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ABSTRACT
Remaining useful life (RUL) predictions are a key enabler for achieving efficient
maintenance in the context of Industry 4.0. Data-driven approaches, in particular
employing deep neural networks (DNNs), have shown success in the RUL prediction
task. However, although their architecture considerably affects performance, DNNs
are usually handcrafted by human experts via a labor-intensive design process. To
overcome this issue, we propose a neural architecture search (NAS) technique that
explores a search space using a genetic algorithm (GA). It automatically discovers
the optimal architectures of Transformers for RUL predictions. Our GA allows an
efficient search, by making use of a performance predictor, updated at every gen-
eration, that reduces the needed network training. To our knowledge, this is the
first work to optimize the architecture of Transformers for RUL predictions using
evolutionary computation. We evaluate the performance of the found solutions on
a widely-used benchmark dataset, the CMAPSS, based on RMSE and s-score. In
comparison with the state-of-the-art, the Transformer obtained by our NAS method
outperforms other recent handcrafted DNNs in terms of RMSE, and is compara-
ble regarding s-score. Our results demonstrate that the proposed method provides
better prediction accuracy with less human effort compared to other data-driven
approaches.
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1. Introduction

Predictive maintenance (PdM) is an enabling technology that enhances the reliability
of critical systems and cuts down maintenance costs. It aims to develop an effective
maintenance policy based on predictions of the state of the system at hand. Accurate
remaining useful life (RUL) predictions are a key component to PdM, considering that
precisely predicted RUL enables making better maintenance decisions [1], allowing to
perform timely maintenance before failures occur. In fact, providing reliable RUL pre-
dictions can allow users (e.g., plant owners or managers) to save expensive maintenance
procedures, which often include costly inspection and imposed stops to the operation
of the system. On the other hand, being able to anticipate, within a reasonable time
window (i.e., neither too early nor too late) any potential system fault not only can
enhance the quality of manufacturing processes and their output products, but also cut



losses caused by any unexpected downtime, even without regular and excessive main-
tenance to prevent failures. Providing accurate RUL predictions is, however, a difficult
task. In fact, data about faults are usually scarce (because these events typically occur
less frequently than normal operational conditions). Moreover, even when monitoring
data about the system are available, these may not contain enough information to
make the predictions (e.g., some states of the system that would be needed to predict
faults may not be observable due to technical limitations or other kinds of practical
constraints, such as lack of sensors).

Driven by the above motivations, many research works focused on RUL prediction
have been carried out in the past decade. Since as mentioned data related to faults are
usually scarce, these works have mainly focused on developing successful approaches
that can make precise RUL predictions with a limited amount of data. However, recent
advances in machine learning (ML) have helped overcome this limitation. In fact,
successful ML models can predict RUL accurately by learning patterns on scarce data,
even without inquiring into the underlying physics of the monitored process. Thus,
data-driven approaches based on ML have become popular [2].

Particularly, artificial neural networks (ANNs) have been employed to develop data-
driven approaches for RUL predictions, and their architectures have become more and
more complex. More specifically, multi-layer perceptron (MLPs) and convolutional neu-
ral networks (CNNs) [3], both instances of traditional back-propagation neural networks
(BPNNs), have been the earliest architectures applied to the RUL prediction task.
Later, RUL has been predicted by recurrent neural networks (RNNs), and they have
been also used in combination with CNNs [4,5]. More recently, autoencoder (AE) based
models have been utilized to analyze temporal patterns on time series data [6,7], and
an attention mechanism on top of the DL architecture [8] has shown a large success in
the RUL prediction task.

While the above DNNs have shown promising performance in RUL predictions,
those need a significant amount of human effort to be developed and used for a specific
RUL task. This is because the performance of those networks largely depends on their
architecture, which is difficult to design even for experts who are specialized in DL
and experienced in PdM. Such a design process involves finding appropriate values
for the parameters related to the architecture, and these values are usually ruled by
empirical evidences, or come out from trial-and-error. This may not be an efficient way
to develop a RUL prediction tool that fully exploits the capability of DL models.

To address the aforementioned limitations, in the present paper we apply neural
architecture search (NAS), that is a technique for automating the DNN design pro-
cess. Generally, different optimization techniques can be used to realize NAS. Among
them, we implement a genetic algorithm (GA) that incorporates a surrogate model
into the evolutionary computation. In this work, the type of DNN to be designed is the
Transformer [9], one of the current best-performing DL models, whose main feature is
that it can draw long-term dependencies based exclusively on attention mechanisms.
Albeit powerful, the performance of the Transformer is affected by its architecture pa-
rameters, and these parameters define a combinatorial search space. Here, we propose
to use evolutionary computation to find the optimal architecture(s) by exploring this
search space effectively.

This search can be, however, computationally expensive. In fact, considering that
the training of a single Transformer architecture is per se computationally expensive,
we reduce the computational complexity by employing, in the evaluation process con-
ducted within the GA, a surrogate model that eschews constructing and training every
single architecture appeared during the search. To this aim, we use a probabilistic re-
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gression model via gradient boosting, namely natural gradient boosting [10], as model
performance predictor. This predictor is initialized with a predefined number of evenly
distributed samples in the search space, and updated across generations by retraining
it with only a few solutions that are expected to have good fitness. By doing so, we
can improve the quality of the solutions found by our evolutionary search.

To evaluate the quality of the found solutions, we consider the de facto standard
benchmark for RUL predictions, i.e., the commercial modular aero-propulsion system
simulation (CMAPSS) dataset [11] by NASA. On each of its four sub-datasets, we search
for the optimal Transformer architecture and compare it to the different methods in
the existing literature, in terms of performance.

In summary, our key contributions are the following:

• We introduce a GA which integrates efficient retraining of a performance predictor
in its evolutionary process.

• Our algorithm successfully finds better solutions than a space-filling sampling
method.

• In 3 out of 4 sub-datasets, we obtain solutions that outperform the state-of-the-art
methods w.r.t. the prediction error.

• To our knowledge, our work is the first study that proposes to optimize the archi-
tecture of the Transformer to be used for RUL predictions by means of evolutionary
computation.

The rest of the paper is structured as follows: Section 2 explains the background
concepts on the Transformer used for RUL predictions. Then, we specify the architec-
ture parameters to be optimized and introduce the proposed GA based NAS technique.
In Section 3, the details of our experimentation and the experimental results are pre-
sented. The following section, Section 4, discusses the conclusions of this work.

2. Materials and methods

This section details our proposed method. In Section 2.1, we introduce the backbone
network that is optimized in the NAS process. To apply the evolutionary optimiza-
tion, the architecture parameters are encoded as “individuals”, following the description
given in Section 2.2. The resulting search space, defined by these parameters and their
bounds, is then explored by the GA. Moreover, the performance prediction mechanism
introduced in Section 2.3 is considered to reduce the computational resources needed
to evaluate all the individuals during the search. Finally, Section 2.4 presents the pro-
posed algorithm which allows the interaction between the GA and the predictor during
the evolutionary search.

2.1. Transformers

Transformers [9] model long-term dependencies relying entirely on an attention mech-
anism, i.e., without employing recurrence and convolutions. They have shown success
in many ML applications: computer vision (CV) [12,13], speech recognition [14,15], and
natural language processing (NLP) [16,17]. Considering that Transformers can handle
long-term dependencies in sequential data while dismissing either RNNs or CNNs,
they have been used for a variety of tasks dealing with time series data; Li et al. [18]

introduced a Transformer network for time series forecasting and observed that its per-
formance on real-world datasets was comparable to that of recent RNN based methods.
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The anomaly Transformer, i.e., a Transformer variant with an anomaly-attention mech-
anism that is able to identify outlier points in time series, was developed in [19]. In [20],
it was shown that a Transformer based framework can be used for unsupervised rep-
resentation learning of time series, providing promising results on benchmark datasets
for time series regression and classification [20].

