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Abstract

A foundational hypothesis in cognitive science is that some
of human thinking happens in a language of thought (LoT),
which is universal across humans (Fodor, 1975). According
to this hypothesis, words in different natural languages are
labels for primitive concepts or their combinations in LoT.
What are LoT’s primitives? This is a major challenge because
LoT is not directly observable, and thus needs to be inferred
or reverse-engineered. We put forward a novel approach to
reverse-engineering LoT, capitalizing on the existing knowl-
edge about the optimization of the trade-off between complex-
ity and informativeness in natural languages.
Keywords: language of thought; numerals; number; complex-
ity/informativeness trade-off

Introduction
What are cognitive representations like? Different answers to
this question have been explored (Fodor (1975); Gärdenfors
(2014); Rumelhart, McClelland, and The PDP Research
Group (1986); Van Gelder (1995); see Piantadosi (2021) for
a recent discussion). In the present work, we focus on the
hypothesis that at least some of human thinking happens in a
language of thought (LoT), which is universal across humans
(Fodor, 1975). According to this hypothesis, words in differ-
ent natural languages such as English are labels for primitive
concepts or their combinations in LoT.

How can we study LoT? This is a major challenge be-
cause LoT is not directly observable, and thus needs to be
inferred or reverse-engineered. Existing approaches include
making inferences about LoT from how people use language
(Hackl, 2009; Knowlton, Pietroski, Halberda, & Lidz, 2021;
Lidz, Pietroski, Halberda, & Hunter, 2011; Pietroski, Lidz,
Hunter, & Halberda, 2009), from how they learn concepts
(Piantadosi, Tenenbaum, & Goodman, 2016), from linguistic
universals (Züfle & Katzir, 2022), and from language acqui-
sition data (Piantadosi, Tenenbaum, & Goodman, 2012).

We propose a novel approach to reverse-engineering LoT
and asking what its primitive components are, capitalizing on
the existing knowledge about the optimization of the trade-off
between complexity and informativeness in natural languages
(Kemp & Regier, 2012; Kemp, Xu, & Regier, 2018).

Why do we need another approach? What LoT is like is a
central problem for cognitive science and the field is still far
from resolving it. All existing approaches, including the one
we propose, incorporate non-trivial assumptions which may
ultimately prove to be wrong, and disqualify the approach

from the set of methods for studying LoT. Furthermore, dif-
ferent approaches may be more or less easy to apply in prac-
tice to different semantic domains. For instance, the approach
we propose requires gathering cross-linguistic data.

We choose the semantic domain of number as a case study,
asking what LoT primitives underlie numbers concepts 1-99.
In the Discussion section, we relate our findings to two ear-
lier studies investigating LoT primitives underlying number
concepts (Piantadosi et al., 2012; Xu, Liu, & Regier, 2020).

Cross-linguistic data
We assume that numerals across languages semantically de-
note numbers (e.g., the numeral two denotes the number 2),
noting that this is a simplification (see Bylinina and Nouwen
(2020); Spector (2013)). We collect cross-linguistic data on
number-denoting morphemes and how these are morphosyn-
tactically combined to construct numerals denoting numbers
1-99 in the sample of languages of the Numeral bases chapter
in The World Atlas of Language Structures (WALS) (Comrie,
2013).1 We analyze only recursive numeral systems, i.e., sys-
tems which can construct numerals for all natural numbers.2

Out of 172 recursive numeral systems in Comrie (2013), 41
were excluded due to challenges with data collection or data
interpretation.3 131 languages were thus included in the anal-
ysis.4 WALS language samples are compiled with an aim to
maximize genealogical and areal diversity of languages in
them (Comrie, Dryer, Gil, & Haspelmath, 2013) — we can
thus have some confidence that we are analyzing a representa-

1Two main sources were used to collect the cross-linguistic
data. The primary source were descriptive grammars of individ-
ual languages, in most cases those referenced in Comrie (2013).
When no descriptive grammar of a language was accessible to
us, we used as a secondary source the data from the website
https://lingweb.eva.mpg.de/channumerals/, maintained by Eugene
Chen. This website is a collective effort of language scholars to
document world’s language’s numeral systems.

