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Abstract

In this paper we propose a novel approach for syntactic getsar and maching of object trajectories
in digital video, suitable for classification and recogmitipurposes. Trajectories are first segmented by
detecting the meaningful discontinuities in time and spaoe are successively expressed through an ad-
hoc syntax. A suitable metric is then proposed, which alldetermining the similarity among trajectories,
based on the so-called inexact or approximate matching.nidteic mimics the algorithms used in bio-
informatics to match DNA sequences, and returns a scorehndiiows identifying the analogies among
different trajectories on both global and local basis. Té@ tan therefore be adopted for the analysis,

classification, and learning of motion patterns, in agtiwletection or behavioral understanding.

Index Terms

trajectory analysis, trajectory representation, trajgctmatching, ambient intelligence, visual surveil-
lance.

. INTRODUCTION

The growing interest in ambient-intelligence and the gigant reduction in the price of image capture
devices and digital signal processing systems, has catedbto the widespread adoption of video
technologies in most monitoring and surveillance applcest On the other hand, large and distributed
sensing architectures provide human operators with hugmuats of data (mostly real-time video) that
quickly overwhelm the ability of the security personnel toalyze and react to events, especially in
safety-critical applications. As a matter of fact, mostloé favailable consumer products mainly focus on
the recording of video sequences for after-event analfisisare useful as forensic tool, but disregard the
primary benefit of surveillance systems as active and new-prevention instruments. More sophisticated

systems attempt to process data in real-time in order tatsignificant events that need to be promptly
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reported to the operator. This is the case of systems forsidecsupport, where the automation of
certain procedures allows real-time detection of relevargnts. Such events are typically related to
changes detected in the monitored area, which can be cayskdniian actions (e.g., entering/exiting

the scene, accessing some specific areas), modificatiorige aérivironmental conditions (e.g., objects
relocation, objects left unattended, changes in illunidmatpresence of shimmering lights or fire), or

suspect behaviors (e.g., identification of specific moverpatierns, interaction with objects in the scene).
Most of these events are associated with the presence ohmenitities like people and/or other objects
in the scene. Nowadays, sophisticated and reliable objpatdérs can be found in the literature that make
it possible to extract an accurate representation of théosfamporal trajectory of each object in a video
sequence (see [1] [2]) also in very complex scenarios. iBgaftom the acquired trajectory, a common

way to detect activities or behaviors consists in transtpthe trajectories of the moving objects into

sets of descriptors, and successively comparing such igessrwith predefined (or learned) models.

This approach has been widely used in many application figldé as smart environments (motion is
analyzed to understand people presence and behaviors][$$])}4 content-based video indexing and

retrieval [6], gesture and gait analysis [7], and biome8} [

Starting from a preliminary study proposed in [9], we preédarthis work a complete representation
and matching framework, and provide an in-depth descriptibthe relevant processing techniques and
a thorough experimental validation, also in comparisorhwitate-of-art approaches of the same class.
The paper presents some related works in Section Il, whii@elll concentrates on the proposed
architecture. Section IV focuses on the experimental aéibeh on two different sets of trajectories in

different indoor scenarios. Concluding remarks are drawBection V.

[I. RELATED WORK

The algorithms used to describe and compare trajectoriedeadivided into three main categories:
dynamic matching, statistical matching, and vector maighWithin the first category, dynamic time
warping (DTW) is typically used in time-series comparisbnf it has been successfully applied also
to human trajectory matching because of its conceptual lsiitypand versatility [1]. Very simple yet
effective, DTW has a major drawback in its sensitivity to dirdifferences, which leads to unreliable
results when the trajectories to be matched are sampledfertetit temporal rates. Furthermore, DTW
demonstrates a limited robustness also to noise and cudlervell as to shifts and scaling.

Statistical matching refers to methods that jointly preceswide set of trajectories to determine

their distribution in a given feature space (e.g., spat&htion, moving direction, speed, etc.). High
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matching scores are assigned to trajectories whose beH#asia prototype distributianif the statistics

