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Abstract

The goal of this paper is to propose a model-theoretic formalization of abstraction,
where abstraction is modeled as two representations, the ground and the abstract
representation, modeling the same phenomenon at different levels of detail. Using
the framework of Local Models Semantics, the ground and abstract representations
are modeled as two sets of (local) first order models, while the relations holding
between them are captured by an appropriate “compatibility relation”. The tuning
of the compatibility relation allows for the definition of the many different kinds of
abstraction.

1 Introduction

Abstraction is a mechanism for representing things in a simplified manner, hopefully cap-
turing their essence. Ideally, one would hope to consider all is relevant and drop all the
irrelevant details. Humans use it as a way to deal with the complexity of the world;
any representation they construct is a simplified version of the world itself. Humans and
computer programs also use abstraction to provide an even more simplified version (an
abstract representation) of a previously constructed representation (the so-called ground,
or concrete, representation). The main reason is economicity, namely the possibility of
concentrating, within a possibly very large representation, only on what is really crucial to
the matter under consideration. Abstraction has many important applications in natural
language understanding, problem solving and planning, explanation, reasoning by analogy,
and so on (see [5] for a detailed discussion). Thus, for instance, as from [5], while solving
the problem of how to stack his clothes in a bag, one thinks of stacking T-shirts all together
as if they were a single object, and not one by one. While planning a car trip from Trento
to the ski-resort Moena, one considers only the car trip and not the walking distances.
While describing Moena one will describe only what is nice (or very bad) about it, and
not what is “normal”. And so on. A new application, which, we believe will become
very important, is the use of abstraction in the study and discovery of mappings between
semantically heterogeneous ontologies [3].



In previous papers (see e.g., [5, 6, 7]) we have provided a theory of abstraction mainly
based on proof-theoretic notions. In the previous stream of work, the representation of
a certain scenario is given in terms of a logical (first order) theory, the abstraction rep-
resentation is also represented in terms of a logical theory, and abstraction is formalized
as a mapping (a function) between the languages of the two theories which preserves cer-
tain proof-theoretic properties, for instance: provability, (in)consistency, shape of proofs.
Our goal in this paper is to propose a semantic formalization of the notion of abstraction,
which is able to capture exactly the same intuitions underlying the work cited above. Our
formalization is based on the Local Models Semantics, as defined in [1] and further refined
in [2]. Each representation is modeled as a set of (local) first order models, while the fact
that the two representations are related is captured by a compatibility relation which links
what is true in the two sets of models. As far as we know, a semantic notion of abstraction
was already proposed in [9]. The main idea behind this work is to model abstraction as a
two step process where, first, the intended domain model is abstracted and then a set of
formulas is defined which formalizes the abstracted domain model. This notion is similar
to the abstraction defined in this paper in that both involve two domain models. It differs
in that there is no notion of compatibility relation (between models) and the formalization
is, again, proof-theoretical. As the following makes clear, our formalization is much more
natural and closer to the intuitive notion of abstraction.

The paper is structured as follows. In § 2 we provide the basic definitions of abstraction.
In § 3 we provide an extension of Local Models Semantics to the case of first order logic,
and in § 4 we present our semantics of abstraction. Finally, we describe some properties
of abstractions and we end with concluding remarks.

2 Abstraction

We follow [5], where Giunchiglia and Walsh describe informally an abstraction as a mapping
between two representations of a problem. We formalize abstraction as a pair of (formal)
languages plus a mapping between them. !

Definition 2.1 (Abstraction) Given two languages Lo and Ly, abs : Ly — Ly is an
abstraction.

