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There are idiots who define my work as abstract; yet what they call abstract is what is most

realistic. What is real is not the appearance, but the idea, the essence of things.

Constantin Brâncuşi
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certificazione di profonda gratitudine per quelle persone che mi hanno seguito in questo

periodo della mia vita ”dottorale”, be’ allora, ecco che il cuore fa spazio a qualunque altra

regola istituzionale che avrebbe, forse, preteso che li scrivessi in inglese. Ma io pretendo il

cuore nelle cose, e cos̀ı voglio che il cuore ne sia protagonista. Dunque, per cominciare, e
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momenti più bui della mia vita. E’ riuscita con me a starmi vicino, assieme a me in quel

pensiero che delle volte non ci permette di vedere alcun orizzonte di senso futuro. E’ stata

l̀ı, complice anche una sua saggezza di pensiero maturata da una esperienza di vita che ha

saputo anche trasmettermi in maniera opportuna.

Ringrazio Simonella Ruboli, in quanto ”false friend” perché i suoi problemi sono diventati
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Abstract

Fine-grained sediments represent a significant component of the total transport load in

most fluvial systems around the world, not only including alluvial sand-bed rivers. A

variety of natural or human actions, such as fire, logging, flow diversion, road construction,

urban or agricultural development can increase the supply of sand to gravel- and cobble-

bedded rivers. In rivers with regulated flow regime the coarsest part of the sediments

mixture cannot be transported for most of the time, with only the fine fraction being

frequently transported, often under conditions of supply-limitation.

The transport of fine sediments is a key and yet relatively unexplored process of many

coarse-bed river systems with strong management and ecological relevance. It often affects

ecosystem richness and riverine connectivity in the vertical and transverse directions. Sand

accumulation over gravel beds can degrade the natural habitat of benthic organisms and

therefore their ecological functions, as well as limit oxygen availability to spawning sites

for several fish species through excessive pool filling. Moreover flushing flows are often

prescribed downstream of dams with multiple objectives, and constitute one component

of instream flow requirements for maintenance of aquatic and riparian habitat or for the

maintenance of recreation functions. The ability to predict the temporal dynamics of

sand surface under different flow scenarios is crucial to properly plan these operations

in order for the desired management objectives to be achieved. Increased sand inputs

over armored gravel-bed surfaces are also expected in the medium term following dam

removals. Hydraulic computations for water level prediction requires quantification of the

sand bedforms geometry that contribute to flow roughness thus affecting channel depth.

The present study addresses the dynamics of fine sediment transport in gravel-bed rivers,

for which the modelling framework is still far from being complete. The general aim of the

present work is to propose a morphodynamic modelling approach for the transport of the

coarse fraction of fine sediments (sand) over a gravel bed that is assumed at rest. More

specifically, the following research questions are addressed:

• Which are the key physical processes associated with near bed turbulence properties

over rough beds, and how do they change when sand is present in variable proportion

within the gravel bed? (Chapter 2)

• Which can be an appropriate form of a mathematical model for sand beform dy-

namics over immobile gravel? How do the continuity and momentum equations, as

well as the closure relationships for friction and bedload transport change when the

gravel bed is partially sand-covered? (Chapter 3)

• Which are the implications of such model when solved in the form of a stability
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analysis that aims to predict the conditions for sand bedform stability and preferred

wavelength selection over an immobile gravel bed? (Chapter 4)

A mathematical modelling approach is first developed to study the spatially-averaged

morphodynamic evolution of a sand bed surface over an immobile gravel bed. The hydro-

dynamic and sediment transport properties of this mixed configuration differ from those

of ”homogeneous” bed configurations classically found in fluid mechanics. Here the hydro-

dynamic forces are directly determined by the interaction between the flow and a rough

surface that is largely composed by the same sediment that can be transported.

The present modelling approach is based on (i) a two-fraction assumption for the bed

composition (sand and gravel) and (ii) a spatially-averaged description of bed roughness

geometry, near bed turbulence properties and closure relationships for bedload and sus-

pended load.

The reach-averaged sand surface elevation and the relative size ratio between the sand

and gravel diameter emerge as the key parameters that can be used to distinguish be-

tween different types of mixed bed configurations. A key distinction can be made between

”gravel-clast framework” and ”sand matrix” types of bed; these configurations are discrim-

inated by a relatively sharp transition region in the sand surface elevation.

The analysis builds on a synthesis of a variety of empirical and theoretical work on rough-

bed open channel flows and of experimental observations on the transport of fine sediments

over gravel beds. A theoretical framework is presented to describe the typical vertical and

horizontal scales of the mixed bed that can be relevant for spatial averaging. This allows

to propose novel physically-based mathematical relations that link the variation of rele-

vant flow and sediment transport properties with the sand surface elevation and the grain

size ratio. Depending on these two parameters, the near-bed shear stress and bedload

transport of sand depend on a varying dynamic balance between a ”hiding” and a ”bridge”

effect, that are physically discussed and mathematically quantified.

The proposed relationships serve as closure formulaes to link the computation of the near-

bed shear stress and of the sand bedload rates with the spatially-averaged flow field within

a 2D (x, z) morphodynamic model that includes:

• the momentum conservation equations for the fluid phase in the x and z directions;

• the mass conservation equations for the fluid phase;

• a novel formulation of the mass conservation equations for the sand layer within an

immobile gravel bed;
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The flow model is formulated referring to physical balances formally valid only within the

central flow layer, and indirectly accounting for the role of physical processes governing the

hydrodynamics within near-bed (roughness) layer in the proposed closure relationships.

Application to spatially-averaged uniform flow conditions shows satisfactory agreement

with the few available experimental data and allows to make a preliminary quantifcation

of the effect of the two key parameters describing different types of mixed bed configura-

tion. The limits of validity of the model are also discussed.

The morphodynamic model is finally used to predict the sand bed morphodynamics un-

der supply-limited conditions. The sand surface elevation is a measure of the sediment

supply-limitation that crucially controls the sand bedform development. A limited vol-

ume of bedload sediment leads either to smaller dimensions, the sediment starved bedform

or fewer isolated bedforms. The model is solved through a linear stability analysis that

incorporates recent developments in the theoretical study of sand dune stability in homo-

geneous conditions. The theoretical outcomes allow to focus on the physical phenomena

controlling the development of sand bedforms when sand is transported over an immobile

gravel bed and to determine the hydraulic conditions under which sand dunes formation

can be expected to develop within immobile gravel beds. Results also indicate a consistent

effect of supply limitation to extend the instability region towards shorter bedforms, as

observed by recent experimental investigations.
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1 Introduction

1.1 Relevance of the problem

Fine sediment transport in gravel bed rivers is gaining increasing scientific and manage-

ment interest because it is an important component in a wide range of geomorphic, engi-

neering, and resource management applications. Fine sediment transport and/or storage

in acquatic systems is environmentally significant, because fine sediment is both a vector

for the transport of contaminants and in its own right a pollutant, particularly in the

context of habitat quality (Jobson and Carey (1989)). This issue is not restricted to sandy

alluvial rivers, where the bed and transported sediment belong to similar (fine) fraction;

an increasing concern relates to gravel bed rivers.

Namely, in many gravel and cobble bed rivers, much of the sediment load may consist of

sand or finer material that is transported primarily in suspension determining a proper

morphology by depositing on bed and banks (Grams (2006)).

In regulated gravel-bed rivers subjected to a reduction of frequency and duration of

channel-forming discharges, flow is competent to mobilize only the fine fraction for pro-

longed periods of time (Schälchli (1992)). Such alteration of sediment regime might result

in progressive clogging of the gravel bed interstices (Schälchli (1992)) with consequent

decrease of the hydraulic connectivity between the surface and the hyporeic flow, thus

bearing severe effects for a variety of biogeochemical processes which ultimately affect the

stream ecological integrity (Weigelhofer and Waringer (2003)). A huge body of research

has long been indicating how infiltration of fine sediments in the interstices of gravel river

beds can degrade the spawning habitat for fish species that lay the eggs on or within the

gravel bed (Koski (1966); Petticrew et al. (2007)), while an excess of sand onto the gravel

bed can cause excessive pool filling thus reducing the available fish habitats during the

warm season (Lisle and Hilton (1991)).

For rivers that are managed for hydroelectric power generation for example, controlled

flushing flow release are commonly required in order to restore or to improve habitat con-

ditions for fish and macroinvertebrates (Hesse and Sheets (1993)). Kondolf and Wilcock

1



1. Introduction

(1996) restate various ecological and management objectives in terms of physical changes

for which flushing flow may be defined and which may be broadly divided into sediment

maintenance and channel maintenance flow, depending on whether the flushing flows are

designed to modify or maintain the channel sediment or the channel geometry. In some

cases these objectives can be shown to conflict. Nevertheless, sustainable management of

the fine sediment fraction in gravel beds rivers requires a better knowledge of the related

physical processes that are still rather poorly understood.

The transport of fine sediments in gravel bed rivers is a complex phenomenon that results

from reciprocal interaction between several physical processes. Existing model for fine

sediment transport were developed for condition in which the bed is uniformly composed

by the same material that is transported, i.e. the ”homogeneous” case. The transport

dynamics of fine particles over a gravel bed that is only partially covered by fine sediment

are poorly understood and no modeling framework addresses this situation explicitly.

1.2 Overview of known physical processes

According to Wentworth classification (Wentworth, 1922) gravel size ranges from 2 mm

to 16 mm, whereas sand size varies from 63 µm to 2 mm depending if sand is very fine or

very coarse, respectively.

But what is known about this peculiar problem from physical point view? Both field

and laboratory experiments have been performed during the past three decades, concern-

ing the mechanisms of deposition/erosion and infiltration of fines in gravel matrices (see

the introductory review of Diplas and Parker (1992) ). In his pioneering laboratory ex-

periments, Einstein (1968) studied the intrusion of silica flour (3.5-30 µm) into a gravel

matrix. He pointed out that fines settled into the gravel, reaching the bottom of the flume

and gradually filled the pores from the bottom upwards. The available studies on fine-

grained sediments transported by free surface flows over a immobile gravel bed highlight

the importance of the four main key research issues.

1. The bed surface composition depends on the proportion of sand in the gravel ma-

trix. Wilcock and Kenworthy (2002) demonstrated that the bed load transport rate

for both sand and gravel strongly depends on sand content, particularly with the

transition from clast- to a matrix-supported bed and with the associate shift in en-

trainment mechanisms for the bed load transport rate for each fraction. Moreover,

Grams and Wilcock (2007) proposed a new functional relation for prediction of the

entrainment of the suspended fine sediments over immobile coarse bed, depending

on the relative sand elevation in the gravel matrix.
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1.2 Overview of known physical processes

Figure 1.1: Bedform types observed in Kleinhans’s experiments (Kleinhans et al., 2002).Ar-
row indicate flow direction and scale bar are 0.5m.

2. The stability of the sand bed forms in gravel matrix is related to the degree of

sediment supply limitation. Kleinhans et al. (2002) proposed a stability diagram for

sand ribbons (stripes) and barchans dunes that occur in partially mobile conditions

for mixed sand-gravel sediments when bed load transport is dominant and limited

(see Figure 1.1 for key of bedform type). Grams (2006) proposed an analogous

stability diagram for the case of dominant suspended transport.

3. The characteristics of near-bed turbulence in fully rough gravel bed actually control

the near-bed transport dynamics of the fines. Nikora et al. (2001) have proposed

the suitability of a double-averaged (in temporal and spatial domain) momentum

equation for studying the hydraulics of irregular rough bed. Mignot et al. (2008),

using the same double-averaging approach, found that flow heterogeneity induced

by gravel bed topography play a dominant role in the mean hydrodynamics quanti-

ties such as velocity profile, turbulent shear, turbulent intensities, turbulent kinetic

energy.

4. The process of sand infiltration takes place into the gravel matrix and might be

coupled with surface processes. Cui et al. (2008) developed a theoretical model to

describe the process of fine sediment infiltration into immobile coarse bed, which has

been quantified experimentally by Wooster et al. (2008).

In order to focus the goal of the present research project, it is useful to review in more

detail the present state of knowledge about these processes and their interactions.

1.2.1 Bed surface composition

The experiments of Diplas and Parker (1992) described the relationship between sand

infiltration and the formation of a sand surface layer, which could give rise to bedforms
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Figure 1.2: Conceptual explanatory model for the occurrence of bedforms in sediment
supply-limitation. TL∗ and θ′ respectively represent the thickness of the transport layer
divided by water depth and Shields stress related to the grains of transported sediment
(from Kleinhans et al. (2002)).

in some cases. Flow-parallel transverse ribbons and flow transverse barchans have been

observed in sand-gravel rivers and have been reproduced in flume experiments when the

dominant mode of sand transport was bedload ((Kleinhans et al., 2002)) or suspended

load (Grams (2006)).

Kleinhans et al. (2002) found that sediment-supply limitation, i.e.a limitation of available

transportable sediments, plays a key role in controlling the morphology of the bed forms;

namely sand ribbons may occur both in the ripples and in the dunes regime and are

strongly sediment-supply limited in the dune regime. When sediment availability increases,

barchans emerge, and then grow together into barchanoid dunes up to fully delevoped

dunes. Figure 1.2 ((Kleinhans et al., 2002)) shows the bedform morphology with respect

to the thickness of the transport layer scaled by water depth (i.e. TL∗) that is a measure

of the volume of sediment in each bedform and the Shields stress of the transported grain

sediment. The barchans have been plotted to the left of the dunes,the sand ribbons are even

farther to the left, and the upper bound for TL∗ is given by the maximum (equilibrium)

height that a dune can attain in rivers, which is about 20% of water depth.

Similarly, the bed configuaration observed by Grams (2006) indicates a consistent

progression from sand stripes to isolated barchans to full dunes.

The volume of mobile fine sediment, represented by the average thickness of the mobile

sediment layer, and the near-bed hydraulic regime, quantified by grain stress and mobile

sediment grain size, are the key factors that can distinguish among configurations with

partial sand cover which determine different bedform types (see Figure 1.3).
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Figure 1.3: Bed-state stability diagram by proposed Grams (2006). Symbol marked with
(*) in the legend indicate data collected by Grams (2006). Symbol marked with(**) are
flume and field data collected and reported by Kleinhans et al. (2002). rb denotes the bed
roughness height.

1.2.2 Bedload and suspended load

Also the sand transport rate is affected by the relative proportion of sand within the

gravel bed. The relative influence of the mechanisms controlling sand and gravel trans-

port changes systematically with subsurface sand content fs and the associate change of

bed configuration from clast-supported to matrix-supported gravel bed. Clast-supported

gravel beds consist of a framework of gravel clast where the sand tend to be well hidden

among the gravel intersticies while in a matrix-supported gravel beds the proportion of

gravel grains in direct contact is reduced and approaches zero as the content of sand fs
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exceeds 50% (Wilcock (1998); Wilcock and Kenworthy (2002)). Wilcock and Kenworthy

(2002) developed a two-fraction model for sand and gravel bedload rate using a scaling

parameter which is a proxy for the incipient motion of each fraction. This parameter is a

”reference” Shields shear stress τri where i stands for the gravel or for the sand fraction.

Such ”reference” τri is defined as the value of τi at which the transport rate for each frac-

tion is equal to a small reference value, tipically 0.002. Figure 1.4 shows the ratio of the

reference shear stress for sand τrs and gravel τrg as a function of subsurface sand content

fs (Wilcock and Kenworthy , 2002). The trend shown in Figure 1.4 clearly indicates the

non linear variation of τri with fs, particularly in the range 0.2 < fs < 0.4 .

Figure 1.4: Ratio of the reference shear stress for sand τrs and gravel τrg as a function
of subsurface sand content fs, parameterised with ratio between the gravel (Dg) and sand
(Ds) grain size (from Wilcock and Kenworthy (2002)).τrs and τrg are predicted using
subsurface grain size.

As fs tends to vanish the small amount of sand is largely hidden among the pores of

gravel matrix and entrainment of sand requires entrainment of gravel. As fs approaches

unity, τrg decreases to a small value because the influence of surrounding grains on the

motion of a gravel clast becomes small relative to the influence of the weight of the grains

and to the drag force acting on it. For the sand, τrs at fs = 1 is equal to the standard

value for incipient motion of an homogenous bed (Wilcock , 1998). This has implication

for the volumetric bed transport rate per unit of width for each size fraction i.

Considering the surface sand content Fs, the dimensionless reference Shields stress for the

two fraction is reported in Fig.1.5 where the Shields stress for the sand fraction depends

on the diameter ratio Dg/Ds between the gravel and sand component as well as on the
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surface sand content.

Figure 1.5: Dimensionless reference Shields stress τ∗ri as a function of surface sand content
Fs.The different curve are parameterized by different diameter ratio Dg/Ds=10,20,35 and
50 (Wilcock and Kenworthy (2002)

In the case of dominant suspended fine sediment transport over a coarse immobile

bed, Grams and Wilcock (2007) suggest a new equilibrium entrainment formula for the

fines. For the homogeneous case a general functional relation for sediment entrainment

was presented by Parker and Anderson (1977) and expanded by Garcia and Parker (1991)

so that the dimensionless sediment entrainment rate is a function of the hydrodynamic

characteristics of the flow, i.e. the shear velocity near the bed, of the geometric charac-

teristics of the flow, i.e. flow depth and of the geometric characteristics of the particles,

i.e. the grain Reynolds number. For the case of sand transported in suspension over an
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immobile coarse bed, Grams and Wilcock (2007) propose a relationship which accounts

for the dependence on a new parameter of the entrainment rate of fines. Such parameter

is somewhat analogous to the fraction of sand fs, and more precisely is the ratio of sand

cover thickness zs to a characteristic roughness height of the coarse grains on the bed

rb. Specifically, Grams and Wilcock (2007) empirically derive a sand elevation correction

function (SEC) that scales the entrainment rate for a bed partially covered by sand to the

entrainment rate that would be predicted for the homogeneous case of sand -covered bed.

This new sand elevation correction ε is a function of the ratio zs to rb and is represented

in Figure 1.6 as a solid line that was chosen to fit the experimental observations.

Figure 1.6: Sand elevation correction ε as a function of the ratio ẑs between zs and rb

1.2.3 Turbulence characteristics near gravel beds

Concerning the flow over fully rough bed, Nikora et al. (2001) proposed that the double-

averaged (in time and in space domain) momentum equations should be used for studying

the hydraulics over rough bed. The spatial averaging procedure permits to divide the flow

domain into specific subregions depending on the possible new spatially averaged terms.

These are different form-induced terms, which play a different role in the momentum

equations for each subregion. Figure 1.7 sketches the key flow layers. Because of the
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spatial averaging procedure, in the interfacial sublayer new turbulent stresses, form drag

and viscous drag, appear in the momentum equations as a result of their dependence

on roughness geometry and density of roughness elements, i.e., on the parameter A(z).

This parameter is important if the roughness elements change their density with vertical

coordinate, it disappears if they do not. The function A(z) is reported in the same

Figure 1.7 and is called ”roughness geometry function” at each elevation z. It represents

the ratio of the horizontal area Af occupied by the fluid to the total area A0 of the

region chosen for the spatial averaging procedure. In the form-induced and interfacial

Figure 1.7: Flow subdivision into specific region for permeable bed (Nikora et al. (2001))

sublayer the flow is influenced by individual roughness element and the form-induced

terms can play an important role in the momentum equations, specifically in the interfacial

sublayer where the A(z) varies from 1 to a minimum value corresponding to the average

porosity of the gravel matrix. These two sublayers can be identified together as roughness

layer which indicate the entire layer dinamically influenced by length scale associated

with roughness elements. Figure 1.8 shows examples of A(z) for water-worked (natural

rivers) and unworked (manually created) gravel beds (Nikora et al. (2001)): the two curves

behave similarly and are fairly close to a cumulative probability function for the normal

distribution. Nikora et al. (2001) also show that in the specific case of regular spherical

segment-type roughness, the double-averaged turbulence stresses and the form drag play

a dominant role in the transfer of momentum in the near-bed region.

Bed load and suspended load are closely related with the shear stress pattern exerted

by the flow on the bed. These stresses, in turn, are influenced by the rough bed elements of

a gravel bed. In the roughness layer, which results from the interaction between the main

flow and the bed roughness, two sublayers can be considered (Nikora et al. (2001)). In the

form-induced sublayer (see Figure 1.7) a portion of the kinetic energy of the mean flow is
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Figure 1.8: Roughness geometry function A(z) for water-worked and unworked gravel
beds. Zb is bed elevation,Zb is average bed elevation and σz is standard deviation of bed
elevations (from Nikora et al. (2001))

transformed into turbulent energy, intensifying the mixing or transfer of momentum and

resulting in a continuous adjustment in the velocity profile. Mignot et al. (2008), apply-

ing the double averaging procedure to the turbulent kinetic energy equation, found that

maximum turbulent kinetic energy production occurs at near-gravel crest levels zc,when

the bed is composed by macro-roughness elements. In the case of smooth and rough bed

such peak energy production instead occurs much closer to the bed. Figure 1.9 shows that

above the level 2zc the production of turbulent kinetic energy P nearly balances the dis-

sipation ε in the same manner as in the smooth boundary layer where the log-law occurs.

In the form-induced layer the turbulent transport term Tt actively diffuses the turbulent

kinetic energy flux Fk in both directions, particularly Fk < 0, z < zc in contrast with the

smooth boundary layer where the turbulent energy fluxes are not directed towards the bed

and where the production term P reaches its maximum value at reference level z = 0.

Because the sand content controls the transition of gravel bed configuration from

”gravel-like” to ”sand-like”, the level above which the log-low occurs may depend on the

sand elevation itself.

1.2.4 Sand infiltration into gravel beds

Fine-grained sediment can also infiltrate between the coarse immobile particles of the

gravel bed. Laboratory flume studies generally agree on the importance of suspended sed-

iments concentration in controlling infiltration rates (Einstein (1968); Carling and Breaks-

pear (2006); Carling (1984); Beschta and Jackson (1979)), but they differ on the influence
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Figure 1.9: Schematic close-up of the bed/flow interface and turbulent kinetic energy (from
Mignot et al. (2008))

of flow hydraulic parameters, such as velocity, shear stress and Froude number. Recently,

Wooster et al. (2008) investigated the dynamics of fine sediment infiltration into immo-

bile gravel deposit and particularly examined the effect of grain-size distribution of the

coarse bed material and the infiltrating fine sediment, and the influence of feed rate and

duration of fine sediment feed during the infiltration processes. Besides, Cui et al. (2008)

contradicted the observations done by Einstein (1968) and developed a theoretical model

able to describe the process of fine infiltration into a immobile coarse sediment deposits.

Cui et al. (2008) used a constant fine sediment trapping coefficient, defined as a fraction

of fine sediment load trapped in the coarse deposit for travelling unit distance. They

demonstrated that the vertical profile of the fraction of fine sediment content decreases

exponentially with depth into the deposit, starting from the bottom of the surface layer

assumed to be twice the bed material geometric mean size.