of a given trajectory do not fit any of the prototypes, it issslified as anomalous. Johnson et al. [10]
employed a sequence of flow vectors to represent the trayeofahe tracked object. An estimation of
the statistical spatial distribution of these vectors isieeed by applying a vector quantizer. In particular,
two concurrent neural networks are employed: the first msiog stage identifies the sequence of vectors
that best represents the target trajectory; in the secag sthe clustering is performed to group similar
tracks. The major drawback of this technique is that it camamdle partial tracks. An improved version
of the algorithm has been developed in [11]; here, an autonsriool that learns anomalous movements
is conceived. The authors provide a learning module sinidldhe one used in [10], but ensuring higher
accuracy in the clustering phase, and allowing for an autiereatup of the trajectory prototypes (clusters).
Each prototype imssumed to hava Gaussian distribution, and the anomaly detection isezhiout by
statistically checking the fitness of the incoming trackrothee prototype model. As anticipated above,
also clustering techniques for trajectory description aradching can be included within this category of
approaches. A few meaningful examples are briefly sumnéiieeeafter. The work in [12] describes a
strategy for trajectory distance measurement and clagtdrased on a Hidden Markov Model (HMM).
The track evolution and dynamic properties are capturedinva state transition matrix by a continuous
chain of HMMs. Through this approach the categorizationhef paths can be achieved by taking into
account the speed affinity together with the geometricatiapfeatures. Another benefit is represented by
the capability of the system to cope with the so-called uneampling instances (non-uniform sampling
between consecutive points), which are typical of reaktitracking applications. In [13], thgoal is

to achieve a hierarchical clustering strategy that firstiifies global similarities (referred to as general
trend) and then performs a refined analysis of each coarsteclin this approach, wavelet decomposition
is employed to tackle the presence of noise in the raw tr@jgctafter smoothing, a feature extraction
phase is carried out, in which the trajectory resamplingipséet (TRPS) and the trajectory directional
histogram (TDH) are retrieved. TDH is used to identify ceatrsjectory clusters, while TRPS is used to
refine them. More recently, the approach in [14] was proposédch performs better than [13] in the
presence of noise. It is based on an unsupervised clustelgogithm that uses a mean-shift to detect
coarse clusters, followed by a merging procedure in whigacsht blobs are grouped and outliers are
detected and deleted. Also in this case, the resamplingitdgo does not allow identifying the local
variations in terms of time and speed. Another trajectongtering approach can be found in [15], where
trajectories are organized in a tree structure, along viighdorresponding occurrences that are used to

detect anomalies.
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Finally, vector-based matching techniques define sintiggriamong trajectories on the basis of the
distance between the feature vectors associated to eath[1®]. The matching requires the mapping
of each trajectory into a set of features, and a metric (Egler, Minkovsky, Hausdorff distances) as a
measure of similarity [17]. Among the most interesting t@glies that employ this approach, Chen et
al. [18] introduced a trajectory retrieval system using misglic representation called movement pattern
string (MPS). MPS approximates the real trajectory acogrdh a predefined space quantization map and
specific symbols are used to characterize the motion patt&€hre authors also defined a similarity metric
for trajectory matching, based on the edit-distance [18F Work in [20] introduces another interesting
video retrieval system that compares video clips accortbripe similarity of the trajectories of moving
objects in the scene. Similarly to [18], the authors propadaybrid method to capture the semantic
meaning and the geometrical characteristics of each taajedhe comparison is then performed through
string matching. Since the above methods are thought fag pigieo retrieval, none of them takes into
consideration the temporal references in encoding andhimat¢he symbolic trajectories, although the
temporal evolution of the track may represent a criticatdato characterize the behavior of a moving
object. This problem is solved only partially in the retaégystem proposed in [21], where the goal is
to bridge the semantic gap between the user queries andafbettry representation. Here, the incoming
samples are filtered and spatio-temporally clustered ierai@learn activity models; the acquired models
are then indexed in a hierarchical tree, where each childritththe parents properties. The trajectory
query interface is provided to final users at semantic level.

A more recent implementation that exploits the edit-distars presented in [22]. Here, the object
trajectories are processed and represented by a chain dfosyrimdicating the direction and velocity
components (sampling time is assumed unitary and constaetsymbolic mapping of the path is then
achieved by quantizing each component, in order to redueerédundancy. Since no resampling or
trajectory smoothing is applied, the symbolic mapping meadl to long symbol chains where each
sample is encoded as a symbol.

In our paper we propose a new paradigm based on the editdes{a9], which does not require the
resampling of the trajectory and allows taking into accahattime component as a key feature to describe
the object motion. A selection of experimental tests willgresented, to demonstrate the effectiveness
of the method. Furthermore, a comparison with state-obagroaches will be proposed, referring in

particular to Longest Common Sub-Sequence (LCSS, [17])aambre recent method presented in [22].
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A. General overview of the system

