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Introduction

Game Theory is a mathematical theory which deals with conflict and coo-

peration situations between (at least two) intelligent and rational decision-

makers and provides mathematical models of them. The subjects of study

for game theorists are not merely play activities as the term “ game” erro-

neously suggests. “Conflict analysis” or “interactive decision theory ” might

be names more suitable to describe this theory.

A conflict or cooperation situation (game) is a strategic interaction bet-

ween two 1 or more individuals (players), which jointly determine the out-

come. Each player partially controls the game, but usually no player has

full control.

It is convenient to be more precise about the assumptions of intelligence

and rationality. With the first hypothesis, we assume that the decision mak-

ers have unlimited capacities of deduction, computation, and analysis of the

situation. With the second hypothesis, we assume that the decision maker

is able to make a choice between various available options. The rationality

of the decision maker lies in having preferences on the consequences of his

choice, in the consistency with these preferences, and in choosing the avail-

able action whose consequence he prefers. The keyword “rationality” is a

term inherited from Neoclassic Economics and Decision Theory from which

Game Theory derives.

A game is not only made up of players and of choices available to the

players, but also of preferences of the players over the set of possible out-

comes of the games. Thus, each player strives to obtain the most profitable

outcome for him. Often it is assumed that these preferences are described

by a von Neumann-Morgenstern utility function, hence with each player

there is associated a numerical function whose expected value he tries to

maximize.

1The case of one player usually falls under the heading of “Decision Theory”.
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ii Unilateral Commitments

So Game Theory is not only an empiric theory, but also a normative

theory, since it prescribes what action each player should choose in a game

in order to promote his interests optimally, that is, which strategy each

player should play to obtain the best benefits with only his partial influence

on the situation.

The aim of Game Theory, as stated in Von Neumann and Morgenstern

(1944), is to find the mathematically complete and perfectly general princi-

ples which define “rational behavior” for the players in a game and to derive

from them the characteristics of that behavior. While the principles ought

to be perfectly general, that is, valid in all situations, the solution can be

found only in some special characteristic cases and it varies with the change

of conditions.

Game Theory is a relatively recent science. Its beginnig dates back to the

20th century with the works of Zermelo (1913), Borel (1921), von Neumann

(1928) 2. But the theory was considered only after the publication of the

book by von Neumann and Morgenstern (1944), followed by many articles

addressed to developments of this theory. We remember, for example, John

F.Nash Jr. (1950), in which the author introduced the Equilibria-bargaining

threat.

Many studies of Game Theory were completed during World War II

at Princeton, in the same cultural circle where many theoretical physicists

were also working (see Morgenstern (1976)). According to the opinion of

Myerson (1991), this propinquity does not seem coincidental, however the

purpose of the two groups proved different. The physicists have developed

the nuclear studies which have threatened the world peace, the game theo-

rists have created social systems for moderating human behavior in conflict.

Thus, it might be desiderable that the improvements of social systems were

able to study the situation and to outguess the consequences of the physical

science. This convinction has moved mathematicians and social scientists

to work in Game Theory during the past few years, although there is lack of

collaboration between the various disciplines. For example, the production

of bio-diesel, extracted from sunflower oil or colza oil, has been a positive en-

vironmental impact, but it has created problems of famine to poor countries

whose economy was based on primary sectors.

Game Theory actually has proved to be versatile since used in many

fields. It has been applied in Military Strategies (Cold War, Gulf War), in

Economics (Oligopolies, Monopolies), in Marketing (Coca-Cola), in Finance

2von Neumann (1928) introduced the Minimax theorem.
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(Firm’s Control), in Politics (Electoral Systems), in Club Games (Bridge,

Poker, Chess), in Sports (Attack-Defence Strategies), in Sociology (Migra-

tion), in Medicine (Neurons), Genetics/Biomedicine (Microarray Games), in

Psychology (Prisoner’s Dilemma), in Biology (Evolution), in Environment

(Pollution).

The importance of developments achieved in Game Theory is supported

and affirmed by the assignment of Nobel prizes in Economics. In fact, re-

cently, eight game theorists shared the Nobel prize in economics. They

were: in 1994 John F.Nash Jr., John Harsanyi, and Reinhard Selten; in

2005 Y.Robert J. Aumann and Thomas C. Schelling; in 2007 Roger My-

erson, Leonid Hurwicz, and Eric Maskin. Nash defined the notion of a

noncooperative (or Nash) equilibrium, and proved its existence in mixed

strategies. Selten refined this notion to the recursive notion of subgame per-

fect equilibrium and the closely related notion of trembling hand perfection.

Harsanyi defined the notions of a game with incomplete information and

of a Bayesian equilibrium, in which players’ lack of information about the

game they are playing is encapsulated in a player’s ”type.” These ideas have

been influential in the study of games by economists during the 1980s. Four

major areas in which this impact has been felt are in the study of bargaining,

reputation and repeated games, signalling, and mechanism design.

Traditionally, the mathematical models of strategic interactions are di-

vided into two classes: cooperative games and non-cooperative games. A

cooperative game is a game in which the players can subscribe binding agree-

ments. A non-cooperative game is one in which there are no possibilities

for communication, correlation or (pre)commitment, except for those that

are explicitly allowed by the game rules. Hence, all relevant aspects should

be captured by the rules of the game. In this work, we restrict ourselves to

noncooperative games.

A solution for a non-cooperative game is a set of recommendations, which

tell each player how to behave in every situation that may arise. We request

that solution be consistent, i.e. no player should have an incentive to deviate

from the prescriptions of solution. Hence, a solution must be self-enforcing.

A possible reading of this term is the following. It is as if, by pre-play

communication, the players have agreed, in a not binding way, to play the

prescriptions of this solution and no player has incentive to unilaterally

deviate from strategy combination, since his reward will not increase with

such an action, on the understanding that the other players do not deviate.

In game theoristic terminology, this means that the solution should be a

Nash equilibrium (Nash (1950), (1951)).
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The concept of Nash equilibrium is a concept relevant and increased in

value solution, not only for the idea of stability of non-binding agreements,

but also since it plays on the assumptions of intelligence and rationality of

players and it does not request the players to communicate to each other

before strategic interaction. However, it has its drawbacks. Given a game,

various problems can arise, from problems of existence of equilibria to pro-

blems of choice of an equilibrium that brings to an efficient outcome. For

example, a game so simple as Matching Pennies is without Nash equilibria.

Otherwise, we might have two or more possible choices for the players: the

Coordination game has two Nash equilibria with the same payoffs, while the

Battle of the Sexes has two Nash equilibria, each of them is preferred only

by one player. Or, again, there are games with inefficient Nash equilibria,

as it happens for Prisoner’s Dilemma.

The intervention of Game Theory lies in providing the players with dif-

ferent kinds of solutions of the game. For example the study of refine-

ments of Nash equilibria is one of the knottiest problems in Game Theory.

Among the proposed refinements, we can mention trembling hand perfect

equilibrium (Selten (1975)), proper equilibrium (Myerson (1978)), sequential

equilibrium (Kreps and Wilson (1982)), stable equilibrium (Kohlberg and

Mertens (1986)), and virtual subgame perfect equilibrium (Garćıa-Jurado

and González-Dı́az (2006)).

As stated at the beginning, Game Theory makes models and studies

hypothetical examples in order to understand conflict and cooperation in-

teractions. On one side, the symplicity of the model, obtained by ignoring

the details of reality, allows to analyze the essence and the nature of these

strategic interactions. On the other hand, it provides examples, sometimes

unrealistic, because they do not correspond to the initial real situation. This

is not strictly negative, since in this way we can identify which details, at

first sight trifling, are the X-factor of the model. For example, game theory

has represented the tragedy of the commons via the strategic actions of play-

ers (individuals or countries) which, in order to protect a common, decide

whether to cooperate or not. The game was been represented by a Priso-

ner Dilemma, which provides, for the equilibrium, that both players defect:

so, no agreement can be signed by all the countries. The latest literature,

inspired by concrete facts, has proved that model is unsuitable for repre-

sent it, since some agreements are indeed reached. The inadequacy of the

Prisoner Dilemma equilibrium can be interpreted either as a critique of the

choice of the model or as a sign that the complete-information model omits

some important features. In repeated games, where the reputation effects

are significant, small amounts of certain kinds of incomplete information
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lead to cooperative equilibria. In the example of the Tragedy of the Com-

mons, despite the pessimistic theoretical predictions about cooperation, a

lot of partial agreements are signed by a subset of countries trading. Thus,

it emerged that man is a social being, which spontaneously cooperates. But

the cooperation is partial, not global. The final goal becomes to find how

the global cooperation is reached.

Again, let us consider the case of public goods. If a public good is

local, then in order to conserve it from over-exploitation a local authority is

sufficient. But in case of international public goods, this is not possible, then

there are international negotiations and contracts signed by a part the of

countries interested in cooperation. Comparing the theoretical results with

concrete facts, there is a paradox. That is, there is not always the over-

exploitation of public good, as predicted by theory. In fact, more than 120

international environmental agreements are signed. At this point, the game

theory intervenes in order to emerge cooperation between all the countries or

among a greater and greater number of individuals. The environment is, for

example, one of the international public goods. In the global environmental

problems a target to reach is the reduction of greenhouse gas emissions.