1.3 Research goals and methodology

A summary of the above state-of-art review indicates the following considerations.

• Few morphodynamic modeling approaches have been proposed so far to predict the

dynamics of sand bed evolution in gravel beds, taking into account the modifications

of the turbulence properties due to varying sand surface levels;

• The basic ingredients of a suitable morphodynamic model for sand bedform dynam-

ics over immobile gravel still need further investigation. A key gap is related to the

closure relationship that should be used to evaluate the near-bed friction and turbu-
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1. Introduction

lence properties and the structure of the bedload and suspended load functions for

the sand fraction. These closures are needed, and should be quite general, in order

to complement the momentum and continuity equations for flow and sediments.

• Several experimental studies provide answers to some parts of the whole problem

although no specifically designed experiment or modelling study on suitable model

closures has been published so far.

• Although highly valuable, the main modelling approaches proposed so far cannot be

used as morphodynamic models for sand transport over immobile gravel beds. either

because of their restriction to sand being transported only in suspension with very

simple flow models (Grams, 2006) or because they refer to spatial scales that are

larger than the sand bedforms whose dynamics should be predicted by the model

itself.

• the ratio between the sand bed elevation in the gravel beds and a characteristic

spatial scale of roughness bed elements rb is a crucial parameter which may control

the stability of sand patterns, the entrainment of sand in the flow and the near-bed

turbulence characteristics. Also the relative grain size ratio between the sand and

the gravel fraction is likely to play a crucial role.

On the basis of these considerations, the general aim of the present work is to propose a

morphodynamic approach for the transport of the coarse fraction of fine sediments (sand)

over a gravel bed that is assumed at rest. More specifically, the research activity presented

in the following chapters addresses the following research questions.

• Which are the key physical processes associated with near bed turbulence properties

over rough beds, and how do they change when sand is present in variable proportion

within the gravel bed? (Chapter 2)

• Which can be an appropriate form of a mathematical model for sand beform dy-

namics over immobile gravel? How do the continuity and momentum equations, as

well as the closure relationships for friction and bedload transport change when the

gravel bed is partially sand-covered? (Chapter 3)

12



1.3 Research goals and methodology

• Which are the implications of such model when solved in the form of a stability

analysis that aims to predict the conditions for sand bedform stability and preferred

wavelength selection over an immobile gravel bed? (Chapter 4)

The research methodology used to address the above questions includes:

• a comprehensive and integrated analysis of already published work often with dif-

ferent specific goal compared to the present one. This has a strong potential for

establishing the key steps needed to build a morphodynamic model for the sand bed

surface over immobile gravel beds.

• A quantitative reinterpretation of published experimental data in the light of the

proposed theoretical approach to model the key near-bed physical processes;

• The development of a linear stability analysis to solve the proposed morphodynamic

model to predict the conditions of occurrence of sand bedforms over immobile gravel

beds.

The relevance of the present work is mainly in offering a mechanistic tool that can

be used to better understand which physical phenomena control the development of sand

bedforms when sand is transported over an immobile gravel bed.

Indeed such a tool is based on developing a conceptual morphodynamic model accounting

for the key processes of sand transport over a gravel matrix that uses the existing rela-

tionships for bed load transport and fines entrainment over gravel beds and accounts for

near-bed conditions locally adapted to the evolving sand surface patterns relative to the

turbulent near-bed characteristics and to the transport characteristics of fines.

13
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2 Turbulence and sediment transport

characterization for flow over immobile

gravel beds: mixed case

In relationship with the overall goal of the present work illustrated in the Introduction, the

analysis presented in this Chapter aims at developing a theoretical approach to the most

relevant processes that determine the properties of near-bed turbulent flow and of sand

transport when a rough gravel bed is partially covered with sand. This will eventually

lead to propose physically-based closure relationships for friction and bedload transport

at the end of the Chapter. These are key ingredients (but still largely to be improved with

respect to the published literature) for a morphodynamic model of sand bedform evolution

over immobile gravel beds.

The analysis presented in this Chapter is developed at three levels. After reviewing the

spatial averaging approach, which underlies all the present work, the geometrical proper-

ties of a rough gravel bed are reviewed and the implications associated with the presence

of a sand cover with variable height are discussed. Second, the near-bed hydrodynamic

properties relevant for sediment transport over rough beds in general are reviewed and a

novel theoretical approach is proposed to account for the effect of a variable sand cover on

the near-bed shear stress and related spatially averaged turbulence properties. Third, the

implications of varying sand surface level for threshold condition for sand bedload motion

as well as for the rate of bedload transport are discussed and existing relationships derived

on an empirical basis are integrated within the proposed theoretical approach.

Moving from flow to sediment transport, a fundamental hypothesis has been made in

previous works to separate between ”gravel” and ”sand”. The mobile sediment fraction

often has a well distinct grain size curve with respect to that of the immobile gravel de-

posit (Wilcock and Kenworthy (2002)), which suggests the suitability of a two-fraction
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2 Turbulence and sediment transport characterization for flow over immobile gravel beds: mixed case

approach ((Wilcock and Kenworthy (2002)) to predict the sediment transport dynamics

and the temporal evolution of the mobile river bed. The bed and sediment load distri-

bution can be conveniently represented through a bimodal distribution of one gravel and

one sand fraction. Such apparent simplification of entire grains size distributions while

retaining much of the practicality of a single grain size estimate.

The physical system is schematized as follows.We will refer to a ”mixed” riverbed con-

figuration when a certain amount of sand is present within the gravel particles. The

correspondent hydrodynamic properties can be thought as those of a rough-bed open

channel flow that progressively tend to reduce to those of a smoother bed flow when the

sand content increases. Building a morphodynamic model to predict the evolving sand

bed elevation in relation with the sand transport processes occurring over such ”mixed”

bed configuration therefore requires to specify how relevant hydrodynamic properties vary

with the local sand surface elevation, and beforehand to quantify what ”local” means, in

relationship with the characteristic spatial scales of the bed with sand level-dependent

roughness.This fundamental issue will be dealt with referring to the spatial-averaging ap-

proach (e.g. Nikora et al. (2001)) that constitutes a second basic assumption of the present

work and allows to conceptually define the relevant spatial scales for the analysis and the

dynamic balances holding at different scales and in different flow regions.

Such spatial scale are considered in the spatial averaging procedure(e.g.Whitaker (1999)),

specifically referring to Double-Averaging Methodology(DAM) to investigate spatially het-

erogeneous rough bed flow (Nikora et al. (1998)). Within the DAM-approach, the Reynolds

equations for flow field are area averaged over a specific spatial scale, depending on the

characteristic of the gravel bed composition. Therefore, time averaged variables are de-

composed into spatially averaged and spatial fluctuation parts according to ϑ̂ = 〈ϑ〉 + ϑ̃,

where the angle brackets denote spatial averaging, the overbar denotes temporal averaging,

and the tilde denotes spatial fluctuation. In the same way the Eq.(2.4) becomes:

τ̂ = 〈τ0〉 − 〈τ ′〉 − 〈τ ′′〉 − 〈τ ′′′〉 − ...〈τn〉︸ ︷︷ ︸+ (2.1)

= Spatial AverageComponent (SAC)

+ τ̃0 − τ̃ ′ − τ̃ ′′ − τ̃ ′′′ − ...τ̃n︸ ︷︷ ︸
= Spatial AverageF luctuation (SAF )
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Specifically, the operator 〈.〉 is defined as:

〈ϑ(x, y, z, t)〉 =
1

Af

∫

Af

∫
ϑ(x′, y′, z′)dx′dy′ (2.2)

or

〈ϑ(x, y, z, t)〉s =
1

A0

∫

A0

∫
ϑ(x′, y′, z′)dx′dy′ (2.3)

where (x, y, z) refers to three-dimensional Cartesian coordinates,Af= area occupied by

fluid within a fixed region on the (x−y) plane, depending on the z-coordinate, and within

the total area A0. The eqs.(2.2,2.3) are known as intrinsic spatial average and superficial

spatial average, respectively. They are related each other by a function named rough-

ness geometry function(i.e.A (z)) (Nikora et al., 1998) according to 〈ϑ〉s = A(z)〈ϑ〉,with

0 ≤ A(z) ≤ 1 representing the ratio between the area occupied by fluid (i.e. Af )in a fixed

region with total area A0.

It is worth of noticing that below roughness crests the averaging region is multiply con-

nected, since it is intersected by roughness elements as a porous medium and the averaged

operator in the eq.(2.2)is equivalent to the volume averaged operator when the averaging

volume (i.e. V0)is an extensive, infinitesimally thin horizontal slab (i.e. V0 = A0h0, h0 7→
0)(Nikora et al., 1998).

Following Whitaker (1999),in the Eq.(2.2) we have assumed that the porous medium is

uniformly distributed about the centroid of A0 ,and the characteristic length scale L0,W0

of the averaging area A0 are large compared to the characteristic length scale of the

roughness elements composing the porous medium. Moreover, Whitaker (1999) suggested

a definition of a disordered porous medium by which we assume that with respect to an

averaging area A0 the spatial moments of the porous medium up to zero order can be

neglected and the spatial decomposition Eq.(2.1) may be interpreted as a decomposition

of spatial scales, because the (SAC) component in the Eq. (2.1) changes only over the

spatial scales L0,W0.

Referring to near-bed turbulence in fully rough gravel-bed open channel flow, Mignot et al.

(2008) applied spatial averaging procedure (e.g.Whitaker (1999)) to the flow quantities

with the presence of macro-roughness elements characterizing the rough bed composi-

tion,with length scale of 10 cm and with the maximum bed elevation above the average

measured bed elevation of 2.8 cm. As a result of the flow heterogeneity induced by the

bed topography, the turbulent kinetic energy balance in the roughness layer (sensu stricto

Nikora et al. (1998)) shows that the turbulent diffusion actively diffuses the average tur-

bulent kinetic energy flux in both directions in contrast with the smooth boundary layer

where the average turbulent energy fluxes has only one direction (e.g. not directed to-
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2 Turbulence and sediment transport characterization for flow over immobile gravel beds: mixed case

ward the bed). Coleman and Nikora (2008) have developed a new framework derived

from the fundamental equations for fluid motions and particle stability. The framework

describes the hydrodynamics entrainment of sediments covering a wide range of spatial

and hydrodynamics scales, from that of the individual particle to spatial averaged en-

trainment at the scale of stream reach. Specifically, Coleman and Nikora (2008) have

used spatial averaging concept (e.g.Whitaker (1999)) to review the Shields entrainment

function and to propose an alternative view of the variation of the Shields function with

river-bed system. In general, the Shields function responsible for entrainment of particles

depends hydrodynamically on the across-particle difference in pressure and vertical fluxes

(in the bed normal direction) and geometrically on the sediments bed characteristic. To

that regard, international research have demonstrated that the grain-mobilizing Shields

stress for a specific grain size is a function of particle protrusion (sensu stricto Kirchner

et al. (1990)) )into the flow, and intergranular friction angle (sensu stricto Kirchner et al.

(1990)) ; the latter two depend on sediment sorting and the sediment length scale relative

to its neighbors (Kirchner et al., 1990; Buffington et al., 1992; Johnston et al., 1996).

The bed surface is a mixture of the protruding gravel particles and a patchy sand surface

created by the fine sediments deposited within the immobile gravel. Such arrangement

creates a peculiar roughness geometry that varies with the level of the sand surface relative

to the protruding gravel.

Thus, the development of physically based model for bed-load morphodynamic modelling

requires the adequate characterization of effects of the irregular surface on the turbulent

boundary layer, which are governed by spatially heterogeneity of the bed surface(Aberle

et al. (2008)).Moreover, the proper assessment of near bed hydrodynamics requires the

consideration of the flow field over a certain spatial scale.

Moreover, the evolving elevation of the sand surface and the changes in the near-bed shear

stresses τ , varies according to the proportion of sand that is locally stored within the

surface immobile gravel particles. τ is that portion of the total boundary stress that is ap-

plied to the bed and responsible for sediment transport. It is defined as the total boundary

shear stress (τ0) acting on the bed at reference level and corrected for momentum losses

caused by hydraulic roughness other than grain skin friction (Buffington and Montgomery

(1999))

τ = τ0 − τ ′ − τ ′′ − τ ′′′ − ...τn (2.4)

bed = total − banks− bedforms− ...other

A key issue is therefore to relate the distributions of double-averaged turbulence stresses
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2.1 Geometrical properties of rough beds: spatial scales

to roughness characteristics such as grain-size distribution or statistical roughness param-

eters over the spatial scales L0,W0 .

Referring to the DAM-approach,Nikora et al. (2007a) suggests that it may help in bet-

ter understanding the spatially averaged Reynolds stress with regard to the different

scale ranges defined by different physical mechanisms underlying the Reynolds stress pro-

duction.As an example, the parameterizations for the spatially averaged Reynolds stress

should include a sum of two parameterizations, one for large-scale shear turbulence, the

other for small-scale wake turbulence, but all of two are function of different mixing length.

Specifically, the first is linked to the distance from a reference bed, the second is linked to

a roughness spatial scale.

The next section is devoted to the analysis of the geometrical properties of rough beds,

with the aim to discuss the relevant geometrical properties for the computation of the

near-bed shear stress. Yager et al. (2007) implicity assumed a characteristic planimetric

spatial scale λ (the space between immobile grains)and a vertical spatial scale p (portion

of the immobile grain diameter that is above the mobile sediment deposit) for the parti-

tioning the total boundary shear stress in the Eq. (2.4) between the stress on the large,

immobile, grains and the stress on the finer fraction. They derived an heuristic stress

partitioning formula in which the two component of the shear stress are weighted with

respect to two areas that are proportional to planimetric spatial scale λ that represents

the spatial arrangement of the bed geometry.

2.1 Geometrical properties of rough beds: spatial scales

The first conceptual step in the determination of suitable spatially-averaged relationships

for friction, near-bed shear stresses and sediment transport for flows over rough beds par-

tially covered with sand requires to examine the geometrical properties of rough gravel

beds in relation to the length scales that become relevant in the spatial averaging proce-

dure. Relevant spatial scales for the problem tackled in the present thesis likely result from

a combination of geometrical and hydrodynamic elements. The present section focuses on

the geometrical scales that characterize rough beds.These quantities have direct impli-

cations for the spatial averaging approach that is commonly used in characterizing flow

fields over rough beds (e.g. Nikora et al. (2001)).Nikora et al. (2004) explored hight-order

statistics for studying the structure of water-worked gravel beds surface. The generalized
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2 Turbulence and sediment transport characterization for flow over immobile gravel beds: mixed case

1-D form of high-order structure function can be expressed by (Nikora et al., 2004):

DGs(lx) =
1

(N − n)

N−n∑

i=1

{|Z(xi + lx)− Z(xi)|}s (2.5)

Where n = lx
δx

and δx is the sampling interval.

The shape of the two-dimensional structure functions of gravel beds can be related to

their scaling behavior. One of the key outcomes of Nikora et al. (2004)analysis is that the

boundary between the scaling range of the structure functions and their transition range is

of order of d50 while the boundary between the transition range and the saturation range

is of order of d90.
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Figure 2.1: Roughness bed represented by triangles (panel a)) and triangles and sand
(panel b))

In the present section a simplified geometrical arrangement of a rough bed is used for

the sole purpose of highlighting (i) how the properties of high-order structure functions

can be put in relationship with typical length scales of the rough bed and (ii) to suggest
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2.1 Geometrical properties of rough beds: spatial scales

on a conceptual basis how these scales may be affected by the presence of a sand layer

with varying elevation within the fixed gravel particles. Figure 2 in Nikora et al. (2004)

illustrates the distinction between the transition and the saturation regions for second-

order structure functions computed referring to a gravel patch of the Sotover River in NZ.

In order to define the boundary between the transition and the saturation regions the

derivative d
dlx
DGs(lx) must be computed. The ”saturation region” can be interpreted as

the lx - range where the ”spatial memory” of the bed elevation vanishes, i.e. bed elevation

values taken at these distance one another are reasonably non-correlated. It is worth

noting that computing higher order structure functions results in clearer detection of the

boundary between the different regions.

The focus of the analysis here is to make a simple conceptual attempt at quantifying a

these lengths associated with vanishing spatial memory of the rough bed, which represent

optimal candidates to quantify the length scale on which the spatial averaging procedure

can be conveniently applied. In order to do this, a simplified 1D rough bed configuration

made of an indefinite sequence of nearby triangles is used, which allow to derive a simple

analytical expression for such geometrical length scale. Although such assumption might

result in a quite crude approximation, it must be beard in mind that the present application

has a mainly illustrative and conceptual purpose. Referring to the Figure 2.1 (panel a)),

the rough bed has been represented by infinite triangles and the n-order structure function

in the Eq.(2.5) is computed as follows:

d|Zi(lx)| =
h

b
lx (2.6)

DGs(lx) =
1

nt

nt∑

i=1

{h
b
lx}s (2.7)

with the geometrical constrains:

h2 + b2 = t2 and 0 ≤ lx ≤ l̃x = b (2.8)

Where nt represents the number of triangles, assuming that the ratio h/b is equal for all

triangles nt then the Eq.(2.7) follows as:

DGs(lx) = {h
b
lx}s (2.9)

The derivative of Eq.(2.9) with respect to lx reads as:

d

dlx
DGs(lx) =

h

b
s{h
b
lx}s−1 =

h

b
{s

1
s−1

h

b
lx}s−1 (2.10)
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For each s-order of the function DGs(lx) the geometrical constraints stated by (2.8) have

to be satisfied; particularly for each s-order l∗x = lx

s
1

s−1
then the (2.10)becomes:

d

dlx
DGs(lx) =

h

b
s{h
b
lx}s−1 =

h

b
{h
b
l∗x}s−1 (2.11)

For different order s of the structure functions:

s = {1+, 2, 3, 4, 5, 6}

In the case of a rough bed composed by a sequence of identical triangles (Figure 2.1) the

function associated with the normalized length scale l∗x takes a simple analytical expression:

f(s) = s
1

s−1 = {e, 2, 3
1
2 , 4

1
3 , 5

1
4 , 6

1
5 }

The geometrical constraints stated by (2.8)therefore implies that:

lx1+ = b1 =
b

e
(2.12)

lx2 = b2 =
b

2

lx3 = b3 =
b

3
1
2

lx4 = b4 =
b

4
1
3

lx5 = b5 =
b

5
1
4

lx6 = b6 =
b

6
1
5

... = ...

lx∞ = b∞ 7→
b

1

Figure 2.2 reports the first derivative of the sth-order structure function of the simplified

rough bed configuration made of triangular protruding elements in relationship with a

normalized length scale lx
(1−η∗s )b in a log diagram. Setting η∗s = 0 corresponds to a rough

bed completely empty with sand. The boundary between the transition and saturation

regions can be clearly detected in correspondence of the abrupt slope variation of each

represented curve. Such transition happens for lx of the same order of the horizontal bed

scale b. Such horizontal scale can be interpreted as a measure of the average horizontal

distance between the protruding particles in real rough beds.
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2.1 Geometrical properties of rough beds: spatial scales

The effect of the presence of sand in the gravel bed forming a sand cover with elevation ηs

can be incorporated in the above analysis in order to hypothesize how the characteristic

scales can change with respect to the ”clean” gravel bed.

Referring to the Figure 2.1 panel b), ηs represents the sand level in the gravel matrix

composed by triangles, it follows that the horizontal scale l̃x is modified and reduced,

because the protruding elements’ spacing increases due to the sand layer:

βs = (1− ηs
h

)b = (1− η∗s)b (2.13)

η∗s =
ηs
h

(2.14)

Eq.(2.11)therefore becomes:

d

dlx
DGs(lx) =

h

{(1− η∗s)b}

{
h

(1− η∗s)b
l∗x

}s−1

(2.15)

Figure 2.2 represents the function in Eq.(2.1) for the simple case in which the bed rough-

ness has been represented by triangles and η∗s represents the sand level as indicated by

Eq.(2.14). It is noteworthy that as the exponent s in Eq.(2.1) approaches to ∞ then the

characteristic length scale lx approaches to the geometrical base b of the triangle in Figure

2.1 panel a) and panel b).

Thus Eq.(2.1) provides a simple conceptual explanation of how the high-order structure

function of bed elevations can be modified by the presence of a sand layer, through the

dimensionless parameter η∗s . Two important spatial scales are present, related to the

height of the protruding particles (vertical geometric scale) and to the horizontal spac-

ing between roughness elements (horizontal geometric scale). The shape of the roughness

geometry function (e.g. Nikora et al. (2001)) provides a quantification of the vertical

variability of such characteristic spacing between protruding elements. The roughness ge-

ometry function A(ηs) ( sensu Nikora et al. (2001))can be defined as the ratio between

the horizontal (bed parallel) area occupied by fluid (i.e. Af ) within a defined horizontal

region with total area A0, which for 1-D rough bed reads:

A0 = lx∞ (2.16)

Assuming that the sand fraction fills the space available between the rough elements as in

Figure 2.1 (panel b)), the area Af occupied by sand is proportional to the sand elevation
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Figure 2.2: S-order derivative of the structure functions for a rough bed composed by
triangles

η∗s itself as follows:

Af = η∗s lx∞

A(η∗s) =
Af
A0

= η∗s

η∗s =
ηs

lx∞ tanαt
(2.17)

The roughness geometry function and the dimensionless quantity η∗s in Eq.(2.17) depends

on the geometrical length scale lx∞ that is the spatial length scale characteristic of the

rough bed composition with a specified ηs sand level.

This basic concept has been presented referring to a oversimplified bed geometry having

24



2.1 Geometrical properties of rough beds: spatial scales

in mind a mainly illustrative purpose. A key issue is related to the quantification of the

geometrical scales for irregular rough bed surfaces as typical of real streams. The conclud-

ing part of this Section is devoted to envisage a suitable approach to quantify the relevant

geometrical scales in the framework of a spatial averaging procedure. The patches of a

rough, water-worked gravel beds show properties typical of ”disordered porous media” as

stated by Whitaker (1999). A schematic vertical view of a 2D gravel bed patch with indi-

cation of the averaging area A0 is reported in Figure 2.3. The averaging area is composed

by two phase, specifically the rough phase (indicate in Figure 2.3 as r-phase) and the fluid

phase indicated in the same figure as fluid phase. The details of this averaging area are

presented in the same Figure 2.3 where vector Rc locates the centroid of the averaging

area, the position vector rf locates any points in the fluid phase with respect to the orthog-

onal coordinate system (x′ − y′) that has its origin in the centroid of the averaging area.

Differently, the orthogonal coordinate system (x − y) defined any centroid of a specified

averaging area A0=W0L0 where W0 and L0 are characteristic geometrical length scale that

define the averaging area.The position vector Rc may lie in either the r-phase or f-phase.

