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Abstract

The various time-frequency (TF) representations of acoustic signals share the common

objective to describe the temporal evolution of the spectral content of the signal i.e., how

the energy, or intensity, of the signal is changing in time. Many TF representations have

been proposed in the past, and among them the short-time Fourier transform (STFT)

is the one most commonly found in the core of acoustic signal processing techniques.

However, certain problems that arise from the use of the STFT have been extensively

discussed in the literature. These problems concern the unavoidable trade-off between

the time and frequency resolution, and the fact that the selected resolution is fixed over

the whole spectrum.

In order to improve upon the spectrogram, several variations have been proposed over

the time. One of these variations, stems from a promising method called reassignment.

According to this method, the traditional spectrogram, as obtained from the STFT, is

reassigned to a sharper representation called the Reassigned Spectrogram (RS). In this

thesis we elaborate on approaches that utilize the RS as the TF representation of acoustic

signals, and we exploit this representation in the context of different applications, as for

instance speech recognition and melody extraction.

The first contribution of this work is a method for speech parametrization, which re-

sults in a set of acoustic features called time-frequency reassigned cepstral coefficients

(TFRCC). Experimental results show the ability of TFRCC features to present higher

level characteristics of speech, a fact that leads to advantages in phone-level speech seg-

mentation and speech recognition. The second contribution is the use of the RS as the

basis to extract objective quality measures, and in particular the reassigned cepstral dis-

tance and the reassigned point-wise distance. Both measures are used for channel selection

(CS), following our proposal to perform objective quality measure based CS for improving

the accuracy of speech recognition in a multi-microphone reverberant environment. The

final contribution of this work, is a method to detect harmonic pitch contours from singing

voice signals, using a dominance weighting of the RS. This method has been exploited in

the context of melody extraction from polyphonic music signals.

Keywords

Time-frequency reassignment, reassigned spectrogram, speech recognition, objective qual-

ity measures, channel selection, melody extraction
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Chapter 1

Introduction

Sound is an important source of information for humans, and one of the most intuitive

forms of communication among them. In an era characterized by a complete automation

and a wide range of affordable personal electronic devices, which provide constant access

to services such as the internet of things and cloud computing, users demand a satisfying

machine understanding of sounds. In an example scenario, a user would be able to use

voice commands in order to access and organize a huge, untagged collection of music

according to a certain criterion, such as the artist or the genre. A viable solution for

this scenario comprises, among other parts, a robust speech recognizer and a content-

based music information retrieval module. Over the last years, several steps towards

these directions have been made, fuelled by extensive scientific activities in the area of

acoustic signal processing. However, there are still many open challenges and limitations

in addressing the user expectations for quality, mobility and functionality in a wide range

of audio, or voiced based, applications.

This thesis is concerned with signal processing topics that aim at extending the cur-

rent state-of-the-art in audio based solutions, and in particular speech and singing voice

applications.

1.1 Time-frequency representations

One of the most important tools in analysing and understanding acoustic signals in an

automatic way is the Fourier analysis, which allows the decomposition of acoustic signals

into the individual frequencies they are composed of, and establishes the relative intensi-

ties of these frequency components. Although Fourier analysis is undeniably a powerful

tool for audio signal processing, it has an important limitation, since it does not provide

meaningful temporal information on the occurrence of the various frequency components.

Most real life acoustic signals are non-stationary, which means that their frequency com-
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ponents are changing over time. For example, if we Fourier-analyse a 2-minute song, the

obtained energy density spectrum will not give us any information of the various distinct

notes that compose the piece, nor of their temporal arrangement.

In the above example, if we split the song into many consecutive short slices, each

comprising a single note, the Fourier analysis of each slice and the concatenation of the

results would enable an easy identification of each note. This is the main idea behind

the short-time Fourier transform (STFT) and its graphic representation called spectro-

gram [Koenig et al., 1946, Potter et al., 1947]. Since its invention, and with the various

subsequent developments on it [Allen and Rabiner, 1977, Dziewonski et al., 1969], the

spectrogram lies in the core of the vast majority of acoustic signal processing techniques,

being the standard analysis tool for non-stationary signals. It provides a description of the

temporal evolution of the frequency components of the signal, i.e., it is a time-frequency

representation of the input acoustic signal [Cohen, 1989, 1995, Flandrin et al., 2013].

Although it is the most well-known time-frequency representation, the spectrogram is

not the only valid approach. Alternative representations derive from other methods to

map the energy, or the intensity, of an acoustic signal in the time and frequency domains

simultaneously, thus describing the evolution of the spectral content of the signal.

In this thesis we study one of these time-frequency representations called the RS, which

is obtained by the method of time-frequency reassignment of the traditional spectrogram.

Although this method is relatively old and can be traced back to [Kodera et al., 1976],

it has not been extensively studied in the literature. The particularly sharp description

of the various spectral components and their evolution, as offered by the RS, can lead

to improvements in systems designed to understand, and further process the spectral

components of acoustic signals.

1.2 Speech and singing voice processing

Acoustic signal processing has numerous, and increasingly important applications, includ-

ing speech recognition, music signal analysis, seismic data analysis, fetal imaging through

sonograms, and radar based tracking. In this work we focus on applications that are

concerned with the analysis and understanding of human voice, and in particular in two

of the most common modes of it, i.e., speech and singing. The acoustic signals created by

the human voice production system are very complex, and highly informative signals, and

human communication is principally accomplished through them. Speakers and singers

send messages, which encode specific ideas, are transmitted through a certain communi-

cation channel, are often mixed, on purpose or not, with secondary acoustic signals, and

are finally received and decoded by a listener. Each of these stages is critical to the quality
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and effectiveness of the communication process, as well as the successful conveyance of

the encoded message. First, the physical characteristics of the speaker (or signer), the

mood they are in and even their cultural background influence the acoustic signal at its

source. During the transmission, factors such as other acoustic signal sources (noise),

reflections on surfaces (reverberation) and even the medium (air, phone) shape and, most

often, degrade the quality of the speech signal. Particularly in singing, the acoustic signal

is consistently mixed with additional signals, i.e., background music generated by various

musical instruments. Finally, at the side of the listener the perception and decoding are

further affected by physiological and psychological responses of humans to sound, often

called psychoacoustics.

In addition to this complex communication process, the nature of the signal itself

introduces further challenges to the automatic machine understanding of human voice.

Human voice has a very rich structure, which is determined by the voice organ and, more

specifically the collaboration of three main parts: the lungs, the vocal folds (or chords),

and the articulators. When the lungs produce an adequate airflow the vocal folds vibrate

creating an audible sound source, which can be fine tuned to a certain frequency from the

muscles of the larynx. Alternatively, during unvoiced sounds the vocal folds do not vibrate

and a noise like audible source signal is produced. In any case, the various articulators

filter the source, and in these two steps the voice production system is capable of producing

a highly sophisticated array of sounds, entirely unique for each individual.

When observed simultaneously in the time-frequency domain, speech signals can be

viewed as a combination of melody, harmony and rhythm [Fulop, 2011]. The goal of the

majority of systems that perform speech signal analysis is to make sense of one or more of

these three attributes, while simultaneously decoding the message carried by voice signals,

and minimizing variabilities attributed to the encoding and transmission processes. Time-

frequency analysis, i.e., the study of various time-frequency representations of the speech

and singing voice signals, is essential for achieving these goals, as it facilitates the detection

and full description of melody, harmony, and rhythm.

1.3 Motivation

Over the last years we observed a rapid development in high tech industry, which keeps

producing affordable electronic devices, with ever increasing computing power and stor-

age capabilities. These tremendous technological advances resulted in a huge demand

for intuitive, voice-based interaction, whether it is for hands-free control of devices, for

enhanced quality of living, or for entertainment.

One of the application groups, which pre-existed the technological growth of the last
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years but gained further industrial and scientific interest because of it, is related to speech

analysis and understanding. Systems such as automatic speech recognition (ASR), speech

synthesis, speaker recognition, speaker diarisation fall in this category. The relevance

and scientific interest of these directions is further supported by extensive evaluation

campaigns and industrial solutions. Directly related to ASR, which is perhaps the most

popular of the mentioned systems, some examples of such evaluation campaigns are the

CHiME-3 [Barker et al., 2015], REVERB [Kinoshita et al., 2013], ASpIRE [Harper, 2015]

and ACE [Eaton et al., 2016] challenges. Concerning industrial solutions we can mention

the Google API1, the Alexa Voice Service from Amazon2, the speech recognition API

offered by Apple3 and the Custom Speech Services from Microsoft4.

On the other hand, numerous systems are concerned with the automatic analysis,

synthesis and understanding of singing voice. Popular examples here are the various

query-by-singing/humming systems, that perform content-based search in huge music

collections, as for instance the Shazam5 and SoundHound6 services. Singing voice syn-

thesis is also gaining popularity as indicated by the various voice synthesizers, such as

the VOCALOID7 and the Cantor8. Regarding the research activities in this area, the

increased interest in singing voice is also indicated by the increasing amount of related

tasks within the Music Information Retrieval Evaluation eXchange (MIREX)9 evaluation

campaign, which is a community based framework setting the research directions in the

area of music analysis.

Given this great demand for methods that improve voice based applications and de-

liver excellent results in applications as the ones mentioned above, we contribute to this

direction by exploring how the RS can improve the representation and automatic analysis

of human voice signals, in particular speech and singing voice.

1.4 Scope of the thesis

The scope of this thesis is to explore the RS, and to exploit this representation in the

context of acoustic signal processing applications, that are concerned with the analysis

and understanding of speech and singing voice. Various aspects complicate this study, as

for instance the noisy nature of the RS, the particularly rich structure of human voice

signals, and the complex communication process that delivers the signal to a listener. To
1http://cloud.google.com/speech/
2http://developer.amazon.com/alexa-voice-service/
3http://developer.apple.com/reference/speech/
4https://cris.ai/
5http://www.shazam.com
6http://www.soundhound.com/
7http://www.vocaloid.com/en/
8http://virsyn.com/en/E_Home/e_home.html
9http://www.music-ir.org/mirex/wiki/MIREX_HOME

4

http://cloud.google.com/speech/
http://developer.amazon.com/alexa-voice-service/
http://developer.apple.com/reference/speech/
http://www.shazam.com
 http://www.soundhound.com/
http://www.vocaloid.com/en/
http://virsyn.com/en/E_Home/e_home.html
http://www.music-ir.org/mirex/wiki/MIREX_HOME


1.4. Scope of the thesis Chapter 1. Introduction

address all these, we study the behaviour of the RS under diverse acoustic conditions,

and we investigate possible ways to further improve this time-frequency representation,

according to the goals of specific applications. The findings and insights acquired by

this study are applied in order to propose concrete solutions that can be reused within

the context of different applications. Specifically, these solutions fall in three categories,

which are briefly introduced in the following.

(i) Acoustic feature extraction is the process of extracting sets of descriptors that rep-

resent specific properties of acoustic signals. Opposite to transformations, e.g. the

Fourier transform, the feature extraction aims, first, at representing higher level

characteristics and, second, at significantly reducing the signal dimensionality. Par-

ticularly in speech recognition and related applications feature extraction is a method

to compress information for a successive effective statistical modelling of the feature

vectors.

(ii) Objective speech quality measures are designed to predict the overall quality of a

given speech signal. Initially, these measures were introduced in the speech coding

community in order to evaluate the distortions introduced by speech codecs. Later,

objective speech quality measures were used in early speech recognition systems,

and for evaluation purposes in systems concerned with speech enhancement, noise

reduction and dereverberation. Similar measures have been introduced for music and

audio coding.

(iii) Pitch contour extraction refers to the detailed description of the harmonic content

of speech, or singing voice. Generally speaking, pitch is a very important perceptual

quality of sound that makes listeners able to order a given sound in a frequency

related scale, as “lower” or “higher”. Pitch contours can be exploited in a wide

range of applications, such as pitch detection algorithm (PDA), melody extraction,

and music transcription.

The evaluation of the proposed solutions in the above areas, is performed with their

inclusion in real applications and, in particular, the following.

(i) Speech segmentation, or speech alignment, refers to the segmentation and labelling

of speech into its building blocks, i.e., phonemes. This process was traditionally

performed manually, but it is a time consuming and error-prone activity. The high

demand for accurate and fast speech segmentation, for instance for the initialization

of speech recognizers and the evaluation of the performance of speech recognizers,

led to the design of automatic methods.
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(ii) ASR refers to the process of converting spoken utterances into textual form. State-

of-the-art ASR systems achieve excellent results under the constraint that the speech

signal is recorded in a quiet environment, by microphones used in close proximity

to the speaker mouth. Results start deteriorating quickly when we introduce some

noise, or some distance between the speaker and the microphone.

(iii) Channel selection (CS) is a method that has been exploited in order to improve

speech recognition performance in certain challenging scenarios, i.e., when the speaker

is located far from the microphone, and the acquired signal is degraded by various

environmental factors. This scenario is commonly referred to as distant speech recog-

nition (DSR) and a common group of solutions suggests, among other steps, to use

signals recorded by multiple microphones and exploit the overlapping information

they provide. In CS this is achieved by a comparison of the different signals, and the

selection of the one that it is assumed to lead to the best recognition results.

(iv) Melody extraction is the task of estimating and tracking the fundamental frequency

(f0) of the main melodic instrument playing in a piece of music. A complete melody

extraction system must detect the regions where the main melody is active, as op-

posed to the regions that the corresponding instrument stopped playing, and then

provide a detailed temporal tracking of the frequency of this melody. This task

in usually complicated due to the multiple instruments playing simultaneously in

polyphonic music.

Summarizing, the main goals of this thesis are:

• To provide a comprehensive overview of the RS, and discuss its limitations.

• To suggest mechanisms to exploit the RS, for analysing and understanding speech

and singing voice.

• To incorporate the proposed methods in final applications.

• To perform detailed evaluations and study the behaviour of the proposed techniques,

with the use of various data sets and variable acoustic conditions.

1.5 Contributions

The specific contributions of this Ph.D. thesis comprise:

• A comprehensive literature review in various topics of interest, including, but not

limited to, time-frequency representations, acoustic feature extraction and objective

signal quality evaluation.
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• A comprehensive discussion of the RS and its use for acoustic signal processing. The

characteristics of the RS are experimentally demonstrated, and this is done under

different acoustic conditions.

• A new reassigned front-end module for speech feature extraction, applied on speech

segmentation and speech recognition. The proposed set of acoustic features is studied

under different acoustic conditions and their properties are demonstrated.

• A new set of reassigned objective signal quality measures, which are exploited for

the characterization of reverberant conditions.

• A new CS method, based on traditional and reassigned cepstral distance (CD)s. This

represents part of a common work with Cristina Guerrero [Guerrero, 2016].

• A new pitch contour extraction method. The use of the RS enables a fine tracking

of the harmonic components of the input signals, both in time and in frequency

domains. The pitch contour extraction method is applied for melody extraction

from polyphonic music signals.

• The dissemination of the proposed methods and related results:

Georgina Tryfou, Marco Pellin and Maurizio Omologo. Time-frequency reassigned

cepstral coefficients for phone-level speech segmentation. In Proceedings of the 22nd

IEEE European Signal Processing Conference (EUSIPCO), 2014

Cristina Guerrero, Georgina Tryfou and Maurizio Omologo. Channel selection for

distant speech recognition exploiting cepstral distance. In Proceedings of the An-

nual Conference of the International Speech Communication Association (INTER-

SPEECH), 2016.

Cristina Guerrero, Georgina Tryfou and Maurizio Omologo. On the Use of Ob-

jective Signal Quality Measures for Channel Selection in Distant Speech Recognition.

Submitted for publication in “Computer, Speech and Language” Journal, on Novem-

ber 9th 2016. Submitted revised manuscript on May 2nd 2017.

Georgina Tryfou and Maurizio Omologo. A reassigned based singing voice pitch con-

tour extraction method. In Proceedings of the 42nd IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), 2017.

Georgina Tryfou and Maurizio Omologo. A reassigned front-end for speech recogni-

tion. Submitted in 25th IEEE European Signal Processing Conference (EUSIPCO),
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2017.

In addition, the following paper has been submitted for publication with a negative

result: Georgina Tryfou and Maurizio Omologo. A reassignment-based melody line ex-

traction system for polyphonic music. Submitted in Transactions on Audio, Speech and

Language Processing, May 2015.

1.6 Thesis outline

The remainder of this thesis is organized as follows. In Chapter 2 we review various

fundamental signal processing topics. The first part of the chapter is concerned with

different acoustic signal representations, such as the waveform, the spectrum and various

time-frequency representations. In the second part, we present details for the production

and the characteristics of human voice, as well as differences between speech and singing

voice. Following this, we overview the area of feature extraction from speech signals.

Finally, we discuss the effects of certain acoustic conditions, in particular reverberation

and music, in speech and singing voice signals.

In Chapter 3 we recall the theory behind the RS, and discuss the strengths and the

limitations of this representation. We overview the most important implementation details

and review the main applications within which RS has been exploited so far. Following

this, we propose two different representations, built upon the RS, namely the reassigned

cepstrum and the dominance reassigned spectrogram (DRS).

Chapter 4 is concerned with the use of the time-frequency reassigned cepstral coef-

ficients (TFRCC) in speech segmentation and speech recognition. First, we summarize

existing strategies in the fields of speech segmentation, ASR and DSR. After this, we de-

scribe the details of the proposed TFRCC feature set and, finally, we present experimental

results from the use of these features in various contexts.

In Chapter 5, we investigate the RS as the time-frequency representation upon which

objective speech signal quality measures are computed. After the review of state-of-

the-art measures, which are extensively used for speech quality estimation, we propose

reassigned alternatives. The remaining of the chapter is focused on the study of the various

characteristics of objective speech quality measures, reassigned and not, particularly in

relation to distortions introduced due to reverberation.

In Chapter 6, we exploit a subset of the signal quality measures discussed in the

previous chapter, and in particular the CD and the reassigned CD (RCD)) in the context of

CS for improving the recognition performance in a multi-microphone DSR system. First,

we overview the literature in what concerns multi-microphone DSR and CS approaches.

Then we discuss the details of the proposed CS method. Finally, we present experimental
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activities that exploit different corpora and DSR configurations.

The last contribution of this work, namely the extraction of harmonic pitch contours

that describe the frequency components of singing voice, is presented in Chapter 7. We

provide related work in the areas of pitch and melody extraction and, then, we describe

the extraction of melodic contours from the DRS representation. Finally, various experi-

mental activities study the ability of the proposed method to describe the melodic line of

polyphonic music signals.

In Chapter 8 we summarize the contents of this work, we point out the main contri-

butions and we draw our conclusions. Future directions of this research are envisioned

before concluding this thesis.
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Chapter 2

Acoustic signal processing

In this chapter we review the basic concepts of acoustic signal processing. First, in

Section 2.1 we discuss the various signal representations widely used as a basis to perform

further processing. In Section 2.2 the main characteristics of human voice, in speaking

and singing modes are presented. In Section 2.3 some background in speech feature

extraction is presented, along with details on the processing steps for the extraction of

the most commonly used sets. The various acoustic environments that can complicate a

simple scenario of speech or singing voice processing are overviewed in Section 2.4.

2.1 Signal representations

2.1.1 The waveform

Formally, a sound wave is a succession of different pressure levels which travels through

a propagation medium, such as the air. It is created by a vibrating object, for instance

the string of a musical instrument, and manifests by making other objects, for example

the human eardrum, vibrate.

The simpler signal that acoustic signal processing may be concerned with is a sinusoid

wave with a single frequency component, which is commonly called a pure tone. The

waveform that represents a sinusoidal function of time t is given by

x(t) = α sin(ωt+ φ) , (2.1)

where α is the maximum amplitude, ω is the angular frequency in radians per time unit,

and φ is the phase angle with respect to the time origin, in radians. The amplitude α of the

wave corresponds to the maximum air pressure deviation from the ambient atmospheric

pressure caused by the propagation of this wave. The phase φ is the relative displacement

of the sine wave from the origin of the axis. A positive phase shifts the sine waveform to
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the left introducing an advance, and a negative phase shifts the waveform to the right,

introducing a delay or lag, with a time shift equal to φ/ω seconds.

Commonly, the angular frequency is replaced by the cyclical as follows

x(t) = α sin(2πft+ φ) , (2.2)

where f is the frequency, defined as the number of times that a full cycle is repeated in a

second. It is measured in cycles per second, or Hertz. The period T is the inverse of the

frequency i.e., T = 1/f = 2π/ω, and it is measured in seconds, indicating the duration of

a full oscillation of the sinusoid signal. In the above simple case, the sine wave comprises

a single frequency. More generally a complex waveform is represented by a sum of N

components, as follows

x(t) =
N∑
n=1

αn sin(2πfnt+ φn) , (2.3)

where αn, fn and φn are the amplitude, frequency and phase of the n − th component,

respectively. In such a complex wave, the greatest common divisor of the frequencies fn is

called fundamental frequency, or f0. A complex waveform can be expressed as an infinite

sum of pure tones, called partials or harmonics, with frequencies at integer multiples of

the fundamental frequency

x(t) =
N∑
n=1

αn sin(2πnf0t+ φn) . (2.4)

A notion that is closely related to the fundamental frequency, and particularly the per-

ceptual aspects of it, is the pitch, often described as how high or low a sound is. The

pitch of a complex tone is related to the pitch of a sinusoidal tone of the same f0, but

it is influenced by other factors, such as the timbre. More details on the notion of pitch,

and other related topics are given in Chapter 7.

2.1.2 The power spectrum

The power spectrum is a representation of the distribution of energy of a waveform among

the various frequency components. According to Fourier analysis, any “well-behaved”

periodic signal can be decomposed into an infinite set of sines and cosines of discrete

frequencies, called Fourier series. When we pass from periodic to nonperiodic functions,

the Fourier series become the well known Fourier transform. For a continuous waveform
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the Fourier transform is given by

X(ω) =

∫ ∞
−∞

x(t)e−jωtdt . (2.5)

In practice we normally deal with sampled, real valued discrete signals, which we denote

x(n), where n is the discrete time. The corresponding discrete Fourier transform (DFT)

is given by

X(ω) =
∞∑

n=−∞

x(n)e−jωndn . (2.6)

Both the continuous and the discrete Fourier transforms map the signal from the time to

the frequency domain. The obtained representation is complex valued, and decomposes

the signal into the frequencies that make it up. From the Fourier transform, the power

spectrum is defined as P (ω) = |X(ω)|2

The Fourier transform has a long list of interesting properties. First, it is a linear

operation, i.e., the complex spectrum of the sum of two signals is equal to the sum of

their spectra. Linear operations performed in the time (or frequency) domain have corre-

sponding operations in the frequency (or time) domain, which can be easier to perform.

For instance, according to the convolution theorem, the Fourier transform maps the con-

volution operation between two signals into the point-wise product of their spectra. This

means that a linear time-invariant system, such as a filter applied to a signal can be

expressed as a multiplication operation in the frequency domain.

In the discrete case, the Shannon theorem states that the Fourier transform is mean-

ingful for frequencies lower than fN = fs/2, where fs is the sampling frequency. The

maximum allowed frequency fN is called Nyquist frequency. Another aspect in the dis-

crete case concerns the complexity of its implementation. The direct calculation of the

sum in (2.6) requires N2 complex multiplications and N(N−1) complex additions. This is

drastically reduced by the Fast Fourier transform (FFT) algorithm, which performs only

(N/2)log2(N) complex multiplications for the calculation of the same complex spectrum.

Problems of the waveform and the power spectrum

Let us consider a simple acoustic signal, for example a short owl hoot. Figure 2.1a shows

how the amplitude of this signal changes over time, and Figure 2.1b shows the various

frequency components of the signal in the magnitude spectrum. In the power spectrum,

we can see high energy concentration around certain frequencies, which can be related

to three frequency components. Although this is already a lot more from what we can

deduce from the waveform, both of these representations are insufficient for a complete

analysis of the hoot signal. An important reason for this is the fact that, in the creation of
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(b) Frequency representation of the same owl hoot

Figure 2.1: A short owl hoot represented in the time (a) and the frequency (b) domains.

the power spectrum, the phase has been discarded. As mentioned, phase is important in

specifying the time-delay of a tone or in other words, in describing when each frequency

component takes place.

The analysis and understanding of nonstationary signals demands more information

than what is present in the waveform and the power spectrum. In the owl example, we

would be interested to know how are the frequencies distributed in time; do the three

frequency components appear sequentially in the three short phrases that can be seen in

the waveform, or each phrase is a sum of more than one frequencies? In the latter case, it

would also be important to know the extent to which each frequency component affects

the final sum, i.e., the relative intensity of each component.

2.1.3 The spectrogram

The main idea of the STFT is to analyse the nonstationary signals in short, consecutive

segments, within which it can be assumed that their content does not change significantly.

Instead of performing Fourier analysis one time over the whole excerpt, we can select to
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Figure 2.2: The power spectrogram of the owl hoot introduced earlier. The color is a representation of
the magnitude of the energy in each time-frequency point, as shown in the color bar on the right.

cut it into many pieces, and concatenate the output of the Fourier analysis of each of

these segments into a new representation. This visual representation of this process,

called spectrogram, is three dimensional and assigns a certain energy, or intensity value

for each point in time and in frequency. As shown in Figure 2.2, for the owl example, the

spectrogram offers more information than the waveform and the power spectrum, as for

instance how each frequency component evolves over time.

Here, it is useful to give more details in the notion of framing. The frames are portions

of the signal, and are widely used in signal processing. They are created at specific time

instants, with the process of windowing. Windowing aims at limiting the analysis scope

of a method to a short duration, at which the signal can be considered stationary, i.e., its

properties do not change rapidly in relation to time. A frame of the signal x(t) centred

at the time instant t0 is computed as follows

xht0(t) = x(t)h(t0 − t) , (2.7)

where h(t) is a window function, which can be, among other, Gaussian, Hamming, Han-

ning, or rectangular (although not commonly used) and typical frame durations for acous-

tic signals vary from 20ms to 100ms.

From the framed signal, the STFT is built as the Fourier transform of the successive

frames

STFT hx (t, f) =

∫ ∞
−∞

x(τ)h(t− τ)e−j2πfτdτ (2.8)

= M(t, ω)ejφ(t,ω) , (2.9)
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where M(t, ω) is the magnitude of the STFT and φ(t, ω) its phase. The spectrogram is

then defined as the squared magnitude of the STFT

Swx (t, f) = |STFTwx (t, f)|2 . (2.10)

In general, the spectrogram is converted to decibels (dB) using the formula

Swx,dB(t, f) = 10 log10 S
w
x (t, f) , (2.11)

in order to alter the dynamics and make them appropriate for visualization purposes.

Due to the simplicity of its construction and interpretation, the spectrogram is the most

widely used method to analyse non-stationary signals and, in many cases, the obtained

representation clearly shows the structure and evolution of the signal.

However, the spectrogram can be problematic. First, as indicated by (2.10), it com-

pletely discards the phase, as in general, the information in the short-time phase spectrum

is difficult to interpret. Nevertheless the short-time phase spectrum is known to contain

important temporal information about the signal, and has been used for instance to im-

prove frequency estimates of quasi-harmonic sounds [Dolson, 1986] and in the sinusoidal

model which is largely based on the phase spectrum for the reconstruction of analysed sig-

nals [McAulay and Quatieri, 1986]. Second, the spectrogram suffers from the well-known

trade-off between the temporal and frequency resolutions.

The uncertainty principle As discussed, the STFT can be viewed as the Fourier transform

of a signal framed with an analysis window h(t). In this case its temporal resolution,

i.e., the ability to distinguish two successive events is limited by the duration ∆th of the

analysis window. However, (2.9) can also be written as a function of the frequency domain

of the signal, as follows

STFT hx (t, f) =

∫ ∞
−∞

X(v)H(v − f)ej2π(v−f)tdv. (2.12)

In this case, the STFT can be interpreted as the output of a band-pass filter, in which

case the frequency resolution , i.e., the ability to distinguish between two closely located

frequencies, is limited by the bandwidth ∆fh of the filter H(f). The quantities ∆th and

∆fh are linked by the Heisenberg-Gabor uncertainty principle, according to which the

more concentrated a time function is, the more spread its Fourier transform must be, and

vice versa. Although the notion of uncertainty mainly refers to a property of quantum

mechanics, it can also be stated in terms of harmonic analysis as in [Folland and Sitaram,

1997]: “A nonzero function and its Fourier transform cannot both be sharply localized.”
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Figure 2.3: The time representation of the real part of an analytic signal (top) and the spectrogram of
the same signal (bottom) calculated with three different analysis window lengths Nh.

Following Gabor’s definition given in [Gabor, 1946]

∆th∆fh ≥
1

4π
. (2.13)

Therefore, it is not possible to obtain simultaneously a very good temporal and a very

good frequency resolution. This limitation is demonstrated in Figure 2.3, where we can

observe that, according to the choice of the analysis window length, either the time

(shorter windows) or the frequency (longer windows) localization of each component is

improved.

2.1.4 Time-frequency representations

The motivation to analyse human speech in a systematic way led in the mid 40s to the

introduction of the spectrogram [Koenig et al., 1946, Potter et al., 1947]. At the same

time, works such as those of [Gabor, 1946], [de Ville et al., 1948] and [Page, 1952] led

to alternative methods of analysing the spectra of time varying signals. The main idea

behind all these works was always the same, i.e., the derivation of a combined time-

frequency representation, which shows the behaviour of a signal in both domains. Such

a representation can be achieved by a time-frequency distribution (TFD), that describes
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the temporal evolution of the various signal components. TFDs are ideal tools to dissect,

analyse and interpret complex signals whose spectral content is time-varying [Cohen,

1989]. In addition, methods that relate the time and frequency distributions facilitate the

synthesis of signals that follow certain desirable attributes.

