surveyed by sonar surveyed with an ADCP
Landsat-9, 11 Feb 2022 Landsat-9, 1 Feb 2022

Imagery data Sentinel-2, 11 Feb 2022  Sentinel-2, 8 Jan 2022
SuperDove, 11 Feb 2022 SuperDove, 1 Feb 2022

1;‘::";:; of field Landsat-9, 147 -480  Landsat-9, 786 — 2162

(Oril;inal and 15-m Sentinel-2, 989 — 484 Sentinel-2, 3563 — 2145

R SuperDove, 9393 —481  SuperDove, 12106 — 2136
resolution)

The numbers of field samples are provided for the original and pan-sharpened/resampled
resolutions, respectively.

in spatial resolution. One of the Potomac reaches is presented
separately for better visualization of the images and in sifu depths
(see Fig. 3).

The in situ data from the Colorado River were obtained by
performing multibeam sonar surveys on September 23, 2019
[32]. The bathymetric survey at the Potomac River was con-
ducted with a boat-mounted acoustic Doppler current profiler
(ADCP) on October 21-24, 2019 [33]. The in situ data used in
this study and the full description of measurement procedures are
available through the USGS ScienceBase Catalog [32], [33]. The
selected reaches are regulated by dams, and thus, the discharge
is relatively stable over time. In addition, the presence of dams
reduces, if not eliminates, sediment transport, and thus, channel
changes between the time of field data collection and image
acquisition were assumed to be minimal. To account for any
possible stage differences between image and in sifu acquisition
dates, we used gage data available from USGS stations in the
study sites. There was no change in stage for the Colorado
River. Furthermore, all the images of the Colorado (Landsat-9,
Sentinel-2, and SuperDove) were acquired on the same day and
within an hour of one another, ensuring similar flow conditions
for the intersensor comparison. A slight change in stage was
identified for the Potomac River. We applied a +-0.24-m shift to
the in situ depths to adjust them to the stage on the Landsat-9 and
SuperDove acquisition date. There was no Sentinel-2 overpass
on the same day as the other images and slightly a greater adjust-
ment of the in sifu data was needed for the Sentinel-2 acquisition
date (+ 0.54 m). Because the in situ data were acquired at
a centimeter-scale spatial resolution, the depth measurements
inside a given pixel were averaged to match the spectral data at
the pixel level for each sensor and spatial resolution. The high
density of the field measurements ensured that this approach
provided representative pixel-scale mean depths across a range
of resolutions from 3 to 30 m. The general characteristics of the
river reaches, imagery data, and the number of in sifu matchups
at different spatial resolutions are provided in Table I.

We use top-of-atmosphere reflectance products from Landsat-
9, Sentinel-2, and SuperDove satellites. Although bottom-of-
atmosphere (BOA) products are also available, they did not
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benefit our analyzes and, in some cases, led to degradation of
the results due to poor atmospheric correction.

Thus, for brevity, we excluded the BOA data analyzes and
results. Previous studies also demonstrated that atmospheric cor-
rection is not essential for bathymetry retrieval when applying
a regression-based model to a single scene [6]. OLI-2 onboard
Landsat-9 provides eight bands within the visible to shortwave
infrared (SWIR) portion of the spectrum. However, one of the
Landsat-9 bands, centered around 1370 nm, is for detecting
clouds, particularly thin cirrus clouds, and was discarded in
our analyzes. These multispectral bands are acquired at 30-m
resolution, whereas the panchromatic band is acquired with a
15-m resolution. Sentinel-2 (MSI) provides 13 spectral bands
in a similar spectral range to OLI-2. Similar to Landsat-9, the
band for detecting clouds (~1370 nm) was discarded. Although
the water-leaving reflectance is mainly considered negligible
over SWIR bands, they may contain information about sun-
glint [34], [35]. Thus, we retained the SWIR bands because
they might make the NN model more robust to glint effects.
SuperDoves capture eight spectral bands spanning the visible
and near-infrared (NIR) spectrum. SuperDoves provide four
additional bands beyond those included on standard Doves.
The additional bands include coastal blue (443 nm), an extra
green band (531 nm), a yellow band (610 nm), and a red edge
band (705 nm). Although SuperDoves do not capture SWIR
bands, this has minimal impact on bathymetric applications, as
water-leaving radiance tends to zero at the SWIR portion of the
spectrum. The NIR band of SuperDoves can be used instead
of an SWIR band for sun glint mitigation [36]. To examine the
effect of the additional bands, we perform depth retrieval by
removing them from the SuperDove data. The results derived
from 4-band SuperDove data are then compared with those
of 8-band imagery. The band designation and relative spectral
response of the sensors are illustrated in Fig. 4.

