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Abstract

Braided rivers represent one of the most complex forms of natural streams.
Characterized by intense bed-load transport and highly dynamic chan-
nels, they carry significant naturalistic value and support a multiplicity

of ecosystem services. Anthropogenic stressors and environmental changes put
under stress hydro-morphological dynamics, biological processes, and ecosystem
functioning and services of these fragile environments, necessitating integrated
management and conservation strategies to preserve their biodiversity and eco-
logical integrity.

From a regulatory perspective, the two European Directives 2007/60/EC (the
Floods Directive) and 2000/60/EC (the Water Framework Directive) identify and
promote win–win measures that both reduce hydraulic risk and enhance the
quality of water bodies. Some examples of win–win measures are river natu-
ralization projects that not only restore river ecosystems to their natural state,
enhancing biodiversity and ecosystem services but also provide flood protection,
improve water quality, and offer recreational opportunities for local communi-
ties. This thesis contributes to the development of scientific knowledge in the
previously mentioned areas, facilitating the know-how transfer of expertise from
academia to the public institution. Building on these premises, this thesis aims to
provide additional insights into the morphodynamics of braided rivers, offering
new perspectives on the evolution of morphological indices during flood events
and contributing valuable knowledge on how these complex systems respond to
external stressors. The PhD thesis has been structured along three parts.

The primary goal was to develop an innovative unsupervised algorithm for
extracting the spatial and temporal evolution of braided river morphology. This
computational framework is tailored for Sentinel–1 Synthetic Aperture Radar
(SAR) data, overcoming the limitations imposed by weather conditions and day–
night cicles. Moreover, it can be effortlessly adapted to additional SAR imagery
databases. In cases where the water class covers only a minimal area of the entire
scene, the histogram primarily represents the dry soil class. The framework
faces this challenge employing a Self-Adaptive Thresholding Approach (SATA)
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Abstract

to achieve a distinct bimodal distribution, enabling the accurate computation of
threshold values for the ’dry soil’ and ’water’ classes. The tool, developed within
the Python–API of Google Earth Engine (GEE), allowed us to assess the intra–event
inundation dynamics, the estimation of the relationship between hydrometric
level and wet area extension, and the assessment of bank erosion phenomena.

The second chapter focuses on analyzing how morphological indices, such as
the Total Braiding Intensity (TBI) index defined as the number of active channels,
the Maximum Channel distance (MCD) defined as the distance between the most
external channels, and the Cross-Sectional Cumulative Wetted Area (WA) defined
as the sum of the wet area of all chanels in a cross section, correlate with discharge
variations during flood events. To achieve this objective, the framework designed
for Sentinel–1 images was adapted for use with high–definition imagery from the
Italian COSMO–SkyMed satellite constellation. Leveraging the superior ground
resolution of 3x3 meters provided by the Italian COSMO–SkyMed satellite con-
stellation, we successfully segmented narrow secondary branches that remained
undetected with Sentinel–1’s 5x20 meter resolution. Thus obtained, the temporal
evolution of the braiding system, enables us to evaluate the temporal evolution
and the relationship between the TBI, MCD, and WA indices with increasing
discharge values.

The last part of the PhD thesis, deals with the assessment of the river bed
grain size. The initial concept behind this PhD work was to analyze the potential
of Synthetic Aperture Radar (SAR) data in assessing not only river morphology
but also the pattern of patches with different grain size. While the initial two
parts of the work addressed this, the final section’s analysis of SAR data, unfor-
tunately, did not provide significant results. Nevertheless, the subjects of surface
roughness and the creation of spatially distributed grain size maps continue to
hold significant scientific value in the fields of hydraulic and eco–hydraulic mod-
eling and a key information for river management and renaturation projects. The
principal role of this factor led us to slightly shift the research focus towards a de-
tailed investigation of these elements, utilizing orthophotos, digital imagery, and
corresponding analytical methods to model patterns of river roughness and grain
size. A map illustrating the spatial pattern of grain size at the river reach scale
was produced through regression analysis. This analysis correlated the texture
properties derived from orthophoto tiles with the d50, d84, d90, and d95 grain
size characteristics obtained from digital images, thereby providing considerable
support for the implementation of detailed hydraulic models.
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Chapter 1

Monitoring the river dynamics
evolution occurring during
extreme events with Sentinel–1
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Abstract

Abstract
Remote sensing plays a central role in the assessment of environmental phenom-
ena and has increasingly become a powerful tool for monitoring shorelines, river
morphology, flood–wave delineation and flood assessment. Optical–based mon-
itoring and the characterization of river evolution at long time scales is a key
tool in fluvial geomorphology. However, the evolution occurring during extreme
events is crucial for the understanding of the river dynamics under severe flow
conditions and requires the processing of data from active sensors to overcome
cloud obstructions. This work proposes a cloud–based unsupervised algorithm
for the intra–event monitoring of river dynamics during extreme flow conditions
based on the time series of Sentinel–1 SAR data. The method allows the extraction
of multi–temporal series of spatially explicit geometric parameters at high tem-
poral and spatial resolutions, linking them to the hydrometric levels acquired by
reference gauge stations. The intra–event reconstruction of inundation dynamics
has led to (1) the estimation of the relationship between hydrometric level and
wet area extension and (2) the assessment of bank erosion phenomena. In the first
case, the behavior exhibits a change when the hydrometric level exceeds 1 m. In
the second case, the erosion rate and cumulative lateral erosion were evaluated.
The maximum erosion velocity was greater than 1 m/h, while the cumulative
lateral erosion reached 130 m. Time series of SAR acquisitions, provided by
Sentinel–1 satellites, were analyzed to quantify changes in the wet area of a reach
of the Tagliamento river under different flow conditions. The algorithm, devel-
oped within the Python–API of GEE, can support many types of analyses of river
dynamics, including morphological changes, floods monitoring, and bio-physical
habitat dynamics. The results encourage future advancements and applications
of the algorithm, specifically exploring SAR data from ICEYE and Capella Space
constellations, which offer significantly higher spatial and temporal resolutions
compared to Sentinel–1 data.

The content of this chapter has been published as:
Rossi D., Zolezzi G., Bertoldi W., Vitti A. 2023. Monitoring Braided River-Bed

Dynamics at the Sub-Event Time Scale Using Time Series of Sentinel–1 SAR
Imagery. Remote Sensing, 15, 3622. DOI: https://doi.org/10.3390/rs15143622

Author contributions:
Conceptualization: D.R., A.V., W.B. and G.Z., Data curation: D.R., Formal analysis: D.R. and

A.V., Methodology: D.R., A.V. and W.B., Software: D.R., Supervision: A.V., W.B. and G.Z.
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1.1. Introduction

1.1 Introduction

Rivers and their floodplains are among the most complex, dynamic, and
diverse ecosystems on Earth, providing major economic, health, cultural,
scientific, and educational ecosystem services [4, 73]. Despite accounting

for just 1.4% of the land surface area, riparian zones provide at least 25% of all
terrestrial ecosystem services [93]. Rivers’ dynamic behavior originates from the
continuous interaction between variable flow, sediment transport and associated
morphological change, and ecological feedback, mainly through aquatic and ri-
parian vegetation [35, 22, 83]. Most of these dynamic processes occur during
floods, which are characterized by the increase in flowing discharge, often associ-
ated with a large widening of the inundated areas, both inside the active channel
and in adjacent zones. The possibility of understanding, quantifying, and pre-
dicting river evolution strongly depends on our ability to monitor what happens
during these events, which in some cases last for only a few hours or days but can
shape the riverbed morphology for the following months and years [74, 36]. The
accurate monitoring of the dynamics of rivers and floodplains plays a vital role
in improving river management practices and achieving the objectives outlined
in the Water Framework and Flood Directives at the European level (2000/60/EC
[28] and 2007/60/EC [29]). Moreover, these directives promote the development
of proper flood forecasting and monitoring systems, aiming at preventing high
socio-economical losses and at planning a variety of flood-management alterna-
tives [91]. Recent studies have demonstrated that estimation of rainfall provided
from the Integrated Multi-satellite Retrievals (IMERG) algorithm for the Global
Precipitation Measurement constellation coupled with the mesoscale Weather
Research Forecasting (WRF) model [77] can be effectively utilized to accomplish
these objectives and fulfill the requirements of the directives [37].

In the last decade, advances in remote sensing technologies and the computa-
tional ability to process vast datasets are increasing at unprecedented speed and
have revolutionized the way we quantify and assess river systems [76], offering
new sources of high resolution, multidimensional data across wide spatial scales
and at multiple time scales, towards a data-rich geomorphological science [81].
The availability of different satellite imagery, often freely accessible, can be cou-
pled with various cloud computing platforms and distributed systems such as
Google Earth Engine (GEE), Sentinel Hub, Open Data Cube, openEO, and others
[40].

Satellite images, and in particular the freely available Landsat and Sentinel–
2 multi–spectral images, have been successfully used for river mapping since
the 1990s [86], with continuous improvements since then, towards the accurate
evaluation of channel width [70], river centerline and sinuosity [63], and, more in
general, for mapping surface water extent and dynamics [71, 48, 87].
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1.1. Introduction

However, approaches based on optical data in the visible and near–infrared
range suffer from strong limitations due to the adverse atmospheric conditions
that often characterize flood events. Particularly in the case of relatively small
catchments (areas smaller than 104–105km2), flood peaks occur shortly after rain
events, implying that cloud coverage is very likely to persist, reducing the possibil-
ity of effectively monitoring large river areas. On the contrary, satellites carrying
active radar sensors operating in the microwave range are not affected by cloud
coverage and therefore provide an attractive way to remotely track the dynamics
of rapidly changing river systems. Indeed, Synthetic Aperture Radar (SAR) has
played a crucial role in identifying wet and dry classes due to its ability to pro-
vide data regardless of the weather conditions or time of observation. Numerous
techniques have been developed to fully exploit the potential of SAR data. In the
early studies, flood stage measurement, braided river patterns, and river discharge
were manually performed by the operator [13, 85, 64]. More recently, flood mon-
itoring and river morphology assessments are performed by employing the RGB
composition of a reference image (e.g., pre-flood) and a target image (e.g., post-
flood), followed by a threshold technique such as the seed-growing segmentation,
Maximum Likelihood, or K-means [23, 78, 2, 3, 69, 61]. Morphological operators
(opening and closing), followed by a K-means thresholding algorithm and a fuzzy
logic classifier have been successfully applied to map flooded vegetation [80] and
distinguish water surfaces from artifacts caused by heavy precipitation or wet
snow [79]. Opening and closing operators, coupled with Support Vector Ma-
chine (SVM) [51] and watershed by immersion segmentation [20], are employed,
respectively, for extracting river linear features and segmenting the river channel.

However, the application to SAR datasets of fully automated thresholding
algorithms, such as the one proposed by Otsu, are still challenging for the scientific
community [105, 62]. For example, the target class often covers only a small
portion of the overall scene, failing to clearly emerge in the histogram of the
entire image. Under these circumstances, parametric methods, which typically
necessitate the estimation of probability distribution functions for the two target
objects (dry soil and wet area, in our case), are not feasible. In this context, several
techniques of image splitting and sub-image bimodality testing come into play
[26, 19, 15, 90].

In the last decade, numerous studies have focused on extracting water streams
and water bodies using various approaches that utilize deep neural networks
[68, 67, 18, 104, 99, 103]. A more detailed description of the aforementioned
papers is provided in Section 1.2.

To improve the efficacy of these methods, in this work, we present the de-
velopment of an unsupervised and cloud-based algorithm for the near-real-time
analysis of stack SAR images. In the workflow, which is described in detail in
Section 1.3, we accomplish the following objectives:
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1.2. Related works

(i) we incorporate water flow level information through metadata enrichment
to facilitate the automatic extraction and monitoring of inundation dynamics
at a sub-event temporal scale;

(ii) we evaluate the denoising of speckle using three edge-stopping functions;

(iii) we develop and apply a Self-Adaptive Thresholding Approach (SATA),
which is based on the Otsu algorithm.

The algorithm is then tested and verified on a 13 km long reach of the Taglia-
mento River (Italy), a large, braided gravel bed river, recognized as the most natu-
ral and dynamic large river in the European Alps. Furthermore, the availability of
imagery at the sub-event time scale, as opposed to the standard before–after-flood
approach, allows the observation and quantification of lateral bank erosion and
channel dynamics during the flood event and with accurate timing as a function
of water level and inundation duration.

The Chapter 1 is organized as follows: Section 1.2 contains a review of the ex-
isting methods that allow river-channel segmentation based on SAR data; Section
1.3 presents the theoretical approach and describes the details of the computation
steps and the dataset; Section 1.4 illustrates the case study, and Section 1.5 shows
the results of mapping river-inundated areas and morphological change during
the flood events that occurred from 2018 to 2020. Discussion on perspectives and
limitations of the present work, along with the geomorphological significance and
main concluding remarks, is provided in Section 1.7.

1.2 Related works
The detection of flood areas, the extraction of water surfaces, and the monitoring
of river morphology have a lowest common denominator: the accurate clustering
of images. In the existing literature, different approaches can be found, whose
complexity also depends on the historical moment in which the research was
conducted.

Brakenridge et al. (1994) [13] and Smith et al. (1995) [85] employed a fixed
threshold value for clustering ERS-1 imagery. Brakenridge et al. quantified the
flood stage by establishing a correlation between the extent of the 1993 flood of the
Mississippi River and high-quality topographic data. On the other hand, Smith
et al. examined the correlation between multitemporal surface area of water and
discharge measurements for a braided glacial river in British Columbia.

Nykanen et al. (1998) [64] classified the connected braided system by first
manually selecting the upstream part of a known channel and then selecting
the disconnected sections that visually appeared to be part of active channels.
After approximately one hour of image reworking, the binary classification was

7



1.2. Related works

completed. They also attempted to use an Unsupervised Bayesian Classification
algorithm in order to fully automate the procedure, but the result was a poorly
connected braided channel network.

More recently, Klemenjak et al. [51] presented an algorithm for the auto-
matic extraction of river networks that can be applied to multi-temporal or multi-
polarized high-resolution SAR data (TerraSAR-X). The method is implemented
using the Support Vector Machine and is based on the supervised classification
of morphological profiles. They found that in the presence of bridges or power
lines the procedure could produce gaps in the river network. In these cases, the
choice of polarization could improve the accuracy of the method.

Amitrano et al. (2015) [1] presented a framework for the treatment of multi-
temporal Synthetic Aperture Radar (SAR) images that defines an intermediate
product between L1 and L2 named L1–α through the fusion between the in-
tensities of the reference and test images and their coherence into a false-color
RGB image. The above-mentioned framework was applied to the assessment of
morphological variations due to flood events [61]. The authors also verified the
possibility of monitoring water bodies: lakes, wetlands, and rivers. For the case
of rivers, water channels were automatically extracted by means of an intensity
threshold, whereas active channels and sediment bars were visually outlined.
Active channel widening and narrowing were highlighted [69].

Obida et al. (2019) [65] applied the K-means unsupervised methodology to
cluster Sentinel–1 data for the purpose of extracting the river network of the
Niger delta. Subsequently, the centerline of the river network was extracted and
compared with manually derived centerlines from imagery acquired in the visible
range.

Moharrami et al. [62] employed a simple Otsu algorithm applied to the his-
togram of an entire Sentinel–1 image to delineate the flooded areas in North Iran
for the extreme event of March 2019. In this case, the estimation of the thresh-
old value is particularly challenging, because the target class typically constitutes
only a minor portion of the image, and therefore, the histogram does not exhibit
a bimodal distribution.

Furthermore, the use of one single threshold for the entire image is not opti-
mal for large areas because of inherent characteristics of SAR data. The imaging
geometry of SAR, such as incidence angle variations, can significantly affect the
radar backscatter, causing similar land cover types to exhibit different radar sig-
natures depending on their orientation and the sensor’s viewing geometry. This
variability complicates the application of a uniform threshold across the image.
Below, we explore a range of tiling approaches developed to tackle this specific
challenge.

In order to parameterize the distribution functions from the histogram of
the two classes (dry soil and water), Chini et al. [19] introduced a Hierarchical

8



1.2. Related works

Split-Based Approach (HSBA) to divide the image into tiles, each with an equal
proportion of pixels belonging to the two classes of interest. To achieve this,
they checked that the histogram was clearly bimodal, and the parametrization of
the distribution function performed well. To cluster the image, they applied a
Regional Growing (RG) algorithm. The threshold for the seeds and the tolerance
criterion to stop the growing process were selected based on the distribution of
the target class estimated by HSBA.

Ciecholewski [20] proposed a two-step global threshold approach for seg-
menting the river channels. Firstly, the polarimetric ALOS PALSAR image is
clustered using a watershed using the immersion algorithm. Secondly, in order
to reduce over-segmentation, surrounding sub-regions are iteratively merged by
maximizing the average contrast. The algorithm was compared with three other
approaches: multilevel image thresholding using Otsu’s method (Otsu), Fast Ran-
dom Walker (FRW), and Active Contour Without Edges (ACWE) on a reach of
Sungai Kampar River channel.

Cao et al. [15] proposed subdividing the image into tiles of a fixed dimension
s × s and applying the Bimodality Test (BT) to identify the tiles that exhibit a
bimodal histogram. The histograms were smoothed using a Gaussian convolution
kernel. The mode value of the water portion of the histogram was utilized as the
threshold for identifying the core water area. Lastly, a region-growing algorithm
(RGA) was employed to generate a spatially homogeneous water map.