Before a deeper discussion on TFDs some related notions should be defined. First,

a term that we used several times so far without a proper definition, and of critical

importance in the study, and particularly the evaluation of TFDs, is the component. A

component is a concentration of energy in either the time, the frequency or the time-

frequency domains [Baraniuk et al., 2001, Cohen, 1992, Williams et al., 1991]. Pointing

back to Figure 2.1, we can see for example 4 components comprising the waveform of the

acoustic signal, and 3 components comprising its power spectrum. In the spectrogram of

the same signalFigure 2.2, we can see multiple components appearing in different time-

frequency regions. Therefore, it is relevant to notice that the representation used affects

the visualization of the components that comprise a signal.

In the ideal case, a time-frequency representation should clearly represent the instan-

taneous frequency (IF) spectrum of each signal component. As already discussed, the

frequency of a sinusoidal signal is defined as the number of cycles completed within one

time unit. Although this is a well defined quantity for stationary pure tones, in practice

signals are non stationary and the notion of frequency does not account for the time-

varying nature of the signal. The IF of a signal is a concept created to address this

limitation, and it defines the location of the spectral peak of a mono-component signal,

as this varies with time [Boashash, 1992]. Other definitions for the IF can be found in

the literature, as for instance in [Carson and Fry, 1937, Van der Pol, 1946] where IF of

a component is defined as the rate of change of the component’s phase angle at time t.

Here, we assume the definition presented in [de Ville et al., 1948] according to which the

IF of a signal s(t) = a(t) cosφ(t) is given by

fi(t) =
1

2π

∂

∂t
argz(t) (2.14)

where z(t) is an analytic signal built as

z(t) = s(t) + jH[s(t)] (2.15)

H[s(t)] is the Hilbert transform1 of s(t). The complex spectrum of the analytic signal,

given by

Z(f) = A(f)ejθ(f) , (2.16)

1The Hilbert transform [Hildebrand, 1949] is a linear operation commonly used to obtain the analytic representation of
a signal. It can be thought of as the convolution of the signal with the function h(t) = 1/(πt).
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is used for the definition of the group delay (GD), as follows

τg(f) = − 1

2π
θ(f) . (2.17)

The GD represents the time delay, as a function of the frequency, of an impulse passing

through a linear filter with impulse response h(t) = s(t). GD is an interesting attribute,

as the function τg(f) describes the localization of the various components of the signal in

the time domain. In the ideal case, the two notions defined above, i.e., the IF and the

GD pave the way for the definition of a time-frequency representation, since they enable a

complete characterization of a signal by its IF at a given time, or the main time at which

a frequency appears. Such theoretical representations however, that localize the energy

at the points (t, fi(t)), or (f, τg(f)), are not of practical use since they do not extend in

the case that a signal is a sum of several components localized at the same time or the

same frequency.

Of central importance in the field of time-frequency representations is the Wigner-Ville

distribution (WVD) [de Ville et al., 1948, Wigner, 1932]. Two main reasons contribute

to this, first the fact that the WVD is a highly concentrated distribution in time and

frequency, which means that it shows exactly the IF of a frequency modulated sinusoid,

i.e., a linear chirp. This is in fact related to the second reason of its importance, which

is that the WVD only depends on the signal and it is not affected by the choice of an

analysis window. The WVD has, by definition, a better resolution than the spectrogram:

Wx(t, ω) =

∫ +∞

−∞
x(t+ s/2)x∗(t− s/2)e−jωsds . (2.18)

This definition can be interpreted as the STFT of a signal using the analysis window

h(t) = x(−t), i.e., the time-reversed version of the analysed signal [Flandrin, 1998].

However, the difficulty in physically interpreting the often negative values of the WVD

output makes the WVD having very little practical use. Furthermore, the WVD is prone

to noise and generates cross-components that can even mask components of interest,

in multi-component signals. Such masking components, which are oscillatory in nature

could be reduced with low-pass smoothing. Of course, such a smoothing spreads out the

perfectly localized components of the WVD. A class of such smoothed WVD is defined in

[Cohen, 1995], as bilinear time-frequency representations

Cx(t, ω) =

∫ ∫
Wx(τ, ν)Φ(τ − t, ν − ω)dτdν , (2.19)

where Φ(t, ω) is a smoothing kernel designed to suppress noise and cross-components.The

spectrogram can be viewed as a member of the Cohen’s class of distributions, with the
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Figure 2.4: Wigner-Ville distribution (left) and spectrogram (right) of a signal that comprises four com-
ponents, each with Gaussian amplitude and linear frequency modulation.

WVD of the window function h(t) used to smooth the WVD of the signal [Flandrin, 1998]

Shx(t, ω) =

∫ ∫ +∞

−∞
Wx(τ, ν)Wh(τ − t, ν − ω)

dτdν

2π
. (2.20)

The above smoothing means that the spectrogram values do not express the energy at

a certain point (t, ω) of the time-frequency plane. Instead, each point results from the

summation across a whole distribution of values. The obtained sum is assigned to the

geometric center of the time-frequency domain.

Evaluation of TFDs In Figure 2.4 the WVD and the spectrogram of the same multicom-

ponent signal are presented. It can be observed that the WVD localizes the components

much better than the spectrogram, but it introduces six additional cross-components. The

spectrogram on the other hand does not present any interference, but the auto-components

have a much worse localization.

From this illustration it becomes evident that the adequacy of a TFD to represent

a particular signal relates to (i) the suppression of TFD cross-components, (ii) the con-

centration and resolution of autocomponents, and (iii) separation of signal components,

such as parallel chirps, that overlap in both time and frequency. Measures that have been

used for the evaluation of TFDs include mainly moment-based measures, for instance the

time-frequency bandwidth [Boashash and Sucic, 2003], measures of information stemming

from probability theory [Sang and Williams, 1995, Williams et al., 1991], and paramet-

ric decomposition techniques [Orr, 1991]. Classical moment-based measures though have

been criticised for not really measuring signal complexity and information content, as in a
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commonly used example of a signal that comprises two components of compact support,

such measures constantly increase when the separation of the components increase, while

the signal complexity does not. On the other hand, measures borrowed from probability

theory are more promising. The analogy between TFDs and the probability densities

makes the classical Shannon entropy [Shannon, 2001] a very good candidate to mea-

sure the amount of information encoded in a signal, as this information is represented

by the TFDs. Using the same signal, and changing its time-frequency representation, a

peaky representation that has only a small number of components will result in lower

entropy values, compared to the diffuse and more complex, due to the appearance of

cross-components, representations. Nevertheless, the negative values that can appear in

most of the time-frequency representations prohibit the use of the Shannon entropy. This

problem was sidestepped in [Williams et al., 1991], where the generalized Rènyi entropy

[Rényi et al., 1961] was employed for the evaluation of TFDs. The Rènyi entropy of order

α is defined as

Ra =
1

1− α
log2

L∑
l=−L

K∑
k=−K

[Cx(l, k)]α , (2.21)

where Cx(l, k) is a time-frequency representation. It has been shown that better TFDs

are those with smaller uncertainty measure [Baraniuk et al., 2001, Sang and Williams,

1995], often calculated for α = 3. As an example, the Rènyi entropies of the spectrogram

presented in Figure 2.3 are, from left to right, 10.62, 10.08 and 10.49 bits respectively. For

the Figure 2.4, the WVD corresponds to 11.57 bits, and the spectrogram to 10.08 bits.

2.2 Human voice

“Human voice” is the result of a series of sounds, created by a human using the voice

production organs, in order to speak, sing, laugh and more. The automatic analysis and

understanding of human voice is of interest in a wide range of applications. In this thesis,

we are particularly interested in speech recognition, i.e., the automatic understanding

of the content of speech, and in singing voice melody extraction, i.e., the automatic

identification of the predominant frequency of a singing voice. However there is a very

long list of other voice related applications such as speaker identification, forensic analysis,

emotion recognition, speech/singing synthesis, to mention only a few.

2.2.1 Voice production

A schematic diagram of speech production is presented in Figure 2.5. From the compo-

nents shown there, the voice organs comprise the lungs, the larynx, the pharynx, the nose
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Figure 2.5: Schematic representation of the voice production mechanism, based on [Flanagan et al., 1970]

and the mouth cavities [Sundberg et al., 1977]. The first part of the voice organ, the

lungs, are responsible to power the voice production apparatus with air. The vocal folds

are thin membranes which can be controlled by a complex structure of muscles [Orlikoff

and Kahane, 1996], and are located in the bottom end on the larynx. The tube-like larynx

leads to a wider cavity, called the pharynx, which in turn leads to the mouth cavity. At

the top end of the pharynx, the velum is the “door” to the last part of the voice organ, the

nasal cavity. The larynx, pharynx and mouth cavity form the vocal tract. The role of the

vocal tract is to “shape” the produced sound, a process done with a series or articulators:

the larynx, the lips, the jaw, and the tongue.

Once the intention to produce voice has been transmitted by the brain to the voice

organs, the lungs expand in order to produce an excess of air pressure. This process is

called breathing. The air passes through the trachea and encounters the vocal folds. The

next step of speech production, called phonation, is to convert the air pressure coming form

the lungs into raw audible sound, which is called voice source. There are several types

of phonation [Fulop, 2011] and in the most common one, called voicing the produced

sound is a quasi-periodic wave. During voicing, in preparation to produce sound the

vocal folds are adducted. The positive air pressure from the lungs forces them to open

momentarily, but the Bernoulli effect brings them back together. This sets the folds into

a self-sustaining oscillation, i.e., they open and close periodically. The rate at which the

vocal folds open and close determines the fundamental frequency of the voice. As shown

in Figure 2.6, the f0 of speech is affected by the gender and the age of the speaker. In

singing voice these ranges vary much more, as discussed in the next section.

Although most of the content in speech as well as in singing demands voiced phonation,

aperiodic or transient sounds are also needed. These type of phonations are produced

when the air passes through the open vocal folds.

At the next step of speech production the vocal tract, and in case the nasal cavity,
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Figure 2.6: f0 ranges for different genders and age groups. Infants’ f0 has been measured as high as
1000Hz, while a 10 year old child typically has an f0 around 400Hz.

shapes the produced raw sound wave. The frequencies at which the vocal tract resonates

the voice source are called formants. In practice, the uniformly slopping spectrum of the

voice source is disrupted, and peaks are imposed at the frequencies of the formants, as

shown in Figure 2.7. This shaping of the envelope of the voice spectrum is what results

in distinguishable sounds. The particular frequencies at which the formants appear are

characteristic of each sound. For example, the vowel /ae/, as in the word bat is associated

with formant frequencies at 660Hz, 1720Hz and 2410Hz. The formants of the /oo/ vowel as

in boot are in the frequencies 300Hz, 870Hz and 2240Hz. These frequencies are determined

by the shape of the vocal tract, which can change in a rather complicated way in order

to shift the formant frequencies. The jaw, the body of the tongue and the tip of the

tongue are the main articulators that facilitate this change. Each configuration of these

corresponds to a set of formant frequencies, which in turn is associated to a specific sound.

The “source-filter” model From the above description of voice production process, and

a view similar to the one depicted in the right part of Figure 2.7 the well known“source-

filter” model [Fant, 1971, Joos, 1948] has been inspired. According to this, a speech signal

x(n) is created when a sound wave is filtered through the vocal apparatus, as follows

x(n) = v(n) ? p(n) , (2.22)

where v(n) is the impulse response of the filter related to the vocal and nasal tract, and

p(n) is the periodic excitation at the vocal folds, i.e., the source signal. The source sound

wave can be voiced, unvoiced or a combination of the two, according to the mode of the

vocal folds. The source-filter model is a powerful engineering model because it allows

the modelling of speech using only three parameters: the voicing state, the fundamental

frequency (in the case of voiced speech) and the vocal tract parameters [Loizou, 2013].

Even in its simpler form the source-filter model is successfully used for speech/singing

voice synthesis and low-bit-rate speech coding.
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Figure 2.7: Schematic representation of the resonance process.

2.2.2 Singing vs. speech

Speech is the most important means for humans to transmit messages between each

other. In spoken language, the main message that is communicated is the underlying

thought, which turns into phone units, words and eventually spoken sentences. Speech

transmits additional cues about the speaker’s personality, emotions, background, health

and education. On the other hand, singing is the process during which the human voice

is used to produce musical sounds. During singing, apart from the semantic information

of the lyrics, a great part of the conveyed message regards the melody and rhythm of the

song. Similar to speech, information about the background of the singer, the emotional

state and even her musical training is also transmitted through singing. Both singing

and speech are produced by the same process, which means that the two share many

characteristics. Nevertheless, the differences are several and particularly interesting to

discuss.

In terms of pitch, singing voice has a higher average and a wider range. A trained

singer should have a range of about 2 octaves, an excellent may have even up to 3 oc-

taves. In Figure 2.8 typical f0 ranges for different singing styles are presented. In both

cases, i.e., during speech and singing, physiology plays an important role to the produced

pitch, but in speech it is affected unintentionally by the current mood of the speaker,

while in the case of singing voice it is defined by the singer’s training and the range of
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Figure 2.8: Average variations of the f0, for singing voices.

the composed melody. For what concerns loudness, speech has a lower average and more

limited dynamics than singing voice. Furthermore, in singing voice approximately 95%

of the total duration is voiced, as opposed to 60% in speech. In speech the same vowels

will present very similar formant structure among different speakers; in singing it is of-

ten necessary to change the position of the first two formants of the vowels in order to

match the target pitch. In extreme cases, for instance in a soprano voice, this formant

repositioning can cause the vowels to lose their intelligibility. Finally, the vocal training

of professional singers results in a more regular use of the vocal folds, a fact that leads to

differences in the source signals and in the breathing mechanisms.

The way that a singer reproduces syllables, having to manage concurrent changes in

the reproduced notes, adds another important element of difference between singing voice

and speech for what concerns the prosody [Deutsch, 2010, Taylor, 2009]. Opposite to

this description of prosody in singing voice, in the case of speech the term is used to

describe the rhythm and intonation followed by the speaker, which is highly influenced

by the emotional state and the contextual information that ones wants to transfer with a

sentence. Another term used in both cases and describes different phenomena is the term

articulation. In the case of singing voice, articulation refers to the different techniques

that singers may use in order to perform a phrase or a passage, while in speech the term

describes the exact movement of speech organs that produce the different speech sounds.

Apart from the differences between spoken and singing voice signals, in the latter we

observe certain characteristics that are not present in speech. The singer’s formant results

from the need of the singers, particular in classical and concert music, to be audible at a

great distance from the listeners, without using any amplifying system, while an orchestra

is simultaneously playing. Singer’s formants are, in general, created with the grouping

of the higher order formants together. Furthermore, in order to add expressiveness to

an execution, singers often perform effects such as tremolo and vibrato. Tremolo is the
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trembling effect that is created when the amplitude of a sung tone changes following a

certain frequency, and vibrato refers to small fluctuations from the target tone; again

following a certain modulation frequency and amplitude.

2.2.3 Speech sounds

The smallest distinctive units of speech, and singing voice, are called phonemes. Each

language has a distinct set of phonemes, but they can always be categorized based on

the type of the source signal: periodic, noisy, or a combination of the two. Additionally,

they can be categorized in terms of the manner of articulation, for example the place of

the tongue and the degree of construction in the vocal tract. Focusing on the English

language, and in particular the American pronunciation, we can identify a set of about 40

phonemes, which are shown in Table 2.1. The first group, the vowels and glides, are always

voiced and very often bare higher energy than the phonemes of the other groups. The

main cue for the perception and identification of a vowel or a glide are the frequencies

of the formants and in particular the first three. Other interesting characteristics of

vowels, which play an important role in the intelligibility of speech, are the duration and

the formant transitions in the beginning and the end portion of the phoneme [Loizou,

2013]. Among all these sounds, the phonemes /w/, /l/, /r/ and /y/ are called glides, or

semivowels, because despite their vowel-like characteristics are classified as consonants.

For the production of the phonemes in the next group, i.e., the nasals, the velum obstructs

the entrance to the mouth cavity, forcing the air to travel through the nasal cavity. This

elongates the vocal tract, leading to the appearance of lower resonant frequencies, and

low intensities of the formant of higher frequencies. Again, the formant transitions in the

beginning and the end of the nasals are very important for identification.

Opposite to vowels, glides and nasals, the next two groups, i.e., stops and fricatives, are

characterized by more restricted, or even totally obstructed airflow. Stops, or plosives, are

produced in two steps, which are also very important cues for their identification. First, a

complete obstruction of the vocal tract results in a complete silence in the acoustic signal,

called closure. After that, the released air causes a transient noise called aspiration.

Concerning fricatives, the main characteristic of this class is the presence of aperiodic

noise, extending in relatively long region. The intensity of this noise, the shape of their

spectra and the formant transitions in the beginning and the end parts are all important

cues for the intelligibility of the different fricative sounds.
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Class Symbol Word Class Symbol Word
Vowels/ iy beat Nasals m mom
Semivowels ih bit n none

eh bet ng sing
ae bat Stops b bet
aa Bob d dad
er bird g get
ax about p pet
ah but t Tom
ao bought k kite
uw boot Fricatives v vet
uh book dh that
ow boat z zebra
ay buy zh azure
oy boy f five
aw down th thing
ey bait s Sam

Glides w wet sh shoe
l lid jh judge
r red ch chew
y yet h hat

Table 2.1: The phonemes of American English, categorized into 5 broad groups.

2.3 Speech feature extraction

The parametrization of the speech signals, or feature extraction, is designed to discard

information that is considered irrelevant to the addressed task, as for instance the discrim-

ination of the various speech units in speech recognition. In the following we review of

the most interesting aspects of speech feature extraction, and discuss the exact methodol-

ogy for the extraction of the most commonly used parameters, namely the Mel frequency

cepstral coefficients (MFCC)[Davis and Mermelstein, 1980, Mermelstein, 1976] and per-

ceptual linear prediction (PLP) [Hermansky, 1990] coefficients.

2.3.1 Short-time frequency analysis

Short-time frequency analysis has been extensively used in the majority of speech pro-

cessing front-end techniques, since it was first introduced in 1940s [Koenig et al., 1946].

As discussed in Section 2.1.3, the basis of short-time analysis is the framing process. In

front-end methods for speech recognition and related applications, the input signal is

multiplied with an analysis window with a duration 15-40ms (frame size). The selection

of the analysis window length is critical, due to the discussed trade-off between tempo-

ral and frequency resolution, and it is further complicated by the nature of the speech

signals. For instance, during voiced speech the frame must by long enough so that it is
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not affected by the phase of the glottal cycle. Typically, one needs at least two glottal

cycles in each signal frame. However, a very long analysis window blurs impulsive effects,

such as the sudden burst of stop consonants. For every new frame the window is shifted

5-15ms (frame shift). Apart from the duration and shift of the analysis window, the shape

of it is an important attribute, since it defines the spectral characteristics of the analysed

signal. In speech literature, many windowing function have been proposed, as for example

the Hanning, Blackman, Kaiser, and Bartlett windows [Oppenheim and Schafer, 1989].

However, the Hamming window, defined as

h(n) =

0.54− 0.46 cos(2πn
N

), ∀0 ≤ n ≤ N

0, otherwise
(2.23)

is the most commonly used one. After the windowing and segmentation of the speech

signal the mapping to the frequency domain is traditionally done with the use of the

STFT.

2.3.2 The cepstrum

Cepstrum processing was initially introduced for seismic data analysis [Bogert et al., 1963],

and soon after was applied for vocal pitch detection [Noll, 1964]. Since then, cepstrum has

been introduced to speech recognition [Davis and Mermelstein, 1980], speaker verification

[Furui, 1981] and a wide range of other speech analysis applications. In general, cepstrum

can be considered as a distinct transform domain, which results from the inversion of the

frequency domain. This inversion also inspired the name cepstrum, which stems from the

reversal of the first four letters of the word spectrum. Formally, the complex cepstrum is

defined as [Rabiner and Schafer, 1978]

x̂(n) =
1

2π

∫ π

−π
X̂(ejω)ejωndω (2.24)

where X̂(ejω) is the complex valued logarithm of the Fourier transform of the analysed

signal. Usually, the cepstrum is calculated from the magnitude of the complex logarithm

instead:

c(n) =
1

2π

∫ π

−π
|logX(ejω)|ejωndω, (2.25)

which can be shown to be equal to the even part of the complex cepstrum. This is

approximated by computing the inverse DFT of the logarithm of the magnitude of the
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DFT log|.| IDFT c(n)x(n)

w(m-n)

Figure 2.9: The computation steps of the short-time real cepstrum.

DFT of the input signal

c(n) =
1

N

N−1∑
k=0

|logX(k)|ej
2π
N
kn, 0 ≤ n ≤ N − 1. (2.26)

The computation steps of the short-time cepstrum are shown in Figure 2.9.

The further processing of the spectrum before its inversion, leads to the most popular

sets of features for acoustic signals and in particular speech. This can be attributed to

some of the characteristics of the cepstrum, as for instance the different meanings of the

cepstral coefficients based on their order, in particular the low-order coefficients. For

example, the 1st coefficient, often called 0 − th order, represents the average energy of

the input signal. The next value indicates the balance of energy between low and higher

frequencies. A negative value shows that most of the energy is concentrated in the higher

frequencies, indicating the possible presence of a fricative. Positive values on the other

hand, translate in a higher energy concentration in the lower frequencies, as is expected

in the cases of vowels, nasal and other resonant sounds [Deng and O’Shaughnessy, 2003].

Higher order coefficients increase the details of the spectral structure represented in the

cepstrum, but it is a well known fact that beyond the 12 − th order coefficient they do

not increase the accuracy of systems such as speech recognition [Huang et al., 2001].

Another characteristic of the cepstrum, which makes cepstral features particularly

successful in speech modelling, is the possibility to eliminate the effects of the periodic

excitation produced by the vocal chords. This can emphasize the spectral envelope of the

vocal tract, an attribute which is particular helpful in phoneme discrimination. In more

detail, we consider the source-filter model of speech production, as in (2.22). In the log

spectrum domain this is expressed as

logX(ejω) = logV (ejω) + logP (ejω) (2.27)

which then, taking the inverse Fourier tranform is rewritten as

x̂(n) = v̂(n) + p̂(n) . (2.28)
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In [Oppenheim and Schafer, 1989] it is proven that, when p(n) is a periodic excitation

with a period T0, p̂(n) is also periodic with a period N0 = T0
Ts

, where Ts is the sampling

period. This makes p̂(n) non-zero only at the points p̂(kN0), a fact that makes possible

the perfect recovery of v̂(n) from the liftering operation, which is

v̂(n) ≈ x̂(n)l(n) , (2.29)

where

l(n) =

1 ∀0 ≤ n ≤ N0

0 otherwise
(2.30)

In the case of speech, v(n) is the impulse response of the speaker’s vocal tract and p(n) the

periodic vocal chord excitation during voiced speech. (2.29) indicates that the spectral

envelope of the vocal tract can be separated from the periodic excitation of the vocal

chords by discarding the higher order cepstral coefficients.

When cepstral coefficients are used as the basis for speech feature extraction, the

inverse DFT can be replaced by the inverse discrete cosine transform (IDCT) which has

been found to decorrelate the obtained sequence. Another very commonly used alternative

is the calculation of the cepstral coefficients from the linear prediction coefficients (LPC)

an, in a recursive manner as follows

c(n) = an +
n−1∑
k=1

k

n
c(k)an−k 1 ≤ n ≤ p , (2.31)

where p is the order of the LPC analysis. It is noted here that LPC analysis is a powerful

tool in audio and speech signal processing, according to which the spectral envelope of

a signal is represented through the parameters of linear prediction. Detailed reviews of

LPC can be found in [Makhoul, 1973, Markel and Gray, 2013].

2.3.3 Pre-emphasis

The human auditory system perceives loudness in a manner that varies with frequency

[Dirks et al., 1982, Dubno et al., 1984], usually demonstrated as a set of equal-loudness

curves [Ott and Longnecker, 2008]. In order to model the human ear sensitivity, and also

flatten the input signal spectrum for specific purposes, a finite impulse response filter,

called pre-emphasis filter is commonly applied. Its transfer function is given by

Hpre−emphasis(z) = 1 + apre−emphasisz
−1 , (2.32)

30



2.3. Speech feature extraction Chapter 2. Acoustic signal processing

where apre−emphasis is a the pre-emphasis coefficient usually in the range−1 ≤ apre−emphasis ≤
−0.95.

2.3.4 Bark and Mel filter banks

Empirical evidence has shown that recognition performance can be improved if the fre-

quencies are modelled in a manner similar to what is done by the human auditory system.

In particular, the cochlea, inside the inner ear, resolves the spectrum in a non-linear way,

which can be replicated by the use of specially designed filter banks[Huang et al., 2001].

Two commonly used filter banks are implemented in the Bark and Mel frequency scales.

The Bark scale is given by [Zwicker, 1961]

bark(f) = 13 arctan(0.00076f) + 3.5 arctan

((
f

7500

)2
)

. (2.33)

An alternative non-linear scale, which models the pitch perception characteristics of the

auditory system is given by [Stevens and Volkmann, 1937]

mel(f) = 1127.01048 log

(
1 +

f

700

)
. (2.34)

In the context of feature extraction for speech segmentation and recognition non-linear

scales such as the Bark of Mel-scales are usually applied with the use of multiple passband

filters. For instance, the Mel filter-bank is defined by a set of triangular filters, each

averaging the spectral energy around its center frequency.

2.3.5 Derivatives and other transformations

In both PLP and MFCC analysis, as preprocessing for speech recognition, it is a common

practice to extend the feature vectors with their first and second order derivatives, in

order to encode their dynamic properties [Furui, 1981]. This is usually performed with the

application of a simple regression formula, that considers a certain number of neighbouring

values. Finally, the features are very often normalized, for example employing cepstral

mean normalization (CMN), variance normalization or band-pass filtering. Additional

transformations aim at the reduction of the effects caused by environmental conditions, for

example noise and reverberation, and the variabilities that exist among different speakers

[Cohen et al., 1995, Welling et al., 1999].
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Equal loudness
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LP & recursive
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filter-bank Log(.) IDCT
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Figure 2.10: The steps of extracting PLP (top) and MFCC (bottom) features. The dashed arrows indicate
the analogous processing steps.

2.3.6 MFCC and PLP features

As mentioned above, MFCC and PLP are the most popular choices as a front-end for

statistical speech segmentation and recognition systems. PLP features have been reported

to be more robust in cases where a mismatch between the training and the testing material

exists, while MFCC features have been found to perform better under clean and match

conditions [Davis and Mermelstein, 1980, Milner, 2002]. There have been attempts to

combine the most interesting characteristics of the two sets of features [Hönig et al., 2005,

Milner, 2002], showing that the computation method of both can be further improved.

The block diagrams of the extraction steps for the two sets of acoustic features are pre-

sented in Figure 2.10(a). As depicted there, the processing is highly comparable. Both

sets derive from the application of the STFT on the acoustic signal and the computation

of the magnitude of each frequency bin. This results in the complete loss of the phase

information, as well as in a possible loss of accuracy in the power spectrum estimation.

In the case of MFCC, a pre-emphasis filtering is applied on the time-domain. In the case

of PLP, the pre-emphasis takes place in the spectrum domain, according to an equal-

loudness function. The subsequent frequency band analysis comprises the application of

a Mel filter-bank in the MFCC computation and a Bark filter-bank in the PLP computa-

tion. As discussed, both scales, Mel and Bark, are perceptually inspired and in practice

the differences between the resulting filter-banks are negligible. Higher frequencies compo-

nents are emphasised and more filters are allocated for the lower frequencies. Concerning

the intensity law (PLP) and the logarithmic compression (MFCC), both stages model

the non-linear relation between the intensity of the sound and its perceived quality. The

result of the two approaches has again a very similar effect.

In the last step of analysis the two methods differ significantly. MFCC are computed

with the application of the IDCT in the log filter-bank output. Since the filter-banks

are overlapping, the output energies are highly correlated with each other. The IDCT

decorrelates the energies, a very important step for the subsequent use of the features

within a statistical framework.

In PLP analysis the auditory warped filter-bank output is further processed with in-
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verse DFT, a step that yields the autocorrelation function. The values of the autocor-

relation function are needed to compute the parameters of an all-pole LP model, which

approximates the spectral envelope of the signal. It is noted here that the estimated en-

velope has sharp peaks, which are decreased with the intensity loudness power law, which

raises the power spectrum coefficients to the power of 0.33.

2.4 Acoustic conditions

In everyday situations, sounds originate from a variety of sources simultaneously. For

instance, in a very common situation a user is giving voice commands through a micro-

phone, while many people are speaking in the background, a radio is playing some music,

a door opens and closes, a phone is ringing, and cars are passing by outside. Each of the

sources is reflected and attenuated by various surfaces in the environment, such as walls

and furnitures. As a result, the microphone captures a complex mixture of all the sound

sources and multiple attenuated reflections of each. For normal listeners, the problem of

sorting out and making sense of each source, while focusing on the sound of interest, does

not demand a lot of effort. On the contrary, acoustic signal processing systems suffer

a lot from the presence of secondary sound sources, i.e., noise, and various reflections,

i.e., reverberation.

Several methods have been proposed in order to address noise, reverberation, or both.