Usually a formal language L is defined by the alphabet, the set of well formed terms
and the set of well formed formulae (wffs). To simplify matters we take a language to be a
set of wifs. Lg is the ground language, while L, is the abstract language. abs is the mapping

!The basic definition given in [5] formalizes abstraction as a pair of formal systems plus a mapping
between the (formal) languages of the two formal systems. This definition was motivated by the interest
of the authors in studying the proof-theoretic properties of abstraction and their application to theorem
proving and, more generally, to reasoning. However, this definition fails to capture the basic intuition that
abstraction, since operating at the level of representations, applies before any reasoning mechanism (i.e.,
the deductive mechinery of a formal theory and any inference engine built on top of it) is applied. This is
the basic fact which differentiates abstraction from most of the other reasoning mechanisms.



function. We restrict ourselves to abstractions which are total, effective and surjective. We
want abs to be total since we want to be able to “translate” any well formed formula of L
into a formula of L,. We want abs to be computable since, from an implementational point
of view this is the only interesting case. We want abs to be surjective because we want
the abstract representation to be completely “generated” from the ground representation.
This simplifies issues and, more importantly, corresponds to how abstraction has actually
been used in the (Artificial Intelligence) literature. More formally, totality means that for
each symbol s € Lg, abs(s) is defined. Surjectivity means that for each symbol s € L,
there is an s € Ly such that abs(s) = s’. Also, since abs is a function (and not a relation)
we know that if abs(s) = s¢ and abs(s) = s1, then sy = s1. For the sake of simplicity we
assume that abs preserves the names of variables. The case of abs dropping variables is a
straightforward extension. The following example? presents a typical use of abstraction.

Example 2.1 Assume T} is a complex (first order) theory of the world containing a large
number of agents and objects, where places are points in the Euclidean 3-space. Assume
Ly is the first order language used to describe what is true in theory T. For the purpose
of this example we assume that L contains:

e a number of constants table, chair,lamp, ... by, bs, ... for objects, where by, b, ... are
constants for blocks;

e positions, represented as triples (x,y, z) of real numbers in a Euclidean 3-space;

e a predicate at(obj, (r,y, z)) meaning that object obj is at position (z,y, 2).

Suppose we are only concerned with discrete positions in the block world. Our goal is to
define an abstract theory T}, whose language L; is able to describe:

a small subset of the objects of Ly. In particular the table table, and the blocks
b1, ba, ... that are on the table table;

e positions represented as squares on a 100 x 100 board, whose lower left corner we
assume to be at the origin;

a predicate on(obj, (z,y)) meaning that obj is on position (x,y);

an entity F'F, for “everything else”, used to collapse together all the irrelevant things
of Lo.

The mapping between Ly and L, can be represented using a function abs : Ly — L defined
as follows:

abs(table) = table, for the table table.

abs(b;) = b;, for all blocks b; on the table table.

abs(z) = E'E, for all other objects x in L.
abs((z,y,z)) = (int(x),int(y)), for 0 < z,y < 100,z = 0.
abs({x',y',2")) = EE, for all other locations (z’,y/, 2) in L.

abs(on(obj, (z,y, z)) = on(obj, (x,y)).

2This example is a simplified and modified version of an example originally proposed by Jerry Hobbes

in his paper on “granularity” (8]




where for each real number z, int(z) is the greatest natural number n (including 0) such
that n < z.

Following Giunchiglia and Walsh [4], we restrict ourselves to consider Lo and L; as
first order languages. Furthermore, adopting a definition given in [4], suitably modified
to consider languages and not formal systems, we further restrict ourselves to atomic
abstractions, namely, to abstractions which map atomic formulae, and keep the logical
structure unmodified. Formally:

Definition 2.2 (Atomic Abstraction) abs: Ly — L; is an atomic abstraction iff

e abs(ao ) = abs(a) o abs(B) for all binary connectives o,
o abs(®a) = Gabs(a) for all unary connectives ®;

o abs(ox.a) = ox.abs(a) for all quantifiers o.

Atomic abstractions, as defined in [4], have very nice proof-theoretic properties which
make their use in theorem proving very convenient; most noticeably, they increase theo-
remhood (i.e., they are TI-abstraction in the terminology of [5]) and preserve the shape of
proofs. In other words the abstract proof is a simplified version of the ground proof, where
all the steps which manipulate the “irrelevant details” are deleted. Our main interest in
atomic abstractions in this paper is that, first, they are simpler to handle; second, they
are very large class which contains most of the abstractions which can be found in the
literature (see [5] for a long list of examples); and, finally, in these abstractions, details
are deleted by operating only on the signature (alphabet). This seems the most basic and
simplest form of abstraction one could think of. In the following we talk of abstractions
meaning atomic abstractions.

