UNIVERSITY
OF TRENTO

DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo — Trento (Italy), Via Sommarive 14
http://Aww.dit.unitn.it

EXTRACTION OF PI-CALCULUS SPECIFICATIONS
FROM UML SEQUENCE AND STATE DIAGRAMS

KaterinaKorenblat and Corrado Priami

February 2003

Technicd Report # DIT-03-007

society
technologies
The roots of innovation for Global Applications 1og

http://www.omnys.it/degas

DEGAS I5T-2001-32072

Design Environments for Global ApplicationS

Consortium: UNITN (I) University of Trento (Coordinator), IMM (DK) Institute of
Mathematical Modelling - Technical University of Denmark, DIPISA (I) Dipartimento
di Informatica - Universita di Pisa, UEDIN (UK) University of Edinburgh - MTCI (I)
Motorola Technology Center Italy - OMNYS (I) Omnys Wireless Technology

Extraction of m-calculus specifications from
UML sequence and state diagrams

Author(s): Katerina Korenblat and Corrado Priami
Participant(s): UNITN

Workpackage: WP4 Extraction, Reflection and Integration
Document number: WP4-UNITN-101-Int-001

Security: Pub Nature: R Version: 0.1 Pages: 17

Extraction of m-calculus specifications from
UML sequence and state diagrams®

Katerina Korenblat and Corrado Priami
Dipartimento di Informatica e Telecommunicazioni
University of Trento - Povo, Italy

pokozy@science.unitn.it, priami@dit.unitn.it

Abstract

We propose an automatic translation of UML specifications made up of
sequence and state diagrams into 7-calculus processes. The central point
of the proposed translation is the coherence of the two types of diagrams.
An implicit result of the paper is also the definition of a formal semantics
for UML sequence diagrams.

1 Introduction

The Unified Modeling Language (UML) [1] is a standard notation
used to capture high-level design of software systems. It gives struc-
tured, semi-formal, graphical methods for specification which are
however not strong enough for verification and validation of sys-
tems. UML provides the user with different kinds of diagrams, each
of them is natural for a description of different aspects of a complex
(software) system. In this paper we restrict our attention on specifi-
cations including only sequence and state diagrams. Such a choice is
often sufficient for specifying the behaviour of a whole system and
can be considered as a first step in handling multi-diagram UML
specifications.

To implement a formal analysis of a UML specification, we pro-
pose to translate it to some formal notation. The target formalism
of the translation that we select is process algebras [4]. Process
algebras are foundational calculi used to describe the concurrent
and distributed structure of systems. They are made up of a few
operators such as: i) a.— that describes sequential composition of

*This work is partially supported by the DEGAS (Design Environment fore Global Appli-
cations) project IST-2001-32072 funded by the FET Proactive Initiative on Global Computing

actions, ii) — | — that is the parallel composition of processes, iii)
— + — that denotes a nondeterministic choice. We can view process
algebras from different levels of abstraction. A common interpre-
tation is seeing these calculi as specification languages that must
be refined towards a real code. The theory of behavioral analysis
developed for process algebras (see e.g., [4]) postulates that refined
descriptions are still expressed in the same calculus but through
different programs. Then, some relations (usually a bisimulation)
are established between the two descriptions of the system to en-
sure that an implementation behaves according to its specification.
We are proposing here a different use of process algebras. We in-
terpret these calculi as an intermediate language into which UML
specifications can be translated. A state diagram based approach to
translation from UML to process algebras was presented in [2] and
[3]. In those works states are represented as processes and transi-
tions are represented as actions along communication channels.

In this paper we focus on a sequence diagram based approach,
where objects are considered as m-calculus [5] processes and mes-
sages as communications among these processes. A state diagram
of an object is used for choosing the feasible sequences of the mes-
sages occurring in the sequence diagram. This is needed because
sequence diagrams only show possible behaviour, thus exposing sam-
ple computations. Note that an outcome of our proposal is also the
definition of a formal semantics for UML sequence diagrams based
on the structural operational semantics of the m-calculus.

We now briefly discuss the motivations for the present work. We
rely on a standard Unified Modelling Language (UML) to ease for-
mal methods into the software production process. The challanges
we approach in this task are the definition of techniques to extract
specifications into process calculi from the possibly excessive or in-
complete information in the UML description. The final goal is to
have a design environment in which the user interacts with UML
only in order to perform formal analysis of his/her applications.