III. METHODS

Regression-based models are widely employed for retrieving
river bathymetry from optical imagery. Most studies rely on
single or multivariate polynomial regressors, such as Lyzenga’s
model [38], [39] or band ratio techniques [17], [40]. These
regression models require selection of spectral features, such as
log-transformed single bands or band ratios; the choice of bands
can affect the depth estimates. Machine learning approaches
have rarely been utilized for fluvial bathymetry retrieval [6].
Here, we employ NNs for depth retrieval to account for non-
linear relationships between multiband spectral data and in situ
depth measurements. NN-based models can capture informative
features without prior feature extraction [31], [41]. Our NN
architecture builds upon two feedforward fully connected layers.
The first fully connected layer is connected to the network
input data, which are the spectra from training samples. Each
fully connected layer multiplies the input by a weight matrix,
followed by the addition of a bias vector. An activation layer
follows the first fully connected layer. The last fully connected
layer produces the output, which is the water depth (see Fig. 1).
The hyperparameters of the network, including the number of

5253

1 — T T T T T T T T
_ﬂ SuperDove
08| R

06 ‘ .

04F 1
02F

1 = - T - - - - -
1 ﬂh A m Sentmel 2
08l 1 4
06 [ ‘ N ol
|

0.4 | 1

oz} l -

1 T T T T T - -
(l' m Landsat 9
08k ) .

| Li

0
400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

Relative Spectral Response [ ]

04F

0.2

Wavelength [nm]

Fig. 4. Relative spectral response of sensors onboard Landsat-9, Sentinel-2,
and SuperDove [37]. The gray dashed line shows Landsat-9’s panchromatic
band.

layers, size of each layer (number of neurons), and the type
of activation functions, including rectified linear unit, sigmoid,
and hyperbolic tangent, are tuned in an iterative procedure to
minimize the cross-validation error. This tuning experiment
indicated that networks with two hidden layers provided robust
retrievals. Given that imagery from sensors with various spec-
tral, radiometric, and spatial resolutions was analyzed in this
study, the other hyperparameters of the network were optimized
individually for each type of image. The training is repeated ten
times, and the average of the estimated depths is provided as the
final retrieval.

To assess the extent to which Landsat-9’s high-resolution
panchromatic band with 15 m pixels might enhance bathymetry
retrieval, we examine the effect of pan-sharpening by comparing
the results obtained using pan-sharpened images with those
derived from the original (30 m) data. Pan-sharpening is a
fusion approach that integrates the geometric information from
the panchromatic band with the spectral information from the
multispectral bands to provide a high-resolution multispectral
image [42]. We employ a widely used pan-sharpening method
called Gram-Schmidt [43] to enhance the spatial resolution of
Landsat-9 imagery, which could greatly extend the utility of
these data in fluvial systems, given the narrow channel width of
most rivers. This pan-sharpening method demonstrated promis-
ing results in a previous study on satellite-based mapping of
river bathymetry [16]. The Sentinel-2 bands are acquired with
different spatial resolutions (10-60 m). A standard approach
available in the Sentinel Application Platform software is used
to resample all the bands to the highest possible spatial resolution
of 10 m. The upsampling to finer spatial resolution is performed
by bilinear interpolation. We investigate the bathymetry retrieval
with the original spatial resolution of imagery from different
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sensors, i.e., 30-m Landsat-9, 10-m Sentinel-2, and 3-m Su-
perDove. However, to isolate the impact of spatial resolution,
we resample the imagery from SuperDoves and Sentinel-2 to
a common spatial resolution of 15 m comparable to the pan-
sharpened Landsat-9 imagery. The pixel values are averaged for
downsampling the imagery to the coarser (15-m) resolution. For
cases where the downsampling scale factor is not an integer (e.g.,
10 m Sentinel-2 pixels downsampled to 15 m), the proportion
of the original pixels within the coarser downsampled pixels is
used as an averaging weight to perform the pixel aggregation.
Downsampling the images brings another interesting aspect
to our research, as this procedure can enhance the SNR by
averaging pixels [2]. The impact of downsampling on depth
retrieval, relative to the original coarser-resolution image, is
expected to be more pronounced for SuperDove with a very high
spatial resolution. Fig. 5 shows a schematic representation of the
proposed workflow to retrieve the bathymetry based on training
NN at original and pan-sharpened resolutions of Landsat-9
imagery. The validation is performed based on independent in
situ data. The same workflow is applied to imagery from the
other sensors at both their original and resampled resolutions,
excluding the pan-sharpening step.