Let us now consider a classification of abstraction, given by following the recursive
definition of a well formed formula.

1. Symbol abstractions. These abstractions operate on constant symbols and collapse them
together. They can operate on constant symbols:

Cly..yCn € Lo, c € Ly and abs(¢;) = ¢, for all i € [1,n],
on function symbols:

fi,-.y fn € Lo, f € Ly and abs(f;) = f, for all i € [1,n],
and on predicate symbols:

D1y yPn € Lo,p € Ly and abs(p;) = p, for all i € [1,n].

With a liberal extension of Hobbs’ proposal [8] which, however, maintains and extends
the same intuition, we also call symbol abstractions, granularity abstractions;



2. Arity abstractions. These abstractions operate on arities and lower them. They operate
on function arities:

filxy, ... x,) € Lo, f(21,...,Tm) € Ly with n > m, and abs(f1) = f,
and on predicate arities:
pi(zy, ..., xn) € Lo, p(x1, ..., 2) € Ly with n > m, and abs(p;) = p.

As special cases, when m = 0, arity abstractions map functions into constants and
predicates into propositions.

3. Truth abstractions. These abstractions operate on predicates and map them into the
symbol for truth:

p(z1,...,x,) € Lo, and abs(p(z1,...,x,)) = T.

Example 2.1 provides an example of a granularity abstraction on constants. An ex-
ample of granularity abstraction, operating on functions, collapses the unary functions
walk from(loc), drivefrom(loc), flyfrom(loc) (which take a location and return a loca-
tion) into the unary function gofrom(loc), thus abstracting away the details of how one
moves from one location to another. An example of granularity abstraction on predicates
collapses CUP(obj), GLASS(obj), and BOTTLE(obj) into CONTAIN ER(obj). Typical
arity abstractions, which can be applied in situation calculus theories, drop the situation
argument s thus obtaining, for instance ON (0bjy, 0bja) from ON (0bjy, 0bja, s). Finally, the
most classical example of truth abstraction has been used in Abstrips [10] and it is used
to drop supposedly irrelevant preconditions of operators.

More detailed descriptions of these and other examples can be found in [5]. Here it is
important to notice that the definitions above are quite liberal and many issues are not
dealt with. In particular, in most cases it is expected that granularity abstractions operate
on functions and predicates of the same arity. Moreover, while merging two functions one
may have to choose between two different values returned, for the same input values, by
the merged functions and dually, while merging two predicates, one should avoid building
an inconsistent theory (for instance by collapsing CUP and GLASS with a knowledge
base of the following two facts: CUP(C;) and ~GLASS(C})). Finally, to maintain certain
properties (e.g., to preserve the shape of proofs) truth abstractions must be handled with
a lot of care. For instance, when using them in Abstrips-like reasoning (this beeing by far
their most common use), truth abstractions selectively apply only to ground instances of
p(z1,...,2,) occurring in preconditions to operators.

A dual way to classify abstraction can be provided, which is based on the definition of
terms and atomic formulae. We define a term abstraction as an abstraction that operates
on term symbols and map ground terms on abstract terms. Term abstractions contain
symbol abstractions on constant symbols and function symbols, and arity abstractions
on function arities. We define a formula abstraction as an abstraction that operates on



predicate symbols and map ground formulae on abstract formulae. Formula abstractions
contain symbol abstractions on predicate symbols, arity abstractions on predicate arities,
and truth abstraction. To simplify the presentation the theory provided below is given in
terms of term and formula abstractions. Furthermore we assume that term abstractions
on function symbols operate on functions with the same arity and defined over the same
domain; and the same for formula abstraction over predicate symbols. Notice that this
does not make us loose generality varying arities and domains can be easily obtained by
composing different abstraction functions.

3 Local Models Semantics — first order

Our formalization is based on the Local Models Semantics formal framework as originally
developed in [1]. Local Models Semantics is here expanded to accommodate the fact
that we are dealing with first order languages. In doing that we take into account some
of the features and intuitions presented in [2], where a very general context-based logic,
called Distributed First Order Logic (DFOL), is presented.® The intuition underlying our
definitions is to associate to each of the two languages (ground and abstract language) a set
of interpretations (a context, as defined in [1]) and to formalize the abstraction mapping as
a compatibility relation which defines how meaning is preserved in going from the ground
to the abstract representation.