All the countries are actively and passively concerned in this problem, in

fact they regulate the threshold of their own gas emissions and they suffer

the consequence also from the economic point of view of greenhouse effect:

melt of glaciers and rising water level cause damage to agriproducts. World

emergency requires an international coordination between countries aiming

at signing agreements to reduce gas emissions, but, in practice, the signers

are a small number. Even Game Theory confirms this behaviour. Carraro

and Marchiori (2003), for example, show a model where, at the equilibrium,

the signatories are fewer in number and the grand coalition is not achieved.

We prove the same results in Section 3.6. The seriousness of the problem

needs all the countries to sign agreements and reduce their gas emissions.

The Thesis consists of four parts: the first part contains opening notes,

while the others refer to three different problems: the analysis of a binary

symmetric game, a modified version of Unilateral Commitments Game, and

the essentializing of different equilibrium concepts.

The first part of the Thesis is made up of Chapters 1 and 2 , and contains

definitions and notations. It would like to be a ushering into Game Theory

of the readers not familiar with mainly standard game theoretic notions. In

Chapter 1 we introduce the basic concepts of Game Theory and the solution

concepts used in this thesis. The content of Chapter develops through the

three forms, in which we can represent a game: the strategic form, the exten-
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sive form, and the coalitional form. First, we introduce games in strategic

form, the dominated strategies , the concept of Nash equilibrium, and some

games quoted in this work, such as Matching Pennies, Coordination Game,

Battle of the Sexes, Prisoner’s Dilemma, and Rock Paper Scissors. Then,

we present games in extensive form with perfect recall, followed by games in

coalitional form and, in particular we recall the definition of TUIC-games,

since the model analyzed in Chapter 3 derives from them. In the conclu-

sive Section of Chapter 1, we present those refinements of Nash equilibria,

which we have essentialized in Chapter 5 , not based on beliefs, like Sub-

game Perfect Equilibrium (SPE), and Perfect Equilibrium (PE), and based

on beliefs, like Sequential Rationality (SR), Sequential Equilibrium (SE),

and Weak Perfect Bayesian Equilibrium (WPBE).

In Chapter 2, we present the concept of potential, and its relations with

symmetric games. The Section 2.5 is the core of Chapter 2 and provides

our results. The first result establishes a symmetric game with only two

strategies is a potential game and then it has a pure Nash Equilibrium. The

originality of the result lies in beying such a game a potential game, since

Cheng and other (2004) has already showed that a symmetric game with

only two strategies has a pure Nash equilibrium. The second one provides

how all the NE of a symmetric, binary game are deduced from its potential

function.

The second part of the Thesis is Chapter 3, where we present two models

of binary games. We consider the problem of sharing the cost of facilities

among the possible users. An easy way to divide costs is to divide them

evenly among all of the players. But this way violates fairness, and, it

would be reasonable to take into account whether a member uses or not a

given facility. In order to be able to enforce the payment, we assume to have

a way to make verifiable to a third part who are the users, but, to make

it verifiable, an additional cost is to be added. We propose two ways, in

which players reach such a decision. In the first model, the naming game,

each player names the machine for which he asks for verifing. In the second

model, the majority decision game, the checking is made only if the given

quorum is reached. Each model has been examined first in the case with

only one machine and then with different ones. Since a binary symmetric

game is a potential game and, then, it has a pure Nash Equilibrium, we can

model a special case of environmental game via naming game, that is via a

potential or congestion game, result processed in Section 3.6.

The third part of the Thesis (Chapter 4), analyzes the model of Quality

Unilateral Commitments, i.e. unilateral commitments where, in the first
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stage, each player declares that he will pay a penalty if he will not play, in

the second stage, the restricted strategies. Adding a self-punishing scheme

to this simple sequential game structure makes self-enforcing the Nash equi-

libria of the constituent game, if any. In particular, we embed a two player

game into a two stage game, in which players can restrict their strategy

spaces in the first stage. In the second stage, if player chooses a strategy

from his restricted strategy space, he obtains the same payoff as in the ba-

sic game, otherwise he pays a penalty dependent on the square of distance

from his restricted strategy space. Since a commitment is a binding of an

individual to the others, it measures an attitude to the sense of altruism,

compliance, identification and loyalty towards the group. It is no accident

we have called our model as quality commitments instead of penalty com-

mitments. In this years, the Corporate Social Responsability (briefly, CSR)

is developping. A CSR is an enterprise, which not only produces wealth, but

also is dealing with business within the competence of State, Church, civil

society, and family. In order to favour the cooperation in a game, usually

we implement an efficient disciplinary system, extern to the parts involved

in the game. Instead, the CSR develops on civic virtue: the virtue cannot

be negotiated, like penalty is settled by contract, but it is a product of free

will. The same it happens in our model of QUC, since the sanctions is self

declared by the players, then it is internal to the game.

The fourth part of the Thesis (Chapter 5) is an annotated rewrite of the

paper Essentializing Equilibrium Concepts, together with González-Dı́az ,

Garćıa-Jurado, and Patrone (see González-Dı́az et al. (2009)). The essen-

tializing process is a tool to identify what information about a game may be

neglected, in order to check whether a specific profile correspond to an equi-

librium outcome or not. Given an extensive game, an equilibrium concept

selects a set of strategy profiles (empty too) satisfying well-defined condi-

tions testing on the all game tree We characterize the essential collections

for the most used equilibrium concepts, based or not on beliefs, such as SR,

WPBE, SE or NE, SPE, PE. The possible applications of our analysis is to

check the robustness of a concept, to analize a partially-specified game, and,

finally, to study the concept of Virtual Equilibrium.

The three problems studied in the Thesis are not entirely unrelated. In

Chapter 3, we analize the equilibria set of a simple non cooperative model

using two different criteria (’Naming game’ and ’Majority decision’), Since

the found equilibria are unfair, we give fair nature to solutions without

recourse to cooperative games, which tools for building equity criteria. So

we look for normative prescriptions by emphasizing and focusing on the

ethical behaviour of players. A possible solution is provided by Quality
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Unilateral Commitments (Chapter 4). This game is a one-shot game, since

we try to obtain a cooperative and efficient outcome without resorting to

repeated games but using only anticipative declarations of good behaviour.

Since, with the unilateral commitment amplification, the extensive form of

the game has grown exponentially, it is necessary to locate which parts of

the game are relevant to check if the outcome of the strategy profile is an

equilibrium outcome: from here the Essentializing Equilibrium Concepts

(Chapter 5).
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Chapter 1

Preliminaries

In this Chapter we define the basic concepts of Game Theory, fundamental

for this work, and set up standard terminology and notations. First, we

introduce games in strategic form (Section 1.1), dominated strategies (Sub-

section 1.1.2), the concept of Nash equilibrium (Subsection 1.1.3), and some

games quoted in this work (Subsection 1.1.4), then games in extensive form

(Section 1.2), followed by games in coalitional form (Section 1.3, and, in

particular we recall the definition of TUIC-games (Subsection 1.3.1), since

we quote them in Chapter 3. In the conclusive Section 1.4, we present

some refinements of Nash equilibria, not based on beliefs (Subsection 1.4.1),

like Subgame Perfect Equilibrium (SPE), and Perfect Equilibrium (PE), and

based on beliefs (Subsection 1.4.2), like Sequential Rationality (SR), Sequen-

tial Equilibrium (SE), and Weak Perfect Bayesian Equilibrium (WPBE).

As we have reminded in the Introduction, Game Theory copes with

strategic interaction between at least two decisioners, called players, and

makes mathematical models of it. The players (or else sets of players),

intelligent and rational, interact with each other in situations of conflict

and cooperation. Each player masters partially the end result of the game
1 through his actions. This way, we have identified the constituents of a

game.

Definition 1. A game G is composed of at least two players, the choices

at disposal of players, and the preferences of players compared to game out-

comes.

We assume that the players are rational and intelligent, and the model

1A game is made up of players (at least two), of choices at disposal of the players, and

preferences of the players for outcomes of the games.

1
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is common knowledge (Lewis (1969). We say rational the player able to

make a choice between various available options, and intelligent the decision

maker with unlimited capacities of deduction, calculus, and analysis of the

situation. The structure of the game is common knowledge when we assume

that all players know the structure of the strategic form, and know that their

opponents know it, and know that their opponents know that they know,

and so on ad infinitum.

The games are divided into cooperative games, if players can sign binding

agreements, and non-cooperative games, otherwise.

A game can be described in several ways, the principal forms are three:

the strategic form, the extensive form, and the coalitional form. The first

two classes belong to non cooperative games theory, the third class to coo-

perative games theory. A game in strategic form is represented by listing

all the strategies (complete plan of action) available to each player, together

with the payoffs associated with the various strategy combinations. The

strategic form, or s.f., is recomended for games with simultaneous and in-

dependent actions. A game in extensive form is given by the rules of the

game indicating the choices available to each player, the information of a

player when it is his turn to move, and the payoffs each player receives at

the end of the game. The extensive form, or e.f., is suitable for games with

alternate moves. A game in coalitional form is described by the utility that

each set of players can gain if they form a coalition, excluding the other

players. The characteristic form, or c.f., is used for cooperative games. A

game in extensive form can be transformed into strategic form (von Neu-

mann (1928)). The possibility of reducing to strategic form also a game with

non-simultaneous moves makes the strategic form very important, even if

some essential information of extensive form is lost during the change to

strategic form.