In the framework of a spatially-averaged approach, the exponent s in Eq.(2.5) has an im-

portant meaning in terms of the spatial scale characteristic of porous medium , particularly

in relationship with the probability density function of the length scale lx. Considering the

spatial average operator in Eq.(2.2), the spatial averaged fluctuation of a generic quantity

ϑ̃ reads as:

ϑ̂− 〈ϑ〉O(Γ2
0)

= ϑ̃ (2.18)

or equivantely, in dimensionless form:

ϑ̂

〈ϑ〉O(Γ2
0)
− 1 =

ϑ̃

〈ϑ〉O(Γ2
0)

⇓

ϑ̂∗ − 1 = ϑ̃∗

where the spatial operator 〈.〉 is computed over an averaging area that can be represented

through the characteristic spatial scale Γ2
0 of Eq.(2.20).Such spatial scale measures the

lowest possible resolution at which the spatially averaged quantities can be described.

This implies that smaller-scale phenomena would be neglected within a spatially averaged

approach.The characteristic spatial scales for the spatial averaged fluctuation ϑ̃ can be

quantified following Whitaker (1999), who suggested that the fluctuations relative to the

spatial average can be interpreted as higher-order terms of a Taylor series expansion of
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Figure 2.3: Averaging area A0 for fluid and rough phase (i.e. f- and r-phase, respectively)
referring to the centroid located with the vector Rc in the orthogonal coordinate system
(x−y).W0 and L0 are two characteristic geometrical length scales that define the averaging
area in the same orthogonal coordinate system. The relative position vector rf locates any
points in the fluid phase (i.e. f-phase).Moreover, nfr represents the unit normal vector
pointing from f-phase to r-phase

the local variable ϑ̃ about the centroid Rc (see Figure2.3). Therefore ϑ̃ in Eq. (2.19) can

be represented as a function of the spatial moments as follows:

1

A0

∫

Af

∫
nfrdx

′dy′ = −∇〈1〉 (2.19)

1

A0

∫

Af

∫
nfrrfdx

′dy′ = −∇〈rf 〉

1

A0

∫

Af

∫
nfrrfrfdx

′dy′ = −∇〈rf rf 〉

................. = .................
1

A0

∫

Af

∫
nfrr

s
fdx

′dy′ = −∇〈rsf 〉
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2.1 Geometrical properties of rough beds: spatial scales

where

rf =
√
x′2 + y′2 r̂f (2.20)

rfmin
≤

√
x′2 + y′2 = rf ≤

√
L2

0 +W 2
0 = Γ0 (2.21)

or

r∗fmin
≤

√
x′2+y′2√
L2
0+W 2

0

= r∗f ≤ 1

rf is the position vector relative to the centroid of the averaging area A0 as illustrated

in Figure 2.3, nfr represents the unit normal vector and is directed from the f-phase to

r-phase. The operator ∇ represents the traditional three-space gradient operator and the

operator rsf refers to the dyadic product of the vector rf with the exponent s indicates

the order of the dyadic tensor.

Considering Eq.(2.19), ϑ̃∗ can be expanded as a Taylor series about the centroid of the

averaging area.In terms of orders of magnitude this leads to the following expression for

the scales of dimensionless fluctuations ϑ̃∗:

O(ϑ̃∗) = O(1)

{
O

(
l1
Γ0

)
+ O

(
l2
Γ0

)2

+ O

(
l3
Γ0

)3

+ ...

}
(2.22)

Γ0 > l1 > l2 > l3 > ... (2.23)

Where l1, l2, l3.... represents a characteristic length scale by which the spatial moments

in the Eqs.(2.19) are defined and the operator ∇ represents the traditional three-space

gradient operator. The geometrical condition in Eq.(2.23) is satisfied having considered

the ”disorder porous medium” property for which ∇〈rf 〉 << I where I is the identity

tensor. Therefore, each of the length scale l1, l2, l3, ... are higher order infinitesimal with

respect to the length scale Γ0 characteristic of the averaging area A0. It is noteworthy that

the ”disorder porous medium” property is well-suited for the method of volume averaging

because of the consistency of the expansion in Eq.(2.22), but the condition ∇〈rf 〉 << I

can be found also in other studies of disorder systems (Whitaker (1999)).

In general, the approximation of a function by the Taylor expansion depends on the the

nth order of derivative of the function itself. Considering the superficial spatial moments,

as in Eqs.(2.19), the nth order of derivative in the Taylor expansion, corresponds to the

nth superficial spatial moments.

In the line of the above reasoning, the difference in bed elevations between two points in

the gravel bed, spaced lx (see Eq. 2.5) Z(xi + lx)−Z(xi) can be written as follows, in the
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2 Turbulence and sediment transport characterization for flow over immobile gravel beds: mixed case

case of 1-D gravel beds:

Z(x0 + lx0) = Z(x0) +
d

dlx0
Z(x0, lx0)dlx0 +

1

2!

d2

dl2x0

Z(x0, lx0)dl2x0 + ... (2.24)

x0 ∈ A0 = L0W0 lx0 = (x− x0) (2.25)

In Eq.(2.24) lx0 represents a characteristic length scale referring to the averaging area

whose centroid is located at (x0, y0). Moreover,in Eq.(2.24) it has been assumed that

Z(x0+lx0) is a continuous and nth derivable function of the variable xi, where the subscript

0 refers to the centroid of the area A0. Therefore, the difference Z(x0+lx0)−Z(x0) referring

to the centroid (x0, y0) of the averaging area A0 reads as:

Z(x0 + lx0)− Z(x0) =
d

dlx0
Z(x0, lx0)dlx0 +

1

2!

d2

dl2x0

Z(x0, lx0)dl2x0 + ... (2.26)

⇓

|Z(x0 + lx0)− Z(x0)|s =

∣∣∣∣∣
∞∑

n=1

1

n!

dn

dlnx0

Z(x0, lx0)dlnx0

∣∣∣∣∣

s

(2.27)

where n is the order of the derivative and s is the order of the structure function in

Eq.(2.5).When only a finite number n of the derivatives are taken into account, then

Eq.(2.27) reads as:

|Z(x0 + lx0)− Z(x0)|s =

∣∣∣∣∣
m∑

n=1

1

n!

dn

dlnx0

Z(x0, lx0)dln−mx0

∣∣∣∣∣

s

|dlx0|ms (2.28)

=

∣∣∣∣∣
m∑

n=1

1

n!

dn

dlnx0

Z(x0, lx0)dln−mx0

∣∣∣∣∣

s

|dlx0|s̃, m =
s̃

s
(2.29)

The function Z(x0 + lx0) refers to a local value of Z respect to the centroid x0 of an aver-

aging area A0. the spatial averaging procedure is now applied to the expansion 2.29.This

requires to define the averaging area A0 in terms of the length scale lx. In order to eval-

uate the length scale lx , we introduce the spatial averaging operator for the function Z

and analyze how the length scale lx can be influenced by the properties of the function

|Z(x0 + lx0)− Z(x0)|s. Let us assume the spatial averaging operator (Whitaker (1999)):

〈Z〉x0+lx0 =
1

A0

∫

Af (x0+lx0)
Z(x0 + lx0)dlx0 (2.30)
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2.1 Geometrical properties of rough beds: spatial scales

The spatial average of Eq.(2.29) therefore gives:

|〈Z〉x0+lx0 − 〈Z〉x0 |s =

∣∣∣∣∣
m∑

n=1

1

n!

〈
dn

dlnx0

Z(x0, lx0)

〉

x0

〈dln−mx0 〉x0+lx0

∣∣∣∣∣

s

〈|dlx0|s̃〉x0+lx0

(2.31)

where 〈Z〉x0 is the spatial averaging operator referring to the centroid of the area A0 which

is invariant with respect to time and space. Whitaker (1999) assumed that ”the process

of spatial smoothing begins by associating with every point in space an averaging volume

which is invariant with respect to time and space”. Therefore, the operator 〈Z〉x0 refers

to the spatial averaged value of Z calculated on the invariant area A0 (see Figure 2.3).

In Eq.(2.31) the geometrical functions 〈|dlx0|s̃〉x0+lx0 , s̃ = (1, ..., ns), represent the first,

second and higher, superficial spatial moments as indicated by Eqs. (2.19) and s̃ represents

the s̃ − th order of these spatial moments. Moreover, each superficial spatial moment

corresponds to the different terms in the expansion (2.22) with the geometrical constraints

of Eq.(2.23).

The main outcome of the above analytical treatment is that the spatial length scales

resulting from the analysis of the s-th order structure function of bed elevation are in

close relationship with those arising from the spatial average of the bed elevation function

performed as a Taylor expansion up to the s-th derivative order. In other words, the s-

order function in Eq.(2.5) represents, in terms of spatial averaging procedure the different

spatial length scales by which the function Z takes into account its spatial variability in

the invariant area A0.

If the sand fraction is present in the gravel framework, then the different spatial scales

l1, l2, l3, ... change with the sand level into the gravel framework as indicated by the simple

case represented in Figure 2.2 where the parameter lx/((1−η∗s)b) changes between (lx/b÷
∞) depending on the sand level η∗s . Consequently, the length scales l1, l2, l3, ... change

because of the sand level that has a direct influence on the spatial arrangements of the

rough bed. When the spatial average refers to turbulent flow variables over the rough

bed, the approximation based on 2.22 depends on near-bed turbulence scales. Introducing

hydrodynamics into the geometrical considerations exposed above is the focus of the next

Section.
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2 Turbulence and sediment transport characterization for flow over immobile gravel beds: mixed case

2.2 Hydrodynamics characterizations:turbulence

properties near immobile gravel beds

The present section reviews existing literature on near-bed turbulence properties for rough-

bed open channel flows, and theoretically analyzes the spatially-averaged momentum equa-

tions in the nearby of a rough bed with the aim to set the basis to derive suitable closure

relationship for spatially - averaged near-bed shear stress and sediment transport when a

gravel bed is partially covered with sand.

The closure relationships will be derived on the basis of a theoretical analysis of the

governing spatially-averaged turbulent flow equations and with reference to existing ex-

perimental data. A vertically varying, longitudinally uniform flow will be considered; the

derived closure relationships can then be used following of a ”slowly varying” approach,

as is commonly done in morphodynamic modelling. This ”slowly varying” approximation

can be acceptable when the spatially-averaged variations of bed and channel geometry in

space are ”slow enough”. This therefore allows to use the closure relationship for shear

stress and sediment transport, derived under uniform flow conditions, with local values of

the spatially-averaged flow properties.

In a first instance, near-bed turbulence properties will be examined in the absence of sand

cover; afterwards the analysis will focus on how these properties can be modified by the

presence of a sand layer of variable height.

Figure 2.4 reports the main notations that will be used to characterize the physical system:

a turbulent free-surface flow over an immobile gravel bed.

Referring to Figure 2.4, Nikora et al. (2001, 2007b) suggested the subdivision of the

different flow into specific layer, depending on flow submergece, i.e. 〈D0/lz〉s. (〈D0〉s de-

notes the spatially-averaged water depth in the reference area A0 and 〈lz〉s is a spatially-

averaged length scale referring to the gravel bed elements composition in the same reference

area).According to Nikora et al. (2001), momentum conservation is controlled by different

physical effects in each flow layer represented in Figure (2.4), which results in different

spatially-averaged vertical velocity profiles. The following layers are sketched in Figure 2.4:

1. Outer layer: in this region the viscous effects and form-induced fluxes are negligible

and the spatially averaged equations are identical to the time-averaged equations.

2. Logarithmic layer: in this flow region the viscous effects and form-induced fluxes are

negligible and the spatially averaged equations are identical to the time-averaged

equations, as for the outer layer. However, the characteristic scales for the logarith-
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2.2 Hydrodynamics characterizations:turbulence properties near immobile gravel beds

mic layer are different from those for the outer layer.

3. Form-induced sublayer: the flow in this region is influenced by individual roughness

elements. The form-induced sublayer occupies the region just above the roughness

crests. The name ”form-induced”reflects the appearance of the form-induced stresses

which are due to flow separation from the roughness elements and are not present

in the logarithmic layer.

4. Interfacial sublayer: this sublayer is also influenced by individual roughness elements

and occupies the flow region between roughness crests and troughs, i.e., where the

roughness geometry function A(z) changes from 1 to 0 for impermeable beds, or

from 1 to Amin for permeable beds. An important feature in this sublayer is that

associated with form drag.

The form-induced and interfacial sublayers together may be identified as the roughness

layer. The main characteristic scales of the roughness layer are the shear velocity u∗ and

characteristic lengths of the bed topography discussed in the previous Section.

Specifically, the present analysis refers to a ”Flow type I” (sensu Nikora et al. (2001,

2007b)) characterized by high relative submergence, where the logarithmic layer is fully

developed because the submergence is large enough to form an overlap region, i.e. the

”outer layer” (see Fig.(2.4)). ”Flow type I” occurs when < D0 > is at least one order of

magnitude larger than < lz >, although also larger values have been reported.Jiménez

(2004) justified the logarithmic layer for deep flow when 〈D0/lz〉s > 80, but data available

in other flow conditions show that the distribution of double-averaged velocity above the

roughness layer is logarithmic for the ratio 〈D0/lz〉s much smaller than 80 (Mignot et al.

(2008); Franca et al. (2008)).

The physical quantities that are mainly transported by hydrodynamics forces in the

interfacial sublayer and in the form-induced sublayer are different. Specifically, and refer-

ring to uniform two-dimensional open channel flow, the double-averaged (in time first and

in space second) momentum equation (Nikora et al. (2001, 2007b); Mignot et al. (2008) )

reads:

∂

∂z




τ︷ ︸︸ ︷
µ
∂〈U〉s
∂z

−ρ〈u′w′〉s − ρ〈ũw̃〉s︸ ︷︷ ︸
τt


 + fp(z) + fν(z) = −ρgifA(z) (2.32)

where 〈·〉s = A(z)〈·〉 and the roughness geometry function A(z) has been defined in the

set [0, 1] because this analysis doesn’t take into account permeable beds so that when
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z

x

zm

zc

zws

0

1

0

Interfacial sublayer

Form-induced sublayer

Logarithmic layer

Roughness
layer

AAAA(z)

Outer layer
zL

Figure 2.4: Flow subdivision into specific regions in gravel-bed flows for impermeable beds

z = 0 then A(0) = Amin = 0 (Nikora et al. (2001)). Moreover, if is the bed slope, fp(z)

and fν(z) are the drag forces induced respectively by pressure distribution along gravel

particles and by the viscous forces integrated on the contour of the roughness elements in

the specific area A0.

The total shear stress τ results from the sum of viscous shear stress and the bed-form

shear stress (or dispersive stresses). In the roughness layer the form-induced stresses can

not be negligible in the momentum balance, because they can reach a contribution up to

6-30% of the total shear stress τ (Nikora et al. (2001); Aberle et al. (2008); Mignot et al.

(2008)). Experimental results (Aberle et al. (2008)) suggest that the local distributions

of form-induced shear stresses are almost constant with varying discharge, i.e. they are

almost constant regardless of the value of Reynolds number defined as Re = 〈UD0〉s
ν with a

specific rough bed configuration. However so far and to Author’s knowledge there are no
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2.2 Hydrodynamics characterizations:turbulence properties near immobile gravel beds

studies that relate the distributions of form induced stresses to roughness characteristics

of bed composition in terms of rough bed particle size distribution or statistical roughness

parameters (Buffin-Bélanger et al. (2006); Aberle et al. (2008)).

A similar concept applies for the Turbulent Kinetic Energy (TKE) balance, where terms

related to the form-induced stresses play a significant role in the roughness layer. The

double-averaged (in time first and in space second) TKE budget equation for longitudinally

uniform two-dimensional open channel flow can be written as (Mignot et al. (2008)):

P︷ ︸︸ ︷
−〈u′w′〉s

∂〈U〉
∂z
−〈u′iu′j〉s

〈
∂ũi
∂xj

〉
−
〈
ũ′iu
′
j

∂ũi
∂xj

〉

s︸ ︷︷ ︸
Pt

(2.33)

= 〈ε〉s

+
∂

∂z


〈k′w′〉s + 〈k̃w̃〉s︸ ︷︷ ︸

Ft




+
∂

∂z




〈
p′w′

ρ

〉

s

− ν ∂
∂z
〈k〉s

︸ ︷︷ ︸
Fe


 for i, j = 1, 2

where 〈ε〉s represents the dissipation rate , k′ = (u′2 +v′2 +w′2)/2, k = k′ and the water

density ρ and the kinematic viscosity ν have been assumed constant in the flow domain.

No experimental observations exist at present to quantify the variation of the properties of

the characteristic flow layers with the height of a sand coverage over the gravel bed. How-

ever, examining Eq. (2.33) in the light of existing experimental observations for gravel-bed

rivers, allows to formulate reasonable working assumptions for the development of suit-

able closure relationships to be used in the framework of double-averaged morphodynamic

models.

Referring to a specific bed composition, Mignot et al. (2008a) suggest that the term

Pt in Eq.2.33 can not be neglected in the interfacial sublayer (i.e. z < zm in Figure 2.4),

specifically for the contribution of the first term in the Pt component. In fact, it reaches

the same order of magnitude of the first term of the total production term P , and it rep-

resents the work of the double-averaged velocity against the double-averaged shear stress.

Mignot et al. (2008) indicate that, for rough beds, the turbulent kinetic energy flux Ft

is directed upwards and toward the bed differently from the smooth bed case where it is

directed only upwards. Moreover, it reaches its maximum value in the interfacial sublayer
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2 Turbulence and sediment transport characterization for flow over immobile gravel beds: mixed case

(slightly below zm in Figure 2.4) and it vanishes above the form-induced sublayer , i.e.

z > zc in Figure 2.4(Mignot et al. (2008), Mignot et al. (2008a)).

Referring to (2.32) the linear behavior of the total shear stresses τ is, in principle, recovered

for z ≥ zc because the drag forces and the influences of form-induced shear stresses vanish

(Nikora et al. (2001)). Physically, this means that the presence of the turbulent kinetic

energy flux Ft throughout the roughness layer shifts the region where the vertical shear

stress profile is linear to the level zc, where the logarithmic streamwise velocity profile is

recovered.

Mignot et al. (2008) present a simplified treatment of the near bed turbulence proprieties,

by assuming that the turbulence macro scales for the logarithmic layer and for the interfa-

cial sublayer are of the same order of the water depth D0. Besides, for z ≤ zm the turbu-

lence small scales have been assumed of size equal to Ls = 〈zm〉s, and the double-averaged

shear stress profile have been assumed to be linear. In other words, and assuming that the

velocity shear generate a hierarchy of eddies throughout all the water depth with charac-

teristic scales proportional to the distance from the rough wall, the energy production flux

P in Eq.(2.33) across the hierarchy of eddies depends on the scale under consideration. In

turn this scale depends on how the energy is distributed or dissipated throughout all the

water depth, as stated by right hand side of (2.33). Above a given distance from the rough

bed, i.e. z ≥ zc, the energy production term P balances the energy dissipation ε and a

turbulence eddy characteristic scale L varies in the range ai〈D0〉s ≤ L ≤ bizc, with ai,bi

scaling coefficients depending on the flow fields velocity components. In the range z < zc

smaller eddies exists and a eddy characteristic scale L varies in the range aiλ ≤ L ≤ bizc

(known as the inertial subrange, sensu Nikora (2008)) where λ denotes an appropriate

roughness height. It is remarkable that it has been assumed zc as a reference level to

divide the two zones because above that level all the fluxes in the right hand side of (2.33)

vanishes except for the dissipation rate ε.

Consequently, the production term P in (2.33) reads as (Mignot et al. (2008)):

P = −〈u′w′〉s
∂〈U〉
∂z

= −〈u′w′〉∂〈U〉
∂z

=
〈u3
∗〉s
kz

(
1− z − zm
〈D0〉s − zm

)
(2.34)

where 〈u∗〉s represents the double-averaged friction velocity and k the Von Kármán con-

stant. The Eq.(2.34) has been assumed valid for specified rough bed composition and in the

range 0.88 ≤ z/zm ≤ 1.47. Specifically, we refer to Case 1 of bed configuration in Mignot

et al. (2008), represented by a Gaussian distribution with mean bed elevation µb=3.1 cm

and standard deviation σb=9.7·10−1 cm, see Figure 2.11. Moreover, Eq.(2.34) has been

phenomenologically justified for completely developed logarithmic layer above zm. Differ-
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2.2 Hydrodynamics characterizations:turbulence properties near immobile gravel beds

entiating Eq.(2.34) with respect to zm and computing the derivative in a specified gravel

bed bed configuration (zm)0, it follows that:

∂P

∂zm
=
〈u3
∗〉s

k〈D0〉s
1

(zm)0(1−∆)
(2.35)

or
∂P ∗

∂z∗m
=

1

k(1−∆)
(2.36)

where ∆ = (zm)0/〈D0〉s < 1 represents a measure of flow submergence, P ∗ = P 〈D0〉s/〈u3
∗〉s

and z∗m = zm/(zm)0. Eq.(2.36) means that the variation with geometrical height zm of

the TKE production term P scaled with appropriate hydrodynamic external scales is only

function of the flow submergence ∆. The expression (2.36) is formally valid provided the

spatially averaged water depth < D0 >s is significantly larger than the typical vertical

scale associated with the rough bed surface. It can be thought as a representation of the

turbulent fluxes in the near-bed region, which controls the thickness of the flow sublayers

and therefore of the ”small” turbulence scales of the near-bed flow properties

Referring to Eq.(2.36) and considering the general case where the turbulence scales in the

form-induced sublayer are influenced by the bed composition, the production term P in

the Eq. (2.33), when 0 ≤ z ≤ zc, reads as:

P ∼ O

(〈
u3
∗
Lc

〉

s

)
= O

(
〈u3
∗〉s
zc

)
(2.37)

where Lc is used to denote the measure of a generic ”small” turbulence scale close to

the bed region as explained before. Eq.(2.37) is consistent with the experimental data in

Mignot et al. (2008) and Mignot et al. (2008a) where it os shown that the fluxes Ft diffuse

turbulent kinetic energy throughout the roughness layer also changing the flux direction.

The analysis described above supports the fact that the first hydrodynamic ingredient to

be introduced for the quantification of the near-bed turbulence scale is the water depth,

namely through its ratio to the typical vertical scale of the rough bed geometry, discussed

in the previous section.

Following the conventional dimensional analysis we can express the double-averaged tur-

bulence small scale 〈Lc〉s for the roughness layer as:

〈L∗c〉s = f

(〈
lz
D0

〉

s

, 〈γi〉s
)

(2.38)

where 〈lz〉s represents a typical length scale for bed elements. A typical measure of < lz >s
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is the standard deviation of the bed elevation distribution σz in the case the roughness

geometry function has been defined as the cumulative probability function of bed elevation

Nikora et al. (2001)).

Equation (2.38) also includes the links with the horizontal bed geometry scale lx that

emerges from the geometrical analysis of the previous section. Indeed the term 〈γi〉s
represents a dimensionless measure of the horizontal arrangement of bed configuration

(e.g. density of roughness elements, intergranular friction angle (sensu Kirchner et al.