Following these previous works, here we hypothesize that Transformers can be ef-
fectively used for the RUL prediction task by analyzing multi-sensor time series data.
These sensor readings are typically sequential data, and as such RNNs have been
widely used to analyze temporal patterns that appear in the sequences [5,21]. However,
the training of such RNNs is computationally expensive compared to feed-forward
networks (FFNs). Moreover, RNNs are vulnerable to gradient vanishing and explo-
sion, while Transformers do not suffer from such problems because their structure does
not rely on RNN modules and depends only on self-attention mechanisms. Although
Transformers have been widely used in many applications as discussed above, most
of the Transformer networks proposed are handcrafted. Typically, their layout design
is determined empirically, and the relation between the architecture of Transformers
and their performance has not been thoroughly discussed. In contrast, in our work the
architectures of Transformers are automatically designed in the direction of improv-
ing RUL prediction performance. More specifically, we adopt the Transformer network
introduced in [22] as our backbone network, whose architecture is optimized by our
proposed algorithm.

In the following, we formulate the RUL prediction task and describe the background
concepts of the Transformer network.

2.1.1. Problem formulation

The present work deals with a purely data-driven RUL prediction approach that does
not need a priori knowledge regarding the physics underlying the degradation of target
components. Figure 1 visualizes the flow of a data-driven RUL prediction task, high-
lighting that it is addressed by using a black-box model. According to this scheme, the
target component has installed multiple sensors that measure some physical properties
which are relevant to RUL predictions. These monitoring data consist of multivariate
time series and are processed by a sliding window to prepare fixed-length sequential
data. Then, a black-box model outputs a RUL value from its input. In this work, the
black-box model is the Transformer network, which is trained by minimizing the train-
ing loss. We derive the loss function from the discrepancy between the predicted and
the actual RUL (on training data with ground truth). During inference after training,
the trained Transformer network produces the predicted RUL for the given input se-
quence data. Eventually, this prediction can contribute to making optimal decisions
for maintenance management.

We can formulate the task described above, as follows. Let T and S indicate the
length of a time window and the number of sensors respectively. We consider an input
sequence data X determined by the window sliding over the multi-sensor measure-
ments. In other words, the input sequence comprises the measurements of the S sensors
over T timesteps, and each position in the sequence corresponds to each timestep. This
sequence can be written as X = [x1, . . . , xT ]

⊤ with xt ∈ IRS.
Considering a mini-batch of bs training samples, the loss function l(·) of the network

corresponds to the Mean Squared Error (MSE) between the output of the network,
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Y = [y1, . . . , ybs] and its ground truth labels, Z = [z1, . . . , zbs]:

l (Y,Z) =
1

bs

bs∑
j=1

(yj − zj)
2 (1)

where yj denotes the predicted RUL w.r.t. Xj while zj represents the ground truth
RUL for the j-th sample Xj . Note that in this work we always take the RUL value at
the last timestep T of the sequence X.

2.1.2. Embeddings and positional encoding

From the input sequence, we need to obtain vectors that embed the sensor measure-
ments at each timestep. In the Transformer, an input embedding layer converts the
input sensor measurements to vectors of dimension dmodel. While RNNs process one
position at a time in the sequence, the Transformer can accept all the positions at once.
To discriminate the relative or absolute position of the measurement, a positional en-
coding step follows the input embedding. When it comes to the RUL prediction model,
the injection of the positional information is crucial, because it allows capturing the
degradation pattern that appears in the input sequence made of sensor measurements
over time. To capture the ordering of measurements, we use sinusoidal functions, which
can produce distinct vectors depending on the position:

PE(t,2i) = sin
(
t/100002i/dmodel

)
PE(t,2i+1) = cos

(
t/100002i/dmodel

) (2)

where t indicates the position of the measurement, and i represents the entry of the
vector. This way, unique integers from different positions correspond to different fre-
quencies of the sinusoidal functions. The dimension of the obtained positional embed-
dings must be dmodel, so that these can be added to the input embeddings (see the
bottom of Figure 2).

2.1.3. Model architecture

The Transformer follows the encoder-decoder architecture drawn in Figure 2. Both the
encoder and decoder are made up of a multi-head attention layer followed by a feed-
forward layer. The attention layer contains one of the most widely adopted attention
modules, i.e., the Scaled Dot-Product Attention module, shown in Figure 3 (right).
This module performs a matrix multiplication first. The outcome of the dot-product
is then scaled by a constant factor 1/dmodel

[9]:

Attention(Q,K, V ) = softmax
(

QKT

√
dmodel

)
V (3)

where Q, K and V denote, respectively, a set of queries, keys and values. Equation (3)
explains that the attention modules output a weighted sum of the values. Its weights are
calculated as the softmax output w.r.t the dot-product which measures the similarity
of each query to the keys.

5



Similar to the use of multiple feature maps in CNNs, Transformers take advantage
of multi-head attention, by making use of h independent heads. To realize this, h pairs
of different linear projections transform dmodel-dimensional queries, keys, and values to
dk, dk, and dv dimensions, respectively. Each of those projected vectors proceeds to the
designated head, as shown in Figure 3. The heads apply the attention function, which
is defined in Equation (3), in parallel. The following concatenation layer concatenates
the outputs of the h heads, and those are projected to dmodel dimensions with the last
linear projection layer:

Multi-Head(Q,K, V ) = Concat (head1, . . . , headh)W
O

where headi = Attention
(
QWQ

i ,KWK
i , V W V

i

) (4)

where the parameter matrices WQ
i ∈ IRdmodel×dk , WK

i ∈ IRdmodel×dk , and W V
i ∈

IRdmodel×dv are the linear projections preceding the attention, and WO ∈ IRhdv×dmodel

denotes the parameter matrix for the projection of the concatenated output.
The output of the above attention proceeds to a FFN that comprises of two linear

transformations:

FFN(X) = max (0, XW1 +B1)W2 +B2. (5)

The first layer linearly transforms from dmodel to dff dimensions, and this inner layer
uses the rectified linear unit (ReLU) as the activation function. Then, the following
transformation produces the output of the FFN. The sub-layers explained above, i.e.,
the multi-head attention and the FFN, are the building blocks for both the encoder
and decoder.

As depicted in Figure 2, the Transformer has a residual connection [23] for each
sub-layer, and the outcome of this connection is followed by layer normalization [24].
Indicating with SubLayer(·) the function of the sub-layer, the output for input X
of the sub-layer can be written as: LayerNorm(X + SubLayer(X)). The dimension
of this sub-layer output is dmodel, such that the sub-layer in the Transformer always
receives a dmodel-dimensional input and produces a dmodel-dimensional output.

Different from vanilla Transformers [9], the Transformer network considered in this
work contains two types of encoder: a sensor encoder, and a timestep encoder. The
former is deployed to weigh different sensors by self-attention, while the latter serves
to extract the feature from different timesteps. Each type of encoder is structured
by stacking Nenc identical layers, and the two encoders work in parallel. The sensor
encoder and the timestep encoder generate different representations, denoted by Fs

and Ft respectively. The following feature fusion layer combines them as follows:

Fusion (Fs, Ft) = Concat (Fs, Ft)W
F . (6)

In essence, this layer first concatenates the two representations, and then linearly
projects the concatenation using the parameter matrix WF ∈ IR(dk+T)×dmodel .