1.1 Games in Strategic Form and Dominance

1.1.1 Strategic Game

Definition 2. A game form Γ in strategic form is

〈X1, . . . , Xn, E, φ〉

where N = {1, . . . , n} is a finite set of players, Xi is the non-empty pure

strategy set of player i ∈ N , E is the set of possible final outcomes, and
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φ :
∏
k∈N

Xk −→ E maps the set of pure strategies into the corresponding

outcome.

Definition 3. A game G in strategic form is

〈X1, . . . , Xn, u1, . . . , un〉

where N = {1, . . . , n} is a finite set of players, Xi is the non-empty pure

strategy set of player i ∈ N , ui :
∏
k∈N

Xk −→ R is the payoff function for

player i.

The payoff function ui gives von Neumann-Morgenstern utility ui(x1, . . . , xn)

of player i for each strategy profile (x1, . . . , xn).

Definition 4. A game 〈X1, . . . , Xn, u1, . . . , un〉 in strategic form is a finite

game if Xi is a finite set for all i ∈ N .

Definition 5. A game is a binary choice game if each player has only two

pure strategies.

Definition 6. Given a game 〈X1, . . . , Xn, u1, . . . , un〉, the game

〈X1, . . . , Xn, c1, . . . , cn〉,

where ci = −ui for all i ∈ {1, . . . , n}, is a cost game. ci is called cost

function.

For S ⊆ A, we denote −S the set A\S and XS the product set
∏
i∈S

Xi.

As a particular case, with abuse of notation, we denote X−i the product set∏
k 6=i

Xk. Then x−i indicates an element of X−i, and (y, x−i) the element of∏
k∈N

Xk obtained from (x1, . . . , xn) by replacing the i-th strategy xi by y,

that is (y, x−i) = (x1, . . . , xi−1, y, xi+1, xn).

Let 〈X1, . . . , Xn, u1, . . . , un〉 be a finite game, where mi
.
= |Xi|, for each

i ∈ N . A mixed strategy pi of player i is a probability distribution on Xi,

which asssigns to the pure strategy xij of player i the probability pij .

Definition 7. A mixed strategy of player i is pi ∈ ∆(Xi), where

∆(Xi) = {pi = (pi1, . . . , pimi) ∈ Rmi : pij > 0,

mi∑
j=1

pij = 1}

is the probability simplex on Xi.
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Really, a mixed strategy is

mi∑
j=1

pijxij ,

where (pij)j ∈ ∆(Xi) and xij ∈ Xi for each j = 1, . . . ,mi are the pure

strategies of player i, but we represent with p = (pij)
mi
j=1, that is, an element

p = (pij)
mi
j=1 ∈ ∆(Xi) corresponds to the strategy “ play strategy xij with

probability pij , for each j = 1, . . . ,mi”.

1.1.2 Dominance

Definition 8. Given a strategic game (X1, . . . , Xn, u1, . . . , un), the strategy

xi ∈ Xi strongly dominates the strategy yi ∈ Xi for player i ∈ N , if ∀x−i ∈
X−i

ui(xi, x−i) > ui(yi, x−i).

The strategy xi ∈ Xi weakly dominates the strategy yi ∈ Xi for player i, if

∀x−i ∈ X−i
ui(xi, x−i) > ui(yi, x−i).

The strategy xi ∈ Xi strictly dominates the strategy yi ∈ Xi for player i, if

xi weakly dominates yi ∈ Xi and ∃x̄−i ∈ X−i such that

ui(xi, x̄−i) > ui(yi, x̄−i).

The strategy xi ∈ Xi is a strongly dominant strategy for player i, if xi
strongly dominates every other strategy yi ∈ Xi with xi 6= yi, while the

strategy xi ∈ Xi is a strongly dominated strategy if there exists a strategy yi
which strongly dominates it 2.

Obviously, all the dominance relations are reversed for a cost game.

1.1.3 Nash Equilibrium

The Nash equilibrium is the most important equilibrium concept in Game

Theory. It was introduced by Nash ((1950), (1951)). A Nash equilibrium

is a profile of strategies such that the strategy of each player is the optimal

response to the strategies of the opponents. Nash equilibria are consistent

2To avoid misunderstandings, the terminology we use about dominances is not aligned

with the ’dominant’ usage in Game Theory literature.
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predictions of how the game will be played, in the sense that if all players

predict that a particular Nash equilibrium occurs, then no player has an

incentive to play differently.

Definition 9. A strategy profile is (x1, . . . , xn) ∈
∏
i∈N

Xi.

Definition 10. A Nash equilibrium is a strategy profile (x1, . . . , xn) such

that ∀i ∈ N and ∀yi ∈ Xi

ui(xi, x−i) > ui(yi, x−i).

Hence, a strategy profile (x1, . . . , xn) is a Nash equilibrium (briefly: NE)

if no player has an incentive to unilaterally deviate from (x1, . . . , xn), since

with a NE each player maximizes his payoff if the strategies of the others

are held fixed. In this sense, the strategy of each player is said optimal

against those of the opponents.

Remark 1. When we assume that the strategy sets are subset of an Eu-

clidean space and the payoff function are continuous, the criterion in Defini-

tion 10 for a NE can be expressed by equating n pairs of continuous functions

on the space of n-uples. Then the NE obviously form a closed subset of this

space. This subset is composed of a number of pieces of algebraic varieties,

cut out by other algebraic varieties.

1.1.4 Example of Games in Strategic Form

Not all games have NE in pure strategies, like it happens in Matching Pen-

nies Games. Sometimes there are games with multiply NE: two well known

examples are the Coordination Games, where the NE are the same for each

player, and the Battle of the Sexes, where each NE is preferred only by one

player. Therefore, the following problem arises: given a game with more

than one NE and without possibility to make binding agreements, which

one of these NE should be chosen as the solution of the game? Again, some

NE are better qualified to be chosen as the solution than others, and not

every NE has the property to be self-enforcing. The tool of eliminating

the equilibria not self-enforcing (or unreasonable or non-sensible) is called

refinement of NE.

Matching Pennies

A simple example of non-existence of Nash equilibria is the Matching Pennies

Games, in Figure 1.1. In Matching Pennies, two players simultaneously
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announce heads (H) or tails (T). If the announces match, player I wins and

player II looses, otherwise player I looses and player II wins. Neither of

the pure strategy profile constitute an equilibrium. The unique equilibrium

of MP is in mixed strategies, when each player randomizes between his two

pure strategies, assigning equal probability to each.

I
\
\II H T

H 1 0 0 1

T 0 1 1 0

Figure 1.1: Matching Pennies Game.

Coordination Game

An easy example of a game with multiple equilibria is the Coordination

Game3, illustrated by Figure 1.2. Each player receives 1 when the players

I
\
\II L R

T 1 1 0 0

B 0 0 1 1

Figure 1.2: Coordination Game.

choose the same strategies and 0 otherwise. The game has two Nash equi-

libria in pure strategies, and a third in mixed strategies, when each player

randomizes between his two pure strategies, assigning equal probability to

each. The problems derive from the fact that there are two optimal choices

for the players and the strategies are choosen simultaneously, so the players

cannot effectively coordinate themselves.

Battle of the Sexes

One well-known example of a game with multiple equilibria is the Battle

of the Sexes, illustrated by Figure 1.3. Two players wish to go to an event

together, but disagree about whether to go to a football game or to the

3The Coordination Game is an example of a game described by Definition 41.
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I
\
\II F B

F 2 1 0 0

B 0 0 1 2

Figure 1.3: Battle of the Sexes.

ballet. Each player gets a utility of 2 if both go to his (or to her) preferred

event, a utility of 1 if both go the other’s preferred event, and a utility of 0

if the two are unable to agree and stay at home or go out individually. The

game has three equilibria: two in pure strategies, (F, F ) and (B,B), and

one in mixed: player I plays F with probability 2
3 (and B with probability

1
3), and player II plays F with probability 1

3 (and B with probability 2
3).

If two players have not played the battle of sexes before, there is no

obvious way for the players to coordinate their expectations. However, the

theory of focal points of Schelling (1960) suggests that in some real-life

situations, players may be able to coordinate on a particular equilibrium

using information abstracted away by the strategic form.

Prisoner’s Dilemma

In the Prisoner’s Dilemma game, two suspects of a crime are put into se-

parate cells. If both confess (strategy B and R, respectively) each will be

sentenced to 2. If only one of them confesses, he will be freed and used

as a witness against the other person, who will be sentenced to 3 years in

prison. If both do not confess (strategy T and L, respectively), they will

both be punished for a minor offense and spend 1 year in jail. Payoffs are

represented by 3 minus the number of years spent in prison.

I
\
\II L R

T 2 2 0 3

B 3 0 1 1

Figure 1.4: Prisoner’s Dilemma.

Changing the perspective, we define as Prisoner’s Dilemma each sym-

metric binary game with two players such that each player has a dominant
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strategy and the NE is not efficient. From here the interest reserved to Pri-

soner’s Dilemma follows, since a reader might expect an efficient outcome,

on account of rationality assumption of players. The Prisoner’s Dilemma

repetion allows to draw up the paradox. As the game perpetuates, the play-

ers are urged to cooperate (see Fudenberg and Tirole (1991) or Kreps et al.

(1982).