3.1 Local models and models

Let {Lo, L1} be the ground and abstract languages connected by a mapping function abs.
Let M; be the class of all the models (interpretations) of L; (i € {0,1}). We call m € M,
a local model (of L;).

Since Ly and L; are first order languages, local models are first order models. Let us
briefly recall the basic notions of a first order model. A model m for a first order language
L is a pair m = (dom, I) where dom is a non empty set called the domain of m and
I is called interpretation function. As usual the interpretation function assigns a n-ary
predicate P to an n-place relation [P C dom”, a n-ary function f to an n + 1-place
relation [f]’ over dom™"!, and an individual constant ¢ to some element [/ € dom.
An assignment in m is a function a that associates to each individual variable of L an
element of dom. The satisfiability relation with respect to an assignment a, in symbols
m = ¢lal, is defined as usual. Given a term (formula) s and a variable x, we adopt the
standard notation [s]’ and [z]* to mean the interpretation of s and the assignment of z.
If no confusion arises we drop the square brackets “[” and “]” and simply write s’ and z°.

3We do not use DFOL for two reasons. First, from a presentation perspective we want to maintain the
style of Local Models Semantics as much as we can. Second, and more important, DFOL is a very general,
powerful logic which is much more complex than we need. As the following will make clear, abstraction
allows us to make some simplifying hypotheses which refer to the definitions of model given in [2].



Also, given an assignment a, and an element d € dom we write a[z := d| to denote a new
assignment o’ such that y® = y® for all y # z, and 2% = d.

Let my = (domy, Iy) and m; = (domy, I;) be two models for Ly and L, respectively.
Following [2], a domain relation 1o, is a relation

o1 C domg X domy;.

In [2], domain relations are used to represent the relations between the interpretation
domains of two first order theories. Here they are used to represent the relation between
the domains of the ground and abstract models. They are the key mechanism which allows
to consider the different domains of the ground and abstract space. As we can see from the
definition above, domain relations are, in their general form, annotated with the subscripts
of the domains they relate. In our case we only need one domain relation r9; between dom,
and dom;. We can therefore safely drop the indexes. Also, as for the abstraction function,
we assume that all domain relations are total and surjective. That is for all dy, dy € domy,
if (d,dy) € r and (d,ds) € r, then d; = dy. Therefore together with the usual notation
(a,b) € r, we will sometimes write r(a) to indicate the element b in the pair above.

Let Ly and L; be two first order languages, and let dom and dom; be two domains
of interpretation for Ly and L, respectively. From now on we indicate with M, a subset of
M, that contains only local models m = (domy, I) over the domain domg and such that
all local models in M, agree on the interpretation of terms?. Similarly for M;.

Intuitively My (resp. M) is a set of local models defined over the same domain of
interpretation and such that all local models agree on the interpretations of the terms. This
means that all the local models of language Lg in M, can only differ on the interpretation
of predicates.’

Given My and My, and a domain relation » C domg x dom; we define a compatibility
pair ¢ (for {Lo, L1}) as a pair

c = (cp, 1)

where for each i € {0, 1}, c; is either a local model m in M; or the empty set (). Notationally,
we call ¢; the i-th element of c.

Given M, and M;, and a domain relation » C domy x dom, a compatibility relation
C (for {Ly, L1}) is a set C = {c} of compatibility pairs ¢ defined as above.

A model is a compatibility relation over r» which contains at least a pair and does not
contain the pair of empty sets.

Definition 3.1 (Model) Given My and M, and a domain relation r C dom, x domy,
a model (for {L;}) is a compatibility relation C such that:

1. C#0;

4Formally, for each m, = (domy, I,) and m; = (domy, I,) in M, and for each term ¢ in Lo we have
that tle = ¢l

5Obviously, with the exception of the equality predicate which has the same standard interpretation
for all the first order models.




2. (0,0) & C.