The decoder in the Transformer network is in charge of predicting the RUL value at
the end of the given X. The last point of the sequence corresponds to the current time
at which the prediction is made. For predicting the current RUL, sensor readings at
the end of the sequence are much more important compared to those at the beginning
of the sequence, because traces of degradation on the sensor readings near the current
timestep have a large impact on the RUL. In other words, the last α timesteps of
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the given T length sequence contain crucial information regarding the current RUL
prediction. Taking this into consideration, the values for the last 4 timesteps of the
encoder input X are adopted as the decoder input.

The decoder is constructed by piling up Ndec layers, each one composed of two
attention blocks followed by one FNN. Similar to the encoder, the attention block at
the beginning takes the embeddings w.r.t. the decoder input and computes their values.
The next attention block receives the output of the previous multi-head attention block,
as well as the output of the feature fusion layer, to look back at what the encoder input
sequences were. Finally, the output layer at the very end of the Transformer converts
the decoder output to the predicted RUL.

2.2. Individual encoding

Our base model described above involves many parameters that can vary the archi-
tecture of the Transformer network. Variations on the Transformer architecture can
cause changes in performance [9], and their effect is typically investigated empirically,
by changing one parameter at a time [9,25]. However, this is a labor-intensive design
process, and the empirical evidence obtained in this way does not reflect the complex
dependencies between the architecture parameters.

Different from the naïve approach, here we consider the Transformer architecture
parameter choice as an optimization problem, aiming to discover the maximum possi-
ble performance by systematically diversifying all the architecture design parameters.
To this end, we use evolutionary optimization. In this case, each “individual” in the
population handled by the GA encodes a candidate solution for the Transformer net-
work design problem, i.e., a vector representation of all the parameters that can vary
the Transformer architecture.

Table 1 presents the 11 parameters that configure the Transformer architecture.
The first six parameters are related to the dimensions of the representations; among
these, the first three parameters determine the vector dimensions in one sub-layer, i.e.,
the multi-head attention, while the remaining three parameters determine the inner
dimensions in another sub-layer, the FFN. To limit the possible combinations, each
dimension parameter is divided by a fixed value of 4 w.r.t. the range of that parameter.
The lower bound of the range is mainly based on dmodel, since the smallest possible
dmodel should be larger than the upper bound of h, 16. The specific range of dimensions
is determined empirically. In particular, based on preliminary observations, we have
found that a dmodel of 16 cannot decrease the training loss and for this reason dmodel

should be larger than 24. From this lower bound 6 = 24/4, the upper bound is set
to 25 = 100/4, so that we can avoid combinatorial explosion by limiting the range of
the parameter to 20 integer values. We consider the same range for all six parameters
regarding the dimension.

The next three parameters indicate the number of attention heads. Its upper bound,
16, is inspired by the existing work [26], which examines the correlation between number
of heads and performance.

Finally, the last two parameters indicate the number of identical layers stacked when
we generate the encoder and decoder. The upper bound for the number of stacks is set
to 3. With these upper bounds, the largest network fits the available memory used in
our work.

Overall, the search space defined by the above 11 parameters includes 2.36× 1012 ≈
206 · 163 · 32 Transformer configurations.
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2.3. Fitness evaluation and performance predictor

NAS consists in solving an optimization problem that is formally written in:

a∗ = argmin
a

f(a) (7)

where a denotes a given architecture from the search space, and a∗ indicates the optimal
architecture regarding the objective function f .

The following equations define f :

f(a) = Lval(w
∗(a), a) (8)

w∗(a) = argmin
w

Ltrain(w, a) (9)

For a given architecture a, the function value, f(a), is an observation of the network
performance with the trained weights w∗(a), where the performance corresponds to
the validation loss Lval. The training phase, described by Equation (9), indicates that
we can find w∗(a) by fully training the network for a given architecture a. Training
by back-propagation requires iterative gradient computation, which is computationally
expensive. Thus, it is necessary to adapt performance estimation strategies for avoiding
this extreme computational cost.

One possible performance estimation strategy is to consider the above as a supervised
ML problem and solve it by employing a regression model. More specifically, we prepare
a regression model before solving the optimization shown in Equation (7). Here, the
preparation is also referred to as the initialization step [27], and it requires: 1) to collect
a fixed number m of pairs (a, f(a)); and 2) to fit a regression model based upon this
collection. The trained regression model f̂ can provide an approximation of f . Thus,
the regression model serves as a surrogate for the validation loss observation, i.e., we
apply a surrogate model f̂ which can approximate f .

When it comes to supervised learning, it is necessary to collect labeled training
samples. Since such a process requires the performance evaluation of fully trained
networks, the amount of labels is typically very restricted. Nevertheless, the model
trained with limited data should be able to predict the performance of individual
networks spreading throughout a parameter space.

To this end, we choose NGBoost [10] as the surrogate model f̂ . Different from typical
regression models that return a single best guess prediction (namely, a point estima-
tion), NGBoost allows for predictive uncertainty estimation and outputs a full prob-
ability distribution. To be more specific, NGBoost is a modular algorithm which is
composed of three modular components, as shown Figure 4. The algorithm general-
izes gradient boosting [28] and makes use of natural gradients and boosting to integrate
three modular components: Base Learners, Parametric Probability Distribution, and
Scoring Rules. In each iteration of the learning algorithm, a vector representation of
the base learner’s parameters (θ) for the current model input X is fed into the Distri-
bution component, which determines then probability distribution Pθ. In the following
Scoring Rules component, the scoring function S is defined based on the distribution
Pθ and the prediction target y. Finally, the natural gradient of S w.r.t. θ is used to fit
the Base Learners.

We select decision tree as Base Learners l, while the conditional probability in the
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second component follows the Normal distribution. The logarithmic scoring rule [10] is
considered as S. Our choice of the NGBoost components and hyper-parameter tuning
on the model follow the details used for all experiments reported in [10].

In addition, the following two crucial aspects should be considered for using the
NGBoost as a surrogate model in our NAS process. Because the full training of the
Transformer network is computationally very expensive, we can prepare very few sam-
ples to train the predictor described above. On the other hand, the parameter space de-
fined in Section 2.2 is extremely large compared to the feasible number of the prepared
samples. Therefore, we need to acquire the maximum information with the minimum
number of samples, by spreading them out with the aim of encouraging a diversity of
data. In other words, it is necessary to handle the matter of choosing sample points in
the parameter space to train the surrogate, so that it has a good space-filling property.
To achieve this, we apply Latin hypercube sampling (LHS) [29] when we prepare the
training samples for our performance prediction model. In this sampling strategy, each
sample “remembers” in which part of the search space it was taken, so that each space
dimension is evenly sampled.

As another effort to improve the surrogate model, two additional parameters re-
garding the network are added to the vector described in Section 2.2 when we prepare
the input for the surrogate model. More specifically, we concatenate the 11 integer
values for the architecture parameters introduced in Table 1 with the following two
values: the number of trainable parameters in the Transformer, and the Single-shot
network pruning (SNIP) value [30]. The SNIP value is a pruning at initialization metric
that computes a saliency metric at initialization, and it can approximate the change in
loss at initialization w.r.t. removing a specific connection. This metric was originally
proposed to find sparse networks, but it has been used also for estimating the per-
formance of lightweight networks, considering the correlation between the SNIP value
and the performance at initialization [27]. In order to let the model consider additional
information about the performance of a given network, we feed the SNIP value to the
regression model as an additional input.

2.4. Proposed algorithm

Given the backbone architecture illustrated in Section 2.1.3, we aim to find its opti-
mal architectures that can provide better RUL prediction accuracy. This problem is
formally defined as shown in Equation (7). As we mentioned earlier, we propose to
reduce the computational burden required for evolutionary NAS by incorporating into
the proposed algorithm the predictor introduced in Section 2.3. This idea is outlined
in Algorithm 1 in the form of pseudocode, and we explain it in the following.