The implementation of an effective trajectory similarityetric requires a few preliminary considera-
tions. The extraction of object trajectories from videoad& typically imprecise due to environmental
noise, segmentation errors, and occlusions: these uirgersatypically produce unreliable tracks con-
taining gaps and misplacements. Moreover, the same spejattory could be associated to different
duration, speed and acceleration patterns. A good repegganand matching strategy should be able to
catch similarities and differences in all these respestsigaing the appropriate weight to each parameter.
According to these considerations, the key idea of the nragcbcheme proposed in this work has been
inspired by the alignment procedure adopted in bio-infdiwsato match genomic sequences [23] [24],
also referred to as inexact or approximate matching. Treetmitques do not provide a hard matching (i.e.,
point by point as in DTW), since they rely on modifications loé tedit-distance [19]. The edit-distance is
based on the combination of elementary operations, suckletiah, insertion and substitution, together
with the assignment of specific scores to each of them. Thigggitams can be applied on different
scales, and in Fig. 1 an example is shown where two differextitining results are obtained over the same
pair of genetic sequences considering the global and Idicgnaent, respectively. The global alignment
determines the score corresponding to the matching resailt the whole sequence, while the local
alignment calculates the score considering the most sirmsilasequence.

input HEAGAWGHEEAHGEGAE
string PAWHEAEHE

Global alignment Local alignment
HEAGAWGHEEAHGEGAE AWGHEEAH
—=I=1l=1=11=-=1-11l FI=1T11]
--P-AW-H-EA--E-HE AW-HEAEH

Fig. 1. Global and local alignments of a pair of DNA sequences

Accordingly, we propose to segment the track in syntacémelnts that represent significant substrings
of the original trajectory which are used as basic symbola sfring representation. The structure of the
symbols has been arranged according to a set of rules thateeasflexible representation, as we will
discuss in the following sections. The string-based rapriedions are then aligned according the above
strategies. An overview of the processing flow is shown in Rigraw trajectories are pre-processed to
detect the spatio-temporal discontinuities, thus idgimiif a reduced set of meaningful trajectory segments.

The concatenation of the obtained segments can thus be edgarbe an approximation of the original
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trajectory. The quantization of each segment in terms afation, velocity and time, lets mapping each
level into a symbol, selected from a pre-defined codebooknTthe matching between two trajectories
can be expressed as the cost of aligning the correspondingssbf symbols. The major advantages of

this representation and the matching strategy we propasebe summarized in two main points:

« reduction in the complexity of representation and matctaind capability of considering the invari-

ance to scale, rotation, temporal or spatial shifts;

« temporal and spatial features jointly contribute to therscealculation, thus leading to a more

accurate alignment, able to detect similarities on botibal@nd local level.

Additionally, we highlight the capability of building theysbol stringon-the-fly thus making it possible
to analyze the sequence and to evaluate the matching scogalitime, even if the complete trajectory
is not available yet. The nature of the edit-distance tunmsto be effective also in tackling the local
noise; in fact, the best match is found when coupling closal®js and discarding the outliers, which
are handled at the syntactic level. An outlier in the trajectmay generate a very brief sequence of

wrong symbols (1-2) associated to gaps in the alignmentgs®¢dashed lines in Fig. 1).

Video N Video Object | | Trajectory
Acquisition Tracking pre-processing

'

—

Trajectories Syntactic Symbol

BN
Matching
Score

Fig. 2. Application flowchart.

[1l. THE PROPOSED APPROACH

In this section we describe the proposed trajectory reptaen and matching algorithm. We would
like to point out that video object tracking is beyond themeof this paper. We therefore adopted a state
of art methodology. The trajectories we use consist of tlogeption of the objectsentroidon the floor,
which represent the top-view of the object displacementim énvironment. The tracking module we
used is based on [25] for the background suppression stdgje, thie tracking algorithm uses a proximity
criteria to detect adjacent blobs across frames based anctbler appearance and distance. Since this

would result in an inaccurate discrimination of objectshie presence of occlusions, we adopted a stereo

August 7, 2009 DRAFT



camera to derive the depth information, through which itésgible to project the blobs on the ground
floor and merge them accordingly. Analogous results can hairgddl by using multicamera systems.
Fig. 3 shows an example of a moving object detection and theegponding top-view trajectory:(— z

plane), where the coordinate (0,0) refers to the camerdiposi

x[m]

Fig. 3. Object tracking and top-view trajectory.

A. Trajectory segmentation and characterization

Starting from the raw trajectory extracted by the tracker,oa-line filtering is applied in order to
identify the spatio-temporal discontinuities in the patajeéctory pre-processing in Fig. 2). The input of
the pre-processor unit is:

T, = {x;'-,z;,tjh j=0..N 1)

wherea:;'. and z; determine the top-view position of theth tracked object at the timg; as shown
in Fig. 3, andN is the number of trajectory samplefo detect sharp velocity discontinuities in the
object motion, and in particular stops/re-start events,abordinates of the obje¢t;, 2 ) are evaluated
in the time window(t, tx+;]. If the object position does not change within the seleciex tinterval,
Pl = (xi,zi,t) is marked as demporal breakpointSince thecentroid of the object is subjected to
small position variations due to noise, a guard area of sadiproportional to the object size, is used to
check the stop condition [26]. Considering an indoor scéme characteristics of human motion, and an
acquisition rate of 25 samples per second, in our tests wéhseatadiusp in the range[0.5, 1] meters,
and a time framé in the range[50, 75] frames (equivalent to 2-3 sec).