The intuition is that a model (of an abstraction function) is a set of pairs of models which
are, respectively, a model of the ground and of the abstract representation. The empty
set ) intuitively describes an inconsistent representation (i.e., the absence of a model).
Conditions 1.and 2.eliminate meaningless compatibility relations and pairs, namely totally
inconsistent structures. Condition 2. eliminates the mapping between inconsistent ground
and abstract spaces and forces us to consider only pairs that are of the form

<m07m1>7 <®7m1>7 <m07®>

It is easy to see that our definition of compatibility pairs and model is an extension of
the definition of weak chain and weak chain model given in [1]. In fact a weak chain model
is a compatibility relation C such that all pairs ¢ € C satisfy the condition |c;| < 1 for
each i € {0, 1}.

3.2 Local satisfiability and satisfiability

We can now say what it means for a model to satisfy a formula of a language L;. Let =, be
the (classical) satisfiability relation between local models and formulae of L;. Let us call =,
local satisfiability. Since an element of a compatibility pair can be either a model m or the
empty set ), we extend, by abuse of notation, the usage of |=, to the case of . To maintain
the intuition that () models inconsistent spaces, we say that () satiafies all the formulae ¢
of a language L;, and we use the notation () |5, ¢. Notationally, let us write i:¢ to mean ¢
and that ¢ is a formula of L;. This notation and terminology allows us to keep track of the
language we are talking about. That is, it allows to easily distinguish formulae 0:¢ of the
ground language, and formulae 1:1) of the abstract language. Also, from now on, we write
a to mean a pair of assignments (ag,a;) such that a; is the usual first order assignment
for the language L;. Following [4], we have to impose certain limitations on assignments
a = {ap,ay). In particular we consider here only abstraction functions which preserve
names of free and bound variables (or drop them), and preserve substitution instances.
Therefore we restrict ourselves to consider the pairs of assignments to the variables of L
and L; which preserve the assignments to the “same” variable x in the two languages.

Definition 3.2 Let C be a model over My and My, and r C domg x dom;. Let ag and
aj be two assignments to the variables of Ly and Ly respectively. The pair a = {(ag, a1) is
an assignment for C if for all x € Ly, r(x%) = x™.

Definition 3.2 forces us to restrict to assignments which preserve the correspondence be-
tween variables in the two languages Lo and L; (see Figure 1). From now on, all assignments
a satisfy the condition in Definition 3.2, unless otherwise stated.

Having introduced the concept of local satisfiability and the appropriate definition of
assignment, we can now give the definition of satisfiability of a formula in a model (under
an assignment).
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Figure 1: A pictorial representation of preservation of assignments.

Definition 3.3 (Satisfiability) Let C be a model, i:¢ a formula, and a an assignment
for {Lo, L1}. C satisfies i: ¢, under the assignment a, in symbols C = i: ¢lal, if for all
ceC

ci = ¢lai]
where ¢; = ¢la;] is defined as m =, ¢la;] if ¢; =m, and 0 =, ¢la;] if ¢; = 0.

Intuitively: a formula of L; is satisfied by a model C if the i-th element of all compat-
ibility pairs satisfy it (under the i-th component of the assignment a). Notice that if c; is
a local model m then c; = ¢la;| can be rewritten as m |=, ¢[a;]. The interesting case is
when ¢; = (). Our definition implies that ¢; |= ¢[a;] for all formulae ¢ in L;. As we already
said, this captures the intuition that if the ¢-th element of a compatibility pair models an
inconsistent “scenario”, then it satisfies all formulae in L;.

A model M satisfies a set of formulae I" under an assignment «, in symbols M = T'[a,
if M satisfies every formula 7 : ¢ in I' under the assignment a. The definition of logical
consequence, that extends the one given in [1], is not relevant to the study of abstraction
presented in this paper and is therefore omitted for lack of space.

The notion of validity is the obvious one. A formula i:¢ is valid, in symbols |= i: ¢, if
all models satisfy i:¢.

4 A semantics for abstraction

The key idea is to use domain relations and compatibility relations to model, at a semantic
level, the syntactic abstraction relation between terms and formulae of the ground and
abstract language.

Definition 4.1 (Satisfiability of term abstractions) Let abs : Ly — Li be a term
abstraction. Let C be a model over My, M, and r C domy x dom;. We say that C
satisfies the term abstraction abs if

e granularity abstraction on constants: for all ¢i,...,c, € Ly, ¢ € Ly such that
abs(c;) = ¢, for alli € [1,n],

(clo Iy € r for every i in [1,n)].