Rock Paper Scissors

Rock Paper Scissors, depicted in the Figure 1.5 is a two player game. Each

player has three strategies: rock, paper, and scissors. Rock breaks scissors,

paper folds rock, and scissors cut paper. None of the pure strategy profiles

constitute an equilibrium. The game has a unique symmetric equilibrium

in mixed strategies: player I plays R with probability 1
3 , S with probability

1
3 , and P with probability 1

3 , and player II the same mixed strategy.

I
\
\II R P S

R 0 0 −1 1 1 −1

P 1 −1 0 0 −1 1

S −1 1 1 −1 0 0

Figure 1.5: Rock Paper Scissors.

RSP is a three player game with no pure strategy equilibria.

1.2 Games in Extensive Form

The extensive form is a fundamental concept in Game Theory. In this work,

the words extensive game will always refer to a finite game in extensive form.

We follow the representation of an extensive game given in Fudenberg and

Tirole (1991a), representation equivalent to the classic one given by Kuhn

(1953) and further developed in Selten (1975) and Kreps and Wilson (1982).

The extensive form is a more detailed description of a game. It tells exactly

which players should move, when, what are the choice, the outcomes, the

information of the players at every stage, and so on. The order of moves

(i.e., who moves when) is represented by a game tree ( a non-oriented graph,

connected, and without simple cycles) finite and with root. The probability
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distributions over any exogenous events is represented by moves of Nature,

eventually. In the following Sub-section we transfer, for completeness, the

formal definition, some details of which are not essential for the rest of the

work.

1.2.1 Extensive Game with Perfect Recall

We now formally define a finite game form in extensive form.

Definition 11. (Kuhn (1953)) A finite extensive game form is

Γ = (V,D, r,N,P,U ,M, E, φ, (4k)k∈N ),

where:

1. (V,D, r) is a finite tree4 (V,D) with root r.

V denotes the tree node (or vertex) set, D the tree branch set, Z the

terminal node set, and e X = V \Z the decisional node set.

2. N = {0, 1, . . . , n} is the finite player set. 0 represents Nature. We

assume that the random player can move only in r.

3. P = (Pk)k∈N∗ is a subdivision in disjoint subsets of X, also empty.

Pk are the set of pertinent nodes to player k, that is the nodes in which

k has to move.

4. U = (Uk,j)k∈N∗,j∈Jk is, for each player k, a partition of Pk in a family

of sets Uk,j, Jk is a set of indices.

Uk,j are the nodes pertinent to player k, such that, when the player is

one of them, who is not able to distinguish in which node he is.

5. A is, for k 6= 0, a family of sets Ak,j, one for each of Uk,j.

In correspondence with a node of an information set Uk,j, player k has

to choose an action between those contained in Ak,j.

6. E is the set of possible final outcomes of the game.

7. φ : Z −→ E associates to each terminal node an outcome.

8. (4k)k∈N represents a family of total preorder on E which represent the

preferences for final outcomes of the game.

4A tree is a non oriented, connected graph made of simplex cycles.
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From here onwards, Γ denotes a game form, U(Γ) a partition of X(Γ), i.e.

each terminal node is also an information set, Ai(Γ) the actions available

to player i, A(u) the action available to him in information set u, that is in

A(u) ⊆ Ai, Ui(Γ) the information sets belonging to a player i ∈ N , (Γ, h) a

game in extensive form, and G(Γ) the set of games with game form Γ.

Definition 12. An information set u is a class of pertinence nodes of a

player such that

• all nodes in u have the same number of outgoing branches, and there is

a given one-to-one correspondence between the sets of outgoing branches

of different nodes in u;

• every directed path in the tree from the root to a terminal node can

cross each u at most once.

Grafically the dashed line connects the nodes belonging to the same infor-

mation set.

Definition 13. A game is of perfect information if all the information sets

are singletons.

In a game of perfect information, there are no simultaneous moves, and at

each decision point the player knows which choice has previously been made.

The Figure 1.6 depicts a game with perfect information and a game without

perfect information.

In Figure 1.7 is depicted a game in extensive form where two players

are involved: player I and player II. The game starts at the root of the

tree, depicted in the figure by ◦, where player I has to move. He can choose

between T or B. If player I has choosen T , then player II has to move.

After he has observed the move of his opponent, he can decide to go left L

or right R. If player I has choosen B, the player II has not to move. We

have hung the end results on the endpoints of the tree. The upper number

is the payoff to player I, the lower to player II. So, for example, if player

I chooses B, then player I receives 1 and player II receives 2. The game

is played just once. The game has two NE, (T, L) and (B,R), with payoff

(2, 1) and (1, 2), respectively. The strategy profile (B,R) is NE since, given

the choice of player II, it is optimal for the player I choosing B at the

beginning of the game ( if he chooses T , then, given the choice R of player

II, he gets 0 instead of 1), and, given the choice of player I, it is optimal

for the player II to choose L, since his choice is indifferent to the outcome.

Similarly, the strategy profile (T, L) is a NE.
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Figure 1.6: Games in extensive form with and without perfect information.

Almost all games in economics literature are games of perfect recall.

Definition 14. A game is of perfect recall if no player ever forgets any

information he once knew, and all players know the actions they have chosen

previously.

In the Figure 1.8 the player I moves first, but when he has to move again,

he has forgotten his previous choice. The player is not able to distinguish

between the sequence of action (L, r), (R, l), and (R, r). That is, player I

does not remember whether he has chosen L or R. While, it is reasonable

that he cannot distinguish between r and l since this move is choosen by

player II and is not revealed to player I.
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Figure 1.7: Game in extensive form.

In the Figure 1.9, player I makes his choice knowing the initial node, chosen

by Nature (When a game involves Nature, the exogenous probabilities are

displayed in brackets). If player I chooses d and player II chooses D, player

I has to move again in the information set {x, y}, but he has forgotten the

Natura choice, information he had at his disposal.

1.2.2 Behavior strategy profile

A pure strategy of a player is a complete plan for his choices in all possible

contingencies in the game, that is at all his information sets. A mixed

strategy means that the player chooses, before the beginning of the game,

one such comprehensive plan at random, according to a certain probability

distribution. An alternative method of randomization for the player is to

make an independent random choice at each one of his information sets.

That is, rather than selecting, for each information set, one definitive choice,

as in a pure strategy, he specifies instead a probability distribution over the

set of choices there. Moreover, the choices at different information sets are

(stochastically) independent. These randomization procedures are called

behavior strategies.

Definition 15. A behavioral strategy profile is b = (bi)i∈N , where the be-

havioral strategy bi for the player i ∈ N prescribes, for each information

set u ∈ Ui(Γ), a probability distribution on the actions available to him in
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Figure 1.8: Game of non-perfect recall.

information set u, that is in A(u) ⊆ Ai

bi : Ai −→ [0, 1] s.t.
∑

a∈A(u)

bi(a) = 1, u ∈ Ui

.

We denote B(Γ) =
n∏
i=1

Bi(Γ) the set of behavior strategy profiles of a game G

or a game form Γ, and, with a slight abuse of notation, hi(b) the (expected)

payoff to player i when b ∈ B(Γ) is played.

Definition 16. A behavioral strategy profile b ∈ B(Γ) is completely mixed

if at each information set all the choices are taken with positive probability.

Thus the beliefs associated with a completely mixed strategy profile are

completely determined by Bayes rule (see Section 1.4.3).

1.3 Games in Coalitional Form

For a finite set N of players, we denote its power set, i.e. the collection of

all its subsets, by 2N and its number of elements by |N |. A subset S ⊆ N

is called a coalition.
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Definition 17. A cooperative n-person game in coalitional form is an or-

dered pair

〈N, v〉

where N = {1, . . . , n} is the set of players, and v : 2N −→ R is a map,

which assigns to each coalition S ∈ 2N a real number, such that v(∅) = 0.

v is called the characteristic function of the game and v(S) the value or the

worth of coalition S.

A game in coalitional form (or characteristic function) may represent very

different situations, for example it can model a simple voting game where

v associates to a winning coalition the value 1 and to a losing coalition the

value 0, or an economic market that generates a cooperative game.

Example 1. (Glove game) Let N = {1, . . . , n} be divided into two disjunct

subsets L and R. Members of L possess a left hand glove, members of R a

right hand glove. A single glove is worth nothing, a right-left pair of gloves

1. This situation can be modeled by an n-person game 〈N, v〉, where, for

each S ∈ 2N ,

v(S)
.
= min{|L ∩ S|, |R ∩ S|}.

There are two special classes of games:
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• Transferable utility games (TU) (also called Games with Side Pay-

ments). The members of a coalition S can arbitrarily divide among

themselves the amount v(S) which S can get. So a TU-game is of the

form

v(S) = {(xi)i∈S such that
∑
i∈S

xi 6 v(S)}.

• Non-transferable utility games (NTU), the games without transferable

utility.

But these questions are not within our terms of references.

For completeness, we recall the Pure Bargaining games (PB). In these

games only the grand coalition matters. Here, for all S 6= N ,

v(S) = {(xi)i∈S such that xi 6 0 , ∀i ∈ S}.

But these questions are not within our terms of references.