2Restricted (N = 20) and extended-body part numeral systems
(N = 4) were not included in the analysis, cf. Comrie (2013).

3For some of the languages from the sample in Comrie (2013),
no appropriate description of the numeral system was accessible to
us. Furthermore, a small number of languages were excluded due to
difficulties with data interpretation, in particular when morphosyn-
tax of certain numerals was not aligned with their interpretation (e.g.
in Zoque, the numeral for number 9 is morphologically 6+4; this is
dubbed ‘correct misinterpretation’ in Hurford (2011)).

4The list of analyzed languages can be found in Appendix at:
https://github.com/milicaden/numerals-lot-cogsci2022.
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tive sample of world’s languages’ recursive numeral systems.
For each of the 131 studied numeral systems, for each nu-

meral, its morphosyntactic components and their denotations
were identified (cf. Table 1 for a few examples of numerals
in Ainu). These numeral systems differ in terms of mor-
phosyntactic rules according to which numerals are gener-
ated. These morphosyntactic rules reveal that addition, multi-
plication, subtraction and division are involved in the compo-
sition of numerals5 — these are sometimes, but not always,
morphosyntactically overt. Furthermore, certain number-
denoting morphemes play a special role in morphosyntactic
rules (the so-called bases). For instance, English is a ‘base-10
language’: this means that its numerals for numbers 10-99 are
in general constructed according to the morphosyntactic pat-
tern x ·10+n (e.g., in English, the numeral for 67 is composed
of morphemes denoting 6, 10 and 7). On the other hand, Ainu
is a ‘base-20 language’: this means that its numerals for num-
bers 20-99 are in general constructed according to the mor-
phosyntactic pattern x ·20+n (e.g., in Ainu, the numeral for
67 is composed of morphemes denoting 3, 20 and 7). Finally,
many languages behave as ‘base-5’ languages when it comes
to the composition of numerals for numbers 6-9 (e.g., in Ful-
fulde, the numeral for 6 is composed of morphemes denoting
5 and 1). Furthermore, Ainu also exemplifies the use of sub-
traction in the composition of numerals (e.g., in Ainu, the
numeral for 6 is composed of morphemes denoting 4 and 10).
Danish exemplifies the use of division in the composition of
numerals (e.g., in Danish, the numeral for 50 has as one of its
morphosyntactic components the morpheme denoting 1

2 ).

Table 1: Ainu numerals for numbers 6, 30 and 42

Denoted number (numeral) Morphosyntactic make-up
6 (iwan) 10 (-wan) − 4 (i-)

30 (wanetuhotne)
2 (-tu-) · 20 (-hotne)
− (-e-) 10 (wan-)

42 (tuikashimatuhotne)
2 (-tu-) · 20 (-hotne)
+ (-ikashima-) 2 (tu-)

LoT hypotheses
We assume that the LoT representations underlying numerals
are composed from the elements of the set of primitive num-
ber concepts PRIM and arithmetic operators for addition, sub-
traction, multiplication and division (+, −, ·, /). The inter-
pretation of an LoT expression underlying a numeral provides
the denotation of the numeral. For instance, if a numeral’s

5Some authors assume that the power function is available as
well: for instance, Hurford (2011) assumes that power function is
involved in the composition of numerals billion, trillion etc. in En-
glish. We do not find these data convincing: assuming that bi- de-
notes 2, and tri- denotes 3, there is no x that -llion may denote such
that x2 = 1000000000 and x3 = 1000000000000. In other words,
if power function is involved in the composition of e.g. billion and
trillion, one would need to assume that bi- denotes 3 and tri- 4.

underlying LoT expression is 1+1, the denotation of the nu-
meral will be 2 (primitive number concepts will henceforth
be written in bold font to distinguish them from semantic de-
notations). Our research question is what PRIM contains, that
is, which number concepts are LoT primitives. We explore
48 hypotheses for what PRIM contains, summarized in (1):