We compare the NN model with the standard OBRA method
that has been well-documented in the literature [17]. OBRA
examines all possible log-transformed band ratios (X) to find
the one providing the highest R” in a regression of X against
the water depth (d). Different forms of regression models (e.g.,
linear, quadratic, exponential, and power-law) can be applied,
depending on the range of depths and the degree of curvature
in the X versus d relation. In this study, an exponential model
is considered for OBRA, as it performed better than the other
forms in previous studies [6].

In all experiments with either NN or OBRA, half of the in
situ samples were selected at random and used for training
the models; the remaining half was reserved for validation
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[44]. In situ matchup scatterplots (i.e., regressing in situ depths
versus predicted depths) provided a set of metrics to quantify
the accuracy of retrievals. We evaluated the R?, root mean
square error (RMSE), mean absolute error (MAE), and bias of
depth estimates. A log-transformed space is considered for the
calculation of MAE and bias to account for the proportionality
of errors with the water depth [45]. Bias values close to 1 imply
minimal systematic errors. Bias > 1 and bias < 1 indicate
overestimation and underestimation of bathymetry, respectively.
For instance, a bias of 1.1 implies that estimated depths are
on average 10% overestimated with respect to the reference
field data. MAE indicates the relative error of depth estimation
and always exceeds one. Bias and MAE are both unitless. The
accuracy metrics are formulated in (1)—(4), where n stands for
the total number of estimated values and E; and O; are the
estimated and field-measured values, respectively

" (B,-0)Y . o1&
R2: Z:;l( 7)2 \ O=-= ZOZ (1)
Zi:l (Oi_O) n i=1
n o _ 2 1/2
RMSE = (Zi—l (B — 0i) ) )
n
:: log (Ez/oi)
bias = 102*1+ A3)
o los10(2:/0))
MAE = 102 = : (4)

IV. RESULTS AND DISCUSSION

In this section, we provide the results of depth retrieval from
Landsat-9, 8-band SuperDove, 4-band SuperDove, and Sentinel-
2 at original and pan-sharpened/resampled spatial resolutions.
Matchup scatterplots and accuracy statistics are provided for the
validation samples. Moreover, bathymetric maps are produced
for the study reaches. For brevity, the results of OBRA are
presented in less detail, as OBRA provided less accurate results
than the NN model. However, all accuracy statistics are reported.

A. Colorado River

An example of OBRA from the Landsat-9 image of the
Colorado River is provided in Fig. 6. The colors on the OBRA
matrix [see Fig. 6(a)] represent the training R> for all possible
band combinations to build the ratio model. The blue (443 nm)
to green (561 nm) ratio model provided the optimal results
(validation R?> = 0.48 and RMSE = 2.44 m).

The validation based on independent in situ matchups [see
Fig. 6(b)] indicates that the bathymetry retrieval fails for depths
> 10 m. The water depth in the Colorado site spans a wide range
(up to ~20 m) that prevents a single band ratio model from
achieving reliable results across the entire range of depths. This
highlights the importance of incorporating all of the available
spectral information in depth retrieval through methods like
NNE.

The scatterplots of in situ versus retrieved depths based on
the NN model are shown in Fig. 7 for various types of imagery
at original and pan-sharpened/resampled resolutions. Landsat-9
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TABLE I
ACCURACY STATISTICS DERIVED FROM IN SITU MATCHUP VALIDATION OF
BATHYMETRY RETRIEVAL FROM DIFFERENT SATELLITE IMAGES FROM THE
COLORADO RIVER BASED ON NN AND OBRA MODELS

R?  RMSE [m| MAE [m]
NN OBRA NN OBRA NN OBRA NN OBRA
0.70 048 1.99 2.44 1.19 121 1.01 0.96

Bias

Landsat-9 (30 m)

Landsat-9 (15 m) 0.80 036 197 3.16 1.20 1.31 1.03 1.02
Sentinel 2 (10 m) 0.69 038 2.21 3.5 1.18 1.33 0.99 0.96
Sentinel-2 (15 m) 0.68 037 223 3.13 1.22 1.29 0.99 0.99
SuperDove 8-band 3 m) 048 0.27 2.87 3.44 124 132 1.04 1.02
SuperDove 8-band (15 m) 0.65 0.46 2.36 2.89 122 1.26 1.05 1.04
SuperDove 4-band 3 m) 0.44 0.27 299 3.44 126 1.32 1.04 1.03
SuperDove 4-band (15 m) 0.64 046 2.46 2.89 1.21 125 1.05 1.03