1.3.1 TUIC games

The TUIC games represent a simple model which allows embedding a coo-

perative game of cost allocation in a richer structure, so that it is possible to

take in account that cost information is expensive to get. In this structure,

we can discuss how to balance on one hand the costs imposed by information

requirements, on the other the loss of fairness when one tries to reduce these

costs to the minimum. A TUIC-game is a family of TU -game, indexed by

a parameter t ∈ T , with information costs χt, and ordered by a transitive

and irreflexive relation ≺ on T . In addition to the function ct of TU -game

Gt, there is an extra cost χt bringing the necessary information on the cost

to get ct. For example χt is the additional cost to pass from a model t1 ∈ T
to another t2 ∈ T or to choose the function ct. Moreover t1 ≺ t2 means the

model t2 has more information w.r.t. model t1 and ct2 approaches better

the cost function than ct1 .

Definition 18. A TUIC game is

〈N,T, (ct)t∈T , (χt)t∈T ,≺〉,

where N is a finite set of players, T is a set of parameters (models), whose

elements provide the needed information to have a TU game, ct : P(N) −→
R is a (cost) TU game, χt ∈ [0,+∞) is the cost to get ct, ≺ is a transitive

and irreflexive relation on T .
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1.4 Special classes of equilibria

1.4.1 Non-belief-based equilibria

The classic equilibrium concepts not based on beliefs are the Nash equi-

librium and some of its refinements, such as the subgame perfect equili-

brium (Selten (1965)), the perfect equilibrium (Selten (1975)), the proper

equilibrium (Myerson (1978)), the persistent equilibrium (Kalai and Samet

(1984)), the essential equilibrium (Wu Wen-Tsün and Jiahg Jia-He (1962)),

and the regular equilibrium (Harsanyi (1973)). We have also defined the

NE in Subsection 1.1.3. Here, we introduce only the subgame perfect equi-

librium in Subsubsection 1.4.1 and the perfect equilibrium in Subsubsection

1.4.1, since the others wander off the matter of this thesis.

Selten (1965), in order to discard those NE, possible if some players

give credit to irrational (that is, non-maximizing) plan of the others, intro-

duced the subgame perfect equilibrium, that is a NE which induces a NE

in each subgame. But a subgame perfect equilibrium may also be non sen-

sible, in the sense that it prescribes a choice non-maximizing the expected

payoff. Selten (1975), to eliminate unreasonable subgame perfect equilib-

ria, assumes that there is always a small probability that a player will take

a choice by mistake, with the consequence that every choice will be taken

with a positive probability. Therefore, in an extensive game with mistakes

(a so called perturbed game), every information set will be reached with a

positive probability. Then, an equilibrium of this game will prescribe ratio-

nal behavior at every information set. Assuming that mistakes occur only

with a very small probability leads to define a perfect equilibrium, that is

an equilibrium obtained as a limit point of a sequence of disturbed games in

which the mistake probabilities go to zero. Hence, an equilibrium is perfect

if the equilibrium strategy of each player is not only optimal against the

equilibrium strategies of his opponent, but if it is also optimal against some

slight perturbations of these strategies.

Subgame Perfect Equilibria

The subgame perfect equilibrium (Selten (1965)), or SPE, is the most im-

portant equilibrium concept within the class of extensive games. The sub-

game perfect equilibrium discards those NE which are only possible if some

players give credit to irrational plans of others. That is, a SPE is a Nash

equilibrium which induces a Nash equilibrium in every subgame.
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We consider the game due to Selten (1975) in Figure 1.10. It is an
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Figure 1.10: Selten game.

extensive game with perfect information. In order to identify the Nash

equilibria, it is more convenient to analize the Selten game in strategic form,

see Figure 1.11. The game has two NE (T, L) and (B,R), with payoff (2, 1)

I
\
\II L R

T (2, 1) (0, 0)

B (1, 2) (1, 2)

Figure 1.11: Selten game in strategic form.

and (1, 2), respectively. The equilibrium (B,R) is not self-enforcing, while

(T, L) is enforcing. Let us make ourselves clear. Let suppose the players

have agreed to play (B,R). If player I considers that player II will fulfil the

agreement, then it is optimal for him to play B. But I cannot expect that

II will fulfil the agreement. In fact, if the node x is reached, the strategy L

gives to II a higher payoff than R. So, the II will play L, if he has to move.

Therefore, it is better for player I to play T , and so he will also violate

the agreement. From here, the Nash equilibrium (B,R) is not enforcing.

The equilibrium (B,R) can be interpreted as a threat equilibrium on part

of player II. Player II threats player I that he will punish him by playing

R, if he does not play B ( which gives II the best possible result). This

way, II will punish also himself: the choice R is not optimal for II, which

gets a better payoff playing L. Why does a Nash equilbrium predict for a
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player a sub-optimal choice? The equilibrium (B,R) does not predict that

II plays R, since the choice B concludes the game and II has not to move.

In general, a Nash equilbrium can predict non optimal choices on part of

players in nodes of the tree not reached, if the equibrium profile is played.

Again, the threat is not credible since if I disregards the threat and plays T ,

then II will play L, following his rationality. So, using the extensive form,

we have shown that not all the Nash equilibria are the same. This leads to

the definition of subgame perfect equilibrium or SPE by Selten (1965).

The argument used to exclude the equilibrium (B,R) in the Selten game

in Figure 1.10 generalizes to all games with perfect information. Since in

a non-cooperative game there are no possibilities for commitment, once the

decision point x is reached, the part of the game tree which does not come

after x has become strategically irrelevant and, therefore, the decision at x

should be based only on the part of the tree which comes after x. This implies

that for games with perfect information only those equilibria which can be

found by inductively working backwards in the game tree, are sensible, i.e.

self-enforcing. Using the backward induction principle, we get all the SPE

of an extensive game.

Sequential rationality and subgame-perfectness are backward induction

principles for the analysis of games in extensive form, because they require

that any predictions that can be made about the behavior of players at the

end of a game are supposed to be anticipated by the players earlier in the

game.

Perfect Equilibria

The Perfect Equilibrium or Trembling-Hand Perfect equilibrium is a refine-

ment of Nash equilibrium, introduced in Selten (1975). It is very closely

related to the concept of sequential equilibrium. The basic idea behind the

perfectness concept is that each player makes mistakes with a small pro-

bability, therefore every pure strategy is chosen with a positive (although

possibly small) probability. Mathematically, this idea is modelled via a per-

turbed game, that is a game in which each player is only allowed to use

completely mixed strategies. The distinction with sequential equilibrium is

thus that strategies must be in equilibrium along the converging subsequence

and not only in the limit. In the definition, Selten requires that a strategy

profile b be the limit of a sequence of totally mixed profiles bε and that bεi
be a best response to the opponents’ perturbed strategies bε−i.
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Definition 19. Let G = (Γ, h) be an extensive game. Let ε be a function

ε : Ai −→ (0, 1]

which assigns to every choice a in G a positive number ε(a) such that, for

every information set u ∈ Ui, ∑
a∈A(u)

ε(a) < 1.

The perturbed game Gε ∈ G(Γ) is the extensive game G in which every player

i ∈ N is only allowed to use behavior strategies bi which satisfy

(bi)u > ε(a),

for all u ∈ Ui and a ∈ A(u).

Let Gε be a perturbed game and let Bε be the set of admissible strategy

profiles in Gε. An equilibrium of Gε is an admissible strategy profile b ∈ Bε

which prescribes a best reply at every information set, i.e.

hi(bu) = max
b
′
i∈Bεi

hi(b−i, b
′
i)u,

for each i ∈ N and each u ∈ Ui. An equilibrium of Gε is perfect if it is still

sensible to play this equilibrium if slight mistakes are taken into account.

Definition 20. Let G be a game in extensive form. A behavioral strategy

profile b is a perfect equilibrium of G if

bε −→ b, as ε→ 0,

that is, b is a limit point of a sequence of equilibria of perturbed game Gε.

In the game of Figure 1.12, only the equilibrium (R, r) is perfect. In a

perturbed game associated with this game, player I will take the choices M

and R with a positive probability (if only by mistake) and, therefore, the

information set of player II will actually be reached, which forces player II

to play r.

Theorem 1. (Selten (1975)) Every finite game possesses at least one perfect

equilibrium.

Theorem 2. (Kreps and Wilson (1982)) Every perfect equilibrium is se-

quential, but the converse is not true.
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Figure 1.12: G.

To illustrate the difference between the two concepts, let us consider

the game G′, in Figure 1.13, obtained with a slight modification of game G

in Figure 1.12. As before, player II has to play r. For player I, both R

and L are the best replies against r. Therefore, in a sequential equilibrium,

player I can play any combination of R and L. The only perfect equilibrium,

however, is (L, r), since if player I plays L, he is sure of getting 3, whereas

if he plays R, he can expect only slightly less than 3 since player 2 with a

small probability will make a mistake and play l.

1.4.2 Belief-based equilibria

In this subsection, we extend the notion of subgame perfect equilibrium

to extensive game with imperfect information. We focus on the concept

of Sequential Rationality, and some of its refinements, such as Sequential

Equilibrium and Weak Perfect Bayesian Equilibrim.

We recall that a Subgame Perfect Equilibrium of an extensive game with

perfect information is a strategy profile for which the strategy of each player,

given the strategies of the others, is optimal at any contingency in which it

is his turn to take an action, also in tree nodes not reached by game. The

natural extension of this idea to extensive games with imperfect information

leads to the following requirement.

(?) The strategy of each player, given the strategies of the others, is

optimal at each of his information sets (reached or not by the game).
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Figure 1.13: G′.