Our evolutionary search starts with npop randomly generated individuals, where npop

denotes the population size. As shown in Figure 5, the genotype representation of each
individual is an integer vector describing the architecture a, derived from the encod-
ing specified in Section 2.2. Within the search process, the fitness of an individual is
predicted by using the surrogate model f̂ , that is the probabilistic regression model
defined in Section 2.3. Before entering the main loop of the search algorithm, this per-
formance predictor must be initialized. Here, the predictor initialization step consists
in training NGBoost following the procedure explained in Section 2.3. First, we sample
from the search space a fixed number m of architectures, based on LHS, and prepare m
pairs (a, f(a)) by constructing and training each sampled architecture. Note that f(a)
is the validation loss of a fully trained network a, and this observation of the network
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performance is used as the label of the training sample for the predictor. Also, note
that every collected pair (a, f(a)) (evaluated both during the initial sampling and dur-
ing the evolutionary search) is stored in memory to avoid the redundant computation
for the same architecture a.

Algorithm 1 Pseudocode of the proposed algorithm.
1: function Evolution(npop, ngen)
2: pop← initialize_pop(npop) ▷ npop: population size
3: f̂(·)← initialize_predictor() ▷ probabilistic regression model (NGBoost)
4: history ← Set() ▷ evaluated individuals by full training
5: for (gen = 0; gen < ngen; gen++) do ▷ ngen: max. number of generations
6: evaluate_fitness(pop, f̂(ind), history)
7: new_pop← select(pop)
8: new_pop← crossover(new_pop)
9: new_pop← mutation(new_pop)

10: pop← check_parents(pop, new_pop)
11: end for
12: return history
13: end function
14:
15: procedure evaluate_fitness(pop, f̂(·), history)
16: for ind ∈ pop do
17: ind.fitness← f̂(ind)
18: end for
19: topk ← reordering(pop) ▷ reorder individuals w.r.t. predicted fitness and select top k individuals
20: for ind ∈ topk do
21: if ind ̸∈ history then
22: a← phenotype_decoding(ind)
23: ind.fitness← f(a) ▷ full training to evaluate the fitness
24: history.add(ind)
25: else
26: ind.fitness← history.get(ind).fitness
27: end if
28: end for
29: retraining(f̂(·), topk) ▷ update the predictor with the new observations
30: end procedure

The evolutionary process over ngen generations begins with the fitness evaluation
of the population. The evaluation procedure is done in two steps: 1) fitness prediction
and reordering; 2) fitness observation and updating. In the first step, we predict the
fitness of the individuals using the surrogate model f̂ . The computational cost of
the prediction is negligible compared to the actual fitness evaluation, which requires
network training. After marking each individual with the predicted fitness, we sort the
individuals according to their predicted fitness, so that in the following step we can
select the best individuals in terms of predicted fitness.

The ranking by the predictions can be used as it is in the evolutionary process,
because the predictions given by the trained regression model broadly correlate with
the actual fitness observations. However, the correlation may not be very high, since
the predictor is trained on a limited number of samples evenly spread over a large
search space. For this reason, we propose to observe (i.e., evaluate) only the fitness of
the elites, i.e., the top k individuals based on the predicted fitness, that are expected to
have also better actual fitness values. The additional observations are used to replace
the predictions of the current elites, as well as to update the predictor. By doing so, we
improve the correlation between the fitness predictions and the fitness observations, at
least for the individuals that have good fitness.

As shown in Figure 5, the fitness f(a) of the elites is observed by generating and
training, for each of them, the Transformer network a (the phenotype) associated
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with its corresponding genotype. The obtained (a, f(a)) pairs are appended to the
training data for the predictor, and the predictor is retrained. In this way, the knowledge
obtained by the new observations contributes to improved fitness predictions. At the
same time, those pairs are recorded in the history, which is a look-up table used to
avoid redundant computation (as mentioned above). In fact, before carrying out a
fitness observation on a, first we check if a exists in the history. Then, we take its
fitness f(a) from the history if it has already been evaluated, otherwise we perform the
fitness observation for a and add the observation to the history.

After evaluating the fitness, every individual in the current population is consid-
ered to induce offspring. Specifically, the genetic operators considered in our work are
crossover and mutation. Each of them is applied independently, to avoid disruptive
combinations of their joint effect. First of all, reproduction starts with a custom one-
point crossover that, with a probability of 0.5, mates two adjacent individuals, i.e.,
given that the individuals are sorted according to the fitness, the (2i− 1)-th best indi-
vidual is combined with the (2i)-th best individual, where i ∈ [1, npop

2 ]. The offspring
population is then obtained by applying, again with a probability of 0.5, uniform mu-
tation to the population that includes both the individuals obtained through crossover
and the individuals that have not undergone crossover. During mutation, according to
a probability pgene, we replace the value of each gene with a uniform random value
drawn between its upper and lower bounds. The value of pgene is set to 0.3, so that
it can lead to mutating an average of 3.3 genes (out of 11) per individual. This way,
we can achieve a good compromise between excessively small or excessively disruptive
mutations.

Finally, the population for the next generation is formed by the following replace-
ment: 1) we predict the fitness of each offspring; 2) the fitness of its parents is checked;
3) if the offspring’s fitness is superior compared to the fitness of one (or both) of its
parents, that parent (or the one with the worst fitness, if both parents are worse than
the offspring) is replaced with the offspring.

3. Results and discussion

This section presents the details of our experimentation for evaluating the proposed
algorithm: first, Section 3.1 describes the CMAPSS dataset. Next, we introduce the
evaluation metrics in Section 3.2. Then, the computational setup for the evolutionary
runs and the details of the network training are outlined in Section 3.3, followed by
the experimental results and their analysis discussed in Section 3.4.

3.1. Benchmark dataset

Accurate RUL predictions for industrial components make it possible to develop an
optimal maintenance policy, which in turn contributes to reducing any unplanned
downtime and cutting dispensable losses. The airline industry is a typical applica-
tion scenario, since timely maintenance of aircraft engines can largely affect the overall
operation cost. In fact, by predicting the engines’ RUL accurately, it is possible to
minimize the overall maintenance costs.

Considering the above, NASA has introduced the CMAPSS dataset, comprising
several run-to-failure trajectories simulated with the CMAPSS simulator [11]. The latter
simulates the degradation of a commercial turbofan engine, depicted in Figure 6, and
it provides simulated sensor measurements under different settings of health-related
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parameters [31].
Currently, this dataset is considered one of the standard benchmarks for data-driven

RUL prediction tasks. In our work, we carry out the experiments on this dataset to
show fair comparisons of our method to the most recent works presented in the existing
literature. The dataset contains four sub-datasets , identified as FD001-FD004. Each
of them considers different operating states and fault modes, generating 21 trajectories
of recordings from different sensors. The update for the RUL prediction and the sensor
measurement occurs at every cycle, which is the time unit considered in this dataset.
As summarized in Table 2, each sub-dataset comprises of a training set Dtrain and a
test set Dtest; the former provides a running history of each engine until its failure,
while a history of each test engine on Dtest ends at a certain cycle before failure. Thus,
the CMAPSS dataset enables the task of accurately predicting the RUL of each test
engine at the end of its given history, for which it is allowed to exploit the data in
Dtrain.

The CMAPSS dataset is made available by NASA as a set of 12 plain text (ASCII)
files, occupying in total 43MB. Four of these files contain the training RUL values
(each file occupies less than 1KB); four other files contain the monitoring data for the
training engines, measured at every cycle (with size ranging from 3.5MB for FD001 to
10.4MB for FD004); finally, the last four files contain the monitoring data for the test
engines (with size ranging from 2.2MB for FD001 to 7MB for FD004).