yields the highest accuracies either at the original (30 m) or the
pan-sharpened (15 m) resolution, with the pan-sharpened image
providing the highest accuracy (R*> = 0.8 and RMSE = 1.97 m).
The results from Sentinel-2 are slightly less accurate than those
of Landsat-9 (RMSE = 2.21 m). An interesting point about the
SuperDove-based results is that estimates for depths > 15 m
are not accurate at the original spatial resolution (3 m), whereas
downsampling the images to 15 m substantially improves the
depth retrieval and captures the deep waters. The depth retrieval
based on 8-band SuperDove data at 15-m resolution provided
an R?> of 0.65 and RMSE of 2.36 m, comparable to those
of Sentinel-2 (R*> = 0.68 and RMSE = 2.23). The improved
retrieval of bathymetry at the downsampled resolution, particu-
larly from deeper water with lower reflectance, can be attributed
to an enhanced SNR resulting from the pixel-averaging process
[2], [46], [47]. The averaging reduces noise, which can be
sizable in high-spatial resolution imagery [48]. Given that the
water-leaving signal over deep waters is so low, any small noise
can be a significant portion of the signal. Thus, reducing noise
by averaging the pixels leads to a pronounced improvement of
the SNR, which is critical for retrieving bathymetry in deeper
areas. Another key point is that the additional bands of 8-band
SuperDove improved depth retrieval compared to 4-band classic
Doves (0.12 m and 0.1 m improvement of RMSE for the original
and resampled data, respectively). Fig. 7 implies that shallow
areas were not well characterized. We attribute this issue to alack
of training samples from shallow areas. The accuracy statistics
derived from the validation analyzes are reported in Table II;
OBRA-based retrievals are poor compared to the NN model.
The average biases are close to 1 and thus could be considered
negligible for all cases. The NN-based statistics confirm the high
accuracy of retrievals from Landsat-9, but the other sensors also
provide accurate estimates.

Fig. 8 compares the NN-based bathymetry maps de-
rived from different sensors at both the original and pan-
sharpened/resampled resolutions. The Landsat-9 map at original
resolution is relatively coarse, whereas the map derived from the
pan-sharpened image shows detailed bathymetric information.
Visual inspection indicates that the maps from different sensors
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Fig. 8. Bathymetry maps derived from different satellite imagery in Colorado

River based on the NN model.

agree well. However, the maps derived from SuperDove imagery
at the original resolution fail to accurately capture the deepest
areas of the channel. As mentioned above, these errors can be
attributed to the low SNR in deep pools.

In these clear-flowing rivers, the water-leaving radiance signal
of interest decreases as water depth increases due to strong
absorption of solar radiation by the water column. However, the
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Fig. 9. In situ matchup validation of bathymetry retrieval from different

satellite images from the Potomac River based on the NN method.

deep waters (up to 20 m) are mapped plausibly by downsampling
the SuperDove data to 15-m resolution due to enhanced SNR,
which is in line with matchup analysis (see Fig. 7).

B. Potomac River

The results from the Potomac River also demonstrate im-
proved depth retrieval when using Landsat-9 imagery compared
to the other sensors (see Fig. 9). Similar to the Colorado site,
depth retrieval benefited from pan-sharpening (R? of 0.86 versus
0.78 for the original image). Sentinel-2 and SuperDove also
provided comparable results to those of Landsat-9. The down-
sampled SuperDove data led to improvements in this river, as
in the Colorado. Moreover, the 8-band CubeSat data provided
improvements compared to the 4-band data (see Fig. 9).
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TABLE III
ACCURACY STATISTICS DERIVED FROM IN SITU MATCHUP VALIDATION OF
BATHYMETRY RETRIEVAL FROM DIFFERENT SATELLITE IMAGERY IN POTOMAC
RIVER BASED ON NN AND OBRA MODELS

R? RMSE [m] MAE [m] Bias

NN OBRA NN OBRA NN OBRA NN OBRA
0.78 0.12 0.31 0.64 1.16 1.39 1.03 1.02
0.86 0.35 0.28 0.66 1.14 1.37 1.01 1.01
0.75 0.10 0.35 0.72 1.15 1.33 1.01 1.01
Sentinel-2 (15 m) 0.76 0.09 0.36 0.71 1.15 1.32 1.01 0.98
SuperDove 8-band 3 m) 0.75 0.24 0.35 0.61 1.18 1.34 1.01 0.99
SuperDove 8-band (15 m) 0.80 0.15 0.31 0.65 1.16 1.41 1.03 1.04
SuperDove 4-band 3 m) 0.70 0.06 0.38 0.69 1.20 1.37 1.02 0.99

SuperDove 4-band (15m) 0.76 0.14 0.35 0.65 1.17 1.41 1.02 1.04

Landsat-9 (30 m)
Landsat-9 (15 m)
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Fig. 10. Bathymetry maps derived from different satellite images from the
Potomac River based on NN.