In the extensive game G with imperfect information in Figure 1.14, the

requirement that each player’s strategy be optimal at every information set

eliminates a NE.
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Figure 1.14: G.

This simple example is due to Selten (1975). In this game player I has

tree strategies: L, M , and R. If he plays L, the game ends with payoff

(2, 2). If plays M or R, then player II must choose between l or r, but

he does not know what action has been choosen by I. If player I chooses

M and player II l, the payoffs are (0, 0), and so on. The game G has
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two NE: (L, r) and (M, l), both of which are subgame perfect. If player I

adheres to equilibrium (L, r), then the information set of player II is not

reached. However, if it is reached (player I chooses M or L), the strategy r

is dominated by strategy l. For any specification of player II’s beliefs about

the probability of M and R when player I deviates and does not play L, the

optimal strategy of player II is to play r. Then (L, r) does not satisfy the

condition of the extension, while the equilibrium (M, l) does. The extensive

game with imperfect information G′ in Figure 1.16 has a NE (L, r) that is

not ruled out by an implementation (?), since optimal strategy of player

II in the event that his information set is reached depends on his beliefs

about the history that has occurred. The strategy r is optimal if II assigns

probability of at most 1
2 to the history M , while l is optimal if he assigns

probability at most 1
2 to this history. His belief cannot be derived from the

equilibrium strategy, since (L, r) assigns probability zero to his information

set being reached.

The solution for the extensive games studied in this section consists of

two components: a strategy profile and a belief system.

Definition 21. A system of beliefs µ over X(Γ)\Z(Γ) is a function

µ : X(Γ)\Z(Γ) −→ [0, 1]

such that, for each u ∈ U(Γ), ∑
x∈u

µ(x) = 1.

That is, a belief system consists of a collection of probability measures, one

for each information set of the game.

Definition 22. An assessment in an extensive game is a pair

(b, µ),

where b = (bi)i∈N is a behavioral strategy profile, and µ a system of beliefs .

1.4.3 Bayes Rule

We first recall some concepts of probability. Let Ω be a finite sample space.

We call events the subsets of sample space, that is E,F ⊆ Ω, so the set

of events is the set of the parts 2Ω. If m is the cardinality of Ω, then the

cardinality of 2Ω is 2m.
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Definition 23. A probability measure on Ω is a function

P : 2Ω −→ [0, 1],

such that

i)P (∅) = 0, , ii)P (Ω) = 1 , and

iii) for eachE, F ∈ Ω s.t. E ∩ F = ∅ , P (E ∪ F ) = P (E) + P (F ).

Definition 24. The conditioned probability of the event E given the event

F is

P (E|F )
.
=
P (E ∩ F )

P (F )
.

In plain words, we restrict the sample space to F and then we calculate the

probability of event E.

Since P (F ) ∈ [0, 1],

P (E|F ) > P (E ∩ F ).

Theorem 3. Let E,F be two events. Then,

P (E ∪ F ) + P (E ∩ F ) = P (E) + P (F ).

Theorem 4. Let F1, . . . , Fm be mutually disjoint and complementary events,

that is, Fi∩Fj = ∅ for each i, j = 1, . . . ,m with i 6= j, and F1∪ . . .∪Fm = Ω.

Then, for each event E,

P (E) = P (E|F1)P (F1) + . . . P (E|Fm)P (Fm).

Theorem 5 (Bayes theorem). Let E,F be events, then

P (E|F )P (F ) = P (F |E)P (E).

Corollary 1 (Bayes rule). Let F1, . . . , Fn be mutually exclusive and ex-

austive events and let E be an arbitrary events of sample space such that

P (E) 6= 0, then

P (F1|E) =
P (F1)P (E|F1)

P (F1)P (E|F1) + . . .+ P (Fm)P (E|Fm)
.

We consider the game in Figure 1.15 and we assume player I chooses T

with probability 1
3 and B with 2

3 , and player II chooses t with probability
1
4 , and d with 3

4 . During the game, the node x of information set of player

III is reached with probability a priori 2
3 , while the node y with probability

a priori 1
4 . A priori 1 − P (Tt) = 1 − 1

3
1
4 = 1 − 1

12 = 11
12 is the probability

which III has to move and 1
12 the probability with which a priori that the

game finishes. Using Bayes rule, the belief of III, when he has to move,

gives to him the probability of (2
3)/(11

12) = 8
11 to the possibility of being in

node x and (1
4)/(11

12) = 3
11 to the possibility of being in node y.
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Figure 1.15: Bayes rule application.

Sequential Rationality

Definition 25. An assessment (b, µ) is consistent if

(b, µ) = lim
n−→∞

(bn, µn),

that is, it is the limit of a sequence of assessments (bn, µn)n∈N such that each

bn is completely mixed, each µn results from bn using Bayes rule.

The idea for consistent condition is that the probability of the events, con-

ditioned on events with probability zero, approximates probabilities raised

by strategies which assign positive probability to each actions.

Definition 26. An assessment (b, µ) is sequentially rational if, for each

player i ∈ N and each information set u ∈ Ui(Γ) the strategy bi of the

player i who has to move is the best replay, assegned his beliefs and the

strategies of his opponents.

Sequential Equilibrium

Definition 27. An assessment (b, µ) is a sequential equilibrium of a finite

game in extensive form with perfect recall if it is sequentially rational and

consistent.

Let consider the game G in Figure 1.17.
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Figure 1.16: G’.

The assessment (b, µ) where

b = (b1, b2) , b1 = L , b2 = r , µ(x) = α , µ(y) = 1− α , ∀α ∈ (0, 1)

is consistent since

(b, µ) = lim
n−→∞

(bn, µn),

where

bn1 = (1− 1

n
, α

1

n
, (1− α)

1

n
) , bn2 = (

1

n
, 1− 1

n
) , µ(x) = α , µ(y) = 1− α , ∀n.

If α ≥ 1
2 , then (b, µ) is sequentially rational, since 2α+1(1−α) ≥ α+2(1−α).

So (b, µ) is a sequential equilibrium.

Proposition 1. Each finite extensive game, with perfect recall, has a se-

quential equilibrium.

Proposition 2. If (b, µ) is a sequential equilibrium, then b is a Nash equi-

librium.

Proposition 3. In an extensive game with perfect recall, (b, µ) is a sequen-

tial equilibrium if and only if b is a subgame perfect equilibrium.

Weak Perfect Bayesian Equilibrium

Definition 28. Let G = (Γ, h) be an extensive game. An assessment (b, µ)

is weakly consistent with Bayes rule if µ is derived using Bayesian updating

in the path of b.
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Definition 29. Let G = (Γ, h) be an extensive game. A Weak Perfect

Bayesian Equilibrium (or, briefly, WPBE) is an assessment (b, µ) sequen-

tially rational and weakly consistent with Bayes rule.
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Figure 1.17: The assesment (b, µ) is the limit of the sequence (bn, µn).
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Chapter 2

Potential game

2.1 Introduction

Monderer and Shapley (1996) introduced, for games in strategic form, three

nested classes of potential games: the ordinal potential games, the weighted

potential games, and the exact potential games (or in short potential games).

The basic point of these classes is the existence of a real-valued function P ,

called potential function, on the strategy space, which measures alone the

incentive of each player to deviate from a strategy. In the case of ordinal

potential games, P gives only indications whether the deviation increases

or decreases the payoff, while P for a weighted potential games values the

weighted gap of the deviation, and P for an exact potential game measures

the exact gap of the deviation. In this work, we will mainly deal with last

class, that is with exact potential games (or in short potential games).

The potential function is not only an useful tool to analyze equilibrium

properties of potential games, since the incentives of all players are mapped

into only one function, but also P provides the necessary information for

the determination of the Nash equilibria: a strategy profile is a NE if every

unilateral deviation from it decreases the value of the potential function. We

consider, for example, the Prisoner Dilemma G and the function P depicted

in Figure 2.1. The payoff change of a player, which unilaterally deviates,

exactly matches the change in function P . For example, if player II deviates

from (T, L) to (T,R), his payoff increases by 3−2 = 1 as well as P increases

by 1− 0 = 1. For this reason P is called an exact potential of the game G.

We underline that P is not the unique potential of G. Another potential for

G is P ′, illustrated in Figure 2.2. In fact, the exact potential games enjoy

29
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I
\
\II L R

T 2 2 0 3

B 3 0 1 1
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T 0 1

B 1 2

G P

Figure 2.1: Game and Potential.

L R

T 2 3

B 3 4

P ′

Figure 2.2: P’.

the property that two potentials are different in a constant. Again, (B,R) is

the NE since every unilateral deviation from this strategy profile decreases

the value of the potential function. Thus, the information concerning pure

NE accrues to a potential function.

Moreover, if strategy spaces are finite, the potential game has at least an

equilibrium in pure strategies. A point of maximum for P , which exists since

the product of finite space strategies is finite, is also a point of equilibrium

for G.

There are various analogies with the physical concept of potential not

only in the term and in the possibility of replacing n payoff functions (a

vector field) with one potential function (a scalar field), but also in the fact

that, if strategy spaces are finite, the “discret” circulation is always zero.

If the strategy spaces are, instead, intervals of real numbers and each pay-

off function is twice continuously differentiable, then the Schwarz theorem

applies to potential P and moreover, P is expressed by the integral of the

partial derivatives of each payoff (see Monderer and Shapley (1996)).