(1) PRIM = X ∪Y , for any X , Y s.t.:
X ∈ {{1,. . . , n}| n ∈ {1, . . . ,9}}
Y ∈ P ({5, 10, 20})

In other words, we explore the hypotheses according to
which the first n numbers are LoT primitives, together with
some subset — including /0 — of {5, 10, 20}. The consid-
eration of the hypotheses according to which the first n num-
bers are LoT primitives is well-motivated by previous work
on number cognition: Xu et al. (2020) and Piantadosi et al.
(2012) assume that PRIM = {1, 2, 3}. The consideration of the
hypotheses according to which 5, 10 and/or 20 may be LoT
primitives is motivated by the typology of numeral systems,
in which number concepts 5, 10 and 20 play a prominent role
(cf. Cross-linguistic data section).

Complexity and informativeness
In this paper, we put forward a novel approach to reverse-
engineering LoT: we will use the cross-linguistic data de-
scribed in the Cross-linguistic data section to empirically
evaluate the 48 LoT hypotheses. In order to do this, we will
capitalize on the existing knowledge about the optimization of
the trade-off between complexity and informativeness in nat-
ural languages (Kemp & Regier, 2012; Kemp et al., 2018). In
this section, we summarize this existing knowledge.

The complexity of a language measures how difficult it is to
represent the language in LoT. The informativeness of a lan-
guage measures how precisely its expressions allow its users
to communicate the intended meanings, and it is formally de-
fined using information-theoretic notions (Kemp & Regier,
2012; Kemp et al., 2018). For instance, a language which has
non-ambiguous expressions for each number in the range 1-
99 would allow for a maximally precise communication about
those numbers (i.e., it would be maximally informative), but it
would be complex to mentally represent. On the other hand,
a language which only has an expression for the number 1
would be simpler, but not very informative. Complexity and
informativeness are in a tension: languages cannot both be
minimally complex and maximally informative! This tension
is known as the complexity/informativeness trade-off prob-
lem. There can be many optimal solutions to this problem:
the set of optimal solutions is called the Pareto frontier. A
language is (Pareto) optimal if it is not possible to modify
it to obtain a language that has both lower complexity and
higher informativeness. Remarkably, computational model-
ing of cross-linguistic semantic data has demonstrated that
natural languages are at or very near the Pareto frontier —
natural languages are (in the proximity of) one of the optimal
solutions to the trade-off problem (Denić, Steinert-Threlkeld,
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& Szymanik, 2021, 2022; Kemp & Regier, 2012; Kemp et
al., 2018; Steinert-Threlkeld, 2019, 2021; Uegaki, 2022; Xu
et al., 2020; Zaslavsky, Kemp, Regier, & Tishby, 2018; Za-
slavsky, Maldonado, & Culbertson, 2021). Importantly, that
natural languages optimize the complexity/informativeness
trade-off is not inconsistent with cross-linguistic diversity
found in many semantic domains (number included): differ-
ent Pareto-optimal languages can have very different proper-
ties and different natural languages may thus be (approach-
ing) different optimal solutions to the trade-off problem.

Novel approach
Given that LoT cannot be observed directly, there are multi-
ple candidate hypotheses for the underlying LoT in different
semantic domains (cf. our 48 LoT hypotheses for the number
domain). Importantly, the measure of complexity of a lan-
guage will depend on the hypothesized LoT. For instance, a
language with expressions for numbers 1 and 2 will have a
different measure of complexity under the hypothesis that 1
and 2 are LoT primitives, as opposed to the hypothesis that
1 is an LoT primitive, but 2 is not. In this project, we eval-
uate the empirical adequacy of the candidate LoT hypothe-
ses based on how well they explain cross-linguistic seman-
tic data on numerals in terms of the optimality of complex-
ity/informativeness trade-off. We will have evidence in favor
of an LoT hypothesis if under that hypothesis the 131 lan-
guages lie close to the Pareto frontier.6 To put it differently,
we ask the following question: which of the 48 LoT hypothe-
ses result in a close fit of the 131 natural languages to the
Pareto frontier?