The in situ matchup analysis is quantified in Table III, which
indicate that the NN model outperforms OBRA in all cases. The
best result is achieved by applying the NN model on the pan-
sharpened Landsat-9 image (R*> = 0.86 and RMSE = 0.28 m).

5257

Original resolution

15-m resolution

- P

{

A A

Landsat-9

RSy ‘)\, TS B
LY &
,‘\_: 3
o,
X
)
=
'E .
]
5] ‘
/
—/’ 4
( ’/
/
=
=
s AN
= .
“! X
o
>
3
[=]
e
)
="
=
[70]
/ : / /
=
= ?
<
o L
P pN
>
3
[=]
=
o
=9
=
[72] s i
. 3 Bl B
0 0.5 1 15 2
Fig. 11. Bathymetry maps derived from different satellite images from the

Potomac River based on NN.

The NN-based bathymetry maps are shown for two subsets
of the imagery in Figs. 10 and 11. As the Sentinel-2 image was
acquired at a different flow stage, we removed the gage level shift
with respect to the other images to enable visual comparison of
the maps.

The maps show relatively good agreement across the full
range of depths, which is also confirmed by the matchup an-
alyzes (see Fig. 9).
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Despite the time gap between image and field data acquisition,
the high accuracies (R*> > 0.8) achieved for depth retrieval in
both case studies imply that the in situ data are highly reliable.
If a major change in the bed topography had occurred, the
depth estimates would have been much less accurate. This result
further confirms that regulation of the rivers by dams essentially
precluded any major changes in the channel. In addition, any
possible small impact due to channel change would have affected
the depth retrieval from different sensors similarly and thus does
not influence our overall results.

V. CONCLUSION AND AREAS FOR ADDITIONAL RESEARCH

A boom in the availability of different satellite image data
sources is currently underway, creating a compelling incentive
to investigate their potential to facilitate aquatic applications.
Landsat-9 (OLI-2) with a 14-bit dynamic range and, on the
other hand, SuperDoves with meter-scale resolution and daily
acquisitions open up a new era for monitoring inland waters.
This study provided the first assessment of the potential of these
new image data sources for retrieving river bathymetry across
a broad range of water depths (up to ~20 m). We leveraged
a machine learning-based model for depth retrieval based on
NNs and compared the results with those from standard OBRA.
In addition, the impact on bathymetric mapping of Landsat-9
pan-sharpening and downsampling of high spatial resolution
imagery were investigated.

The NN-based model outperformed standard OBRA in all
experiments. OBRA relies on a single band ratio, whereas the
NN model takes advantage of all spectral bands. Moreover, NNs
do not require a priori selection of features and can identify
informative and robust features from the original bands. These
characteristics of NN explain the superior performance relative
to OBRA. Landsat-9, particularly pan-sharpened images, pro-
vided the most accurate bathymetry retrieval. Downsampling
SuperDove pixels by a factor of five (from 3 to 15 m) signif-
icantly improved depth estimation, particularly in deep parts
(> 15 m) of the Colorado River. The noticeable improvements
in depth retrieval in deeper areas suggest that the pixel averag-
ing involved in spatial downsampling might enhance the SNR.
Because deeper water tends to be less reflective in clear-flowing
streams, an enhanced SNR can improve the sensitivity of im-
agery data to subtle changes in water-leaving radiance and thus
extend the range of depths detectable. The resampled (15 m)
SuperDove data provided results comparable to Sentinel-2 and
Landsat-9. The enhanced spectral resolution of the 8-band Su-
perDoves compared to classic 4-band doves also improved the
results.

Although we examined depth retrieval from new Landsat-9
and SuperDove data using field measurements spanning a broad
range of depths, aquatic scientists, and water managers would
benefit from further investigations in additional streams else-
where, as well as in water bodies other than rivers, such as lakes
and coastal waters. In this study, we employed an NN-based
method. However, other machine learning methods (e.g., support
vector machines) could also be considered. Moreover, future
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studies could address physics-based approaches that require
accurate atmospheric correction of the imagery. This kind of
physics-based modeling can give further insight regarding the
data quality of different sensors. Although we relied on the
widely-used Gram—Schmidt method, future studies can inves-
tigate the impact of different techniques for pan-sharpening
Landsat-9 imagery. Assessment of these new sources of imagery
in other aquatic applications (e.g., water quality retrieval and
benthic habitat mapping) would also be interesting topics to
explore.
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