Donchyts et al. [26] introduced an extension of non-parametric detection
methods, such as the histogram-based Otsu thresholding algorithm. They incor-
porated the Canny edge filter to identify the edges between water and dry soil
and subsequently computed the histogram using the pixels enclosed within an
area surrounding those edges. In this particular case, the histogram obtained dis-
played a distinct bimodal shape, indicating the suitability of the Otsu thresholding
algorithm.

Finally, Tan et al. [90] developed a self-adaptive thresholding algorithm, de-
rived from the Otsu approach, for automatic water extraction using Sentinel–1
Synthetic Aperture Radar (SAR) imagery. This algorithm incorporates the side-
looking characteristic of SAR data by subdividing the S1 scene into uniform tiles
based on the distance to the orbit. The goodness of the classification was evaluated
using the Jeffries–Matusita (JM) distance function. Compared to five other tradi-
tional segmentation algorithms (Otsu, Moments, Mean, Isodata, and Minerror),
the proposed method achieved the highest overall accuracy.

9



1.3. Material and methods

1.3 Material and methods
This work proposes an unsupervised methodology based on the Google Earth
Engine cloud infrastructure for the continuous monitoring of river dynamics
during flood events using freely available Sentinel–1 imagery. The proposed
method utilizes the Level 1 (L1) GRD product of Synthetic Aperture Radar (SAR)
imagery acquired from Sentinel–1 in the Interferometric Wide swath (IW) mode.
Sentinel–1 is a C–band active sensor operating at a center frequency of 5.405 GHz,
which corresponds to a wavelength of ≈ 5.5 cm. The sensor returns images at a
pixel spacing of 10 m, and the pixel values typically range between −35 decibels
(dB) and slightly positive values. IW product is Sentinel–1’s primary operational
mode over land, and it is available in dual polarization, namely vertically emitted,
vertically received (VV) or vertically emitted, horizontally received (VH). The
vertical polarization, interacting with the Earth’s surface, can return to the satellite
sensor in the vertical plane or in the horizontal one. Before ingesting the imagery
into the Engine’s database, Google applies the required standard preprocessing
to the Sentinel–1 Ground Range Detected (GRD) product. This preprocessing
involves updating the orbit information, removing image border noise, modeling
the thermal noise, calibrating the images radiometrically, and applying terrain
correction.

This work proposes the implementation of a processing chain as follows:

• Enriching the image stack with hydrometric data;

• Applying the radiometric slope correction algorithm;

• Reducing speckle noise;

• Extracting the wet channel with a Self-Adaptive Thresholding Approach
(SATA);

• Output functions.

Each function was structured in a main body and sub-functions with the
purpose of allowing sequential calls needed from the time series of images.

GEE’s architecture is based on a client/server programming model. Under
this architecture, the client libraries provide a user-friendly programming envi-
ronment, recording the computational chain and sending it to the server for the
execution. This implies that it is impossible to combine Earth Engine library calls
(server side) with local processing operations (client side). The procedure has
three points where the client site and server side exchange inputs and outputs:
the image query step, the upload of hydrometric data, and the output step, which
can save scatter plots, time series of water masks, and data dictionaries (Figure
1.1).

10



1.3. Material and methods

Figure 1.1: Workflow diagram of the proposed framework for mapping the braided channel area at
sub-event time scale using time series of Sentinel–1 imagery (red diamond). The time-varying water
level is represented by the blue line.

Previous research has demonstrated that, in scenarios characterized by non-
windy conditions and the absence of stream water, VV polarization exhibits su-
perior accuracy to VH polarization [95]. This is attributed to the sensitivity of
VV polarization to water surface roughness. VH is generated from the interac-
tion with the tree crowns (volumetric scattering), and part of the backscatter is
redirected towards the water channel, causing misclassification [49]. In our study
of large gravel bed rivers without vegetation in the active channel, the rippling
water surface impedes the use of VV polarization, thus favoring the adoption of
VH polarization.

1.3.1 Image Selection and Metadata Enrichment
Images are selected on the basis of a spatial query of the region of interest and
a query of the time interval of the flood event. After the initial image query, the
metadata of the images are enriched with the hydrometric level registered at the
time of image acquisition. This operation is of utmost importance for subsequent
analysis as it allows for the determination of inundation dynamics in conjunction
with hydrometric levels. This, in turn, facilitates the inference of the relationship
between flooded areas and water discharge.

The water–level time series, composed of the date in a string format and the
water level in a decimal floating-point format, are firstly converted into a collection
of images and then joined with the SAR image collection. In the present work, the
hydrometric data recorded at the Venzone station were used. The gauging station
is located approximately 20 km upstream from the studied reach. More details
on the management of the station’s hydrometric data are provided in Section 1.4.
The resulting collection contains paired elements composed of the metadata and
all the bands of the primary SAR collection and the matching element from the
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1.3. Material and methods

hydrometric level collection. The matching criterion is time–dependent, and SAR
images are associated with the nearest water level value according to the following
expression:

Pixel =
hi i f tS AR ∈ [ti; ti+1/2)

hi+1 i f tS AR ∈ [ti+1/2; ti+1]
(1.1)

where hi and hi+1 correspond to the water level at time ti and ti+1, respectively, tS AR

is the SAR acquisition time, and ti+1/2 = (ti + ti+1)/2.

1.3.2 Radiometric Terrain Correction
Due to the side-looking configuration of SAR sensors, there are a number of
geometric and radiometric distortions that arise from the 2D imaging processing
of the 3D Earth surfaces and are intrinsically linked to the local orientation of the
surface, which need correction and reduction. In the ideal case of a flat surface,
the distortion is a specific geometric compression of the ground in the slant range,
with increasing distortion moving from the furthest to the nearest range area. The
conversion of the slant range to ground range is typically performed by the radar
processor prior to image creation. This conversion facilitates accurate distance
measurements by accounting for the radar geometry [33].

On the other hand, radiometric distortions caused by terrain orography need
to be corrected using an analytical approach [98, 96, 60, 57, 42, 46]. Terrain slopes
cause significant variations (radiometric distortions) on radar backscatter values,
depending on the angle and aspect of the surface and on the radar configuration,
in terms of frequency, polarization, and ascending or descending path. Foreshort-
ening, layover, and shadowing can be included among these effects. The first two
happen when the slope is facing towards the sensor, while shadowing occurs on
the opposite side of the slope. Foreshortening occurs when the slope in the range
direction (αr) is less than the incidence angle (θi), whereas layover appears when
the slope exceeds the incidence angle. Shading or shadowing of the opposite side
of the slope occurs when the angle αr > 90o − θi.

In applications related to land monitoring, an accurate backscatter measure-
ment has a central role and allows robust land-cover classification. Therefore,
radiometric slope correction is needed in order to reduce these topographic ef-
fects on backscattering values and to provide imagery in which pixel values are
properly related to the radar backscatter of the scene. In the literature, there are
different approaches aiming at reducing radiometric distortion.

In this work, two physical models have been taken into account. These models
propose an exact solution for the compensation of slope-induced variations in the
backscattered energy. Hoekman et al. [43] consider the effects of forested reliefs
on the radar backscatter, as an opaque volume composed of isotropic scatterer
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elements (Equation (1.2)), whereas Ulander et al. [96] derive an equation for the
radiometric correction, projecting the 3D model of hillslope without vegetation
into the 2D domain of the SAR images and thus considering it as a surface of
isotropic scatterers (Equation (1.3)):

γ0
f = γ

0 ·
tan(π/2 − θi)

tan(π/2 − θi + αr)
, (1.2)

γ0
f = γ

0 ·
cos(αaz) · cos(π/2 − θi + αr)

cos(π/2 − θi + αr)
, (1.3)

where γ0
f and γ0 are, respectively, the backscatter on a flat terrain and the backscat-

ter on a tilted terrain, αaz and αr are the terrain slope in the azimuth direction and
in the range direction. θi represents the incidence angle of the SAR signal with
the Earth’s surface.

1.3.3 Denoising
The goal of this framework step is to reduce the intrinsic noise of Sentinel–1 SAR
images, a granular pattern distribution called speckle that affects the SAR images.
This effect is due to the sum of constructive and destructive superpositions of the
backscattered signal after the interaction with the target area. In general, the task
of all despeckling methods is to reduce the speckle noise without losing fine details
and edges of features. Among the approaches used for SAR images despeckling,
Bayesian methods [54, 55, 34, 59, 8], non-Bayesian algorithms [72, 56, 58], hybrid
approaches, and also new methodologies based on machine learning algorithms
can be mentioned. Comprehensive recent reviews of these methodologies can be
found in [5, 84, 7].

In this work, the non-Bayesian model proposed by Perona and Malik (1990)
[72] was used, which is based on the Gaussian kernel convolution and maintains
an accurate location of feature edges during the process of image smoothing and
restoration, through the following definition of a scale space:It = ∆ (c(x, y, t)∇I)

I(t=0) = I0
(1.4)

where It = ∂I/∂t is the partial time derivative of the intensity image, I0 is the initial
intensity image, and ∆ and ∇ are divergence and gradient operators, respectively.
The diffusion coefficient c(x, y, t) is a function of the gradient magnitude of the
image. The primary task of the diffusion coefficient is to prioritize smoothing
within a region rather than smoothing across its boundaries. This objective can
be accomplished by ensuring that the conduction coefficient is a monotonically
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decreasing function equal to 1 within the interior of each region and 0 at the
boundaries. The setting of the diffusion coefficient function is discussed in the
next paragraph.

As noticed by Hummel et al. and Koenderink et al. [45, 52], Gaussian kernel-
based methods are equivalent to the solution to the diffusion Equation (Equation
(1.4)), which, neglecting the hierarchy of the image levels, reduce both image
noise and the definition of object boundaries. With the aim of overcoming these
limitations, Perona and Malik [72] defined the diffusion coefficient as a function
of the gradient magnitude of the image c = g(∥∇I∥). This function, called the edge
stopping function, ensures a higher rate of diffusion within homogeneous regions
and avoids the blurring of the feature boundaries characterized by high values of
∥∇I∥.

Three edge stopping functions were tested. The first two (Equations (1.5) and
(1.6)) were proposed by Perona and Malik [72], and the third (Equation (1.7)) was
proposed by Black et al. [11]:

c1 = e−(∥∇I∥/K)2
, (1.5)

c2 =
1

1 + (∥∇I∥/K)2 , (1.6)

c3 =


1
2

[
1 −

(
∥∇I∥
K
√

2

)2
]2

: ∥∇I∥ ≤ K
√

2

0 : otherwise,
(1.7)

where ∥∇I∥ is the gradient magnitude of the image I, and K is a constant parameter
that allows for the adjustment of the noise filter. Its value is typically determined
through experimental selection or by considering the noise characteristics present
in the image. In the present work, it was set to 3. Figure 1.2 illustrates the distinct
smoothing effects of the three functions mentioned earlier. The c1 function stops
the diffusion starting from a small gradient value, whereas c2 needs a higher
gradient value in order to stop diffusion. The c3 function stops the diffusion at
low gradient values, preserving very fine details. So c2 privileges wide regions
over small ones, c1 privileges high contrast edges versus lower-contrast edges, and
c3 reduces the diffusion even more rapidly than c1 and stops diffusion where the
gradient is very low.

The most appropriate edge-stopping function in our case is c1, as it adequately
smooths homogeneous regions while preserving border lines.
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Figure 1.2: Illustration of the varying smoothing effects of Perona and Malik’s model using different
edge-stopping functions on Sentinel–1 imagery. From left to right: original VH band, denoised
images using Equations (1.5), (1.6), and (1.7). The three denoising functions are plotted in the
bottom sub-panels as a function of the gradient magnitude of the image. The x-axis represents the
gradient magnitude of I ∥∇I∥, while the y-axis represents the value of c(∥∇I∥).

1.3.4 Self-Adaptive Thresholding Approach (SATA) to River Wa-
ter Delineation

Image segmentation is the process by means of which two or more classes or
objects are identified in an image. Various techniques are widely used in research
fields such as medical applications, the recognition and tracking of objects, and
environmental analysis, including the delineation of river and waterbodies from
optical, multispectral and radar data. Two groups can be mentioned: traditional
methods (e.g., edge detection, clustering, random forest, support vector machine,
Markov random field, statistical algorithm), and segmentation processes based
on the latest Deep Learning (DL) methods (ANN, CNN, and others) [41].

As described in the introduction, in our case, the water class covers only a
small portion of the entire scene, leading to a unimodal histogram that represents
mainly the dry soil class. Such a histogram makes the Otsu thresholding method
almost impossible to use. In order to obtain a bimodal distribution that allows
the computation of a reliable threshold value, a suitable subset of the image (Ai)
is needed. To this end, the proposed SATA is composed of two cycles (i = 0, 1) of
the following steps (Figure 1.1):

(i) Image binarization process using the threshold value ti;
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(ii) Identification of the wet–dry edges Ei using the Canny Edge filter [14];

(iii) Delineation of the area Ai applying a buffer (Bd) around the edges Ei;

(iv) Histogram sampling within the area Ai;

(v) Evaluation of the threshold ti+1 applying the Otsu algorithm.

On the first run (i = 0), the threshold t0 is manually set to −20 dB, representing
an initial threshold attempt. After the second run (i = 1), the algorithm outputs
the final threshold t2, which is then used to extract the water mask. Figure 1.3
illustrates the conceptual scheme depicting the definition of the edges Ei and the
area Ai for the i-th step.

Figure 1.3: Conceptual scheme illustrating an example of the thresholding algorithm applied to
Sentinel–1 data acquired on 17.11.2018. Sentinel–2 imagery is utilized for a visual explanation of
the thresholding steps. The first two panels depict the definition of the wet–dry edges, denoted as Ei,
based on the threshold ti. Meanwhile, the right panel illustrates the area Ai generated around these
edges with a distance Bd, within which the Otsu algorithm is subsequently applied.

After binarizing the image using ti (step i of the procedure), the Canny Edge
filter is applied to the resulting binary image (step ii of the procedure). Before
the edge-detection step, the image is convolved with a Gaussian filter with the
parameter σ set to 1. The edges are subsequently defined as those pixels where
the magnitude of the gradient exceeds 1.

The area Ai, where the histogram is sampled, is defined by buffering the edges
Ei by a distance Bd (step iii of the procedure). The choice of buffer amplitude Bd is
bounded by the channel width. At low discharges, the channel width is narrow,
whereas it is wider at high discharges. The optimal buffer amplitude is the one
that samples half of its area in the channel and the remaining half on dry land,
without including other land classes such as vegetation or urban areas with higher
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backscatter values. In Section 1.5.1, the impact of the choice of parameters will
be presented and analyzed, specifically highlighting that the optimal selection for
our specific case is Bd = 50 m.

To reduce the computational time and implement an efficient automatic proce-
dure, we selected a thresholding method (step vs. procedure) with low consump-
tion of computational resources, namely the Otsu thresholding algorithm [66],
which is simple to implement and has a similar accuracy to more complex meth-
ods [50]. The Otsu thresholding algorithm, initially implemented by Donchyts et
al. [26], was optimized with the aim of ingesting a stack of images. The algorithm
is applied to the decibel (dB) histogram sampled into the area Ai of every SAR
image and is based on the maximization of the inter-class variance, defined as

σ2
B = ω0 · (µ0 − µT )2 + ω1 · (µ1 − µT )2 (1.8)

where σ2
B is the inter-class variance, ω0 and ω1 are the probabilities of class occur-

rence, µ0, µ1 are the class mean levels, and µT is the total mean level.

µ0 =

t∑
i=1

i · pi

ω0
; (1.9)

µ1 =

L∑
i=t+1

i · pi

ω1
(1.10)

ω0 =

t∑
i=1

pi; (1.11)

ω1 =

L∑
i=t+1

pi; (1.12)

where L is the number of levels and pi is defined as the ratio ni/N. ni denotes the
number of pixels at level i, and N is the total number of pixels.

As mentioned earlier, the successful application of the Otsu algorithm relies
on the presence of a distinct bimodal distribution in the histogram. In the scenario
where the edge Ei is placed in areas where portions of the image are occupied
mainly by water with a small proportion of dry sediments, Ai will be formed
mainly by the water class, resulting in a unimodal histogram (Figure 1.4–A).
Similarly, if Ei is placed where mainly dry soil is present, Ai will be formed
mainly through dry pixels (Figure 1.4–B). In both cases, the Otsu’s thresholding
algorithm will yield an unreliable threshold. To avoid this, the proposed SATA
takes advantage of the second run to adjust the position of the wet–dry edges
Ei until the sampling area Ai includes approximately 50% of pixels from each
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class (Figure 1.4–C). In Section 1.5.1, we will describe the gradual improvement
in the bimodality characteristic of the histogram, which is achieved through two
cycles of the procedure. Furthermore, we will report the threshold values and the
corresponding relative binary masks for the specific case study.

Figure 1.4: Examples demonstrating the effect of positioning the wet–dry edges Ei on histogram
sampling and the resulting water mask. Row (A) displays the unimodal histogram generated when
the wet–dry edges Ei are positioned in areas of the image predominantly occupied by water, with a
small proportion of dry sediments. Conversely, row (B) shows the unimodal histogram generated
when Ei are placed in areas of the image predominantly occupied by dry sediments. Row (C)
represents the case when Ei guarantees that the sampling area Ai includes approximately 50% of
pixels from each class.