The paper is structured as follows. In section 2 there is a descrip-
tion of those aspects of UML we are interested in. In section 3 an
overview of the m-calculus is presented. A translation from sequence
diagrams to m-calculus is given in section 4. Finally, in section 5 we
discuss the joint translation of sequence and state diagrams.

2 Brief UML description

UML is a semi-formal modelling language which is a standard for
high-level specification of software systems. There are many dif-
ferent types of UML diagrams which are used to specify different
aspects of software systems. In this short presentation we focus on
sequence and state diagrams.

A sequence diagram shows how objects interact with one an-
other by representing examples of executions. A sequence diagram
has two dimensions: the vertical dimension represents time and the
horizontal one represents different objects. Objects can communi-
cate by exchanging messages represented by arrows. To show dif-
ferent kinds of communications the following variations of notation
are considered in this paper.

e Stick arrowhead is used for synchronous communication. In the
case of nested control flow the entire nested sequence have to
be completed before the outer level sequence resume.

e Dashed arrow with stick arrowhead is used for returning mes-
sage.

A message is labeled at least with the message name; one can also
include arguments and a condition which acts as a guard for send-
ing the message. Furthermore a message can be associated with
an assignment that associates with the assigned variable the value
returned after the message.

Messages can be combined in a branching construction which is
shown by multiple arrows leaving a single point and means alterna-
tive or concurrency of those messages depending of their conditions.

A state diagram describes the sequences of states and transi-
tions through which the modeled element can proceed during its
lifetime as a reaction to discrete events. A state diagram is a graph
that represents a state machine.

The formal operational semantics of a state diagram is defined in
terms of a Kripke structure [6]. Given a sequence si[t1) ... [t,)s, of
states (s;) and transitions (¢;) in the Kripke structure of a state dia-
gram S, we call a trace of S the sequence of transitions (t1,...,%,).
A concatenation of two traces v; and 7, is denoted by 1 o 7».

3 The m-Calculus

In this section we briefly recall the m-calculus [5], a model of con-
current communicating processes providing the notion of naming.

Let NV be a countable infinite set of names ranged over by a, b, . ..
with NN {7} = (). We also assume a set A of agent identifiers ranged
over by A, Ay, Processes (denoted by P,Q, R, ... € P) are built
from names according to the syntax

P:=0|nP|P+P|PP|(we)P|x=ylP|AWY1,---,Yn)

where m may be xz(y) for input, T(y) for output (where x is the subject
and y the object), e for empty string, or T for silent moves. Hereafter,
the trailing 0 will be omitted.
The prefix 7 is the first atomic action that the process 7.P can
perform. The input prefix binds the name y in the prefixed pro-
cess. Intuitively, some name y is received along the link named z.
The output prefix does not bind the name y which is sent along
x. The silent prefix 7 denotes an action which is invisible to an
external observer of the system. Summation denotes nondetermin-
istic choice. The operator | describes parallel composition of pro-
cesses. The operator (vx) acts as a static binder for the name x
in the process P that it prefixes. In other words, = is a unique
name in P which is different from all the external names. Finally,
matching [x = y|P is an if-then operator: process P is activated
if x =vy. A(yi,...,yn) is the definition of constants (hereafter, g
denotes y1,...,y,). Each agent identifier A has a unique defining
equation of the form A(yy,...,y,) = P, where the y; are distinct
and fn(P) C {y1,...,yn} (see below for the definition of free names
A parallel composition of processes Py, ..., P, is written as [[,_; ,,
For a set of names V' = {vy,...v,} we use the notation (vV)P for
(vvq) ... (vv,)P and (vvy,vy) P for (vvy)(vvg)P.

P;.

The late operational semantics for the m-calculus is defined in the
SOS style, and the labels of the transitions are 7 for silent actions,
x(y) for input, Ty for free output, and Z(y) for bound output. We
will use p as a metavariable for the labels of transitions (it is distinct
from 7, the metavariable for prefixes, though it coincides in two
cases). We recall the notion of free names fn(u), bound names bn(u),

and names n(u) = fn(p) U bn(u) of a label p.

It Kind fn(p) bn(p)
T Silent 0 0
Ty Free Output {z,y} 0

z(y),Z(y) Input and Bound Output {z} {y}

Functions fn, bn and n are extended to processes in the obvious way.
Below we assume that the structural congruence = on processes is
defined as the least congruence satisfying the following clauses:

e P and @ a-equivalent (they only differ in the choice of bound
names) implies P = @,

e (P/=,+,0) and (P/=,|,0) are a commutative monoid,
e s P=P,

o [t=2x|P=P,
o (vx)(vy)P = (vy)(vx)P, (vx)(R|S) = (va)R| S if x & fn(S),
](Cl/x})()R|S) = R|(vz)S if x € f(R), and (vx)P = Pifx &

A wariant of P -5 @ is a transition which only differs in that P
and @) have been replaced by structurally congruent processes, and
1 has been a-converted, where a name bound in p includes @ in its
scope.