(1990)).

z,ηηηηs

x

zm

zc

zws

0

1
0

Interfacial sublayer

Form-induced sublayer

Logarithmic layer

Roughness
layer

ηηηηs

AAAA(ηηηηs)

Outer layer
zL

Figure 2.5: Flow subdivision into specific regions in gravel-bed flows for impermeable beds
and presence of sand fraction

The presence of a sand cover in the gravel bed is likely to affect the small turbulence

scales. To quantify how these scales change because of a variable sand level partially

covering the immobile gravel bed is crucial for the scope of the present work. These
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2.2 Hydrodynamics characterizations:turbulence properties near immobile gravel beds

characteristic lengths are indeed those that define the properties of the spatially-averaged

turbulent flow (vertical velocity profile, near bed shear stress, eddy viscosity) that are

needed for the purpose of morphodynamic modelling.

However, apart from the recent contribution of Wren et al. (2011), nearly no experimental

investigation is at present available concerning the effect of sand addition in gravel beds

on the spatially-averaged turbulent flow properties. The present Chapter is a first attempt

towards defining such dependency on the basis of a newly proposed theoretical analysis

related to published experimental data.

To examine such dependence we refer to Figure 2.5 where the sand fraction has been

added in the composition of the rough beds. In this case we consider A(0) = Amin = 0,

corresponding to an impermeable bed, which physically means that the present work

doesn’t take into account the downwards sand infiltration phenomenon (Cui et al. (2008)).

The function A(z) represents the spatially-averaged horizontal portion of the sand surface

available to be transported by the flow.

The dependency expressed by Eq.(2.38), when the sand fraction is present in the gravel

bed composition , becomes:

〈L∗c〉s = f

(〈
lz
D0

〉

s

, 〈γi〉s,
〈ηs〉s
lg

,
ds
lg

)
(2.39)

where lgrepresents a measure of maximum gravel elements length scale (i.e. lg = O(dg),

and dg represents the maximum gravel diameter),measured from a reference level, so that

the ratio η∗s = 〈ηs〉s
lg

has been defined between 0 and 1. When the sand level η∗s = 0 means

that no sand is available to be transported by the flow, similarly when the sand level

η∗s = 1 then the sand completely buries the gravel bed elements and the ”homogeneous”

case is recovered .The diameter ds represents the sand diameter of the sand fraction, and〈
lz
D0

〉
s

represents a measure of the flow submergence ∆, with 〈lz〉s a characteristic gravel

bed elements length scale in the area A0.

Equation (2.39) indicates that near-bed turbulence scales depend on a measure of the rel-

ative bed roughness (protrusion) and on the arrangement of the bed particles, which are

both likely to depend on the sand surface level. Moreover a dependence of these scales

is reasonably expected from the sand-to-gravel grain size ratio. No explicit data exist

at present on the variation of near-bed turbulence scales with the relative sand surface

elevation ηs/lg and with the grain size ratio ds/lg. Therefore in the following published

literature data are used and original analysis are performed in order to propose functional

forms that these dependencies might take, and focus on their physical meaning.
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2 Turbulence and sediment transport characterization for flow over immobile gravel beds: mixed case

2.3 Turbulence closure and spatially-averaged velocity

profiles for clean gravel beds

Assuming that zc ' zm so that above zm the production term P is equal to the dissipation

rate 〈ε〉s and the logarithmic profile is recovered, then Eq.(2.36) reads as:

∂P ∗

∂z∗m
=

∂

∂z∗m

(
−〈u′w′〉∗s

∂〈U〉∗

∂z∗m

)
(2.40)

= −∂〈u
′w′〉∗s
∂z∗m

(
∂〈U〉∗

∂z∗m

)
− 〈u′w′〉∗s

(
∂2〈U〉∗

∂z∗2m

)
(2.41)

=
1

k(1−∆)
(2.42)

From (2.40) it follows that the logarithmic profile of the spatially-averaged longitudinal

velocity 〈U〉∗ is also a function of ∆ = (zm)0/〈D0〉s < 1. Referring to Eq.(2.39), the

velocity profile reads as:

〈U〉∗ =
1

k
ln

(
z − d
λ0

)
for z ≥ zm, 0 ≤ d

zm
< 1 (2.43)

where d represents the zero-plane displacement and λ0 is the roughness length (Jackson

(1981); Nikora et al. (2002); Poggi et al. (2004)).

Nikora et al. (2002) found that the displacement height d is linearly (or quasi linearly)

related to the thickness of the roughness layer zc; referring to Figure 2.4 the reference

level for the z-coordinate has been assumed where the roughness geometry function A(z)

vanishes. On the basis of existing experimental observations, it is possible to assume

that d ≈ 0.43zc (Nikora et al. (2002)); moreover Nezu and Nakagawa (1993) found d ≈
(0.3−0.6)rs with rs the radius of the spheres composing the rough bed and assuming that

zc ≡ zm = rs .

Mignot et al. (2008) found that for a specific bed configuration (Case 1) the ratio zc/zm '
1.47 , and zm = 5.9cm. Moreover, Mignot et al. (2008) for the same bed configuration

(Case 1) calculated, by fitting process, a zero-plane displacement d = 3.1cm with respect to

the reference z-level as in Figure 2.4. The value of the friction velocity has been determined

from a Clauser-type analysis on the double averaged velocity. This outcome independently

supports the linear correlation between d and zc revealed by Nikora et al. (2002). Indeed

the experimental data of Mignot et al. (2008) yield:

zc =
zc
zm

zm = (1.47× 5.9) cm = 8.7cm;
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2.3 Turbulence closure and spatially-averaged velocity profiles for clean gravel beds

therefore following Nikora et al. (2002) one finds the following value of the displacement

height d:

d = 0.43zc = (0.43× 8.7) cm = 3.74cm,

with a 17% difference with respect to the value of 3.1 obtained through direct fitting the

velocity data by Mignot et al. (2008). For the reason illustrated above, it is reasonable to

rewrite (2.43) as follows:

〈U〉∗ =
1

k
ln

(
z − 0.43zc

λ0

)
for z ≥ zc (2.44)

Since zc = O(zm) then Eq.(2.43) still hold also for the level zc.Combining (2.43) and (2.39)

it can be assumed the following general dependency of the spatially averaged vertical profile

of the longitudinal velocity:

〈U〉∗ = fU

(〈
lz
D0

〉

s

, 〈γi〉s,
〈ηs〉s
lg

,
ds
lg

)
(2.45)

This is based on recognizing that the relevant hydrodynamic turbulent scales (λ0, d or zc)

are dependent on the same dimensionless parameters. According to (2.39) one can indeed

write:

zc = fz

(〈
lz
D0

〉

s

, 〈γi〉s,
〈ηs〉s
lg

,
ds
lg

)
(2.46)

λ0 = fλ

(〈
lz
D0

〉

s

, 〈γi〉s,
〈ηs〉s
lg

,
ds
lg

)

Equation (2.43) already expresses the dependance of the spatially averaged velocity on

the first of the four parameters that appear in (2.45). The dependence from the second of

these parameters, i.e. the arrangement of bed particles in the gravel bed, is discussed in

the following paragraphs.

The first step in doing this is to review the existing literature data to determine the values

of zc and λ0 with different geometric packing.

Considering Figure 2.6, we defined the areal close-packing of the roughness elements

trough the parameter γi defined as:

γi =
2r2
s

√
3

A0(lx, ly)
, 2rs ≤ lx <∞, 2

√
3rs ≤ ly <∞ (2.47)

where A0 represents the area of the rectangle with sides (lx, ly) computed with respect to

a cartesian coordinate system as in Figure 2.6. It measures the packing of a given bed
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Figure 2.6: Panel a) and b) vertical and side view of the relative position of roughness
elements represented by spheres of area πr2

s . The panels c) and d) refers to the maximum
close-packing of a rough bed configuration by sphere (i.e. the minimum value of the
parameter γi in Eq.(2.47)), particularly the blue area in the panel c) is twice the area of
red triangles.

configuration. The numerator of the ratio γi in Eq.(2.47) represents the area of the red

lozenge in Figure 2.6, and has been arbitrarily chosen as a reference measure of the closest

packing arrangement of the bed particles, being sole function of a representative grain size.

The value of γi in the Eq. (2.47) is defined in the range:

0 < γi ≤
1

2
= γmax (2.48)

Comparison from different existing data is showed in the Tab.2.1, where heterogeneous

case (Het.) stands for a composition of angular gravel elements (stones) with d50 = 2 cm

which are deposited randomly on the bottom of the experimental flume (see Mignot et al.

(2008) for more details). Tab.2.1 shows that changing the packing arrangements of the bed

rough elements is associated with variations of the hydrodynamics quantity λ0. Moreover,
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2.4 Effect of a sand layer within the gravel bed

Hom1 Hom2 Het.3

Roughness elements Sphere rs Sphere rs R.A.B.

Elements arrangements γi = 1
2 γi = 0.41 γi <

1
2

z∗c r∗s 0.66r∗s 1.47z∗m
z∗m r∗s 0.66r∗s 0.31

λ∗0 1.74 · 10−2r∗s 2.04 · 10−2r∗s 1.8 · 10−1

Table 2.1: Comparison of geometrical and hydrodynamics characteristic for homogeneous
(Hom.) and heterogeneous (Het.) case. The star ∗ refers to a dimensionless quantity,
obtained by normalizing the reference quantity trough the spatially-averaged water depth
〈D0〉s. Data are taken from: 1Nezu and Nakagawa (1993); 2Nikora et al. (2001); 3Mignot
et al. (2008) (Case 1) where R.A.B. stands for Randomly Arrangements Bed. The param-
eter λ∗0 was calculated considering that the displacement height d equals to 0.43zc (Nikora
et al. (2002)).

in the heterogeneous condition (Mignot et al. (2008)) the two levels zc and zm are different

because of the strong spatial heterogeneity of the bed elements, with a bed mean level

zmean =3.1 cm and the maximum rough elements elevation of 2.8 cm above it. The spatial

rough bed elements distribution influences the energy quantities throughout the roughness

layer (Mignot et al. (2008);Mignot et al. (2008a)). Assuming a fixed value of Von Kármán

constant, the variability of the two quantities zc, λ0 is considered as a measure of turbulent

transport phenomena over a rough bed. A different choice (Nikora (2008)) is to assume

a possible variation of Von Kármán parameter as a function of relative flow submergence,

admitting that this kind of variability has to be yet properly tested.

The main outcomes of the analysis illustrated above can be summarized by stating that

the spatially-averaged near-bed flow properties over a rough gravel bed essentially depend

on the ratio between a characteristic measure of bed particle size (vertical geometric scale)

to the flow depth and on the packing arrangement of the gravel particles within the gravel

bed. When sand is present in the gravel bed the above properties change because they

can both depend on the sand surface elevation and also on the relative ratio between the

representative sand and gravel grain size.This issue is the subject of the next Section.

2.4 Effect of a sand layer within the gravel bed

The present Section aims to examine the expected physics controlling the dependence of zc

and λ0 on the presence of sand layer of varying heigth and to propose suitable functional

relationship that can be used to represent it. The proposed functional forms are also
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2 Turbulence and sediment transport characterization for flow over immobile gravel beds: mixed case

Triangles Spheres W.W.B.

A(z) z
h

z2

r2s

1
2erfc

[
−
(
ln(z)−µb√

2σ2
b

)]

lx b 2rs O(d90)

lz h rs 4σd ≈ 1.5d1
50

Table 2.2: Geometric characterization for different bed configuration related to different
forms of the roughness geometry function A(z) (see Figure 2.8). The function A(z) for
Water Worked Bed (W.W.B.) has been represented by a CDF of a log-normal distribution
of rough bed elevations with µb and σb the mean and variance of the log-transformed bed
elevation z.The symbol σd refers to the standard deviation of bed elevations and d50 is
the 50th percentile of particle size distribution of the rough elements in the interfacial
sub-layer. The function erfc is the complementary error function. 1 Nikora et al. (2001)

discussed in the light of the few available experimental observations. For this purpose the

analysis can be referred to the three different bed configurations reported in Figure 2.7.

Two idealized configurations with triangular (Panel (a), Figure 2.7) and semi-cilindrical

bed elements (Panel (b), Figure 2.7) are analysed, as schematic representations of the

general case (Panel (c), Figure 2.7). With the aim to investigate the effect of a sand cover

that fills the voids within the gravel bed, a first key property to be examined in detail,

is the roughness geometry function A(z) of a given gravel surface (Nikora et al. (2001)).

The three different configurations correspond to different vertical distributions A(z). It

can be expected these varying behaviors relative to different rough bed compositions affect

also the behavior of the spatially-averaged shear stresses and its derivative with respect

to vertical coordinate, particularly in the interfacial sub-layer.

The problem faced in the present study refers to a fully 2D (x, z) flow and rough bed.

Coherently panels a) and b) in Figure 2.8 represent the vertical section of two types of

bed elements configuration so that for each value of y-coordinate (i.e.: the orthogonal

coordinate to the x − z plane) the vertical section remains identically the same. These

bed arrangements also match the choice that the roughness geometry function A(z) has

its minimum value equal to zero (impermeable bed).

Figure 2.7 qualitatively represents different roughness geometry function A(z) for the

three different bed configuration shown in Figure 2.8. Panel a) is relative to a linear

behavior, panel b) is relative to a parabolic behavior and panel c) refers to a cumulative

distribution function (CDF), associated with a probabilistic bed elevation distribution

whereby the roughness geometry function A(z) can be interpreted as the probability for

a bed elevation to be smaller a given elevation z (Nikora et al. (2001)).

Tab. 2.2 reports the geometric length scales and to roughness geometry function char-
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Figure 2.7: Roughness geometry function A(z) for different bed elements configuration

acterization A(z) for different rough bed elements composition as in Figure 2.8. The CDF

in the same table has been assumed as log-normal distribution for the bed elevation in the

interfacial sub-layer, because its domain (i.e. the rough bed elements elevations) consists

in the set of real numbers [0,∞) and the shape of the related PDF is not symmetrical with

respect to the expected value. For a gravel beds subject to armoring processes, Aberle and

Nikora (2006) found that the PDF of the water-worked armor layer is positively skewed

and therefore for that kind of gravel beds the Gaussian distribution could not be accepted.

A second key characteristic of gravel bed composition that can be accounted for to inves-

tigate the effect of a sand cover within the gravel voids is the distribution of the bed grain

size. This is conceptually different from the distribution of bed elevations quantified by

means of a roughness geometry function.

Grain-size distributions for natural gravel beds population are rarely normally distributed

and are frequently bimodal (Carling and Reader (1982); Wilcock (1998)). Moreover, Car-

ling and Reader (1982) assumed that the grain-size distribution of gravel beds may be

represented by a two grain-classes grainsize population: a framework of self-supporting
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Figure 2.8: Different spatial rough bed elements configuration

interlocking large clasts, and a ”matrix” population consisting of fines material (sand frac-

tion) in size less than 2mm that infills the void space in fabric.

When a sand fraction is present in a mixed size sediments rough bed composition, modeling

the transport phenomena of the sand particles when the gravel fraction is at rest requires

to take into account the nonlinear effects of sand fraction on transport rate (Wilcock and

Kenworthy (2002)). The roughness geometry function A(z) in Tab.2.2 represents the hori-

zontal area occupied by sand fraction that is available to be transported by the flow, when

the z-coordinate is evaluated at the spatially-averaged sand surface level ηs in the gravel

matrix. Under these conditions, Tab.2.2 can be rewritten in the form of Tab.2.3.

2.5 Turbulence closures and spatially-averaged velocity

profiles: mixed case

We first consider the simple case in which the rough bed elements consist of a triangles

or spheres arrangement. The function A(ηs) can be interpreted as a measure of the rough
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Triangles Spheres W.W.B.

A(ηs)
ηs
h

η2s
r2s

1
2erfc

[
−
(
ln(ηs)−µb√

2σ2
b

)]

lx b 2rs O(d90)

lz h rs 4σd ≈ 1.5d1
50

Table 2.3: Same as Tab.2.2 but with z = ηs. The level ηs represents the sand elevation
computed with respect to a reference level, i.e.A(z) = 0

bed elements protrusion ζ above the sand level ηs that takes in this case a very simple

dimensionless expression:

ζ∗ =
ζ

lz
= 1− η∗s (2.49)

A(η∗s) = 1− ζ∗, for triangles

A(η∗s) = (1− ζ∗)2, for spheres

It follows that the dimensionless protrusion ζ∗, for a generic, irregular gravel bed with

partial sand cover, reads as:

ζ∗ = 1− f [A(ηs)] (2.50)

Nikora et al. (2001) assumed that the function A(ηs) can be defined as the CDF of the

rough bed elements elevations for irregular impermeable rough beds; therefore in Eq.

(2.50) the function f [A(ηs)] can be interpreted as the probability for a bed elevation z to

be less than a given elevation z0. For simplified geometries f [A(ηs)] ≡ A(ηs), hence in

these cases:

ζ∗ = 1− P (z < z0) = 1−A(ηs0) = P (z > z0) (2.51)

where P (z > z0) is the CDF of a rough bed elements protrusion over a given elevation

z0 = ηs0 . These considerations give the opportunity to quantify the variability of the

spatially-averaged protrusion of the immobile gravel bed elements with the sand surface

elevation ηs.

This therefore represents a first important step in building the functional relationship

qualitatively expressed by Eq.(2.39) and Eqs.(2.46). Namely it allows to quantify how

the first parameter < lz/D0 >s can change with varying sand elevations in the gravel

bed. The effect of sand level, however, is not limited to a modification of this ”protrusion-

related” effect, but it is also felt in the whole bed composition, because when the sand

level progressively increases it can be expected that that the equivalent of the bed particle

arrangement (expressed with < γi > in the clean gravel bed case) will be significantly
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2 Turbulence and sediment transport characterization for flow over immobile gravel beds: mixed case

related to the presence of a variable sand surface height.

To this purpose, a detail analysis of sediment-transport related literature suggests a pos-

sible approach to account for such physical effects, which will appear of great relevance in

modeling the dynamics of gravel beds with partial sand cover.

Wilcock and Kenworthy (2002) proposed a two-fraction model for the transport of sand-

gravel mixtures. One of the key outcomes of their analysis is the empirical quantification

of the nonlinear effect of sand content into the gravel bed on the sediment transport rate.

Such effect mainly displays itself through a nonlinear effect on the critical shear stress

for the motion of both fractions (sand and gravel) and on the effective near-bed shear

stress for the entrainment of both sediment fractions. In the present analysis the findings

of Wilcock and Kenworthy (2002) are revisited and reinterpreted. Focusing on the flow

forces acting on the sand particles when the gravel is assumed at rest allows to propose

physically-based relationships that link the characteristic near-bed turbulent scales zc and

λ0 with the variation of the sand level in the gravel bed. These relationships are derived

by focussing on how the fluid shear stress varies with the sand level ηs in the gravel frame-

work by referring to available experimental observations.

It is convenient to normalize the sand bed elevation ηs with a measure of the ele-

vation range occupied by most of the gravel particles in the bed. For this reason the

quantity ηs/6σd will be used in the following. The variability of the shear stress through-

out the interfacial sublayer links two limits cases: when ηs/(6σd)=1 the bed is composed

by homogeneous sand spheres with radius equal to rs, when ηs/(6σd)=0 the bed is com-

posed by homogeneous gravel particles whose elevations with respect to a reference level

is represented by the roughness geometry function A[(ηs/(6σd)]. Figure 2.9 represents

the superficial spatially-double averaged shear stress measured by Mignot et al. (2008) at

differen heights within the roughness layer over a gravel bed identified by the roughness

geometry function A plotted with a solid red line. Other geometrical characteristics of

this gravel bed are reported in the caption of Figure 2.11.

The shape of the vertical distribution of the spatially-averaged measured shear stress

in Figure 2.10 rather closely matches that of the roughness geometry function describing

the properties of the experimental gravel bed in Mignot et al. (2008). This suggests a

relatively simple functional relationship to quantify the vertical variability of spatially-

averaged shear stress in rough gravel beds. Such relationship can be put in dimensionless

form, where the shear stress can be conveniently normalized with the commonly used

factor ρu2
∗. It reads:
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Figure 2.9: The black points refer to the superficial double averaged shear stress τ in
Mignot et al. (2008). The red line refers to the roughness geometry function A(ηs/(6σd))
in Mignot et al. (2008) and represented also in Fig.(2.11).

τ∗s =
τs
ρu2
∗

= 0.6607(1− ζ∗) (2.52)

= 0.6607 · CDF [N(µb, σd)] (2.53)

(µb, σd) = (3.1cm, 9.7 · 10−1cm)

where CDF [N] is the cumulative distribution function referring to a Gaussian distribution

of the rough bed elevations with mean µb and standard deviation σd.

Eq. (2.52) refers to the limit configuration of a clean gravel bed. Of course the value 0.66

is actually depending on the mean (uniform) flow conditions and channel geometry. For

the mixed case, when sand is present into the gravel bed (i.e. ηs > 0), the experimen-

tal observations on sand bedload transport by Wilcock and Kentworthy provide useful

indications on how to express the functional relationships (2.45, 2.46)
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Figure 2.10: The black points refer to the superficial double averaged shear stress τ in
Mignot et al. (2008). The green line represents the superficial double averaged shear stress
τ∗g as a function of A(ηs/(6σd)) represented also in Figure 2.11.

Wilcock and Kenworthy (2002) predicted the Shields stress for incipient motion (i.e. τri

) relative to the sand and gravel fraction. Specifically for the sand fraction they propose:

θ∗rs =
θrs

(θrs)1
= (1 + Θ exp−14A(ηs)) (2.54)

= (1 + ΘF (ηs))

where (θrs)1 is a reference value for the Shields stress for incipient motion of sand fraction

in the case of well-sorted, homogeneous sand bed and Θ represents the Shields stress

required for the entrainment of the gravel fraction when the sand is largely hidden among

the pores of the gravel grains, i.e. when ηs ' 0 .
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Figure 2.11: Roughness geometry function A(z) for Case 1 in Mignot et al. (2008), the
red line represents a Gaussian CDF, with mean bed elevation µb=3.1 cm and standard
deviation σd=9.7·10−1 cm, the black dots represent the measured bed elevation respect to
a reference level

Following the general dependencies (2.45, 2.46), it can be written :

Θ = f

(
lg
ds
,
dg
〈D0〉s

)
= f

(
α
dg
ds
,∆

)
(2.55)

F (ηs) = f

(
σd
dg
, 〈γi〉s, ηs

)
(2.56)

where the length scale lg has been defined previously in the Eq.(2.39), ∆ is the relative

flow submergence for incipient entrainment of gravel particles and the parameter α is an

appropriate constant that Wilcock and Kenworthy (2002) assumed to be of order one for

the specific case in which the characteristic diameter dg and ds refer to surface rough bed

elements composition. Specifically dg and ds can be represented by the d50 or d90 of the

surface grain size distribution of the two sediment fractions .
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Typical values for the function Θ in (2.55) for incipient sand entrainment are reported in

Wilcock and Kenworthy (2002). The function Θ can be written as:

Θ =
(θrs)0 − (θrs)1

(θrs)1
, (θrs)0 = α(θrg)0

dg
ds

(2.57)

where θrs refers to the Shields stress for incipient sand and the subscript refers to the sand

level. Namely the subscript ”0” indicates a nearly vanishing sand content into the gravel

bed (η∗s = 0) while the subscript ”1” indicates a full sand cover (η∗s = 1).