Simplifying somewhat, the distance between a language
and the Pareto frontier can be defined as the minimum Eu-
clidean distance between the language and a point on the
Pareto frontier in the complexity-informativeness space. In
general, in order to compute the minimum Euclidean distance
between a language and the Pareto frontier, one would need
to know the coordinates (complexity and informativeness) of
all the points of the Pareto frontier. For the present case study
on numerals, however, this will not be necessary — only one
point on the Pareto frontier will be needed, namely the point
whose measure of informativeness is maximal. For a lan-
guage to have the maximal level of informativeness when
it comes to communicating about numbers in the range 1-
99, the language needs to have non-ambiguous numerals for
each number in that range. Let us refer to the point on the
Pareto frontier whose measure of informativeness is maxi-
mal as the max-info Pareto point. The reason why only this

6This approach relates to an analysis reported in Zaslavsky et
al. (2021), albeit their goal is not reverse-engineering LoT. They
show that two different hypotheses about how important it is to con-
vey different conversational roles (speaker vs. non-speaker) when
using personal pronouns (e.g., I, you) result in different complex-
ity/informativeness trade-off for personal pronoun systems across
languages: languages are closer to the Pareto frontier when con-
veying the speaker role is given more importance compared to other
conversational roles, which is in line with previous work on personal
pronouns (cf. discussion in Maldonado and Culbertson (2020)).

point is needed, and not the entire Pareto frontier, is the fol-
lowing. By definition of the Pareto frontier, the max-info
Pareto point is the (possibly artificial) numeral system with
the lowest level of complexity necessary to achieve the max-
imal level of informativeness. The 131 natural languages all
have non-ambiguous numerals for each number in the range
1-99: they thus all have the maximum level of informative-
ness. Consequently, their complexity must be equal or higher
than the complexity of the max-info Pareto point, which en-
tails that the max-info Pareto point will be the closest point
on the Pareto frontier for each of the 131 natural languages.

Our question thus reduces to: under which of the 48 hy-
potheses are the 131 natural languages the closest to the max-
info Pareto point? As the 131 natural languages have the
same level of informativeness as the max-info Pareto point,
the Euclidean distance of a natural language from the max-
info Pareto point reduces to their difference in complexity.

Computing complexity
Complexity of natural languages
Most work so far in the complexity/informativeness trade-off
framework has analyzed semantic systems such as kinship
terms or quantificational determiners which are fundamen-
tally different from numeral systems in that the expressions
of the latter are clearly not all memorized — for recursive nu-
meral systems memorization would not be possible even in
principle — but are rather generated by a (language-specific)
set of morphosyntactic rules (call it grammar G). This means
that complexity measures developed for systems such as kin-
ship terms or quantificational determiners, which are typi-
cally the sum of lengths of LoT representations of expressions
of the system, would not be appropriate for numeral systems.
How to measure cognitive complexity of numeral systems?

To our knowledge, there is no definite answer to this ques-
tion. In an existing proposal by Xu et al. (2020), the com-
plexity of a numeral system is measured as the complexity of
G needed to generate it, with rules of G written in LoT. How-
ever, there is an empirical problem with that approach that is
best illustrated with an example. Imagine a language which
has a single morpheme x denoting number 1, and which
builds expressions denoting a number n by concatenating x n
times. This G is extremely simple, and the resulting language
is maximally informative when it comes to communicating
about numbers. However, there is no known natural language
numeral system that works like this — why? Intuitively, the
reason seems to be that, even though such G would be sim-
ple, the expressions built by it wouldn’t be. In other words,
languages seem to care not (only) about the complexity of G,
but about the complexity of expressions generated by G.