Historically, the first to use potential functions for strategic games was

Rosenthal (1973). Rosenthal introduced the class of congestion games and

proved, by explicitly constructing a potential function, that every congestion

game has a pure Nash equilibrium. A congestion game is a game where

players have to choose their strategy from a finite set of alternatives and
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their payoff depends on the number of players choosing the same alternative.

Moreover, Monderer and Shapley (1996) showed that the class of congestion

games coincides, up to an isomorphism, with the class of finite potential

games.

This Chapter is organized as follows. In Section 2.2, we introduce po-

tential functions, potential games, and the relative properties. In Section

2.4 we study the characterization of exact potential games by splitting them

into coordination games and dummy games. In Section 2.3, we intorduce

congestion game in order to have the formula of potential function. Finally,

in Section 2.5, we investigate symmetric games and we present our results.

The first result establishes a symmetric game with only two strategies is a

potential game and then it has a pure Nash Equilibrium. The originality lies

in being a potential game, since Cheng and other (2004) has already showed

that a symmetric game with only two strategies has a pure Nash equilibrium.

The second one provides how all the NE of a symmetric, binary game are

deduced from its potential function.

2.2 Potential game and potential function

This section defines ordinal potential game, exact potential games, surveys

some simple results, and provides two characterizations of exact potential

games.

Let G = 〈X1, . . . , Xn, u1, . . . , un〉 be a n-person strategy game.

Definition 30. [Monderer and Shapley (1996)] An ordinal potential for G

is a function P :
n∏
i=1

Xi → R such that, for all i ∈ N , x−i ∈ X−i, and

xi, yi ∈ Xi,

sgn (ui(xi, x−i)− ui(yi, x−i)) = sgn (P (xi, x−i)− P (yi, x−i)) .

sgn(x) denotes the sign of x, namely +1,−1 or 0.

Definition 31. An exact potential (or, briefly, a potential) for G is a func-

tion P :
n∏
i=1

Xi → R such that, for all i ∈ {1, . . . , n}, x−i ∈ X−i, and

xi, yi ∈ Xi,

ui(xi, x−i)− ui(yi, x−i) = P (xi, x−i)− P (yi, x−i).

The gap in the payoff for a unilaterally deviating player is exactly equal to

the corresponding gap in the value of P .
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Definition 32. A game admitting an ordinal or an exact potential function

is called an ordinal or an exact potential game respectively (or, briefly, a

potential game).

It is clear that the class of exact potential games is a proper subset of the

class of ordinal potential games.

Again, a function may be a potential function or an ordinal potential one.

For example, P is a potential for the Prisoner’s Dilemma G and at the same

time it is an ordinal potential for the game G′ described in Figure 2.3.

I
\
\II L R

T 2 3

B 3 4

P

I
\
\II L R

T 2 2 0 3

B 3 0 1 1

I
\
\II L R

T 2 2 0 3

B 3 0 1 1

G G′

Figure 2.3: P is a potential for G and an ordinal potential for G′.

The next lemma characterizes the equilibrium set of an ordinal potential

game.

Lemma 1. Let P be an ordinal potential for G = 〈X1, . . . , Xn, u1, . . . , un〉.
Then the equilibrium set of G coincides with the equilibrium set of the game

〈X1, . . . , Xn, P, . . . , P 〉. That is,

(x1, . . . , xn) is a NE for G⇔ P(xi, x−i) > P(y, x−i) ∀i ∈ N , ∀y ∈ Xi.

Consequently, if P admits a maximal value in
n∏
i=1

Xi, then G has a pure

strategy equilibrium.

Corollary 2. Every finite ordinal potential game G has at least one pure

Nash equilibrium.

Each ordinal potential game has many ordinal potentials, instead all the

exact potentials of the same game differ in a constant.
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Lemma 2. Let P1 and P2 be potentials for the game G. Then there is a

real constant c such that

P1(x1, . . . , xn)− P2(x1, . . . , xn) = c ∀(x1, . . . , xn) ∈
n∏
i=1

Xi.

The following theorem 6 characterizes potential game via a physical ap-

proach, cyclicity on a simple closed path of length 4.

Definition 33. A path in
n∏
i=1

Xi is a sequence of strategy profiles

(xk1, . . . , x
k
n)k∈N,

such that, for every k = 1, 2, . . ., the strategies (xk1, . . . , x
k
n)k and (xk−1

1 , . . . , xk−1
n )k,

differ in exactly one, say the ith, coordinate, i.e., there is a unique player

i ∈ N such that

(xki , x
k
−i) = (y, xk−1

−i ) for some y ∈ Xi \ {xk
i }.

(x0
1, . . . , x

0
n) is called the initial point of path, and, if the sequence is finite,

its last element (xl1, . . . , x
l
n) is called the terminal point of path, and the path

is called finite.

Definition 34. A finite path is closed if (x0
1, . . . , x

0
n) = (xl1, . . . , x

l
n).

Definition 35. A closed path is simple if, in addition, (xj1, . . . , x
j
n) 6=

(xk1, . . . , x
k
n), for every 0 ≤ j 6= k ≤ l − 1, that is, the strategy profiles

are all distinct.

Definition 36. The length of a simple closed path is the number of distinct

vertices in it.

That is, the length of the simple closed path (xk1, . . . , x
k
n)lk=1 is l.

Definition 37. Let G = 〈X1, . . . , Xn, u1, . . . , un〉 be a game and π = (xk1, . . . , x
k
n)k∈N

be a finite path. We set

I(π, u1, . . . , un)
.
=
∑
k∈N

uik(xk1, . . . , x
k
n)− uik(xk−1

1 , . . . , xk−1
n ),

where ik is the unique deviator at step k, that is xkik 6= xk−1
ik

.

Theorem 6. Let G = 〈X1, . . . , Xn, u1, . . . , un〉 be a strategic game. Then,

the following claims are equivalent:
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i) G is a potential game.

ii) I(π, u1, . . . , un) = 0, for every finite closed path π.

iii) I(π, u1, . . . , un) = 0, for every finite simple closed path π.

iv) I(π, u1, . . . , un) = 0, for every finite simple closed path πof length 4.

Corollary 3. G = 〈X1, . . . , Xn, u1, . . . , un〉 is a potential game if and only

if

ui(xi, xj , x−{i,j})− ui(yi, xj , x−{i,j}) + uj(yi, xj , x−{i,j})+

−uj(yi, yj , x−{i,j}) + ui(yi, yj , x−{i,j})− ui(xi, yj , x−{i,j})+

+uj(xi, yj , x−{i,j})− uj(xi, xj , x−{i,j}) = 0,

where i, j are the active players, x−{i,j} ∈ X−{i,j} is a fixed strategy profile

of the other players, xi, yj ∈ Xi and xj , yj ∈ Xj.

A typical simple closed path of length 4 is described in Figure 2.4.

uA u D

uB u C

�

-

?
6

Figure 2.4: Simple closed path of length 4.

2.3 Congestion games

In this section we present the congestion mode, since we may extract the

expression of potential from the construction (Rosenthal (1973)) of an exact

potential function for a congestion game.

In a congestion model, players use a set of facilities (also called ma-

chines) from a common group. The costs or the benefits of a player, derived

from the use of a facility, depend only on the number of players choosing
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the same facility. The payoff to a player is the sum of the costs or ben-

efits associated with each facility in his strategy choice, given the choice

of the other players. By constructing a potential function for such conges-

tion game, Rosenthal proved the existence of pure-strategy Nash equilibria.

Moreover, Monderer and Shapley (1996) showed every finite potential games

is isomorphic to a congestion game.

Before formalizing the definitions, we introduce a very simple example

where two players I and II are involved.

uA u B

uD u C

-

c1(1) c1(2)

-

c4(1) c4(2)

?c3(1)

c3(2)

?c2(1)

c2(2)

Player I has to go from point A to point C and player II has to go from

point B to point D. Player I can travel via B or via D and player II via

A or via C. The cost of using a segment depends on the number of users.

We call 1 the segment AB, 2 the segment BC, 3 the segment AD and 4 the

segment DC, cj(1) denotes the cost of segment j for a single user, and cj(2)

the cost of j for each users if both use segment j, where j ∈ {1, . . . , 4}. The

associated congestion game is given by

I
\
\II L R

T (c1(2) + c2(1)) (c1(2) + c3(1)) (c2(2) + c1(1)) (c2(2) + c4(1))

B (c3(2) + c4(1)) (c3(2) + c1(1)) (c4(2) + c3(1)) (c4(2) + c2(1))

It is straightforward to see that this symmetric game is a potential game

and so it has a Nash equilibrium in pure strategies. A potential is given by:

I
\
\II L R

T c1(1) + c1(2) + c2(1) + c3(1) c2(1) + c2(2) + c1(1) + c4(1)

B c3(1) + c3(2) + c4(1) + c4(1) c4(1) + c4(2) + c3(1) + c2(1)
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Definition 38. A congestion model is described as a 4-tuple

〈N,F, (Xi)i∈N , (cf )f∈F 〉

where N = {1, 2, . . . , n} is the set of players, F is the set of facilities

{1, 2, . . . , f} involved, Xi ∈ P(F ) is the set of pure strategies of player i,

Xi 6= ∅, cf : N → R is the cost function of facility f so defined: for each

k ∈ N , cf (k) denotes the costs to each user of facility f with precisely k

users.