It is noteworthy that the Shields stress for incipient movement of gravel fraction θrg is pro-

portional to the ratio between the two diameters that have been chosen as representative

for each fraction. This is basically a consequence of the definition of the Shields stress and

may also put in relationship with the fact that the drag forces in the interfacial sublayer

are proportional to the particle surface.

The function F(ηs) in (2.56) expresses an empirically detected global variation of the effec-

tive shear stress for sand movement within a variably sand-covered gravel layer. Besides

its empirical derivation, we aim here at disclosing the possible physical effects that con-

tribute to such variation with the relative sand content into the gravel bed and with other

possibly relevant parameters. As a first approximation it is reasonable to assume that, in

general, the function F may depend also on the typical geometrical scales characterizing

the gravel bed structure, both in the average bed-parallel and bed-orthogonal directions.

These can be therefore expressed through the parameters σd and < γi >s, where σd is

the standard deviation of the bed elevations and 〈γi〉s is an appropriate parameter for the

measure of the areal close-packing of the roughness elements in the plane coordinates x, y,

referring to a characteristic area A0. Assuming in Eq.(2.50) a log-normal CDF for the

function P (z > z0) with the statistical and geometrical characteristics reported in Tab.2.4

(Aberle and Nikora (2006)), the characteristic vertical dimension that affects the near-bed

turbulent shear stress can be assumed to coincide with the bed particle protrusion function

ζ already examined in its dimensionless form ζ∗ in Eq.(2.51) for simple geometrical bed

configurations.

Such dimensionless protrusion function ζ∗ is plotted with red lines in Figure 2.12, where

the function F is also reported with blue lines. The subscript 1 (solid line) or 2 (dot line)

refers to the two bed configurations described in Tab.2.4. The horizontal axis refers to a

dimensionless measure of the sand surface elevation, which has been conveniently normal-

ized with a representative vertical scale of the gravel-bed surface. This vertical scale has

been taken to coincide with six times the standard deviation of the gravel bed elevation

distribution. Therefore the dimensionless coordinate ηs/6σd ranges from 0 (absence of
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Figure 2.12: Protrusion function ζ∗ as stated by Eq.(2.51) in red color and F function
as stated by Eq.(2.56) in blue color. The subscripts 1 (solid line) and 2 (dot line) refer
to the two bed configuration in Tab.2.4. The horizontal coordinate represents the ratio
between the sand level in the interfacial sublayer ηs and the standard deviation σd of the
bed elevations in the same sublayer.

exposed sand) to 1 (fully sand-covered bed).

It appears that the two protrusion-red curves are shifted with respect to the two pairs of

F -functions.The sharp decrease of the blue curves in Figure 2.12 occurs when the sand

level is in the range 0.1-0.4.

Wilcock and Kenworthy (2002) suggest that such relatively sharp, nonlinear variation of

the sand-related Shields stress with the sand surface content in the gravel bed can be

due to a combination of two key physical effects. The first is the role of gravel clasts that

”protrude” out of the sand surface and determine a hiding effect on the sand particles lying

on the portion of the sand surface that falls beneath the wakes created by the interaction

between turbulent flow and the protruding gravel particles. The second, less obvious,

physical effect is the tendency of the sand to ”bridge” between gravel clasts and prevent
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deeper percolation. This ”bridge” effect allows the sand to congregate into patches on

the bed surface and thus increases its relative ease to transport (Wilcock and Kenworthy

(2002)). This therefore suggests that the sand content, i.e. ηs, controls the amount of sand

available to be transported by the flow, and also influences the inherent mobility of the

two different fractions (Wilcock and Kenworthy (2002)). It is interesting to point out that

the above transition range corresponds to the transition from a framework gravel clasts to

a sandy matrix bed, sensuCarling and Reader (1982).Following Wilcock and co-workers,

fs can be defined as the relative sand content in the bed, with 0 < fs < 1. This implies

that the transition range occurs for 0.1 < fs < 0.4 (specifically 0.2< fs <0.40 for Wilcock

(1998) and 0.1< fs <0.30 for Wilcock and Kenworthy (2002).

Figure 2.13 represents the sand volume function defined as:

fs =
Vs

(Vs)tot
=

∫ η∗s

0
A(η̂∗s)d η̂

∗
s , η̂∗s =

ηs
(4− 6)σd

(2.58)

where Vs is the volume of sand referring to that sand level η∗s and (Vs)tot represents the

total volume available to the sand deposition inside the gravel framework .

It is noteworthy that the derivative of the function fs is always positive, differently for

the derivative of the function A(z) that can be also equal to 0. Consequently, the last one

has the geometrical characteristics to represent the transition behavior from the gravel

framework to the sand matrix. As pointed out before, the sand level η∗s controls not only

the sand exposure to the flow entrainment, but also the volume of sand available to be

transported by the flow. Therefore, these two effects mutually control the morphodynamics

of sand bedforms in the mixed case because the sand level can be viewed as a measure

of the sand supply-limitation in term of sand volume but also in term of sand exposure

(Kleinhans et al. (2002); Tuijnder et al. (2009); Tuijnder (2010)).

Figure 2.12 represents just only one of the ingredients affecting the near-bed shields stress

acting on the sand, since it accounts only for the protrusion ζ∗ of the gravel fraction above

the sand level. The other ingredient,i.e. the ”bridge” effect and the patching phenomenon,

can be quantified by conveniently relating the two pairs of curves shown in Figure 2.12. A

reasonable option is to assume that the protrusion and the bridge effect can act somewhat

independently, which leads to quantify the variation of the bridge effect with the sand

surface elevation through the ratio between the functions F and ζ∗. The result are the

functions κi where (i = 1, 2) reported in Figure 2.14. Figure 2.14 represents the ratio κ
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Figure 2.13: Sand volume function fs as a function of sand level ηs computed with the
roughness geometry function A(z) represented by solid red line with geometric character-
istics as in Mignot et al. (2008)

between the function F and the protrusion ζ∗ computed as follows:

κ1 =
F1

ζ∗1
= 1− P [f1(ζ∗)] (2.59)

= 1− 1

2
erfc


−



ln
(

ηs
6(σd)1

)
+ 1.4

0.27
√

2






κ2 =
F2

ζ∗2
= 1− P [f2(ζ∗)]

= 1− 1

2
erfc


−



ln
(

ηs
6(σd)2

)
+ 1.5

0.28
√

2






where (σd)1 and (σd)2 represent the standard deviations of rough bed elevation as reported

in Tab.2.4 for case 1 and 2, respectively from Eqs. 2.59. It follows that the median value

µκi of the function κi can be interpreted as an average measure of the sand surface level
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Figure 2.14: Ratio κ1 and κ2 relative to the two bed configuration in Tab.2.4. The
horizontal coordinate represents the ratio between the sand level in the interfacial sublayer
ηs and six times the the standard deviation σd of the bed elevations in the same sublayer.

below which the bridge effect quickly vanishes. The expected value µκ and the variance

σκ of the variable ηs read as:

µκ1 = 1.5(σd)1, σκ1 = 2.9 · 10−2(σd)1 (2.60)

µκ2 = 1.38(σd)2, σκ2 = 2.59 · 10−2(σd)2

Recalling Wilcock and Kenworthy (2002); Wilcock (1998) and Wilcock (1998) it ap-

pears (see also the bottom paragraph at page 43) that this level also nearly coincides with

the mean bed elevation at which the transition from gravel framework clasts to sandy

matrix occurs in the rough bed configurations with data reported in Tab.2.4. According

to Eq.(2.60), this value is in the range 1.38-1.5 times the standard deviation of gravel bed

elevations. The differences between the two mean values is likely due to the different ratio
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Curve dg50,mm dg84,mm dg50/ds50 dg84/ds84 σd,mm Sk Ku Θ50 Θ84

1 13.6 28.7 9.0 15.5 6.3 0.6 3.3 3.84 7.34

2 25.0 48.8 16.6 26.3 12.6 0.7 3.4 7.9 13.16

Table 2.4: Statistical and geometrical characteristic for a gravel bed made of with a two
coarse sediment mixtures with 2 mm < dg < 64 mm and sand fraction 0.5 mm < ds < 2
mm.The data for the gravel fraction have been taken from Aberle and Nikora (2006), where
Sk,Ku and σd are the skewness, the kurtosis and the standard deviation of bed elevation,
respectively. The incipient values for the gravel and sand fraction are reported by Wilcock
and Kenworthy (2002),assuming that the reference dimensionless transport rate is equal
to 0.002

between the gravel diameter and sand diameter as suggested by Wilcock and Kenworthy

(2002), because the diameters ratio can be view as a measure of the sand diameter capa-

bility to bridge the space between two gravel particle close to each other with reference

diameter, preventing any other sand percolation.

It is now useful to summarize the main outcome of analysis of the physical effects that can

control the variation in the sand-related Shields stress with the sand surface elevation ηs.

From Eq.(2.56), it follows that:

F(ηs) = ζ∗(ηs)︸ ︷︷ ︸
”Hiding” effect

·
”Bridge” effect︷ ︸︸ ︷

κ(ηs)

︸ ︷︷ ︸
Geometrical effect

(2.61)

Eq. 2.61 is a key relationship stating that variation with the sand surface level of the

energy expenditure required by the flow to move the sand particles is basically related to

the two physical effects of ”hiding”and of ”bridging”, which can be quantified through (2.50)

and (2.59) respectively. This has been derived on the basis of experimental estimates of the

reference shear stress for sand transport, which variability is an indicator of the energy

that is absorbed by gravel particles protruding out of a sand surface. The F function

(2.61) together with (2.50) and (2.59) quantifies such variability and therefore provides an

indirect estimate of how the spatially-averaged near bed shear stress changes with different

values of the sand level ηs.

Since in the mixed case the ”bridge” effect has consequences on the distributions of the

shear stress in the interfacial sublayer as stated by (2.61), then (2.52) follows as:

τ∗s =
τs
ρu2
∗

= 0.6607 · (1− ζ∗ · κN ) (2.62)

(2.63)
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where κN depends on the CDF of the probability distribution of rough bed elevations as

follows:

κN = 1− CDF (µd, σd, ηs,
dg
ds

), (2.64)

with µd is the mean rough bed elevation and σd the standard deviation of rough bed

elevations.

In a general case, following (2.55,2.56), τ∗s can be rewritten as follows:

τs
ρu2
∗

= Θ

(
dg
ds
,
〈D0〉s

(4− 6)σd

)
(2.65)

·
(

1− F
(

µb
(4− 6)σd

,
ηs

(4− 6)σd

))
(2.66)

Considering the function A as in the specific case of Mignot et al. (2008), then A, κ and

protrusion ζ∗ take the following expression:

A
(
ηs

6σd

)
= CDF [N(0.51, 1.61 · 10−1, ηs, 31)] (2.67)

ζ∗ = 1−A
(
ηs

6σd

)

κ

(
ηs

6σd

)
= 1− CDF [N(0.24, 1.6 · 10−2, ηs, 31)]

Figure 2.15 represents the function F when the roughness geometry function has

the geometric characteristics as in Mignot et al. (2008) ( see Figure 2.11) and assum-

ing dg/ds = 31.

On the basis of the above reasoning, it is now possible to derive a physically-based quantita-

tive expression for the dependence on the sand surface properties of the spatially-averaged

vertical velocity profile and of the near-bed turbulence related quantities zc, λ0 that was

initially assumed through (2.45, 2.46). First of all a shifted vertical coordinate ξ is intro-

duced, such that its origin coincides with the mean elevation of the sand surface.

The streamwise velocity profile in Eq.(2.44) in the new coordinate system (x, ξ) can be

written as follows:

〈U〉∗ =
1

k
ln

(
ξ − 0.43ξc

λ0

)
for ξ ≥ ξc (2.68)

where ξc represents physically the protrusion of gravel elements above the sand level ηs:

ξc = ζ∗ +
d∗s
2

; (2.69)

with d∗s the dimensionless sand sphere diameter. The dimensionless roughness height λ∗0
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Figure 2.15: Function F with A as in Figure 2.11

takes into account the transition from gravel framework to sand matrix, i.e. λ∗0 is a function

of F as follows:

λ∗0 = f

[
F

(
µb

(4− 6)σd
,

ηs
(4− 6)σd

,
dg
ds

)]
(2.70)

η∗s =
ηs

6σd
≤ (0.4÷ 0.5) =⇒ gravel framework (2.71)

η∗s =
ηs

6σd
> 0.5⇒ λ∗0 = f

[
d∗s
2

]
⇒ sand matrix (2.72)

Considering the gravel framework as in the specific case of the experimental condition of

Mignot et al. (2008) (see Figure 2.11), so that the flow submergence is 〈D0〉s/(6σd) =

4.1 = ∆, and considering the data in Tab.2.2, we have:

λ∗0 = 1.8 · 10−1∆−1F + 1.7 · 10−2d
∗
s

2
∆−1 (2.73)

ξ∗c = ζ∗ =

{
1−A

(
ηs

6σd

)}
∆−1 +

d∗s
2

∆−1 (2.74)
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Figure 2.16: Roughness height λ∗0 as function of sand level as stated by Eq.(2.73)

Figure 2.16 and Figure 2.17 represent the roughness height λ∗0 and protrusion ζ∗ = ξ∗c

as a function of ηs/(6σd).

Equations (2.73, 2.74) are the final outcome of the procedure that is herein proposed

to quantify the assumed dependencies (2.46). The sequence of operations described above

illustrate how these dependencies can be quantified using relatively simple properties of the

gravel bed (first and second moments of the bed elevation distribution function, together

with a representative grain size) and of the sand layer (its height and a representative grain

size). From the quantification of zc, λ0 in mixed sand-gravel beds (with immobile gravel)

it is relatively straightforward to derive suitable relationships for the spatially-averaged

velocity profiles and the friction coefficient that can be used as closures in hydrodynamic

and morphodynamic models.

Figure 2.18 represents the streamwise velocity profile for different values of the sand

level ηs in the ”logarithmic” layer, above the level ξc, with the parameterizations (2.73)

and (2.74), where d∗s = ds/(6σd).For all profiles the value of the water depth and of
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Figure 2.17: Protrusion ζ∗ as a function of sand level as stated by Eq.(2.74)

the longitudinal channel slope have been kept constant. As it can be expected, reduced

sand surface elevations are associated with higher near-bed friction and therefore reduced

velocity. Because the longitudinal slope and depth are constant for all profiles, increasing

sand elevation in the plot is associated with a reduction in the flowing discharge.

The dimensionless Chezy coefficient is defined through its conventional expression:

C∗(η∗s) =
C
√
g

=
〈U〉s
〈u∗〉s

=
Fr√
if
. (2.75)

〈U〉s =

∫ 1

ξ∗c

〈U(z∗)〉sdz∗, z∗ =
z

〈D0〉s
, 〈D0〉s = zws − 〈ηs〉s;

〈u∗〉s =
√
gif 〈D0〉s.

In (2.75) if represents the mean bed slope of the gravel framework and the mean strem-

wise velocity 〈U〉s has been computed trough the integral between the level ξc and the

water surface.Recalling (2.75), different values of ηs are associated with different values of
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Figure 2.18: Spatially-averaged streamwise velocity profile above the level ξc, for different
sand level values with parameter indicate in (2.73) and (2.74).

the dimensionless Chezy coefficient, which is indirectly represented in Figure 2.16 because

if = Fr2/C2. When the sand surface occupies most of the bed surface the bed is much

smoother than for lower values of ηs: therefore smaller slope values are required to produce

the same hydraulic conditions represented by the same Froude number Fr. Figure 2.19

represents the mean bed slope if and Froude number Fr as a function of sand elevation

in the gravel matrix ηs.

The vertical variability of the dimensionless Chezy number as with sand level inside the

gravel framework is represented in Figure (2.20). It is noteworthy that the dimensionless

Chezy reflects the transition region of the gravel framework when sand fraction is present,

because most of its variation occurs for η∗s between 0.3 and 0.6.

The only available experimental data to test the hydrodynamic closures proposed in the

present Chapter are those of Wren et al. (2011). In the following a preliminary compari-

son with their data is attempted with the aim to make a first test of the present closure

submodel against data that have been collected independently from those on which its
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Figure 2.19: Relationship between the mean bed slope and the Froude for different values
of the sand level η∗s for flow submergence ∆ = 4.1 (data as in Mignot et al. (2008))

derivation is based.

Wren et al. (2011) measured the changes in flow and turbulence proprieties caused by sand

(ds50 = 0.3mm) added to an immobile gravel bed with dg50 = 35 mm. Tab.2.5 reports

the hydraulic data for the bed configuration Case 1 in Mignot et al. (2008) and for several

runs in Wren et al. (2011), where the minimum sand level in gravel framework assumes

the value ηs/(6σd) = 0.5 (i.e. 0.5 ≤ ηs/(6σd) ≤ 0.92) and 6σd = 5.5cm.

Wren et al. (2011) estimated the bed shear stress with three different methods: from

spatially-averge velocity profiles, from Reynolds shear stress projection and with the rela-

tionship τ = ρgif 〈D0〉s also taking into account the wall corrections. In this way it has

been possible to characterize the variability of the absolute bed shear stress value when the

sand is present in the gravel framework. Specifically, Wren et al. (2011) found that for 65

and 50 l/s flow discharge there is a 2-3 Pa spread in bed shear stress estimated from the

three methods, which represents a range of about 25%-50%, although all three methods

generally follow similar trends. Moreover, the mean difference between the depth-slope
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Figure 2.20: Dimensionless Chezy number as a function of η∗s for flow submergence ∆ = 4.1
(Mignot et al. (2008)

shear stress estimator and that based on the Reynolds stress projection across all flow

discharges was 20%.

Wren et al. (2011) considered sand level values well above the transition range between

gravel framework and sand matrix (Wilcock and Kenworthy (2002); Wilcock (1998)), so

that we assume, for consistency with the proposed relationship that the roughness height

λ0 is represented by the radius of the sand grain and the level ξc remains constant and

equal to the value for homogeneous case reported in the Tab.2.1.

Therefore, assuming that the roughness height λ0 is a function of the radius of the sand

grain in the range 0.5 ≤ ηs/(6σd) ≤ 0.92, then we can determine by the Eq.(2.75) a mean

value of equivalent sand grain for taking into account the variability of the hydraulics

conditions with sand level η∗s as stated by the experimental data od Wren et al. (2011)

and reported in Tab.2.5. Considering experimental data for 50-60 l/s then we can find a

mean equivalent sand radius equal to 5.86 times the radius of an equivalent sand sphere,

with a standard deviation of 1.19 times the radius of an equivalent sand sphere rs.It has
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Case u2
∗ Fr if

ηs
(6σd)

〈D0〉s
dg50

Q E.S.R. Mean
E.S.R.

σd
E.S.R.

[ms−1] [%] [l/s] [r∗s ] [r∗s ] [r∗s ]

Wrena

0.082 0.45 0.38 0.5 6.28 50 7.06

5.86 1.19

0.072 0.45 0.30 0.7 6.28 50 4.24
0.070 0.42 0.28 0.78 6.28 50 6.83
0.081 0.48 0.39 0.85 6.28 50 5.39
0.071 0.46 0.31 0.92 6.28 50 5.48
0.082 0.55 0.59 0.5 6.28 60 7.52
0.072 0.59 0.47 0.7 6.28 60 7.53
0.070 0.57 0.48 0.78 6.28 60 4.65
0.081 0.59 0.49 0.85 6.28 60 5.01
0.071 0.62 0.53 0.92 6.28 60 4.85

Mignotb 0.053 0.46 0.2 0 7.93 40

Table 2.5: Comparison between two hydraulic configuration in two different study: a

Wren et al. (2011); b Mignot et al. (2008); E.S.R. stands for Equivalent Sand Radius and
r∗s = rs/〈D0〉s and rs = rs50 = 0.15mm as in Wren et al. (2011).Q is the mean flow
discharge

been assumed that rs is equivalent to the rs50 = 0.15mm of Wren et al. (2011).In Tab.2.5

are reported for each experiment the equivalent sand radius sphere for characterising the

roughness height λ0, having assumed that the level ξc remains constant and equal to the

rs50 = 0.15mm as stated by the homogeneous conditions in Tab.2.1.

Figure 2.21 refers to a comparison between the Eq.(2.75) for different sand level and the

experimental data from Wren et al. (2011). It is noteworthy that the computed equivalent

sand sphere radii have a variability of about 20 % with respect to the averaged value

of equivalent sand sphere radius, representing the absolute mean variability between the

depth-slope shear stress estimator and Reynolds stress projection across all flow discharge.

2.5.1 Bedload transport of sand over an immobile gravel bed

Prediction of bedload transport rate in response to different flow and bed conditions is a

key step in building a morphodynamic model. The present work focuses on the transport

of sand occurring over a gravel bed that keeps at rest, i.e. under hydrodynamic conditions

which cannot entrain the gravel particles. Moreover conditions under which the sand is

mainly transported as bedload are considered, although extension to the case of dominant

suspended load would be relatively straightforward (see Grams and Wilcock (2007) for a

possible options to correct classical approaches for homogeneous sand conditions).
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Figure 2.21: The different solid lines are function of the sand level η∗s and refer to the
Eq.(2.75), while the solid circles refer to the experimental data form Wren et al. (2011).

Typical predictors of bedload rates typically require the computation of the near-bed shear

stress, i.e. that value of the shear stress that is effective for sediment entrainment and

transport, and the specification of a threshold value below which sediment transport does

not occur. The aim of the present Section is to propose a physically-based relationship

for sand bedload transport over an immobile gravel bed by investigating how these two

parameters (near-bed and critical shear stress) can be expected to change with the level of

the sand surface beneath the gravel particles and with the sand-to-gravel diameter ratio.

Before proceeding with the analysis an important specification is in order. To the Author’s

knowledge, only one sand bedload predictor over immobile gravel beds has been proposed

so far by Tuijnder (2010). This predictor has been derived on the basis of a comprehensive

set of laboratory experiments on the formation of sand bedforms over immobile gravel.

Its key characteristic is the ability to account for the additional frictional effect induced

by the presence of the sand bedforms on the near-bed shear stress and therefore on the

bedload rate. The experimental outcomes allow to build empirically-based relationships
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that quantify the variation of bedform geometry (height, wavelength) in dependence of

the sand layer properties.