7

e granularity abstraction on function symbols: for all f1,...,f, € Lo, f € L4
such that abs(f;) = f, for all i € [1,n],
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Figure 2: Term abstractions and domain relations.

1f(dl,...,dk) = dy,,
if | F2 ) =i g ) () = d.
fo(dy, ... dy) = dy,
where d = r(dy,) = r(dg,) = ... = r(dy,)

e arity abstraction on function symbols: for all fi(z1,...,2,) € Lo, f(x1,...,2m) €
Ly such that n > m and abs(fi) = f

if flo(dy,. .. dy, ... dy) = dusy then f1(r(dy), ..., 7(dp)) = 7(dpit)

It is easy to see that a model satisfies a term abstraction if the domain relation maps all the
ground terms (tuples of terms) into the corresponding abstract terms (tuples of terms).
Figure 2 shows the effect of granularity abstractions on individual constants. The fact
that ¢; and ¢y are abstracted into the same constant ¢ in L; is captured, at the semantic
level, by imposing that both the interpretations of ¢; and ¢y in domg are mapped into the
interpretation of ¢ in dom;.

Term abstractions on function symbols work in a similar but slightly different way. In
abstracting function names, we collapse functions together. The typical example is the
abstraction of two ground functions + and * into a single abstract function o. These
functions are usually defined over the same domain, and a crucial problem arises when we
have to decide which value to associate to, say, a o b. Different uses of abstraction can
lead to different choices. A possible choice could be to use the value of one of the ground
functions. For instance, one could decide to define the function o such that a o b is the
value of a+ b for all a,b. But other choices can be made. For instance one could define the
function o such that a o b = 1 if both the values of a + b and a * b are even numbers, and
aob =0, otherwise. The only constraint that term abstractions impose here is that the
two tuples (a, b, x1) and (a, b, x2) belonging to the interpretation of + and * in the ground
language, respectively, are mapped via the domain relation r to a tuple (a, b, z) belonging
to the interpretation of o in the abstract language. This is exactly what Definition 4.1

imposes.°

SFor the sake of explanation we have assumed in this example that abstraction operates only on function
names and does not modify constants or individual elements of the domains. In reality, the constraint
that term abstraction imposes is that both tuples (a,b,z1) and (a, b, z3) belonging to the interpretation
of + and *, respectively, are mapped via the domain relation r to a tuple (a’,’,z) belonging to the
interpretation of o where a’ = r(a) and &' = r(b).

10



The final part of Definition 4.1 concerns arity abstractions on functions. If a n-ary
function f; is abstracted into a m-ary function f which simply “forgets” about the “non
relevant” arguments x,,11, . .. £,, then the domain relation r will map all the n + 1-tuples
(di,...dp,dpmi1,. .. dn,dnsr) of f° into m + 1-tuples (d},...d’ dl,.1) of fI obtained by
simply eliminating the “non relevant” elements d,, 11, . . . d, from (dy, ... dy, dpmi1, - dp, dnir),
and by replacing all the remaining elements d; with the corresponding element d; in the
abstract domain.

Definition 4.2 (Satisfiability of formula abstractions) Let abs : Ly — Ly be a for-
mula abstraction. Let C be a model over My, My, and r C domy x dom;. We say that C
satisfies the formula abstraction abs if for all compatibility pair (co,cy1) in C we have that

e granularity abstraction on predicate symbols: for all pi,...,p, € Lo, p € L1,
such that abs(p;) = p for all i € [1,n]

if co = pi(x,...xn)|d,. .., dy] for somei € [1,n)]
then c1 | p(x1,...20)[r(dy), ..., r(dy)]

if co V¥ pi(xy,...xn)[dy, ... dy) for some i € [1,n]
then ci = p(x1, ... 2m)[r(dy), ..., r(dy)]

e arity abstraction on predicate symbols: for allpi(xy,...,2z,) € Lo, p(z1,...,2n) €
Ly such that n > m and abs(py) = p,