As far as the spatial analysis is concerned, two separateguoes are implemented (Fig. 4). The former
detects sharp direction variations by analyzing a tempeiadlow of three consecutive samples: the cur-

rent pointP; (zi, 2, t) and two previous observatio® , (z |, 2% ;,tx—1) andP_,(zi_o.yi 5, tk—2).
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The interpolating lines;,_; (z) andry(z) are then calculated, being the lines passing thraBgh-P;_,
and P{_,-Pi:
Te—1(T) = Mp_17 + qr—1 2)
k() = mET + gk 3)
wherem_1 andm, represent the slope of the lines connecting the two poimidgga ; andg; are the
corresponding offsets.

Then, the angles, (Fig. 4(a)), is calculated according to (4) and it is companéth a predefined

thresholdg,,: if the angle exceeds the thresholg, is marked as apatial breakpoint

1| Mg—1 — Mg
G = tan by _em? R

(4)

1 —mp_1my

Fig. 4. (a) Local variation angle and (b) cumulative vadas leading to a significant direction change.

The above criterion (derivative) cannot detect cumulativanges in direction generated by successive
small variations, (Fig. 4(b)). An integrative criterionshbeen therefore implemented to calculate the area

~ subtended by the trajectory, starting from the last bremitpg to the current sample:
1 & S , _
Vk-g) =5 D [+ hgs) ([ Ropr = By])] (5)
a=k—g
In (5), h, is the Euclidean distance between the current samipland the liner that connects,
(last breakpoint) withP}(current sample);RfI is the projection of the samplé’(j on r. Again, if the
resulting areay(,_, 1) exceeds a given threshold;{), the sampleP’} is marked as a spatial breakpoint

(filled dots in Fig. 4(b)). The choice of the two thresholglg and~,, will be analyzed in the Section
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IV based on the evaluation of the accuracy of the system ort afdeaining sequences. As a rule of
thumb, we can state that, determines the reactivity to local variations, whilg affects the sensitivity
to long-term deviations. Since pedestrians tend in gerteratalk along smooth trajectories, the most

important threshold is usualby,,.

B. Key points symbolic mapping

The above described spatio-temporal analysis identifidsamof breakpoints$3!, (beingm = 1...M
the number of detected breakpoints for thth object), along the original trajectory. Each pair of
successive breakpoints identifies a rectilinear segmignt B, < B., ., that approximates a portion
of the original path. Accordingly, the approximated trageg can be represented (and reconstructed) by
an appropriate description of the segment ch@f),} : m = 1... M — 1. In this representation, each
segmentS?, is characterized by its orientatiafi,, its velocity v?,, and the relevant temporal interval
Aty

The above parameters are determined as follows: directiondairation are calculated with respect
to the previous segment (6) (7), while speed is computed @detigth of the segment divided by its

duration (8).

0 = B (6)

AZL/m = tm—tm-1 (7)
i (B}, B

Uy = (Tm) (8)

3t is calculated according to (4) iR’,; t,,_1 andt,, are the absolute time references corresponding to
B! | andB},, respectively, and(a, b) is the Euclidean distance. The approximated trajectorgrigion

for the i-th object is then given by (9):

TF = {0 vl Aty m=1..M 9)

my Um?

This representation is inherently invariant to rotatior aranslation and fulfills several requirements.
In fact, only the coordinates and orientation of the firstrsegt refer to an absolute positioning, then
this information can be easily discarded to achieve invaeato translation and orientation. Similarly, if
the temporal discontinuities of the trajectory are notvatd, stops can be removed by simply dropping
samples with null speed. As it can be noticed, these featli@s performing different types of matching
such as, for instance, identifying trajectories with samgjeometry but different speed, or detecting similar

behaviors (e.g.zig-zagmoving patterns) in different locations of the room.
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TABLE |

QUANTIZATION LEVELS.

‘ Variable ‘ Range ‘ Quantization Level#
O, [~180° + 180°] 0o ... 011
Um, [0 vimaz) v ... U3
At 10 o0] TO ... T3

The last step to achieve a complete syntactic represemtatiosists in mapping each segment into
symbols. This can be obtained by properly quantizing theupaters{d:, ,v: , At,,}, in order to make
the symbols enumerable. Sintlee application we addresa our tests is people tracking in indoor
environments, owing to the limited speed and typical movasef the target, we quantized the direction
0., in 12 non-uniform levels, while speed and time component& Hzeen quantized in 4 levels (see
Table I). The choice of the values associated to each leeetliacussed in Section IV.