We thus propose a different perspective. Specifically, we
propose to connect the measure of cognitive complexity of a
numeral system to how often language users need to commu-
nicate about specific numbers, and consequently construct,
using their grammar G, LoT representations of numerals de-
noting those numbers. More precisely, we propose to mea-
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sure the complexity of a numeral system as the expected
LoT complexity of its numerals, defined in (2). In (2),
p(JnumeralK) is the probability that the number denoted by
numeral needs to be communicated; we assume that these
probabilities follow a power-law distribution as in (3) (cf.
Dehaene and Mehler (1992); Piantadosi (2016); Xu et al.
(2020)). Qualitatively, this probability distribution captures
that the larger the number n, the lower the need to talk about
it. On the other hand, c(numeral) models the complexity of
LoT representation of the numeral, and it is defined in what
follows.

(2) Complexity of a language L:

Comp(L) = ∑
numeral∈L

p(JnumeralK)c(numeral)

(3) Prior over numbers:

p(n) ∝ n−2

Morphemes are the smallest parts of words that add their
own distinct meaning component to the word. For instance,
the numeral seven consists of a unique morpheme, while the
numeral seventy consists of two morphemes, seven- and -ty.
We assume that the LoT representation of each morpheme
is the shortest LoT formula (the length of the LoT formula
being the number of LoT primitives in the formula, with LoT
primitives being the elements of PRIM, +,−, · and /) which
results in the denotation of the morpheme. For instance, if
PRIM = {1, 2, 3}, the LoT representation of five would be
3+2, and not 3+1+1 or 2+2+1.

We assume that an LoT representation of a complex ex-
pression is composed from LoT representations of its parts
(LoT-level compositionality). In other words, if a numeral
consists of multiple morphemes denoting numbers (e.g., sev-
enty consists of morphemes seven- and -ty, denoting 7 and
10 respectively), we assume that the LoT representation of
each morpheme feeds into the LoT representation of the nu-
meral; these number-denoting morphemes are combined via
some of the primitive LoT arithmetic operators (+,−, · and
/). We measure the complexity of a numeral, c(numeral), as
the number of LoT primitives in its LoT representation. For
instance, the complexity of the numeral seventy in English
would be the sum of the numbers of LoT primitives in the
LoT representations of the morphemes seven- and -ty, plus
the number of (covert) LoT arithmetic operators via which
LoT representations of these morphemes are combined (1 in
this case: seven- and -ty are combined via ·).

It is important to keep in mind however that it is conceiv-
able that neither the complexity measure as in (2) nor the
complexity measure in Xu et al. (2020) is on the right track,
and that future research may establish a more accurate mea-
sure of cognitive complexity of numeral systems (perhaps a
measure integrating the complexity of the grammar, as in Xu
et al. (2020), and the expected complexity of generated ex-
pressions, as in (2)). Our results should thus be taken as pre-

liminary, to be re-visited if/when a more appropriate com-
plexity measure is developed.

Complexity of the max-info Pareto point
The max-info Pareto point is the (possibly artificial) language
which has the lowest level of complexity necessary to reach
the maximal level of informativeness. Under each of the 48
LoT hypotheses, each of the 99 numerals of the max-info
Pareto point is assigned the shortest LoT formula which re-
sults in its denotation and the complexity of the max-info
Pareto point is computed according to the formula in (2).

Correcting the measure of distance
How can we evaluate how close the 131 natural language are
to the max-info Pareto point?

We have assumed so far that the measure of distance of
a natural language x from the max-info Pareto point is their
Euclidean distance in the complexity-informativeness space,
which, when x has the maximal degree of informativeness,
reduces to the difference in complexity between x and the
max-info Pareto point.

Under this assumption, for each of the 48 LoT hypothe-
ses, one could compute the average distance of the 131 nat-
ural languages from the max-info Pareto point and compare
those averages to evaluate different LoT hypotheses. This
would however be problematic for the following reason. The
48 LoT hypotheses differ among themselves in the number
and types of elements in PRIM. These different hypotheses
will result not only in the difference in distances of natural
languages to the max-info Pareto point, but also in the dif-
ference in the measure of complexity of the max-info Pareto
point itself. For instance, under some of these hypotheses,
the complexity of the max-info Pareto point may be 5, while
under some other it may be 15. The difference in complex-
ity of a natural language x from the max-info Pareto point in,
e.g., 1 unit suggests more important differences between the
two languages when the complexity of the max-info Pareto
point is 5 than when it is 15: a greater % of the complexity
of x would need to disappear through language evolution for
x to reach optimality in the former case; in that sense, x is
further from optimality in the former case. Because of this,
when we evaluate under which of the 48 hypotheses the 131
natural language are the closest to the max-info Pareto point,
we relativize the distances to the complexity measure of the
max-info Pareto point as in (4).