Zf Co IZpl(l’l,...xm,...J}n)[dh...,dm,...dn]
then c1 = p(x1,...xn)[r(dy), ..., r(dy)]

Z‘fCQ I}Apl(l'l,...l‘m,...l’n)[dl,...,dm,...dn]
then ¢y W~ p(x1,...xm)[r(dr), ..., 7(dp)]

e truth abstraction: for all p € Ly, such that abs(p) =T,

if co = p(xy,...xp)|dr, ..., dpy] thenecy E T
if co e p(x, ... xp)|dy, ..., dp] then cy & T

It is easy to see that a model satisfies a formula abstraction if the satisfiability of formulae,
(and of their negation) is preserved throughout abstraction.

In order to exemplify our definitions we sketch a representation of the scenario described
in Example 2.1. For the sake of brevity we omit irrelevant details and concentrate on the
definition of an illustrative example.

Example 4.1 Assume that Lo, L; and abs : Ly — L; are the two languages and the

abstraction function defined in Example 2.1. Let domy and dom; be two domains of
interpretation that contain all the constants of Ly and L, respectively and let r be an

11



abstraction domain relation between dom, and dom; that follows directly from abs, that
is a domain relation which satisfy the following constraints:

r(table) = table, for the table table.

r(b;) = b;, for all blocks b; on the table table.

r(x) = FE, for all other objects x in dom,.

r({z,y,0)) = (int(x),int(y)) for all positions (z,y,0) in dom, with 0 < z,y < 100.
r({(z',y',2")) = EE, for all other locations (z’;y/, 2’) in Ly.

Let us now take pairs of (local) models mq and m; over domy and dom; that interpret
each constant c in itself. Let C be any models over r containing these compatibility pairs.
It is easy to see that C satisfies the granularity abstraction on constants “by construction”.
Let us now restrict to a C that satisfies also the granularity abstraction on the predicate
symbol on. It is easy to see that all the times m satisfies the formula on(b, (z,vy, z)), and
the block b is on the table, then my satisfies the formula on(b, (int(z),int(y))).

5 Properties of abstractions

Given a model C and an abstraction abs, we say that C satisfies abs if it satisfies all the
term and formula abstractions in abs.

Theorem 5.1 Given a model C for an abstraction abs, a compatibility pair c € C, and a
ground formula 0:¢, if co = ¢[a], then ci = abs(¢)[a].

Proof The proof is by induction on the structure of 0:¢. We first prove the theorem
for the two base cases, that is, atomic formulae and negations of atomic formulae. Then
we use the inductive hypothesis to prove the theorem for generic formulae.

Base Case Let ¢ be an atomic formula of the form p(ty,... t,, 1, .., Tm).

co = plt, .. tn, @1, oo Ty)]ao]

— Co = (Y1, T, ) [E0, Lt 250 200
= c1 = abs(p) (Y1, -« oy Ynts T1y s T ) [P0, (819), 1 (250), . r(2%9)] from the def-
inition of satisfiability of a formula abstraction (Definition 4.2), where n’ < n and
m' < m.
— 1 = abs() (Y1, s Yt Ty ooy T ) [P (ED0), ,r(tfﬁ), 21, ..., x0,] from the definition
of assignment for C (Definition 3.2),
= ¢1 = abs(D) (Y1, -, Ynty Ty - o, Ty ) [abs ()1 abs (b)) 2t Lo 28] from satis-
fiability of term abstraction (Definition 4.1),
= ¢ = abs(p)(abs(ty),...,abs(ty), 1, ..., T )laa],
= ¢ F abs(p(ty,... . tn,T1,. .., Tm))]a1]
Let ¢ be a formula of the form —p(tq,...,t,, 1, ..., Tmy), where p(t1,... ty, T1, ..., Tp) 1S

an atomic formula.
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Figure 3: A pictorial representation of Theorem 5.1

co = 7ty .- tn, 1, .., ) [ag)]

Co = WL, Yny T1, T [E0, Lt 280 3]

ci | mabs(p)(Yis - Ynts X1y T ) [P(E0), o (809), 1 (290), .. r(2%9)] from the
definition of satisfiability of a formula abstraction (Definition 4.2), where n’ < n
and m’ < m.