The training RUL values are saved as a column with one integer per line, one per each
training sample in the corresponding sub-dataset. The files containing the monitoring
data are instead arranged in rows (one per sample) with space-separated numerical
values represented as plain text with up to 4 decimal values. The full dataset is available
at: https://github.com/mohyunho/NAS_transformer/tree/main/cmapss.

For each engine, the given multivariate time series are processed by a sliding window
to prepare fixed-length sequential data, which are then used as the training and test
RUL samples; the number of samples used in our experiments is described in Table 3.

We should note that the size of the dataset appears to be sufficient to train the
Transformer. To verify this, we take the upper bounds of the architecture parameters
(which are described in Table 1) and generate the corresponding Transformer. Then, we
train the Transformer for each sub-dataset. The four training loss curves are depicted
in Figure 7.

In general, FD002 and FD004 are more challenging to make precise predictions
compared to FD001 and FD003, since their data are simulated under a larger number
of different operating conditions.

3.2. Evaluation metrics

In our prediction tasks, the error is defined as the discrepancy between the predicted
and target RUL, and di denotes the error on the i-th sample. The RMSE on Dtest is
then defined as follows:

RMSE =

√√√√ 1

n

n∑
i=1

d2i (10)

where n represents the number of samples in Dtest.
Furthermore, we consider an additional metric, called s-score, which penalizes opti-

mistic RUL predictions. More specifically,
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it separates the predictions according to whether they are “optimistic” or “pes-
simistic” via an asymmetric function which is formulated to grant smaller values to
pessimistic predictions compared to optimistic predictions. This is formulated in this
way:

s-score =

n∑
i=1

si, si =

{
e−

di
13 − 1, di < 0

e
di
10 − 1, di ≥ 0

. (11)

Hence, different from the RMSE, the s-score evaluates the risk that the output of the
network is larger than the actual RUL value.

3.3. Computational setup and training details

The Transformer network described in Section 2.1.3 is implemented in PyTorch. The
baseline GA outlined in Section 2.4 is implemented using the evolutionary computation
framework DEAP [32]. Our code is available online1. All the experiments have been
carried out on a single NVIDIA Titan Xp GPU.

In the dataset, different sensors give 21 independent trajectories. Among the 21
multi-variate time series, we discard 7 sequences whose data points never vary over
time and take into account the remaining 14 time series. Then, the time series data
are rescaled into the range [−1, 1] by using min-max normalization. For each sub-
dataset, when we create samples for the Transformer networks, those normalized data
are divided by applying a fixed-length time window with stride 1. The size of the
windows for FD001, FD002, FD003 and FD004 is set to 40, 60, 40 and 60, respectively,
following the values suggested in [22].

Our NAS algorithm involves the validation loss evaluation of the Transformer net-
works followed by their full training. To do so, the given Dtrain is split into Dw and
Dv, where the former is a set of training purpose data and the latter is used for vali-
dation purpose: specifically, randomly chosen 80% of the engines in each sub-dataset
are assigned to Dw for solving Equation (9). The remaining 20% are designated as
Dv for solving Equation (8). This proportion has been determined according to the
investigation conducted in our previous study [33].

The loss function we employed is the MSE, see Equation (1). The training of the
network corresponds then to finding the network weights which minimize the loss by
using the Adam optimizer [34]. The batch size is set to 256, and this size is also used
for calculating the SNIP value when we prepare the predictor inputs. In our GA,
overfitting can lead to unreliable fitness evaluations. To overcome this issue, we apply
an early stopping mechanism to measure the validation loss appropriately. In detail,
network training stops early in the event that the validation loss does not decrease by
a given delta after a given patience; otherwise, the training continues until the pre-
defined maximum number of epochs. The value of the delta and patience is 0.1 and 10
respectively. We train each network for at most 100 epochs on the FD001 and FD003,
and 200 epochs on the FD002 and FD004. The reason for setting a larger value for the
latter two sub-datasets is that they have a greater number of training samples than
the former two. Thus, on FD002 and FD004, a relatively higher number of training
epochs is required for allowing the learning curve to reach a plateau.

Furthermore, we apply a learning rate decay in conjunction with the early stopping
mechanism; the learning rate starts with a value of 10-5, and it is then multiplied by

1https://github.com/mohyunho/NAS_transformer
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a factor 0.9 every 10 epochs. This contributes to suppressing the fluctuation of the
validation loss curve, so that we can avoid misleading observations given by those
fluctuations. One additional note is that the validation loss in our work is defined as
the RMSE on Dv. As such, the fitness of each network corresponds to the validation
RMSE achieved by the trained network.

3.4. Experimental results

Our experiments aim to find the optimal Transformer architectures using the evolu-
tionary search proposed in Section 2.4, and to numerically evaluate the quality of the
discovered solutions by calculating the two metrics defined in Section 3.2 on the test
set Dtest after training. Furthermore, we perform a comparative analysis contrasting
the results from the proposed GA with the state-of-the-art results.

The experiments begin by initializing the predictor. The budget used to initialize
the predictor, m, is determined as 100, i.e., we sample 100 different architectures by
LHS, and those networks are fully trained on Dw to observe the validation RMSE
on Dv. After the observations, we train the predictor to minimize the error of the
regression model output. We set a small m value compared with the search space
size, considering the following reasons: 1) as our predictor, we employ the NGBoost,
a probabilistic regression that performs well with relatively small datasets [10]; and 2)
for each generation, the predictor is updated with few samples which are expected to
have better fitness.

After the initialization, we execute the proposed algorithm for a maximum number of
generations ngen of 10 with a population size npop of 1000. In the fitness evaluation step
for each generation, we retrain at most only 1% of the population, i.e., the number
of elites, k, is set to 10. Therefore, in each evolutionary run the maximum possible
number of network training processes is 100 over 10 generations, but we observed that
the actual number of training processes conducted in our experiments were 61, 81, 77
and 73, respectively for each sub-dataset, thanks to the history that enables to reuse
the fitness values observed in the previous generations. Thus, for each evolutionary
run, we merely need to train at most 200 networks (100 for the initialization and 100
for the updates) out of approximately 2.36×1012 possible networks in the search space.
When it comes to the definition of the observation history, as discussed before this is
an archive of all the solutions found during the search.

When analyzing the convergence of our GA, we consider the results from a single
run of the algorithm (Section 3.4.1), whose results are then discussed in Section 3.4.2.
Likewise, when comparing the quality of the obtained solutions with LHS solutions
(Section 3.4.3), we define the solutions obtained by the proposed algorithm as the
10 best networks (in terms of fitness) from the history in a single run of evolutionary
search. Considering multiple solutions, rather than just one best solution, also allows us
to statistically compare the quality of solutions. On the contrary, when comparing our
results to the state-of-the-art (Section 3.4.4), we perform 5 independent evolutionary
runs, and take one best solution for each run. By considering multiple runs, we can
enhance the reliability of the experimental results in terms of performance when our
numerical results are compared to the results of other existing works.

3.4.1. Network specifications

The specification of each of the found solutions is outlined in Tables 4 to 7 for each
sub-dataset respectively. From the specifications, we can observe that the best solutions
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tend to have large dmodel, while the values of the other parameters regarding dimension
do not obviously correlate with the fitness. We are able to discover that the larger
number of attention heads does not always provide better fitness, as discussed in the
other works [9,26]. Of note, Nenc and Ndec do not always converge to their upper bounds.
This suggests that stacking identical layers largely increases computational cost, but
does not always give better fitness.