Fig. 5 shows a time-space diagram, in which the original &edréconstructed trajectories are plotted.

Markers represent the breakpoints detected by the segtioenggorithm.

6
4
2
0

Fig. 5. Path segmentation.

C. Trajectory alignment and matching

The goal of the syntactic matching engine is to find the bdghalent among strings that represent
different trajectories, and to calculate the correspogdimilarity score. Depending on the application,
the trajectories to be matched can be part of a pre-definebase (e.g., knowledge-based behavioral

analysis), queries sketched by the user (e.g., conteetbaisleo retrieval), or actions automatically
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learned by the system (e.g., behavior classification anshaatic detection of anomalous events). Thanks
to the syntactic representation of the object paths, th@gs®ed matching procedure is very fast and
efficient, similarly to what text processors do in detectanmgl correcting errors.

The alignment algorithm we present in this paper relies ensibrcalled edit-distance. Basically, the
difference between two strings of symbols is measured asnihenum-cost set of elementary actions
(i.e., insertion, deletion and substitution) required rensform one sequence into the other. To achieve
this goal, a cost (weight) is associated to each operatioarding to its relevance in the transformation.
This makes it possible to assign different weights to défertypes of actions (e.g., a substitution can
have higher impact than a deletion) and to the symbols imgblw the action. The association of an
operation to a weight is achieved by using a substitutiorriméte. a look-up-table). The total cost of the
transformation is the sum of the single weights. The editesice has been chosen against other metrics
because of its flexibility, and in particular the possigilaf easily adapting the matching to different
application requirements. In fact, any kind of matchingercén be implemented by properly adjusting the
substitution matrix. Another significant advantage of tekested approach is the capability of operating
on-the-fly i.e., processing the samples as soon as they are acqused.the specific implementation, we
introduce a modified version of the theory presented in [2®] 4]. The concept we apply is similar,
in the sense that we assign a score to each symbols pair: dherhthe score, the better the matching
(equal symbols receive maximum score). The best globalhimgds the one that maximizes the global
score. The identification of the most suitable substitutiwatrix is application-dependenfor instance,
the entries in the matrix employed in [23] (DNA sequencegratient) are defined on the basis of the
biological similarity among amino-acids (A, T, G, C). Thagaiment procedure adopted in this work
provides the simultaneous matching in three different domjanamely space, speed, and time. Since
these three parameters have different impact on the majcthia score is calculated starting from three
separate substitution matrices, one for each parametrtham adding the single scores to achieve the
overall substitution cost.

As far as the substitution matrices are concerned, we pedvede a simple example that can explain
the rationale behind the choice of the entriest us assume that a trajectory is described through five
symbols: move forwardf), slight turn right §t,.), slight turn left &t;), sharp turn right §¢,.), and sharp
turn left (St;). While performing the matching, it is likely that the codtsmbstitutingf with st,. is larger
than the cost of substituting with St,, since a slight turn is more similar to a straight path tham to
sharp turn. The cost of substitution pait,-St; should be clearly even larger. Time and speed parameters

behave a little differently, since they have theoreticallyupper bound. In this case, we assume that the
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score drops down to zero, once exceeding a given distana@mingethat the two symbols are no more
correlated. It has to be pointed out that the tuning of therices has an important semantic impact:
for instance, if speed should be ignored in the matching,ctireesponding matrix will have the same
value for all entries, thus becoming irrelevant in the corigma phase. Section IV provides a detailed
explanation of our experimental setup, together with dctxamples of matrix configurations. Given
the matrices, the alignment procedure can be describedllas/ido Let us take two generic strings of
symbols, A and B, of lengthiv, and N, respectively. A two-dimensional array, commonly callEd

matrix, is created with dimensioN 4 x Np. The F' matrix is iteratively filled by assigning to each entry
F(i,7) the score of the optimum alignment between the symbols ofgs&k and string B, according to

the following algorithm:

F(0,0) = 0
F(O,j) = w= j
F(i,0) = w* |

foreach (i,j)
F(i,j) = max(F(i-1,j-1)+S(A(i),B(j)),
F(i,j-1)+w,
F(i-1,))+w)

whereS(A(i), B(j)) represents the function that calculates (for example) tlemt@tion score between
A(i) = {6:;} and B(j) = {6;}.

At the end of the process, the last enffy N4, Np) returns the best global alignment between the
two strings. Successively, a trace-back procedure alleiveving the sequence of elementary operations
that lead to the specific alignment (i.e., the best path toagk ito F'(0, 0)).

The calculation of theF” matrix is the most computationally expensive phase: dyogmagramming
technigues have been introduced to reach a good trade-witba space and time complexities. In our
solution the running time and the used memoryigm), even though more efficient implementations
can lead to significant reductions in complexity.