ci = 2abs(P) (Y1, -y Ynt, Ty - o oy T ) [P(E10), . e (E9), 25, . 2%] from the defini-
tion of assignment for C (Definition 3.2),

c1 | abs(p)(y1s- -y Ynrs T1y ooy To)[abs(B1) ™, oo abs(ty ), 2t L. 28] from satis-
fiability of term abstraction (Definition 4.1),

c1 | abs(p)(abs(ty),...,abs(ty ), x1,. .., Ty )|a1],

ci = abs(p(ty, ... th, 21, ..., &m))[as]

Inductive step

Let ¢ be a formula of the form ¢)Ay. If ¢ |= ¥ AY[ao], then ¢y = ¥[ag] and ¢ = Y[ao].
Therefore the inductive hypothesis enables us to infer that ¢; | abs(v)[a;] and
c1 = abs(vy)[a1], and we can conclude that ¢; = abs(y A y)[a].

Let ¢ be a formula of the form ¥ V . If ¢o = ¢ V y]ag], then ¢y = ¥lag] or ¢y
v[ao]. Therefore the inductive hypothesis enables us to infer that ¢; = abs(y)[aq] or
c1 = abs(vy)[a1], and we can conclude that ¢; = abs(v V v)[a].

Let ¢ be a formula of the form 3z (x). If ¢ = Jxb(x)]ap], then there is a d € domg
such that ¢o = ¥[ag/x = d]. Therefore the inductive hypothesis, and the fact that r
is total, enables us to infer that ¢; = abs(¢)[a;/x = r(d)], and we can conclude that

c1 | abs(Fz(x))[aq].

Let ¢ be a formula of the form Vay(z). If ¢y = Vay(z)|agl, then for all d € domg
we have that ¢g = ¥[ag/z = d]|. Therefore the inductive hypothesis and surjectivity
of r enables us to infer that for all d' € dom; ¢; = abs(v)[a;/x = d'], and we can
conclude that ¢, = abs(Vay(x))[aq].

Let ¢ be a (non atomic) formula of the form —). =1 can always be rewritten as an
equivalent formula of the form a A 3, a V 3, Jza, or Vxa, and the proof is reduced
to one of the cases above.

Q.E.D.
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Theorem 5.1 is graphically represented in Figure 3. It represents the fact that satisfia-
bility of formulae “increases” within a compatibility chain. That is, given a compatibility
chain (cy, c1) satisfying an abstraction abs, and a formula ¢ satisfied by cq, we can be sure
that the abstraction ¢’ of ¢ is satisfied by c¢;. This theorem is the first model-theoretic
counterpart of the property of TI-abstraction studied in [5].

Using Theorem 5.1, we can easily prove the following properties:

(a) Chains of the form ({), m) never occur in a model C;
(b) if C = 0:¢[a], then C = 1:abs(¢)[al;
(c) if C = 0:¢[a] for all models C, then C |= 1:abs(¢)[a] for all models C.

A first consequence of property (a) is that a model C for an atomic abstraction is
composed of chains of the form (m,m’) and (m, (). This reflects, from the model theoretic
point of view, a well known property of Tl-abstractions. Since they “increase” theorem-
hood, they can only “decrease” models. Or, analogously they can abstract consistent set
of formulae into consistent or inconsistent set of formulae, but they can never map an
inconsistent set of formulae into a consistent one. Properties (b) and (c) generalize the
property of Theorem 5.1. In particular property (c) allows us to say that validity of for-
mulae “increases” within the class of models C. That is, if 0:¢ is a valid formula in the
class of models C for the abstraction abs, then 1:abs(¢) is also a valid formula in the class
of models C.

6 Conclusion

In this paper we have proposed a semantics of abstraction based on the intuition that
abstraction is a (very important) technique for representing knowledge in context and of
reasoning about it. This is a first step. On the formal side we need to show that our
notions are the semantic counterpart of the proof-theoretic notions provided in previous
papers (by providing correctness and completeness results). On the more applied side, we
plan to use the framework provided in this paper in the study and discovery of mappings
between semantically heterogeneous ontologies [3]. This will require the extension of the
work presented here to the composition of abstractions.
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