We report the late transition system for the m-calculus in Tab. 1.
The transition in the conclusion of each rule, as well as in the axiom,
stands for all its variants.

4 Translation of Sequence Diagrams

In this section we restrict our attention to UML sequence diagrams.
Note that the semantics of UML allows a message in a sequence
diagram to be skipped. For simplicity in this section we consider
the case of non-skipping messages as it is the common practice of
designers (we will deal with skipping of messages later in the paper).
Moreover we assume that names of messages are unique, otherwise
we rename them before translation.

P{y/i} By

Act: p.P 25 P Ide : 00 P Q) =
p-L p Pt p
Par : M, bn(p)Nfm(Q) =0 Sum : m
PSP P pr
Res : P) ,x & n(w) Open : m,y *x
z(y) z(w) Z(y) z(w)
Close : FP—F.9—& , y€fin(Q) P=F,.Q7= &

PIQ = (v)(P'|Q'{y/w}) P = PIQ y/w)

Table 1: Late transition system for the m-calculus.

First we consider sequence diagrams without conditions on mes-
sages. We will represent an object from a sequence diagram as a
process in the 7m-calculus and compose all processes arising from the
given sequence diagram via parallel composition.

A message between two objects is represented as a communi-
cation between the corresponding processes. For each message we
create a private channel in the m-calculus representation and trans-
late the message as a synchronization on this channel. As far as
sequence diagrams show how an object interacts with others, it is
natural to consider an object as a sequence of sending and receiving
of messages. To translate an object we produce sequentially for each
of its sent/received message an input/output of a signal along the
corresponding channel.

Given two objects connected by a message m in the UML model,
we translate this message as an input on the channel m in the object
receiving the message and an output on the same channel in the
object sending the message (see Fig. 1).

Consider now a message with a condition.

The message is sent if its condition is satisfied, or it is skipped
otherwise. Given a sending message [z]m, we obtain an output on
the channel m prefixed by the matching [z = true] if the condition
is satisfied, or a skipping of the message prefixed by the matching

P

[x = false] otherwise. For a receiving message [x]m we obtain an
input on m or a skipping of it, depending on the value of x. For
example, in Fig. 2 a simple sequence diagram with a single condition
x is translated to a summation of two subprocesses representing two
possible valuations of x.

Nested messages initialized by a message with a condition includ-
ing its return will be discarded if the condition is not satisfied. We
translate an explicit return of the message as a usual message with
the name return{message name) - For example, we translate a message
[z]m with an explicit return (Fig. 3) as a sequence of messages [x]m
followed by return™.

A branching of several messages is translated as a parallel com-
position of these messages synchronized before continuation because
all of branched messages have to be delivered. In more details, for
a sending object we introduce an input on the special channel syn
after any branched messages. Then we construct a continuation pro-
cess that is the translation of the remaining messages prefixed by
sending of a syn signal for any message in the branching construc-
tion. Finally, we compose the translation of the branching structure
and the continuation process by parallel composition. In the receiv-
ing process we have a parallel composition of branched messages
and continuation without synchronization. We use the syn channel
to force the continuation process starting after the delivery of all
the branching messages. We illustrate our translation on a simple
sequence diagram presenting two parallel messages followed by a re-
ply (see Fig. 4). We use a channel syn to force ms occurring after
my and msy. Note that if the branching messages have alternative
conditions

An assignment construction is generally used for binding an iden-
tifier that stores the return value of a message. It can be translated
as an explicit return of a message which transfer not a signal but a
required variable (see Fig. 5). In other words, we use a real commu-
nication rather than a simple synchronization.

We now formally define a translation function from UML se-
quence diagrams to the m-calculus. Given a message m, we define a
set of nested messages nest(m) in a case of an explicit return as a
set of messages that become enable by the sending of m before the
return of m (including the return), oras an empty set, otherwise.

Fix a sequence diagram Sq with a set of objects O, a set of

H — (wm)m|m)

Figure 1: Translation of a message.