1.4 Study Case
The proposed algorithm has been applied and tested on the Tagliamento river
(north east Italy), a large gravel bed braided river recognized as a reference fluvial
system for its near–natural dynamics [94]. Its catchment covers an area of about
2700 km2 from the Italian Alps to the Adriatic Sea, with a total length of 178 km.
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The study focuses on a 13 km long reach located in the foothill area of Friulian Pre-
Alps, downstream of the Pinzano gorge (Figure 1.5). It has a mean longitudinal
gradient equal to 3.4 m/km and the active channel reaches a width of 1000 m.
During flood events, this section of the river shows significant variations in the
water surface area, induced by the inundation of lateral channels and sediment
bars. The reach is also morphologically active, showing frequent erosion of banks
and vegetated islands.

Figure 1.5: Location of the Tagliamento catchment in north east Italy (frame A) and aerial view of
the study site (frame B). Frame (C) displays the longitudinal profile of the river bed, with the red box
highlighting the investigated reach.

The hydrologic regime of the Tagliamento river can be classified as a pluvio-
nival regime [94]. The snow melt during the spring season (April–June) sustains
the discharge (Figure 1.6–A), ensuring a period of significant mobility of the
riverbed, particularly when associated with rain events. Major floods generally
occur in autumn, when heavy rains are more likely, with humid air masses moving
north from the sea.

In the present work, we used data from the hydrometric station in Venzone,
about 20 km upstream of the study reach, with a particular focus on the floods
that occurred on October 2018, November 2019, and December 2020 (black arrows
in Figure 1.6–B). Hydrometric data were shifted back by 1 h with respect to the
image timing, to take into account the flood propagation from Venzone to the
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study reach. The 1 h shift has been evaluated, referring to a second gauging
station and approximated hydraulic computations.

The new Digital Elevation Model (DEM) of Italy presented by [92] was used to
implement the radiometric terrain correction. The DEM was generated through
Delaunay tessellation of a heterogeneous dataset, coming from different Italian
public bodies. Its vertical accuracy was assessed on an independent set of control
points and, in the region of interest, is less than 2 m, which is considered sufficient
for the study objectives. The spatial resolution is compatible with the 10 m pixel
size of Sentinel–1 imagery.

The correction of the radiometric distortions was performed using the vol-
umetric model (Equation (1.2)), as suggested by [42, 100], for case studies with
predominant agricultural land use.

Figure 1.6: (A) seasonal flow variation from 2002 to 2022, and (B) flow regime for the years 2018,
2019, and 2020, measured at the Venzone gauging station, aligned by Day Of the Year (DOY). In
panel (B), the gray solid line and the two gray dashed lines are the median, the maximum, and the
minimum value for every single day in the period 2002–2022, respectively.

1.5 Results
In this section, we start by presenting the sensitivity analysis of the threshold-
ing parameters; then, the calibrated procedure is applied to three flood events
in October 2018, November 2019, and December 2020, with return intervals of
approximately 10, 4 and 3 years, respectively. In particular, we quantified (i) the
area inundated by water as a function of the water level and (ii) the lateral bank
erosion rate.
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1.5.1 Sensitivity Analysis
Three hundred Sentinel–1 images entirely covering the study reach were ana-
lyzed, in the time spans from January 2014 to June 2021. During this period, the
hydrometric level at the Venzone gauging station ranged from a low flow up to
4.27 m, which was reached during the flood event named Vaia, which occurred at
the end of October 2018. At low flow, particularly during summer, the river bed is
often completely dry, due to a natural down-welling process in the huge alluvial
sediment deposit [25]. To avoid issues with a completely dry reach, we selected
images with a corresponding water level at Venzone larger than 0.25 m.

For each image, the procedure outlined in Section 1.3 and Figure 1.1 was
applied, obtaining a classified map of the water surface extension and the esti-
mated value of the threshold ti that better differentiates between water and dry
sediments.

The influence of the buffer amplitude Bd on the threshold ti was investigated
through a sensitivity analysis, varying the buffer amplitude from 50 m to 300
m. The 300 values of ti were then interpolated using a non-parametric kernel
distribution with a Gaussian normal distribution function with mean equal to ti

and a bandwidth of 0.25 dB.

Figure 1.7: Comparison of the interpolated probability density functions obtained in the six cases,
with Bd varying from 50 to 300 m (left) and fitting of the most likely threshold values with prediction
bounds and residuals (right).

Figure 1.7 shows the effect of increasing the buffer distance from 50 m to 300
m. It is worth pointing out that the active corridor width is about 1000 m, with
single channels of the braided network being 50 m to several hundred meters
wide. It is therefore reasonable to expect a buffer distance in the proposed range.
The comparison between the six probability distribution functions and the fitting
curve of the most likely threshold values (Figure 1.7) shows that, for increasing
values of the buffer amplitude, the mode shifts towards positive values. This effect
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is due to the progressive inclusion of pixels representing other land classes, such
as vegetation, characterized by volume backscattering, and thus with a stronger
backscatter than water and dry sediments. Most probable values of the threshold
ti range between −19 and −20 dB, with a maximum mode difference of about
1.5 dB. A higher value of the threshold results in more pixels classified as water.
Differences are, however, limited, in terms of mapping of the main channels. To
keep the procedure simple and automated, our suggestion is to select the lower
value of the buffer distance to avoid including a significant number of pixels
belonging to other land use classes.

Figure 1.8: Histograms and the corresponding threshold values obtained after the first and second
run of the Otsu thresholding algorithm (first and second column, respectively) in the cases of buffer
width Bd set to 50 and 100 m (first and second row, respectively). The panels on the right illustrate
the classification differences between the first and second run. The red pixels represent areas that
changed from being classified as water after the first run to being classified as dry soil after the second
run.

Moreover, the influence of the first value VH0 was tested for Bd equal to 50
and 100 m, running a second cycle of the thresholding algorithm and imposing
the threshold estimate in the first cycle as the initial value. Figure 1.8 shows the
histograms of the pixels included in the area Ah with the estimated threshold ti

represented by the red vertical line. The second run shows a better separation of
the two classes, with a clearly bimodal distribution. However, the values of the
threshold are only slightly different, resulting in an estimated area of the water
surface that differs mainly because of sparse, isolated pixels (red pixels in the
right panel in Figure 1.8). The histograms in the case of Bd equal to 100 m further
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confirm that, with a wider buffer it is likely the area Ah that includes a third class
of land use (vegetation in this case), represented by the third peak at -14 dB that
appears clearly on the right of the histograms after the second run.

In summary, the sensitivity analysis indicated that running the algorithm with
a buffer width Bd of 50 m yielded favorable results. Additionally, it confirmed the
advantages of using a double cycle approach, as it produced histograms with a
more distinct bimodal characteristic and reduced the dependence on the initial
VH0 value.

1.5.2 Inundation Dynamics
The results of the classification of the water surface area for the 300 images from
2014 to 2021 are shown in Figure 1.9, in terms of the proportion of total active
corridor area inundated by water as a function of the hydrometric level at the
Venzone gauging station. As described in section 1.4, hydrometric data were
shifted back by 1 h with respect to the image timing, to take into account the flood
propagation from Venzone to the study reach.

Figure 1.9: (A) Water level recorded at the gauging station of Venzone from 2014 to 2021; (B) wet
area proportion for the 300 analyzed images.

Figure 1.9 shows two distinct behaviors: (i) for a water level between 0.25 m
and 1 m (blue points), the proportion of wet areas increases markedly from 20% to
60%; (ii) for a water level higher than 1 m (red points) the proportion of wet areas
increases less rapidly, reaching 100%, i.e., full inundation of the active corridor, for
a water level of about 3 m. At flow levels lower than 1 m, the number of channels
increases significantly, with the activation of lateral channels and submergence of
low bars. For higher water levels, channels start to merge, and the higher bars
and vegetated islands are submerged. The values observed from this analysis
are similar to what has been observed on shorter reaches by [97, 101], who used
field surveys and fixed cameras. The large variability of the blue points in Figure

23



1.5. Results

1.9–B shows that, particularly at low flow, the channel network configuration may
change not only in terms of the location of the channel, but also in terms of the
total wet area.

The potentiality of the SAR images mapping is well expressed by the analysis
at the single flood scale, for the events in the October 2018, November 2019,
and December 2020. Figure 1.10 shows the hydrographs (blue line) registered at
the Venzone gauging station and the corresponding time evolution of wet area
proportion evaluated at the reach scale (magenta line), for the three events. At the
top of each panel, the red points show the acquisition time of the SAR Sentinel–1
images, whereas green points show the available multi-spectral Sentinel–2 images,
highlighting the impossibility of evaluating the during-flood dynamics with this
passive sensor.

The analysis shows that in all three events, the entire active corridor was
inundated (values of the wet area have a proportion up to 1). Moreover, despite the
observed changes in the local configuration of the channel network, the analysis
shows little variations in the wet area’s proportion before and after the flood,
indicating a sort of equilibrium at the reach scale.

Figure 1.11 reports with more details the inundation dynamics observed dur-
ing the event in 2019. November 2019 was a very rainy month, with high flows
occurring during the entire month, and five subsequent peaks, with the highest
reaching more than 3.5 m. The first five panels show 5 of the 14 classified SAR
images for this month, with water level ranging from 0.31 m to 3.29 m. The images
help to visualize the increase in the wet area for higher values of the flow level.
Moreover, the classified maps show the changes in the channel network before
and after the flood, with several channels formed/closed at high flow. The red
box in the bottom-left part of the reach highlights a local example of lateral bank
erosion. To better observe the morphological changes, a zoomed-in image in the
red box is reported in the right panel of Figure 1.11, with the channel location
before the flood mapped in blue and the channel after the flood in red. Bank
erosion occurred along 340 m, with an average retreat of about 130 m.

The high temporal resolution of the Sentinel–1 images allows a detailed in-
vestigation of the processes of bank erosion. In Figure 1.12, the time evolution
of the cumulative bank erosion (in red) and the erosion velocity (in green) are
reported, compared to the flow level (in blue). The analysis shows no erosion
during the first three smaller floods, with the bank retreat starting during the
major peak. In this phase, the bank was eroded at a rate larger than 1 m/h. The
erosion continued for several days, with a rate of tens of cm per hour, even if the
flow level decreased to values lower than those of the first three floods. These
observations support previous studies, pointing out the role of major floods and
bank saturation for the initiation of bank erosion [82].
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Figure 1.10: Temporal evolution of water level (blue line) and the corresponding proportion of wet
area (magenta line) for the three floods in October 2018, November 2019, and December 2020 (top
to bottom panels, respectively). Red dots are the available Sentinel–1 images and the green dots are
the Sentinel–2 available images with cloud cover less than 15%.
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Figure 1.11: Maps of the estimated wet area during the floods in November 2019, for different values
of the water level. The red box locates a major lateral bank erosion event highlighted in the last panel
on the right.

Figure 1.12: Time evolution of the cumulative lateral erosion (red line) and erosion rate (green line),
compared to the flow level measured at the Venzone gauging station (blue line).
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1.6 Discussion

1.6.1 Potential Implications for Fluvial Geomorphology and River
Management

The framework was tested on a 13 km long section of the Tagliamento River,
a large and dynamic gravel bed river, where significant changes in the channel
network occur frequently. This gave us the opportunity to test the advantages of
SAR data to investigate river dynamics at the sub-flood temporal scale. Indeed,
SAR imagery is not affected by cloud cover, and this is a foremost advantage when
considering flood dynamics. Figure 1.10 shows the significant difference in usable
images considering Sentinel–1 and Sentinel–2 missions, with the latter negatively
affected by clouds. Multi-spectral Sentinel–2 imagery provides only before–after
flood mapping, rarely allowing for detailed monitoring during floods.

The application was successful in computing the relation between the pro-
portion of the wet area in the active channel and flow level, using 300 images
over a period of 7 years. Similar analysis on close-by reaches made in the past
[97, 101] involved time-consuming field measurements and the installation of
fixed cameras to overcome the lack of remotely sensed imagery at a high flow.
The possibility of easily extending this application to other reaches on the same
river and in other catchments opens up new perspectives for river managers, as
it provides the opportunity to assess changes caused by human intervention or
by natural processes, in both the inundation dynamics and temporal evolution of
the morphology.

From a management perspective, the proposed method has a twofold rele-
vance for both environmental protection and hydraulic risk mitigation. Indeed,
the relationship between the time-varying wet area and the river flood stage can
be considered as a proxy for assessing the availability and temporal dynamics
of aquatic habitats in the target reach. This is particularly relevant in braided or
multi-thread rivers, where habitat evaluation with standard, field-based methods
still poses relevant challenges [30]. Information made available through the pro-
posed method can support decision-making processes associated with ecological
flow design because it readily quantifies the maximum possible spatial extent of
aquatic available habitat under a broad set of flow conditions.

Furthermore, its capability to provide high temporal resolution information
on channel inundation during floods can have a positive impact on the flood risk
management plan. Indeed, within the conceptual framework of the flood disaster
cycle (Fig. 1.13), numerous actions can significantly benefit from the proposed
methodology. In the post–flood event phase, the proposed algorithm, once ap-
propriately implemented to address the presence of other types of coverage such
as urban areas and vegetation, can assist in hazard assessment. This, in turn, helps
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identify the elements exposed to the flood, allowing for an evaluation of the over-
all risk associated with that event. Within the prevention and mitigation phase,
the updates of flood hazard maps, along with the analysis of past events, play a
central role. The dynamics of floods and their corresponding extents, captured
using SAR data, can be useful both for validating bidimensional numerical mod-
els and for delineating Areas with a Potential Significant Flood Risk (APSFR) [29].
In conclusion, in the global context of increasing anthropogenic stressors on river
systems at multiple scales [9], as well as the rising impact of climate stressors that
can influence flood frequency, duration, and intensity, the proposed algorithm
can be critical in disentangling those relations. It is particularly valuable during
periods when other remote sensing sources may be limited, especially during
flood events.

Figure 1.13: Flood Risk Management Cycle. Overview of Key Actions Across the Four Phases of
Management.

Furthermore, the proposed mapping procedure proved valid in quantifying
river bank erosion rates at the scale of single floods. Bank erosion is a relevant
morphological process that affects river evolution and ecology [32]. Predicting
and modeling river bank erosion is a challenging task because it strongly depends
on local effects as well as a combination of hydraulic and geotechnical processes
of the river and the bank itself, including the root reinforcement in the presence
of riparian vegetation. To improve our ability to model this process, more ob-
servations and quantitative data are essential. Recently, [53] proposed a global
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inventory of riverbank erosion, based on Landsat imagery of the last 20 years, con-
firming channel width as the main control but also highlighting large variability
among rivers. Our application showed that SAR data can be successfully used to
quantify riverbank erosion at the event scale, producing valuable information on
the erosion rate at a daily scale, compared to the monthly/yearly scale of previous
remote sensing applications. This allowed for an accurate evaluation of when the
bank erosion process started, as well as the relationship with the flow level and its
variations in time. Similarly to what has been discussed for the mapping of wet
areas, the proposed procedure has the potential to detect bank erosion events at a
much finer temporal scale, providing highly valuable data for river management
but also for the calibration and validation of morphological numerical models.
These observations can help with understanding the response of rivers with com-
plex morphology to climate and anthropogenic stressors, quantifying the lateral
shift of channels and their morphological dynamics.

This algorithm is focused on the analysis at the flood-event time scale, while
the river management shall also consider longer-term effects. It is known that
the river morphology can be heavily modified because of anthropogenic stressors
and also due to climate variability. Despite the possibility of extracting multi
annual time-series of the wet area also covering flood events for the same reach,
the application of our algorithm can also provide relevant information at those
longer time scales.

1.6.2 Advantages, Limitations, and Further Development of the
Proposed Procedure

This work introduces an unsupervised, cloud-based algorithm developed using
the Python API of Google Earth Engine, enabling the automatic detection of
river flood dynamics and associated morphological evolution from a Sentinel–
1 image stack. As recently pointed out by [12], GEE is a computing platform
that can help geomorphologists (and other scientists) using huge amounts of
spatially and temporally rich data (in the order of petabytes), overcoming the
limitations caused by computing and data storage costs. Remote sensing data
significantly transformed fluvial geomorphology in the last decade [76], with
most applications involving multi-spectral passive aerial or satellite imagery [10].
Active SAR satellite data such as Sentinel–1 imagery have been demonstrated to
provide a valuable asset to map inundated areas [21, 65, 102], with high accuracy
of the water mapping when compared to other sources.