(4) Relativized distance (RD) measure of language L
from the max-info Pareto point (MIPP):

RD(L,MIPP) =
Comp(L)−Comp(MIPP)

Comp(MIPP)

Results
For each of the 48 LoT hypotheses, we compute the aver-
age relativized distance RD of the 131 natural languages from
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Figure 1: Distribution of RDs of the 131 natural languages
from the max-info Pareto point for 48 LoT hypotheses.

the max-info Pareto point.7 The distribution of RDs can be
viewed in Figure 1. As can be seen in Figure 1, there is a lot
of variation in terms of how close natural languages are to the
max-info Pareto point under different LoTs.

We report the top three LoT hypotheses, i.e., those with
three lowest RDs, in Table 2 (for each of these three hypothe-
ses, RD ≈ 0.03). Recall that, the lower RD, the closer on
average natural languages are to the Pareto frontier, that is, to
the max-info Pareto point. If languages optimize the com-
plexity/informativeness trade-off, natural languages should
be close to the Pareto frontier and thus have low RD.

Table 2: Top three LoT hypotheses

PRIM
{1, 2, 3, 5, 10}
{1, 2, 3, 4, 5, 10}
{1, 2, 5, 10}

How should we interpret the results from Table 2? That
these LoT hypotheses result in the best fit of natural lan-
guages to the Pareto frontier may be taken as suggestive evi-
dence in favor of them, but we cannot be certain that the true
set of LoT primitives is among them (cf. Discussion section).

The results may further be informative about hypotheses
which do not provide such a good fit to the Pareto frontier.
Interestingly, the hypothesis that PRIM = {1, 2, 3}, which has
been entertained in previous work (Piantadosi et al., 2012;
Xu et al., 2020), leads to a worse complexity/informativeness
trade-off results than most other hypotheses (RD = 0.1, rank-
ing 36 (out of 48 hypotheses)).

7Scripts and data files used for the analysis can be found at:
https://github.com/milicaden/numerals-lot-cogsci2022.

Discussion
Previous work
We start by discussing how this work relates to two previous
studies: Xu et al. (2020) and Piantadosi et al. (2012).

Xu et al. (2020) Xu et al. (2020) argue that natu-
ral languages’ numeral systems optimize the complex-
ity/informativeness trade-off. To construct their argument,
they stipulate the underlying LoT primitives, and show that
with the stipulated set of primitives, natural languages opti-
mize the complexity/informativeness trade-off.

While the investigation of the complexity/informativeness
trade-off in numeral systems is a common point between our
study and that of Xu et al. (2020), our study departs from that
of Xu et al. (2020) in a number of important ways.

Firstly, the two studies have different starting assump-
tions and different aims. While Xu et al. (2020) in-
vestigate natural languages’ numeral systems’ complex-
ity/informativeness trade-off under one specific LoT hypoth-
esis, our study assumes that natural languages optimize the
complexity/informativeness trade-off and investigates under
which LoT hypotheses this assumption holds. More specifi-
cally, Xu et al. (2020) assume that PRIM = {1, 2, 3}, while the
contents of PRIM are the object of investigation of our study.
Xu et al. (2020) motivate their assumption by a phenomenon
called subitizing whereby sizes of small sets (up to 4 mem-
bers) are evaluated differently than larger set sizes (Revkin,
Piazza, Izard, Cohen, & Dehaene, 2008). However, recent
work suggests that subitizing is a consequence of lower level
constraints on perception rather than of numerical cognition
per se (Cheyette, Wu, & Piantadosi, 2021): if this is correct,
subitizing is not an argument in favor of number concepts 1,
2, 3 being LoT primitives. In fact, according to our results,
the hypothesis that PRIM = {1, 2, 3} fares worse than most
other explored hypotheses (cf. Results section).