The adopted cost function is expressed in (10) and (11):

Ui ) = Qgdp | by oy B
(i,5) = s + O + 0 with ag + ar + o, =1 (11)

where oy, oy, and «,, are the feature weighting coefficient9y, Q:, @Q,, are normalization factors
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corresponding to the maximum score associated to eachréeatnddy, 6, andd, are global scores for
each single feature, obtained by applying the substitutiatrices. As the alignment algorithm proceeds,
the temporary score is normalized over the whole numberashehtary operations required to align the
substrings. It is to be noticed that (10) and (11) provide dhabal alignment without considering the
initial rotation and translation. In order to retrieve thiesalute direction and position and use them as

inputs to the alignment algorithms, two additional parare¥,,,; and ¥4, need to be considered:

I @)
Viir = g (13)
T = Fps(1,1) (14)
R= Fyr(1,1) (15)

Qpos and Qg represent again normalization factors (the maximum scoreriitial direction and
translation alignment, respectively), whilE and R correspond to the score for initial position and
direction variations, respectively’ and R are calculated using appropriate substitution matrices th
specifically match the first point of the trajectory.

Finally, the final spatio-temporal matching is achieved bgnbining (12), (13), (14), (15) in a weighted
sum, as in (16).

\Ijglobal(Naa Nb) = w\II(Nav Nb)+
wpos\llpos"i_ (16)

Vair ¥ dir
where again) + V05 + Yair = 1.

According to the application requirements, the roto-tlatien parameters can be appropriately weighted.
In the specific case wherg,,; = ¥4, = 0, only the general shape of the trajectory is considered, no
matter its absolute positioning and orientation.

As far as the score functiofi( A, B) is concerned, we have imposed a non-linear distributioe. Sidore
evaluation is performed using the recursive function regabin (17) that calculates the score between two
symbolsA(i) and B(j), wherei andj are the symbol quantization levels. Through this represgiemt it
is possible to fill the matrix entries for each feature. Asentpd, the highest values are along the main

diagonal, gradually decreasing as soon as the distanceebetgymbols increases, in a cyclic fashion.

S(A(@), B(5)) = 5(i,4) = S(i,j = 1) + |i = j| (17)
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The above weight assignment produces symmetric matriogbas the cost of inverting a symbol pair

is equivalent in the two directions.

IV. EXPERIMENTAL RESULTS

The proposed strategy has been tested in an indoor envirdnosng a standard PC connected to a
stereo camera. The tests concerned human activity morgtofihe acquired trajectories refer to a 2D
top-view of the person motion as detected by the tracker, the location of the person with respect
to the floor of the observed roorio validate the proposed method we adopted two differerd dats.
The first data setMMIab) refers to relatively simple trajectories where the starpoint is common for
all sequences. It is composed by 112 tracks divided in 6 réiffeactions and including 35 anomalous
paths. The environment used for testing is shown in Fig. &(al)the set of trajectories is reported in Fig.
7(a). A second data sedpplication Lal) refers to more complex trajectories acquired in an expemiad
smart environment, dedicated to develop technologiesdsisted living. The laboratory is fully equipped
with furniture, in order to simulate real moving patternsresponding to typical activities (e.g., move
from the sofa to the kitchen, bring an object and take it backhe sofa). In this case the set includes
100 trajectories grouped into 4 different clusters (see &) and Fig. 7(b)) and including 42 anomalous
paths. In both figures the coordinates (0,0) refer to the camesition and the coordinates of the points
always refer to ther — z plane, namely, the top-view of the room. The two sets of adounsapaths

are shown in Fig. 8. Experiments required the proper setup of the parametedsjraparticular the

(a) (b)

Fig. 6. Snapshots of the environments used for validation.

thresholds for trajectory segmentatids anticipated in Section IlI-A, spatial and temporal threlsls are
chosen in order to maximize the accuracy of the classifioatfoactivities. To this purpose, a prototype
is defined for each class as the cluster medoid (i.e., thewitthaverage minimum distance from all the

others in the same cluster) and the patterns are classifeenidicg to the minimum distance prototype.
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4 35

(a) (b)

Fig. 7. (a) Known actions for MMLab and (b) Application Labtaasets.

(a) (b)

Fig. 8. (a) Anomalous paths for MMLab and (b) Application Ldhta sets.