Our investigation confirms the potential of this technique and shows that
an unsupervised, cloud-based algorithm produces accurate results, with limited
need for parameter calibration. In particular, the analysis pointed out the effect
of the buffer distance from the estimated edges Bd and of the starting value of the
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backscattering threshold VH0 needed to compute the initial wet–dry edges. We
showed that a relatively small buffer width (compared to the channel width) seems
more appropriate to avoid including other land classes in the area of interest where
the histograms will be produced. Furthermore, through the sensitivity analysis,
we demonstrated that, with a second cycle of the Otsu function [66], and with
the first computed threshold as starting point for the second run, we can increase
the accuracy of the model, making the threshold value independent of the initial
attempt value VH0 and producing a more clearly bimodal histogram. In this way,
the selected Otsu thresholding algorithm is most efficient. However, differences
are not large, and a cost/benefit analysis depends on the objectives of the study.
Our approach extends the method proposed by Donchyts et al. [26] and differs
from those presented by Chini et al. [19], Cao et al. [15], and Tan et al. [90].
Indeed, after the tiling process of the images, their methods need to identify the
tiles that are more suitable for evaluating the threshold. This was achieved by
applying methods such as the Jeffries–Matusita (JM) distance function [88], the
Bimodality Test (BT) [24], and the KMM algorithm proposed by Ashman [6]. The
self-adaptive Otsu algorithm proposed in this paper adjusts the sampling area in
such a way that the number of wet pixels is approximately equal to the number
of dry pixels. Therefore, the method does not require a bimodality check of the
histogram.

Moreover, the proposed procedure is designed to enrich the imagery meta-
data through flow levels at the time of image acquisition. Wherever such flow
data are available, the GEE procedure automatically extracts images above, below,
or in between the defined thresholds, allowing for correlations to be established
between the wet area and flow rate and last but not least significantly reducing
the computation time and the operator intervention. This approach can be also
applied to other fields of research. Integrating data coming from the near-daily
monitoring of river surface temperature (RST) using satellite-based observations
could provide valuable support for analyzing the impact of climate change on
rivers [44], the study of the interaction between hydro-thermopeaking down-
stream the hydropower plants and summer heatwaves [31], and the improvement
in the quality monitoring of river water [89].

As described in Section 1.3.3, the value of K was set manually at a fixed value.
However, an alternative approach suggests choosing K based on the estimation
of the noise level present in the image. As highlighted by Singh et al. [84],
the distribution that best represents the statistical distribution of speckle noise in
SAR images is a generalized Gamma probability distribution [47, 27]. We propose
modifying the fixed–value approach by considering K as a function of the variance
of the generalized Gamma distribution function.

The planimetric output for the flooded areas exhibits jaggedness as a result
of speckling in SAR data caused by both existing vegetation and water motion,

30



1.6. Discussion

which creates a rippling effect on the water surface. Despite the application of
denoising operations, the inherent variability of the backscatter signal has made
it challenging to achieve continuous classification, thereby posing a challenge for
future development of the methodology. The uncertainty in SAR–based flood
mapping related to the speckle phenomenon has been addressed in many studies
[38, 17]. The methodologies that address this issue range from denoising ap-
proaches in the preprocessing phase to complex and computationally intensive
clustering techniques. Another technique that can help reduce fragmentation
in water classification without loss of performance is regional growing (RG). As
outlined in [39], this method enhances the accuracy of water body delineation
by expanding recognized water pixels into adjacent areas through an iterative
sequence of thresholding and region growing until a given tolerance level is
reached.

Furthermore, another element of uncertainty in the delineation of flooded
areas is related to the presence in silico of nearby dense canopy cover that induces
a higher frequency of misclassification. This is due to the interaction of the C-band
SAR signal with the treetops, which prevents the signal from reaching the water’s
surface [16]. As outlined by Pierdicca et al. [75], coupling SAR data with different
wavelengths, C-band and L-band, has the potential to enhance the accuracy and
robustness of the flood area delineation process.

Another element that influences the accuracy and robustness of the water
surface delineation, while also reducing planimetric fragmentation of the braided
river network, is the ground resolution of the SAR data. Sentinel–1 images, with
a ground resolution of 5 m × 20 m and pixel spacing of 10 m × 10 m, limit the
application to rivers larger than a few hundred meters, thereby excluding channels
smaller than pixel size. Higher ground-resolution satellites already exist (e.g.,
COSMO SkyMed and ICEYE) although they are not easily available as Sentinel–1.
In Chapter 2, an application involving the detection of wet channels, followed by
a subsequent analysis of morphometric indices using COSMO-SkyMed imagery,
is described.

The rapidly increasing number of satellite missions, along with technological
improvements that enable the swift publication of acquired images, will soon
provide imagery at meter or sub-meter resolution. This opens the possibility of
integrating data from multiple missions and achieving sub-daily monitoring of
river dynamics during flood events.

Currently, the processing chain is implemented for the VH band of Sentinel–
1 data. With the aim of enhancing the accuracy and robustness of the flood
area delineation process, the two bands VH and VV may be coupled within the
processing chain.

The current process requires minimal computational effort, enabling the anal-
ysis of 15–20 images of a flood event within a few minutes.
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1.7 Conclusions
The study introduces an unsupervised and cloud–based algorithm developed
on the platform of Google Earth Engine (GEE), and based on the time series of
Sentinel–1 SAR data. The algorithm introduces a novel feature: a Self-Adaptive
Thresholding Approach based on the Otsu methodology. This feature dynami-
cally adjusts the threshold value for each Synthetic Aperture Radar (SAR) image,
facilitating the extraction of a more reliable channel pattern. The proposed algo-
rithm (i) enriches the image stack metadata with water level values, (ii) applyes
the radiometric slope correction algorithm, (iii) reduces speckle noise using the
Perona Malick model, (iv) extracts the wet channel pattern with a Self-Adaptive
Thresholding Approach (SATA).

The algorithm underwent testing over a 13 km section of the Tagliamento
River, showcasing the benefits of utilizing Synthetic Aperture Radar (SAR) data
for analyzing river dynamics during flood conditions. Unlike optical data affected
by clouds, SAR imagery provides continuous flood observations.

The method allowed for successful correlation wet area proportion in the ac-
tive channel with flow levels, using Sentinel–1 SAR data spanning seven years,
avoiding the limitations of optical or multispectral sensors. This approach offers
essential insights to river managers for evaluating changes attributed to natu-
ral processes and anthropogenic stressors. It provides support, offering high
temporal resolution data on channel inundation dynamics during floods, for de-
signing flood risk management measures. Additionally, it supplies information
on channel morphodynamics related to flow variations, aiding in the planning of
hydro-ecological river restorations.

The system enabled the quantitative evaluation of riverbank erosion on a finer
temporal scale following the 2019 flood event, providing valuable information for
understanding river responses to flooding.

Future advancements involve integrating different SAR wavelengths and higher-
resolution satellites for more comprehensive flood monitoring.
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Abstract
Braided rivers demonstrate a unique profile marked by numerous unstable chan-
nels, transient bars, and very active channel processes, stemming from intensive
bed-load transport. Notably, significant morphological adjustments occur not
only as response of bankfull flood but even with moderate flow pulses. The em-
pirical investigation of the dynamics of a multi-thread river, can be performed
using various metrics. Bar growth, channel length, braiding index (defined as
the number of branches in a cross-section), and other indicators, are employed
to investigate the response of the braiding system to diverse stressors, such as
floods, sediment abstraction, agricultural and hydropower water usage, as well
as restoration operations. However, only few investigations have been performed
to identify the relationship between the indices and the unsteady discharges that
occur during extreme events in natural braided rivers. In this chapter, we uti-
lize the unsupervised methodology based on the Google Earth Engine cloud
infrastructure with the Self-Adaptive Thresholding Approach (SATA) algorithm,
previously introduced (Chapter 1), to (i) obtain from the COSMO-SkyMed im-
ages the temporal evolution of the braiding system, and to assess and evaluate (ii)
the temporal evolution of the Total Braiding Intensity (TBI) index defined as the
number of active channels, (iii) the oscillation length of the Maximum Channel
Distance (MCD) defined as the distance between the most external channels, and
(iv) the oscillation length of the Cross-Sectional Cumulative Wetted Area (WA)
defined as the sum of the wet area of all chanels in a cross section. In this study,
the spatially explicit water masks obtained from Sentinel-1 and COSMO-SkyMed
SAR data, acquired simultaneously, are also compared. The analysys confirmed
that high-resolution SAR data represent an excellent dataset for the detection of
braided river systems, allowing the detection of small secondary channels. In-
deed, this allowed to highlight that the TBI index shifts after the flood towards
higher values and that dimensionless wavelengths λ of both the Maximum Chan-
nel Distancce (MCD) and of the Cross-Sectional Cumulative Wetted Area (WA)
depends from the hydrometric level (h).
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2.1 Introduction

Flow variations and floods represent two pivotal factors in the formation of
braided fluvial patterns. The mutual interaction between unsteady water
discharge and bed load sediment transport engenders the creation of mul-

tiple branches within the active channel. The complexity of braided riverbeds’
conformation, as represented by appropriate morphometric indices, reveals di-
rect relationships between the flow rate and the current transport capacity [2].
This study seeks to examine changes in braided river patterns by assessing the
temporal evolution of morphometric indices in response to a flood event using
high ground resolution SAR images. The images, processed by leveraging the
previously developed processing chain for the Level 1 (L1) Ground Range De-
tected (GRD) product of Sentinel-1 SAR imagery (Chapter 1), yielded temporally
distinct water masks of the braiding system. The morphometric indices thus ob-
tained, appropriately analyzed using Wavelet Transform (WT) provided insights
into fluvial spatial scales [33].

Past works have highlighted how flow variations play a primary role in fluvial
ecology, conveying organic matter and causing slight plano-altimetric changes,
whereas floods have the greatest impact on braided rivers and their plano-
altimetric setup. This morphological pattern were analysed at an intermediate to
extended temporal scale [11], typically failing to discriminate between the impacts
associated with flow variations from those attributed to floods.

Some studies have more effectively addressed this challenge by placing a
focused emphasis on the relationship between morphological changes and flood
events, utilizing digital single-lens reflex (SLR) cameras to capture high-definition
images of relatively short sections of rivers, approximately 1.0 km long. This
allowed for a clearer understanding of the response of morphological features
and the related indices to flow variations and floods [3, 31].

The monitoring of morphological evolution through remote sensing tech-
niques primarily relies on spectral data to detect water surfaces. These methods
include simple thresholding index approaches, such as the Normalized Difference
Water Index (NDWI) [18, 28], or more complex approaches that integrate them
with additional indices like the Land Surface Water Index (LSWI) and Vegetation
Indexes (NDVI or EVI). The application of Index Change Detection (ICD) tech-
niques [27], or the use of Expert Systems (ES), are also useful to categorize each
pixel into one of three designated classes: water, land, or an invalid land class
[24].

All these techniques highlight the capabilities of optical and multispectral data
in providing essential information for comprehensive river monitoring. However,
challenges such as cloud cover, the necessity for daylight conditions, and the
opportunity to increase the length of the studied river section beyond what is
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possible with in situ monitoring systems, necessitate the complementary use of
Synthetic Aperture Radar (SAR) technologies. Therefore, to address the signif-
icant limitations imposed by adverse atmospheric conditions, which are often
prevalent during flood events, and with the aim of extending the monitored
river reach to up to 13 km, this study proposes the utilization of high-resolution
COSMO-SkyMed (CSM) synthetic aperture radar data.

The unsupervised, cloud-based methodology, developed on the cloud infras-
tructure of Google Earth Engine, was applied to the twelve COSMO-SkyMed
acquisitions spanning from 7 October to 25 November 2018. The computational
chain involves the following steps:

• Enriching the image stack with hydrometric data;

• Applying the radiometric slope correction algorithm;

• Reducing speckle noise;

• Extracting the wet channel with a Self-Adaptive Thresholding Approach
(SATA);

• Output functions.

This process resulted in twelve distinct water masks of the braiding system.
After delineating the braided system for each CSM acquisition within the studied
reach, the temporal evolution of certain indices was evaluated. Morphological
indices are quantitative measures that characterize and analyze the physical form
or structure of natural rivers and water bodies. These indices are pivotal in
assessing the geomorphic dynamics, hydrological processes, and environmental
health of river systems, offering a comprehensive view of river morphological
evolutions and their interactions with both natural and anthropogenic factors.
Table 2.1 presents a concise and non-exhaustive list of indices regarding braided
river systems, as proposed by various authors. The indices considered in this
study include the Total Braiding Intensity index (TBI) [2], defined as the number
of wetted channels per cross-section, for its best trade–off between rapidity of
application & accuracy with respect to results [7]; the Cross-Sectional Cumulative
Wetted Area (WA), defined as the sum of the wet area of all channels; and the
Maximum Channel Distance (MCD), determined by the distance between the most
external channels. The later, when the bankfull discharge condition is reached,
represents the width of the whole area subjected to morphological processes.

The data collection unveiled an oscillatory behavior that is both spatially vary-
ing and non-stationary along the river reach, and was observed in key metrics such
as the Maximum Channel Distance (MCD) and the Cross-Sectional Cumulative
Wetted Area (WA). This complex behavior underscores the necessity of a detailed
investigation due to the presence and significance of multiple wavelengths within
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the data. Fourier Transform (FT) analysis offers a distinct advantage in this context,
as it adeptly represents the energy contained within each frequency component
of a signal over a specified time or spatial interval. However, the resolution of FT
analysis is inherently constrained by the width of the window function, limiting
its ability to simultaneously capture both local and global information contained
within the signal [15, 14].

Table 2.1: Indexes related to braided river systems.

Index Equation Notes Ref.

Braiding
Index (BI )

2
∑

Lb

Lr

Lb = lengths of islands and (or) bars in
reach; Lr = length of reach. [4]

Braiding
Index (BI )

2
∑

Lb

Lr
+

2
∑

Nb

Lr
Nb = number of bars. [12]

Braiding
Index (BI )

∑
Nl

1.25L′

Nl = number of braids; L′ = distance be-
tween successive confluence and bifur-
cation.

[26]

Braiding
Index (BI )

LCtot

LCmax

LCtot = sum of the lengths of all segments
of the primary channel; LCmax = length of
the widest channel.

[10]

Braiding
Index (BI )

∑
Li

LMain

∑
Li = total length of bankfull channels

cut into the floodplain; LMain = main
channel length.

[22]

Total Braiding
Index (T BI )

∑
WCi sum of wetted channels per cross-section [2]

Width ratio
Index (Wr)

∑
b

B
b = width of an individual wet channel;
B = total width of the active channel. [17]

Sinuosity
Index (S I )

∑
Ll

Lr

Ll = length of an individual channel seg-
ment in the reach; Lr = length of reach. [17]

The Continuous Wavelet Transform (CWT) analysis emerged as a solution
designed to surpass the inherent limitations associated with Fourier Transform
(FT) analysis, particularly in handling signals that exhibit both local and global
characteristics. Initially, CWT found its primary application in the analysis of
time-series data, especially those characterized by time-varying, non-stationary
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signals. Subsequently, its utility extended into geophysical studies, notably in
seismic signal processing, demonstrating its versatility and effectiveness. More
recently, CWT has been applied in the analysis of spatial series, particularly in
examining the complex dynamics of meandering river planforms [33], underscor-
ing its broad applicability across different scientific domains. Reviews on the
use of wavelet analysis and future perspectives can be fond in decades Kumar &
Foufoula-Georgiou 1997 [19], Mallat 2008 [21], Guido 2022 [14], Guo et al. 2022
[15] and Tary et al. 2014 [29].

2.2 Material and Methods

2.2.1 Study Area
As shown in Chapter 1, the Tagliamento River is a large gravel bed braided river
located in the southern part of the Italian Alps. Despite some human alterations
like water diversions and gravel mining, the Tagliamento River remains one of
the few unmanaged river systems in Europe, offering a valuable opportunity to
study natural morphological processes during flow and floods.

Its catchment area of approximately 2700 km2 spans a transition from Alpine
to Mediterranean climatic regimes, characterized by a pluvio-nival hydrological
regime. The river, flowing approximately 178 km from its source near Mauria pass
in the dolomitic Alps to the Adriatic Sea, exibits an extensive morphologically
active zone of around 150 km² with a braided pattern and variable vegetated
islands.

The Tagliamento River experiences a pluvio-nival hydrological regime, where
snowmelt in the spring season (April–June) contributes to discharge, resulting in
notable riverbed mobility during spring rain events. Major floods predominantly
occur in the autumn (October–November), when humid air masses moving north
from the sea generate spatially widespread heavy rains. The resulting floods have
a very rapid water level increase that lasts for some days.

The river undergoes morphological alterations during both regular flow, char-
acterized by minor plano-altimetric changes, and floods, which induce significant
changes. Flow rate changes and floods predominantly occur in spring and au-
tumn.

2.2.2 Data source for river delineation
In this work, the algorithm described in Chapter 1 [25] was employed to iden-
tify the braided channel network of the studied reach of the Tagliamento River
using images acquired by the COnstellation of Small Satellites for Mediterranean
Basin Observation COSMO-SkyMed (CSM). The CSM is an Italian Earth-imaging
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constellation, which comprises four identical Earth-imaging satellites, launched
sequentially between 2007 and 2010. In this study, acquisitions in the Stripmap
HIMAGE mode were employed, which have a ground resolution of 3 x 3 meters.
The individual CSM satellite within the constellation has a near revisit time of ap-
proximately five days. When considering the full constellation (four satellites) the
potential revisit time drop to a few hours on a global scale. The substantial swath
width covered by each satellite in the Stripmap HIMAGE mode is 40 km. While
Sentinel–1 operates as a C–band active sensor with a center frequency of 5.405
GHz, corresponding to a wavelength of approximately 5.5 cm, COSMO-SkyMed
operates in the X-band with a center frequency of 9.6 GHz, corresponding to a
shorter wavelength of 3.1 cm.