The analysis proposed herein is somewhat complementary to that performed by Tuijnder

(2010). Coherently with the aim of the present Ph.D. research, the relationships that are

proposed within this Section seek to quantify sand bedload rates at a ”local” scale, smaller

than that to which the analysis of Tuijnder (2010) is referred. Indeed the bedload predictor

that will be proposed in the following is based on a spatially-averaged approach , where the

horizontal scale for the spatial averaging procedure is defined through the loss of ”spatial

memory” by means of high-order structure functions of the bed elevation . Such scale is

of the order of the d90 of the gravel bed grain size distribution. Also the sand bedload

predictor proposed by Tuijnder (2010) is intrinsically spatially-averaged, but on a much

larger averaging scale, which order of magnitude is basically the sand bedform wavelength.

The properties of sand bedforms are therefore part of the input data needed for bedload

rate computation and cannot be predicted with a morphodynamic model that implements

the bedload relationship of Tuijnder (2010). Since one of the purposes of the present

Ph.D work is to develop a mathematical model able to predict the morphodynamics of

sand bedforms over immobile gravel beds at different scales, including that of sand dunes,

a complementary approach to bedload prediction is therefore required.

The analysis illustrated in the previous Section has set the basis for the evaluation of the

near-bed and for the critical shear stress for bedload movement. The fluid shear stress

τ represents the maximum value of the fluid shear stress computed at ξ = ξc; above

ξ = ξc a linear behavior of the shear stress has been assumed and the streamwise velocity

is represented by the log-law. Moreover the proposed relationship allow to quantify the

variability of the shear stress throughout the interfacial sublayer as function of the rough

bed elements protrusion and of the ”bridge” phenomenon.

Wilcock and Kenworthy (2002) have developed a two-fraction (sand and gravel) transport

model using a similarity collapse of the transport rate of the sand and the gravel fractions

as stated by Eq.(2.81). Specifically,

W ∗bs = f

(〈
θs
θrs

〉

s

)
(2.76)

=





0.002Θ7.5
s Θs =

〈
θs
θrs

〉
s

if Θ < Θ′s

Γ
(

1− χ
Θ0.25

s

)
Θs =

〈
θs
θrs

〉
s

if Θs ≥ Θ′s
(2.77)

where θs is the Shields stress acting on the sand fraction. The fitting parameters of

the sand fraction sediment discharge function W ∗bs, are reported in Tab.2.6(Wilcock and
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Table 2.6: Parameters for the sediment discharge function W ∗bs.

Type of data Γ χ Θ′s
Laboratory data 70 0.908 1.19

Field data 115 0.923 1.27

Kenworthy (2002)).

As pointed out before in the mixed case of two fraction bed composition (i.e. gravel

and sand fractions) the maximum value of shear stress depends on the sand level ηs by the

geometrical variability of the incipient sand Shields stress, having estimated the reference

value for the incipient bed load transport rate with respect to the maximum value of the

shear stress. This means that, the latter has to be greater than the threshold for sand

particles motion as also indicated in the analysis of Coleman and Nikora (2008), precised

for the mixed case where the sand particles move as a bed load in a gravel framework

(Carling and Reader (1982)).

The closure relationship for the shear stresses in the mixed case,proposed in the previous

section, is reviewed referring to Fig. 2.23 and 2.22, referring to the mixed configuration

when sand fraction is present in the gravel framework.

The orthogonal reference system (x, ξ) is shifted above the spatially-averaged sand level

ηs so that all the physical variables that depend on the vertical coordinate are function

of the new variable ξ. The qualitative behavior of the shear stresses and of the stream-

wise velocity in Figures 2.23 and 2.22 graphycally represents the physical idea that the

shear stress has to take into account the drag forces that the turbulent flow exert on the

gravel elements in the interfacial sublayer. Therefore, in the limit case of sandy beds, i.e.

ηs/(4σd) ' 1, panels d) of Figures 2.23 and 2.22 the shear stress are less comparable than

the case depicted in the other panels of the same figures.

In order to exemplify the application of the predictor (2.76) to different values of

the sand bed elevation an application is presented below referring to the experimental

conditions of Mignot et al. (2008), where an ideal sand addition is simulated under mean

uniform flow conditions.

Assuming that the gravel framework has the same geometric characteristics as in Mignot

et al. (2008) and the ratio dg/ds = 31, Figure 2.30 represents the dimensionless shear stress

τ∗s = 〈τs〉s/(ρ〈u2
∗〉s) acting on the sand fraction as a function of sand level η∗s = ηs/(6σd).

The variability of the shear stress τ with respect to ηs plotted in Figure 2.30 has been
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Figure 2.22: Sketch for independent variables notation for the logarithmic streamwise
velocity above zc. It has been assumed that the level zm coincides with the level zc. The
orthogonal system (ξ, x) refers to a shifted orthogonal system above the spatial averaged
sand level ηs.

computed through (2.65) and accounts for both the hiding and bridge effects detected

above. It reflects the sharp transition between a gravel-framework and a matrix-supported

sand bed, which occurs for relative sand surface elevation η∗s between approximately 0.2

and 0.5.

Moreover, Figure 2.25 represents the ratio between the sand Shields stress 〈θs〉s and

the reference Shields stress for sand transport 〈θrs〉s as a function of sand level η∗s . Also

from this ratio behavior it is possible to identify clearly the transition range between the

gravel framework and the sand matrix from hydraulics point of view and with specific

geometric gravel and sand characteristics.The reference Shields stress < θrs >s has been

computed through (2.54).

Since ηs varies between A(ηs) = 0 and 1, then the moving sand is affected by a reference

shear stress that depends on the distribution of the double-averaged shear stresses and

on the drag forces as stated by Eq.(2.32), specifically in the above range of variability of
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Figure 2.23: Sketch for independent variables notation for the shear stress in the logarith-
mic layer above zc. It has been assumed that the level zm coincides with the level zc. The
orthogonal system (ξ, x) refers to a shifted orthogonal system above the spatial averaged
sand level ηs.

the function A(ηs), i.e. in the interfacial sublayer. Therefore, the reference shear stresses

for moving sand has to take into account the energy loss due to the work done by the

drag forces in the interfacial sublayer for the presence of the gravel particles. The energy

loss due to the hydrodynamic fluctuating pressures and to the viscous surface drag forces

(Coleman and Nikora (2008)) acting on the gravel particles surface, are comparable higher

than the same forces acting on the sand particles surface, because the ratio between the

two fraction diameters is much larger than unity.Wilcock and Kenworthy (2002) assumed

for testing Eq.(2.54) values of dg/ds ratio corresponding to 10,20,35 and 50.

From Tab.2.4 and Eq.(2.54) , it follows that:

θrs = O [Θn−th(θrs)1] (2.78)

where Θn−th refers to the n-th percentile of the gravel grain size distribution in the in-
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Figure 2.24: Sketch for bed load layer as a function of the thickness 〈hb〉s that depends
on the sand level ηs. The sand bed load transport rate W ∗bs refers to the Eq.(2.81) and
lx refers to a characteristic length scale in x-direction. In the figure is also reported the
thickness 〈hc〉s as a measure of interfacial sublayer functions of the sand level ηs.

terfacial sublayer. For the specific case show in the Tab.2.4, the reference shear stress for

sand incipient motion spans in the range:

θrs = 3− 13(θrs)1 (2.79)

depending on the relative size of the sand diameter with respect to the gravel diameter

and considering a reference bed load discharge (Wilcock and Kenworthy (2002)). It is

noteworthy that Wilcock and Kenworthy (2002) implicity assumed that Eq.(2.79) refers

to a spatial average for the reference sand Shields stress θrs, because its variability depends

on the spatially-averaged sand area that is available to be transported by the flow, as Eq.

(2.61) shows.More correctly, Eq.(2.79) can be written as:

〈θrs〉s = 3− 13〈(θrs)1〉s (2.80)
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for different sand level η∗s = ηs/(6σd).
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2.5 Turbulence closures and spatially-averaged velocity profiles: mixed case

Wilcock and Kenworthy (2002) found an empirical prediction for dimensionless bed load

transport rate W ∗bi for the two fraction i, sand and gravel.The dimensionless bed load rate

W ∗bi reads as:

W ∗bs = f

(〈
θi
θri

〉

s

)
(2.81)

where W ∗bs is the spatially-averaged volumetric sand transport rate per unit width of sand

fraction . Wilcock and Kenworthy (2002) assumed that θs ≥ θrs, i.e. W ∗bs = 0.002 as a

reference sand bed load transport rate.

Eq.(2.81) can be explained in terms of orders of magnitude as follows:

O(W ∗bs) = O



A
(
ηs

4σd

)
〈u3
∗〉s

(r − 1)g


 (2.82)

where r is the ratio of sediment to water density, g is gravity acceleration, 〈u∗〉s =〈(τ/ρw)0.5〉s
is the spatially-averaged shear velocity and τ is the shear stress at a reference level. It is

noteworthy thatWilcock and Kenworthy (2002) assumed that the spatially-averaged shear

stress acting on the sand fraction is simply proportional to the exposure area of the sand

itself, so that the total shear stress τ is distributed among the two fractions by means of

the roughness geometry function, as the numerator of Eq.(2.82) points out. Wilcock and

Kenworthy (2002) estimated the total shear stress τ using the Einstein/Keulegan rela-

tion, where a specified value for the mean streamwise velocity, for the flume slope and for

roughness height has been assumed constant and equal to 0.84dg90. Despite Wilcock and

Kenworthy (2002) provided consistency with laboratory and field data, from the physi-

cal point of view the drag forces acting on the gravel elements as highlighted above do

not seem to have been explicitly considered. In this regard, Coleman and Nikora (2008)

pointed out that the Shields stress for particle entrainment is markedly influenced by the

gradients in pressures in the interfacial sublayer. Specifically in the mixed case of sand

and gravel at rest, the reference Shields stress for sand movement has to be increased

because of the presence of gravel elements that potentially hide the sand fraction as stated

by Eq.(2.61) and contribute to energy loss by the drag forces acting on the rough elements

surfaces.

Neverthless, despite the two-fraction model of Wilcock and Kenworthy (2002) could be im-

proved by an explicit incorporation of such effect, Eq.(2.61) still holds because it concerns

the variability of the Shields stress with respect to the sand level and not the absolute

Shields stress acting on one of the two fractions.

Figure 2.26 and Figure 2.27 represent the dimensionless sand transport rate W ∗bs as a
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Figure 2.26: Dimensionless transport rate for sand fraction W ∗bs (Wilcock and Kenworthy

(2002)) as a function of
〈
θs
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s

.

function of 〈θrs〉s and η∗s = ηs/(6σd), respectively.

It is noteworthy from Figure 2.27 that the reference transport rate W ∗bs=0.002 (Wilcock

and Kenworthy (2002)) occurs in the transition range from gravel framework and sand

matrix. More understanding is needed in order to clearly investigate from physically point

of view the sand transport as bed load in a gravel framework and in sand matrix.

Figure 2.28 represents the variability of the dimensionless sand transport rate W ∗bs as

function of η∗s = ηs/(6σd) and of the dimensionless Chezy coefficient C∗ = C/
√
g for a

mean flow velocity, as defined by Eq.(2.75) 〈U〉s=0.66 m/s and ds=0.15 mm.

Figure 2.29 indicates the critical hydraulic conditions for mobilizing the gravel fraction.

Specifically Fig.(2.29) indicates that the gravel remains at rest when the dimensionless sand

level (η∗s = ηs/(6σd)) varies between 0 and 1 in the gravel framework, having assumed the

geometric characteristics as in Mignot et al. (2008), where dg50 = 3.1 cm. The red solid

line in Figure 2.29 reports the hydraulic conditions for which the gravel fraction starts to

be transported as bed load with transport rate proportional to the parameter (θg−θrg)/θrg

72



2.5 Turbulence closures and spatially-averaged velocity profiles: mixed case

ηηηη
s

*

0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

W
bs

*

 10 - 4

 10 - 3

 10 - 2

 10 - 1

 100

Figure 2.27: Dimensionless transport rate for sand fraction W ∗bs (Wilcock and Kenworthy
(2002)) as a function of η∗s = ηs/(6σd).

as indicated in the horizontal axis.

This parameter represents physically the hydraulics capability of the flow to transport a

given gravel diameter. The green solid line in Figure 2.29 represents the critical hydraulic

conditions for the bed load transport of the sand fraction. It is noteworthy that the

blue solid line refers to the hydraulic conditions when the sand fraction is well hiding

(i.e.η∗s = 0.2) among the pores of the gravel framework. Since the blue curve is above the

red one, then the sand entrainment will require entrainment of the gravel framework, as

indicated by Wilcock and Kenworthy (2002).

The physical idea underlaying the bed load transport phenomenon in the mixed case

takes the physical idea of the Bagnoldean formulation, according to which the bed load

layer (see Figure 2.24) is described as a finite layer whose thickness coincides with hb.

Above this bedload layer we have clear fluid in uniform motion and inside the bedload

layer it has been assumed that a dynamic equilibrium may exists maintained by a balance

between entrainment and deposition of the sand particles. If the rate of sand particles en-
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Figure 2.28: Dimensionless transport rate for sand fraction W ∗bs (Wilcock and Kenworthy
(2002)) as a function of η∗s = ηs/(6σd) ( left pannel) and of dimensionless Chezy coefficient
(right pannel) C∗ = C/

√
g for ds=0.15 mm and a mean flow velocity 〈U〉s= 0.66 m/s .

trainment is greater than that of deposition phenomenon, then the sand level ηs decreases,

otherwise it increases.

Recently, the Bagnoldean formulation (Bagnold (1956)) has been demonstrated to break

down when applied to equilibrium bed load transport on beds with transverse slopes above

a relatively modest value that is well below the angle of repose (Seminara et al. (2002)).

According to the Bagnoldean formulation (Bagnold (1956)) ,the fluid shear stress at the

base of the bed load layer is reduced due to the interparticles forces ( sensu Coleman

and Nikora (2008)) acting between the moving and homoegeneous grains. Specifically,

the shear stress at the bottom of bed load layer drops to the critical value for incipient

transport condition. In a more general framework for incipient particles motion (Coleman

and Nikora (2008)) the fluid shear stress at the upper limit of the bed load layer has to

be greater than a critical value whatever the way in which it is estimated. In the mixed

configuration as depicted in Figure 2.24 the flow energy has to take into account the work

done by the drag forces on the contour of the gravel elements.
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3 A morphodynamic model for sand bed

evolution over an immobile gravel bed

The present Chapter is devoted to the formulation of a morphodynamic model that can

be used to predict the temporal and spatial evolution of a sand layer that partially or

completely fills the voids beneath an immobile gravel bed.

Coherently with the analysis presented in the previous Chapter 2, the model formulation

is two-dimensional, in the streamwise (x) and in the average bed orthogonal (z) direc-

tions. Moreover its spatially-averaged character is preserved, therefore ”local” values of

flow quantities and of the sand bed elevation actually represent the double-averaged quan-

tities resulting from time averaging (especially for flow quantities, Reynolds-averaged over

turbulence) and from spatial averaging, performed at the scale comparable to the d90 of

the gravel grain size distribution, as discussed in the Section devoted the rough bed ge-

ometry characterization in Chapter 2.

The vertical subdivision of flow into specific layers, illustrated in Figure 2.1, is adopted for

the formulation of the present morphodynamic model. The key ingredients of the model

are:

• the momentum conservation equations for the fluid phase in the x and z directions;

• the mass conservation equations for the fluid phase;

• the mass conservation equations for the sand layer within an immobile gravel bed;

• a closure relationship to link the double-averaged Reynolds stresses to the double-

averaged flow field;

• a closure relationship to link the double-averaged bedload rate to the double-averaged

flow field.

As a first approximation, and having in mind the need of maintaining a reasonable level

of simplicity for potential practical applications to real contexts, the momentum and mass
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3 A morphodynamic model for sand bed evolution over an immobile gravel bed

conservation equations for the fluid phase will be formulated referring to the physical bal-

ances formally valid only within the logarithmic layer. The physical processes governing

the hydrodynamics within the roughness layer and its sublayers are indirectly taken into

account according to the relationships proposed in the previous Chapter. Although this

might appear a rather crude approximation, it is considered as a reasonable tradeoff be-

tween a rigorous model formulation and its practical applicability to real situations; model

refinements are relatively straightforward and are not within the main focus of the present

Ph.D work.

3.1 Morphodynamic modelling: continuity equation for

the sand layer over an immobile gravel bed

In order to predict the morphodynamic evolution of the sand surface, a suitable continuity

equation for the mobile sand fraction must be derived. The equation shall account for the

z,ηηηηs

x0

1AAAA(ηηηηs)

zws

ηηηηs

Figure 3.1: Sketch of the bed configuration when sand fraction is present in a gravel
framework with relative notation

presence of an immobile gravel bed characterized by a horizontally-averaged vertical dis-

tribution of intra-gravel voids (Figure 3.1) that represents the maximum volume available

for sand deposition and controls the areal distribution of fine sediments that are available

to be entrained by the flow.
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3.1 Morphodynamic modelling: continuity equation for the sand layer over an immobile gravel bed

Referring to the notations employed in Figure 3.1, the classical sediment continuity

balance (Exner , 1925) requires that an infinitesimal variation dηs of the local sand surface

elevation ηs be locally compensated by a volumetric sand exchange dq between the flow

and the bed regions. When the mobile sediment surface develops within an immobile

matrix of gravel particles the available space for the evolution of the sand bed surface is

limited by the spatial arrangement of the gravel clasts. Therefore the continuity principle

shall account for the sand porosity together with the local gravel voids distribution that

is described by the roughness geometry funtion A(ηs) and that depends on the local sand

surface elevation itself.

The sand continuity equation takes therefore the following modified expression with

respect to the homogeneous case:

(1− λs)
∂N (t)

∂t
+
∂q̂sx
∂x

= 0 (3.1)

N(t) = A(ηs(t), t)ηs(t)

where λs denotes the porosity of the sand, t is the time variable and ˆqsx is the unit sand

bedload rate.

The time dependance in the first term of the left-hand side of (3.1) is, in principle, twofold:

the sand surface elevation ηs changes with time and this is reflected also in the function

A(ηs), which, in the more general case of mobile gravel bed, can be in principle modified

by a variation in the spatial arrangements of the gravel clast. In a general way we may

therefore write:

(1− λs)
{
A(ηs, t)

∂ηs
∂t

+ ηs

[
∂A(ηs, t)

∂t
+
∂A(ηs, t)

∂ηs

∂(ηs, t)

∂t

]}
+
∂q̂sx
∂x

= 0

The assumption of immobile gravel leads to neglect the ”direct” temporal variation of the

roughness geometry function A. Formally this can be expressed by introducing a ”slow”

time variable t̃, such that t = εtt̃. The model is indeed intended for applications to streams

where most of the time the flow is competent to move only the fine fraction, leaving the

coarsest sediments at rest. Henceforth:

(1− λs)
{
A(ηs, t)

∂ηs
∂t

+
∂A(ηs, t)

∂ηs

∂ηs
∂t

+ εtηs
∂A(ηs, t)

∂t

}
+
∂q̂sx
∂x

= 0

We note that a time dependence of the function A(ηs) shall be accounted for over the

timescales at which also the gravel bed is mobilized in a such way that spatially-averaged

gravel particle arrangement is modified. The model formulated in the present paper as-
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3 A morphodynamic model for sand bed evolution over an immobile gravel bed

sumes the gravel bed to be immobile, which implicitly means to refer to shorter timescales,

i.e. εt << 1 and the eq.(3.2) reads as:

(1− λs)A(ηs, t)
∂ηs
∂t

+
∂A(ηs, t)

∂ηs

∂ηs
∂t

+
∂q̂sx
∂x

= 0

With respect to the classical Exner (1925) equation, the above relationship is nonlinear

in the sand surface elevation ηs, as shown by the time-derivative term representing the

local change in sand elevation. Physically this means that the same volumetric exchange of

sand between the evolving bed surface and the flow region can result in different sand level

adjustments depending on the local value of the sand level itself. Such nonlinear feedback

occurs when the sand surface lies below the top of the gravel crests and is likely to affect

the sand bed morphodynamics by contributing to the generation of different patterns with

respect to the homogeneous case. The order of magnitude of the time scale of sand bed

dynamics can be estimated from (3.2) for the two limit cases, i.e. ”homogeneous” and

”mixed” case. The morphodynamical time scale T can be expressed as follows from (3.2):

T =
lxlz(1− λs)A(ηs)

ds
√

(s− 1)gds
=
lxlz(1− λs)A(ηs)

ds

√
θ̂s

û∗
=

√̂
θs
û∗

lxly(1− λs)A(ηs)
ds
lz

(3.2)

The most evident difference between the homogeneous sand and the mixed (sand - im-

mobile gravel) case is that when the sand available for transport decreases (i.e. A(ηs)

tends to vanish), the time scale of sand bed morphodynamic processes tends to be re-

duced, therefore bed dynamics can be expected to occur more rapidly. This observation

is in qualitative agreement with the experimental observation of Tuijnder (2010) on the

dynamics of supply-limited sand dunes (see Chapter 4 and related text). Moreover the

physical condition εt << 1 means that:

O(t)� O

(
1√

(s− 1)gds

)
O

(
lx(1− λs)A(ηs, ς)

ds
lz

)
(3.3)

where lx represents the length scale over which A has been defined. Moreover Nikora

et al. (2004) showed that O(lx) = O(d90) and O(lz) = O(σz). In Eq.(3.2) it has been

hypothesized that the roughness geometry function A(ηs) has a different time scale with

respect to the sand elevation, concerning its time evolution, so that it has been considered

constant regards with the time t in the same equation.

Referring to the DAM-approach and to the partitioning stated by the Eq. (2.1), consid-
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3.1 Morphodynamic modelling: continuity equation for the sand layer over an immobile gravel bed

ering the Eq.(2.3), the bedload sediment flux q̂x in the Eq.(3.2) follows as:

q̂sx = f̂

(
τ

τri

)
= 〈qsx〉+ q̃sx = 〈qsx〉

(
1 +

q̃sx
〈qsx〉

)
(3.4)

or equivantely

q̂sx
∗ =

q̂sx
〈qsx〉

= (1 + q̃sx
∗) (3.5)

where 〈qsx〉 is defined over a spatial length scale as in the Eq.(2.3).

For the ”homogeneous” case, i.e. sandy beds, Jerolmack and Mohrig (2005) assumed

that the shear stress may be regarded as a Taylor expansion depending on the local

topography and neglecting terms beyond the 2-order Taylor approximation. This means

that within the spatially averaged approach ( see Whitaker (1999)) the approximation

made by Jerolmack and Mohrig (2005) is equivalent to considering up to 2-order superficial

spatial moments as indicated by the Eqs. (2.19).

Referring to the ”mixed” case and considering the bed load transport for the motion of the

two fractions composing the bed structure, it follows that the Shields stress reference value

is represented by the Eq.(2.54). Moreover, the sand sediment flux in the Eq.(3.4) has been

represented by two terms depending on the characteristic length scale that are considered.