3.4.2. Convergence

The convergence of each evolutionary run is analyzed by tracking the population av-
erage fitness, in conjunction with the std. dev., across 10 generations. As shown in
Figure 12, for all the experiments, the average fitness decreases along with the gener-
ations. This reveals a gradual improvement in the quality of the solutions, given the
fact that our algorithm can keep finding better solutions across the generations. How-
ever, while the overall trends show gradual improvements, they do not monotonically
decrease. This is due to the fact that we update the predictor at every generation
with new observations. A small increase in the average fitness at a certain generation
indicates that the predictor provided “optimistic” fitness predictions in the previous
generation, but those are then corrected by the new observations in the current gen-
eration. Additionally, we can observe that the average fitness curve becomes more flat
around the last generation, which reveals that 10 generations are enough to show an
improvement of the average fitness across generations. However, the std. dev. in the
later generations is not clearly smaller than in the early generations. This is probably
due to the fact that most fitness values in the population are predicted rather than
observed.

3.4.3. Comparison with LHS

To demonstrate the advantage of our algorithm, we compare the quality of the so-
lutions obtained with it to that of the solutions given by LHS. As discussed above,
it is necessary for our algorithm to train 100 different architectures sampled by LHS
to check the validation RMSE in the predictor initialization step. Since we exploit
these solutions to initialize the predictor, which is only one part of our optimization
algorithm, the optimal solutions found by the GA should, in principle, be better than
the LHS solutions. Here, the LHS solutions are the 10 best samples out of 100 LHS
samples in terms of the validation RMSE, so that we make a fair comparison with our
approach by considering the same number of solutions (remember that we take the 10
best solutions from the GA). Then, we verify the advantage by comparing the solutions
found by our proposed algorithm with the LHS solutions in terms of fitness as well
as test performance. To be specific, we compare the quality of the solutions by means
of both validation RMSE and test RMSE. These comparisons are depicted in the box
plots shown in Figures 8 to 11, respectively for each of the four CMAPSS sub-datasets.

The statistical difference of the two solution sets is assessed based on the Mann-
Whitney U (MWU) test [35]. For each pairwise comparison, we compute the statistical
result and add a statistical annotation w.r.t. the MWU test p-value obtained on the
two corresponding box plots.

Regarding the validation RMSE, which is the objective of our optimization algo-
rithm, the proposed method has statistically better performances compared to LHS,
except for FD002 where the difference is not significant (“ns”). In particular, the p-
values obtained on FD001 and FD003 are lower than 0.01, showing that the results we
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obtained are significantly better than LHS. On FD002, even though the difference is
not significant, Figure 9 graphically demonstrates that the improvement is non-trivial;
instead, the difference for FD004 is significant, but as Figure 11 reveals, it has a higher
p-value than that obtained for FD001 and FD003.

The proposed GA and the LHS also are also evaluated on the test set Dtest. This
performance comparison appears on the right side of Figures 8 to 11. We can visually
detect that our method is better compared to LHS, in terms of test RMSE, i.e., the best
solution obtained by the proposed algorithm can always provide at least one solution
with lower test RMSE than any of the LHS solutions. Nevertheless, the performance
differences between the 10 solutions found by the two methods are not statistically
significant.

3.4.4. Comparison with the state-of-the-art

In the following, we evaluate the results obtained by our method by comparing them
to the results from different methods from the most recent literature. For each sub-
dataset, we execute 5 independent runs of the GA initialized with different random
seeds. The multiple runs aim to enhance the reliability of the results obtained by the
proposed algorithm. In detail, for each run of the evolutionary search we take the best
(in terms of fitness) architecture, along with its performance. For each sub-dataset, we
collect the corresponding solutions and show their performance in Tables 8 to 11. The
mean and std. dev. of the 5 performance values are shown in Tables 12 and 13. The
latter two tables summarize different DL based methods to be compared (including
ours) and their results in terms of RMSE and s-score. For each method, the results on
each sub-dataset are independent. The last column of each table contains the sum of the
results across the four sub-datasets, to obtain an aggregate measure of the robustness
of the compared methods.

At first, we consider the results achieved by the CNN [3], which comprises of four
convolutional layers. The following RNN method [21] employs a long short-term memory
(LSTM) network. Then, the next method [36] utilizes unsupervised pre-training via
restricted Boltzmann machines (RBM), prior to predicting the RUL using an LSTM.
The two rows below show the results from two different types of CNN-RNN models;
the former, called DAG network, exploits both CNN and LSTM in parallel, with each
other for extracting features [4], while the latter has a sequential architecture based on
multi-head CNN followed by an LSTM [5]. The method based on an RNN autoencoder
scheme [6] constructs health index curves showing degradation to predict RUL, using a
bidirectional RNN based autoencoder scheme as a feature extractor. The AGCNN [7] is
a custom encoder-decoder architecture in which the encoder is made up of bidirectional
RNN and CNN. Lastly, the latest compared method [8] applies an attention mechanism
on top of the features extracted by four convolutional layers.

Compared to the other works described above, developing our method requires less
knowledge and effort from human experts, because our method automatically dis-
covers optimal architectures for RUL prediction. In the resulting tables, each last row
reports the experimental results obtained by the best solutions found with our method.
With regards to the sum of test RMSE values, the proposed method outperforms the
compared methods, which have all been manually developed by human experts. Fur-
thermore, on FD002 and FD003, the RMSE results given by our proposal noticeably
advance the state-of-the-art.

Furthermore, our method is evaluated with respect to the s-score defined by Equa-
tion (11). Of note, this metric is used only for test results evaluation on Dtest; in fact,
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in all our experiments the RMSE is selected as the objective of our evolutionary op-
timization, rather than the s-score, since the RMSE is able to better guide the NAS
process, compared to the s-score. In fact, following our previous study [33], when we
take the RMSE rather than the s-score as a fitness function, the optimized network
yields better test results in terms of both metrics.

In terms of s-score, while the proposed method does not clearly outperform state-
of-the-art algorithms, its test values are comparable to the best scores in the table.
Compared to other recent DL based methods, the proposed method can achieve sig-
nificantly lower s-score values. Overall, although our RUL prediction model tends to
provide somewhat “optimistic” predictions, it is a reliable RUL prediction tool consid-
ering its outstanding prediction accuracy.

4. Conclusions

In this paper, we introduced a NAS algorithm that employs evolutionary computation
to explore the combinatorial parameter space for the Transformer architecture to be
used for RUL predictions. To effectively find the optimal architecture, we developed a
GA that makes use of a performance predictor. The predictor not only approximates the
fitness function, but also serves to select suitable individuals to be used for retraining
the predictor itself at every generation. Thanks to the surrogate model that improves
over generations, our fitness predictions for the best individuals become more accurate
and, ultimately, allow us to find more reliable solutions (i.e., RUL predictors).

Our algorithm was assessed on the CMAPSS dataset, that is the de facto standard
benchmark for studies on RUL predictions. The statistical analysis revealed that the
quality of the solutions found by our method is better overall than that obtained by a
space-filling sampling. When we compared our results with the ones obtained by the
most recent methods from the literature, we found that, in terms of performance, the
proposed method is superior in terms of prediction error on the test data. Moreover,
the s-score results of our method are fairly comparable with those given by the state-
of-the-art methods. Overall, we demonstrated that the Transformer with optimized
architecture can be a useful tool to solve the RUL prediction task. This is because it
can provide highly accurate predictions, as long as its architecture is obtained by an
automated architecture design process based on evolutionary computation. As a final
consideration, we should point out that, while our experimentation was focused on
the CMAPSS dataset due to the possibility of comparing existing methods tested on
the same dataset, our proposed method is of general applicability and can be poten-
tially applied to any other RUL prediction problem, provided that sufficient data that
describe the system’s dynamics and its potential faults are available.
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Figures and tables

Figure 1. Flowchart of a data-driven RUL prediction task.