[x]m, = (vmq, m2)(([x = true] M1. ma | my. M) +
m, ([z = false] ma | ma))

Figure 2: Translation of a condition.

messages Mes and a set of conditions C. Let p : CU{A} — Bool
be an evaluation function of conditions that returns true for the
special condition A. Given a message m, we define ¢™ as a condition
corresponding to m, or as A if there is no condition on m. Given an
object O and a message m related with O, we define the function

t'r’p:(’)xMes—>771 as

[¢™ = true] m, if O sends m and p(c™) = true;

[¢™ = falsele, if O sends m and p(c™) = false;
m, if O sends m and ¢ = A;

tr,(O,m) =< m, if O receives m and p(c™) = true;
g, if (O receives m and p(c™) = false)

or (Im' | me nest(m’)
and p(c™) = false).

Fix an evaluation p and an object O defined by a sequence of set
of sent/ received messages M© = (Mo, My, ..., M,), where any set
M; = {m!,...,m¥} represent branching messages and m! € Mes
for each j € {1...k;} and ¢ € {1...n}. We define the translation
function seq, : O x Mes* — P as follows:

seq,(0,()) =0, and

1By abuse of notation we use here the metavariable for processes P to denote prefixes
possibly prefixed by a matching

[xIm
= (vm, return™)([z = true]m. return™ |
- - m. return’)

Figure 3: Translation of a return.

m
: (vmi, ma, ms, syn) (M1. syn |
NN = Tng. syn | Syn. sSyn. mg | my | me | M3)
m;

Figure 4: Translation of a branching construction.

seq (O, (M;, ..., M,)) =

tr,(0,m;).5€qy(O, (Miy1, ..., My)), if k=1
(Hj:l...kitrp<07 m‘g)'seCIp<O7 <Mi+17 R Mn> |nest(mz)).8’y?’LMi) ‘
| sgn™i ... symMiseq, (O, rest((M;, ..., M,))), if ki >1

k;

where rest((M;, ..., M,)) is a subsequence of (M;, ..., M,) starting
after returns of all messages from M;.

Eventually, for a fixed evaluation p we obtain P? = [[pcg seq,(O, MO).
And the overall translation of Sq is P = (vV)(X ccutayxBoot 7)),
where V = {v |v e MP v v = syn?i}.

In the proposed translation we always compare names with con-
stant values. Name matching can be implemented as presented in
Fig. 6. The idea of such strong translation is to construct an addi-
tional subprocess for the valuation of the variable.

As final remarks, we give some notes for simplifying the result of
the translation.

e Repeating conditions. We leave in a process only the first in-
stance of a repeating condition.

e Empty branched subprocesses. In a translation of branching
construction because of the false value of a condition we can ob-
tain a parallel subprocess containing only conditions and receiv-
ing of a synchronizing message. Such processes are nonessen-
tial and can be skipped together with a corresponding sending

10

= (vm, return™, z)(m. return™(x) |
m. return’ (x))

Figure 5: Translation of an assignment.

o % PO = my. return™ (z). [z = truelms
x:=m.() — P92 = my.val(z). return™" (x). mo
[xJm, Val = val(true) + val{false)
P = PO | P | Val

Figure 6: Translation of a condition using name matching.

of the synchronizing message. In the case of a single active
branched message we can translate it as usual sequence mes-
sage. For an example see the end of the following subsection.

4.1 An Example

To illustrate our translation consider the sequence diagram in Fig.
7 representing a slight variant of the Phone system in [3]. In this
example we have two conditions ¢; = [busy] and ¢y = [not busy].
Thus we obtain two possible valuations p; : p1(c1) = true, pi(cy) =
false and ps : pa(c1) = false, pa(cy) = true.

The result of the translation is shown below.

Caller”® = lift. dial_tone. number. connect_tone. busy_tone. hangs_up
Caller?? = lift. dial_tone. number. connect_tone. ring_tone. talking, . talkings.
disconnect. hangs_up

Phone”* = (vsyni)lift. dial_tone. number. (connect tone. syny | connect.
return®™"* (busy). syni1 | syn,. syn, . [busy = truelbusy-tone. hangs-up)

Phone? = (vsyni, syn2)lift. dial_tone. number. (connect_tone. syn1 | connect.
return®™< (busy). syn1 | syn, . syn, . Calling)

Calling = [busy = false]ring_tone. syns | [busy = false]call. answer. return
synz | SYmy. SYN,. disconnect. hangs_up

call

connect<

busy). [busy = truele
e (husy). [busy = falselcall. answer. talking: .