In the application domain we address, it can be observed libatans tend to perform smooth
trajectories instead of abrupt sharp turns within smalletimindows. Therefore, we have studied the
performance of the segmentation scheme by varyingfor a fixed 3;;, = 30 degrees and selected the
value, which returned the highest classification accuramythis purpose we employed the first data set.
Results are plotted in Fig. 9 and report the accuracy in texfirecall and precision at different values
of v, the former corresponding to the average true positive rakdle the latter being TP/(TP+FP),
where TP and FP are the numbers of true and false positivgsectvely.In our scenarios, in order to

discriminate among different actions, the resulting thadd is very small and it basically imposes to
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fragment the trajectory in segments of around half metechQufine segmentation is due to the specific
geometry of the environment, which does not impose any cainsin movementynlike for example in
vehicular applications, where cars move along specificctions), and the detection of specific actions

must be carried out with a finer granularity.
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I I I I I I I
0 0.005 0.01 0.015 002 0025 003 0035 0.04 [M?]

Fig. 9. Performance vsy, variation

The correct setup of the parameters for spatial segmentaticlearly the most significant, since they
refer to the geometrical displacement of the object in trenscthe choice of the temporal thresholds is
instead more arbitrary. In our experiments an object is idened stopped if it€entroid remains within
the same guard area (of radips= 0.3m), for at least 2 seconds.

To determine the symbols, and referring to the direction,adepted a non-uniform quantization for
a better description of small direction variations. Thisaiseasonable assumption, considering that in
normal walking, sharp direction changes are more unlikeig. 10 sketches the adopted quantization
scheme where the bold arrow refers to the incoming direclitve deviation with respect to the outgoing
sector is depicted with increasing gray levels. Each lev¢hén associated to the corresponding symbol
(see table in Fig. 10 (b)).

As far as speed is concerned, and referring to Table I, ore l@s been reserved for the null velocity
(stop), while the last level covers the range frogup to v,,.:, Which specifies the maximum possible
velocity. Since no maximum value can be foreseen, the leveséd to discriminate velocities that exceed
5 km/h. A similar approach is applied to time, where the maximlevel is set for temporal intervals
exceeding the stop threshold (2 seconds in our case). Teetseélsymbols for speed and time &g, R,

S, T} and{W, X, Y, Z}, respectively. According to the functiosi(-) of (17), the resulting substitution
matrices are shown in Fig. 11. Again, different scenaricshsas vehicular applications would require

appropriate settings (for instance much higher velocitgghold). It is to be pointed out, however, that
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range Associated
[degree]

150: -150
-150: -60

-35:-20
-20:-10
-10:-25
-25:25
25:10
10:20
20:35
35:60
60:150

]
ﬂOZZI—IOTIUﬂCD>§

Fig. 10. (a) Quantization levels for direction and (b) theresponding symbols.

the selection of parameters used for human targets provéx teery robust across different tests in

different environmental situations as shown in the follogviresults.

ABCDFGHLMNOP QRS T
AI2,1L, 9, 5 0,0 0, 0, 0, 5 9 11 Q12 7, 2 0
B11,12,11, 9. 5 0, 0. 0, 0, 0, 5 9 R 7,12, 7, 2
C 911,12,11, 9.5 0, 0, 0, 0. 0, 5 S 2 7,12, 7
D 5 911,12,11, 9, 5 0, 0, 0, 0, 0 T O 2 712
F 0 5 91112711, 9. 5 0 0, 0, 0
G 0 0 5 911,12,11, 9. 5 0 0 0 (b)

H OO0 O 5 911,12211, 9 5 0, 0

L 0 0 0 0 5 911,12,11, 9, 5 0 WXy 2z

MO 0 0 0 0 5 911,12.11, 9 5 W12, 7, 2, 0

N 50 0 0 0 0 5 911,12,11, 9 X 7.12, 7. 2

09 5 0 0 0 0 0 5 911,12,11 Y 20712 7

P11, 9 5 0, 0 0, 0 0, 5 9, 11,12 Z 0 2 7.12
(a) ()

Fig. 11. (a) Direction, (b) speed, and (c) time substitutioatrices.

We present hereafter a selection of results to demonstrateapability of the system to identify simi-
larities among trajectories, with different spatio-temgdaonfigurations enabling/disabling the invariance
to rotation and translatiorin the first set of tests we compare two paths that are: (i)lainm space but
denoting minor differences in time (T1, Fig. 12-a); (i) slan in space but with remarkable differences
in time (T2, Fig. 12-b); (iii) significantly different in bbtspace and time (T3, Fig. 12-c). In particular,
comparing T1 and T2 it is possible to notice that the exeoubiothe same path at different speed results
in a compression of the graph in the time axis.

The results obtained by applying equations (10) and (11ljegrerted in Table Il in terms of normalized
score in space, space-speed and full space-temporal damespectively. The scores are obtained by
setting different weights in (11) as shown in Table Ill. Theafi values are normalized with respect to

the total number of elementary operations required to feamsone symbolic string into the other.
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Fig. 12. Sample trajectories with different space (leftyl dime (right) characteristics: (a) similar paths in botlatid and

temporal domain; (b) remarkable differences in time; (ehaekable differences in space and time.