For instance, certain methods attempt to separate the source of interest from the rest of

the acoustic contents, while other systems attempt to reduce the effects of the acoustic

environment and enhance the quality of the source of interest. In-depth reviews of meth-

ods such as source separation, dereverberation and speech enhancement, can be found in

[Benesty et al., 2005, Naylor and Gaubitch, 2010, Pedersen et al., 2007]. In other appli-

cations, knowledge from the characteristics of the distorted signals can be exploited to

modify the default processing that takes place. An example here is the use of noise-, or

reverberation-robust features in speech recognition performed within noisy and reverber-

ant environments [Benesty et al., 2005].

Overall the acoustic environment, and the characteristics of the various sources, play

an unquestionable role in the design and implementation of such methods. In this section

we discuss reverberation and music, the two main sources of distortion that are faced

when analysing speech and singing voice respectively, and therefore are of great interest

in the work presented in the subsequent sections.
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2.4.1 Reverberation

Reverberation is created when acoustic signals are reproduced in non-anechoic environ-

ments, i.e., enclosures composed of multiple surfaces that reflect sound signals. In such

an enclosure, an emitted signal will reach a listener, or a recording device, through mul-

tiple paths. This results in a deterioration of the quality that characterizes reverberant

signals. Formally, the signal received by the listener will be the sum of many delayed and

attenuated version of the source signal x(t), as follows

x′(t) =
∑
k

akx(t− tk) , (2.35)

where ak is the attenuation, and tk the time delay that corresponds to the k − th sound

reflection, both of which only depend on the characteristic of the acoustic environment.

Therefore, we define the room impulse response (IR) as

r(t) =
∑
k

akδ(t− tk) , (2.36)

where δ(t− tk) is a delayed Dirac function. The signal received by a recording device can

then be described as

x′(t) = r(t) ? x(t) . (2.37)

When a sound travels from one point to another, within an indoor non-anechoic en-

vironment, the IR fully describes the changes that the sound signal undergoes [Kuttruff,

2007]. The estimation of the IR that characterizes a certain acoustic scenario has been

extensively discussed in the literature with various estimation methods, for example the

methods maximum length sequence [Schröder, 1975], linear sine sweep, and exponential

sine sweep [Farina, 2000]. Alternatively, IRs can be created in a synthetic way with a

method known as image method (IM), assuming a shoe-box geometry for a simulated

room [Allen and Berkley, 1979, Peterson, 1986].

A room IR, measured in a real acoustic environment as described in [Ravanelli et al.,

2012], is depicted in Figure 2.11. As shown there the IR can be split in three parts,

each affecting the received signal in a different way [Kuttruff, 2009, Yoshioka et al., 2012].

The first is the direct sound, which is a delayed version of the source signal. After the

arrival of the direct sound, the early reflections are the very first attenuated instances that

arrive for the next 50ms. After that, the late reverberation comprises numerous and very

similar reflections. In general, the early reflections boost the energy of the direct sound

and therefore benefit not only the human auditory system [Litovsky et al., 1999], but also

automatic sound analysis methods. The time delay at which the direct sound arrives only
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Figure 2.11: An IR measured in a real environment, and the three parts it can be divided: direct sound,
early reflections and late reverberation.

depends on the distance between the source and the listener, while the early reflections are

additionally affected by the room characteristics. Late reverberation decays exponentially

with time, and only depends on the room characteristics - it is not affected by the positions

of the sound source and listener. The time required for the late reverberation to decay by

60dB relative to the level of direct sound is called the reverberation time T60, and it is one

of the measures commonly used in order to describe a non-anechoic enclosure in terms of

reverberation [Kuttruff, 2007]. Another parameter that characterized the reverberation

present in a room, and related to the IR is the direct to reverberant ratio (DRR) [Jo

and Koyasu, 1975, Kuttruff, 2009], which is defined as the ratio of the sound energy that

arrives to the listener via the direct path, i.e., the direct sound, over the energy of the

sound that arrives afterwards [Naylor and Gaubitch, 2010].

To offer a better insight for these reverberation parameters, and their relation to dif-

ferent speaker orientations in an enclosure, we create an artificial environment, as the one

depicted in Figure 2.12(a). Using the IM we produce several instances of such an enclo-

sure, for different values of reverberation time (T60). The speaker is located at a distance

2m from the microphone and assumes three different orientations. The synthetic IRs are

used to estimate the DRR2. In Figure 2.12(b) we present the DRR as a function of T60

for three different orientations 0o, 30o and 135o. It is observed that DRR directly relates

to the orientation of the speaker towards the microphone, with more directive cases, as

for example 0o and 30o resulting in higher DRRs. Moreover, there is an inverse relation

between T60 and the corresponding DRR, which is respected in low, average and higher

DRR cases, as the different orientations show.

Both parameters, T60 and DRR can be directly estimated from the IRS [Schröder,

2DRR is estimated from the synthetic IRs with the use of the IR stats toolbox of MATLAB [Zahorik, 2002]
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Figure 2.12: (a) The synthetic room used for calculating the relation between DRR and T60. The speaker
is positioned in P and assumes 3 different orientations. (b) DRR as a function of T60. T60 values range
from 0.2sec to 0.9sec which are reasonable for a domestic environment.

1965, Zahorik, 2002] with different approaches, for instance they can be estimated in the

full-band or in predefined frequency, since the effect of reverberation is not uniform in the

frequency spectrum, e.g., some frequencies are attenuated more than others. Nowadays,

different systems are available to derive T60 estimates, either in full-band or in sub-bands,

starting from a synthetic or from a measured IR. As discussed in [Cabrera et al., 2016],

a good agreement between these estimates is generally found, if the IR is characterized

by a regular decay curve and low enough noise floor. On the other hand, an accurate

estimation of DRR from an IR is a more difficult task, especially in the case of measured

IR, due to the uncertainty in deriving the energy of the direct-path [Naylor and Gaubitch,

2010].

Of course, these tasks become much more challenging in real situations in which IRs are

not available. Although different approaches have been proposed to estimate the afore-

mentioned parameters blindly [Ratnam et al., 2003], the results are still not satisfactory,

particularly for the estimation of DRR. More details on state-of-the-art techniques in this

field can be found in [Eaton et al., 2016] that is related to the recent ACE challenge. We

believe that improvements in multi-microphone based DSR can also be achieved taking

into consideration reverberation parameters as blind DRR.

The effects of reverberation on a speech and a singing voice signal are illustrated in

Figure 2.13. Through the spectrogram of the clean and the reverberant version of each

signal, the discrepancies between the two become evident. First, we observe a temporal

smearing due to reverberation, as for instance the boundaries of phonemes are much

more difficult to locate in the second spectrogram. In addition, we can see the harmonic

components in the reverberant signal being “extended” and affecting the spectrogram

longer than in the clean version.
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Figure 2.13: The spectrogram of a clean speech utterance (top) and the spectrogram of the same ut-
terance, impinged with reverberation (bottom). The reverberation corresponds to an environment with
T60 = 0.9sec. The uttered sentence is “Chrysler reduced some prices on Friday”.

2.4.2 Music

Music is built from sets of sounds, which are generated concurrently by different sources,

and in particular, various musical instruments. The musical instruments, and the pro-

duced musical sounds are categorized into harmonic and percussive. The most fundamen-

tal characteristics of a musical sound highly depend on the category it belongs to.

Harmonic sounds are characterized in a great extent by the presence of pitch, which

is a very important perceptual quality, with several different definitions in the literature.

We follow the one found in [Hartmann, 1996, Klapuri and Davy, 2006]: “pitch is defined

as the frequency of a sine wave that is matched to the target sound by human listeners”.

Pitch is related to the fundamental frequency of the target sound but they do not coincide,

since pitch is affected by the tones that appear at frequencies approximately equal to the

multiple integers of the fundamental frequency, also called harmonics. Another perceived

quality of harmonic music signals is the loudness, according to which sounds can be

ordered on a scale from quiet to loud. The physical property of the acoustic signals, that

the loudness relates to, is the dynamic range, but psychoacoustics play an important role

in its perception [Plack and Carlyon, 1995], as the ear has a non-linear response to sounds

of different intensity. Finally, timbre is the perceptual attribute that can characterize a

sound, and make it distinct from another of the same pitch and loudness [Handel, 1995].

Often referred to as the “colour” of a sound, timbre is affected by the energy distribution in
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the frequency domain, as well as the temporal evolution of this distribution. In practice,

timbre can be viewed as a multidimensional concept, which, in a music analysis task,

should be represented through a vector of values, opposite to pitch and loudness which

can be encoded by a single scalar value.

Concerning percussive sounds, their main characteristic is a broadband energy enve-

lope. Although percussions are often described as “higher” or “lower” (which is affected

by the central frequency of the broadband noise-like disturbance in the spectrum), they

lack any harmonic structure. However, percussions greatly affect the rhythmic structure

of a music piece, i.e., the timing relationships of the various music events. The rhythm

of a piece describes all the aspects that relate to the temporal succession and periodical

accent of various musical events, as well as the physical duration of pitched sounds.

An automatic system concerned with the analysis and understanding of musical pieces

should represent, at least, the above characteristics of harmonic and percussive instru-

ments. In particular, the different components that are necessary for music characteriza-

tion, for instance in the context of a music transcription system, can be broadly presented

in three groups: (a) meter, (b) melody line and (c) bass line. The meter, or hierarchi-

cal beat structure, represents the fundamental temporal structure of the various music

events. The analysis of this structure if an essential part in understanding music signals,

and it is an analysis step that even untrained listeners intuitively perform, as indicated

by reactions such as “foot-tapping”. The meter is a hierarchical structure of pulses at

different levels [Klapuri et al., 2006]. The level “temporal atom” or tatum denotes the

shorter pulse period that is not incidentally encountered. Most event coincide with the

pulses in this level. The next level, called tactus, is the most prominent one and it is the

one that is commonly called beat. The rate of the beats in the tactus level determines the

tempo of a piece. Finally, the pulses in the measure level define the rhythmic patterns of

a piece. The analysis and understanding of the meter of music is fundamental for many

applications, and several related tasks are defined within MIREX, as for instance tempo

estimation, beat tracking, and onset detection.

The next two components that are necessary for the characterization of a music signal,

are mainly related to harmonic instruments. The melody and bass lines are both temporal

trajectories of a series of single tones. One of the differences between the two is the

spectral region in which they are normally encountered, as the bass line is located in the

lowest parts of the spectrum. In addition, the melody line is often characterized as the

predominant line, as it is heard more distinctively than the rest. The detection of both

lines is of interest in various applications, and several tasks defined within the MIREX are

concerts with related topics, as for example the multiple fundamental frequency estimation

and tracking, and audio melody extraction.
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Figure 2.14: The spectrograms of a clean singing voice (top) and the same voice mixed with various
instruments (bottom).

In the context of this work, it is interesting to emphasize that when analysing a singing

voice signal, music is most commonly included, at a relatively high volume. Because of

its characteristics, such as the complex beat and harmonic structures, music complicates

several singing voice analysis tasks. An an example, in Figure 2.14 we present the spectro-

gram of a clean singing voice excerpt, and the spectrogram of the same signal mixed with

a variety of background instruments. Notice that in the mixture the harmonic structure

of the singing voice is much less evident, particularly after the first 10 seconds when the

loudness of the background instruments increase. An automatic method built to detect

the f0 of the singing voice, in the first case only needs to understand the spectral structure

and determine the f0 among a set of harmonics. In the second case, the same method

should be able to detect multiple f0s, coming for the various harmonic instruments, and

make a decision on which of the detected f0s belongs to the singing voice.

The above description covers only a few of the aspects that concern the very rich

scientific area which investigates and analyses music signals. The contents, and related

concepts are very wide to be treated here comprehensively, but several interesting books

and reviews are available, for instance [Casey et al., 2008, Downie, 2008, Klapuri and

Davy, 2006, Schedl et al., 2014].

39



2.5. Conclusions Chapter 2. Acoustic signal processing

2.5 Conclusions

Acoustic signal processing is a very rich scientific area, concerned with the understanding

of diverse acoustic signals. In the core of this field, time-frequency analysis sets the

basis for building complex systems, which do not need to assume that acoustic signals

are stationary. Time-frequency distributions study time-varying signals by transforming

them into two-dimensional representations, which simultaneously describe the temporal

evolution of the various frequencies. In a very common scheme for an acoustic signal

processing application, this two-dimensional representation will be further exploited into

a set of features that feed a decision making unit. The attributes and behaviour of the

selected time-frequency representation spread to the extracted features, thus affecting the

subsequent decision making and final result of the system. Therefore, the selection of

a time-frequency representation, upon which a system is built, should be done with a

careful consideration of (a) the characteristics of the particular acoustic signal the system

is processing and (b) the exact specifications of the addressed task.

Some of the most interesting characteristics of the acoustic signals this thesis is con-

cerned with have also been discussed in this chapter, making evident certain challenges

that related signal processing methods may face. Acoustic signals and in particular speech

and singing voice (or similarly other melodic musical instruments) have a very important

structure simultaneously on the temporal and spectral domains. The various frequency

components, their intensities and their variabilities in time generates meaningful acoustic

signals, that carries a big amount of information in a very efficient way. From the mo-

ment of the generation of an acoustic signal, the acoustic environment starts degrading

its quality.
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Chapter 3

Time-frequency reassignment

In this chapter we set the theoretical basis for the use of the time-frequency RS in signal

processing applications. A general introduction and a motivating example for the use of

the RS is presented in Section 3.1. In Section 3.2 we present the mathematical formulation

which leads to the time-frequency RS. In Section 3.4 we overview various applications that

use the RS as the time-frequency representation of the input data. Finally, in Section 3.5

and Section 3.6 we introduce two novel representations exploited in this work, namely the

reassigned cepstrum, and the dominance RS.

3.1 Motivating example

The time-frequency RS is a visualization of the instantaneous frequencies of the line com-

ponents of multicomponent signals. This visualization is conceptually different from the

traditional spectrogram, which visualizes the energy distribution in the time-frequency

plane. The RS is often described as a sharpened version of the spectrogram but this

statement can be misleading. Rather than seeing the reassigned spectrogram as an im-

provement upon the traditional one, it is important to study it as a distinct time-frequency

representation of acoustic signals.

As a motivating example, in Figure 3.1 the traditional and the RS of the same speech

test utterance are depicted. In the traditional spectrogram, the use of a relatively long

analysis window ensures a good visualization of the harmonic components of the vowel

regions. Nevertheless, there is a clear smearing of the time boundaries between con-

secutive phonemes. In the RS the onsets of the phonemes are visualized much better,

while the structure of the harmonic content is maintained. In general, the RS yields a

time-frequency image that is particularly precise in the representation of components and

impulses. This is achieved by discarding information about the bandwidth of each compo-

nent, information which is anyway already distorted by the short-time Fourier procedure.
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(a) Waveform with a sampling frequency 8kHz

(b) Traditional spectrogram obtained with an analysis window of 55ms.

(c) Raw RS obtained with an analysis window of 55ms.

Figure 3.1: The traditional (b) and the reassigned (c) spectrograms of a short utterances spoken by a
male speaker.
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Figure 3.2: The RS of a multi-components signal, where each component has a Gaussian amplitude and
a linear frequency modulation. For a comparison of the RS and other time-frequency representations see
Figure 2.4.

From this plotting of the raw reassigned data in Figure 3.1, two important character-

istics of the RS emerge. First, the RS is only defined at the regions where the analysed

signal has a significant amount of energy. Second, the raw data obtained from the process

of reassignment can be disappointingly noisy. Additionally, the RS is a positive represen-

tation, so each time-frequency point can be interpreted as an energy density. It satisfies

the time and frequency shift invariance property [Auger and Flandrin, 1995, Plante et al.,

1998]. Similar to the Wigner-Ville distribution, it encompasses a perfect localization of

impulses, pure tones and chirp signals, and is not affected by the length of the analysis

window as much as the traditional spectrogram. In addition, it does not suffer from the

appearance of cross-components. In Figure 3.2 we present the RS of the same signal used

in Figure 2.3 and Figure 2.4, where we can clearly observe the perfect localization of each

auto-component and the fact that no cross-components appear. It is also interesting to

mention that the Rènyi entropy of this RS is 6.31 bits, compared to 11.57 bits for the

WVD presented in Figure 2.4 and 10.08 bits for the spectrogram.

Nevertheless, unlike the spectrogram, and more general the Cohen’s class of TFDs, the

time-frequency reassignment is not a bilinear representation.

3.2 The method of reassignment

The time-frequency reassignment was first introduced in [Kodera et al., 1976] and fur-

ther discussed in [Kodera et al., 1978], with the name modified moving window method

(MMWM). The MMWM was originally described as a means of improving the readabil-

ity of the spectrogram, specifically by plotting each time-frequency point at the center
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of gravity of the energy distribution rather than at the center of the analysis window.

The proposed analysis pointed out that the spreading of the STFT magnitude can be

compensated using phase information, which normally is discarded.

Later, the method of reassignment was redefined and the scope of the technique was

extended beyond the case of the spectrogram [Auger and Flandrin, 1995, Flandrin et al.,

2002]. The original formulation is very interesting in order to emphasize the particular

relation between the time-frequency reassignment operations and the IF and GD of the

analysed signal. The generalization however, expresses the time-frequency reassignment

as an operation over the WVD and evidences a relation to techniques such as ridge

and skeleton [Guillemain and Kronland-Martinet, 1996], synchrosqueezing [Auger et al.,

2013], differential spectral analysis and IF density [Friedman, 1985]. We discuss first the

generalized formulation of the method of reassignment, and then the original MMWM

highlighting the relation to the IF and GD.

3.2.1 Formulation

As discussed in Section 2.1.4, and regarding the spectrogram as a member of the Cohen’s

class of bilinear TFDs, each spectrogram value is calculated by the summation of a whole

distribution of values, and it is assigned to the geometric center of the time-frequency

domain. However, this is a rather arbitrary point, which, except from the case of a

homogeneous distribution, has no physical interpretation. A better choice is to assign the

total energy to the center of gravity of the time-frequency distribution. The method of

reassignment performs this step. Therefore, at each point (t, ω) of the original spectrogram

two additional quantities are computed:

t̂x(t, ω) =
1

Shx(t, ω)

∫ ∫ +∞

−∞
τWx(τ, ν)Wh(τ − t, ν − ω)

dτdν

2π
(3.1)

ω̂x(t, ω) =
1

Shx(t, ω)

∫ ∫ +∞

−∞
νWx(τ, ν)Wh(τ − t, ν − ω)

dτdν

2π
. (3.2)

The point
(
t̂x(t, ω), ω̂x(t, ω)

)
defines the local centroid of the Wigner-Ville distribution

Wx, observed through the window Wh centered in (t, ω). The RS is then defined as

Ŝhx(t, ω) =

∫ ∫ +∞

−∞
Shx(τ, ν)δ

(
t− t̂(τ, ν), ω − ω̂(τ, ν)

) dτdv
2π

. (3.3)

Based on the above formulation, the method of reassignment smooths the Wigner-Ville

distribution using as a smoothing kernel the Wigner-Ville distribution of the analysis

window. The obtained distribution is then refocused to the true regions of support of the
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components of the signal.

3.2.2 Relation to the instantaneous frequency and group delay

Time-frequency reassignment can be interpreted as estimating the instantaneous fre-

quency and group delay for each time-frequency point. This direct relation of the method

of reassignment to the IF and the GD of the analysed signal is better illustrated in the

original work by [Kodera et al., 1978], i.e., the MMWM. The MMWM builds upon the

classical moving window method [Dziewonski et al., 1969], in which a signal x(t) is de-

composed into a set of coefficients defined as follows

ε(t, ω) =

∫
x(τ)h(t− τ)e−jω[τ−t]dτ (3.4)

= ejωt
∫
x(τ)h(t− τ)e−jωτdτ (3.5)

= ejωtX(t, ω) (3.6)

= Xt(ω) . (3.7)

From (3.6) it can observed that the amplitude of the transform is the same as the ampli-

tude of the STFT, while their phases differ by the linear frequency term:

Mt(ω) = M(t, ω) (3.8)

φt(ω) = ωt+ φ(t, ω) (3.9)

In the moving window method the signal x(t) is reconstructed by the squared magnitude

of the above decomposition, which therefore is equivalent to a reconstruction from the

STFT. On the other hand, in the MMWM reconstruction the phase information is used

as well

x(t) =

∫ ∫
Xt(ω)h∗ω(τ − t)dωdτ (3.10)

=

∫ ∫
Xt(ω)h(τ − t)e−jω[τ−t]dωdτ (3.11)

Making use of the observations (3.8) and (3.9), (3.11) is rewritten as

x(t) =

∫ ∫
Mt(ω)h(τ − t)ej[φτ (ω)−ωτ+ωt]dωdτ . (3.12)

A phenomenon known as principle of stationary phase states that only regions of slow

phase variation contribute constructively in the above integral. For impulsive signals,

i.e., signals concentrated in time, the phase variation with respect to frequency is slow
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only near the time of the impulse. On the other hand, for periodic or quasi-periodic

signals the phase variation with respect to time is slow in the vicinity of the frequency of

the periodic oscillation. In general, the phase stationarity condition is satisfied when

∂

∂ω
[φτ (ω)− ωτ + ωt] = 0 (3.13)

∂

∂t
[φτ (ω)− ωτ + ωt] = 0 . (3.14)

Therefore the contribution to the integral of (3.12) is maximum around the point with

coordinates (t̂(τ, ω), ω̂(τ, ω)) defined by

t̂(τ, ω) = −∂φ(τ, ω)

∂ω
(3.15)

ω̂(τ, ω) = ω +
∂φ(τ, ω)

∂ω
, (3.16)

a point which is considered to be the center of gravity of the distribution. The quantities

t̂(τ, ω) and ω̂(τ, ω) are related to the GD and the IF respectively. Particularly [Kodera

et al., 1978] showed that the ω̂(τ, ω) is exactly equivalent to the IF of the most dominant

component at that time and frequency. In addition, t̂(τ, ω) is equal to the time at which an

impulse that lies within an analysis window h(t) takes place, in relation to the beginning

of the window.

3.2.3 Pruning of the reassigned spectrogram

The quantities defined in (3.1) and (3.2), i.e., the time and frequency reassignment opera-

tors are only meaningful when the point (t, ω) has significant energy, that is Shx(t, ω)� 0.

When there is no energy at all the whole notion of reassignment is not valid and if the

energy is very low reassignment results to be a seemingly random operation. As a result,

the RS suffers from speckled, low energy noise [Nelson, 2002]. However, a very simple and

intuitive step can help to reduce this noise.

The window used at the spectral analysis step emphasises the signal energy that is near

the geometric center of the window. The process of reassignment remaps this energy to the

center of support of the analysed signal. A large time or frequency reassignment indicates

that the particular analysis window does not represent well the corresponding area of

the signal. Therefore, data that produces large time or frequency reassignments can be

discarded from the final representation [Fitz and Haken, 2002, Gardner and Magnasco,

2005] assuming that the unreliable data will be better represented in a neighbouring frame

of the STFT.

Another interesting aspect demonstrated by [Gardner and Magnasco, 2005] relates to
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the consensus among neighbouring frequency estimates, i.e., the rate of change of their

reassigned frequencies. According to this study, a high degree of consensus, that is a

slow change of the reassigned frequencies, indicates the quality of the local frequency

estimates. The consensus, defined as
∂ω̂(t, ω)

∂ω
can be rewritten using (3.16) and the

above observation is then expressed as

∂ω̂(t, ω)

∂ω
= 1 +

∂2φ(t, ω)

∂t∂ω
≈ 0 . (3.17)

In [Nelson, 2001, 2002] is was further demonstrated that a high degree of consensus among

neighbouring time estimates characterises impulsive components

∂t̂(t, ω)

∂t
= −∂

2φ(t, ω)

∂t∂ω
≈ 0 . (3.18)

In terms of implementation, (3.17) and (3.18) are rewritten as

1− ∂2φ(t, ω)

∂t∂ω
< A , (3.19)

and
∂2φ(t, ω)

∂t∂ω
< A , (3.20)

where A is a tolerance factor, which defines the maximum acceptable deviation of a

spectral component from a pure sinusoid, and the maximum acceptable deviation of an

impulse from the Dirac function. For speech signals, reasonable values reported for A are

in the range [0.2, 0.4]. By discarding the points of an RS that do not meet the condition

in (3.19), we obtain a visualization of the strongly sinusoidal components, as in Figure

3.3a. For the speech signal used in this example, analysed with a relatively short analysis

window, these components are related to the vocal tract resonances. On the other hand,

by discarding the points of an RS that do not meet the condition in (3.20) we obtain

a visualization of the impulsive components, as in Figure 3.3b, which are related to the

individual glottal pulses. In Figure 3.3c both tolerances are applied, which yields a “de-

speckled” RS, comprising both sinusoidal and impulsive components.

3.3 Implementation aspects

3.3.1 An efficient implementation

The time and frequency reassignment operators, as defined in (3.15) and (3.16), cannot

be directly implemented. This explains the limited exploitation of this representation,

until the description of the efficient implementation of [Auger and Flandrin, 1995]. In
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(a) Applied sinusoidal tolerance 0.2

(b) Applied impulsive tolerance 0.2

(c) Both tolerances have been applied, leading to a pruned version of the RS.

Figure 3.3: The pruning process based on thresholding the MPD of the phase
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Figure 3.4: An efficient implementation of the time-frequency reassignment operations.

this work, the authors demonstrated that instead of using the derivatives of the STFT

phase, the time and frequency reassignment operators can be computed from a set of

STFTs, calculated with different analysis windows. Therefore, the time and frequency

reassignment vectors are calculated as

t̂(t, ω) = t−Re

{
XTh(t, ω)X∗(t, ω)

|X(t, ω)|2

}
(3.21)

ω̂(t, ω) = ω + Im

{
XDh(t, ω)X∗(t, ω)

|X(t, ω)|2

}
(3.22)

where X(t, ω) is the STFT computed with an analysis window h(t), XTh(t, ω) is the

STFT computed with analysis window ht(t) = th(t), which is a time weighted version of

h(t), and XDh(t, ω) the STFT computed with an analysis window hD = d
dt
h(t), which is

the time derivative of h(t). The necessary signal processing steps are demonstrated in

Figure 3.4, and as shown the time and frequency corrections can be computed as a set of

algebraic operations, completely skipping a calculation or an approximation of the phase

derivative.

Concerning the calculation of the mixed partial derivatives (MPD) used for separating

sinusoids from impulses, in the original work Nelson used finite differences for the com-
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putation. Nevertheless, using the above derivations of the reassignment operations it can

be shown that the MPD can be computed directly from Fourier transforms by

ϑ2φ(t, ω)

ϑtϑω
= R

{
XTDh(t, ω)X∗(t, ω)

|X(t, ω)|2

}
−R

{
XTh(t, ω)XDh(t, ω)

|X(t, ω)|2

}
(3.23)

where XTDh(t, ω) is the STFT of x(t) computed using a window hTD(t) = t d
dt
h(t), which

is the window used to compute XDh(t, ω) multiplied by a time ramp.

3.3.2 Re-quantization

According to the uncertainty principle, the WVD has an intrinsic quantization grid, upon

which the time-frequency points of the distribution can be defined. Following the defini-

tion of the RS as a smoothing operation over the WVD, it becomes clear that there is no

single quantization grid upon which all the time-frequency reassigned points are defined.

This fact comes in contrast with the classical view of a time-frequency representation as

a energy distribution over an underlying Wigner-Ville grid. In addition, the raw time-

frequency reassigned points cannot be visualized and easily used for further processing

unless they are quantized into a well defined grid.

For the above reasons, many algorithms re-quantize the energy from the reassigned

points back to the closest STFT grid point [Plante and Ainsworth, 1995]. This type

of processing is the re-quantization approach available with the most commonly used

toolboxes for computing the RS, as for instance in [Auger et al., Fitz, 2007]. As expected,

this operation re-introduces some of the smearing that the reassignment operators have

removed. However, it makes plotting functions much easier to implement and faster to

execute.

3.4 Applications of the reassigned spectrogram

Time-frequency reassignment has been somewhat ignored in the literature, with only a

few applications utilizing it as the time-frequency representation of the input signal. In

addition, many initial studies that demonstrated benefits stemming from the use of the

RS were not followed up with subsequent activities.

Speech signal analysis and visualization is one of the most important application areas

for the RS, as it is very useful in representing simultaneously the temporal, i.e., onsets

of plosive sounds, and the spectral features, i.e., harmonic structure of vowels, of speech

signals [Fulop, 2011]. In addition, the suitability of the RS in visualizing individual

vocal chord pulsations [Fitz and Fulop, 2009, Fulop and Fitz, 2006]. In [Plante and

Ainsworth, 1995, Plante et al., 1998] the method of reassignment was applied in the
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context of speech formant analysis, and the notion of requantizing the RS points at the

STFT grid centers was introduced. In [Meyer et al., 1997] the RS was utilized in a

”double-vowel” identification task which was showing improvements over the recognition

based on the traditional spectrogram. In a slightly different group of applications in the

area of speech signal analysis, the RS has been exploited for speaker identification. The

concept was first introduced in [Fulop and Disner, 2007] and further discussed in [Fulop

and Kim, 2013].