Receiverf! = connect. return

Receiver®? = connect. return
3 ———call
talking,. return

System = (VV)(Phone’! | Receiver | Caller®')+ (Phonef? | Receiver?? | Caller®?)

where V' is the set of channels of System.

11

Caller Phone Receiver

lift

¥

dial_tone

F

number

connect_lone

F

- — — —— — — — — — — — | |
o [not busy] ring_tone [rotbusyjcall
answer
talking
talking
disconnect .- — |
hangs_up

¥

Figure 7: Sequence diagram of the Phone system.

Now we illustrate the simplification technique of empty branched
subprocesses described in the previous section. In Phonef' we can
translate the branching construction {busy_tone, ring_tone, call} as
a single message busy_tone because conditions on two other messages
are false on a valuation p;, and we obtain its translation [busy =
truelbusy_tone instead of [busy = true|syny | [busy = true|syns |
[busy = truelbusy_tone.syny | SYn,.5YN,.5yM, as it would be done
in the general case.

5 Joint Translation of Sequence and State Dia-
grams

Each type of UML diagrams has its own most natural way of trans-
lation to the m-calculus. To translate a whole system composed
of different diagrams we choose a driving type of diagrams (here
a sequence diagram), and we take Necessary additional informa-
tion about the system from other types of diagrams (here state di-

12

cal | diad tone l"ing_ioy' call

number connsct connect answer
»

ione

cancel

| monber busy_tone / gh‘ Ag_ione disconnect

hangs up hangs up hangs up

¥

d

Figure 8: State diagram of the object Phone of the Phone system.

agrams). For a joint translation of sequence and state diagrams we
have two different approaches which are distinguished in the choice
of the driving type of diagrams:

e Sequence diagram based translation. According to our transla-

tion, each valuation is considered and translated separately so
that the obtained m-calculus representation is a summation of
subprocesses for all possible valuations. Additional information
from state diagrams helps to determine feasible computations.
The problem here is to represent more detailed information
from state diagrams because it is not understandable how to
translate internal actions of a state diagram not represented in
the sequence diagram. It is possible to ignore this detailisation
and obtain a translation at a communication level.

State diagram based translation. A state diagram (for each ob-
ject) is translated as a process parameterized by state name and
representing a transition from state to state. Additional infor-
mation from a sequence diagram is necessary for composing the
processes corresponding to different state diagrams. Such ap-
proach was used in [2] for producing translation to Performance
Evaluation Process Algebra (PEPA).

The last approach requiresa very detailed description of each ob-

ject of a system. However, sometimes we would prefer to have a
high-level specification which does not contain such a detailed spec-

13

ification of all objects. This is why we prefer a sequence diagram
based approach.

5.1 Sequence Diagram Based Translation

In the previous section we considered the case of nonskipped mes-
sages. However, in a general case a message in a sequence diagram
can be skipped. It can be useful, for example, to present several use
cases in one sequence diagram. If we consider a separate sequence
diagram in this paradigm we obtain all possible subsequences of a
given sequence of messages. So, we can see only an order of mes-
sages but have no information which message have to be skipped
in an allowed behaviour. To illustrate such a situation we add to
the Phone system on Fig. 7 a message timeout_tone from Caller to
Phone between messages dial_tone and number. It can be inter-
preted as follows. If a Caller does not dial a number, after some
waiting period it receives a timeout_tone and finishes the call. After
the timeout_tone, the Caller cannot dial a number, but a sequence
diagram does not give us such information, and we have a sequence
of messages

(..dial_tone, timeout_tone, number..)
besides the correct sequences
(..dial_tone, timeout_tone, hangs-up) and (..dial_tone, number..).

To consider only correct sequences of messages we need some
additional information which can be taken from other types of dia-
grams. For example, such information can be obtained from state
diagrams which describe behaviour of objects.

UML gives instruments for the description of a system but it
does not guarantee completeness and accordance of the model. So
to make a correct translation we have to formalize our assumptions
about a system. We consider a system made up of one sequence
diagram and a number of state diagrams (one for each object of the
sequence diagram) with the following requirements:

e Messages in a sequence diagram have unique names. It is nec-
essary for correct correspondence between messages in the se-
quence diagram and transitions in the state diagrams.

14

e A name of a transition corresponding to a transmission of a
message coincides with a name of this message.

e Fach communication is presented in the state diagram of an
object explicitly.