In this work, the available CSM images acquired during the 2018 event flood
were used. Figure 2.1 demonstrates that, although the COSMO–SkyMed con-
stellation provides higher resolution, it achieves a lower acquisition frequency
than the Sentinel–1 constellation. The figure also presents the only acquisition
by the Sentinel–2 satellite in the visible and near-infrared spectrum with cloud
cover under 15%, underscoring the limitation of using this data for event-scale
monitoring.

Figure 2.1: Hydrometric water level recorded at the Venzone gauging station (blue solid line) with
indication of COSMO–SkyMed acquisitions (green dots), Sentinel–1 acquisitions (red dots) and
Sentinel–2 acquisitions with cloud cover less then 15% (purple dots).

Before importing the CSM data into GEE, it was necessary to carry out the
last three preprocessing steps (Table 2.2). For the Sentinel–1 satellite, the first
three processes are essential, whereas they are not applicable to the CSM images.
Orbit information, typically found in SAR product metadata, often lacks precision.
Consequently, orbit auxiliary data, which detail Sentinel-1’s exact position during

52



2.2. Material and Methods

acquisition, are released after a few days, enabling precise image positioning.
Additionally, GRD border noise removal addresses specific artifacts arising from
azimuth and range compression, which lead to radiometric distortions along the
image’s borders. Finally, thermal noise removal is employed to normalize the
backscatter signal, aiming to reduce the additive thermal noise prevalent in the
cross-polarization channel.

Standard SAR data processing typically omits radiometric corrections, result-
ing in substantial radiometric bias. Consequently, applying radiometric correc-
tion is essential to ensure that pixel values accurately reflect the surface’s radar
backscatter. Terrain correction and orthorectification adjust for distortions caused
by topographical variations and the satellite’s tilt. Additionally, the linear to dB
operator transforms the bands into decibel (dB) units.

Table 2.2: Preprocessing steps for Sentinel–1 and COSMO–SkyMed.

Description Sentinel–1 COSMO–
SkyMed

Apply orbit file X –
GRD border noise removal X –
Thermal noise removal X –
Radiometric calibration X X
Terrain correction orthorectification X X
Linear to dB X X

2.2.3 Extraction of braiding parameters
The studied river reach was subdivided longitudinally into sections orthogonal to
the river’s centerline (c), spaced 50 meters apart, resulting in a series of braiding
indexes data x′n with n = 0...N −1. The total number of measurement points is 268.
The total length of the reach is approximately 14 kilometers, exceeding ten times
the wetted width required to ensure effective sampling. This sampling strategy
provides a comprehensive representation of braiding intensity, as highlighted by
Egozi and Ashmore (2009) [8].

The process of tracing the river cross–sections was automatically performed in
a Geographic Information System (GIS). The Total Braiding Intensity index (TBI),
the Cross-Sectional Cumulative Wetted Area (WA), and the Maximum Channel
Distance (MCD), Figure 2.2, were derived through a semi–automatic procedure
from the twelve water masks of the river’s braiding system obtained applying the
unsupervised and cloud based methodology detailed in Chapter 1.
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Figure 2.2: Definition of the Maximum Channel Distance (MCD) as the distance between the most
external channels and the Cross-Sectional Cumulative Wetted Area (WA) as the sum of the wet area
of all channels.The geen dot dashed line is the curvilinear coordinate (c) of the center axis of the
riverbed.

Before the analysis with the CWT, the spatial series of measurements x′n were
normalized by their standard deviation. Therefore, any variables analyzed sub-
sequently should be assumed to be normalized according to the equation 2.1.

xn =

(
x′n − x̄′n

)
σ

(2.1)

To facilitate the comparison of the Continuous Wavelet Transform (CWT)
wavelength outcomes with other study cases, we introduce the concept of di-
mensionless wavelength, denoted as λ = Λ/W; here, Λ represents the wavelength
derived from the CWT analysis for the variable of interest, and W is the average
width of the river reach.

2.2.4 Continuous Wavelet Transform (CWT)
In the past decade, wavelet theory, as a versatile and rigorous mathematical
tool, has seen numerous applications for non-stationary physical processes and
was subject to continuous development, contributing to notable achievements in
physics and related sciences. Analysing time or space series is possible to extract
information about the dominant modes in the corresponding time–frequency
or space–frequency domain. This decomposition enables the identification of
dominant modes of variability and the observation of how these modes change
over time or space.

Wavelet analysis has been successfully used in geophysics, with relevant re-
sults in meandering river geomorphology [33], in hydrological analysis [1, 20],
stream flow forecasting and alteration analysis [16, 34]. In this study, we employed
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the Continuous Wavelet Transform (CWT) to analyze the oscillatory characteristics
inherent in the spatial series of the Maximum Channel Distance (MCD) defined
as the distance between the most external channels, and the Cross-Sectional Cu-
mulative Wetted Area (WA) defined as the sum of the wet area of all channels
(Figure 2.2). The Maximum Channel Distance (MCD) and the cross-sectional cu-
mulative Wetted Area (WA) were assessed on cross sections equally spaced along
the curvilinear coordinate (c) of the riverbed center axis, with a distance of 50
meters between each section.

Wavelet transform – theoretical basis

Given a series of measurements (x′n with n = 0...N − 1), equally spaced in the
spatial or temporal domain (∆x), of any physical quantity, the function Ψ0(η) is
considered an admissible wavelet function if it has a zero mean and is defined in
the space–frequency (or time–frequency) domain [9]. In our case, measurements
are carried out in the spatial domain defined by the curvilinear coordinate (c) of
the riverbed center axis (Figure 2.2), with a frequency of ∆c. Defined the wavelet
scale s, the dimensionless space η of the wavelet function is defined as c/s. In this
study, the Morlet mother wavelet [13], denoted as:

Ψ0(η) = π−1/4 · eiω0η · e−η
2/2 (2.2)

is employed. Here,ω0 represents the non-dimensional frequency, and it was set to
the default value for the Morlet mother wavelet of 6. In the limit of continuity, the
Fourier transform of the equation 2.2 results in the wavelet function Ψ0(sω). This
function is then normalized (Eq. 2.3) to have unit energy (

∫ +∞
−∞
Ψ̂(ω′) dω′ = 1) and

thus facilitate the comparison of the Wavelet Transform (WT) with the transforms
of other measurements.

Ψ̂(sωk) =
(

2πs
∆c

)1/2

· Ψ̂0(sωk) (2.3)

The Continuous Wavelet Transform (CWT) of a discrete sequence of measures
xn involves convolving it with a scaled and translated wavelet function Ψ̂(sωk).
Torrence & Compo [30], defined the continuous wavelet transform of xn as follows:

Wn(s) =
N−1∑
n′=0

Xn′ · Ψ̂
∗

[
(n′ − n)∆c

s

]
(2.4)

In this notation, the ∗ denotes the complex conjugate operator, (n′ − n)∆c is the
term that translates the wavelet along the space domain, and s represents the
wavelet scale. The smaller the scaling factor, the more "compressed" the wavelet
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is. The CWT provides a visual representation of how the amplitude, at different
values of wavelet scale (s), varies in space.

Since the wavelet function is complex, its transform is also complex and can be
subdivided into the real ℜ(Wn(s)) and imaginary parts ℑ(Wn(s)). The amplitude
and the phase of the wavelet transform are:

A =
√
ℑ2 +ℜ2

P = arctan (ℑ/ℜ)
(2.5)

The Wavelet Power Spectrum is defined as the square of the amplitude of the
wavelet transform namely |Wn(s)|2.

In this study, the spatial series of MCD and WA exhibit sufficient smoothness
to justify the use of a nonorthogonal wavelet function with a continuous wavelet
transform.

An important aspect of the wavelet analysis is the choise of the set of scales s
used in the continuous wavelet transform (Eq. 2.4). The set of scales is defined as:

s j = s0 · 2 j·∆ j with j ∈ [0, 1, ..., J] (2.6)

where s0 is the smalest scale in this work set to 2 · ∆c, ∆ j represents the number
of sub–octaves per octave placed equal to 1/24, and J defines the largest scale
through the following:

J =
log2 (N · ∆c/s0)

∆ j
(2.7)

In the present case, the total number of spatial measurements for MCD and
WA is N = 286, corresponding to ∆c = 0.05 km. This results in the smallest scale
s0 = 0.1 km, and a total of 93 scales ranging from 0.1 to 1.4 kilometers.

2.3 Results

2.3.1 Planimetrical evolution of braiding system
This section presents the results of the assessment of the planimetric evolution of
the braiding system along the 14km reach of the Tagliamento River under study.
Figures 2.5, 2.6, and 2.7 detail the inundation dynamics observed during the
2018 flood event. October and November of 2018 experienced significant rainfall,
culminating in the exceptional Vaia storm flood event between October 27 and
30, 2018. The peak water level recorded at the Venzone gauging station exceeded
4.16 meters. These 12 panels facilitate visualization of the wet area’s expansion
and contraction in response to flow level variations, also highlighting the braiding
system’s alterations during the flood event.
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Figure 2.3: Comparative analysis of S1 and CSM outputs for the 09/11/2018 acquisition. Blue pixels
indicate areas classified as water by both S1 and CSM. Red pixels represent areas identified as water
by CSM but not by S1, while green pixels denote areas classified as water by S1 but not by CSM.

Figure 2.3 presents a comparison between the outputs obtained from S1 and
CSM. The observed differences in the area classified as water are attributed to
’mixed pixels,’ which contain elements of both water and dry soil. Sentinel–1,
due to its ground resolution of 5 x 20 meters (resulting in 10 m pixel spacing), has
a higher incidence of pixels that fall within regions mixing water and dry soil,
leading to potential misclassification. The higher ground resolution of COSMO–
SkyMed (3 x 3 meter) made it possible to identify secondary channels otherwise
not visible in coarser resolution data like Sentinel–1. Indeed, the energy content of
each pixel in a SAR image reflects the backscatter interactions from objects within
that pixel. The increased spatial detail provided by the COSMO–SkyMed images
allowed for a more accurate delineation of the braided channel network, capturing
finer geomorphic features and improving the overall precision of the analysis.
With CSM, the wetted channel area amounts to 4.0km2, while Sentinel–1 estimates
it at 3.0km2, with a difference in the classification of about -25%. This discrepancy
highlights the advantage of CSM data in providing a more detailed delineation of
wet channels and the braiding system, thereby facilitating the assessment of key
metrics such as the Total Braiding Intensity index (TBI), the Maximum Channel
Distance (MCD), and the Cross-Sectional Cumulative Wetted Area (WA).

The TBI index was evaluated at reach scale from the 12 water masks of the
river’s braiding system. The right panels of Figures 2.5, 2.6, and 2.7 illustrate
the probability density function (PDF), fitted using a normal kernel probability
distribution, representing the frequency of the number of wetted channels per
cross-section (TBI) in the studied reach of the Tagliamento River.

Before the flood’s peak, when the water level presents low values, the most
probable value of the Total Braiding Intensity (TBI) index was observed to range
between 2.0 and 2.3. After the flood’s peak, during its descending phase, a
shift in the TBI index towards higher values can be noticed. The probability
density function (PDF) indicates an increase of the most probable value of the
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TBI index which falls between 3.0 and 3.7. The data acquired on 1 November
2018, corresponding to a hydrometric level of approximately 2.05 meters, suggest
full inundation of the riverbed (bankfull conditions), resulting in a braiding index
nearing unity.

The linear regression of the most likely TBI values, as shown in Figure 2.4,
demonstrates a clear dependence of the Total Braiding Intensity (TBI) index on
the dimensionless water level ĥ = (hi − hmin)/(hmax − hmin). There’s a direct linear
correlation between the TBI index and increasing water levels. The boxplot,
positioned at the top of Figure 2.4, provides a visual comparison of the TBI index
before and after (Af) flooding, illustrating how morphological and hydrological
conditions influence the index. Initially, the pre-flood TBI index values show a
compact distribution with a lower median (2.2), indicating a narrower range of
variation under low flow conditions. Following the flood (Af), there is a noticeable
increase in the TBI index. This shift is evident in the higher median value (3.0)
post-flood, indicating a wider variation in the TBI index influenced by the altered
hydrological and morphological conditions.

Figure 2.4: Boxplot: comparison of the TBI index before (be) and after (Af) the flood, illustrating the
significant increase in index values due to changes in river morphology and hydrological conditions.
Bottom: Linear regression of the most probable TBI values, encompassing 95% confidence intervals.

Similar results were observed by Bertoldi et al. [2] who analyzed the plano-
altimetric evolutions of braided morphology during laboratory experiments. These
experiments were conducted using a physical model under stationary flow con-

58



2.3. Results

ditions, thereby linking variations of the TBI index to the different braided mor-
phologies that arise from specific formative flow conditions.

The present work, however, relates the variation of TBI index to the unsteady
water levels of the 2018 flood, with discharges spanning from low to formative
conditions. Thus, the TBI – ĥ relationship explains the differential response
of the TBI index to varying discharge levels across two distinct braided river
morphologies: pre-flood and post-flood conditions.
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Figure 2.5: Left: planimetrical evolution of braiding system from 07/10/2018 to 16/10/2018. Right:
Probability density function (PDF) representing the frequency of the number of wetted channels per
cross-section (TBI), fitted with a normal kernel probability distribution.
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Figure 2.6: Left: planimetrical evolution of braiding system from 24/10/2018 to 08/11/2018. Right:
Probability density function (PDF) representing the frequency of the number of wetted channels per
cross-section (TBI), fitted with a normal kernel probability distribution.
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Figure 2.7: Left: planimetrical evolution of braiding system from 09/11/2018 to 25/11/2018. Right:
Probability density function (PDF) representing the frequency of the number of wetted channels per
cross-section (TBI), fitted with a normal kernel probability distribution.
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2.3.2 Test cases of sinusoidal oscillations
This section presents the outcomes from the Continuous Wavelet Transform
(CWT) analysis conducted on four synthetic sinusoidal oscillation test cases, ap-
plied to a hypothetical river with an active width of 800 meters. The results
reported here provide a benchmark for subsequent analyses conducted on the
real case (Section 2.3.3).

The first two cases exhibit a regular spatial planform oscillation, with the
oscillation wavelength set to 0.2 km for the first test and 1.6 km for the second
one, corresponding respectivelly to 1/4 and 2.0 times the channel whidth. The
Wavelet Power Spectrum (WPS) depicted in mid–panel b of figures 2.8i and 2.8ii
provides insights into the energy content inherent in the sinusoidal oscillations.
As can be noticed, the bulk of the energy is concentrated within a relatively
compact region around the dimensionless wavelengths λ = 0.25 and λ = 2.0,
respectively. The white dashed line delineates the region, known as the Cone of
Influence (COI), where edge effects become significant due to the finite length of
the spatial measurement. In this region, the wavelet power spectrum is considered
less reliable. In the mid-right panels c, the Space–averaged Wavelet Power, also
known as as a Global Wavelet Spectrum (GWS), conveys the information on the
mean energy content of the WPS for the different wavelength, giving a useful
measure of the background spectrum. Comparing the Space–averaged Wavelet
Power obtained from the first and the second case, it can be seen that the global
power spectrum tends to amplify the power of longer wavelengths. This property
had been highlighted in the past by Wu and Liu 2005 [32]. In the bottom panels
d, the Scale-Averaged Wavelet Power illustrates the variations in power across a
specific range of scales. The Scale-Averaged Wavelet Power graph thus enables
us to discern whether there are variations in the oscillation amplitude of the
morphometric index within the studied watercourse segment. In Figure 2.8iii, the
hypothetical morphometric index exhibits spatial modulation of the amplitude
along the watercourse. Conversely, in Figure 2.8iv, the hypothetical morphometric
index demonstrates a decrease in power along the watercourse.
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(i) Wavelet analysis of the synthetic sinusoidal os-
cillations generated by a sine wave with a wave-
length of 0.2 km, corresponding to 1/4 of the
channel whidth set equal to 0.8 km.

(ii) Wavelet analysis of the synthetic sinusoidal os-
cillations generated by a sine wave with a wave-
length of 1.6 km, corresponding to 2 times the
channel whidth set equal to 0.8 km.

(iii) Wavelet analysis of the synthetic sinusoidal
oscillations depicted in the i panel with a spatial
spatial modulation of the amplitude.

(iv) Wavelet analysis of the synthetic sinusoidal
oscillations depicted in the ii panel with ampli-
tude decreasing with the longitudinal distance.

Figure 2.8: The top panels a) display the synthetic sinusoidal planform oscillations; the middle panels
b) plot the Wavelet Power Spectrum WPS (obtained using the Morlet wavelet) for the specific case;
the mid-right panels c) illustrate the space-averaged wavelet power; the bottom panels d) showcase
the scale-averaged Wavelet Power.
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Figure 2.9: This figure selectively presents the CWT outputs for three out of the twelve acquisitions,
for the key stages: 07/10 prior to the flood peak, 01/11 during the flood event, and 25/11 following
the flood event. The indices analyzed are the Cross-Sectional Cumulative Wetted Area (WA) in the
left column and the Maximum Channel Distance (MCD) in the right column.
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2.3.3 CWT of Maximum Channel Distance (MCD) and Wet Area
(WA)

Figure 2.9 displays the outcomes of the Continuous Wavelet Transform (CWT)
analysis for two indices Cross-Sectional Cumulative Wetted Area (WA) and the
Maximum Channel Distance (MCD), across three pivotal acquisitions: one rep-
resenting the pre-flood state, another during the flood event, and the last at the
event’s conclusion.