Another field, within which the RS has been somewhat exploited so far, is the area of

music analysis. In this context, the RS is again a competitive time-frequency distribution

of the input, since it can represent at the same time the rich harmonic structure of melodic

instruments and the musically important beat structure of the piece. In [Hainsworth,

2003, Hainsworth et al., 2001] the RS was exploited in transcribing classes of objects,

such as sinusoids, transients and noise, within music signals. In [Hainsworth and Wolfe,

2001] a method of piano notes onset detection using time reassignment was presented. In

[Khadkevich, 2011, Khadkevich and Omologo, 2013] the RS was used for chord recognition,

and beat structure analysis. Finally, music synthesis using a reassigned version of the

spectrogram has been proposed in [Fitz and Haken, 2002, Fitz et al., 2000].

Finally, the RS has been applied in other tasks both related to acoustic signal process-

ing, for instance audio coding [Peeters and Rodet, 1999] and sinusoidal modelling [Ito and

Yano, 2007], and other not related tasks, such as seismic data analysis [Odegard et al.,

1997].

3.5 Reassigned cepstrum

The various characteristics of the cepstrum, and its ability to model the spectral envelope

of the vocal tract, make it a particularly appealing representation for input speech. As

described, the real cepstrum, commonly used to extract acoustic features, is calculated

as the inverse DFT of the logarithm of the DFT of the input signal. Furthermore, it is

a common practice to apply further processing steps before the inversion, as for instance

the applying filters designed to emphasize certain characteristics of the acoustic signal.

The cepstrum can be extended to the case of the RS, as the inverse DFT of the logarithm

of the time-frequency reassigned spectrum of the input. The corresponding processing

steps are visualized in Figure 3.5. As shown there, after the application of the logarithm

the obtained representation, which is defined in the continuous time-frequency domain

must be re-quantized before inverted with the inverse Fourier transform.
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STFT log|.| IDFT ĉ(n)x(n) reassignment
operation re-quantization

Figure 3.5: The processing steps for obtaining the reassigned cepstrum.

3.6 Dominance reassigned spectrogram

In a multi-component signal, the STFT can be used to estimate the amplitudes and phases

of the individual components. However, when different components are located very close

in frequency, and their IF is not changing with frequency, only one single component

dominates the spectrum [Fulop and Disner, 2007]. In these regions, all nearby spectral

data are pulled to the frequency of the dominant sinusoid, a fact that leads to a very low

variation of IF over frequency. Therefore, the STFT points that coincide with the IF of

a component result in the minimum amount of frequency reassignment in the vicinity of

the component. This feature has been exploited in the literature for pitch extraction in

what is called fixed-point analysis in systems such as YIN and PreFest [De Cheveigné and

Kawahara, 2002, Goto, 2005, Kawahara et al., 1999].

The same property emerges in the RS, as shown in Figure 3.6, for a clean singing voice

signal. The frequency reassignment shows a minimum value around the f0 and its integer

multiples, since these frequencies dominate the spectrum. As described, the way that the

spectral energy of each time-frequency bin of the spectrogram is reassigned to a new time-

frequency reassigned (TFR) point is governed by the derivatives of the spectral phase at

this bin, the same derivatives that theoretically result in the IF and local group delay of

the analysed signal. Both of these quantities have been exploited in terms of pitch and

melody extraction. For example, in [Rajan and Murthy, 2013] a set of modified group

delay functions are used for melody extraction, since the presence of harmonic components

corresponds to their local maximization. On the other hand, in fixed-point analysis, the

IF is detected and then further used to perform f0 estimation assuming that the points

that correspond to a minimum distance between the IF and the spectral bins, i.e fixed-

points, are indicators of the presence of fundamental frequencies in this spectral region.

Furthermore, as shown in Figure 3.6 for the same signal, a higher concentration of TFR

points is expected around the same frequencies. The reason behind this is simple. The f0

components dominate the spectrum in terms of energy, but in the STFT calculation this

energy is spread in the surrounding bins. The process of reassignment brings the energy

back to the region of support of the dominating component, which results in a higher

concentration of TFR points around the f0.
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Figure 3.6: Frequency reassignment of a single frame for a fragment of clean singing voice. Top: The
continuous line corresponds to the conventional spectrum, while the stars represent the reassigned one.
Bottom: The continuous line is the mapping of the Fourier transform bin center frequencies to reassigned
frequencies, and the circled red points show the bins that have the minimum frequency reassignment in
their vicinity.
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Figure 3.7: Comparison of different versions of the spectrogram of the mixture of a linear and a loga-
rithmic chirp. Notice the improvement of the visualization in the reassigned and dominance reassigned
spectrograms.

Summarizing, we can exploit the two interesting properties of the TFR points outlined

above, namely that (i) more TFR points are found around the areas of high energy and

(ii) the minimum frequency reassignment is observed for the TFR points around pre-

dominant components, and define a new representation called DRS. This representation

aims at adding further salience in the harmonic components of the analysed signal, while

suppressing impulsive and noisy points. The DRS is defined as

D(t̂, ω̂) =

(
X(t̂, ω̂)

ω − ω̂

)2

, (3.24)

where X(t̂, ω̂) is the power RS. The difference (ω − ω̂) is expected to be minimum in

the region around dominant components, leading to a maximization of the DRS. The use

of the square alters the dynamics, adding further salience to the most dominant TFR

points. Similar to the dominance spectrum that was introduced in [Nakatani and Irino,

2004], the DRS assigns to each TFR point a degree of dominance, which represents its

importance in terms of harmonic content. In order to better visualize the effect of the

dominance weighting on the RS, Figure 3.7 presents a comparison for a synthetic chirp

signal. Apart from an improved visualization of the IF, we observe less random noise

and better separability around the region that the two components meet. It is noted here

that the Rènyi entropies of these three representations are, 19.72 bits for the spectrogram,

18.91 for the RS, and 17.88 for the DRS.

To better demonstrate the power of the DRS in describing the harmonic content of the

predominant source, in Figure 3.8 a single frame of the re-quantized RS and DRS of a

polyphonic music signal are depicted. The signal comprises a singing voice (predominant

source) and a mixture of piano and bass (background). The two are mixed together in
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Figure 3.8: The log RS (left) and log DRS (right) of a single frame of a polyphonic music signal, which
comprises a singing voice and 2 harmonic musical instruments (piano and bass). Each row corresponds
to a different mixing ratio: -4dB (top), 0dB (middle) and 4dB (bottom).

decreasing voice-to-background ratio, shown in the three rows of Figure 3.8. It is observed

that in increasing degree of signal complexity, the DRS is more adequate in emphasizing

the fundamental frequency of the predominant source, and it is less affected than the RS

by the background frequencies.

3.7 Conclusions

The RS is a time-frequency representation that can offer infinite resolution in the time-

frequency domain. In practice, the RS remaps the spectral energy of each spectrogram

bin, from the point at which it was computed to a new time-frequency point which is

closest to the true region of support of the analysed signal. In this chapter we presented

in detail the various theoretical aspects that are related to the method of reassignment,

and discussed its main limitations, which are, first, the appearance of random-like noise

in areas where there is no energy to reassign and, second, the need for a re-quantization

step. Following this background information, we proposed two distinct representations

stemming from the RS, namely the reassigned cepstrum and the DRS. A very initial

investigation, particularly concerning the DRS, shows the potential of this representation

in the analysis of acoustic signals. In the next chapters, we investigate in depth how the

RS can be exploited in the context of different systems, each time focusing further on one
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of these two proposed representations.
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Chapter 4

Speech segmentation and recognition

In this chapter, we extend on the reassigned cepstrum representation introduced earlier,

and we propose the TFRCC. This novel set of speech features offers an improved repre-

sentation of the speech structure, and is exploited within two applications, namely speech

segmentation, and speech recognition. The remainder of this chapter is organized as fol-

lows. In Section 4.1 we overview the application areas and outline the main directions

of relevant research. In Section 4.2 a detailed description of the TFRCC computation

steps is presented. Following that, in Section 4.3 we describe the corpora that we exploit

for various experimental activities. In Section 4.4 the proposed features are exploited

in the context of speech segmentation and the corresponding experimental activities and

results are presented. The use of the TFRCC features for speech recognition is described

in Section 4.5, along with experimental activities and results. The chapter is concluded

in Section 4.6.

4.1 Related work

The first systematic efforts towards a complete ASR system begun in the 50s, and already

in 1952 the first isolated digit recognition system was based on recognizing formant pat-

terns in the power spectrum of the speech signals [Davis et al., 1952]. During the next

years, several systems addressed similar tasks [Forgie and Forgie, 1959, Fry, 1959, Olson

and Belar, 1956] but did not manage to extend beyond the recognition of a vocabulary

of around 10 words, spoken by a single speaker. In the 60s, Japanese laboratories started

experimenting with hardware solutions, as for instance the hardware vowel recognizer

proposed in [Suzuki and Nakata, 1961]. In the meanwhile, several fundamental ideas in

speech recognition, for example feature normalization and dynamic programming were

proposed in the same period [Martin et al., 1964, Vintsyuk, 1968].

Continuous speech was targeted for the first time in the late 60s [Reddy, 1966], dimin-
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ishing the need of a pause after each uttered word, and setting the basis for the recognition

of natural speech. In the late 1970s and early 1980s, the field of ASR was undergoing

a change in emphasis: from solutions using simple pattern recognition methods to those

exploiting complex statistical frameworks. Initially, approaches were based on the tem-

poral alignment of speech patterns, i.e., via dynamic time warping (DTW) and spectral

distance measures [Myers et al., 1980, Rabiner and Juang, 1993].

However, a statistical framework, namely the hidden Markov model (HMM), which

until recently constituted the standard approach, was developed in 1980s [Jelinek, 1997,

Jelinek et al., 1975, Rabiner, 1989]. The underlying assumption of this statistical frame-

work is that a speech signal can be modelled using a Markov state diagram in order to

characterize the temporal properties, and a Gaussian mixture model (GMM) in order

to characterize the spectral properties of speech. According to this framework, the de-

coding, i.e., the process of computing the most likely spoken utterance given a speech

signal, is based on the Viterbi algorithm, which is a dynamic programming algorithm

that searches and finds a optimum solution for a statistical problem. At around the same

period, the neural networks [Waibel et al., 1989] started being re-introduced, after their

first appearance in the 1950s.

Nowadays, speech recognition is largely based on techniques developed during the last

five years, such as training and optimization principles regarding deep neural network

(DNN) [Hinton et al., 2012]. DNNs have been shown in multiple occasions to outperform

GMM-based ASR solutions, largely due to their ability to model non-linear dynamics

through the intricate connections on which they operate [Bellegarda and Monz, 2016,

LeCun et al., 2015].

In the following, we review in more detail certain topics that are related with speech

recognition, and in particular the application scenarios that we will assume later in this

chapter in order to evaluate the use of the proposed TFRCC features.

4.1.1 Speech segmentation

Since the first efforts for ASR, a fundamental task has been the accurate segmentation and

labelling of speech into phone units. A database comprising a complete acoustic-phonetic

transcription of the speech utterances is useful for many purposes related to ASR, as for

example the initialization of speech recognizers and the evaluation of their performance. In

addition, speech segmentation is of interest in other fields, for instance to create databases

for concatenative text-to-speech systems and tools that support phoneticians in their

studies. The most accurate method of creating time-aligned phonetic labels is to employ

an expert human annotator. This approach however, is expensive and requires an excessive

amount of time, which has been measured as much as 400 times real time [Godfrey et al.,
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1992], or 30 seconds per phone [Leung and Zue, 1984]. Moreover, the variability in human

annotations results into subjective and unreproducible segmentation choices [Cosi et al.,

1991]. Therefore, the design and implementation of automatic methods for phone-level

segmentation of speech is of great interest.

Many different approaches have been exploited for addressing the task of automatic

alignment, with most being based on either HMM or DTW. The latter primarily uses fixed

templates, while in general HMM based approaches are characterised by more flexibility

and provide superior results [Hosom, 2009]. Therefore, HMM is the dominant technique

in automatic segmentation of speech. In such systems, the acoustic signal and the phone

transcriptions are used as input to a phone HMM-based forced alignment system. In other

words, the Viterbi algorithm is used for a constrained search of the phoneme boundaries

inside the utterance, given the corresponding phonetic transcription. A main drawback

of the HMM-based forced alignment is that phone boundaries are not represented in the

model. Opposite to the manual segmentation, where phonetic boundaries are placed at

specific acoustic landmarks [Stevens, 2002], in forced alignment the boundaries are derived

from the alignment between phone states and frames. To address this, different directions

have been made, for instance boundary correction using sub-band energy changes [Kim

and Conkie, 2002], SVM classifiers to group frames into boundary and non-boundary ones

[Lo and Wang, 2007], and neural networks to refine boundaries [Toledano, 2000].

The segmentation results are evaluated as the percentage of correctly aligned bound-

aries, within different thresholds of tolerance. Because in continuous speech boundary

positioning is an inherently subjective task, the goal of automatic phone alignment is

often described as achieving the agreement between different human annotators. Within

a tolerance of 20ms, the automatic methods have reached the 93.49% of inter-annotator

agreement that has been reported in [Hosom, 2009] for TIMIT dataset [Garofolo et al.,

1993c]. Nevertheless, when a lower tolerance is considered, the performance of automatic

methods is still far from the corresponding inter-annotator agreement, that has been re-

ported as high as 63% within 5ms for a dataset of German sentences [Wesenick and Kipp,

1996]. A reason that contributes to the loss of accuracy with lower tolerances is related

to the features used in the forced alignment systems. MFCC and PLP, are currently the

most popular choice [Brugnara et al., 1993, Yuan et al., 2013]. Both sets of features are

obtained from the power spectrum as computed by the windowed speech signal. How-

ever, the application of the STFT can be considered as a source of uncertainty as it suffers

from the smearing effect discussed earlier and causes an unavoidable trade-off between

temporal and spectral resolution.
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Figure 4.1: Block diagram of a statistical speech recognition system. In the top part, the building blocks
of the ASR are shown. In the lower part, the various methods that are applied in order to address a
distant talking scenario are also shown.

4.1.2 Automatic speech recognition

As discussed, ASR is based on statistical analysis of speech, performed by complex frame-

works, with a general architecture as shown in the top part of Figure 4.1. Before fed to the

core of the recognition framework, the acoustic input signal is preprocessed, a step that

compensates for various variabilities introduced by the acoustic environment [Ephraim

and Malah, 1984, Lim and Oppenheim, 1979]. In the next step, namely the feature ex-

traction, the acoustic signal is represented in compact form through sets of parameters,

as described in Section 2.3

The core of the statistical framework which addresses the recognition of spoken utter-

ances lies in the decoder. At this stage, a search of the best match between the sequence

of acoustic observations, i.e., sets of features, and a sequence of words takes place. In

more detail, the recognition problem can be regarded as computing

arg max
i

P (wi|O) , (4.1)

where O = o1,o2, ... is the sequence of speech observations, and wi the i-th word of the

vocabulary. This maximization problem is not solvable directly, but according to Bayes’

rule it can be rewritten as

P (wi|O) =
P (O|wi)P (wi)

P (O)
. (4.2)

Given a set of prior probabilities P (wi) it becomes evident that the most probable uttered

word only depends on the likelihood P (O|wi). This term is determined by the acoustic

model, which based on the assumption that the sequence of observations emitted by the

spoken words is generated by a Markov model, is commonly represented by an HMM. The

relationship between HMM states and the acoustic input has been represented for years
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with the power of GMM [Juang et al., 1986]. In practice, the GMMs are used in order

to determine how well each state of each HMM fits a frame of acoustic features. Using

sufficiently large number of Gaussian distributions, GMMs can model accurately most

probability distributions, while they are relatively easy to train, with the expectation-

maximization algorithm. Despite all their advantages, and the huge amount of research

put into finding ways to improve their accuracy, GMMs are statistically insufficient to

model data that lie on or around a non-linear surface, as for instance this of a sphere

[Hinton et al., 2012]. An alternative way to evaluate the fit of a window of frames to the

state of a HMM, is a feed-forward neural network that takes as an input several frames of

coefficients, and has more than one layer of hidden units, i.e., a DNN. In a very compact

description, each hidden unit j maps its total input xj to a state yj, typically with the

use of the sigmoid function

yj =
1

1− exj
. (4.3)

The mapping is performed as

xj = bj + σiyiwij , (4.4)

where bj is the bias of unit j, i is the index of the units in the layer below, and wij is

the weight of the connection between units j and i. The literature in the topic of DNN

for ASR is vast, and detailed reviews of DNN-based ASR can be found in [Hinton et al.,

2012, Yu and Deng, 2014].

All the problem formulation so far, concerned the recognition of an isolated word. In

continuous speech the prior probability of a word sequence W is expressed as

P (W ) =
∏
n

P (wi|w1w2 . . . wN), n = 1 . . . N (4.5)

where N is the number of words in the sequence W . This probability is given by language

model, the second statistical part of the recognizer. The objective of this part is to provide

information related to the most likely sequence of words to appear in a certain language,

and to guide the search among the alternative word hypotheses during recognition.

The parameters of both, the acoustic and the language models are estimated during

an initial training phase from a set of spoken utterances, the acoustic features, and their

transcriptions [Bishop, 2006, Rabiner, 1989]. When training the acoustic models, the

knowledge about acoustics and phonetics is encoded in the acoustic model parameters,

based on the relations between the acoustic features and the corresponding phonetic

units in the annotated training corpus. In the training phase of the language model, the

elements that need to be learnt are the vocabulary and the relations between sequences
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of n words in this vocabulary.

Finally, the last stage in a recognition system is the post-decoding processing, an op-

tional step that aims at the refinement of the decoding output, for instance through

confidence measures [Jiang, 2005, Wessel et al., 2001].

4.1.3 Distant speech recognition

Despite the extensive efforts that have been made for reliable ASR, the performance of

many voice interaction based systems is still inadequate under certain conditions. Par-

ticularly in a distant talking scenario, where there is no intrusive body- or head-mounted

microphone to record the spoken utterance, challenges are introduced by a variety of

reasons. Some examples are the presence of reverberation, obstacles that may exist in

the path between the speaker and the microphone, the background noise, and the over-

lapping speakers. All these factors contribute to acoustic variabilities that degrade the

performance of a DSR system [Gong, 1995, Wölfel and McDonough, 2009]. In order to

overcome these limitations the numerous strategies that have been adopted are summa-

rized in the bottom part of Figure 4.1, and can be broadly categorized into three groups.

In the first group, different methods attempt to reduce the variabilities introduced by

the environment, and enhance the quality of the signal, or feature set, processed by the

recognizer [Benesty et al., 2005, Droppo and Acero, 2008, Huang et al., 2008]. Such an im-

proved acoustic signal can be achieved through source separation techniques which aim at

suppressing acoustic sources that are overlapping with the target speech signal [Pedersen

et al., 2007]. However, source separation can be done only in specific controlled conditions

while, on the other hand, speech enhancement techniques can be used for more general

purposes. Speech enhancement aims at suppressing, or attenuating environmental noise

and improvingthe quality of the acoustic signal. In the same group, various techniques

aim at extracting features sets that are robust in the noise and reverberant conditions,

making the effect of such degrading factors less relevant in the subsequent recognition

step [Hermansky and Morgan, 1994, Kenny, 2012].

In the second group, the processing is focused on the recognition process. A very

common approach is the adaptation of the trained models to the noisy, or reverberant

models [Droppo and Acero, 2008, Leggetter and Woodland, 1995, Wölfel and McDonough,

2009]. Other prominent examples that target the reduction of the mismatch between the

assumed and observed acoustic scenarios material are the multi-condition training, and

contaminated speech based training [Matassoni et al., 2002, Ravanelli and Omologo, 2015].

Keeping in mind that the core of ASR system is a statistical pattern recognition problem,

this step is critical to significantly improve recognition performance.

The third group of methods uses additional information stemming from the recognition

62



4.2. Time-frequency reassigned cepstral coefficients Chapter 4. Speech segmentation and recognition

process in order to post-process the output and improve the recognition performance.

Prevailing examples here are the methods Recognizer Output Voting Error Reduction

(ROVER) [Fiscus, 1997] and Confusion Network Combination (CNC) [Evermann and

Woodland, 2000, Mangu, 2000]. The combination of two or more of the aforementioned

approaches in a single recognition system is a very common approach.

A very common practice that leads to improvements to DSR solutions, and facilitates

many of the above mentioned techniques, is the use of multiple microphones in order to

record the same speech signal. This action results in many instances of the same spoken

utterances, i.e., redundant information that can be exploited in several ways to improve

recognition performance, as for example CS that will be discussed in detail in Section

6. Multi-microphone input also facilitates other techniques such as spatial filtering, and

delay and sum beamforming among others.

4.2 Time-frequency reassigned cepstral coefficients

The common goal of the various approaches to the parametrization of speech, is to produce

a compact set of values that describe the spectral shape of short segments of speech. Such

segments are usually around 25ms long and are updated with a rate of around 10ms.

Within each segment, the speech signal is assumed to be stationary, a fact that enables, in

core of the most commonly used feature sets, i.e., MFCC and PLP, the use of the STFT for

the estimation of the spectral content of the speech. The STFT enables the summarization

of the speech content and the periodical update of the extracted parameters. Nevertheless,

various alternative time-frequency distributions, that have been studied in the context of

speech processing, can be exploited for the parametrization of speech as well.

Among these time-frequency distributions, the time-frequency reassignment is a method

that can improve the representation of the speech spectral content, as it represents simul-

taneously the temporal, i.e., onsets of plosive sounds, and the spectral features, i.e.,

harmonic structure of vowels, of speech signals [Fulop, 2011]. In addition, when the rec-

ognized speech signal is impinged by reverberation, its spectral envelope, and therefore

the MFCC features that describe this envelope, are smoothed and carry less information.

The RS, obtained from the method of time-frequency reassignment, is a sharpened version

of the traditional spectrogram and the reassignment operation mitigates these smoothing

disturbances that are introduced by the reverberation.

The proposed TFRCC features are based on the RS and the various stages followed for

the extraction of the TFRCC features are depicted in Figure 4.2. The following sections

summarize thee computation steps.
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STFTPre-emphasis Time-frequency
Reassignment Log(.) IDCT TFRCCBi-dimensional

windowing

Figure 4.2: Block diagram of the TFRCC extraction steps.

Pre-emphasis The processing begins with the application of a pre-emphasis filter. As

already discussed, the goal of this step is to model the input speech according to the

human ear sensitivity and to account for the dependency of frequency and perceived

loudness.

STFT calculation The discrete STFT is calculated in order to obtain a complex spectrum.

In the following, Xh denotes the discrete STFT of a signal, calculated with the use of an

analysis window h(n), that is shifted in time with a certain step.

Time-frequency reassignment In the case of the discrete STFT, the reassignment op-

erations in (3.1) and (3.2) cannot be directly computed. Nevertheless, in [Auger and

Flandrin, 1995] it is shown that the reassignment operations can be performed with the

use of two auxiliary windows, as follows

t̂ = t−R

{
X .
T hX

∗
h(t, ω)

|Xh|2

}
(4.6)

ω̂ = ω + I

{
X .
DhX

∗
h(t, ω)

|Xh|2

}
, (4.7)

where XT h is the discrete STFT computed using an analysis window, which is a time

weighted version of h(n), and XDh is the discrete STFT computed using an analysis

window, which is a frequency weighted version of h(n). In practice, (4.6) and (4.7)

reallocate spectral energy from the coordinate (t, ω) to the coordinate (t̂, ω̂) which can be

formulated as

X(t̂, ω̂) = |Xh(t, ω)|2 , (4.8)

with X(t̂, ω̂) defined in the continuous time-frequency domain. As a result, the estimates

of the spectral energy distribution of the input speech signal are more precise.

Bi-dimensional windowing The representation in (4.8), defined in the continuous time-

frequency domain, cannot be directly used in the subsequent processing. In order to

obtain a discrete version of X(t̂, ω̂) in a new time-frequency domain, a bi-dimensional

window is applied. Since X(t̂, ω̂) is defined only at the points where there is energy to
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Figure 4.3: The bi-dimensional processing proposed for the re-quantization step required due to the use
of the RS.

reassign, this new representation can be expressed as

Sw(m, k) =
∑
(t̂,ω̂)

wk(m− t̂, ω̂)X(t̂, ω̂) , (4.9)

where Sw(m, k) strongly depends on wk(t̂, ω̂), which is a bi-dimensional window defined

in the continuous time-frequency domain, m denotes the generic time instant in the new

discrete time domain, and k denotes the index of a frequency range. This processing is

shown in Figure 4.3.

Different weighting schemes can be exploited for the design of the window, which

becomes more evident when it is expressed as

wk(t̂, ω̂) = l(t̂)gk(ω̂) . (4.10)

In the above notation, l(t̂) can be viewed as a continuous time window, that is shifted

with a certain step, and gk(ω̂) as a set of bandpass filters, for example a Mel-scale filter-

bank, as the one used in MFCC, but defined in the continuous frequency space. The time

resolution of the new time domain is determined by the length and the advance step of

the time window l(t̂), which should not be confused with the length and the advance step

of the window h(n) used for the calculation of the initial STFT. The frequency resolution

is determined by the total number of filters in the filter-bank gk(ω̂).

Compression The discrete Sw(m, k) is logarithmically compressed. The output of this

step is essentially equivalent to the log mel-scale filter-bank output of MFCC, but it offers

a better localization of the energy distribution of the signal. In Figure 4.4 the log scale

output of the Mel filter-bank applied on the traditional, and the reassigned spectra of the
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Figure 4.4: The traditional (top) and reassigned (bottom) output of the application of the Mel-scale filter-
bank, comprising 32 filters, on the spectrum of a speech utterance. Notice the sharper representation of
the lower resonant frequencies.

same speech utterance are depicted.

Cepstral mapping The resulting representation is mapped into the cepstrum domain

with the application of the IDCT, as typically done with MFCC.

Finally, common techniques, such as the augmentation of the vectors with time deriva-

tives and the normalization of the cepstrum coefficients, can be applied to the TFRCC

features.

4.3 Datasets

Here we present the different datasets that have been used for the experimental activities

reported in Section 4.4 and Section 4.5. Part of the same data is used in activities detailed

in the following chapters as well.

4.3.1 TIMIT

Speech segmentation experiments were performed with the use of TIMIT dataset. The

TIMIT Database [Garofolo et al., 1993c] has been created in the late 1980s by Texas

Instruments (TI) and Massachusetts Institute of Technology (MIT) The total of 10 ut-

terances, each read by 630 native American English speakers of different dialects and

accents, were derived from different corpora as for instance a phonetically rich one (sen-
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tences annotated with “sx” in the original TIMIT). TIMIT is annotated with a set of 61

phone units, which is intended to represent an intermediate level between phonetic and

acoustic transcription. The transcriptions were produced by expert phoneticians, follow-

ing waveform and spectrum analysis, along with a predefined set of rules [Garofolo et al.,

1993b].

4.3.2 DIRHA-English

On the other hand, ASR, DSR and, as discussed in the next chapter, channel selection

(CS) experiments were performed within the DIRHA Project framework [Cristoforetti

et al., 2014, Ravanelli et al., 2015]1. The DIRHA project was focused on the development

of voice-enabled automated home environments based on distant-speech interaction, and

one of the directions taken was the acquisition of real and simulated acoustic corpora for

training, development and test purposes. To this end, some of the datasets within DIRHA

are based on simulations realized combining clean speech signals, measured IRs and,

optionally, multichannel background noise. Alternatively, some corpora were recorded

under real world reverberant, and in cases noisy, conditions. From the whole set of

DIRHA-English the following clean speech, IRs and real recordings were used either as

provided, or, in cases, as a basis to create new simulations for our experimental purposes.

Clean speech The clean speech data corpus, comprising close-talk recordings, was ac-

quired in a recording studio in the Fondazione Bruno Kessler (FBK), with the use of

professional equipment. Native English speakers, both American and British, read mate-

rial from various sources; in this work we used two distinct sets, as follows

1. Wall Street Journal - wsj: The text of this material is taken from the original WSJ0-

5k corpus [Garofolo et al., 1993a].

2. Phonetically Rich - phrich: The text of this corpus comprises sentences designed to

have a large phone coverage and phonetic context, taken from the Harvard corpus2 .

Simulated data Simulated acoustic corpora was created with the use of the clean speech

data described above, and real IRs measured in the acoustic enclosure called DIRHA. The

DIRHA room corresponds to the “living-room” of the real environment used within the

DIRHA framework. This room is studied here as a simulated realistic scenario created

with measured IRs [Cristoforetti et al., 2014, Ravanelli et al., 2012]. The dimensions of

the DIRHA room are 4.83m × 4.51m × 2.74m and the T60 has been measured around

1http://dirha.fbk.eu.
2www.cs.columbia.edu/~hgs/audio/harvard.html
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Figure 4.5: DIRHA room setting. Black dots indicate the microphone locations, and blue squares show
the various positions of the speaker. The blue arrows are the four orientations which the speaker can
adopt.

0.75sec, which a quite high value. The average distance between the speaker and the

microphones can fluctuate in the range 1-4 meters, a distance that results in a significant

degree of distortion, that can greatly degrade the quality of the simulated signal.

Real data Real data corpus comprises real recordings acquired by different subjects,

positioned in a particular position in the DIRHA room, and reading utterances from

the specified material, i.e., the datasets described for the clean speech case. All the

recorded channels were time-aligned at a post-processing step. From the various real data

recordings of the DIRHA project, we use those that correspond to the WSJ and phrich

datasets, called real-wsj and real-phrich, respectively. In addition, the close-talk signals of

the real data were also captured by a head-set worn by the speaker during the recording

sessions. An ideal voice activity detection is assumed to be applied over the real data,

i.e., ground truth boundaries were used.

Training material Finally, it is noted here that more material was used for the training of

the acoustic models. In particular, a subset of the WSJ0-5k training set, comprising 7138

utterances, was used as source material for training. For DSR experiments, this material

was contaminated with IRs taken from the DIRHA framework.