TABLE Il

MATCHING SCORES IN DIFFERENT SPATIETEMPORAL CONFIGURATIONS

Trajectories ‘ Space‘ Space-Spee41 Spatio-Temp.

Reference vs T1] 0.88 0.76 0.75
Reference vs T4 0.88 0.57 0.54
Reference vs T3 0.55 0.36 0.4
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TABLE 1lI

WEIGHTS ASSOCIATED TO DIFFERENT MATCHING SCHEMES

Space 1 0 0
Space-speed 0.5 | 0.5 0
Spatio-temp.| 0.33 | 0.33 | 0.33

The second set of tests aims at demonstrating the effeetgeof the described method while con-
sidering global rotation and/or translation. To this pugoa random path (purple) has been selected as
reference and compared with equally shaped paths that @iff¢i) initial direction (Fig. 13-a), and (i)

initial position (Fig. 13-b). Numerical scores are repdrie Table IV and Table V.

T T T T T T T T
—&— TARGET

B SHIFT 1
r —— SHIFT2
5 | —=— SHIFT3
e
L o ©
L b

S
L

T

(@) (b)

Fig. 13. (a) Copies of same paths with different initial dtrens, and (b) different locations.

TABLE IV

MATCHING SCORES FOR ROTATION INVARIANCE

‘ \Ildzr

\Ilglobal

TARGET vs ROT1| 0.91 0.96
TARGET vs ROT2| O 0.5
TARGET vs ROT3| 0.41 0

In this last part of the section, we present the results &eli®y processing the two data sets with the
objective of detecting anomalies. The setup of the expeariseeflects the same parameters configuration
adopted to derive the best segmentation thresholds, aaieeglin the first part of this section. In this

case, after finding the best match with the available clasisesnatching score is evaluated. If it exceeds
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MATCHING SCORES FOR TRANSLATION INVARIANCE
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‘ Woos | Ygiobal ‘
TARGET vs SHIFT1| 0.2 0.6
TARGET vs SHIFT2| 0.2 0.6
TARGET vs SHIFT3| 0.8 0.9

a given threshold (set to 70% in our tests) the trajectorysgimed to belong to the cluster; otherwise

the path is tagged as anomalous.
We compared the performances of our method with two diffeseate-of-art algorithms. The first is the

one in [17] and refers to a common metric for sequence commpasiusing the Longest Common Sub-

Sequence. The second method is the one in [22], due to théhtacit shares some common principles
with our work. It is to be noted that our technique does notirega uniform sampling of the points as
required by the other two methods. Furthermore, it explthitstemporal information as a critical data
for trajectory segmentation and matching.

TABLE VI
PERFORMANCE COMPARISONS FOR PATHS IN THMML AB DATA SET.

‘ ‘ method in [17] | method in [22]| proposed methoc’

Recall 0.97 0.92 1
Precision 0.69 0.72 0.78
Accuracy 0.79 0.82 0.87

TABLE VII

PERFORMANCE COMPARISONS FOR PATHS IN THAPPLICATION LAB DATA SET.

‘ ‘ method in [17] | method in [22]| proposed method

August 7, 2009

Recall 0.94 0.91 0.97
Precision 0.67 0.69 0.83
Accuracy 0.75 0.76 0.88
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In Table VI and Table VII we report the numerical results ai¢a from the two data sets and applying
the three methods. Again, the evaluation parameters expare Recall and Precision. Additionally, being
the anomaly detection a binary classification problem, wewshlso the Accuracy, defined as (TP +
TN)/(TP + TN + FP + FN). As it can be observed, the proposed method performs in gdmettar than
the competitors. In particular, the improvements in terrhaacuracy are of 8% and 5% with respect to
[17] and [22] in theMMLab data set. For more complex trajectoriédgpplication Lab), the improvements

are more consistent: 13% and 12%.

V. CONCLUSIONS

In this paper we presented a new approach to perform syntaetiching of trajectories, as a basis for
applications such as activity detection, event analysisoatent-based video retrieval. Starting from the
acquisition of the path in the — z plane, the meaningful spatio-temporal discontinuities identified.
Trajectory segments are then quantized and converted ymit@s corresponding to the variations in
terms of direction, speed, and time, with respect to theipusvsample. The resulting syntax is used
to compare different trajectories, adopting a bio-ingpia@proximate matching algorithm based on the
so-callededit-distance Experimental validation concerned the analysis of humalk watterns in indoor
environments. Results confirm the good performance of thihadein dealing with different data sets,
and its flexibility in managing the invariance to translatiand rotation. Moreover, the comparison with

state of art approaches of the same class showed a signifiesfotmance enhancement.
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