In fact for bed load transport over immobile gravel bed Wilcock and Kenworthy (2002)

assume that the spatial fluctuations (see Eq.(2.22)), over the length scale
√
A0 = O(Γ0) is

represented by an exponential function; this means that the different spatial scales shorter

than
√
A0 decay exponentially as the sand level approach to the ”homogeneous” case, i.e.

the sand elevation buries completely the gravel beds. Physically, this means that as sand

elevation approach to the ”homogeneous” case, then the ”hiding effect” due to the gravel

elements approaches to zero and the characteristic length scales associates with the spatial

fluctuations of the shear stresses in the Eq.(2.22) decays to the ”homogeneous” case.

Different is the ”homogeneous” case, where Jerolmack and Mohrig (2005) assumed that

the shear stress for the morphodynamics modelling is composed by two terms: one refers

to the principal spatial scale to which some hydraulics quantities are spatially averaged,

the other refers to a different spatial scale that is less than the first and it accounts for

the local bed slope.
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3 A morphodynamic model for sand bed evolution over an immobile gravel bed

3.2 Momentum and continuity equations for the fluid

phase

Flow model can be grouped in various categories depending on the description accuracy

for the shear stress distribution; as proposed by Colombini (2004) the following type can

be distinguished : potential flow (Kennedy (1963); Coleman and Fenton (2000)), shallow-

water (Gradowczyk (1968)) and rotational solutions (Fredsøe (1974)). The used flow model

affects the value of the phase-lag between sediment transport rate and bed topography and,

since the phase-lag controls the mechanism of bed instability, the choice of the flow model

become crucial. Specifically, when studying bedform dynamics at different scales, several

effects contribute to the bed instability and consequently to the bed evolution depending on

the subtle balance between stabilizing and destabilizing effects. Therefore, the description

of shear stress distribution is an important ingredient in order to understand the evolving

bed, and the rotational flow models provide the most accurate description for the shear

stress distribution (Colombini (2004)). Since the flow equations presented here will be the

mathematical tool for stability analysis of sand dunes in the mixed case (i.e. when the

sand fraction is present in a gravel framework), and since the shear stress description is a

crucial ingredient for understanding the bedform formation as bed instability mechanism,

then in the next section we introduce notations and flow equations for the mixed case

when a rotational flow model is adopted. Application of the model to the study of sand

dune dynamics in the mixed case will follow in Chapter 4.

3.2.1 Mathematical formulation for the flow field

The governing equations for steady flow field in the domain z ≥ 〈zc[ηs(x)]〉s (see Figure

3.2) are the Reynolds equations when the double-averaged operator (in time first and then

in space) is applied:

〈U〉s
∂〈U〉s
∂x

+ 〈W 〉s
∂〈U〉s
∂z

+
∂〈P 〉s
∂x

− gif −
∂〈Txx〉s
∂x

− ∂〈Txz〉s
∂z

= 0 (3.6)

〈U〉s
∂〈W 〉s
∂x

+ 〈W 〉s
∂〈W 〉s
∂z

+
∂〈P 〉s
∂z

+ g − ∂〈Txz〉s
∂x

− ∂〈Tzz〉s
∂z

= 0

∂〈U〉s
∂x

+
∂〈W 〉s
∂z

= 0

where U = (〈U〉s, 〈W 〉s) is the local double-averaged velocity vector, 〈P 〉s is the double-

averaged pressure and T = 〈Tij〉s is the two-dimensional double-averaged Reynolds stress

tensor. In Eqs. (3.6) it has been assumed that sin(if ) ' if and cos(if ) ' 1, because we
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3.2 Momentum and continuity equations for the fluid phase

assumed that the rough bed slope is � 1.

For uniform flow condition in x-coordinate, the friction velocity 〈u∗〉s and the depth-
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Figure 3.2: Sketch of the flow configuration with relative notation

averaged velocity for the uniform flow
〈
U
〉
s

are related to the slope if and Froude number

by the Eq.(2.75), where the dimensionless Chezy coefficient is a function of the sand level

ηs.

Referring to a Cartesian coordinate system (x, z) such as the one sketched in Figure 3.2, the

curves z = ηs(x)+D(x) and z = zc(x) identify the upper and lower boundaries of the flow

domain respectively, where D represents the local flow depth. Furthermore, we stipulate

that the latter boundary is set at the reference level, the level at which conventionally

and in the homogenous case the mean logarithmic profile vanishes (in the homogeneous

case sand elevation η∗s = ηs(x)/(4σd) completely buries the gravel, that is η∗s = 1). For

the heterogeneous case (η∗s < 1)and at the lower boundaries of the flow domain the mean

logarithmic velocity is no longer zero, due to the effect of increased gravel roughness on

the flow field. The above system is solved with the boundary conditions of vanishing shear

stress at the free surface and of velocity at the lower boundary, depending on the value of

sand elevation η∗s .

It is noteworthy that having applying the double-averaged operator in the Eqs.(3.6), we

have to specify the reference averaging area A0 by which the spatial-average operator

has been defined. In particular, we assume that the plane length scale lx = O(dg90) as
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3 A morphodynamic model for sand bed evolution over an immobile gravel bed

suggest by Aberle and Nikora (2006), while the vertical length scale lz = O(σd) = (4−6)σd

(Nikora et al. (2001); Mignot et al. (2008)) where σd is the standard deviation of rough bed

elevations and (4− 6)σd represents the all variability of the roughness geometry function

A(z) in the z-coordinate,which can take different forms, depending if the rough bed is

a water-worked bed or it has a Gaussian distribution of rough elements elevations as in

Mignot et al. (2008).

So far, we described what happens to the shear stress distribution and to the double

averaged velocity profile when the bed is composed by a gravel matrix and the sand

fraction changes the roughness of the rough bed elements. But, how can we link the total

shear stress distribution to the double averaged velocity profile as indicate by the Eq.(3.9)

where the behavior of double averaged turbulent fluctuations have direct consequences on

the double averaged velocity profile?

3.2.2 Closure formulation

In order to close the above mathematical formulation we employ a Boussinesq-type as-

sumption:

〈T ij〉s = νt(〈U〉s,j + 〈W 〉s,i) (3.7)

For the evaluation of the eddy viscosity νt, a formulation in terms of a mixing length

is adopted:

ν∗t =
νt

〈u∗〉sD
= l2νt

∂〈U∗〉s
∂z∗

, z∗ =
z

D
, D = zws − ηs (3.8)

lνt = k
√

(1− z∗)(z∗ − 0.43z∗c )

where k is the Von Kármán constant,〈u∗〉s is the averaged friction velocity at z = ηs.

Figure 3.3 represents the eddy viscosity as indicated by Eq.(3.8) where the function z∗c

is a function of the dimensionless sand level η∗s and it has been represented by Eq.(2.74)

with specified gravel framework characteristics as indicated by Figure 2.17 . The adopted

formulation for the flow field rigorously refers to the flow region above the roughness

layer, and allow to estimate a ”near-bed” shear stress value at the bottom of this region,

accounting for the dynamics of the roughness layer in a parameterized way through the

relationships expressing the variability of the base level zc with the flow and sand bed

characteristics.

The following considerations can be made concerning the vertical distribution of the shear

stress within the roughness layer and its sub-layers.

84



3.2 Momentum and continuity equations for the fluid phase
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Figure 3.3: Eddy viscosity as indicated by Eq.(3.8) referring to a protrusion ζ∗ = z∗c as
indicated by Eq.(2.74) and represented by Figure 2.17.

The geometrical length scales discussed above have influence on the turbulent properties

of the flow over a rough bed, but the length scale as indicate above are not necessarily the

same for the turbulence length scales as point out by Mignot et al. (2008), in fact:

• the production term P in Eq. (2.33) reaches a maximum value slightly below zc (see

Figure 3.2) at z/zc=0.88 (Mignot et al. (2008));

• in the form-induced layer (i.e. 0.76zc ≤ z ≤ 1.47zc) the production term P in Eq.

(2.33) is larger than the dissipation term, and the turbulent diffusion term Ft is also

maximum in this region.

Therefore, the geometrical length scale lz = zc = 6σd (assuming a function A(z) as in

Mignot et al. (2008)) represents the order of magnitude of the turbulent characteristics

length scales and not the length scale itself, because:

• the production term P in Eq. (2.33) reaches a maximum value at z/σd=5.28;

• the form-induced layer is between 4.56σd ≤ z ≤ 8.82σd.
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3 A morphodynamic model for sand bed evolution over an immobile gravel bed

where σd is the standard deviation of rough bed elevations.

Further investigation is required in order to understand which are the longitudinal and

transverse length scales for the turbulence properties considering a reference gravel frame-

work only or when sand is present in the porosity of gravel elements measured by the

function A(z) in the roughness layer.

The mathematical formulation stated by Eqs.(3.6) assumed that:

• the production term P in Eq. (2.33) reaches a maximum value at z/σd=(4-6);

• the form-induced layer coincides with the roughness layer and the maximum value

of the total shear stress τ(z) is at z = (4− 6)σd = zc.

With the above assumptions, the integration of Eqs.(3.6) for z ≥ zc and steady, uniform,

spatially averaged flow (sensu Nikora et al. (2001)) , produced the linear behavior of the

total stress distribution as follows:

τ(z)

ρ
= gif (zws − z) = −〈u′w′(z)〉s = −u′w′(z), z ≥ zc (3.9)

In general, the total stress τ(z) accounts for different hydrodynamics contributions de-

pending on the flow layer as depicted in Figure 2.4, specifically:

τ(z) =

form−induced layer︷ ︸︸ ︷
−ρ〈u′w′(z)〉s︸ ︷︷ ︸

logarithmic+outer layer

−ρ〈ũw̃(z)〉s +

∫ zc

0
fp(z)dz +

∫ zc

0
fν(z)dz

︸ ︷︷ ︸
roughness layer

(3.10)

or

τ(z) =

flow turbulence components︷ ︸︸ ︷
−ρ〈u′w′(z)〉s − ρ〈ũw̃(z)〉s +

∫ zc

0
fp(z)dz +

∫ zc

0
fν(z)dz

︸ ︷︷ ︸
resultant drag forces

(3.11)

where fp(z) and fν(z) are the drag forces induced respectively by the pressure and viscous

forces integrated on the contours of the roughens elements, also indicated in Eq.(2.32), and

having neglecting the viscous stress relating to the derivative of the streamwise velocity

with respect to the vertical coordinate. Therefore, the linear behavior of the total stress

τ(z) is recovered only above the level zc. But, what happens to the function τ(z) for z < zc

when the sand fraction is present in the gravel framework, as indicate in Figure 3.2?

As pointed out in the Chapter 2, the ”flow turbulence components” in Eq.(3.11) behave

as stated by Eq. (2.65) and they represent the shear stress available to the sand fraction

to be transported by the flow, while the ”resultant drag forces” represent the resultant
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3.2 Momentum and continuity equations for the fluid phase

that acts on the rough bed elements in the averaging area A0 due to the drag forces.

Considering the Figure 3.4, the function τ(z) depends on the sand level ηs and on the
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ττττ(ηηηηs)

zc

Figure 3.4: Sketch of the double averaged shear stress configuration as a function of the
sand level ηs

geometric characteristics of the gravel framework for a given flow depth. Concerning the

velocity profile above the level zc , it depends on the two quantities zc and λ0 as indicated

by Eq.(2.44) that, in its turn, depend on the sand level ηs.
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88



4 Theory of sand dunes stability in the

mixed case

Sand dunes are the most common bedforms encountered in rivers, and their dynamics

is crucial in many environmental and river engineering problems (ASCE (2002)). From

hydraulics point of view, the bedforms, especially dunes, are a primary source of rough-

ness and therefore a major factor in determining water levels (Tuijnder (2010)).To this

regard, acceleration/deceleration of the flow associated with the sequence of contractions

above sand dunes is critical in controlling the shape of the bed surface through nonlinear

interactions. Consequently, the local shear stress distributions and the sediment transport

are affected by the flow separation behind the crest sand dune with a specific amplitude

(Colombini and Stocchino (2008)).

Kennedy (1963) showed that bedforms can be interpreted as periodic perturbations of the

shape of the river bed that interact with the flow, creating a dynamic system that can ex-

perience temporal growth or decay according to an instability mechanism (see Colombini

(2004) for literature review). From morphological point of view, the phase-lag between

flow and bed topography is confirmed to be the mechanism controlling sand dunes forma-

tion and nonlinear evolution (Colombini and Stocchino (2008)).

Sand dunes occurs in most studies as bedforms related to a flow strength parameter, a grain

size parameter and geometrical sand dunes characteristic as the wavenumber.Colombini

(2004) studied sand dunes formation in the contest of linear stability theory where the

shear stress responsible for bed load transport is computed at the top of a specified bed-

load layer (sensu Bagnold (1956)) , so that a new term, which is related to the role of

the longitudinal pressure gradient, formally enters in the analysis. The reference level

that refers to the top of the specified bedload layer where the shear stress is computed,

represents a crucial choice for the delicate balance between destabilizing and stabilizing

effects, that in its turn affect the stability of a small bed perturbation,i.e. the existence or

not of the sand dunes (Colombini (2004)).

It is noteworthy that sand dunes amplitude reaches heights up to one third of the water
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4 Theory of sand dunes stability in the mixed case

depth, while dune length is several times the water depth.Hereinafter, we refer to allu-

vial sand dunes to that beform formations that are not limited by the amount of available

sediment. Different bedform types are reported due to partial mobility and grain size sort-

ing compared to bedforms in uniform sediment and under alluvial conditions. Bedforms

types that are typically associated with partial mobility conditions are: sand ribbons,

barchanoid dunes, isolated dunes and sediments starved dunes, bedload sheets an low-relif

beforms (Kleinhans et al. (2002); Tuijnder et al. (2009); Tuijnder (2010)). These bed-

forms are observed if the amount of transportable sediment on top of an immobile layer

is limited, i.e. the supply-limitation condition is recovered. This condition is typically of

a non-uniform bed composition, also know as graded sediment, and if the coarsest part

of the non-uniform bed composition cannot be transported, a coarser immobile layer can

develop through vertical sorting of grain size fractions. This layer prevents entrainments

of underlaying sediments and thus limits the availability of sediment for bedform forma-

tion to the volume present on top of the coarse layer. The availability of sediment is

a primary control on the bedform development (Kleinhans et al. (2002); Tuijnder et al.

(2009); Tuijnder (2010)). Tuijnder et al. (2009) investigate how the geometrical sand dune

characteristics (i.e. average sand dune wavelength λ and height ∆ in Figure 4.1) react to a

sediment supply-limitation. Specifically, it can be seen that the average dune dimensions

(i.e. λ and ∆ in Figure 4.1) increase with an increasing sand layer thickness d for all series

of experiments (Tuijnder et al. (2009)). Figure 4.2 and Figure 4.3 report how the geomet-

rical sand dunes characteristics change with the average sand layer thickness d assumed

as a measure of sand availability. The experimental points represented in the figures refer

to the series 5 in Tuijnder et al. (2009)’s work. Particularly, the geometrical sand dune

characteristics have been represented in dimensionless form using the analogous geomet-

rical sand dune characteristics in the alluvial conditions (i.e. when the supply-limitation

condition vanishes). Moreover, the same figures report the dimensionless Chezy coefficient

C∗ as a function of the ratio ∆/∆0 and λ/λ0, respectively. It can be seen that the Chezy

coefficient as a measure of roughness characterization of the sand dunes decrease as the

sand dunes approach to the alluvial conditions.

Differently from the previous figures, Figure 4.4 and Figure 4.5 represent the time variable

t that has been defined as the equilibrium time so that the sand beform, sediment trans-

port and bed roughness reach the equilibrium conditions. Also in this case the variable

t has been represented in the dimensionless for using the analogous equilibrium time t0

in the alluvial conditions. Specifically, the figures show that when the supply-limitation

condition vanishes (i.e. d/d0 → 1) then the equilibrium time t reaches its maximum value

compared to that in the alluvial conditions and the dimensionless Chezy coefficient C∗
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Figure 4.1: Sketch and notation for Tuijnder et al. (2009)’s experimental work. Panel a)
refers to mixed configuration and panel b) refers to alluvial configuration. λ refers to sand
dune wavelength and ∆ refers to sand dune height as the height difference between the
dune crest and the dune trough on the downstream side. Moreover, d refers to the average
sand layer thickness and it was determined by subtracting the measured level of the gravel
layer from the measured level of sand bed and averaging over the flume length.

assumes its minimum value.

The present Chapter is devoted to apply the morphodynamic model formulated in

Chapter 3 to predict the morphodynamics of sand bedforms over immobile gravel bed. The

sand surface elevation is a measure of the sediment supply-limitation that crucially controls

the sand bedform development. The model will be solved through a linear stability analysis

that incorporates recent developments in the theoretical study of sand dune stability in

homogeneous conditions. The specific goals of the present Chapter are:

• predict the hydraulics conditions for sand bedform stability and preferred wavelength

selection over an immobile gravel bed;

• understand how the supply-limitation condition (i.e.0 ≤ d/d0 ≤ 1) can influence the

sand bedform stability.
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Figure 4.2: Left graph represents ratio between sand dune height ∆ in the mixed bed
configuration and sand dune height in alluvial condition ∆0 in the alluvial condition as a
function of ratio between average sand layer thickness d in the mixed bed configuration
and average sand layer thickness d0 in the alluvial condition. Right graph represents the
dimensionless Chezy coefficient C∗ as a function of the ratio between the sand dune height
∆ in the mixed bed configuration and sand dune height in alluvial condition ∆0 (see Figure
4.1 for notation). Circle points refer to the experimental data from Tuijnder et al. (2009)’s
work, specifically they refer to the series labeled with number 5

Specifically, this stability analysis has been developed in the mathematical context of

linear stability analysis where the amplitude of an hypothetical sand bed perturbation of

the uniform configuration has been chosen to be small compared to the average sand dune

height ∆ in the Tuijnder et al. (2009)’s work.
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Figure 4.3: Left graph represents ratio between sand dune wavelength λ in the mixed bed
configuration and the sand dune wavelength λ0 in the alluvial condition as a function of
ratio between average sand layer thickness d in the mixed bed configuration and average
sand layer thickness d0 in the alluvial condition. Right graph represents the dimensionless
Chezy coefficient C∗ as a function of the ratio between the sand dune wavelength λ in the
mixed bed configuration and sand dune wavelength λ0 in alluvial condition (see Figure
4.1 for notation).Circle points refer to the experimental data from Tuijnder et al. (2009)’s
work, specifically they refer to the series labeled with number 5

4.1 Mathematical formulation: notation and scaling for

the flow

With the same assumptions made in the paragraph 3.2.1 for the flow field, hereafter a

star superscript will denote dimensional quantities. We denote by D∗,U∗, η∗s and l∗z the

uniform values of flow depth, depth-averaged speed, the sand elevation and a geometrical

characteristic length scale for the gravel matrix, respectively. Moreover, we assumed that

the above quantities represent the spatial-temporal average value, as indicated in Eqs. 3.6

by the operator 〈·〉s.
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Figure 4.4: Left graph represents ratio between sand dune wavelength λ in the mixed bed
configuration and the sand dune wavelength λ0 in the alluvial condition as a function of
ratio between average sand layer thickness d in the mixed bed configuration and average
sand layer thickness d0 in the alluvial condition. Right graph represents the dimensionless
Chezy coefficient C∗ as a function of the ratio between sand dune equilibrium time t in the
mixed bed configuration and the sand dune equilibrium time t0 in the alluvial condition(see
Figure 4.1 for notation). Circle points refer to the experimental data from Tuijnder et al.
(2009)’s work, specifically they refer to the series labeled with number 5

The approach used to implement the present linear stability analysis is formally analo-

gous to that proposed by Colombini (2004); differences are in the governing mathematical

problem.

Variables will be made dimensionless using the friction velocity u∗f , the depth D∗ of

the unperturbed uniform flow, the fluid density ρ and for the only sand elevation η∗s we

use geometrical characteristic length scale for the gravel matrix l∗z = (4− 6)σ∗d, where σ∗d
is the usual standard deviation of the rough bed elements elevations.
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Figure 4.5: Left graph represents ratio between sand dune equilibrium time t in the mixed
bed configuration and the sand dune equilibrium time t0 in the alluvial condition as a
function of ratio between average sand layer thickness d in the mixed bed configuration
and average sand layer thickness d0 in the alluvial condition. Right graph represents the
dimensionless Chezy coefficient C∗ as a function of the ratio between sand dune equilibrium
time t in the mixed bed configuration and the sand dune equilibrium time t0 in the alluvial
condition (see Figure 4.1 for notation). Circle points refer to the experimental data from
Tuijnder et al. (2009)’s work, specifically they refer to the series labeled with number 5

Eqs. 3.6 in dimensionless form and with the above assumption read as:

UU,x +WU,z +P,x−1− Txx,x − Txz,z = 0 (4.1)

UW,x +WW,z +P,z −1− Txz,x − Tzz,z = 0

U,x +W,z = 0

In order to close the above formulation we employ for the Reynolds stress tensor T = Tij

the closure relationships indicated in the paragraph 3.2.2.

The curves zws = ηs(x) +D(x) and z = zc[ηs(x)] identify the upper and lower boundaries

of the logarithmic domain respectively, so that D represents the local flow depth (see
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Figure 4.6: Sketch and notation for transformation of variables in (4.2)

Figure 3.2). Furthermore, we stipulate that the latter boundary is set at the reference

level, the level at which conventionally and in the homogenous case (when sand elevation

ηs(x) completely buries the gravel, that is ηs(x) = 1) the mean logarithmic profile vanishes.

For the heterogeneous case (ηs(x) < 1) and at the lower boundaries of the flow domain

the mean logarithmic velocity is no longer zero, due to the effect of increased gravel

roughness on the flow field as we can see later. The above system is solved with the

boundary conditions of vanishing shear stress at the free surface and of velocity at the

lower boundary, depending on the value of sand elevation ηs(x) .

The transformation of variables

ζ =
z − ηs(χ)

D(χ)
=

ξ

D(χ)
(4.2)

χ = x (4.3)

is then employed in Eqs. 4.1, which maps the channel sketched in Figure 3.2 into a

rectangular domain.
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Referring to Figure 4.6, Eq.(4.2) represents dimensionless vertical coordinate for the entire

flow domain. Since in the interfacial sublayer it has been assumed that the streamwise

velocity profile is linear (Nikora et al. (2001)), consequently, at z∗ = η∗s(x) (i.e. ζ = 0) the

spatially-averaged streamwise velocity is 0. Since η∗s(x) refers to spatially-averaged sand

bed elevation, then η∗s(x) is located just above the center of the sand particles assumed

as spheres, specifically spatially-averaged streamwise velocity is 0 at distance hs ≈ ds/6

below of the top of the sand particles (see Figure 4.6).
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4 Theory of sand dunes stability in the mixed case

4.2 Conceptual and mathematical formulation for the bed

load sediment transport model

Referring to the Figure 2.24, we assumed that fine sediments move as bedload transport

by small jumps (saltation) confined in a region close to the bed whose thickness is equal

to ξb and defined as ”bedload” layer. Above this layer we assumed clear water, inside this

layer the shear stress drops according to the Eqs. 3.10 and 3.11. In alluvial or homoge-

neous configuration the reduction in the shear stress inside the bedload layer is due to the

energy loss that has to be spent for the sediment transport, in the mixed configuration

the energy flow loss is due to the drag forces applied on the contour of the rough elements

in the bedload layer and to the flow energy spent for the sand transport. The energy loss

for the drag forces is comparable larger than that for sediments transport because the

ratio between the gravel diameters and sand diameters is larger than one. Consequently,

the shear stress exerted by the fluid on the fines sediments in the bedload layer should be

evaluated at the level ξb.