The behavior of a single object is described by a state diagram and
communication between objects is described by a sequence diagram.
Here we fix the simplest for translation assumption about state di-
agrams. In alternative, we can assume, for example, that a message
absent in the state diagram can be skipped only with the immedi-
ately previous message.

Note that a state diagram can include more detailed information
than a corresponding sequence diagram. But in this translation we
use state diagrams only for additional information about available
sequences of messages. So internal actions of a state diagram are
nonessential to our translation.

The first step of the translation is to rename transitions in such a
way that there are no two transitions with the same name available
in one state. For this purpose we enumerate such transitions by
adding of superscripts to their names.

Given a state diagram S, we define an external trace of S as a
restriction of a trace of S on a set of transitions corresponding to
messages. A set of external traces of S is denoted by 7(.5).

Now we modify the translation of sequence diagrams proposed
in section 4 by taking information from state diagrams to single
out correct execution sequences. The difference from the original
algorithm is the definition of the function seq,. For readability
we define seq, assuming no branching of messages. Hereafter, we
write head for a trace in a state diagram that reaches the current
state. Fix an evaluation p and an object O with a sequence of
sent /received messages (my,...,m,), and a state diagram S°. Be-
ginning from seq,(0, 0, (my,...,m,)) we calculate the translation
function seq, : O x T(S9) x Mes* — P as follows:
seq,(0,7,()) =0 where v € T(59), and
seq, (O, head, (m;, ..., my)) =

> tr,(0,m;).seq, (O, headom?, (miy1, ..., my))+skip,
{j |head o m{ET(SO)}

where skip = seq,(O, head, (m;11,...,my)), and it is present if

15

there exists a maximal trace head ot for some t # my, or there exists
a trace head o my, for some k > 1.

Let us illustrate this approach with the Phone System which was
already considered in section 4. Now we represent it by the sequence
diagram (Fig. 7) and the state diagram for the object Phone (Fig.
8).

An assumption about skipping of messages intuitively means that
the Caller can hang up after any of his actions. The result of the
translation of an object Phone on the valuation p; is:

Phonefr = lift. dial tone. (hangs_up+number. hangs_up+number.

(connect_tone. syny | connect.return®*(busy). syn; |
Syn;.
sy, . [busy = true|busy_tone. hangs_up))

A separate problem is a translation of a part-described system.
If one of the objects in a sequence diagram related by the message is
not described by a state diagram, we can extract information from
an existing state diagram. To illustrate this moment let us consider
the translation of the object Caller from the Phone System based on
the sequence diagram (Fig. 7) and the state diagram for the object
Phone (Fig. 8):

Caller? = lift. dial_tone. (hangs_up+number. hangs_up-+number.

connect_tone. busy_tone. hangs_up)

Here we suppose that for the receiving of a message number there
are three cases: ”ignore the message and finish”, ”finish after the
message” and ”continue after the message”, then we have the same
cases for the sending of this message.

6 Conclusion

In this paper we discussed a translation to the 7-calculus of non ho-
mogeneous UML specifications. We proposed an approach based on
sequence and state diagrams. As a prolongation of this investigation
it would be interesting to extract this translation for other types of
UML diagrams to present more complex software systems. Further-
more, we are currently implementing our translation and integrating
it with open-source UML tools.

This paper is a first step towards the use of formal methods in the
current practice of software development. The main contribution of

16

our extraction of process algebra specifications from UML diagrams
is the hiding of formal details from the designers.

Finally, we have implicitly defined formal semantics of UML
sequence diagrams based on the operational semantics of the -
calculus.

References

[1] G. Booch, J. Rumbaugh and I. Jacobson. UML notation guide,
version 1.1. Rational Software Corporation, Santa Clara, CA,

1997.

2] C. Canevet, S. Gilmore, J. Hillston, and P. Stevens. Perfor-
mance modelling with UML and stochastic process algebras.
To appear in Proceedings of UK PEW, 2002.

[3] Y. Dumond, D. Girardet and F. Oquendo. A Relationship
Between Sequence and Statechart Diagrams. Proc. <<UMI>
>2000, York, UK, 2000.

[4] R. Milner. A Calculus of Communicating Systems. Prentice-
Hall, 1989.

[5] R. Milner, J. Parrow and D. Walker. A calculus of mobile pro-
cesses. Inform. and Comput. 100 (1), 1992.

[6] D. Latella, I. Majzik, M. Massink. Toward a formal operational
semantics of UML statechart diagrams. Proc. FMOODS99,
Florence, Italy, 1999.

17