4.4 Forced alignment using TFRCC features

As described in Section 4.1.1, in a speech segmentation system when low tolerances are

considered for the evaluation of forced-alignment results, the performance is still far from

the corresponding inter-annotator agreement. A reason that contributes to the loss of
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accuracy with lower tolerances is related to the features most commonly used in the

forced alignment systems, i.e., the MFCC and PLP sets. As described, both sets of

features are obtained from the power spectrum as computed by the windowed speech

signal. However, the STFT can be considered as a source of uncertainty as it suffers from

a smearing effect and causes an unavoidable trade-off between temporal and spectral

resolution. We therefore propose the use of the TFRCC as a set of acoustic features

which improve the accuracy of boundary positioning in forced alignment. The reassigned

spectrogram provides an estimation of the instantaneous frequency of the input signal

and, therefore, a more accurate representation of the time-frequency distribution of the

energy.

For the evaluation of the proposed features we performed a set of speech segmentation

experiments using forced alignment. The Hidden Markov Model Toolkit (HTK)[Young

et al.]3 was used to build phone HMMs, for which the probability estimates of the ob-

servations were modelled with GMM. The system was trained on the training partition

of the TIMIT database (3696 read sentences, excluding the “sa” files) and tested in the

full testing partition (1344 read sentences, excluding “sa” files). The complete set of 61

TIMIT phonemes was mapped into a set of 48 phonemes, as reported in [Brugnara et al.,

1993]. The models were trained with the application of the Baum-Welch algorithm, with

a total of 6 iterations over the data.

As a baseline configuration we used MFCC features, extracted with the following steps:

(i) pre-emphasis of the frames with a pre-emphasis coefficient α = 0.97, (ii) application

of a 20ms Hamming window, (iii) computation of the power spectrum with an analysis

step size of 5ms, (iv) frequency warping with a Mel-scale filter-bank comprising 32 filters,

implemented as the default HTK filter-bank, i.e., with logarithmic spacing and constant

amplitude, (v) conversion to the logarithmic domain, (vi) application of the IDCT trans-

form to obtain 12 cepstra coefficients and (vii) liftering of the cepstra to obtain a more

narrow range of variances. CMN was applied and the log energy was added to the feature

vector. TFRCC feature vectors were extracted with the same configuration as above for

(i) the calculation of the power spectrum of the acoustic signal, (ii) the pre-emphasis of

the signal, and (iii) the application of the IDCT. CMN was applied and the log energy

was added to the vector. For the design of the bi-dimensional window in (4.10), the same

Mel-scale filter-bank as for MFCC was combined with an overlapping triangular window.

It is noted here that alternative configurations were explored and were found to have

a similar effect in both features sets. For example, in Table 4.1 we present the results

for four different configurations by combining the application of the pre-emphasis before

(configurations 1 and 3) or after (configurations 2 and 4) the framing operation, and

3http://htk.eng.cam.ac.uk/
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Tolerance

5ms 10ms 15ms 20ms

#1
MFCC 45.74 72.12 82.89 87.76

TFRCC 49.82 73.26 82.86 87.40

#2
MFCC 45.43 72.76 83.65 88.76

TFRCC 49.99 73.98 83.63 88.25

#3
MFCC 45.11 72.70 83.63 88.64

TFRCC 49.41 73.55 83.30 87.92

#4
MFCC 45.10 72.66 83.56 88.67

TFRCC 49.43 73.67 83.38 88.06

Table 4.1: Percentages of correctly positioned boundaries, for different configurations of the MFCC and
TFRCC features sets. In sets #1 and #3 the pre-emphasis filter is applied on the whole signal before
the framing operation, while for sets #2 and #4 the pre-emphasis filter is applied after the framing. Sets
#1 and #2 are created with the traditional triangular Mel-scale filter-bank, while sets #3 and #4 with
the filter-bank described in [Davis and Mermelstein, 1980].

the use of the HTK Mel-scale filter-bank described above (configurations 1 and 2) or the

original Mel-scale filter-bank used in MFCC features described in [Davis and Mermelstein,

1980] (configurations 3 and 4). In similar experiments it was found that the shape of the

time window does not significantly affect the result. On the contrary, changes in the

analysis step size result into more notable fluctuations, as presented in Figure 4.6.

Comparative segmentation results are reported in Table 4.2. For these experiments,

the bi-dimensional window is created with a triangular time window of length 20ms,

advancing in time with a step of 5ms. This, along with the 32-band filter-bank, produces

the same time-frequency grid as in the case of the baseline MFCC configuration. The first

two rows of Table 4.2 correspond to log-power spectrum domain feature sets, formed by

the output of the Mel filter-bank in the case of MFCC features and the bi-dimensional

windowing in the case of TFRCC features. The ability of the reassigned spectrogram to

offer a more detailed representation of the fine structure of the time-frequency distribution

of the acoustic signal is translated into a higher percentage of correctly aligned boundaries,

particularly regarding low tolerances.

The next two rows concern the results based on features derived from the application of

the IDCT. MFCC-based segmentation presents improved results over all tolerance values.

On the other hand, the TFRCC features demonstrate a different behaviour. In fact, a

slight decrease of performance within 5ms indicates that the application of the IDCT is

not the optimal choice for this step. Nevertheless, the boundary alignment improves when

a tolerance higher than 10ms is regarded.

Finally, the last two rows of Table 4.2 are obtained by the extension of the feature
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Tolerance 5 ms

Tolerance 20 ms

Figure 4.6: Percentage of correctly positioned boundaries (CPB) for increasing advance step of a trian-
gular time window of length 20ms, given a tolerance of 5 and 20ms.

Tolerance

5ms 10ms 15ms 20ms

Spectra
MFCC 36.22 64.63 78.42 84.43

TFRCC 46.88 69.88 79.10 84.12

Cepstra
MFCC 37.55 65.21 79.12 85.09

TFRCC 46.74 70.04 80.19 85.40

∆, ∆∆
MFCC 45.74 72.12 82.89 87.76

TFRCC 49.82 73.26 82.86 87.40

Table 4.2: Percentages of correctly positioned boundaries, for different tolerances, using different feature
sets. Notice that these results correspond to the configuration #1 presented in the previous table.

71



4.4. Forced alignment using TFRCC features Chapter 4. Speech segmentation and recognition

vowel stop nasal fric liquid all

vowel
15.91 52.52 47.38 40.56 14.02 39.32

13.97 55.23 46.47 55.07 15.91 43.62

stop
42.82 42.18 29.54 37.06 29.21 39.73

63.37 53.74 52.95 40.99 64.83 56.23

nasal
31.53 33.95 20.00 38.08 28.41 32.90

51.57 34.02 17.50 44.31 27.84 42.49

fric
40.64 50.12 36.36 32.76 28.10 41.84

55.37 49.14 53.11 29.80 53.60 52.16

liquid
17.58 45.66 52.23 36.20 19.08 23.33

17.25 50.08 47.77 59.38 19.08 25.15

all
32.40 46.16 44.63 38.74 21.64 37.55

44.23 51.66 47.00 49.07 36.97 46.74

Table 4.3: Percentage of correctly positioned boundaries per phonetic class within a tolerance of 5ms.
For each transition pair, the first row corresponds to MFCC and the second to TFRCC. The transitions
for which MFCC provide more accurate results (in bold) account for 24.7% of the testing material.

set with the first and second order derivatives, considering a total of 3 and 7 frames,

respectively. Focusing on the strictest threshold of tolerance, we observe that in the case

of MFCC a relative improvement of 21.81% is presented. The corresponding improvement

for TFRCC is 6.52%. This is explained by the fact that the TFRCC features are changing

more rapidly than MFCC. Moreover, the use of the same regression formula, which is

optimized for the MFCC features, fails to model the dynamic properties of the TFRCC.

Nevertheless, the TFRCC features perform better, given a tolerance of 5 and 10ms.

It is also interesting to analyse the results with respect to transitions between different

phonetic classes. In Table 4.3, we consider five phonetic classes: vowels, stops, nasals,

fricatives and liquids. Both segmentation techniques demonstrate certain limitations in

locating the boundaries in transitions such as vowel-to-vowel and liquid-to-vowel. This

is expected since no unique point can be defined as boundary in such cases. In fact,

such transitions in TIMIT database have been annotated with heuristic rules [Garofolo

et al., 1993b] which are not addressed in this experimental set-up. On the other hand, the

TFRCC feature set presents an important improvement in better defined cases (36.5%

relative improvement for any transition to vowel, 26.6% for any transition to fricative and

70.84% for any transition to liquid).

A final remark concerns the comparison of the results reported above to segmentation

results reported in the literature, where results as high as 93.92% within a tolerance of

20ms have been reported in [Yuan et al., 2013] for the TIMIT dataset. The experiments

presented in this section were designed to demonstrate the behaviour of the proposed

features and compare them with MFCC. All the results can be improved, as in [Yuan
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et al., 2013], with the use of a more sophisticated HMM architecture, the use of context

dependent models and the application of boundaries correction methods, not addressed

in this work.

4.5 Speech recognition using TFRCC features

TFRCCs were proved particularly successful in detecting the boundaries between phones,

when a very strict evaluation tolerance was considered. This can be attributed to the

particularly good temporal resolution that can be achieved with the RS, without sacrific-

ing the spectral resolution. Here, we further investigate the TFRCC features when used

as a front-end for speech recognition. We target different ASR scenarios, and in partic-

ular recognition of close-talk sentence and recognition of simulated and real reverberant

versions of these sentences. These recognition experiments were designed in order to in-

vestigate the behaviour of the TFRCC features compared to the MFCC features, under

different acoustic conditions.

4.5.1 Recognition framework

All the recognition experiments are performed using the Kaldi speech recognition tool-kit

[Povey et al., 2011], and the recipes are based on those described in [Ravanelli et al.,

2015], adopted to the particular experimental set-ups addressed here. The decoding is

based on the WSJ and phrich corpora from the DIRHA-English set. Concerning the

training material it is noted here that decoding of the WSJ corpus is done with acoustic

models trained on a subset of the clean WSJ (WSJ0-5k) [Garofolo et al., 1993a] training

set, while the decoding of the phrich corpus is done with models trained on the TIMIT

training set.

Feature extraction

Each recognition experiment is performed for both sets of acoustic features, i.e., MFCC

and TFRCC, extracted from analysis frames of 25ms long, with an overlap of 10ms. Both

sets of features are augmented with their first and second order derivatives. The TFRCC

feature extraction is implemented, in C++, within the Kaldi speech recognition tool-kit.

The processing steps follow closely the MFCC extraction process.

Acoustic modelling

For our experiments, we consider 5 different acoustic models of increasing complexity.

In the first level (mono), acoustic models represent 48 context independent phones. A
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three state left-to-right HMM is used to model each of the phones. The tri1 acoustic

models are based on simple triphone training, on features augmented with first and sec-

ond order derivatives. After that, tri2 and tri3 acoustic models are trained on features

transformed with linear discriminant analysis (LDA) and maximum likelihood linear re-

gression (MLLR), with tri3 models trained with speaker adaptive training. All these

feature transformation techniques, leading from the baseline mono model to the more

sophisticated tri3 configuration, have been shown to be effective for DSR [Tachioka et al.,

2013]. Furthermore, DNN running on top of the LDA-MLLR transformed features, were

used. The DNNs were built according to Karel’s recipe [Veselỳ et al., 2013] with a net-

work architecture shaped by 6 hidden layers of 1024 neurons, with a context window of 11

consecutive frames (5 before and 5 after the analysis frame), and an initial learning rate

of 0.008. Of course, the DNN acoustic models required relatively massive computational

resources, compared to the previous models.

Language modelling

Concerning the language modelling, for the WSJ dataset we employ the baseline language

model used in CHiME-3 [Barker et al., 2015], which is the standard WSJ-5k tri-gram. For

the phrich dataset, in order to better focus on the behaviour of the proposed features in

encoding acoustic information, we adopt a pure phone-loop as in [Ravanelli et al., 2015].

Although this decision yields a loss in overall recognition performance, we avoid certain

non-linear behaviours due to the language modelling.

4.5.2 Close-talk performance

Here, we report the recognition results that were obtained for the close-talk sentences of

each dataset, as these were recorded in the FBK recording studio. The recognition results

for the clean WSJ test set are presented in Table 4.4. Concerning the acoustic models,

as expected the use of more complex models, from mono to DNN based ones, results

in significant improvements on the recognition performance. In addition, we observe the

consistent improvements that the TFRCC features yield, compared to the MFCC features,

for all the studied acoustic model types. In particular, the relative WER reduction rates,

shown in the last row of Table 4.4 indicate that TFRCC features are further supported by

the additional feature transformation techniques implemented in tri2 and tri3 acoustic

models, and the statistical modelling power of DNN models.

The relatively low reduction rate observed in the cases of mono and tri1 models, may be

attributed to various non-linear decisions stemming from the use of a tri-gram language

model. For this, it is interesting to study ASR results that use a simple phone loop.
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Features mono tri1 tri2 tri3 dnn
MFCC 22.9 11.1 10.4 6.3 3.7
TFRCC 22.7 11 10 5.8 3.5

Relative WER reduction (%)
TFRCC to MFCC 0.8 0.9 3.5 8.6 5.7

Table 4.4: Recognition WER results (%) for the clean WSJ dataset.

Features mono tri1 tri2 tri3 dnn
MFCC 47.3 42.8 40.2 32.9 28.1
TFRCC 47.3 41.9 39.2 32.1 27.2

Relative WER reduction (%)
TFRCC to MFCC 0 2.1 2.4 2.4 3.3

Table 4.5: Recognition PER results (%) for the clean phrich dataset.

Table 4.5 reports the results for the close-talk recordings of the phrich utterances. First,

we observe a general decrease in the recognition performance, which is expected due to the

use of a phone-loop as opposed to a language model. Nevertheless, the improvement of

the recognition performance with the use of more complex acoustic models is still evident

in this experiment. Finally, also for this dataset the TFRCC features result in improved

recognition performances.

Pruning the RS As discussed in Section 3.2.3, the RS can be pruned by applying a

threshold in the mixed partial derivatives of the phase. This process results in different

versions of the same RS which emphasizes either the harmonic or the impulsive com-

ponents of the input signal. When both thresholds are applied, then the result is an

improved, de-speckled representation. In the case of speech, this process has been ex-

ploited by phoneticians, for example for the study of various spectral characteristics of

different phonetic categories [Fitz and Fulop, 2009].

In the experiments reported here, we explore how pruning affects the TFRCC features,

in case emphasizing discrimination cues among different phonetic categories. We derive a

set of 36 different configurations of the feature vectors, by using six different values for each

of the sinusoidal and impulsive thresholds. For each set of features, a tri3 acoustic model is

trained and tested with matching conditions, i.e., the same feature configuration is used on

training and testing material. The results are presented in Figure 4.7, in a 3-dimensional

representation, where the color represents the obtained phone error rate (PER). First, we

observe that better results are obtained around the diagonal of the visualization, i.e., when

the two thresholds are assigned similar values. This is reasonable, as in these feature sets

the amount of energy attributed to sinusoid and impulsive components is balanced, as

would be expected in any parametrization of speech signal. Similarly, speech recognition
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Figure 4.7: Recognition PER results (%) for the clean phrich datasets, and variable tolerances applied
on the second order derivatives of the RS used for the extraction of the TFRCC features. The results are
obtained from the use of the tri3 acoustic models.

results seem to deteriorate when a bigger imbalance between the two parts is introduced,

as shown by the higher error rates in the diagonally opposite areas of the visualization.

Nevertheless, it is relevant to highlight that in any of the presented cases the PER is

higher than the corresponding result when no threshold is applied (see Table 4.5). This

fact supports the use of no pruning, although this topic deserves further investigation.

4.5.3 Performance under reverberation

Here, we study the performance of the proposed features in reverberant conditions. For

the decoding of reverberant speech stemming from the WSJ datasets, the models were

trained on contaminated speech utterances stemming from the WSJ0-5k training set. For

the decoding of the phrich dataset, the training is based on the contaminated training

part of the TIMIT corpus. In [Ravanelli and Omologo, 2014] it was shown that, for the

contamination of the training material, the accurate selection of IR is not a critical aspect,

and therefore we used IRs referring to the LA6 microphone, installed on the ceiling of

the ITEA apartment, as shown in Figure 4.5. The decoding is performed for the full

set of five microphones shown in Figure 4.5. At this point, the single distant microphone

(SDM) experimental set-up is not used for any further multi-microphone processing, but it

provides a better characterization of the effect of reverberation in the specific experimental

scenario.

In Table 4.6 the reported results correspond to the simulated WSJ corpus (sim-wsj) and

in Table 4.7 to the real WSJ corpus (real-wsj). These corpora are detailed in Section 4.3.2.

As expected, the presence of reverberation drastically reduces the recognition performance

for both cases. Nevertheless, we still observe that, overall, the use of TFRCC features
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Mic mono tri1 tri2 tri3 dnn
L1C 65.5 42.3 36 24.8 16.1
L2R 63.9 41.2 35.4 24.4 15.5
L3L 65.2 41.9 35.9 24.8 16.2
L4L 67.5 43.4 37 24.9 16.2
LA6 68.5 44.3 38.9 26.3 17.1
Avg 66.12 42.62 36.64 25.04 16.22

(a) Results using MFCC based front-end

Mic mono tri1 tri2 tri3 dnn
L1C 63.9 41.3 34.7 23.9 15.6
L2R 64.2 39.5 35.1 24.2 15
L3L 63.3 40.2 34.4 23.5 15.7
L4L 65.2 41.4 35.4 24.2 15.9
LA6 66.1 42 37.1 25.4 16.5
Avg 64.54 40.88 35.34 24.24 15.74

(b) Results using TFRCC based front-end

Table 4.6: SDM WER results (%) for the recognition of the sim-wsj dataset

Mic mono tri1 tri2 tri3 dnn
L1C 66.7 40.9 33.9 23.1 14.5
L2R 68.1 43.1 37 24.1 16.7
L3L 64.5 40.6 33.6 22.8 15.1
L4L 64.4 41.9 34.1 23.3 15.4
LA6 66.2 42.4 35.7 22.9 15.4
Avg 65.98 41.78 34.86 23.24 15.42

(a) Results using MFCC based front-end

Mic mono tri1 tri2 tri3 dnn
L1C 65.1 40.5 34.2 22.8 14.9
L2R 67.5 42.9 35.8 24.1 16.5
L3L 64 38.9 33.2 22.3 14.4
L4L 64.2 41 33.4 22.7 14.2
LA6 65.4 40.6 33.6 22.6 14.4
Avg 65.24 40.78 34.04 22.90 14.88

(b) Results using TFRCC based front-end

Table 4.7: SDM WER results (%) for the recognition of the real-wsj dataset

results in improvements of the performance, compared to MFCC features.

In Table 4.8 we present the relative WER reduction rate, when the TFRCC features

are used. First, we compare these relative WER reductions to the corresponding results

when clean speech is used (see Table 4.4). We notice that, for the mono and tri1 acoustic

models the reverberated conditions lead to an increase of the performance gap between

the TFRCC and MFCC features. For the remaining acoustic models, the inclusion of

reverberation leads to similar relative WER reduction rates, with TFRCC outperforming

MFCC features in most cases. We note here that although MFCC result in a maximum

Mic mono tri1 tri2 tri3 dnn
L1C 2.24 2.36 3.61 3.63 3.73
L2R -0.47 4.13 0.85 0.82 3.23
L3L 2.91 4.06 4.18 5.24 3.09
L4L 3.41 4.61 4.32 2.81 1.85
LA6 3.5 5.19 4.63 3.42 3.51
Avg 2.39 4.08 3.55 3.19 3.08

(a) sim-wsj

Mic mono tri1 tri2 tri3 dnn
L1C 2.4 0.98 -0.88 1.30 -2.76
L2R 0.88 0.46 3.24 0 1.2
L3L 0.78 4.19 1.19 2.19 4.64
L4L 0.31 2.15 2.05 2.58 7.79
LA6 1.21 4.25 5.88 1.31 6.49
Avg 1.12 2.39 2.35 1.46 3.5

(b) real-wsj

Table 4.8: TFRCC to MFCC relative SDM WER reduction (%) for the two datasets. Numbers in bold
highlight the cases that MFCC features result in better recognition accuracy.
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Features mono tri1 tri2 tri3 dnn
MFCC 69.5 64 62.5 60.9 54.9
TFRCC 69.1 63.6 61.6 57 52.4

Relative WER reduction (%)
TFRCC to MFCC 0.5 0.6 1.5 6.4 4.6

Table 4.9: Recognition PER results (%) for the reverberant phrich dataset.

of relative 2.76% better recognition rate in a single case, the TFRCC features consistently

result in better WERs, even up to 7.79% relative.

In the last set of experiments we study the effect of reverberation in the recognition

results of the phrich dataset. In Table 4.9 we present the PER of the recognition output

for this dataset. First, similar to the recognition of reverberant WSJ data, we observe a

significant reduction in the recognition accuracy, compared to the corresponding close-talk

experiment. Moreover, as already noted, the lack of a language model yields a further

increase in the average recognition error rate. Nevertheless, note that also in this complex

case, the TFRCC features still outperform the MFCC features, for any type of acoustic

model.

4.6 Conclusions

In this chapter, we presented a new set of features that can be used as a front-end for

phone segmentation, as well as for speech recognition and other similar tasks. The pro-

posed features result from the time-frequency RS of the speech signal. In the experimental

activities in the area of speech segmentation, the TFRCC features were shown to per-

form equally well with the traditional MFCC features, as far as more relaxed tolerance

thresholds are concerned. On the other hand, they outperform MFCC features, with

strict thresholds of tolerance. The power of the proposed feature set lies in the ability of

the method of reassignment to offer a much sharper representation of the energy distri-

bution of the speech signal. The experiments also indicated that further improvements

are possible in the proposed analysis: in fact, both the application of the IDCT and the

extension of the features with time derivatives do not yield an improvement as high as

expected based on the behaviour of the forced alignment with MFCC features.

In addition, we presented a set of experimental results for the recognition of speech

signals represented with the TFRCC features. We found that these features consistently

lead to improvements, compared to the use of the MFCC features. These results were

confirmed with the use of clean, and reverberated material taken from two different cor-

pora. In addition, we studied the effect of using different acoustic models, from simple

monophone based models to state-of-the-art DNNs, as well as the effect of using a tri-
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phone language model as opposed to a simple phone loop. In the case of reverberated

data, for one of the used corpora we presented results for 5 microphones installed in the

experimental set-up, setting the basis for a multi-microphone technique to improve DSR

recognition accuracy, which will be introduced in Section 6 .
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Chapter 5

Objective quality measures

In this chapter we discuss the use of the RS as the time-frequency representation upon

which objective signal quality measures are computed. As discussed in more detail in the

following, such measures can be exploited in a wide range of speech analysis applications.

We are particularly interested in how objective quality measures can be exploited in order

to characterize reverberation, and subsequently to improve DSR recognition performance,

as discussed in Chapter 6. In order to move to this direction, we study the relation of

speech quality measures with specific parameters that describe a reverberant scenario. In

Section 5.1 we provide some background in the area of objective signal quality measures,

and present some of the most widely exploited ones. In Section 5.2 we revisit these mea-

sures, using the RS as the time-frequency representation upon which they are built, and

propose a new subjective quality measure based on the RS. In Section 5.3 we study objec-

tive quality measures, with an emphasis on their adequacy in characterizing reverberant

conditions1

5.1 Related work

The evaluation of the quality of speech signals is of interest in a wide range of applications.

Traditionally, the first attempts to evaluate speech quality targeted the evaluation of the

distortions introduced by speech codecs or communication channels [Furui, 1991, Malfait

et al., 2006, Rix et al., 2001, Wang et al., 1992]. Later, speech quality measures, also known

as distance or distortion measures, have been used for the evaluation of various automatic

systems that aim at the improvement of speech quality. In particular, systems that

perform speech enhancement, noise reduction, and dereverberation are known to introduce

certain types of distortions [Hu and Loizou, 2008], which can degrade the quality of the

1The analysis presented in this section represents an extension of the collaboration with Cristina Guerrero.
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input speech. Objective quality measures are commonly exploited for the assessment of

the introduced distortions.

Before going to further details on how speech quality can be evaluated, the notion

speech quality itself should be discussed. In [Loizou, 2013], quality if defined as “one

of the many attributes of speech signals, [...] which is highly subjective, and difficult to

evaluate reliably”. Although not equivalent, the term quality is often used as a synonym

to the intelligibility of a spoken utterance. The most accurate and reliable method for

evaluating speech quality is through subjective listening tests, where human listeners judge

the overall quality of a given speech utterance. However, in order to obtain repeatable

results, subjective evaluation has to follow very strict rules [itu, 2003, Hu and Loizou,

2007, Quackenbush et al., 1988] and it is a costly and time consuming process. For these

reasons, objective speech quality measures have been devised and exploited for many years

in speech processing applications. Objective speech quality measures aim at assessing the

quality, or intelligibility, of a distorted speech signal, and they are expected to incorporate

different sources of knowledge, as for example psychoacoustics, and phonetics. In the ideal

case, an objective speech quality measure should accurately match the results obtained

with subjective listening tests.

5.1.1 Mathematical considerations

Consider a vector space χ, and two vectors x and y defined in this space. A metric d,

also called distance function or simply distance, is defined as

d : χ× χ→ [0,∞] , (5.1)

and satisfies the following properties

1. 0 ≤ d(x,y) <∞ ∀x,y ∈ χ (non negativity),

2. d(x,y) = 0 if and only if x = y (identity of indiscernibles),

3. d(x,y) = d(y,x) (symmetry),

4. d(x + z,y + z) = d(x,y) (invariance), and

5. d(x,y) ≤ d(x, z) + d(x, z) (triangle inequality).

The first three properties ensure that the given metric is easy to manage in a mathematical

way, and are customary in the definition and study of distances. According to these

properties, the distances take positive values with a distance equal to 0 signifying that

a vector is compared to itself. Furthermore, the distance from x to y is equal to the

distance from y to x. In practice, this ensures that when comparing two sounds, the
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resulted distance is not affected by which of the two is used as a reference. The fourth

property ensures that the addition of some distortion to both sounds will not change

their overall distance. The final requirement, i.e., the triangle inequality, is necessary

for the distance measure d to be called a metric. It is interesting to note here that, in

speech processing applications, there are situations that the above properties may not be

necessary or even desirable [Flanagan et al., 2008, Gray and Markel, 1976, Loizou, 2013].

However, in general, distances that do respect the above attributes lead to results that

are easier to interpret in an intuitive way. As far as objective speech quality measures

is concerned, the condition of symmetry and the triangle inequality are relaxed, and the

term distance is used more in analogy to the term dissimilarity rather than its strict

mathematical definition.

Focusing further on distance measures for speech processing, when x and y are two

speech vectors and d(x,y) the distance among these, two additional properties that have

been described in [Gray and Markel, 1976, Rabiner and Juang, 1993] are the following.

1. It should be possible to efficiently evaluate d(x,y), and

2. d(x,y) should be physically meaningful and have a valid interpretation in the fre-

quency domain

The first of these criteria, concerns the amount of calculation for its evaluation, an aspect

that is not so relevant any more. The second, however, is a practical one and it can

ensure that a distance measure is usable in real applications. In addition, it suggests

that a particular value of the measure should be correlated with the subjective distance

judgement, as measured through listening tests.

Objective speech quality measures can be categorized according to the domain on

which they operate and have a particular interpretation. The characteristics and some

well known examples of the common groups are discussed in the following.

5.1.2 Time domain measures

Historically, the first distance measures were described in the time domain, and were

exploited by coders that aimed at reproducing the waveform of the input signal. The

most typical time domain measures are the signal to noise ratio (SNR) and segmental

SNR (SNRseg). The correlation of SNR with subjective quality has been measured quite

poor, making it of little interest as a general objective measure of speech quality [Hansen

and Pellom, 1998]. Instead, SNRseg is calculated in a segmental manner [Tribolet et al.,

1978], but it can be affected by extended silent regions, as the reduced signal energy in

these regions will bias the whole calculation. In addition, it is not possible to incorporate

perceptual information in the calculation of SNRseg, as for instance could be done by
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weighting more the distortions that appear in frequencies that are perceptually more

relevant.

5.1.3 Spectral domain measures

Due to the various problems related to the time domain measures the first spectral domain

alternatives were introduced. These are less sensitive in silent regions, time misalignments

and delays [Quackenbush et al., 1988], while from their definition they have a particular

spectral interpretation. A common spectral alternative for a time domain measure is the

frequency-weighted SNRseg, defined as

dfwSNRseg(S, S̃) =
10

M

M−1∑
m=0

∑K
j=1wj log10

[
S2(j,m)/

(
S(j,m)− S̃(j,m)

)2
]

∑K
j=1 wj

(5.2)

where K is the number of frequency bands, M is the total number of segments (frames),

m is the current segment index, wj is the weight assigned to the j-th frequency band,

S(j,m) is the clean signal spectrum and S̃(j,m) is the evaluated signal spectrum.