Figure 2.10 provides a summary of the Continuous Wavelet Transform (CWT)
analysis performed on the two indices, the Maximum Channel Distance (MCD)
and the Cross-Sectional Cumulative Wetted Area (WA). These indices were de-
rived from the braiding system, identified using the unsupervised and cloud-
based methodology outlined in Section 1. This algorithm was applied on the
twelve COSMO-SkyMed acquisitions, spanning from 7 October to 25 November
2018, and resulting in twelve distinct braiding system masks.

Figure 2.10: Dimensionless wavelength number for the Maximum Channel Distance (MCD) index –
square marker, and the Cross-Sectional Cumulative Wetted Area (WA) index – cross marker. Marker
size and color denote distance from the significance limit line, with size reflecting the ratio defined in
equation 2.8 and proportionality to distance from the confidence line. Red markers indicate a ratio
R < 1, and green markers signify R > 1.

Each pair of values (λi; hi), where i ranges from 1 to 12, corresponds to one of
the twelve distinct braiding system masks. These pairs are derived by associating
the value of λi at which the Global Wavelet Spectrum (GWS) reaches its maximum,
with the value of hi related to the i-th CSM image used.

The size and color of each marker are indicative of its distance from the signif-
icance limit line. The size of each marker represents the ratio of equation 2.8 and
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is proportional to the distance from the confidence line.

R =
max

(
W̄2

s · σ
2
)

S v
(2.8)

where S v is the value assumed by the significance line at the dimensionless
wavelength value λi. Red markers signify that the ratio R is less than one, while
green markers indicate a ratio greater than one. Square points correspond to
the Maximum Channel Distance (MCD) index, and crosses pertain to the Cross-
Sectional Cumulative Wetted Area (WA) index.

These findings underscore that the dimensionless wavelengths λ for both the
Maximum Channel Distance (MCD) and the Cross-Sectional Cumulative Wetted
Area (WA) are dependent on the hydrometric level (h). As the water level in-
creases, the dimensionless wavelengths (λ ) range from 3.5 to 5.5. Upon exceeding
a water level of 0.6 meters, the dimensionless wavelengths approximately return
to values around 2.2.

2.4 Discussion
The study presented herein highlights the potential of using high-resolution Syn-
thetic Aperture Radar (SAR) data to detect the dynamics of braided river systems
at a sub-event time scale. By applying the unsupervised Self-Adaptive Thresh-
olding Approach (SATA), initially developed for Sentinel–1 data, to the COSMO-
SkyMed SAR images in this study, we captured the temporal evolution of a 14 km
long braided river reach of the Tagliamento with unprecedented planimetric de-
tails, overcoming problems highlighted in previous research [23], and operating
at smaller scales than big floods detection [6], [5].

From the spatially fine detailed water channel braiding system, the tempo-
ral evolution of the Total Braiding Intensity (TBI) index, the Maximum Channel
distance (MCD), and the Cross-Sectional Cumulative Wetted Area (WA) were
evaluated with a spatial discretization of 50 meters along the river’s centerline.
These indices have revealed the pronounced sensitivity of braided rivers to vari-
ations in flow, and particularly in response to flood events.

Bertoldi et al. (2009) [2] demonstrated through laboratory flume experiments
that the Total Braiding Intensity (TBI) increases with higher water discharge values
under stationary, formative flow conditions. "Consequently, this study establishes
a connection between the variations in the TBI index and the diverse braided
morphologies resulting from specific formative flow conditions.

In this study, we have established a correlation between the TBI index and
the varying water levels observed during the 2018 flood, with discharge values
ranging from extremely low to formative contitions. This correlation, represented
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by the TBI – ĥ relationship, illustrates how the TBI index responds to unsteady
discharge conditions for the distinct braided morphologies; the one present before
the flood and the one created by the flood.

Despite variations attributable to disparate study conditions, both sets of find-
ings concur in delineating a trend where the TBI index increases in response to
increased discharge.

Analysis of the boxplot in Figure 2.4 reveals that the mean TBI index value
increases post-flood, accompanied by a broader variance. This observation sup-
ports the hypothesis that prolonged periods without flooding lead to a sclerotic
braided morphology characterized by fewer, more incised channels (indicative
of a lower TBI). Conversely, the occurrence of a flood event triggers substantial
sediment mobilization, fostering the development of a new morphology with a
greater number of less incised channels than those observed prior to the flood.

The application of wavelet analysis to morphometric indices of braided rivers,
notably the Maximum Channel Distance (MCD) and the Cross-Sectional Cumu-
lative Wetted Area (WA), has revealed an interesting behavior of the dominant
wavelength. Specifically, as water levels rise from low values to 0.6 meters, the
spatial dimensionless wavelength (λ) increases from 3.5 to 5.5. At water levels
exceeding 0.6 meters, the dimensionless wavelength drops within the range of 2.0
to 2.5. This wavelength represents the comprehensive oscillation within the river
corridor, suggesting that morphological structures recur at intervals of 2.0 to 2.5
times the mean active width. This periodicity indicates a systematic repetition of
morphological features along the river, underscoring the inherent spatial patterns
in river morphology. From the river management perspective, this implies that
in renaturalization projects, respecting the natural wavelength of oscillation may
ensures a longer morphological stability for the chosen plano-altimetric design of
the projected riverbed.
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Abstract

Abstract
Gravel–bed braided rivers are typically found in foothill regions worldwide, where
the combination of high sediment supply, frequent flood events, and specific to-
pography ensures significant morphological dynamics. One of the most impor-
tant variable governing the riverine dynamics is the bed sediment size. Classical
techniques for the grain size assessment necessitate extensive and time-consuming
fieldwork, enabling the acquisition of grain size curves at specific points along the
entire reach. Information obtained from specific points does not reflect the spatial
pattern of the sediment, and thus, geostatistical techniques must be employed
for spatialization. For these reasons, this study proposes the use of orthophotos
produced through drone flights for the creation of riverbed roughness maps. This
method enables a reduction in the time required to extract riverbed roughness
data and facilitates the acquisition of spatially continuous roughness maps.

A grain size map of the Piave River bed was produced by (i) collecting 1x1 meter
digital images of ground truths, from which the granulometric curve is derived
using an image segmentation-based method; (ii) conducting a flight with an
unmanned aerial vehicle (UAV) to acquire an orthophoto with a ground resolution
of 2.5 cm; (iii) performing texture analysis utilizing both the co–occurrence matrix
and the autocorrelation function methods on 1m2 orthophoto tiles extracted at the
same location of digital images; (iv) conducting a regression analysis between the
texture properties derived from orthophoto’s tiles and the D50, D84, D90, and D95
grain size characteristics obtained from the digital images; (v) deriving the map
of the spatial pattern of grain size at the river reach scale.

The analysis demonstrates that the co–occurrence matrix, characterized by
the statistical property of correlation, constitutes a statistically robust predictive
model to predict grain size caracteristic. The validation process indicates that
the model has overall accuracies for the three grain size characteristics D50, D84,
and D90, respectively, of 68.8%, 76.6%, and 76.6%. These results are promising,
especially considering the complexities involved in predicting sediment grain size
distribution. The high accuracy rates for D84 and D90 suggest that the model is
particularly reliable in estimating larger grain sizes, which are critical for under-
standing sediment transport dynamics and riverbed stability. Moving forward,
further refinement of the model could focus on improving D50 accuracy, poten-
tially enhancing its applicability for comprehensive sediment management and
engineering projects.

The method presented here, which provides the spatial pattern of grain size
variation, offers considerable support for the implementation of detailed hydraulic
models. Therefore, hydraulic models enriched with detailed grain size informa-
tion can be integrated with ecological frameworks that require the same data,
giving the opportunity to plann restoration projects.
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3.1 Introduction

One of the most distinctive features of gravel–bed braided rivers is their multi–
thread channel system. These rivers consist of numerous interweaving chan-

nels that separate and rejoin around bars or islands of gravel and sediment. The
channels of gravel–bed braided rivers are highly dynamic. They frequently shift,
erode, and deposit sediment, which changes their course over relatively short
time periods. This dynamism is primarily driven by flow variations and sediment
bed–load. The flow energy and the sediment layer characteristics (grain size and
cohesiveness) determine the degree of channel sinuosity [1]. Traditionally, the
assessment of grain size distribution of riverbed materials has been conducted by
counting pebbles of various sizes along grids (Wolman, 1954 [11]), or over sur-
face areas of 1 m2 (Bunte, 2001 [4]). Employing these methods requires detailed
and labor-intensive on-site investigations, which allow the collection of grain size
distributions at designated locations throughout the river reach. However, data
gathered from these isolated locations fail to capture the spatial distribution of
sediments, necessitating the use of geostatistical methods to achieve spatial rep-
resentation.

For this reason in the last decade, digital sieving from digital images and
orthophotos has attracted increasing interest from the scientific community. The
approaches for grain classification predominantly fall into two categories: texture-
based image analysis and segmentation-based image processing. Techniques uti-
lizing texture analysis are primarily aimed at estimating grain size from orthopho-
tos captured via drone flights, whereas image segmentation techniques are mainly
used for deriving the granulometric curve from digital photos acquired during
field surveys.

One of the first milestone works using texture image analysis, and specifically
the semivariogram approach, was that of Butler et al. (2001) [18], on which the
subsequent works of Carbonneau et al. (2003) [24] and (2004) [6] were grafted.
Alternative methodologies leverage the versatility of wavelet analysis to derive
the grain size curve of sediment samples [5]. More recently, with the emergence of
Unmanned Aerial Vehicles (UAVs) and the introduction of Structure from Motion
techniques (SfM), analyses based on image textures have been integrated with 3D
topographic data and the SfM point cloud [31] [30].

Methods designed for mapping and segmenting all grain features in images
hold an advantage over texture-based approaches, as they do not require calibra-
tion specific to the site. The first successful attempts in using a treshold or multiple
threshold steps applied to the grayscale images, date back to 2004 - 2005 with the
works of Weichert et al. [29], and Graham et al. [12], [13]. Detert et al. (2012) [10]
introduced enhancements to the watershed approach, targeting a reduction in
grain over-segmentation and thereby mitigating the underestimation of the grain

76



3.1. Introduction

size curve. Purinton et al. (2019) [25] proposed an alternative methodology to the
traditional watershed segmentation approach, which relies on intensity disconti-
nuities between grains. Instead, they introduced a segmentation method utilizing
k-means clustering for grain differentiation.

A recent trend in grain size assessment is the application of novel Deep Learn-
ing (DL) techniques [20], Convolutional Neural Networks (CNNs) [19], and Feed-
back Pulse Couple Neural Network (FPCNN) [9].

In this study, a grain size map for a 2.0 km long reach of the Piave River is
obtained by correlating grayscale orthophoto roughness with the commonly used
percentiles D50, D84 and D90 of the Grain Size Curve (GSC) through a regression
model. The free tool Basegrain [10] is utilized to evaluate the Grain Size Curve
(GSC) of digital images acquired during field surveys. The roughness of the
grayscale orthophoto is calculated over 1 m2 tiles using the autocorrelation func-
tion and the co–occurrence matrix. The riverbed area, including dry exposed river
bars, totals 1.25 km2, implying that the total number of 1 m2 tiles analyzed reaches
1.25 million. To manage the extensive computational demand, the orthophoto
was divided into six macro areas by the computational chain. Tiles within these
areas were then analyzed using a parallel computing approach. To summarize
the information content of each tile, the integral length scale and five different
statistics were employed for the autocorrelation function and the co–occurrence
matrix, respectively.

Figure 3.1: Methodological workflow for the generation of the grain size map.
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3.2 Material and Methods
This chapter outlines the essential phases of the workflow depicted in Figure
3.1, resulting in the production of a map delineating the grain size classes of the
studied section of the Piave River.

3.2.1 Study area
The study area encompasses a section of the Piave River, approximately 2 km
long, with multi-thread characteristics (Figure 3.2). Its catchment covers an area
of about 4000 km2 from the Italian Alps to the Adriatic Sea, with a total length
of 231 km. The average slope of the river is 3.3 meters per kilometer, and the
width of the active channel extends up to 600 meters. In times of flooding, this
particular segment of the river undergoes notable changes in water surface area,
resulting from the overflow into side channels and sediment bars. Moreover, this
specific section of the Piave River is characterized by highly dynamic morphology,
marked by frequent erosion of riverbanks and islands.

Originating from the Carnic Alps at Monte Peralba, the Piave River first crosses
Friuli–Venezia Giulia and then flows through the Veneto region. Its water flow is
significantly altered by extractions for agricultural and energy needs, modifying
its natural hydrological regime and transforming the Piave into one of the most
heavily modified rivers in Europe [3].

Typically, the Piave River experiences peak flows in spring, driven by rainfall
and snowmelt, and in autumn, when Atmospheric Rivers (ARs) interact with local
moisture sources (e.g., the Mediterranean) and secondary circulation features of
smaller spatial scale [28].

Figure 3.2: Location of the study area along the Piave river.
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3.2.2 Digital images collection and grain size distribution
Collecting ground truth data is a crucial component of the current workflow.
Twenty seven digital images were captured during the field survey using a smart-
phone’s digital camera with a CCD resolution of 12MP, a simple yet widely used
tool today. The camera was placed in a nadiral position, inclined 90° to the
horizontal, capturing the images from above a wooden square, measuring 1x1
meter, placed as a dimensional reference. The images were georeferenced using a
STONEX RTK-GPS for image geolocalization with centimeter accuracy. The pho-
tos were then manually rectified using speciphic tools of the free & open source
image editor Gimp. Figure 3.3 displays several photographs of surface patches
subsequently used for estimating the Grain Size Curve.

Grain size distribution

In this study, the grain size distribution was assessed utilizing the segmentation-
based image processing tool, Basegrain [10], which is designed for the Matlab
environment. This free tool allows the evaluation of the grain size curve derived
from digital images captured during field surveys. The grain size curves represent
thus the ground truths for the subseguent step of analysis. The approach followed
for object-oriented segmentation of grains is as follows:

• detection of intensity discontinuity by means of a double grayscale threshold
algorithm;

• enhancement of interstice detection using the bottom–hat transform;

• detection of grain edges with Canny and Sobel gradient filters;

• extraction of grains area combining the informtions of Canny edges and
watershed bridges;

• obtain properties of the segmented grains.

Given that Basegrain exhibits limitations due to rock veins and texture varia-
tions, leading to the over–segmentation of pebbles and, consequently, an under-
estimation of grain sizes (Miazza et al., 2024 [21]), hand fusion operations were
performed on those grains that were over–segmented.
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Figure 3.3: At the top, the study site is depicted, along with the Ground Control Points (GCPs) used
for image orthorectification from UAV acquisitions (blue dots), and the locations of photographs
taken during the field survey (red triangle markers). Below, six of the twenty seven 1 m2 digital
images are displayed, each depicting various grain size patches.

3.2.3 Drone flights and texture analysis
Drone flights were conducted in February 2022, using a Phantom 4 RTK GNSS
at double–frequency, under weather conditions that were optimal for image ac-
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quisition. To enhance the quality of image localization, the differential correction
techniques were used.

The UAV images were captured with a longitudinal overlap of 77% and a
transversal overlap of 75%. Flying at an altitude of 68 meters above the ground, a
Ground Sampling Pixel (GSP) of 1.86 cm was achieved.

The sixty six Ground Control Points (GCPs) were positioned in a regular mesh
(Figure 3.3), achieving geolocalization with RMS errors of 4.28 centimeters for the
x-coordinate, 5.14 centimeters for the y-coordinate, and 5.45 centimeters for the
z-coordinate. The angle of acquisition of the camera was set to 70 degrees with
respect to the horizontal.

The postprocessing of all UAV images was conducted using the commercial
software Pix4Dmapper version 4.5.6, resulting in an orthophoto with a spatial
resolution of 2.5 cm and a Digital Terrain Model (DTM) with a spatial resolution
of 10 cm.

The spatial resolution of the orthophoto is comparable to the grain size vari-
ability of the study site. On the other hand, the quality of the geolocation is
worse than the dimensions of the riverbed cobbles. However, this aspect will not
affect the results in terms of grain size variability at the reach scale. It is impor-
tant to note that despite these limitations, the methodology remains effective for
analyzing overall sediment distribution patterns.

To extract useful information for classifying the orthophoto image in terms
of grain size, texture analysis techniques were applied in this study. In general,
the analysis of image textures enables the examination of the spatial pattern of
the image’s intensities, serving as a widely used technique for image segmenta-
tion or classification. In current literature many types of texture measures have
been proposed. The most known of them are statistical approaches, autocorre-
lation tecniques, spatial frequency analysis, co–occurrence matrix, and texture
segmentation [17]. In the present work, the autocorrelation function and the
co–occurrence matrix are applied.