Secondly, our study uses a different corpus of natural lan-
guages. While Xu et al. (2020) analyzed 6 recursive and
24 restricted numeral systems, we have analyzed 131 recur-
sive numeral system and no restricted ones. The reason for
excluding restricted numeral systems from our study is the
following. Restricted numeral systems don’t have numerals
for all numbers 1-99: most of them have numerals for only
the first few numbers. For instance, the language Krenak
only has numerals for numbers 1-3 (Hammarström, 2010;
Xu et al., 2020), and the language Rama only has numer-
als for numbers 1-5 (Grinevald, 1990). While considering
such languages would in principle be valuable for the goals
of the present study, it would require making additional as-
sumptions. Specifically, as restricted languages are not max-
imally informative, it is not possible to know which point at
the Pareto frontier would be the closest one to them with-
out knowing the coordinates (complexity and informativeness
measures) of all the points on the Pareto frontier. This would
in turn require spelling out exactly how to measure informa-
tiveness of different languages, knowing that multiple ways
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to measure informativeness have been discussed in the liter-
ature (Denić et al., 2022; Kemp & Regier, 2012; Steinert-
Threlkeld, 2019).

Thirdly, while we assume that the elements of PRIM can
be combined via the arithmetic operations +,−, · and / only,
Xu et al. (2020) assume a larger set of options, including,
in addition to these four, power and successor functions and
the greater-than relation, among others. Our assumption that
+,−, · and / are available arithmetic operations for combin-
ing the elements of PRIM is supported by morphosyntactic
evidence (cf. Cross-linguistic data section). On the other
hand, the 131 languages we studied provided no similar mor-
phosyntactic evidence for, say, power function use in the con-
struction of numerals (cf. footnote 2). We acknowledge how-
ever that further typological investigation of numeral systems
may result in the revision of our assumption.

Finally, for reasons explained in the Computing complexity
section, we resort to a different measure of complexity of a
numeral system than Xu et al. (2020).

Piantadosi et al. (2012) The goal of Piantadosi et al. (2012)
was to provide a computational cognitive model of how chil-
dren learn a counting routine (i.e., how they select a num-
ber word which describes the size of some set of objects).
In order to do so, they stipulate the LoT number primitives
that are available to the child learner as they begin to learn
the counting routine. While a detailed description of their
assumed LoT would be outside of the scope of the present
paper, what is relevant for our purposes is that they too, like
Xu et al. (2020), assume that 1, 2 and 3 are LoT primitives.
They suggest that this assumption is central for their model
to accurately predict certain properties of children’s learning
trajectory: if only 1 was an LoT primitives or, if 1, 2, 3, 4
and 5 were LoT primitives, their model’s predictions would
match the data less well.

As the hypothesis according to which PRIM = {1, 2, 3}
fares worse than most other hypotheses we explored (cf. Re-
sults section), a question remains as to how to reconcile our
findings with those of Piantadosi et al. (2012). While it would
be interesting to explore how well our top hypotheses fit with
the learning data from Piantadosi et al. (2012), another pos-
sibility is that the relevant patterns in child counting routine
learning data, like subitizing, may have an explanation rooted
in the lower level constraints on perception (cf. the discussion
above of Xu et al. (2020) and Cheyette et al. (2021)). We
leave the exploration of these possibilities for future work.

Further assumptions and limitations
This work incorporates several important assumptions which
should be highlighted. Assumptions (i) and (ii) below apply
to the new method for reverse-engineering LoT, and assump-
tion (iii) applies to the case study on numerals presented here.

(i) There is an LoT, whose primitives are common to all
humans.

(ii) Natural languages indeed optimize the complex-

ity/informativeness trade-off, whereby complexity is rooted
in LoT representations.