Another natural choice for distortion measures between S and S̃, is the set of Lp norms

defined as

d(S, S̃)p =

∫ π

−π
|V (ω)|pdω

2π
, (5.3)

where V (ω) is the difference on the two spectra in the log spectrum domain

V (ω) = log S(ω)− log S̃(ω) . (5.4)

From (5.3), and for p = 1 we obtain the log spectral distance and for p = 2 the root mean

square (RMS) log spectral measure. The Lp measures are linear, satisfy the symmetry

and positive definiteness properties, and have a strong mathematical basis. In addition,

they can be easily related to decibel variations in the log spectral domain. However, Lp
norms can be quite irregular, as shown in [Rabiner and Juang, 1993]. Furthermore, they

are particularly affected by the contents of the evaluated sound signal, and when versions

of the same signal are compared the values are considerably smaller, than when comparing

versions of different sounds. Finally, one of the main problems of the Lp measures is their

computational efficiency.

5.1.4 Cepstral domain measures - cepstral distance

As demonstrated in [Gray and Markel, 1976], the CD measure is an efficient method for

the computation of the RMS log spectral measure, when the cepstral coefficients ck are
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computed recursively from the LP coefficients ak, as shown in (2.31). With the application

of the Parseval’s theorem on the L2 measure, we obtain

d2
2 =

∞∑
−∞

(ck − c̃k)2 = (c0 − c̃0)2 + 2
∞∑
1

(ck − c̃k)2 , (5.5)

where ck and c̃k are the cepstral coefficients of the two evaluated signals. The infinite

number of terms makes this definition of no practical use. For this reason, the d2
2 measure

is normally truncated in a smaller set of L terms, which yields the CD measure

d2
L = (c0 − c̃0)2 + 2

L∑
1

(ck − c̃k)2 . (5.6)

The practice of keeping only a small set of cepstral coefficients, leads to a measure which

is closely related to the rms distance between smoothed versions of the cepstra.

5.1.5 Likelihood ratios and perceptual measures

Several other distortion measures are built upon the log spectral difference V (ω). The

Ikatura-Saito (IS) [Itakura and Saito, 1970] measure is defined as

dIS(X, X̃) =

∫ π

−π
[eV (ω) − V (ω)− 1]

dω

2π
(5.7)

=

∫ π

−π

X(ω)

X̃(ω)

dω

2π
− log

σ2

σ̃2
− 1 , (5.8)

where σ2 and σ̃2 are the one-step predictor errors of X(ω) and X̃(ω), respectively which

are defined as

s2 = exp

∫ π

−π
X(ω)

dω

2π
. (5.9)

As discussed in [Buzo et al., 1980], the IS measure satisfies a form of the triangle inequality,

it is subjectively meaningful and results from the standard LP formulas. In particular the

IS measure can be expressed as

dIS(ax, ax̃) =
σ2

σ̃2

aRx̃a
T
x

ax̃Rx̃aTx̃
+ log

aRx̃a
T
x

ax̃Rx̃aTx̃
− 1 , (5.10)

where ax and ax̃ are vectors created with the LP coefficients of the clean and distorted

speech signals respectively, and Rx̃ is the autocorrelation matrix of the distorted speech

signal.

However, as in general the ratio measures, the IS does not respect the symmetry
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property. In fact, for large distortions the asymmetry is substantial [Rabiner and Juang,

1993]. The log likelihood ratio (LLR), also referred to as the Itakura distance, is defined

in a similar fashion as the IS measure, but does not incorporate the estimation of the gain

using the variance of the predictor error. The LLR measure is found as follows

dLLR(ax, am) = log
aRx̃a

T
x

ax̃Rx̃aTx̃
, (5.11)

In practice, the LLR represents the ratio of energies in the LP residuals of the clean

and distorted signals. In [Hu and Loizou, 2008] LLR was found to correlate well with

subjective evaluation of signal quality.

A last set of objective quality measures have been inspired by psychoacoustic stud-

ies, and the understanding of human auditory system. The Perceptual Evaluation of

Speech Quality (PESQ) measure, is a very computationally complex measure, which is

recommended by the ITU-T for narrow-band speech quality assessment [Recommenda-

tion, 2001, Rix et al., 2001]. In order to compute the PESQ score, the signals are first

modelled according to a standard telephone headset. Then they are time aligned, equal-

ized and transformed with an auditory filter. Two distortion parameters, one symmetric

disturbance dsym and one asymmetric disturbance dasym, are extracted from the difference

of the transforms of the clean and distorted signals. The PESQ score is then computed as

a linear combination of the average disturbance values. High correlations with subjective

listening tests were reported by [Hu and Loizou, 2008, Rix et al., 2001].

5.2 Reassigned objective quality measures

Despite the long literature in the field of objective quality estimation, and the extended

efforts to achieve results similar to those obtained from listening tests, there are still open

problems in this area. For example, as discussed in [Hu and Loizou, 2008], although ob-

jective measures predict well overall quality, their performance is not so satisfactory in

predicting background distortion. Motivated by the improved time-frequency represen-

tation offered by the RS, and the additional approaches that can be exploited given the

continuous nature of the RS data, we study here objective quality measures defined on

time-frequency reassigned spectral data. The distance measures defined earlier, i.e., fwS-

NRseg, LLR, and CD, can all be redefined in the reassigned time-frequency domain by

replacing the traditional short-time spectrum with the time-frequency reassigned one.

This results in measures such as the RCD, the reassigned fwSNRseg, and the reassigned

LLR which all share the same physical interpretations as their original counterparts.

Before using the RS for the calculation of such measures the representation has to be
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re-quantized, which, as already discussed in Section 3.3.2, leads to information loss and

smearing of the time-frequency distribution. Nevertheless, this re-quantization results in

a positive two dimensional representation, very similar to the spectrogram, which can

ensure that each of these distances will follow the same set of mathematical properties as

the original one.

Reassigned point wise distance (RPWD) Here, we attempt to avoid altogether the prob-

lematic re-quantization step. To achieve this, we devise a distance measure which operates

directly on the continuous time-frequency data and compares the geometries of specific

time-frequency regions. In practice, this measure is the average Euclidean distance be-

tween a set of time-frequency reassigned points in the clean and the distorted signals, as

follows

d(cx̂, cm̂) =
1

N

∑
∀(t,ω)∃TΩ

√
(t̂c − t̂m)2 + (ω̂c − ω̂m)2 . (5.12)

where TΩ are time-frequency regions. Although this approach is not affected by the

reintroduction of smearing due to re-quantization, noise can be a problem. As discussed

in Section 3.2, the RS suffers from random like noise which results, mainly, from forcing

the reassignment operation in regions where there is no energy. Particularly in the higher

frequencies, where the STFT has in general less energy the noise like time-frequency

reassigned data can drastically affect this type of reassigned euclidean distance. For this,

we limit the calculation of this distance in the region 30Hz-2000Hz, a step that ensures

less noisy results without discarding any relevant spectral areas. A final remark here

concerns the set of mathematical properties of distance measures. As mentioned, RPWD

can be viewed as the average Euclidean distance within two sets of points, and as such

respects all the mathematical properties of a proper metric. Nevertheless, it is important

to note that the RS itself is a non linear representation. The manner that the RS points

are reassigned when even small amounts of the same distortion are added in different

signals is not always the same. Therefore, the invariance property will not hold.

5.3 Experiments and results

In the following experiments, we study objective speech quality measures, particularly as

far as their ability to characterize reverberant conditions is concerned. For this, we focus

on the behaviour of the measures when the reverberation parameters, DRR and T60 (see

Section 2.4.1) are varying. From the long list of distance measures presented so far, here,

we concentrate on the CD, RCD and RPWD distances. The experiments reported in this

section are performed in a synthetic environment called SQUARE room, shown in Figure
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Figure 5.1: SQUARE room setting. Black dots indicate the microphone locations, and blue squares
show the various simulated positions of speaker. For each position, the speaker may assume 36 possible
orientations. Orientations are given as depicted on the polar coordinate system on the left.

5.1. The dimensions of the room are 4.80m× 4.80m× 2.7m and it is simulated using IRs

generated with our IM tool, which offers the possibility to set the orientation of the source

with a given acoustic directivity pattern. Moreover, it gives a fine control of several other

parameters as, for example, T60, which we vary in the range 0.2sec− 0.9sec. The full set

of IRs comprises the 3 positions shown in Figure 5.1, and for each position a set of 36

orientations. Each position and orientation is simulated for a set of four microphones2.

For the experimental activities in the SQUARE room reported in the following, we

use a data set which includes 30 sentences, and was created with a random selection of

5 utterances for each of the 6 speakers included in the WSJ0-5k DIRHA-English corpus

(see Section 4.3.2).

5.3.1 The effect of the amount of speech

Number of utterances As mentioned, from a mathematical standpoint, the distance mea-

sures should follow the invariance property, which means that when adding the same

amount of distortion to different signals, the distances of each distorted version from the

original should be equal. In the case of reverberation the distortion is not additive, so the

property is not exactly held, but in any case, the distance measure should not be critically

affected by the amount of speech used, and the exact contents.

In a preliminary experiment we tested the dependency of the distance measures on the

number of utterances and the utterance length. In Figure 5.2 we present the CD, RCD and

RPWD measures between clean and reverberant signals, for increasing values of T60. Each

experiment is repeated for a different number of total test utterances. From this figure

several observations can be made. First, we observe that, in general, all the investigated
2As the microphone names hint the original set comprises more than 4 microphones, which are exploited in other works,

as for instance in [Guerrero, 2016].
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measures behave in a way consistent with the reverberation parameters. In particular, for

increasing T60 the various distance measures are increasing as well, indicating the increase

of the amount of reverberation. This aspect will be further studied in the following section.

A second observation from Figure 5.2 is that, for all distance measures, and across all

T60 values, the number of utterances does not largely affect the results. The use of a single

utterance may lead to an over- or underestimation of the CD and RPWD distances, but

with the use of 25-30 utterances measures start converging. In fact, the calculation of

the measures in a per-frame basis and the averaging over all the frames of an utterance

leads to this behaviour, and ensures results that do not vary largely among sentences.

Particularly for the RCD notice that the various curves are closer to each other compared

to the case of CD, indicating a better convergence, even with a reduced set of utterances.

Behaviour of RPWD Finally, in relation to this experiment it is interesting to demon-

strate how the behaviour of the RPWD of a single utterance changes for different values

of the T and Ω parameters, which define the time-frequency range within which each

average value of the measure is computed. This effect is shown in Figure 5.3, where the

RPWD between clean and reverberant utterances is shown, for different values of these

two parameters. We observe, as expected, that small values lead to significantly noisy

results, and, on the other hand larger values result in heavily smoothed output. Based on

this type of analysis, and a more detailed investigation, we have selected the configuration

T = 0.3 and Ω = 30Hz as the default values for our experiments.

Utterance length A more accurate analysis of the variations of the distance measures

according to the utterance length is performed next. In Figure 5.4, we show the CD,

RCD and RPWD measures as a function of the utterance length, for two T60 values. We

observe that CD and RCD behave in a very similar fashion, and in general, the variations

of the distances decrease for utterances longer than 7-8 sec. The results of the RPWD

are not quite similar, as we observe generally larger variations, and, surprisingly, a lower

variation of the measure for the larger reverberation time. This can be an indication that

this measure is more affected by the contents of the utterance, i.e., the spectral phonetic

structure which gets smoother in more reverberation.

5.3.2 Relation with the reverberation

In the next experiment, we investigate the ability of the CD, RCD and RPWD distances

to evaluate reverberant speech. Assuming various values for the T60 for the generation of

the IR, we compute the average CD, average RCD and average RPWD between the clean

and the reverberated signals. The results are presented in Figure 5.5, where it is shown
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Figure 5.2: The CD (top), RCD (middle) and RPWD (bottom) measures between clean and reverberant
signals, as a function of T60. Each curve corresponds to a different number of utterances, as shown in the
legend. The speaker is located at P1 of the SQUARE room, adopting the orientation 0.o The considered
microphone is M1.
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Figure 5.3: The RPWD between a reverberant and a clean speech utterance, for increasing T60, and
various values for the parameters T and Ω.
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Figure 5.4: The investigated distances between clean and reverberant signals, as a function of the ut-
terance length. The speaker is located at P1 of the SQUARE room, adopting the orientation 0.o The
considered microphone is M1.
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Figure 5.5: The CD (top), RCD (middle) and RPWD (bottom) between a reverberant to a close-talk
signal, in terms of increasing reverberation time. The speaker located at P1 of the SQUARE room,
adopting three different orientations. In this experiment we consider only the microphone M1. Notice
the better discrimination offered between 0◦ and 30◦ by RPWD, compared to CD and RCD.

that these measures have a behaviour very similar with the DRR. First, we notice that less

directive cases result in larger measured distances between the clean and the reverberant

signals. The RPWD seems to offer a slightly better discrimination between the most

directive cases. Second, we observe that the average distances monotonically increase

along with the increasing T60. Taking into account the findings of Figure 2.12 the objective

quality measures are expected to follow the DRR changes in an inverse fashion. Although

not presented here, we found that this finding is valid for other objective speech quality

measures discussed in the literature, such as fwSNRseg and LLR, and their reassigned

versions.

In order to investigate the previously outlined relation between the reverberation pa-

rameters and objective speech quality measures, in the following experiments we report

the variations of these measures under different positions and orientations of a speaker

located in the SQUARE room setting, with a fixed T60 equal to 0.7sec. The CD, RCD

and RPWD measures between the clean and reverberated signals as a function of different

orientations adopted by the speaker are presented in Figure 5.6. The DRR of the IRs

used to reverberate the corresponding utterance is also illustrated. As expected, it is

observed that when the speaker is oriented towards the microphone under consideration,
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Figure 5.6: Objective quality measures, and DRR, as function of the speaker orientations, for an utterance
simulated with the speaker located at P1. Results are presented here for the microphone M1.

i.e., orientation 0o, the minimum CD, RCD and RPWD values and maximum DRR value

are measured. In addition, there is a clear inverse behaviour between the DRR and each

of the objective measures evaluated here. Comparing the CD and RCD curves, we can see

that the two measures behave in a very similar fashion, with RCD providing slightly a less

smooth curve, which, however, should not pose any problems. From the RPWD curve,

a limitation concerning this measure becomes evident. Although this measure offers a

very good discrimination among orientations less than ±100◦, its values become too noisy

outside this region.

Next, we perform the above experiment for a different position, and additional mi-

crophones. We report only the results obtained with the CD and RCD measures as we

showed that RPWD can be quite noisy. The set of CDs and RCDs between the close-

talk signal and four reverberated instances, i.e., microphones M1, M4, M7 and M10, as

a function of different orientations are shown in Figure 5.7. We also present the DRRs

of all the corresponding IRs. These results confirm the previous insights concerning the

relation between CD/RCD and DRR.

In addition, this case illustrates how these parameters vary under more complex condi-

tions, for instance when the speaker is oriented towards a microphone, but at a consider-

ably larger distance. As an example, in Figure 5.7, we can compare the curves computed

from signals captured by microphones M4 and M7, which represent cases of a near and

a far microphone, respectively. When the speaker is oriented at around 130o, i.e., direct
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Figure 5.7: CD (left), RCD (middle) and DRR (right) as a function of different orientations for an
utterance simulated with speaker located at P3. Results are presented, from top to bottom, for the
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towards M4, in the related sub-figures there is a clear distinction of the lowest CD/RCD

and highest DRR both over all orientations and over all microphones. On the other hand,

when the speaker is oriented at around 200o, i.e., direct towards M7, although the curves

are characterized by a minimum CD/RCD and a maximum DRR, the distinction of these

values is not so clear. This can also be related to the average DRR decrease, and exposes

a complex non discriminative scenario for the identification of the least distorted channel,

even with the exploitation of prior information.

A final remark concerns the comparison between CD and RCD measures. Similar to

the previously illustrated case (speaker position at P1), the two measures produce very

similar results. There are however some interesting variations. Notice for example the

maximum values obtained in CD and RCD for microphone M4, which are marked with

a red circle in the figure. According to our findings so far, these two orientations should

correspond to the two minimum values marked in the DRR curve. We observe that,

for the RCD this holds, as the marked maxima are the largest ones. In the case of CD

this analogy is not valid. Similar observations can be done for other orientations and

microphones.

The effect of thresholds on RS In Section 3.2.3 we discussed the possibility to prune

the RS in order to emphasize either the harmonic, or the impulsive components of the

input signal. This is performed with the application of a threshold on the mixed partial

derivatives of the phase. In Section 4.5.2 we demonstrated how the choice of different

values for these two parameters can significantly affect ASR results obtained with the use

of the TFRCC features, i.e., features extracted exploiting the RS of speech signals.

Here, we are interested to study the effect of these two parameters in the ability of the

RS to characterize a reverberant environment. To study this aspect, we calculate the RCD

between clean and reverberant for various values assigned to the sinusoidal and impulsive

thresholds, used to prune the RS of the data. In Figure 5.8, we present these results

assuming the SQUARE room setting, and for a speaker located at position P1. First,

we observe that, in general, changes of the sinusoidal threshold affect more the RPWD

curves than corresponding changes in the impulsive threshold. For instance, notice the

very low variations among the different curves presented in the first column of results,

and compare to the extended changes between each consecutive pair of results in the first

row. This can be probably attributed to the fact that, in speech, the impulsive content

is relatively less than the harmonic. This fact means that any changes in this part affect

less the overall result, which is obtained as an average over the whole duration of each

test utterance.

Another finding from this type of analysis, is the indication to the best configuration
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Figure 5.8: The RCD for different sinusoid and impulsive thresholds. The speaker is located at the P1

position of the SQUARE room. The x axis corresponds to different speaker orientations, here in the
range 0◦ - 180◦.

of the RS when this is used for evaluating reverberated data. In particular, higher values

for both thresholds lead to curves that characterize the various orientations in a way more

consistent to the DRR parameter, which, according to our discussion so far, this is a useful

property for a speech quality measure.

5.4 Conclusions

In this chapter, we presented various objective speech quality measures, and focused

on their ability to characterize the amount of distortion due to reverberation, in a way

that is consistent to common reverberation parameters. In particular, we investigated

the CD measure, in its traditional and reassigned version, as well as a new measure

defined on the RS of a signal. The findings from the presented experiments are several.

First, we investigated how each measure is affected by the amount and length of the test

utterances used, showing that all measures converge with a use of relatively small number

of utterances. Moreover, we found that the behaviour of all studied measures is very

similar to the behaviour of the DRR when different T60 values are assumed. At the same

time, we found that the CD/RCD and RPWD are all good choices for discriminating

among three different orientations assumed by a speaker, located in a room of increasing

T60. In the next experiments, we focused on a reverberant enclosure with T60= 0.7sec,

and investigated closely the behaviour of CD, RCD and RPWD for multiple orientations
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of the speaker. From this, we verified the inverse relation between these measures and

DRR, and identified certain cases which can be problematic in terms of characterizing the

amount of distortion through an objective quality measure. Finally, we observed that in

such a configuration RPWD can be disappointingly noisy, while CD and RCD operate in

a similar manner, with RCD offering some improvements for certain orientations.
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Chapter 6

Channel selection for

multi-microphone DSR

In the previous chapter, we demonstrated that objective speech quality measures offer a

meaningful basis to characterize a reverberant signal, as they behave in a way consistent to

the DRR and T60, two commonly exploited reverberation parameters. In this chapter, we

build upon this finding and incorporate objective quality measures in a DSR system, and

in particular, a multi-microphone solution based on CS. First, in Section 6.1.1 we present

some background on multi-microphone DSR, and in Section 6.1.2 we discuss the use of CS

in this context. In Section 6.2 we propose a CS method based on CD1, or, equivalently on

the RCD. Following this, in Section 6.3 we present experimental activities in the SQUARE

room setting, with a focus on demonstrating the behaviour of the proposed methods for

a range of possible positions and orientations. In Section 6.4 we present CS results, for

the same task presented in Section 4.5.3, exploiting both MFCC and TFRCC features.

6.1 Related work

6.1.1 Multi-microphone DSR

The use of multiple information sources is advantageous in mitigating the challenges in-

troduced in speech recognition under distant-talking conditions. Inspired by the human

auditory system, where two sensors (i.e., left and right ears) are used in parallel for the

understanding of the various acoustic stimuli, multi-microphone DSR solutions make use

of multiple acoustic instances of the same signal, acquired by more than one sensors

(i.e., microphones) placed in the acoustic environment. These sets of microphones can

adopt different forms, as for instance in the cases of microphone arrays and distributed

1This CS method stems from a collaboration with Cristina Guerrero.
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Figure 6.1: Typical architectures for multi-microphone DSR.

microphone networks. Microphone arrays are compact placements of sensors, set up ac-

cording to the demands of a particular signal processing mechanism that performs signal

combination. Details such as the sensor characteristics, the geometry of the array, and

the spacing among the sensors are all very important and well studied attributes that can

affect the success of multi-microphone approaches employed after the signal acquisition.

[Alvarado, 1990, Brandstein and Griebel, 2001, Flanagan et al., 1985, Huang and Benesty,

2007, Rabinkin et al., 1996]. On the other hand, distributed microphone networks com-

prise a limited number of sensors, which are not subject to any geometry constraints and

can be placed on objects or mounted on the walls. All the microphones are connected to a

computing system that ensures the synchronized capturing of audio signals. Compared to

microphone arrays, the distributed microphone networks offer a broader spatial coverage.

Multi-microphone solutions do not depend only on the characteristics of the micro-

phone networks, but also on the techniques used for processing the multiple speech sig-

nals. In a multi-microphone DSR scenario the goal of the recognition system is to process

the multiple inputs and derive a single recognition output for the spoken utterance. For

achieving this, different architectures can be adopted [Kinoshita et al., 2013, Wölfel and

McDonough, 2009], with processing modules that operate either at front-end or at post-

decoding processing level, as depicted in Figure 6.1.

As shown in Figure 6.1a, front-end approaches process multiple instances of the same

acoustic information and produce a single input for the subsequent recognizer. Signals, or

features are combined through methods such as beamforming, speech enhancement and

100



6.1. Related work Chapter 6. Channel selection for multi-microphone DSR

feature combination. CS based on scores computed from the signals, or acoustic features

is another valid front-end solution. Finally, an effective practice consists in combining

front-end processing approaches. As an example, [Kumatani et al., 2011] presented a sys-

tem where a selection of multiple channels was performed for applying beamforming on

a reduced set of signals. In general however, beamforming limits the scope of a method

to scenarios that employ microphone arrays, which are characterized by a limited dis-

tance between adjacent microphones. Inter-sensor spacing generally affects the resolution

of spatial sampling in any array processing application [Van Veen and Buckley, 1988].

In particular, this problem becomes critical in distant-speech applications, due to the

broadband nature of speech [Flanagan et al., 1985, Ward et al., 1995].

Post-decoding processing approaches perform a combination of information at the last

stage of the recognition system, as shown in Figure 6.1b. Renown methods, such as

ROVER [Fiscus, 1997] and Confusion Network Combination [Evermann and Woodland,

2000], require an individual, parallel recognition of each input signal before applying their

combination algorithms. Other methods, such as decoder-based CS [Obuchi, 2004] have

also been explored. The complexity and resource demanding nature of post-decoding

processing solutions increases with the number of captured channels, as each acquired

signal has to be decoded independently, before any combination or selection method is

applied.

A detailed review of multi-microphone approaches for DSR, along with an extensive

set of related experiments can be found in [Guerrero, 2016].

6.1.2 Channel selection

CS methods share the objective to detect the least distorted channel among the available

ones, assuming that a better match will result between the selected channel and the acous-

tic models of the DSR system. As mentioned, CS can be applied either at front-end or at

post-decoding level, commonly referred to as signal based and decoder based approaches,

respectively. In both cases, one relies on a specific measure which is optimized for the

final selection. According to the type of information exploited for the computation of

their measure, these methods can be further categorized into informed and blind methods

[Guerrero et al., 2016].

Informed methods exploit measures computed with the use of prior information. Al-

though not directly applicable in a real scenario, the study of these methods is particularly

interesting because it offers an understanding of the effectiveness of the related measures

under diverse reverberant conditions. In addition, such methods can be explored to de-

rive an upper-bound performance for a blind method that uses a similar score [Wolf and

Nadeu, 2010]. In particular, the oracle CS which exploits the word error rate (WER)
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of each recognized signal in order to identify the best channel, can also be seen as an

informed decoder-based method to use for reference purposes. Although most of the mea-

sures described in the literature can be easily modified to be used in an informed way,

very few authors have performed such a study. In [Wolf and Nadeu, 2009] measured IRs

were used to verify the assumption that DSR can be benefited from IR based CS. In

[Wolf and Nadeu, 2010] the SNR and the position/orientation of the speaker were used

for computing informed measures.

On the other hand blind methods use no prior information, and the scores are devised

from the waveforms of the signals, or a more sophisticated representation. Blind decoder

based CS methods use information such as the likelihoods or posterior probabilities, to

assess the quality of each channel. Therefore, it is not possible to apply decoder based

techniques independently from the ASR process. Some representative examples of such

decoder based methods can be found in [Obuchi, 2004, 2006, Shimizu et al., 2000, Wölfel,

2007]. A detailed review of this topic can be found in [Wolf, 2013]. Although there is the

assumption that decoder based measures present a higher correlation to WER in DSR,

this has not been so far proven in the literature [Wolf and Nadeu, 2014].

Blind signal based CS methods include, among others, the use of energy and SNR,

cross-correlation between signals [Kumatani et al., 2011], and the modulation spectra of

the original and the beamformed signals [Himawan et al., 2015]. One of the most successful

measures described in the literature is envelope variance (EV) [Wolf and Nadeu, 2014].

EV based CS exploits the fact that the reverberation smooths the energy of speech signals.

This is observed as a reduction in the dynamic range of the envelope in the speech portions

of the input signal. For the calculation of the EV measure, the filter-bank energies (FBE)

Xm(k, l) in channel m, sub-band k and time frame l, are first normalized as follows

X̂m(k, l) = elogXm(k,l)−µm(k) , (6.1)

where the mean value µm(k) is calculated over the logarithm of the FBE of the entire

speech utterance. The mean normalized sequence of FBE is then compressed with the

application of a cube root function, and the variance Vm(k) of each sub-band k, for each

channel m, is extracted. EV based CS selects the channel that maximizes the average

variance over all channels:

M̂V = arg max
m

∑
k

Vm(k)

max
m

(Vm(k))
. (6.2)

The application of a different weighting for each channel and sub-band in (6.2) was pro-

posed in [Wolf and Nadeu, 2014]. However, to the best of our knowledge, no further

elaboration of this concept has been described, and no experimental evidence has been
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Figure 6.2: The average EV measure of artificially reverberated utterances, in terms of increasing rever-
beration time. The speaker is located at P1 of the SQUARE room, adopting three different orientations.
In this experiment we consider only the microphone M1.

derived to support the use of such a weighting scheme. In Figure 6.2 we present the EV

of a reverberated signal, for increasing T60 values, and three different speaker orienta-

tions. Compared to Figure 5.5, notice the much lower discrimination power of EV among

different speaker orientations, and the particular low performance for higher T60.

6.2 CD and RCD based channel selection

In a multi-microphone scenario, with many microphones distributed in the room, DSR

can be performed on any of the reverberated instances of the same utterance. Given the

highlighted relation between reverberation parameters and objective quality measures, it

is reasonable to assume that an objective measure will be advantageous in detecting the

least distorted channel, in order to improve the recognition accuracy. Although we found

that RPWD can, in cases, offer a better discrimination among reverberation conditions

caused by different orientations (e.g., see Figure 5.5, in the following approach we focus on

the CD/RCD for various reasons. First, the CD is perhaps the most intuitive objective

measure for signal quality, which as shown also applies well in cases of reverberation.

Cepstrum-based comparisons are equivalent to comparisons of the smoothed log spectra

of the signals [Rabiner and Schafer, 2011]. In this domain, the reverberation effect can be

viewed as additive [Huang et al., 2001]. Furthermore, as discussed in [Rabiner and Juang,

1993], the CD has a particular frequency domain interpretation in terms of relationship

between a set of signals and their geometric mean spectrum. These last attributes are

exploited in the proposed CS method, as described in the following. It is noted here, that

in the following we use the term CD to refer to any distance calculated in the cepstrum

domain, i.e., both to traditional and reassigned cepstra.
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6.2.1 Informed channel selection

In the informed CS method we assume the availability of the close-talk speech signal,

x(t). Each distant microphone signal can be expressed as follows:

xm(t) = x(t) ∗ hm(t) (6.3)

where m is the microphone index, and hm(t) is the related IR. As previously pointed

out and indicated in (6.3), in this work we are assuming that xm(t) is not distorted by

environmental noise. Equivalently, in the STFT domain each distant microphone signal

is expressed as

Xm(t, ω) = X(t, ω)Hm(t, ω) . (6.4)

The complex cepstrum ofXm(t, ω) is defined as the inverse Fourier transform of its complex

logarithm. In practice, as in many speech processing applications, the complex cepstrum is

replaced here by the real cepstrum, which uses the logarithm of the magnitude of Xm(t, ω).

This can be written as

log |Xm(t, ω)| = log |X(t, ω)|+ log |Hm(t, ω)| . (6.5)

From this representation it can be inferred that the CDs d(cx, cm) between the close-talk

and the reverberant signals are more affected by the set of IRs than by the content of the

spoken utterance.

Given the set of CDs d(cx, cm), and assuming that the least distorted channel corre-

sponds to the one nearest to the close-talk signal, the selection is performed as follows:

M̂x = arg min
m

d(cx, cm) . (6.6)

6.2.2 Blind channel selection

In a real scenario the close-talk signal is not available, therefore we propose here a non-

intrusive way to estimate CDs, from which CS is performed. The method relies on the

assumption that one of the distant microphone signals is characterized by a higher DRR

than the remaining ones. This typically occurs when the speaker is oriented towards that

microphone and/or the speaker is located closer than the critical distance. The remaining

channels are more affected by several degrading factors, for example attenuation effects

due to the multiple reflections and to the head of the speaker.