Figure 2. Model architecture of the Transformer.
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Figure 3. Multi-Head Attention based on parallel layers of Scaled Dot-Product Attention.

Figure 4. Overview of NGBoost which comprises of three modular components: Base Learners (l), Parametric
Probability Distribution (Pθ), and Scoring Rule (S).
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Figure 5. Overview of the proposed algorithm.

Figure 6. Simplified diagram of the turbofan engine simulated in CMAPSS [31].
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Figure 7. Training loss curves of the Transformer (based on the upper bound of each architecture parameter)
on the four CMAPSS sub-datasets.
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Figure 8. Box plots of the quality of solutions given by LHS and by the proposed algorithm on FD001.
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Figure 9. Box plots of the quality of solutions given by LHS and by the proposed algorithm on FD002.

LHS EA + predictor
Methods

9.7

9.8

9.9

10.0

10.1

10.2

10.3

10.4

Va
lid

at
io

n 
R

M
SE

**

LHS EA + predictor
Methods

10.75

11.00

11.25

11.50

11.75

12.00

12.25

12.50
Te
st
 R
M
SE

ns

Validation RMSE Test RMSE

Figure 10. Box plots of the quality of solutions given by LHS and by the proposed algorithm on FD003.
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Figure 11. Box plots of the quality of solutions given by LHS and by the proposed algorithm on FD004.
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Figure 12. Average and std. dev. of the individual fitness in the population across generations for the proposed
algorithm on the four CMAPSS sub-datasets.

25



Table 1. Architecture parameters and their bounds.

Parameter Description Min Max

dmodel dim. of embedding and each sub-layer input/output 6 25
dk dim. of attention key 6 25
dv dim. of attention value 6 25
dffs dim. of FFN in sensor encoder layer 6 25
dfft dim. of FFN in time encoder layer 6 25
dffd dim. of FFN in decoder layer 6 25
hs number of attention heads in sensor encoder layer 1 16
ht number of attention heads in time encoder layer 1 16
hd number of attention heads in decoder layer 1 16
Nenc number of encoder layers stacked 1 3
Ndec number of decoder layers stacked 1 3

Table 2. CMAPSS dataset overview.

Sub-dataset FD001 FD002 FD003 FD004

Number of engines in training set 100 260 100 249
Number of engines in test set 100 259 100 248
Max/min cycles in training set 362/128 378/128 525/145 543/128

Max/min cycles in test set 303/31 367/21 475/38 486/19
Operating conditions 1 6 1 6

Fault modes 1 1 2 2

Table 3. Number of training and test RUL samples.

Sub-dataset FD001 FD002 FD003 FD004

Number of samples in training set (Dtrain) 13702 31547 16543 36975
Number of training purpose samples (Dw) 10673 24675 12266 27392

Number of validation purpose samples (Dv) 3029 6872 4277 9583
Number of samples in test set (Dtest) 100 259 100 248
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Table 4. Specification of the top 10 Transformer architectures discovered by the first run of the proposed
algorithm on FD001. These are used for comparison with the LHS solutions discussed in Section 3.4.3. The
boldface indicates the best architecture in terms of fitness; it corresponds to the first row of Table 8.

Dataset
Phenotype (Transformer architecture)

Fitness
Performance

dmodel dk dv dffs dfft
dffd

hs ht hd Nenc Ndec RMSE s-score
[24, 100][24, 100][24, 100][24, 100][24, 100][24, 100][1, 16] [1, 16] [1, 16] [1, 3] [1, 3]

FD001

80 48 92 40 24 60 16 8 7 3 1 11.43 11.51 209
84 56 92 48 32 60 13 9 3 3 1 11.42 11.93 256
92 52 96 60 24 96 14 12 3 2 2 11.42 12.10 257
84 24 92 48 32 56 14 12 7 3 1 11.36 12.69 271
100 64 92 24 28 84 14 8 15 3 1 11.21 12.58 267
72 24 84 92 60 68 16 2 15 3 2 11.19 11.96 264
100 48 100 40 64 60 14 6 11 3 2 11.18 12.31 282
80 72 92 24 24 48 16 8 7 3 1 11.15 12.30 270
100 84 72 48 28 88 13 3 8 3 3 11.14 11.98 264
92 24 84 84 24 80 16 4 14 3 3 11.13 11.50 202

Table 5. Specification of the top 10 Transformer architectures discovered by the first run of the proposed
algorithm on FD002. These are used for comparison with the LHS solutions discussed in Section 3.4.3. The
boldface indicates the best architecture in terms of fitness; it corresponds to the first row of Table 9.

Dataset
Phenotype (Transformer architecture)

Fitness
Performance

dmodel dk dv dffs dfft
dffd

hs ht hd Nenc Ndec RMSE s-score
[24, 100][24, 100][24, 100][24, 100][24, 100][24, 100][1, 16] [1, 16] [1, 16] [1, 3] [1, 3]

FD002

84 88 80 32 84 40 8 11 10 3 2 17.16 17.40 1478
100 92 44 36 52 36 14 14 3 3 2 17.09 17.80 1289
80 64 80 52 56 48 4 12 16 2 2 17.05 17.02 1186
100 92 44 36 100 68 11 14 16 3 3 16.87 16.73 1290
100 84 64 96 52 36 14 14 3 3 2 16.83 18.63 1494
96 100 36 76 40 96 1 16 9 3 2 16.70 17.44 1608
100 40 36 64 92 68 11 14 16 1 3 16.60 16.28 1142
96 64 36 40 92 96 14 8 16 1 2 16.35 16.11 1068
100 88 36 100 76 80 12 10 16 1 2 16.34 15.96 1146
96 64 52 96 92 68 6 16 11 2 2 16.20 16.14 1131

Table 6. Specification of the top 10 Transformer architectures discovered by the first run of the proposed
algorithm on FD003. These are used for comparison with the LHS solutions discussed in Section 3.4.3. The
boldface indicates the best architecture in terms of fitness; it corresponds to the first row of Table 10.

Dataset
Phenotype (Transformer architecture)

Fitness
Performance

dmodel dk dv dffs dfft
dffd

hs ht hd Nenc Ndec RMSE s-score
[24, 100][24, 100][24, 100][24, 100][24, 100][24, 100][1, 16] [1, 16] [1, 16] [1, 3] [1, 3]

FD003

96 92 24 84 64 24 16 16 10 3 3 10.03 11.77 252
100 92 92 64 52 100 16 1 16 3 3 10.03 11.40 249
84 100 64 56 100 40 10 2 7 3 2 10.03 11.69 261
92 84 92 32 56 48 6 4 9 2 3 10.02 11.39 243
96 96 92 64 48 60 16 10 16 1 2 10.02 12.39 301
100 84 44 72 36 48 16 1 16 3 3 10.01 11.75 276
92 56 92 100 84 72 9 11 13 3 3 10.00 10.82 213
84 100 96 72 60 64 15 1 16 3 3 9.99 11.74 264
84 92 92 100 32 56 15 5 14 3 3 9.96 11.56 243
92 84 92 32 45 40 8 2 15 3 1 9.72 11.35 227

Table 7. Specification of the top 10 Transformer architectures discovered by the first run of the proposed
algorithm on FD004. These are used for comparison with the LHS solutions discussed in Section 3.4.3. The
boldface indicates the best architecture in terms of fitness; it corresponds to the first row of Table 11.