(iii) LoT has among its primitives a set of numbers and
arithmetic operations +,−, ·,/. Importantly, however, alter-
native proposals for how LoT may look like exist. For in-
stance, Piantadosi (2021) proposes that LoT has very few,
perhaps as few as two, primitives, and that all our concepts,
including all number concepts and arithmetic operations, are
composed of them. If that approach is correct, our hypothe-
ses about what PRIM contains would need to be revised. The
method could then be re-applied to evaluate competing LoT
hypotheses which are in line with Piantadosi (2021).

Finally, the present approach has two important limitations.
The first limitation stems from the observation that, while

languages may be optimizing the complexity/informativeness
trade-off, it isn’t necessarily the case that all natural lan-
guages have converged on one of the optimal solutions. In
other words, natural languages may deviate somewhat from
the Pareto frontier (indeed, under no LoT hypothesis we ex-
plored is the RD = 0). This means that different LoT hypothe-
ses remain viable candidates as long as they don’t give rise to
large deviations from the Pareto frontier. Ultimately, a cri-
terion for what counts as a large deviation from the Pareto
frontier should be developed — what is the maximum devia-
tion from optimality that natural languages tolerate? We leave
this important problem for future work.

The second limitation of the approach is the hypothesis
space, which is limited in two ways. First, the 48 LoT hy-
potheses explored are only a handful of possible hypotheses:
in principle, any subset of number concepts can be consid-
ered as a viable hypothesis for PRIM. Even if we assumed
that PRIM contains a subset of numbers 1-99, there would be
299−1 hypotheses for what PRIM contains and computational
constraints prevent us from exploring them all. It is thus con-
ceivable that some of the hypotheses we haven’t explored
proves to be the best one. Second, we have defined com-
plexity of an LoT expression as its length in LoT primitives,
in line with much previous work (Denić et al., 2021, 2022;
Kemp & Regier, 2012; Steinert-Threlkeld, 2019, 2021). The
underlying assumption of this definition is that all elements
of PRIM and the arithmetic operations +,−, ·,/ have equal
complexity. To dispense with this assumption, one could ex-
plore various complexity assignments to different primitives
and evaluate how the results depend on these — this would al-
low to make inferences both about LoT primitives and about
their relative complexities.

Conclusion
In this work, we have developed a new method for study-
ing cognitive representations using cross-linguistic semantic
data. The method was applied to numerals; importantly, it
can be applied to other semantic domains for which cross-
linguistic semantic data is available. We thus hope that it will
be a valuable addition to the toolbox of linguists and cognitive
scientists interested in studying cognitive representations.

2923



Acknowledgements
We wish to thank Fausto Carcassi, Roni Katzir, Mora Mal-
donado, Shane Steinert-Threlkeld as well as the audience of
the MLC seminar at the University of Amsterdam for helpful
discussion. The research leading to these results has received
funding from the European Research Council under the Eu-
ropean Union’s Seventh Framework Programme (FP/2007-
2013) / ERC Grant Agreement n. STG 716230 CoSaQ.

References
Bylinina, L., & Nouwen, R. (2020). Numeral semantics.

Language and Linguistics Compass, 14(8), e12390.
Cheyette, S. J., Wu, S., & Piantadosi, S. (2021). The psy-

chophysics of number arise from resource-limited spatial
memory. In Proceedings of the annual meeting of the cog-
nitive science society (Vol. 43).

Comrie, B. (2013). Numeral bases. In M. S. Dryer &
M. Haspelmath (Eds.), The world atlas of language struc-
tures online. Leipzig: Max Planck Institute for Evolution-
ary Anthropology. Retrieved from https://wals.info/
chapter/131

Comrie, B., Dryer, M. S., Gil, D., & Haspelmath, M. (2013).
Introduction. In M. S. Dryer & M. Haspelmath (Eds.), The
world atlas of language structures online. Leipzig: Max
Planck Institute for Evolutionary Anthropology. Retrieved
from https://wals.info/chapter/s1

Dehaene, S., & Mehler, J. (1992). Cross-linguistic regular-
ities in the frequency of number words. Cognition, 43(1),
1–29.
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