Based on the above assumption, we proposed to compute a reference as the logarithm
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of the geometric mean of the signals xm(t), in the magnitude spectrum domain:

R̂(t, ω) = log
∏
m

|Xm(t, ω)|1/M (6.7)

=
1

M

∑
m

log |Xm(t, ω)| . (6.8)

where Xm(t, ω) is the STFT of the signal captured by microphone m, and M is the total

number of microphones.

The cepstrum computed from the reference is then used to calculate the distance

between the reference and each microphone signal d(cR̂, cm). The least distorted channel

can be selected as the one furthest from the reference:

M̂R̂ = arg max
m

d(cR̂, cm) . (6.9)

In order to better explain the proposed method, we elaborate on (6.8), which with the

use of (6.5) can be rewritten as:

R̂(t, ω) =
1

M

∑
m

[log |X(t, ω)|+ log |Hm(t, ω)|] (6.10)

= log |X(t, ω)|+ 1

M

∑
m

log |Hm(t, ω)| . (6.11)

The second term of (6.11) represents an estimation of the average reverberation that

affects the multiple instances of the close-talk signal. Assuming to have a set of micro-

phones uniformly distributed in space, with one characterized by a substantially higher

DRR than the others, the resulting reference will be strongly influenced by the latter

ones, i.e. it will be far from the former.

Of course, a favourable situation as the one previously outlined can not always be

expected. For example, if all channels are equally impinged by reverberation, the selec-

tion of a specific channel is not relevant for improving the recognition performance. It

is expected that in such cases the decoding of all the microphone signals will result in a

similar recognition error rate. For this reason, we focus on scenarios in which CS is mean-

ingful, i.e., scenarios that feature the speaker at favourable positions and/or orientations

in relation to at least one of the microphones.
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6.3 Experiments in the SQUARE room

For the CS experiments in the SQUARE room, we use a data set which includes 120

sentences, referred to as WSJ120 data set. To create this data set we randomly selected

20 utterances for each of the 6 speakers included in the WSJ0-5k DIRHA-English corpus.

Given the fact that each recognition experiment performed in this room is repeated for

the whole data set at each position and orientation, a preliminary experiment showed

that this is a sufficient number of utterances to consider.

6.3.1 Relation between speaker orientation and oracle channel selection

The proposed CS method relies on the assumption that one of the distant microphone

signals is characterized by a higher DRR, and that this is closely related to the orientation

of the speaker. Moreover we assumed that the selection and decoding of the channel that

is less affected by reverberation, i.e., has a higher DRR, can lead to improved recognition

rates compared to SDM or a random CS. Before proceeding to the evaluation of the

proposed CS methods, we study closer these assumptions, and the relation that exists

between speaker orientation and recognition rates.

In Figure 6.3, we present oracle CS results obtained using WSJ120 data set in the

SQUARE room setting. The recognition experiments are based on tri3 acoustic models,

which are trained on MFCC features. In order to better understand the oracle curve, let

us associate it with the angles highlighted in Figure 6.4. We notice that the lowest error

rates are achieved when the speaker is directly oriented towards one of the closer located

microphones. Opposite to that, there are certain regions where an increase of WER is

observed. These regions correspond to the following geometric conditions:

• the speaker is directed towards a corner of the room, and/or

• the speaker is directed towards a microphone that is clearly more distant than the

remaining ones, and/or

• due to the symmetry of the geometrical problem (e.g. speaker in P2 directed towards

M7) the microphone is impinged by a more significant contribution in terms of strong

early reflections.

Table 6.1 presents a subset of the SDM recognition results. The first two rows corre-

spond to cases in which the speaker is oriented towards M1. Notice how this condition

is reflected into a much lower WER for the indicated microphone. The next set of ori-

entations, around 60o, corresponds to cases in which the speaker is oriented towards the

top-right corner of the room. The last set of orientations, around 180o, corresponds to
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Figure 6.3: WER for the oracle CD when the speaker is located at the position P2 of the SQUARE room,
with microphones M1, M4, M7 and M10.
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Figure 6.4: When the speaker is located at the position P2 of the SQUARE room the orientations 60o,
150o, 210o and 300o correspond to the corners of the room. When the microphones M1, M4, M7 and
M10 are considered the speaker is directed towards one of them at the orientations 0o, 120o, 180o and
240o, respectively.

cases in which the speaker is directed towards a more distant microphone. For the latter

two angular regions, a slightly better performance is provided with M1 and M7, respec-

tively. However, all the available channels produce very similar WER. Therefore, it can

be argued that any type of CS, even the oracle one, is not relevant here.

6.3.2 Relation between CD/RCD and WER

The study presented in Section 5.3 provided an important basis for the use of objective

quality measures, and in particular the CD and RCD, as a means for the selection of

the least reverberant channel in a multi-microphone DSR scenario. Here, we further

investigate the validity of our assumptions with a study on the relation between WERs

and CD/RCD values between clean and reverberant signals.

In Figure 6.5 we present the scatter graph for these measures and WER value pairs.
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orientation M1 M4 M7 M10
0o 19.4 33.1 35.6 33.1
10o 20.7 26.6 35.4 39.8
...
50o 30.0 31.0 36.4 34.0
60o 31.9 33.1 37.4 33.8
70o 31.1 32.5 39.5 34.6
...
170o 35.2 32.4 30.0 36.8
180o 35.1 34.7 29.8 34.7
190o 35.2 36.8 30.0 32.4
...

Table 6.1: SDM WER (%) for speaker position P2 and microphones M1, M4, M7, M10 of the SQUARE
room.
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Figure 6.5: Distribution of the average CD (left) and RCD (right), between close talk and reverberant
signals, with relation to the average WER achieved by the reverberant signals. Different points correspond
to different channels, i.e., M1, M4, M7, M10 of various orientations at position P2. The acoustic models
are trained on reverberated material.

Each point relates the average CD/RCD between the close-talk and the reverberated

signals for the WSJ120 data set, and the average WER that results from the decoding of

the reverberated signals, with tri3 acoustic models and MFCC features. It is evident that

CD and RCD are related to the recognition rate, as for both measures a clear trend can

be observed that an increasing degree of signal distortion, corresponds to an increasing

WER. Furthermore, we can observe that the RCD seems to correlate with the WER in a

slightly more linear way.

A final remark from this experiment concerns the application of the proposed CS

method for speech recognition, using acoustic models trained on reverberant speech. In

the literature on CS, clean acoustic models are commonly used in order to evaluate the

detection of the least distorted signal [Wolf, 2013]. Under such conditions, even an oracle

CS results in a very low performance. However, the results reported in Figure 6.5 prove

that the use of reverberant acoustic models, which guarantee a better overall performance,
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is a valid choice, as already shown in past work [Matassoni et al., 2002].

6.3.3 Relation between position/orientation and CD/RCD

Here, we examine closer the behaviour of CD and RCD based CS, for three positions and

multiple orientations in the SQUARE room.

In Figure 6.6, we introduce a polar representation of CS experiments, in which the

angle corresponds to the speaker orientation, and the radius to the rate, normalized to

1, at which each channel is selected. Horizontally, each row of polar graphs corresponds

to a different position of the speaker, with the polar graphs showing the results of CD

informed, RCD informed, and oracle CS respectively. In the latter one, it must be noticed

that for some cases the same WER was achieved by more than one microphone. In such

cases all the selected channels contribute equally to the rate represented in the polar

graph.

Focusing first on the left column concerning the informed method, the results can

be explained in a very intuitive way: the best channel corresponds to the microphone

towards which the speaker is roughly directed. For example, at position P1 the selected

microphone changes every 90o, with the region at which a microphone is selected centred

around this microphone. When the speaker moves closer to M1 (position P2) the region

at which this microphone is selected is symmetrically expanded around it. An interesting

observation results from position P3, where the behaviour of the informed CS is different

from the above cases, but can be related to reflections that arrive at the selected channel.

For instance, for the orientation of 60o, the selection of M1 can be explained by the first

set of reflections that arrive at this microphone from the top wall.

In the next column, the polar graphs show the results of the informed RCD based CS

method. Immediately, we notice a better agreement of the CS performed with the RCD

method to the oracle CS, at least in the sense that, the selection is also affected from

the contents of the utterance. Notice that the CD based method consistently selects the

same channel, for each position/orientation, and results in very high selection rates for

the majority of cases. On the other hand, the RCD and oracle methods select more than

one channels for different sentences uttered on the same position and orientation.

6.4 Experiments in the DIRHA room

In this section we present the CS results for the multi-microphone DSR experiments

performed in the DIRHA setting. It is noted here that, in contrast to the data sets

addressed in the previous sections, each comprising the whole WSJ120 set simulated for a

particular position and orientation, the corpora used here include a large number of mixed
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Figure 6.6: Channel selection with the informed CD (left), informed RCD (center) based methods, and
oracle (right). The representation refers to multiple positions and orientations of the speaker, with the
use of the microphones M1, M4, M7 and M10.

positions and orientations. These corpora are the sim-wsj and real-wsj sets, a simulated

and a real version of the full wsj set. The corresponding SDM results have been presented

in Section 4.5.3, where it was shown that the TFRCC features result in lower error rates

for every type of acoustic model used, compared to the baseline MFCC features. In the

following we report results based on dnn acoustic models, and compare the effect of each

CS method with the use of MFCC and TFRCC features. In addition, we report the

state-of-the-art EV method.

Table 6.2a contains the results for the sim-wsj dataset. First of all, we observe that, for
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MFCC TFRCC Rel.
SDM 16.22 15.74 2.9
oracle 10.16 9.57 5.8
CD informed 13.69 13.5 1.4
RCD informed 13.57 13.12 3.3
CD blind 14.71 14.28 2.9
RCD blind 14.63 14.1 3.6
EV 14.58 14.17 2.8

(a) real-wsj dataset

MFCC TFRCC Rel.
SDM 15.42 14.88 3.5
oracle 9.67 8.49 12.2
CD informed 12.95 12.99 -0.3
RCD informed 12.53 11.75 6.2
CD blind 14.31 13.84 3.3
RCD blind 13.49 13.03 3.4
EV 13.74 12.87 6.3

(b) real-wsj dataset

Table 6.2: CS WER results (%) with DNN based acoustic models.

every CS method employed, the use of TFRCC features result in a better performance than

the MFCC features, with a relative improvement ranging from 1.4% to 5.8%. Moreover,

RCD based CS, both blind and informed, consistently leads to lower recognition errors,

for both feature sets. The state-of-the-art CS method EV is found to slightly outperform

both CD and RCD blind measures, for the MFCC features. However, when TFRCC are

used for the recognition of the test data, RCD based CS closes this gap as well, and

provides the best recognition rate among all blind methods. Table 6.2b presents the same

experiment as above, for the real-wsj corpus, which contains real recordings that took

place in the DIRHA room, and apart from reverberation there is some noise degrading

the uttered speech. In these results, we observe that TFRCC based recognition achieves

a relative improvement of 12.2% as far as the oracle CS is concerned. In addition, the

use of the informed CD based CS leads to slightly improved recognition rate for the

MFCC features. For this corpus the EV based CS method is found to outperform both

CD and RCD based CS methods, for both types of acoustic models. With a closer look

at the results, we found that a reason behind this is the particular set of positions and

orientations in the real-wsj set, many of which exhibit a very low DRR. When the speaker

is located far from the microphones or/and is directed away from the closest microphone,

all channels are similarly affected by reverberation. This situation poses a limitation for

the CD/RCD based method, and can be better addressed by the EV method.

In Table 6.3 we present some relative WER reduction rates for many of the results

shown above. The most interesting finding from these numbers, is the increased perfor-

mance that RCD demonstrated over CD informed and blind for the real-wsj, if compared

to the sim-wsj. Since, as discussed, the real-wsj contains recordings with some environ-

mental noise apart from reverberation, this can be an indication that the RCD is a more

suitable measure in noisy situations.
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MFCC TFRCC
oracle to SDM 37.3 39.2
CD blind to SDM 9.3 9.3
RCD blind to SDM 9.8 16.6
EV to SDM 10.1 9.9
RCD inf. to CD inf. 0.8 2.8
RCD blind to CD blind 0.5 1.3

(a) sim-wsj dataset

MFCC TFRCC
oracle to SDM 37.3 42.9
CD blind to SDM 7.2 7
RCD blind to SDM 12.5 12.4
EV to SDM 10.8 13.5
RCD inf. to CD inf. 3.2 9.5
RCD blind to CD blind 5.7 5.8

(b) real-wsj dataset

Table 6.3: Relative CD WER results (%) with DNN based acoustic models.

6.5 Conclusions

In this chapter, we investigated a multi-microphone DSR method, and in particular a

CS technique that exploits objective speech quality measures. The focus was put on the

CD and RCD measures, which were used for performing CS in an informed and a blind

fashion. The contributions of this chapter are numerous. First, we proposed an effective

approach to study CS for DSR. In particular, we designed a series of experiments that

cover the possible source orientations, in a thorough way, under various speaker posi-

tions and microphone network configurations. From the corresponding results, CD/RCD

measures were found to be well related to the recognition rate, as obtained by decoding re-

verberant signals. In addition, we showed that the informed CD/RCD measures resulted

in an intuitive selection of the least reverberant channel. Finally, certain limitations of

CS were outlined, for example when a clearly best channel is not available.

In the last set of experiments, we evaluated the use of CD and RCD based CS in

combination with acoustic models trained on MFCC and TFRCC features. We found that

the proposed CS method is a valid approach to improve recognition performance in a real

multi-microphone setting. Overall, the proposed method produced results comparable

to, or better than the state-of-the art EV method. In addition, the RS based CD led to

improved CS results, even when MFCC based DSR was evaluated.
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Chapter 7

Pitch and melody extraction

So far, we found the RS to be a powerful time-frequency representation of speech signals

as it has been successfully exploited in different areas of speech signal analysis. One of

the strengths of the RS is its ability to offer a much better visualization of the harmonic

content of the signals, which can be further emphasized by the DRS introduced in Section

3.6. In this chapter we investigate further this representation, as we address the topic of

pitch contour extraction for singing voice melody extraction. In the first part, Section 7.1,

we provide some theoretical background on the topics of fundamental frequency, pitch and

melody, overview various methods concerned with the extraction of these quantities and

discuss the general underlying architecture as well as the importance of time-frequency

representations in addressing such tasks. In Section 7.2 the proposed pitch contour ex-

traction method, which is based on the RS of the input signal is presented in detail.

Various experimental activities and related results in the context of melody extraction

are described in Section 7.3.

7.1 Related work

7.1.1 Fundamental frequency, pitch and melody

As already described, in a complex pitched tone the frequency of each partial is an integer

multiple of the fundamental frequency. Opposite to this objective definition of a quantity

that can be measured, pitch is a perceptual attribute of sounds, which is used by listeners

in order to characterize these sounds as high or low. According to the American National

Standard Institute, pitch is defined as “that attribute of auditory sensation in terms of

which sounds may be ordered on a scale extending from low to high” [ANSI]. This defini-

tion however, does not reveal the close relation between pitch and the frequency of the

corresponding sound. Although the perceived pitch of a tone can be different from the
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perceived pitch of a sine wave with a f0 equal to the one of the tone, the two quantities

usually correspond very well [De Cheveigne, 2005, Klapuri and Davy, 2006]. An interest-

ing exception is the case of the missing fundamental, when the pitch of a tone is perceived

while there is no component with a similar f0. This is because in pitch perception the

auditory system processes as well periodicities which are implied by the relationships

between the higher harmonics. More information on the relation between fundamental

frequency and pitch can be found in [Hartmann, 1996, Rasch and Plomp, 1999, Terhardt,

1974].

A term which is closely related to fundamental frequency and pitch, particularly when

music signals are concerned is the melody. Many different definitions can be found for this

term, as for instance “the dominant individual pitched line in a musical ensemble” [Paiva

et al., 2006] or “the single (monophonic) pitch sequence that a listener might reproduce if

asked to whistle or hum a piece of polyphonic music, and that a listener would recognize as

being the ’essence’ of that music” [Poliner et al., 2007]. Although any pitched instrument

can attribute to the melody line of a song, it is the f0 of the singing voice that, particularly

in the pop culture, is identified more often as the melody line [Goto et al., 2010].

7.1.2 Pitch detection algorithms

Pitch detection from speech signals has a very long history, and although the clear dis-

tinction between pitch and fundamental frequency, most pitch detection methods actually

perform f0 estimation, since they do not take any perceptual models into consideration

[Hess, 1983]. Similarly, in the context of this work we will not make a distinction and in

the following, the terms PDA and f0 estimation are used interchangeably. Many PDAs are

described in the time-domain and they are concerned with the estimation of the period

of a quasi-periodic signal, and its inversion to obtain the f0. The use of the zero-crossing

rate, firstly introduced in [Kedem, 1986], has been often exploited for pitch detection, for

instance in [Rossignol et al., 1998]. Nevertheless, it has been indicated that this method

can be problematic [Roads, 1996], in particular for noisy signals or for signals with a lot of

energy concentrated around their f0. Similar to the zero-crossing rate, there are methods

based on the peak rate and the slope event rate. However, time-domain methods are

usually not able to account for spectrally complex waveforms, such as those of speech and

singing voice.

Another representation commonly exploited by PDAs is the autocorrelation function,

which for periodic signals is itself periodic and its first peak indicates the period of the

signal. Well known methods based on some type of cross-correlation are proposed in

[Boersma, 1993, Secrest and Doddington, 1983] and are offered by various speech analysis
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tools, such as Praat1 and the Speech Filing System2. With this set of methods problems

appear when a complex waveform, with multiple harmonics is analysed and the first peak

corresponds to a high order overtone, rather than the f0. A popular method which at-

tempts to address this problem in several ways in the YIN f0 estimator [De Cheveigné

and Kawahara, 2002]. For instance, YIN minimizes the difference between the wave-

form and its delayed duplicate, employs a cumulative mean function which de-emphasizes

higher-period dips and includes a parabolic interpolation of the local minima.

Many methods operate on the frequency domain and use the spectral representation

of the input in order to estimate the f0 of a signal. One of the first methods operating

on the spectral domain was based on the identification of the partials in the signal,

using peak detection and a pair-wise comparison of these partials [Piszczalski, 1986].

Alternatively, the use of filters enabled the f0 estimation by comparing the output of

filters with different center frequencies, as when the passband of a filter lines up with a

spectral peak the result is a higher output value. Various filter types have been used,

such as Comb filters [Moorer, 1977] or narrow user-tunable band-pass filters [Lane, 1990].

Finally, the f0 of a signal can be estimated from its cepstrum. The idea behind such

methods is that the Fourier transform of a pitched signal presents regularly spaced peaks,

which is the harmonic spectrum of the signal. In the log spectrum domain these peaks

are reduced and a periodic waveform is produced, the period of which, i.e., the distance

between consecutive peaks, is related to the fundamental frequency of the original signal.

The Fourier transform of this waveform, used for the cepstrum calculation, results in a

peak at the period of the original waveform.

7.1.3 Melody extraction systems

The increasing interest in music related applications, for example the automatic transcrip-

tion of audio recordings, the creation of karaoke files, and the music retrieval by singing

or humming, has recently led to extensive research activities in the area of modelling the

main melody of real world music recordings. According to the prerequisites of each spe-

cific application, the melody line has to be described in terms of a sequence of frequencies,

transcribed into sung or played notes, or in the common case that the main melody is

sung, expressed in terms of vocal effects, as for example tremolo and vibrato. All these

closely related tasks demand different post-processing units for their solution, but they

all have to incorporate a core module that detects and models the spectral regions of the

input audio where the melody line concentrates its energy.

In the case of clean singing voice it can be argued that a speech based PDA will be

1http://www.fon.hum.uva.nl/praat/
2http://www.phon.ucl.ac.uk/resource/sfs/

115

http://www.fon.hum.uva.nl/praat/
http://www.phon.ucl.ac.uk/resource/sfs/


7.1. Related work Chapter 7. Pitch and melody extraction

a good candidate for f0 estimation. However, more commonly than not, singing voice

is part of more complex musical ensembles, comprising many harmonic and percussive

instruments. The problem of detecting the pitch of singing voice in such polyphonic

recording is addressed in melody extraction systems. Due to the similarities between

PDA and melody extraction, the first successful solutions in the later were inspired by

the extensive literature in the area of pitch extraction. In [Paiva et al., 2006] an audi-

tory model is combined with the detection of peaks in the autocorrelation function and

in [Marolt, 2004] the spectral modelling synthesis (SMS) harmonics plus noise model of

speech is applied to music. However, the nature of music signals brings limitations in the

success of such methods. First, a music signal may comprise many different instruments,

with two or more notes from the same, or different, instruments sounding simultaneously.

Furthermore, percussive sounds and inharmonicities may, in principle, take place at any

moment and the vocal melody may interfere with partials of different sounds. For all

these reasons, the use of pitch extraction methods, that are designed for speech or mono-

phonic sound, does not produce the necessary results when singing voice in the context

of polyphonic music is considered.

Among the numerous approaches that have been proposed for the melody extraction

from polyphonic music signals, a general underlying architecture can be derived as de-

picted in Figure 7.1. The processing is usually separated into three distinct units. In the

first unit, the spectral processing takes place. Based on the approach selected to process

the input signal in the spectral domain, the systems are divided into two broad categories:

the salience-based and the separation-based. Methods in the first category transform the

input audio signal into a pitch salience signal, where each frequency is associated with a

certain value of energy or salience. Sub-harmonic summation, firstly introduced by [Ter-

hardt et al., 1982], is the most commonly adopted method for the creation of the salience

signal, and it is used in [Jo et al., 2010, Ryynänen, 2008, Salamon and Gómez, 2012].

A diverse weighting of spectral peaks, based on a pair-wise comparison between peaks is

proposed in [Dressler, 2009], but SHS is once again incorporated in the calculation of the

partial peak weights.

On the other hand, separation-based approaches attempt to segregate the singing voice

from the music accompaniment and perform the melody line tracking on the segregated

vocal signal, assuming that the problems associated with the presence of the background

music will be eliminated. In [Durrieu et al., 2009], the source/filter model is used to

represent the singing voice, while the background is modelled as a sum of sources with

distinct spectral shape. In [Tachibana et al., 2010], the Harmonic-Percussive Sound Sep-

aration (HPSS) algorithm is used, exploiting in this way the temporal variability of the

melody compared to more sustained notes. Closely related to the above methods, a set of
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Figure 7.1: The general architecture of different approaches to melody extraction. In the spectral pro-
cessing we find two distinct approaches, namely the salience-based and separation-based ones.

proposed solutions combine source separation techniques with the creation of a salience

function. Such hybrid approaches have been proposed in [Hsu and Jang, 2010, Yeh et al.,

2012], and the spectral processing is based on a salience signal extracted after an initial

harmonic/percussive separation step.

In a comparison between salience- and separation-based techniques, the segregation of

the vocal signal could, in principle, lead to superior results in the task of melody line

tracking. However, the distortions that are introduced in the spectrum of the vocal signal

cause significant loss during the melody tracking process. Currently, there are promising

results with the use of separation-based approaches, but the best performing systems are

salience-based, as can be seen in surveys and comparative studies, for example in [Poliner

et al., 2007, Salamon, 2013]. On top of that, these types of systems are conceptually

simpler and computationally more efficient. The above reasons support the focus of this

work on salience-based approaches to melody extraction.

After the spectral processing in either a salience- or a separation-based melody extrac-

tion system, the second step concerns the tracking of the melody line. The goal of this

step is to detect the spectral regions that are most likely to coincide with the melody line

components. Different approaches adopted are dynamic programming [Hsu and Jang,

2010, Rao and Rao, 2010, Tachibana et al., 2010], tracking agents [Goto, 2004, 2005],

score based clustering [Arora and Behera, 2013] and HMM [Ryynänen and Klapuri, 2006,

Sutton et al., 2006, Yeh et al., 2012]. Streaming rules imposing time and frequency con-

tinuity in the melody lines, are implemented in [Dressler, 2009], while a combination of

peak streaming rules and statistical characterization is applied in [Salamon et al., 2011].

Finally, the third step of melody extraction systems concerns the voicing detection.

The goal is to determine the regions in time where the melody line exists as opposed to

those that do not contain any melody. Inspired by the voice activity detection (VAD)

in speech processing, many systems employ static or adaptive energy thresholds [Cancela

and Magallanes, 2008, Dressler, 2009, Poliner and Ellis, 2005], while more sophisticated
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methods have also been described, as for example the incorporation of a silence model in

the statistical framework used in [Ryynänen, 2008].

7.1.4 Spectral representations

The vast majority of melody extraction systems exploits the STFT for the transformation

of the input signal into the spectral domain. The problems that arise from the use of the

STFT, in the context of many diverse signal processing applications, appear in the case of

melody extraction as well, and are extensively discussed in the literature. These concern

the unavoidable trade-off between the time and frequency resolution, and the fact that

the selected resolution is fixed over the whole spectrum. However, in melody detection

a higher frequency resolution is desired in the lower areas of the spectrum, where more

frequency components exist, while a higher time resolution can be of advantage in the

middle frequencies where singing voice is normally located and presents relatively fast

changes. Higher frequencies are not of interest as melody does not generally go over 1.5-2

kHz.

For these reasons, alternative representations have been proposed for the tasks of pitch

tracking and melody extraction, as for example the Multi-Resolution FFT (MR-FFT)

[Dressler, 2006, Hsu and Jang, 2010, Yeh et al., 2012], multirate filterbanks [Goto, 2005]

and constant-Q transform [Cancela and Magallanes, 2008]. A different set of approaches

attempts to improve the localization of the spectral energy after the calculation of the

STFT, making use of frequency and time correction mechanisms as the ones discussed in

[Keiler and Marchand, 2002]. Parabolic interpolation is incorporated in [De Cheveigné

and Kawahara, 2002] and IF calculation in [Dressler, 2006, Salamon and Gómez, 2012].

7.2 A reassigned based melodic pitch extraction method

Similarly to the general architecture of melody extraction systems, depicted in Figure

7.1, in the first part of the proposed processing four main modules are incorporated:

(i) preprocessing, (ii) spectral representation, (iii) multi-pitch extraction and (iv) post-

processing. Each part is discussed in more detail in the following sections.

7.2.1 Preprocessing

The spectral preprocessing corresponds to the application of an equal loudness filter, which

enhances the frequencies that are perceptually more relevant to the spectral areas where

the melody line is normally found. The design of the filter is based on ReplayGain 1.03

3http://wiki.hydrogenaudio.org
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Figure 7.2: The frequency response of the applied filter. The final filter (red) results from the cascade
application of a Yulewalk and a Butterworth filter. The ideal equal loudness filter is also shown.

specification. The use of this filter was motivated by the fact that it follows the human

auditory system by enhancing the most perceptually dominant frequencies, and attenu-

ates the rest [Robinson, 1958]. Furthermore, the resulting attenuation of the low-band

frequencies, where instruments such as bass are found, is advantageous to the problem of

tracking the singing melody. The use of perceptually inspired filters as a preprocessing

step to the task of melody estimation is not a new concept, in fact it is preferred in most

of the relevant methods. The filter is realized as a cascade application of a Yulewalk and a

Butterworth filter as illustrated in Figure 7.2. After the application of the equal-loudness

filter, the input signal is further processed with a low pass filter and downsampled.

7.2.2 Spectral representation

The way that the spectral energy of each time-frequency bin of the spectrogram is reas-

signed to a new TFR point is governed by the derivatives of the spectral phase at this bin,

the same derivatives that theoretically result in the IF and GD of the analysed signal. It

is worth mentioning here, that both of these quantities have been exploited in terms of

pitch and melody extraction. For example, in [Rajan and Murthy, 2013] a set of modi-

fied group delay functions are used for melody extraction, since the presence of harmonic

components corresponds to their local maximization.

With the RS at the core of the proposed processing, and instead of using the above
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mentioned quantities for the next steps, we propose the use of the dominance reassigned

spectrogram to facilitate the extraction of the melodic pitch contour (MPC). The filtered

input signal is transformed into the time-frequency domain with the STFT, and the

reassigned time-frequency coordinates (t̂, ω̂) of the TFR points are calculated. In order

to count for the dominance of the components, we use the DRS as in (3.24).

7.2.3 Multi-pitch extraction

In this step, we are interested in creating a set of continuous pitch contours that charac-

terize the melodic content of the music signal, starting from the set of dominance weighted

TFR points, i.e. the DRS. To do so, we propose a tracking method that groups f0 can-

didates into pitch contours. Tracking is not a new concept, as grouping methods based

on it are presented in [Cancela and Magallanes, 2008, Salamon, 2013]. However, in this

work, there is an important difference at conceptual level. In the literature, grouping is

normally incorporated in the melody line tracking step in order to combine, in time and

in frequency, peaks that have been extracted from the spectrogram with some multi-pitch

extraction method. On the other hand, the grouping is used in the proposed system as a

method to detect regions of the RS where the TFR points are connected, and then, assign

these points to unique pitch contours. The detected connectivity is an indication that

in the corresponding RS region there is some underlying structure, which is related to

the melodic components. This is a reasonable assumption to make because of the nature

of the RS: in the areas that there is little or no energy to reassign, the TFR points are

distributed in a noisy way.

Using the new DRS representation as a starting point, more TFR points, of higher

dominance, are found around the melodic components. These areas, or neighbourhoods, of

increased density around melodic components are detected and tracked in this processing

block, forming MPC. In order to determine the set of candidate pitch contours, the

iterative tracking Alg. 1 is implemented.