Autocorrelation function

The autocorrelation function measures the degree of spatial similarity of an en-
vironmental variable, essentially being the result of convolving this variable with
itself. The analytical form of the autocorrelation for an image with dimensions M
x N is given by:

ρτi,τ j =

M−1∑
m=0

N−1∑
n=0

Im,n ∗ Im+τi,n+τ j (3.1)

where τi ∈ [0, 1, ...,M] and τ j ∈ [0, 1, ...,N], Im,n represents the image intensity at
position (m, n), Im+τi,n+τ j denotes the image intensity at the position (m, n) translated
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by the lags τi and τ j, and ∗ indicates the convolution operator.
Rather than employing Equation 3.1, the autocorrelation function can be calcu-

lated more efficiently through the use of the Fourier transform. Indeed, the convo-
lution theorem delineates the convolution between two functions as r(x) = {u∗v}(x),
asserting that for the functions u(x) and v(x) with Fourier transforms defined as:

U( f ) = F{u}( f )

V( f ) = F{v}( f )
(3.2)

the Fourier transform F of the convolution r(x) is equal to the product of their
Fourier transforms F{r}( f ) = U( f )V( f ). This, upon applying the inverse Fourier
transform, yields:

r(x) = iFFT{U( f )V( f )} (3.3)

Therefore, the autocorrelation function between two images (Equation 3.1) can
be computed using the Fourier transform and its inverse:

ρτi,τ j = iFFT
(
F{I}F∗{I}

) (3.4)

where iFFT is the inverse of Fourier transform and ∗ denotes the complex conju-
gate of the Fourier Transform of I. To ensure the problem is properly formulated
before applying the Fast Fourier Transform (FFT) and its inverse, the images were
normalized by:

Îm,n =
Im,n − Ī√∑
(Im,n − Ī)2

(3.5)

The mean radial value of the Auto Correlation Function (RACF) was assessed
at predetermined radial intervals. For grain size estimation, the integral length
scale, denoted as λ =

∫ r1

0 RACF(r)dr, where r1 represents the first zero crossing of
RACF, was calculated. Figure 3.4 displays the Autocorrelation Function and the
corresponding mean radial value for a 1 m2 tile of orthophoto.
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Figure 3.4: Left: The Auto Correlation Function is calculated using Equation 3.4; Two sections
are delineated by a solid red line, from which the values for calculating the mean radius of the
Autocorrelation Function are derived. Right: The mean radial value of the Auto Correlation
Function is presented. Top right: The grayscale tile of the orthophoto utilized for the analysis is
displayed.

Co–occurrence Matrix

This approach was sucessfully used to estimate the grain size at catchment spatial
scale [6], to delineate sand patches [8], and to classify agricoltural crops [16].
particular developments concern the implementation of a multilayer and multi-
scale approach to the co–occurrence matrix [26], [22].

The Gray Level Co–occurrence Matrix (GLCM) results from comparing pixel
gray level values and counting gray level pairs [15]. It quantifies the frequency
of occurrence of a pixel with intensity I(x;y) at a specified distance (dx, dy) from
another pixel with intensity J(x+dx;y+dy). The GLCM has dimension L x L, where
L corresponds to the resampling gray levels of the original image. Given that
the original image can be resampled to 8, 16, or 32 gray levels, the GLCM’s
dimensions can vary from a minimum of 8x8 to a maximim of 32x32 elements.
Figure 3.5 illustrates a schema of the evaluation of the Gray Level Co–occurrence
Matrix.
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Figure 3.5: Schema of the evaluation of the Gray Level Co–occurrence Matrix. On the right is
represented the gray level image. On the left is reported the GLCM.

To condense the Gray Level Co–occurrence Matrix’s information content into
a single numerical value, the statistical features of contrast (eq. 3.6 – [14]), correla-
tion (eq. 3.7 – [2], energy (eq. 3.8 – [14]), homogeneity (eq. 3.9 – [14]) and entropy
(eq. 3.10 – [8]) were applied. In the equations Pi, j is the Co–occurrence matrix,
i and j are the gray levels in the Co–occurrence matrix, µi and µ j are the mean
value of the i-th row and j-th column, and σi and σ j are the standard deviation of
the i-th row and j-th column.

Contrast =
L∑
i, j

(i − j)2 · Pi, j (3.6)

Correlation =
L∑
i, j

(i − µi)( j − µ j) · Pi, j

σiσ j
(3.7)

Energy =
L∑
i, j

P2
i, j (3.8)

Homogeneity =
L∑
i, j

Pi, j

1 + |i − j|
(3.9)

Entropy =
L∑
i, j

Pi, j · log(Pi, j) (3.10)

3.2.4 Non–linear regression model
A non–linear regression model was used to describe the functional relationship
between grain size and orthophoto texture. The grain size characteristics, as
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represented by the D50, D84, D90 and D95 percentile pass rates derived from the
digital images (Sec. 3.2.2), and the texture informations (integral length scale,
contrast, correlation, energy, homogeneity, entropy) derived from the tiles of
the gray leveled ortophoto (Sec. 3.2.3), were modeled using the power objective
functionΥ = AX . Υ is the dependent variable vector of grain sizes, whereas X is the
independent variable vector of the texture informations, and A is the coefficient
vector. The choice of non-linear regression was motivated by the inherently non-
linear relationship between the variables. The goodness of fit, indicating how
well the statistical model represents the set of observations, was assessed using
the coefficient of determination R2, defined as:

R2 = 1 −
∑

(yi − ŷi)∑
(yi − y)

(3.11)

where ∑
(yi − ŷi) represents the sum of squared residuals (SSR), and ∑

(yi − y) is the
total sum of squares (TSS). In this context, yi denotes the observed values, ŷi the
predicted values from the model, and y the mean of the observed values.

The second mertic used to evaluate the quality of the predictive model’s out-
puts was the normalized root mean square error NRMS E, defined as:

NRMS E =
1
y

√
(yi − ŷi)2

N − 1
(3.12)

where N is the number of observations.

3.2.5 Model validation
To assess the model’s predictive capability, the cross-validation technique was
employed. This technique is extensively recognized within the fields of statistics
and machine learning for determining the generalizability of statistical analysis
outcomes to independent datasets. The method entails distributing the N data
across K folds, each comprising N/K of the original dataset to form the validation
subset. The remaining N · (1 − 1/K) of the data constitutes the training set, which
is utilized to train the non-linear model. In the present case, the training subset
comprised 67% of the data, while the remaining 33% of the data was allocated for
the validation subset.

Sequentially, each fold is excluded, and the remaining dataset is employed
to re–fit the regression model. This process was repeated eight times, enabling
predictions for the excluded observations and allowing for the assessment of the
model’s predictive accuracy. Four grain size classes were utilized to verify the
correspondence between actual and predicted grain size values. The mean value
of the eight accuracy matrices was considered the overall predictive accuracy of
the model. Figure 3.6 illustrates the process of validation.
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Figure 3.6: The validation process involving a Leave-One-Out step that produces K accuracy matri-
ces. Subsequently, a mean operator is applied to these matrices, resulting in the overall predictive
accuracy matrix of the model.

3.3 Results
In this section, the results of the grain size assessment conducted on the Piave River
reach are detailed. Table 3.1 reports the values of coefficient of determination R2

(Eq. 3.11) and Normalized Root Mean Square Error NRMS E (Eq. 3.12) obtained
from the analysis using the integral length scale of the autocorrelation function,
along with the five statistics applied to the co–occurrence matrix. The statistical
property of the co–occurrence matrix that exhibited the highest performance was
correlation (Table 3.1).
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Table 3.1: Coefficient of determination R2 and Normalized Root Mean Square Error NRMS E of
Autocorrelation function and Co–occurrence matrix.

D50 D84 D90 D95

Autocorrelation λ
R2 0.046 0.046 0.045 0.040

NRMSE 0.44 0.56 0.57 0.53

Co–occurrence

Cont.
R2 0.198 0.214 0.228 0.252

NRMSE 0.40 0.51 0.51 0.47

Corr.
R2 0.613 0.652 0.648 0.665

NRMSE 0.29 0.35 0.35 0.32

Ener.
R2 0.277 0.346 0.359 0.377

NRMSE 0.39 0.48 0.48 0.44

Homo.
R2 0.206 0.254 0.265 0.284

NRMSE 0.40 0.50 0.50 0.46

Entr.
R2 0.303 0.362 0.373 0.393

NRMSE 0.37 0.46 0.46 0.42

Figure 3.7: Non–linear regression analysis of the grain size characteristics D50, D84, and D90 using
the power objective function Υ = AX .
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Figure 3.7 illustrates the regression analysis conducted for the three percentile
pass rates: D50, D84, and D90 using the correlation statistical feature of the co–
occurence matrix. The analysis reveals that different grain size characteristics
correspond to different ranges of correlation values. Specifically, within the cor-
relation range of 0.4 to 0.6, the grain size characteristics are as follows: D50 ranges
from 7.7 mm to 21.4 mm, D84 from 13.5 mm to 49.8 mm, and D90 from 15.1 mm to
58.4 mm, corresponding to the sand class.

Furthermore, within the correlation range of 0.6 to 0.8, the grain size char-
acteristics are delineated as follows: D50 ranges from 21.4 mm to 59.4 mm, D84
from 49.8 mm to 183.4 mm, and D90 from 58.4 mm to 226.6 mm, corresponding
to the pebble class. Values of correlation grater than 0.8 are associated with large
pebbles, which have dimensions exceeding 6 cm.

The validation process, as described in Section 3.2.5, was applied to the non-
linear models of the grain size characteristics D50, D84, and D90. The models
achieved overall predictive accuracies of 68.8%, 76.6%, and 76.6% for D50, D84, and
D90, respectively.

Figure 3.8: Overall predictive accuracies matices of D50, D84, and D90 grain size characteristics.

After conducting the non-linear regression analysis, it was determined that the
correlation property of the co-occurrence matrix represented the most significant
statistical attribute. Consequently, the co–occurrence matrix was calculated on
the orthophoto by employing a windowed approach, with each window having
a square surface area of one square meter. The correlation value was recorded
at the center pixel of the square surface area. Thus, without compromising the
spatial resolution of the orthophoto (2.5 cm), the spatially detailed correlation
map (Figure 3.9). Using the correlation ranges of the co-occurrence matrix previ-
ously described, a grain size map containing information on the three grain size
characteristics D50, D84, and D90 can be determined.
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Even though the orthophoto images allow us to observe patches with different
grain sizes through the air-water interface, the equations derived from the pre-
sented method require specific calibration for shallow water channels. Indeed,
as highlighted by Carbonneau et al. (2005) [7], the regression law applied to the
dry part of the riverbed cannot be considered valid for water channels. Further-
more, the pixel window size may not meet the minimum size required to obtain a
stable signal for the variables used: the co-occurrence matrix and autocorrelation
function.

3.4 Discussion
This research builds upon the methodologies established by Butler et al. (2001
[18]) , Carbonneau et al. (2003 [24], 2004 [6]), in the field of grain size assessment.
This study leverages orthophotos acquired from UAV flights and digital images
of dry exposed river bars collected during field surveys. By integrating auto-
correlation and co–occurrence matrix texture analyses with the grain size curve
derived from image grain segmentation [10], this study confirms the added value
of remote sensing and image processing techniques in fluvial geomorphology.

The use of 1x1 meter digital images for ground truthing, combined with high-
resolution orthophoto, allowed for the detailed and spatially continuous mapping
of riverbed roughness with a resolution of 2.5 cm.

The ability to generate detailed grain size maps supports hydraulic modeling
targeted towards ecological studies [23], also bolstering eco-hydraulics models
that demand high spatial definition and exploit high-performance computing
techniques for analysis and simulation [27]. Detailed grain size information en-
riches hydraulic models, providing a more accurate representation of riverbed
conditions and flow dynamics. Furthermore, this data is valuable for ecologi-
cal frameworks that rely on granular habitat characteristics to plan restoration
projects. By offering a method to obtain spatially continuous grain size data, this
study facilitates a more integrated approach to riverine ecosystem management
and conservation.

During the processing of the orthophoto, several challenges were encountered,
primarily due to artifacts such as blur and shadows. These issues, linked to the
planning of UAV flights and the camera settings, did not compromise the final
result.

3.5 Conclusions
In conclusion, this study demonstrates the potential of using orthophotos and
digital image analysis for detailed and efficient grain size mapping of braided
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riverbeds. The work underscores the value of the correlation property of the
co-occurrence matrix as a predictor of sediment size, offering an approach to
support hydraulic and ecological modeling. The spatially detailed correlation
map shown in Figure 3.9, coupled with the laws obtained through nonlinear
regression, represents the map containing information on the three grain size
characteristics D50, D84, and D90. The validation process applied to the nonlinear
models of the three grain size characteristics has ascertained a overall predictive
accuracies of 68.8%, 76.6%, and 76.6% for D50, D84, and D90, repectiely.

The UAV image postprocessing yielded an orthophoto with a spatial reso-
lution of 2.5 cm. For geolocalization accuracy, the RMS values are 4.28 cm for
the x-coordinate, 5.14 cm for the y-coordinate, and 5.45 cm for the z-coordinate.
Although the spatial resolution of the orthophoto aligns with the grain size vari-
ability at the study site, the geolocalization precision is inferior to the size of the
riverbed cobbles. Nonetheless, this does not compromise the results regarding
grain size variability on a broader scale. It should be emphasized that despite
these drawbacks, the approach still effectively analyzes the overall patterns of
sediment distribution.

As riverine environments continue to face anthropogenic and environmental
stressors, such as climate change, the methodologies applied in this research
provide essential tools for understanding and managing these complex braided
river systems. Specifically, the use of unmanned aerial vehicle (UAV) flights for
grain size assessment offers detailed insights into sediment dynamics, which are
critical for evaluating the ecological health of the river. These UAV-derived data
allow researchers to track changes in sediment composition and distribution over
time, revealing how these factors influence habitat structure and the availability
of resources for aquatic life. Such information is invaluable in devising strategies
to mitigate the impacts of stressors on river ecology, ensuring the preservation of
biodiversity and the sustainability of these vital ecosystems.
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Conclusion

This thesis work is comprehensively structured into three chapters.
The first chapter describes the development of the unsupervised and cloud-

based algorithm for the near-real-time analysis of stack SAR images for river dy-
namics monitoring during extreme flood events with Sentinel–1. The proposed
algorithm incorporates a Self-Adaptive Thresholding Approach (SATA), which is
based on the Otsu algorithm. The algorithm, tested on a 13 km-long reach of the
Tagliamento River (Italy), helped us understand the role of the buffer distance Bd

from the wet-dry edges and demonstrated that a relatively small buffer width–
compared to the channel width–is more appropriate for avoiding the inclusion
of other land classes. It also clarified that two cycles of the thresholding algo-
rithm enhance the bimodal distribution of the histogram, allowing for a reliable
separation of the two classes: water and dry soil. The analysis of the Sentinel–1
images available in the period from 2014 to 2021 associated whit the water level
recorded from the Venzone gauging station allowed us to obtain a representa-
tive law of the innundation dynamics. Two behaviors were identified: (i) for a
water level less than 1 m the proportion of wet areas increases markedly from
20% to 60%; (ii) for a water level higher than 1 m, the proportion of wet areas
increases less rapidly, reaching 100%. Moreover, three flood events that occurred
in October 2018, November 2019, and December 2020 were analyzed to obtain
the temporal evolution of the wet area proportion coupled with the water level
changes. For the 2019 flood event, a bank erosion was detected, allowing us to
document the time evolution of the lateral erosion. Some advancements in the
structure of the algorithm could improve speckle noise removal by considering
K, a parameter of the edge-stopping function, not as a fixed value but by model-
ing it with the generalized Gamma distribution function. To smooth the jagged
contours of the planimetric delineation of wetted channels, future enhancements
to the proposed algorithm might incorporate a regional growing (RG) step. This
technique improves the precision of water body delineation by progressively ex-
panding identified water pixels into neighboring areas, employing a repetitive
process of thresholding and region growing until a specified tolerance level is
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achieved. Another element of uncertainty in the delineation of flooded areas is
related to the presence of nearby dense canopy cover that prevents the C-band
wavelength from reaching the water’s surface. Coupling the C-band with the
L-band, characterized by a longer wavelength, has the potential to enhance the
accuracy and robustness of the flood area delineation process.

The second chapter illustrates the application of the algorithm to the higher
ground-resolution SAR data provided by the COSMO-SkyMed mission. It exam-
ines the temporal evolution of the braiding system within the same 13 km-long
reach of the Tagliamento River discussed in the first chapter, yielding (i) the
temporal evolution of the Total Braiding Intensity (TBI) index, (ii) the oscillation
length of the Maximum Channel Distance (MCD), and the oscillation length of
the Cross-Sectional Cumulative Wetted Area (WA). The Total Braiding Intensity
(TBI) index was observed to range between 2.0 and 2.3 before the peak of the
flood, and it increased during the descending phase of the flood. The complex
spatial oscillation behaviour of MCD and WA was then analized with the Con-
tinuous Wavelet Transform (CWT). This analysis hilighted that the dimensionless
wavelengths λ for both the Maximum Channel istance (MCD) and the Cross-
Sectional Cumulative Wetted Area (WA) are dependent on the hydrometric level
(h). As the water level increases, the dimensionless wavelengths (λ) range from
3.5 to 5.5. For water levels greater than 0.6 meters, the dimensionless wavelengths
approximately return to values around 2.2.