In order to compute the thickness of the bedload layer, and in the absence of any pub-

lished experimental data on the case of an immobile gravel bed with a partial sand cover,

we assume a formal analogy with the relationship proposed by Colombini (2004) where

the dependence from the sand surface level and from the sand/gravel grain size ratio is

accounted for through the computation of local (spatially-averaged) values of the near-bed

and of the critical shear stress. Following Colombini (2004), the thickness of the bedload

layer can be written in the following form:

hb = dslb = ds

{
1 +Ab

(
τs − τrs
τrs

)m}
, τs ≥ τrs (4.4)

where ds is the dimensionless sand diameter, lb dimensionless maximum saltation height

and the value of the constant Ab and for the exponent m have been set equal to 1.3 and

to 0.55 (Colombini (2004)). Figure 4.7 represents the curve (4.4) as interpolation curve of

experimental data of maximum saltation height (see Colombini (2004) for references).

It is noteworthy that Sekine and Kikkawa (1992) pointed out that the concept of bedload

layer thickness derived from the ”averaged saltation height” as a measure of ”maximum

saltation height over an entire step length” lb.

In Eq. 4.4 τs is the shear stress value at ηs(x) level and the critical shear stress for sand

fraction τrs is predicted by Eq. 2.54 where it has been reported the critical Shileds number

for sand fraction.

The shear stress that acts on the sand particles τs at level ηs depends on the the sand
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4.2 Conceptual and mathematical formulation for the bed load sediment transport model

Figure 4.7: Dimensionless maximum saltation height lb as a function of ratio τ∗s /τ
∗
c in

homogeneous condition, i.e. only sand (from Colombini (2004)), where τ∗c is the critical
shear stress for incipient motion of the sand. The different points in figure represent
experimental values of maximum saltation height (see Colombini (2004) for references)

elevation ηs itself as indicated by (2.65).

Accordingly to 4.2, the top level of the bedload layer ζb corresponds to :

ζb = hb −
5

6
ds (4.5)

Figure 4.8 represents the top and the bottom of the bedload layer in two different coordi-

nate systems. In the x-z system B and R located the top and the bottom of the bedload

layer, respectively. In the x-ζ system ζb and 0 represent, referring to the sand elevation ηs,

the local level of the top and the bottom of the bedload layer, respectively. It is noteworthy

that

The equation for sand particles mass conservation,neglecting ∂A/∂ηs with respect to
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Figure 4.8: Sketch and notations for two different coordinate system: the x-ζ system refers
to (4.2), the x-z system contains information on the position of the minimum value of the
roughness geometry function A(ηs).

A as a first approximation, can be written as

A(ηs)ηs,t = −Φs,x (4.6)

where

Φs = θ
3
2
s |ζbA(ηs)Wbs (4.7)

and θs|B represents the Shields stress for sand fraction computed at B level (see Figure

4.8). The dimensionless sediment discharge per unit width Φs reads as:

Φs =
q∗s

d∗s
√

(s− 1)gd∗s
(4.8)

In the (4.7) it has been used, for the sand discharge per unit width in the ”mixed” config-

uration Wbs, the relationship indicate by Wilcock and Kenworthy (2002) and reported in

(2.76). The time in the Equation 4.6 has been made non-dimensional using the sediment
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4.3 Sand Bedforms stability:linear analysis

characteristic slow time scale

t =
D∗2(1− ps)

d∗s
√

(s− 1)gd∗s
(4.9)

where g is the gravitational acceleration, ps is the porosity of the sand fraction and s is

the relative density.

4.3 Sand Bedforms stability:linear analysis

We now assume the following normal-mode representation for the generic perturbed prop-

erty F:

F (χ, ζ, t) = F0(ζ) + εF1(χ, ζ, t), (4.10)

F1(χ, ζ, t) = f1(ζ)exp[i(αχ− Ωt)] + c.c. (4.11)

with the parameter ε chosen to be small in accordance with the assumption of small per-

turbations of the uniform configuration. In the above, α (i.e.α = 2π
λ/D )is the wavenumber

of the perturbation, Ω the complex growth rate and c.c. stands for the complex conjugate

of the preceding quantity. The above expansion can then be substituted into the governing

equations, boundary conditions and closure assumptions to obtain a sequence of problems

at the various orders of approximation in the small parameter ε.

4.3.1 O(ε0)

At leading order the system of differential equations and boundary conditions for the basic

uniform flow can be rewritten as

T ′t0 = −1, T ′n0 = −i−1
f , (4.12)

U0|ζ=ζc = Ũ0, Tt0|ζ=1 = 0, Tn0|ζ=1 = 0, (4.13)

where

Tt0 = νt0U
′
0, Tn0 = −P0 (4.14)

are the stresses tangential and normal to surfaces at constant ζ respectively and primes

denote differentiation with respect to ζ.

In the (4.13), Ũ0 refers to (2.45), specifically:

Ũ0 = Ũ0(γi, ds, ηs0) (4.15)
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4 Theory of sand dunes stability in the mixed case

Linearizing the eddy viscosity reported in (3.8), the above system immediately integrates

to yield for ζ ≥ ζc:

U0 =
1

k
ln

(
ζ − 0.43ζc

λ0

)
P0 = i−1

f (1− ζ) (4.16)

where 0.43ζc and λ0 are the zero-plane displacement and the roughness length, respectively.

4.3.2 O(ε1)

It is convenient to introduce the new variables:

Tt1 = νt0(u′1 − U ′0d1 + iαv1 +
νt
νt0

U ′0), Tn1 = −p1 − 2iανt0u1, (4.17)

which represent the amplitudes of the perturbed stresses tangential and normal to surfaces

at constant ζ, respectively. In the above u1, v1 are the longitudinal and vertical components

of the perturbed velocity, while p1 and d1 are the amplitudes of the pressure and flow depth

perturbation. The ratio νt
νt0

follows from 3.8 :

νt
νt0

= (
u′1
U ′0

+ d1 + ηs1C1), (4.18)

C1 = C1(χ, ds, γi, ηs0),

νt0 = νt0(χ, ds, γi, ηs0),

(4.19)

where the primes denote differentiation with respect to ζ , ηs1 is the amplitude of per-

turbed sand level respect to ηs0 and C1 is an appropriate function that takes into account

the geometrical information (i.e. the parameter γi ) of the gravel matrix. After some

manipulations, a system of ordinary differential equations is eventually obtained that can

be written in the general form:

LZ = d1D + ηs1H (4.20)

where d1 is considered as a parameter to be determined. The vector Z of the unknowns

is:

Z = (u1, v1, Tt1, Tn1)T (4.21)

The linear differential operator L in (4.20) is:
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4.3 Sand Bedforms stability:linear analysis

L =




d/dζ iα/2 −1/(2νt0) 0

iα d/dζ 0 0

−iαU0 − 4α2νt0 −U ′0 d/dζ iα

0 −iαU0 iα d/dζ




while the vectors D and H are, respectively,

D =




0

iαU ′0ζ

(−iαU0U
′
0 + iαi−1

f − 2α2(1− ζ))ζ − 1

i−1
f + iαζ − 2iα(1− ζ)




H =




0

iαU ′0
−iαU0U

′
0 + iαi−1

f − 2α2(1− ζ)

iα




Linearization of the boundary conditions yields for reference level (ζ=ζc):

u1(ζc) = Bu(ηs0, ds)ηs1, v1(ζc) = 0, (4.22)

where the prime denotes differentiation with respect to ζ and Bu is an appropriate function.

At the free surface (ζ=1) we have:

v1(1) = iαU0(d1 + ηs1), Tt1(1) = 0, Tn1(1) = 0 (4.23)
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4 Theory of sand dunes stability in the mixed case

Linearity of the differential system allows us to express its solution in the form

Z = c1Z1 + c2Z2 + d1Zd1 + ηs1Zηs1 (4.24)

Thus Z is a linear combination of two linearly independent solutions of the homogeneous

initial value problem

LZ1,2 = 0 (4.25)

each satisfying the boundary conditions at the lower boundary, plus particular solutions

of the non-homogeneous differential systems

LZd1 = D LZηs1 = H, (4.26)

again satisfying the lower boundary conditions. Using the splitting (4.24) on the boundary

conditions at the free surface (4.23) , a linear 3× 3 non-homogeneous algebraic system in

the three unknowns c1, c2 and d1 is found, the solution of which is proportional to ηs1.

We then readily obtain

(c1, c2, d1, ηs1)T = ηs1(Ttr, Tnr, D, 1)T = ηs1X (4.27)

where the two linearly independent solutions of the homogeneous problem (4.25) have been

chosen so that the unknowns c1 and c2 are the values of the perturbation of the tangential

and normal stress at the reference level, respectively. The vector X thus provides the

’forced’ response of the flow to a unit reference level perturbation. Linearization of the

sand sediment continuity equation yields the following equation:

Ωηs1 = αφ (4.28)

In the Eq.(4.28) it has been assumed that the amplitude of the perturbation ηs1 is identical

to the amplitude of the perturbation for the top of bedload layer b1 where it has been

assumed to compute the shear stress responsible for the sand transport.

The amplitude φ of the perturbation of the bedload discharge Φ defined by 4.7 can be

expanded as in 4.24, leading to

φ = φ1c1 + φ2c2 + φdd1 + φηs1ηs1 = φ · (c1, c2, d1, ηs1)T = φ ·Xr (4.29)
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where

φ1 =

[
∂Φ

∂c1

]

0

=

[
∂Φ

∂θb1

∂θb1
∂c1

+
∂Φ

∂θrs

∂θrs
∂c1

]

0

=

[
AΦb

∂θb1
∂c1

+AΦrs

∂θrs
∂c1

]

0

(4.30)

where θrs is the critical Shields stress for sand fraction (Wilcock and Kenworthy (2002)),

the suffix 0 stands for ’evaluated at base flow condition’and

∂θrs
∂c1

=
∂θrs
∂A1

∂A1

∂c1
AΦb1

=
∂Φ

∂θb1
AΦrs =

∂Φ

∂θrs
(4.31)

Analogous relationships hold for φ2, φd1 and φηs1. In 4.31, A1 represents the approximation

of the ”roughness geometry function”A at the ε order of the solution. Expanding also the

perturbed shear stress Ttb1 in (4.30) as in (4.24) we then readily obtain

φ = Aφ(Ttb1, Ttb2, Ttbd1 + ζb, Ttbηs1) +Bφ(0, 0, 0,
∂θrs
∂A1

∂A1

∂zs1
) (4.32)

In the above equation ζb refers to (4.5), having assumed that ηs1 = b1.

Moreover, Ttb1, Ttb2, Ttbd1 and Ttbηs1 are evaluated at ζb and

Aφ = [AΦb1]0 θr0 Bφ = [AΦrs]0 (4.33)

where

θr0 =
if

(s− 1)ds
(4.34)

Making use of (4.29) and (4.32), we can rewrite (4.28), obtaining the dispersion relationship

Ω = αφ ·X (4.35)

and solving for the imaginary part of the growth rate we finally obtain:

Ωi = α[Aφ(T itb + ζbD
i) +Bφ

∂θrs
∂A1

∂A1

∂ηs1
] (4.36)

The above equation indicates the instability is related to a balance between destabilizing

and stabilizing effects. Specifically, the second term, which is associated with the derivative

of θrs with ηs1, when negative acts to reduce the instability.
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4 Theory of sand dunes stability in the mixed case

4.4 Discussion of the results

Figure 4.9 represents marginal curves (vanishing growth rate Ωi) in two configurations: the

homogeneous case when sand completely buries the gravel matrix (i.e. ηs=1) indicated in

figure as solid blue line and the mixed case (0 ≤ ηs <1) indicate in figure in red solid line for

differen values of ηs.In the homogeneous configuration (i.e. panel a) Figure 4.9) two region

of instability appear which are bounded by the marginal curves. Specifically, the upper

region refers to sand antidunes, the lower one refers to the dunes instability. Referring

to the homogenous case, Colombini (2004) found a good agreement with experimental

data, in fact almost the whole set of measurements fall inside the appropriate region of

instability. The marginal curve in the mixed case reports a tendency with the decreasing

of the sand content in the gravel matrix. Specifically, at the same Froude number, the

less the sand elevation is, the bigger the wavenumber is . This tendency was also pointed

out by Tuijnder et al. (2009)’s experimental work, in fact Figure (4.3) shows that when

the average sand volume represented by the parameter d decreases, then also the sand

wavelength decreases, i.e. the sand wavenumber increases. It is noteworthy that with the

notations sketched in Figure (4.1), the parameter d is computed above the level at which

A(ηs) = 1, nonetheless the sand dunes observed by Tuijnder et al. (2009) interact with

the gravel matrix as indicated by sand dune height ∆ in Figure (4.2).

Figure 4.10 and 4.11 remark the different behavior in term of growth rate Ωi for the

two different configurations (i.e. homogeneous and mixed case) for two specified Froude

number: Fr=1.2 for Figure 4.10 and Fr=0.6 for Figure 4.11. Moreover, the sand level ηs

controls the extent of the instability region of the perturbation, in fact in the mixed case

when the sand level decrease, the sand bed instability appears also for Froude number

greater then the homogeneous case.

Figure 4.12 shows the behaviour of the imaginary part of the perturbation of the

tangential shear stress in a neighbourhood of the reference level R (see Figure 4.8) for

the two specified Froude value indicated above. The vertical coordinate is scaled by the

thickness of the bed load layer ζb and wavenumber is set equal to 1. The imaginary

component of the shear stress is associated with the growth or decay of the perturbation

as indicated by (4.36).It is noteworthy that in the homogeneous condition disturbances

that are stable at reference level R, become unstable at the top of the bedload layer. In the

mixed case the variability of the instability behaviour of the perturbation is more complex

due to the sand elevation ηs that appears to control the stability of the perturbation.

106



4.4 Discussion of the results

a) b)

c) d)

Figure 4.9: Growth rate plot for homogeneous case (blue solid line) and for mixed case (red
solid line) with different sand bed elevation. Panel a) refers to homogeneous condition and
with specific hydraulics conditions: water depth D=0.20 cm, ds=0.7 mm, Chezy=C=55.81
m1/2/s. Panel b),c),d) show both case when sand bed elevation is ηs = 0.9,ηs = 0.7 and
ηs = 0.5, respectively. The specified hydraulics conditions for each case are reported above
each panel.
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Homogeneous case

MIxed case

Homogeneous case

MIxed case

Homogeneous case

MIxed case

a) b)

c) d)

Figure 4.10: Dimensionless grow rate plot for homogeneous case (blue solid line) and for
mixed case (red solid line) with different sand bed elevation and with specified Froude
number equals to 1.2.Panel b),c),d) show both case when sand bed elevation is ηs =
0.9,ηs = 0.7 and ηs = 0.5, respectively. The specified hydraulics conditions are the same
indicated in Figure 4.9 for each panel.
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Homogeneous case

MIxed case

Homogeneous case

MIxed case

Homogeneous case

MIxed case

a) b)

c)
d)

Figure 4.11: Dimensionless grow rate plot for homogeneous case (blue solid line) and for
mixed case (red solid line) with different sand bed elevation and with specified Froude
number equals to 0.6.Panel b),c),d) show both case when sand bed elevation is ηs =
0.9,ηs = 0.7 and ηs = 0.5, respectively. The specified hydraulics conditions are the same
indicated in Figure 4.9 for each panel.
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ζ/ζ/ ζ/ζ/
ζζ ζζ b

ζ/ζ/ ζ/ζ/
ζζ ζζ b

ζ/ζ/ ζ/ζ/
ζζ ζζ b

ζ/ζ/ ζ/ζ/
ζζ ζζ b

ηηηηs=0.9

ηηηηs=0.7

ηηηηs=0.5

ηηηηs=0.9

ηηηηs=0.7

ηηηηs=0.5

Figure 4.12: Imaginary parts of the amplitude of the shear stress perturbation as a function
of vertical distance in the neighbourhood of the reference level R for two different specified
Froude number: the left panel refers to Fr=0.6, the right one refers to Fr=1.2.
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The transport of fine sediments over immobile gravel beds is a key and yet relatively unex-

plored process of many coarse-bed river systems with strong management and ecological

implications.

The present study has addresses the dynamics of fine sediment transport in gravel-bed

rivers, with the aim to propose a morphodynamic modelling approach for sand transport

over a gravel bed that is assumed at rest. The following research questions have been

addressed:

• Which are the key physical processes associated with near bed turbulence properties

over rough beds, and how do they change when sand is present in variable proportion

within the gravel bed? (Chapter 2)

• Which can be an appropriate form of a mathematical model for sand beform dy-

namics over immobile gravel? How do the continuity and momentum equations, as

well as the closure relationships for friction and bedload transport change when the

gravel bed is partially sand-covered? (Chapter 3)

• Which are the implications of such model when solved in the form of a stability

analysis that aims to predict the conditions for sand bedform stability and preferred

wavelength selection over an immobile gravel bed? (Chapter 4)

First, a theoretical approach is developed to the most relevant processes that determine

the properties of near-bed turbulent flow and of sand transport when a rough gravel

bed is partially covered with sand. This has lead to propose physically-based closure

relationships for friction and bedload transport, which are key ingredients, although still

to be improved, for a morphodynamic model of sand bedform evolution over immobile

gravel beds. The theoretical analysis has been developed at three levels. After reviewing

the spatial averaging approach, which underlies all the present work, the geometrical

properties of a rough gravel bed have been reviewed and the implications associated with

the presence of a sand cover with variable height have been discussed. Second, the near-bed
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hydrodynamic properties relevant for sediment transport over rough beds in general have

been reviewed and a novel theoretical approach is proposed to account for the effect of a

variable sand cover on the near-bed shear stress and related spatially averaged turbulence

properties. Third, the implications of varying sand surface level for threshold condition for

sand bedload motion as well as for the rate of bedload transport have been discussed and

existing relationships, derived on an empirical basis, are integrated within the proposed

theoretical approach.

The theoretical approach is based on (i) a two-fraction assumption for the bed composi-

tion (sand and gravel) and (ii) a spatially-averaged description of bed roughness geometry,

near bed turbulence properties and closure relationships for bedload and suspended load.

The reach-averaged sand surface elevation and the relative size ratio between the sand and

gravel diameter emerge as the key parameters that distinguish between different types of

mixed bed configurations. A key distinction can be made between ”gravel-clast framework”

and ”sand matrix”types of bed; these configurations are discriminated by a relatively sharp

transition region in the sand surface elevation. Moreover, the near-bed shear stress and

bedload transport of sand depend on a dynamic balance between a ”hiding” and a ”bridge”

effect, which in turn are related to the sand surface level and to the grain size ratio be-

tween the two fractions. Application to spatially-averaged uniform flow conditions shows

satisfactory agreement with the few available experimental data and has allowed to make a

preliminary quantifcation of the effect of the two key parameters describing different types

of mixed bed configuration. The limits of validity of the model have been also discussed.

A morphodynamic model that can be used to predict the temporal and spatial evolu-

tion of a sand layer that partially or completely fills the voids beneath an immobile gravel

bed has been then formulated. The mathematical formulation is two-dimensional, in the

streamwise (x) and in the average bed orthogonal (z) directions. Moreover it is spatially-

averaged, therefore ”local” values of flow quantities and of the sand bed elevation actually

represent double-averaged quantities resulting from time averaging and from spatial aver-

aging, performed at the scale comparable to the d90 of the gravel grain size distribution.

A vertical subdivision of flow into specific layers has been adopted for the formulation of

the morphodynamic model. The key ingredients of the model are:

• the momentum conservation equations for the fluid phase in the x and z directions;

• the mass conservation equations for the fluid phase;

• the mass conservation equations for the sand layer within an immobile gravel bed;

• a closure relationship to link the double-averaged Reynolds stresses to the double-

averaged flow field;
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• a closure relationship to link the double-averaged bedload rate to the double-averaged

flow field.

Momentum and mass conservation equations for the fluid phase will be formulated referring

to the physical balances formally valid only within the logarithmic layer. The physical

processes governing the hydrodynamics within the roughness layer and its sublayers are

indirectly taken into account according to the closure relationships proposed above. The

novel formulation of the sediment continuity equation reveal an intrinsic nonlinearity in

the time-derivative term and is able to reproduce the experimentally observed reduction

in the morphodynamical time scale at increasing levels of sand supply limitation.

The morphodynamic model has been finally used to predict the sand bed morphody-

namics under supply-limited conditions. The sand surface elevation is a measure of the

sediment supply-limitation that crucially controls the sand bedform development. The

model has been solved through a linear stability analysis that incorporates recent devel-

opments in the theoretical study of sand dune stability in homogeneous conditions. The

theoretical outcomes have allowed to focus on the physical phenomena controlling the de-

velopment of sand bedforms when sand is transported over an immobile gravel bed and

to determine the hydraulic conditions under which sand dunes formation can be expected

to develop within immobile gravel beds. Results also indicate a consistent effect of supply

limitation to extend the instability region towards shorter bedforms, as observed by recent

experimental investigations.

The present theoretical work shall be considered as a first step in the attempt of

developing a comprehensive morphodynamic modelling framework for the sand fraction

over immobile gravel beds. Some of the most relevant related issues that will deserve

attention in future research are listed below.

1. There’s the need of a direct experimental testing of the physically-based relation-

ships that have been proposed to link the near-bed turbulence properties with the

sand surface level and the sand-gravel grain size ratio. This will require detail mea-

surements of turbulence properties with high vertical and horizontal resolution in

the vicinity of the rough bed.

2. Relatively few experimental observations are available on the geometry of sand

supply-limited dunes. It would be important that the valuable dataset of Tuijn-

der (2010) could be extended to assess the effect of different sand/gravel grain size

ratios on the stability properties of the sand dunes.

3. The stability analysis proposed in the present research work to study the stability

of supply-limited sand dunes is linear, and as such it cannot be used to predict any
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information related to the time evolution and to the finite-amplitude geometry of

the sand bedforms. An extension of the present theoretical work would be desirable

in the weakly nonlinear regime, following the approach of Colombini and Stocchino

(2008) under homogeneous sand conditions.
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