A neighbourhood N , of a central TFR point (t̂c, ω̂c) is defined as the spectral area that

contains all the spectral points for which |t̂c−t̂| ≤ ∆t̂ and |ω̂c−ω̂| ≤ ∆ω̂, where ∆t̂ denotes

the maximum allowed time deviation from the center of the neighbourhood and ∆ω̂ the

maximum allowed frequency deviation. On the other hand, given a neighbourhood N ,

the central TFR point (t̂c, ω̂c) can be found as the center of gravity of it, as follows

(t̂c, ω̂c) =
1

DN

 ∑
(t̂n,ω̂)∈N

D(t̂n, ω̂)t̂n,
∑

(t̂,ω̂k)∈N

D(t̂, ω̂k)ω̂k

 , (7.1)
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Algorithm 1 Multi-pitch extraction

1: Input: The dominance RS D(t̂, ω̂), the RS X(t̂, ω̂).
2: Etotal ←

∑
∀(t̂,ω̂) X(t̂, ω̂), Econtours ← 0

3: while Econtours ≤ rminEtotal do
4: Initialize a new pitch contour, C
5: N0 ← arg maxN

∑
(t̂n,ω̂n)∈N D(t̂n, ω̂n)

6: i← 0
7: while |Ni| < Nmin do
8: Pc(Ni)← centerOfGravity(Ni)
9: Add Pc(Ni) in C

10: Remove Pc(Ni) from D(t̂, ω̂)
11: Ni+1 ← getNeighbourhood(Pc(Ni))
12: i← i + 1
13: end while
14: Econtours ← Econtours +

∑
(t̂,ω̂)∈C X(t̂, ω̂)

15: end while

where DN is the local dominance of N , calculated as

DN =
∑

(t̂n,ω̂n)∈N

D(t̂n, ω̂n) . (7.2)

At each outer iteration of the Alg. 1, the neighbourhood with the highest local domi-

nance is selected as the starting point of a new pitch contour (see line 5, where the local

dominance is maximized over all the different neighbourhoods N of the DRS). In the inner

iteration, the center of gravity Pc(Ni) of the neighbourhood under consideration is added

to the current contour. The same point is used in order to update the neighbourhood

before the following iteration, as described above, and then it is removed from the DRS.

The tracking continues with the remaining points and it is exhaustive, meaning that a

contour ends when the newest created neighbourhood is empty, or its cardinality |Ni|
reaches a certain threshold Nmin, and both directions in time have been checked. The

outer iteration stops when the energy of the created contours, Econtours, is more than a

certain ratio, rmin, of the total energy, Etotal, of the musical excerpt. The selection of

adequate parameters for Nmin and rmin is discussed in Section 7.3.1. Apart from creating

pitch contours, this step acts as a de-noising operation, which ensures that the random

noise, that the RS is known to suffer from, will be significantly reduced. This is also

demonstrated in the experimental section.

7.2.4 Post-processing

After the extraction of a set of MPC, a post-processing step that detects and corrects har-

monic sets is applied. The processing is based on the sub-harmonic summation matching

theory of [Terhardt et al., 1982], which inspired a very successful pair wise evaluation
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of spectral peaks, proposed in [Dressler, 2011]. Here, we use the same idea of pair-wise

comparison of pitch contours in order to detect harmonic sets and correct them by adding

missing harmonic roots.

Each pair of MPC is controlled for existing harmonic relations. This is performed as

follows. First, the harmonic number of the lower frequency MPC in the pair is computed

as

hlow = round

(
aflow

fhigh − flow

)
, (7.3)

where flow and fhigh are the lower and higher frequencies of the pair, respectively. The

coefficient a is defined as

a =

1 for successive harmonics

2 for odd harmonics
. (7.4)

For a successive harmonic pair it holds that hhigh = hlow + 1 and for an odd pair hhigh =

hlow+2. Each pair of MPC is ensured to belong to the same harmonic series, with numbers

hlow and hhigh, if the following criterion holds

1200 log2

fhigh
flow

log2

hhigh
hlow

< 120 . (7.5)

If this criterion is ensured, meaning that the two contours are in a harmonic relation with

a variance less than 120 cents from the exact harmonic interval and hlow ≥ 2, the presence

of the root MPC in the set of contours is checked. In the case this MPC is missing, it is

added to the harmonic set.

7.3 Melody extraction

The experimental activities reported here concern, first, the optimal settings of some

parameters of the algorithm, and, secondly, the system evaluation, which consists of three

steps: (i) the extraction of pitch contour candidates, (ii) a comparative evaluation of

the proposed method to the state-of-the-art system MELODIA4 [Salamon, 2013], and

(iii) a “glass-ceiling” analysis of the maximum possible accuracy. For the experimental

activities we use datasets created in accordance with the MIREX guidelines for the task

of melody line extraction, namely the ADC2004, MIREX05 and MIR-1k [Hsu and Jang,

2010] datasets.

Traditionally, the melody extraction systems are evaluated in terms of pitch and voicing

accuracy. Over the past few years, through the annual evaluation of melody extraction

4http://mtg.upf.edu/technologies/melodia
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systems, performed as part of the MIREX framework, it has been observed that the

state-of-the-art is not improving in terms of these measures. Due to the complexity of the

task, and the involvement of multiple steps in melody extraction systems, it is not always

evident how each intermediate decision affects the final behaviour of a completed system.

For this reason, in this work we are interested in the evaluation of the intermediate steps

of a melody extraction system. Therefore, in order to create a set of measures that

represent the quality of each intermediate step, we adopt evaluation measures similar

to those introduced in [Keiler and Marchand, 2002] and also used, with minor changes,

adapted for the evaluation of the salience function design steps in [Salamon et al., 2011] .

7.3.1 Statistical study

The proposed method uses a set of parameters, the settings of which can affect the final

behaviour and performance. Concerning the spectrogram estimation, we use a window

length of 30ms and a step of 5ms. These values are very commonly used for music related

applications, and were experimentally proved to behave very well in the proposed system.

For the calculation of the RS another important parameter is the frequency range, which

starts at C3 (130.81Hz)5 and extends for four octaves, that in general include most of the

energy carried by the melody line and its harmonics.

Finally, two parameters of Alg. 1, referred to as rmin and Nmin, directly affect the

behaviour of the proposed method.

rmin: This is the energy threshold which is used as a stopping criterion for the outer

iteration. Figure 7.3 shows the average ratio of the total energy that is attributed to

the melody line, and the first four harmonics of it (a subset of the MIR-1k dataset

has been used for this analysis). As presented there, 0.5-0.7 of the total energy is

attributed to the melody line and its first harmonic. When all four harmonics are

considered, the total energy percentage can get as high as 0.95. Based on this, in

the following experiments rmin is given values in the range 0.3-0.8.

Nmin: This is the minimum number of TFR points that lie within a certain region and

trigger the detection of a melodic component. The average number of TFR points

in the regions of melody lines is shown in Figure 7.4. For the same data, the average

number of points that lie outside the regions that are related to the melody line

has been measured less than 10 points for the smallest meaningful distance under

consideration (0.2 semitones). Further experiments showed that, in the range of

10 to 40 TFR points, higher quality MPC are extracted when 15 TFR points are

5Although it is possible for the melody line to be located below this value, this is not common in the used material, and
therefore C3 was selected for lower complexity.
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Figure 7.3: The ratio of energy that belongs to TFR points that are related to the melody line. Each
group (2-5) corresponds to a different harmonic of the melody line (1). Each bar is calculated with a
different confidence around the melody line, in the range from 0.2 (darkest bar) to 0.8 (lightest bar)
semitones around the pitch.

considered as the upper threshold of regions that are not related to any melodic

content. As before, a subset of the MIR-1k dataset has been used for this analysis.

7.3.2 TFR point-wise evaluation

Here, we study the ability of the proposed method to correctly identify the set of TFR

points that are related to the melodic content of the piece, as opposed to the TFR points

that are related either to the background music or to noise attributed to the operation of

reassignment. For this, we study the following two approaches to TFR point discrimina-

tion:
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Figure 7.4: Number of TFR points in neighbourhoods of different sizes. Different f0 values have been
used for this experiment.
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Proposed method: Using the Alg. 1 we create two sets of TFR points. The first

comprises all the points that have been assigned to an MPC, and are therefore

considered relevant to the melody line. The second set contains all the remaining

points.

MPD method: Inspired by the literature on reassignment, we impose the MPD cri-

terion of [Fulop and Fitz, 2007], and create two sets of points. One comprises the

points that meet the following condition∣∣∣∣ϑφ2(t, ω)

ϑtϑω

∣∣∣∣ < A , (7.6)

where A is a tolerance factor that defines the maximum variation of an accepted

component from the ideal sinusoid (relevant to the melody line), see Section 3.2.3

The remaining points belong to the second set. When the MPD method is used, the

selection of A depends on the task, and usually it is experimentally found.

In order to quantify the results, we define the following evaluation metrics:

Point precision: The total number of relevant points retrieved, divided by the total

number of points retrieved by the algorithm (the proposed or the MPD one).

Point recall: The total number of relevant points retrieved, divided by the total number

of points in the ground truth.

Point f-measure: The geometric mean of the point precision and point recall.

Energy recall: The spectral energy sum for all the melody points tracked by the al-

gorithm, divided by the total energy of the peaks in the ground truth. This is a

measure relevant to the importance of the missed TFR points, as far as their total

energy is concerned.

Starting from a music recording, to apply the measures introduced above, the ground

truth is formed by the TFR points that lie within half semitone from the annotated melody

line. The points are selected from the RS of the mixture and not the clean melody track

recording as done in the literature, for example in [Salamon and Gómez, 2009]. The reason

is that the use of the non-linear operation of the RS does not allow us to assume that

the spectral points remain the same when the background music is added to the melody

track. In fact, it has been experimentally found that the number of TFR points that

remain the same is practically negligible. In this experiment, the post-processing that

detects missing harmonics is not yet applied, since this concerns contours rather than sets

of points that are evaluated here.
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Figure 7.5: The Precision/Recall curves of the proposed (solid) and the MPD (dashed) methods in
creating sets of TFR points related to the melodic content. As shown in the top figure, the points
correspond to different rmin values for the proposed method, in the range 0.3 to 0.8, and different A
values for the MPD method, in the range 0.5 to 0.2. The trend of the points is the same in the subsequent
figures, but the labels are omitted for visualization purposes.

As commonly the case in information retrieval tasks, there is a trade-off between how

precise (point precision) and how sensitive (point recall) each TFR point selection method

is. In the proposed method, the exact behaviour in terms of precision/recall is controlled

by the parameter rmin. In the MPD method this is controlled by the threshold value A

introduced earlier. In the first set of experiments we are interested in the behaviour of the

two systems in terms of precision/recall, which is depicted in Figure 7.5, for two different

datasets. Although the two curves in these graphs correspond to different values of two

different parameters, such a comparison is meaningful, since, in practice, each of them

designates the strictness of the point selection method. From the curves, it is evident

that the proposed method is much more precise in selecting TFR points that are related

to the melody line.

In Figure 7.6 the point f-measure for the two datasets and methods is shown, again

with a clear advantage for the proposed method. An interesting observation is that the

f-measure is optimized when rmin ≈ 0.5, which is in agreement with the initial study

shown in Figure 7.3. In practice, the algorithm does not manage to correctly identify

the melodic regions until the amount of energy attributed to the first two harmonics has

been exhausted. This was expected since more energy was found in the region of the first

harmonic that the region of the melody line.
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Figure 7.6: The f-measures of the proposed (solid) and the MPD (dashed) methods. The blue lines
(marker: x) correspond to the ADC2004 dataset, and the red (marker: o) to the Mirex05 dataset. The
configurations correspond to different rmin and A values, as described in the previous experiment.
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Figure 7.7: The precision/energy recall curves of the proposed (solid) and MPD (dashed) methods in
creating sets of TFR points related to the melodic content. The points correspond to different rmin and
A values for the MPD method, as described in earlier experiment.

In Figure 7.7, the energy recall of the proposed and MPD methods is depicted, as

a function of the point precision of each method. We observe that both methods are

successful in selecting the TFR points that bare the most significant amount of energy

of the harmonic components. Furthermore, it is shown that the MPD method is able to

produce higher energy recall measures, especially in the case of Mirex05. Nevertheless,

the corresponding precision values are too low to yield any useful application.

7.3.3 Evaluation of discrete pitch contours

To compare the proposed system with the state-of-the-art, an experiment was designed,

mapping the retrieved TFR points into a new bi-dimensional grid, as in described in
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Section 4.2. The resulting contours are post-processed with the algorithm described in

Section 7.2.4, so that missing harmonic parts are repaired. The contours are evaluated

with the following measures, as proposed in [Salamon et al., 2011]:

Contour precision Pr: The total number of melody contour points retrieved, divided

by the total number of contour points retrieved by the algorithm.

Contour recall Re: The total number of melody contour points retrieved, divided by

the total number of contour points in the ground truth.

Contour f-measure F : The geometric mean of the contour precision and contour

recall measures.

The same evaluation measures are applied for the evaluation of the contour extraction

process of the MELODIA vamp plug-in. The comparative results are presented in Table

7.1. As shown there, in both test datasets the proposed contour extraction method results

in a higher f-measure, as compared to the MELODIA contour extraction method. In the

ADC2004 dataset the proposed method improves both the precision and recall metrics,

compared to the MELODIA method. Although this is not the same for the Mirex05

dataset, the proposed method is producing more balanced precision/recall pairs of values,

and therefore results in higher f-measures for both datasets. This is an interesting finding

as it means that the selection process that leads to the pitch contours, i.e., the DRS and

the multi-pitch extraction algorithm, is more successful than the literature method in

retrieving points that are actually related to the melody line. Note that for the dataset

Mirex05, the f-measure reported for the proposed method is higher than the one reported

for MELODIA, although the corresponding precision/recall values do not follow the same

trend. This is because the reported f-measure is an average itself, and not the f-measure

of the average precision/recall values. In the partial results the precision/recall values of

the proposed system are consistently more balanced than the ones of MELODIA. This

fact, i.e., the more balanced precision/recall values produced by the proposed system

compared to the MELODIA in the partial result, explains the apparent inconsistency of

Table 7.1. For the Mirex05 dataset, we observe that although MELODIA results in higher

or equal precision/recall values, the f-measure is higher for the proposed system. This

is observed since the average f-measure or each partial results is reported (and not the

f-measure of the average precision and recall).

For completeness, the precision/recall curves of different configurations of the pro-

posed system are depicted in Figure 7.8. From this representation, the effect of the

post-processing step applied after the contour extraction becomes more evident: opposite

to the previous experimental results, there is no trade-off between the precision and recall

metrics and both are improving with the use of higher values for rmin. This is explained

128



7.3. Melody extraction Chapter 7. Pitch and melody extraction

Dataset Method Pr Re F

ADC2004
MEL. 0.58 0.7 0.63

Pr. 0.75 0.8 0.76

Mirex05
MEL. 0.48 0.77 0.59

Pr. 0.48 0.73 0.63

Table 7.1: Comparative results for two different datasets. The output of the pitch contour extraction step
of the MELODIA vamp plugin (MEL.) is compared to the corresponding output of the proposed system
(Pr.). For Mirex05, the f-measure reported for the proposed method is higher than the one reported
for MELODIA, although the corresponding precision/recall values do not follow the same trend. This is
because F is the average of the f-measures for each test excerpt, and not the f-measure of the average
precision/recall values.
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Figure 7.8: The precision/recall curves for the two datasets (ADC2004: blue-x, Mirex05: red-o), after
the contour extraction and the post-processing steps. The points correspond to different rmin values, in
the range from 0.1 to 0.8.

by the fact that, in the best cases, the post-processing improves the precision of the sys-

tem by removing points that do not belong to any of the detected harmonic groups. At

the same time, the post-processing improves the recall with the addition of the contours

(i.e., missing roots of harmonic groups) that have been missed in the earlier steps.

7.3.4 Glass ceiling analysis

Assuming a perfect pitch selection process, the melody can be identified correctly as long

as there is a contour following this predominant component. This idea has been adopted

in the literature for performing “glass ceiling” analysis. In Table 7.2 the results of this type

of analysis are presented as reported in the literature, for the works of Salamon[Salamon

and Urbano, 2012] and Dressler [Dressler, 2011]. Similarly here, we use it for analysing

the proposed method. The pitch is considered to be correctly identified if there is one

contour that lies within half semitone from the ground truth value. Based on this, we

calculate the overall accuracy, considering that the voicing information is known. We

observe that although the proposed system provides a satisfactory “glass-ceiling” result

for one of the used datasets (Mirex05) and improves the reported state-of-the-art results,

the same is not the case for the other dataset. It is important to indicate that, generally,
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Dataset Salamon Dressler Proposed No pp
ADC2004 90% 93% 89.8% 68.6%
Mirex05 71% 77% 80.6% 63.6%
Average 80.5% 85% 85.2% 66.1%

Table 7.2: “Glass-ceiling” analysis assuming a perfect pitch selection step. The last column (“No pp”)
corresponds to the results of the proposed method, before the application of the post-processing step.

in the ADC2004 dataset the melody stands out from the background more clearly than in

the Mirex05 dataset. This seems to affect the literature methods more than the proposed

method which does not demand the presence of a very salient component in order to

correctly identify it as a part of the melody line. On average for the two datasets, the

proposed method yields the same result as the best of the two state-of-the-art methods.

Finally, the last column of Table 7.2 reports the “glass-ceiling” results of the proposed

system, when the post-processing is not applied. The improving effect of the harmonic

group correction method becomes immediately evident.

Although the above results are satisfactory, it is worth noting here that the “perfect

pitch selection process”, assumed for this type of analysis, is benefited from a set of MPC

that maximizes the recall measure, since the more relevant contours are retrieved, the

higher the glass-ceiling will be. This however comes in contrast with the proposed method

and parameter optimization, which is performed taking into account the behaviour in

terms of both precision and recall.

7.4 Conclusions

In this chapter, we presented a method that detects the spectral regions of polyphonic

music signals where melodic components are active, and groups these components in har-

monic sets of MPC. The use of the RS in the core of the system provides a set of finely

tuned contours that ensure the minimization of errors related to the limitations of the

STFT. The MPC extraction algorithm is based on a dominance weighting of the TFR

data, which is shown to successfully emphasize the points that belong to the most impor-

tant harmonic components of the input signal. Finally, a post-processing step that detects

and corrects harmonic groups is applied on the set of MPC. This step adds harmonics

that were missed in earlier stages, and discards contours that do not respect the expected

harmonic structure of the signal.

A main goal of this work was the design of a melody extraction system which incor-

porates blocks of processing that are shown to produce satisfactory intermediate results.

Therefore, the experiments were designed so that each decision is proved to be advanta-
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geous to the final system. Indeed, the MPC extraction method has been shown superior

to the only alternative method that is available in the literature as a means of selecting

the harmonic points of a RS, namely the MPD method. Furthermore, the MPCs have

been compared against the contours produced by the state-of-the-art system MELODIA

and the results showed that the proposed method produces melodic contours of higher

quality. Finally, the “glass-ceiling” analysis proved the benefits added by the proposed

post-processing step, and also, the competitiveness of the proposed method to two state-

of-the-art methods in the area.
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Chapter 8

Conclusions and future work

The RS can be a powerful tool in the quest for effective voice based solutions in high-tech

applications. As any time-frequency representation of non-stationary acoustic signals,

the RS provides a description of the temporal evolution of the spectral components of

the signal, while it improves the localization of these components. In this work, we

studied various aspects of this representation, from its theoretical characteristics to the

particularities of its implementation. Then, we proceeded to investigate the most critical

aspect, i.e., whether this representation can benefit the field of acoustic signal processing,

specifically for speech and singing voice analysis. In the following we summarize, and

discuss, the most relevant contributions of this thesis towards answering this research

question.

8.1 Main contributions

Literature Review In Chapter 2 we compiled and presented an overview of the most

relevant theoretical topics. This review highlighted several of the challenges faced in

automatic analysis of human voice, and pointed out how these challenges are addressed

from the most commonly employed feature extraction techniques in speech processing

applications. Furthermore, we discussed the most interesting aspects that differentiate

singing voice from speech. The effect of various acoustic conditions, such as the addition

of reverberation or background music on a voice signal was also overviewed. A particular

emphasis was given on the topic of reverberation, as its effects and characteristics play

an important role in several of the topics addressed in this work.

In Chapter 3 we focused on the RS, and presented a comprehensive overview of the

related literature. We emphasized the relation of this representation with the IF and

the GD of the analysed signal, and discussed some of its limitations, as for instance, the

inherent noise and the need for a re-quantization step. This study was then extended with
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the proposal of two different representations, based on the RS: the reassigned cepstrum

and the DRS. Both representations were motivated and then discussed in the context of the

different acoustic conditions that we focus on, i.e., reverberation and musical background.

The attention of the remaining chapters was shifted from theoretical topics to practically

demonstrating the experimental value of the proposed representations. This was achieved

by studying the RS, in the context of three distinct modules, each very important for a

number of different acoustic signal processing application. These modules were (i) speech

feature extraction, (ii) objective quality measures, and (iii) pitch contour extraction. Each

of these modules was evaluated from the scope of final applications.

Speech feature extraction Feature extraction is a fundamental step in the majority of

systems that are concerned with the automatic analysis and understanding of acoustic

signals, and serves a variety of different purposes. The main goal of feature extraction

is to summarize information, and keep all the information that is relevant for the subse-

quent processing while discarding anything that is redundant in some sense. In speech

recognition one can argue that the only important information relates to the phonetic

structure. However, when used as a front-end for complex statistical frameworks, feature

extraction also serves the purpose of decorrelating the matrices used as observations, thus

enabling their use with, e.g., an HMM classifier. MFCC and PLP features have been

used extensively in numerous systems, and have been the most popular choices for the

front-end of phone level speech segmentation, and speech recognition.

As described in Chapter 4, this work contributed in the area of speech feature extrac-

tion with a set of acoustic features called TFRCC, which is a reassigned version of the

MFCC features. Although TFRCCs are a rather direct concept, their implementation

manifests certain aspects to address, as for example the problematic re-quantization step.

In our proposed method, we combine this re-quantization step with the application of

the Mel scale filter-bank in a single step which exploits bi-dimensional windowing. The

TFRCC features have been experimentally verified in the contexts of phone-level speech

segmentation and speech recognition.

Concerning phone-level speech segmentation, the TFRCCs were shown to behave in

a similar manner as the MFCC features, while improving the accuracy of boundary de-

tection under strict evaluation tolerances. We believe that this is directly related to the

particularly sharp representation of the RS, which offers an excellent temporal resolution,

while keeping a very good spectral resolution as well. The experimental activities showed

however that the application of the IDCT at the last stage of the TFRCC feature ex-

traction did not yield the expected improvements, compared to the use of the filter-bank

output as a feature set. This suggests a future direction, where alternative methods to
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decorrelate the filter-bank output as obtained from the RS can be investigated. As far as

ASR and DSR experiments is concerned, the presented experimental activities regarded

different corpora, acoustic models and front-end configurations. TFRCC features showed

consistent improvements upon the MFCC features, both in close-talk and reverberant

conditions.

Objective quality measures Objective speech quality measures have been exploited for

many years in the fields of speech processing as a means of evaluating diverse distortions

introduced in the signal, as for instance distortions due to a communication channel, or an

enhancement algorithm. Although subjective listening test is the most accurate method

to evaluate the quality of speech signals, the very demanding process and strict rules that

need to be followed shifts the interest to the alternative of objective measures. Numerous

measures have been studied in the literature, and extensive activities investigated their

correlation with the outcome of listening tests, for evaluating different tasks, showing still

not satisfactory results.

Inspired by the power of the RS to represent speech, which was supported by the suc-

cess in exploiting it for feature extraction, we investigated how the RS can be further used

for objective speech quality measures. In Chapter 5 we proposed the use of reassigned ver-

sions of traditional objective speech quality measures, and one inspired by the continuous

nature of RS data, called RPWD. We discussed on the properties of these measures, and

investigated their dependency on the amount of speech used to evaluate them. From an

experimental standpoint, we were particularly interested to address evaluation of distor-

tion due to reverberation. In the literature, reverberation is normally “measured” either

based on parameters such as DRR and T60, or with the effect it has on the output of a

particular system, e.g., how much it can lower recognition rate. Instead, we investigated

how objective distance measures can be exploited to quantify reverberation effects. We

studied the ability of traditional, and reassigned measures to evaluate distortions due to

reverberation. Our findings were numerous, as we found that objective measures, and

in particular the CD and RCD are very good in characterizing reverberation in a way

consistent with DRR and T60. Concerning the RPWD measure it was found to produce

disappointingly noisy results. Nevertheless, we believe that it is a promising measure

which deserves further investigation as it is defined on the raw RS data and it is free from

errors due to the re-quantization and further processing steps.

In Chapter 6 we extended the use of objective speech quality measures in the field

of DSR and, in particular, for multi-microphone processing based on CS. We proposed

a novel method to perform CS in an informed way, and extended this to a blind solu-

tion. The contributions of this work were also extended to the experimental findings. In
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evaluating the proposed method, we also demonstrated the relation between the oracle

CS and reverberation, as measured through the DRR. In addition, we demonstrated the

relation between CD/RCD and WER, and the intuitive nature of the proposed CS. To

our knowledge, this work constituted the first systematic attempt to analyse CS and re-

late it to the characteristics of the reverberant environment within which the experiments

are performed. Finally, the proposed CS methods were evaluated in terms of recognition

performance and it was found that the RCD has the potential to lead to improvements

over the CD, especially when used jointly with TFRCC features.

Pitch contour extraction The last module addressed in this thesis was the extraction

of pitch contours, mainly focused on singing voice. A set of finely tuned contours, that

describe the temporal evolution of the predominant harmonic components, which we

called MPC, can be exploited mainly for the task of melody extraction from polyphonic

music, although it can be also used in the core of a PDA. Apparently, the time-frequency

representation exploited in systems concerned with melody extraction, and in case pitch

detection, is of critical importance to their success, as the final results are largely based

on this representation. In the literature there have been multiple attempts to improve the

resolution of the spectrogram, for instance through the MR-FFT, as a means of improving

the accuracy of melody extraction.

In Chapter 7 we proposed to use the RS, and perform melody extraction exploiting

the infinite resolution it offers. The improved representation of the harmonic structure,

offered by the RS and further enhanced by the DRS, was utilized for the design of a MPC

extraction algorithm, i.e., the first step towards pitch extraction from speech and melody

extraction from polyphonic music signals. The proposed algorithm operated directly on

the raw dominance weighted RS data, a fact that minimized fine pitch errors due to

re-quantization and smoothing.

Finally, experimental activities demonstrated the ability of the proposed method to

detect the predominant harmonic components in polyphonic music signals, and produce

melodic contours that describe these components. The evaluation was performed, first,

by directly evaluating the sets of selected points with a comparison to the points obtained

with the application of a MPD criterion. The proposed algorithm showed overall a better

f-measure than this baseline, proving its ability to detect more accurately the TFR points

that relate to the predominant melody. Following this, we evaluated the discrete MPC and

found them to compare favourably to those obtained from two state-of-the-art systems.

Finally, a “glass-ceiling” analysis showed the potential to outperform these systems.
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8.2 Future work

The different results, presented in this thesis, report the positive effects that the RS can

have on various tasks related to the analysis and understanding of speech and singing voice

signals. Nevertheless, there is still room for improvement within most of the proposed

solutions.

First, further investigation is needed regarding the MPD criterion, as a means either

to de-speckle the RS, or to emphasize its impulsive or harmonic components. The use of

the second order derivatives of the phase, as proposed by the MPD criteria, can lead to

an improved visualization of the RS. However, it is not yet clear how exactly this method

can be exploited for an improved representation of speech, through the TFRCC features

and the DRS representation.

Another direction that we believe needs to be further explored is the behaviour of the

RS under noisy acoustic conditions. Throughout the experimental activities reported in

this thesis, we had various indications that the RS is particularly strong in representing

signals degraded by sources of distortions other than reverberation and music. Initial

experimenting showed that in noisy data TFRCC features were more robust than MFCC

in recognition experiments and that RCD was better than CD in evaluating reverberant

and noisy speech utterances in the context of CS. This research direction demands further

attention.

Finally, concerning melody extraction, we are interested in the design of a novel method

to select the MPC subset that relates to the melody component, when more than one

harmonic groups are active simultaneously. As mentioned earlier, this step should be

different than what is normally found in the literature within the melody line tracking

component and, possibly, has to focus on the discrimination between contours that result

from different sound sources. This aspect can be studied as a point of connection to the

extensive work that exists in the area of audio source separation and separation-based

approaches to melody line extraction.

The qualitative and quantitative evaluations that were performed and reported in this

thesis, support the use of the RS as a valid approach for the time-frequency representation

of acoustic signals. In general, we identified two main sources of discrepancies as fas as

the RS is concerned and these are the presence of random like noise and the need for

a re-quantization step. We experimented with default and novel solutions for both of

these two gaps, and showed that it is possible to improve the current state-of-the-art.

Nevertheless, we believe that there is still room for improvement and that an optimal

framework to work with the RS, managing the inherent noise and the raw data defined

in the continuous time-frequency domain, is yet to be described.
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M. Schedl, E. Gómez, J. Urbano, et al. Music information retrieval: Recent developments

and applications. Foundations and Trends R© in Information Retrieval, 8(2-3):127–261,

2014.
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