The last chapter focuses on the assessment of grain size in the Piave River bed,
aiming to provide a comprehensive understanding of river dynamics. To achieve
this, a grain size map of the Piave River bed was developed through several steps:
(i) capturing digital images covering one square meter each to establish ground
truths, which were then used to generate granulometric curves via an image
segmentation method; (ii) conducting a drone flight to collect an orthophoto with
a ground resolution of 2.5 cm; (iii) analyzing the texture of 1m2 orthophoto tiles,
taken from the same locations as the digital images, using co-occurrence matrix
and autocorrelation function techniques; (iv) performing regression analysis to
correlate the texture properties of the orthophoto tiles with the granulometric
indices D50, D84, D90, and D95 derived from the digital images; (v) compiling these
analyses into a map that illustrates the spatial distribution of grain sizes across
the river reach.

97



Acknowledgments

For my PhD experience, I must be grateful to a wide group of people. Although
the idea of pursuing a period of research had been in my mind for a long time,
a chance encounter with Prof. Guido Zolezzi represented the activation energy
that pushed me to write the proposal for the PhD call during a hot and sunny
August. Therefore, before anyone else, I would like to thank Prof. Guido Zolezzi
for giving me the opportunity to have this great life experience. I also warmly
thank Prof. Alfonso Vitti and Prof. Walter Bertoldi for their patience and constant
support and the valuable suggestions they provided.

As public employee, I am naturally grateful to the General Secretary of the
Eastern Alps District Basin Authority, Eng. Francesco Baruffi, for allowing the
realization of this project, and to Dr. Marina Colaizzi and Eng. Michele Ferri,
who welcomed me back at the end of the leave period granted to me.

A special thanks to Gloria for the support and for understanding the impor-
tance of this phase of my life.

98



List of Figures

1.1 Workflow diagram of the proposed framework for mapping the braided
channel area at sub-event time scale using time series of Sentinel–1 imagery
(red diamond). The time-varying water level is represented by the blue line. 11

1.2 Illustration of the varying smoothing effects of Perona and Malik’s model
using different edge-stopping functions on Sentinel–1 imagery. From left
to right: original VH band, denoised images using Equations (1.5), (1.6),
and (1.7). The three denoising functions are plotted in the bottom sub-
panels as a function of the gradient magnitude of the image. The x-axis
represents the gradient magnitude of I ∥∇I∥, while the y-axis represents
the value of c(∥∇I∥). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Conceptual scheme illustrating an example of the thresholding algorithm
applied to Sentinel–1 data acquired on 17.11.2018. Sentinel–2 imagery is
utilized for a visual explanation of the thresholding steps. The first two
panels depict the definition of the wet–dry edges, denoted as Ei, based
on the threshold ti. Meanwhile, the right panel illustrates the area Ai

generated around these edges with a distance Bd, within which the Otsu
algorithm is subsequently applied. . . . . . . . . . . . . . . . . . . . . . 16

1.4 Examples demonstrating the effect of positioning the wet–dry edges Ei

on histogram sampling and the resulting water mask. Row (A) displays
the unimodal histogram generated when the wet–dry edges Ei are posi-
tioned in areas of the image predominantly occupied by water, with a small
proportion of dry sediments. Conversely, row (B) shows the unimodal his-
togram generated when Ei are placed in areas of the image predominantly
occupied by dry sediments. Row (C) represents the case when Ei guaran-
tees that the sampling area Ai includes approximately 50% of pixels from
each class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.5 Location of the Tagliamento catchment in north east Italy (frame A) and
aerial view of the study site (frame B). Frame (C) displays the longitudinal
profile of the river bed, with the red box highlighting the investigated reach. 19

99



List of Figures

1.6 (A) seasonal flow variation from 2002 to 2022, and (B) flow regime for
the years 2018, 2019, and 2020, measured at the Venzone gauging station,
aligned by Day Of the Year (DOY). In panel (B), the gray solid line and the
two gray dashed lines are the median, the maximum, and the minimum
value for every single day in the period 2002–2022, respectively. . . . . . . 20

1.7 Comparison of the interpolated probability density functions obtained in
the six cases, with Bd varying from 50 to 300 m (left) and fitting of the most
likely threshold values with prediction bounds and residuals (right). . . . 21

1.8 Histograms and the corresponding threshold values obtained after the
first and second run of the Otsu thresholding algorithm (first and second
column, respectively) in the cases of buffer width Bd set to 50 and 100 m
(first and second row, respectively). The panels on the right illustrate the
classification differences between the first and second run. The red pixels
represent areas that changed from being classified as water after the first
run to being classified as dry soil after the second run. . . . . . . . . . . . 22

1.9 (A) Water level recorded at the gauging station of Venzone from 2014 to
2021; (B) wet area proportion for the 300 analyzed images. . . . . . . . . . 23

1.10 Temporal evolution of water level (blue line) and the corresponding pro-
portion of wet area (magenta line) for the three floods in October 2018,
November 2019, and December 2020 (top to bottom panels, respectively).
Red dots are the available Sentinel–1 images and the green dots are the
Sentinel–2 available images with cloud cover less than 15%. . . . . . . . . 25

1.11 Maps of the estimated wet area during the floods in November 2019, for
different values of the water level. The red box locates a major lateral bank
erosion event highlighted in the last panel on the right. . . . . . . . . . . 26

1.12 Time evolution of the cumulative lateral erosion (red line) and erosion rate
(green line), compared to the flow level measured at the Venzone gauging
station (blue line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.13 Flood Risk Management Cycle. Overview of Key Actions Across the Four
Phases of Management. . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1 Hydrometric water level recorded at the Venzone gauging station (blue
solid line) with indication of COSMO–SkyMed acquisitions (green dots),
Sentinel–1 acquisitions (red dots) and Sentinel–2 acquisitions with cloud
cover less then 15% (purple dots). . . . . . . . . . . . . . . . . . . . . . . 52

2.2 Definition of the Maximum Channel Distance (MCD) as the distance be-
tween the most external channels and the Cross-Sectional Cumulative
Wetted Area (WA) as the sum of the wet area of all channels.The geen
dot dashed line is the curvilinear coordinate (c) of the center axis of the
riverbed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

100



List of Figures

2.3 Comparative analysis of S1 and CSM outputs for the 09/11/2018 acquisi-
tion. Blue pixels indicate areas classified as water by both S1 and CSM.
Red pixels represent areas identified as water by CSM but not by S1, while
green pixels denote areas classified as water by S1 but not by CSM. . . . . 57

2.4 Boxplot: comparison of the TBI index before (be) and after (Af) the flood,
illustrating the significant increase in index values due to changes in river
morphology and hydrological conditions. Bottom: Linear regression of
the most probable TBI values, encompassing 95% confidence intervals. . . 58

2.5 Left: planimetrical evolution of braiding system from 07/10/2018 to 16/10/2018.
Right: Probability density function (PDF) representing the frequency of
the number of wetted channels per cross-section (TBI), fitted with a normal
kernel probability distribution. . . . . . . . . . . . . . . . . . . . . . . . 60

2.6 Left: planimetrical evolution of braiding system from 24/10/2018 to 08/11/2018.
Right: Probability density function (PDF) representing the frequency of
the number of wetted channels per cross-section (TBI), fitted with a normal
kernel probability distribution. . . . . . . . . . . . . . . . . . . . . . . . 61

2.7 Left: planimetrical evolution of braiding system from 09/11/2018 to 25/11/2018.
Right: Probability density function (PDF) representing the frequency of
the number of wetted channels per cross-section (TBI), fitted with a normal
kernel probability distribution. . . . . . . . . . . . . . . . . . . . . . . . 62

2.8 The top panels a) display the synthetic sinusoidal planform oscillations; the
middle panels b) plot the Wavelet Power Spectrum WPS (obtained using
the Morlet wavelet) for the specific case; the mid-right panels c) illustrate
the space-averaged wavelet power; the bottom panels d) showcase the
scale-averaged Wavelet Power. . . . . . . . . . . . . . . . . . . . . . . . 64

2.9 This figure selectively presents the CWT outputs for three out of the twelve
acquisitions, for the key stages: 07/10 prior to the flood peak, 01/11 during
the flood event, and 25/11 following the flood event. The indices analyzed
are the Cross-Sectional Cumulative Wetted Area (WA) in the left column
and the Maximum Channel Distance (MCD) in the right column. . . . . . 65

2.10 Dimensionless wavelength number for the Maximum Channel Distance
(MCD) index – square marker, and the Cross-Sectional Cumulative Wetted
Area (WA) index – cross marker. Marker size and color denote distance
from the significance limit line, with size reflecting the ratio defined in
equation 2.8 and proportionality to distance from the confidence line. Red
markers indicate a ratio R < 1, and green markers signify R > 1. . . . . . . 66

3.1 Methodological workflow for the generation of the grain size map. . . . . 77
3.2 Location of the study area along the Piave river. . . . . . . . . . . . . . . 78

101



List of Figures

3.3 At the top, the study site is depicted, along with the Ground Control
Points (GCPs) used for image orthorectification from UAV acquisitions
(blue dots), and the locations of photographs taken during the field survey
(red triangle markers). Below, six of the twenty seven 1 m2 digital images
are displayed, each depicting various grain size patches. . . . . . . . . . . 80

3.4 Left: The Auto Correlation Function is calculated using Equation 3.4; Two
sections are delineated by a solid red line, from which the values for
calculating the mean radius of the Autocorrelation Function are derived.
Right: The mean radial value of the Auto Correlation Function is presented.
Top right: The grayscale tile of the orthophoto utilized for the analysis is
displayed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.5 Schema of the evaluation of the Gray Level Co–occurrence Matrix. On the
right is represented the gray level image. On the left is reported the GLCM. 84

3.6 The validation process involving a Leave-One-Out step that produces K
accuracy matrices. Subsequently, a mean operator is applied to these
matrices, resulting in the overall predictive accuracy matrix of the model. . 86

3.7 Non–linear regression analysis of the grain size characteristics D50, D84,
and D90 using the power objective function Υ = AX . . . . . . . . . . . . . . 87

3.8 Overall predictive accuracies matices of D50, D84, and D90 grain size char-
acteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.9 Correlation map for the Piave River reach at a 2.5 cm ground res-
olution, showing grain size ranges corresponding to the D50, D84,
and D90 percentiles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

102



List of Tables

2.1 Indexes related to braided river systems. . . . . . . . . . . . . . . . . . . 50
2.2 Preprocessing steps for Sentinel–1 and COSMO–SkyMed. . . . . . . . . . 53

3.1 Coefficient of determination R2 and Normalized Root Mean Square Error
NRMS E of Autocorrelation function and Co–occurrence matrix. . . . . . . 87

103



Acronyms

ANN Artificial neural network
BI Braiding Index
CNN Convolutional neural network
CWT Continuous Wavelet Transform
CSM COSMO–SkyMed
DL Deep Learning
DOY Day of the year
ES Expert Systems
EVI Enhanced Vegetation Index
ICD Index Change Detection
IW Interferometric Wide swath mode
LSWI Land Surface Water Index
L1 Level 1 grid product of Sentinel–1
MCD Maximum Channel Distance
NDWI Normalized Difference Water Index
NDVI Normalized Difference Vegetation Index
SAR Synthetic Aperture Radar
SATA Self-Adaptive Thresholding Approach
T BI Total Braiding Index
WT Wavelet Transforms
WA Wet Area

104



List of symbols

Ψ0(η) wavelet function
η nondimensional “space” parameter
δx spatial or temporal frequency of acquisition
δc spatial frequency of acquisition
xn series of measurements
N total number of measurements
ω0 non-dimensional frequency
Wn(s) Wavelet Transforms
Lb lengths of islands and (or) bars in reach;
Lr length of reach measured midway between banks
Nb number of bars
Nl number of braids
L′ distance between successive confluence and bifurcation
LCtot sum of the lengths of all segments of the primary channel
LCmax length of the widest channel
Wr Width ratio index
b width of an individual wet channel
B total width of the active channel
LMain main channel length
Li length of singol bankfull braid channel
ℜ Real part of a complex number
ℑ Imaginary part of a complex number
s0 smalest scale
∆ j number of sub–octaves per octave
J largest scale
hi water level at time ti
tS AR SAR acquisition time
αr relief slope in the range direction
θi incidence angle

105



List of symbols

γ0
f backscatter on a flat terrain
γ0 backscatter on a tilted terrain
αaz relief slope in the azimuth direction
It partial time derivative of the intensity image
I0 initial intensity image
∆ divergence operator
∇ gradient operator
c edge stopping function
K constant parameter
µ class mean

106



List of publications

ISI Journal Papers: published or in press
1. Rossi D., Zolezzi G., Bertoldi W., Vitti A. 2023. Monitoring Braided River-

Bed Dynamics at the Sub-Event Time Scale Using Time Series of Sentinel–1
SAR Imagery. Remote Sensing, 15, 3622. DOI: https://doi.org/10.3390/
rs15143622

Conferences contributions
5. Piccolroaz S., Fraccarollo L., Martinengo M., Scolozzi R., Rossi D., Borga

M., Fait S., Galata L., et al. 2021. Life FRANCA: a project on Flood Risk
ANticipation and Communication in the Alps. IDRA 2021, Reggio Calabria
(Italy)

4. Rossi D.. 2021. Detection of Gravel-bed River Dynamics Under Different
Flow Conditions Using Time Series of Sentinel–1 SAR Data. AGU 2021, New
Orleans (USA)

3. Rossi D.. 2022. SAR data processing for the detection and monitoring
of braided gravel bed rivers morphodynamics at event scale. ASITA 2022,
Genova (Italy)

2. Rossi D.. 2022. SAR data processing for the detection and monitoring of
braided gravel bed rivers morphodynamics at event scale. THE FLUVIAL
SYSTEM 2022, Modena (Italy)

1. Rossi D., Bertoldi W., Vitti A., Zolezzi G. 2022. Detection of Gravel-bed
River Dynamics Under Different Flow Conditions Using Time Series of SAR
Data Acquisitions. XVI CONVEGNO NAZIONALE GIT 2022, Fondi (Italy)

107

https://doi.org/10.3390/rs15143622
https://doi.org/10.3390/rs15143622


 

Daniele Rossi conducted his PhD research at the DICAM, University of Trento, facilitated by a paid 
leave granted by the Eastern Alps District Basin Authority. After years of experience in water 
resource management and hydrogeological risk planning, in November 2016 he embarked on his 
PhD journey, motivated by the desire to gain a deeper understanding of the morphological aspects 
of rivers. This period proved to be fruitful, enabling him to gain insights into the characteristics and 
applications of SAR data in environmental monitoring, with a particular focus on braided 
watercourses.

This thesis investigates the complex dynamics of braided rivers, emphasizing 
the need for integrated management and conservation strategies to preserve 
their biodiversity and ecological integrity despite anthropogenic and 
environmental pressures. It aligns with European Directives aimed at 
balancing hydraulic risk reduction with water quality improvement through 
measures like river naturalization projects. The research introduces an 
innovative unsupervised algorithm developed for Sentinel-1 SAR data, 
capable of overcoming challenges posed by weather and day-night cycles, 
and adaptable to other SAR databases. This algorithm, which employs a Self-
Adaptive Thresholding Approach (SATA), facilitates the accurate classification 
of 'dry soil' and 'water' areas, enabling analysis of inundation dynamics, 
hydrometric levels, and bank erosion phenomena.
The thesis further explores the relationship between morphological indices 
(Total Braiding Intensity, Maximum Channel Distance, Cumulative Wetted 
Area) and discharge variations, utilizing high-resolution COSMO-SkyMed 
satellite imagery to enhance the detection of narrow river branches and 
assess morphological changes during flood events.
The final field of research was the assessment of bed grain size using UAV 
imagery. By analyzing the grayscale roughness of the orthophoto and 
performing regression analysis to correlate texture properties of the 
orthophoto tiles with the granulometric features, a map illustrating the spatial 
distribution of grain sizes was obtained.

 


	Abstract
	Monitoring the river dynamics evolution occurring during extreme events with Sentinel–1
	Abstract
	Introduction
	Related works
	Material and methods
	Image Selection and Metadata Enrichment
	Radiometric Terrain Correction
	Denoising
	Self-Adaptive Thresholding Approach (SATA) to River Water Delineation

	Study Case
	Results
	Sensitivity Analysis
	Inundation Dynamics

	Discussion
	Potential Implications for Fluvial Geomorphology and River Management
	Advantages, Limitations, and Further Development of the Proposed Procedure

	Conclusions
	References

	Detection of wet channel with COSMO–SkyMed SAR data and morphometric indices analysis
	Abstract
	Introduction
	Material and Methods
	Study Area
	Data source for river delineation
	Extraction of braiding parameters
	Continuous Wavelet Transform (CWT)

	Results
	Planimetrical evolution of braiding system
	Test cases of sinusoidal oscillations
	CWT of Maximum Channel Distance (MCD) and Wet Area (WA)

	Discussion
	References

	Assessing grain size of bed sediments for a comprehensive understanding of river dynamics
	Abstract
	Introduction
	Material and Methods
	Study area
	Digital images collection and grain size distribution
	Drone flights and texture analysis
	Non–linear regression model
	Model validation

	Results
	Discussion
	Conclusions
	References

	Conclusion
	Acknowledgments
	List of Figures
	List of Tables
	Acronyms
	List of symbols
	List of publications