Dataset
Phenotype (Transformer architecture)

Fitness
Performance

dmodel dk dv dffs dfft
dffd

hs ht hd Nenc Ndec RMSE s-score
[24, 100][24, 100][24, 100][24, 100][24, 100][24, 100][1, 16] [1, 16] [1, 16] [1, 3] [1, 3]

FD004

76 48 80 52 96 64 4 12 16 2 2 18.53 20.50 2657
72 80 80 92 100 64 9 9 15 3 1 18.47 21.35 3519
92 76 76 92 64 48 5 9 15 3 1 18.44 20.23 2463
96 88 84 48 24 60 7 8 16 3 1 18.31 20.43 2758
92 88 68 100 32 48 5 9 15 3 1 18.31 20.41 3297
92 100 32 72 100 36 12 16 7 3 1 18.05 19.53 3037
84 96 52 32 88 32 1 16 16 3 1 18.00 20.53 3807
80 88 80 52 84 32 8 14 6 3 1 17.98 22.69 7414
92 48 32 40 100 60 12 16 7 3 1 17.60 19.10 3264
84 76 92 92 96 40 2 10 15 3 1 17.33 20.00 2298
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Table 8. Specification of the best architectures found in each of the 5 GA runs on FD001, in conjunction
with their test RMSE and s-score performance. The mean and std. dev. of the performance reported in the
table are selected for comparison to the state-of-the-art methods in Tables 12 and 13.

GA runs
Phenotype (Transformer architecture)

Fitness
Performance

dmodel dk dv dffs dfft
dffd

hs ht hd Nenc Ndec RMSE s-score
[24, 100][24, 100][24, 100][24, 100][24, 100][24, 100][1, 16] [1, 16] [1, 16] [1, 3] [1, 3]

1st run 92 24 84 84 24 80 16 4 14 3 3 11.13 11.50 202
2nd run 100 92 88 88 52 80 15 2 6 3 3 11.18 11.89 230
3rd run 100 92 88 24 36 72 10 15 16 3 3 10.65 11.41 193
4th run 100 48 72 40 32 60 14 10 16 3 3 11.56 11.76 236
5th run 88 28 92 40 44 68 14 5 9 3 3 10.94 11.60 217

Table 9. Specification of the best architectures found in each of the 5 GA runs on FD002, in conjunction
with their test RMSE and s-score performance. The mean and std. dev. of the performance reported in the
table are selected for comparison to the state-of-the-art methods in Tables 12 and 13.

GA runs
Phenotype (Transformer architecture)

Fitness
Performance

dmodel dk dv dffs dfft
dffd

hs ht hd Nenc Ndec RMSE s-score
[24, 100][24, 100][24, 100][24, 100][24, 100][24, 100][1, 16] [1, 16] [1, 16] [1, 3] [1, 3]

1st run 96 64 52 96 92 68 6 16 11 2 2 16.20 16.14 1131
2nd run 100 84 28 76 100 88 3 11 8 3 3 15.60 15.42 997
3rd run 92 100 28 24 80 44 8 11 12 2 3 16.87 16.26 1233
4th run 92 96 28 32 92 24 1 16 3 3 1 15.70 16.35 1163
5th run 100 92 56 68 48 72 12 4 13 2 3 16.03 15.80 1145

Table 10. Specification of the best architectures found in each of the 5 GA runs on FD003, in conjunction
with their test RMSE and s-score performance. The mean and std. dev. of the performance reported in the
table are selected for comparison to the state-of-the-art methods in Tables 12 and 13.

GA runs
Phenotype (Transformer architecture)

Fitness
Performance

dmodel dk dv dffs dfft
dffd

hs ht hd Nenc Ndec RMSE s-score
[24, 100][24, 100][24, 100][24, 100][24, 100][24, 100][1, 16] [1, 16] [1, 16] [1, 3] [1, 3]

1st run 92 84 92 32 45 40 8 2 15 3 1 9.72 11.35 227
2nd run 100 100 52 64 32 68 16 13 16 2 1 9.74 11.31 226
3rd run 88 84 68 80 44 56 14 2 15 2 2 9.77 11.15 230
4th run 96 96 92 52 48 60 16 4 11 3 3 9.64 11.39 218
5th run 88 52 92 60 88 72 12 12 12 3 3 9.63 11.57 241

Table 11. Specification of the best architectures found in each of the 5 GA runs on FD004, in conjunction
with their test RMSE and s-score performance. The mean and std. dev. of the performance reported in the
table are selected for comparison to the state-of-the-art methods in Tables 12 and 13.

GA runs
Phenotype (Transformer architecture)

Fitness
Performance

dmodel dk dv dffs dfft
dffd

hs ht hd Nenc Ndec RMSE s-score
[24, 100][24, 100][24, 100][24, 100][24, 100][24, 100][1, 16] [1, 16] [1, 16] [1, 3] [1, 3]

1st run 84 76 92 92 96 40 2 10 15 3 1 17.33 20.00 2298
2nd run 96 68 60 100 76 96 2 8 16 3 1 17.89 19.85 3038
3rd run 100 76 100 40 32 60 1 16 14 3 3 17.76 20.18 2602
4th run 100 80 24 56 84 56 3 16 5 3 2 18.27 20.70 3109
5th run 92 100 28 76 68 40 5 11 16 3 3 17.85 20.03 2315

Table 12. RUL prediction performance comparison with state-of-the-art methods (sorted by year), in terms
of test RMSE. The RMSE of the proposed method is calculated as mean ± std. dev. across 5 independent
runs of the evolutionary search; for each run, we take the best individual in terms of fitness and collect its
performance as shown in Tables 8 to 11. The results of the compared methods are taken from the original
papers, in which std. dev. is not provided. We consider the mean value in comparing our method to the others,
and the number highlighted in bold indicates the best value per column.

Method RMSE
FD001 FD002 FD003 FD004 Sum

CNN, 2016 [3] 18.45 30.29 19.82 29.16 97.72
LSTM, 2017 [21] 16.14 24.49 16.18 28.17 84.98
Semi-supervised DL, 2019 [36] 12.56 22.73 12.10 22.66 70.05
DAG network, 2019 [4] 11.96 20.34 12.46 22.43 67.09
Multi-head CNN-LSTM, 2020 [5] 13.27 19.49 13.21 23.89 69.86
RNN+AE, 2020 [6] 13.58 19.59 19.16 22.15 74.48
AGCNN, 2020 [7] 12.42 19.43 13.39 21.50 66.74
CNN+attention, 2021 [8] 11.48 17.25 12.31 20.58 61.62
Proposed method (GA+Predictor) 11.63±0.19 15.99±0.38 11.35±0.15 20.15±0.32 59.12
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Table 13. RUL prediction performance comparison with state-of-the-art methods (sorted by year), in terms
of s-score. The s-score of the proposed method is calculated as mean ± std. dev. across 5 independent runs of
the evolutionary search; for each run, we take the best individual in terms of fitness and collect its performance
as shown in Tables 8 to 11. The results of the compared methods are taken from the original papers, in which
std. dev. is not provided. We consider the mean value in comparing our method to the others, and the number
highlighted in bold indicates the best value per column.

Methods s-score
FD001 FD002 FD003 FD004 Sum

CNN, 2016 [3] 1290 13600 1600 7890 24380
LSTM, 2017 [21] 338 4450 852 5550 11190
Semi-supervised DL, 2019 [36] 231 3370 251 2840 6692
DAG network, 2019 [4] 229 2730 553 3370 6882
Multi-head CNN-LSTM, 2020 [5] 330 2880 401 6520 10131
RNN+AE, 2020 [6] 228 2650 1727 2901 7506
AGCNN, 2020 [7] 225 1492 227 3392 5336
CNN+attention, 2021 [8] 198 1144 251 2072 3665
Proposed method (GA+Predictor) 215±18 1133±85 228±8 2672±386 4248
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