Definition 39. The congestion game corresponding to the congestion model

is the cost game in strategic form 〈X1, . . . , Xn, C1, . . . , Cn〉 where the cost

for player i is

Ci(x1, . . . , xn) =
∑
f∈xi

cf (|{r ∈ N s.t. f ∈ xr}|).

The following theorem is the main result of Rosenthal (1973).

Theorem 7. (Rosenthal (1973)) Every congestion game is a potential game.

The potential function P :
∏
i∈N

Xi −→ R is defined by

P (x1, . . . , xn) =
∑
i∈N

(
∑
f∈xi

cf (|{r ∈ N s.t. f ∈ xr}|).

Monderer and Shapley (1996) showed that the class of finite potential games

coincides, up to an isomorphism, with the class of congestion games.

Definition 40. Let G1 = 〈(Xi)i∈N , (ui)i∈N 〉 and G2 = 〈(Yi)i∈N , (vi)i∈N 〉 be

two game with the same set of players N . G1 and G2 are isomophic if there

exist bijections φi : Xi −→ Yi, i ∈ {1, . . . , n} such that for every i ∈ N and

for every (x1, . . . , xn) ∈
∏
i∈N

Xi,

ui(x1, . . . , xn) = vi(φ1(x1), . . . , φN (xn)).

Proposition 4. (Monderer and Shapley (1996)) Every finite potential game

is isomorphic to a congestion game.

2.4 Decomposition of exact potential games

We conclude the treatment of (exact) potential games with a characteriza-

tion of such games.
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I
\
\II L R

T 0 0 1 1

B 1 1 2 2

I
\
\II L R

T 2 2 −1 2

B 2 −1 −1 −1

Figure 2.5: PD is sum of coordination game and dummy game.

We can decompose the Prisoner’s Dilemma in Figure 1.4 into the sum

of two games showed in Figure 2.5. It is immediate to see that, in the

first game, the players have the same payoffs, while, in the second game,

the payoffs of a player depend not on his choice, but on the strategy of his

opponent. Formally, we present the following definitions.

Definition 41. A game G = 〈X1, . . . , Xn, u1, . . . , un〉 is a coordination

game if there is a function u :
∏
i∈N

Xi −→ R such that ui = u for each

i ∈ N .

In a coordination game, players pursue the same goal, reflected by the iden-

tical payoff functions. It is a game of pure externality, in the sense that the

strategy chosen by a player has effect only on the contestant.

Definition 42. A game G = 〈X1, . . . , Xn, u1, . . . , un〉 is a dummy game if,

for each i ∈ N and for each x−i ∈ X−i, there is k ∈ R such that ui(xi, x−i) =

k for each xi ∈ X−i.

In a dummy game, each player has no reason to choose a strategy instead

of another, since his payoff does not depend on his own strategy.

Facchini et al. (1997) provide this characterization of exact potential

games by splitting them into coordination games and dummy games.

Theorem 8. Let G = 〈X1, . . . , Xn, u1, . . . , un〉 be a strategic game. G is

a potential game if and only if, for each i = 1, . . . , n, there exist functions

ci :
∏
i∈N

Xi −→ R and di :
∏
i∈N

Xi −→ R such that

i) ui = ci + di, for each i = 1, . . . , n,

ii) 〈X1, . . . , Xn, c1, . . . , cn〉 is a coordination game, and

iii) 〈X1, . . . , Xn, d1, . . . , dn〉 is a dummy game.
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Proof. The part ’if’ is obvious. The payoff function of the coordination game

is an exact potential function of G. Let us consider the assertion ’only if’.

Let P be an exact potential for G. For all i ∈ N , we have ui = P +(ui−P ).

Clearly, 〈X1, . . . , Xn, P, . . . , P 〉 is a coordination game. Let i ∈ N , x−i ∈
X−i, and xi, yi ∈ Xi. Then ui(xi, x−i)−ui(yi, x−i) = P (xi, x−i)−P (yi, x−i)

implies ui(xi, x−i) − P (xi, x−i) = ui(yi, x−i) − P (yi, x−i). Consequently,

〈X1, . . . , Xn, u1 − P, . . . , un − P 〉 is a dummy game.

2.5 Symmetric Game

Let G = 〈X1, . . . , Xn, u1, . . . , un〉 be a game in strategic form with player

set N = {1, . . . , n}. For convenience, in this section we use the notation

(x, y, x−{i,j}) ∈ Xi ×Xj ×X−{i,j},

where i, j ∈ N are the active players, x ∈ Xi is the strategy of player i,

y ∈ Xj is the strategy of player j, and x−{i,j} ∈ X−{i,j} is a fixed strategy

profile of the other players.

Definition 43. G is a symmetric game if X1 = X2 = . . . = Xn and

ui(x, y, x−{i,j}) = uj(y, x, x−{i,j}),

for x, y ∈ X1 and x−{i,j} ∈ X−{i,j}, ∀i, j ∈ N .

Definition 44. A symmetric strategy profile is a profile with all players

playing the same strategy. If such a profile is a Nash equilibrium, it is a

symmetric equilibrium.

Theorem 9. A symmetric binary game is a potential game.

Proof. For Corollary 3, the existence of an exact potential P is equivalent

to the following condition:

ui(xi, xj , x−{i,j})− ui(yi, xj , x−{i,j}) + uj(yi, xj , x−{i,j})+

−uj(yi, yj , x−{i,j}) + ui(yi, yj , x−{i,j})− ui(xi, yj , x−{i,j})+

+uj(xi, yj , x−{i,j})− uj(xi, xj , x−{i,j}) = 0

Using symmetry,

ui(x, y, x−{i,j}) = uj(y, x, x−{i,j}) ∀i, j ∈ N,



Unilateral Commitments 39

we get:

ui(x, x, x−{i,j})− ui(y, x, x−{i,j}) + uj(y, x, x−{i,j})− uj(y, y, x−{i,j})+
+ui(y, y, x−{i,j})− ui(x, y, x−{i,j}) + uj(x, y, x−{i,j})− uj(x, x, x−{i,j}) =

= ui(x, x, x−{i,j})− ui(y, x, x−{i,j}) + ui(x, y, x−{i,j})− ui(y, y, x−{i,j})+
+ui(y, y, x−{i,j}) − ui(x, y, x−{i,j}) + ui(y, x, x−{i,j}) − ui(x, x, x−{i,j}) = 0.

The conditions of theorem 9 are sufficient to guarantee the existence of

pure equilibria. In fact, Rock-Paper-Scissors, described in 1.1.4, is a 3-player

symmetric game with no pure strategy equilibria and Matching Pennies,

described in 1.1.4, is a 2-player asymmetric game with no pure strategy

equilibria.

Given a symmetric environment, we would expect symmetric equilibria,

but the conditions of Theorem 9 alone are not sufficient to ensure symmetric

profiles. In fact, the Anti-coordination game 1 is a symmetric game with no

symmetric pure equilibria.

Cheng et al.(2004) prove the existence of symmetric equilibria for in-

finite symmetric games. The sufficient conditions are the following. The

strategy set Xi of each player i is a nonempty, convex, compact subset of an

Euclidean space, for example R, and his payoff function is continuous in all

its arguments and strictly quasi-concave in xi ∈ Xi. The statement with its

proof are quoted in Chapter 4 (Corollary 4). We remind that Nash (1951)

proved the following theorem.

Theorem 10. Every finite game has a “ symmetric” equilibrium.

Nash define as “ symmetric” the profile invariant under every automorphism

of the game. This is equivalent to a profile in which all the symmetric players

(if any) are playing the same mixed strategies. In the case of a symmetric

game this notion coincides with our definition, as Cheng et al.(2004) have

already remarked. Then, we conclude saying that a finite symmetric game

has a symmetric mixed-strategies equilibrium.

Now, we are going to deduce from potential function all the NE of a

game. Let

G = 〈X1, . . . , Xn, u1, . . . , un〉
be a symmetric binary game, with X1 = {0, 1}. Given (x1, . . . , xn) ∈

∏
i∈N

Xi,

let ν be the number of players voting 1, formally

ν
.
= |{i ∈ N : xi = 1}|.

1Each player receives 1 when the players choose different strategies and 0 otherwise.
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Let c1(k) denote the payoff/cost to a player voting 1 when exactly k players

vote 1, and let c0(k) denote the payoff/cost to a player voting 0 when exactly

k players vote 0. Since players are identical and the game is binary, the

payoff/cost to be paid depends only on the number ν of players voting 1 and

not on their identities. So we identify a strategy profile (x1, . . . , xn) with ν

The potential function for a symmetric binary game P = P (x1, . . . , xn) is a

discrete function of variable ν:

P [ν] =

ν∑
k=1

c1(k) +

n−ν∑
k=1

c0(k).

This expression is derived from congestion cost, since a symmetric binary

game G = 〈X1, . . . , Xn, u1, . . . , un〉 is a congestion game whose facilities set

is exactly the strategy set X1 = . . . = Xn.

Let G be a potential game and let P be a its potential. The set of all

strategy profiles that maximize P is a subset of the equilibria set of the

game G. The following theorem characterizes the NE of a symmetric binary

game, searching the local optima of P .

Theorem 11. Let G = 〈X1, . . . , Xn, u1, . . . , un〉 be a symmetric binary game

with potential function P = P [ν]. Then (x1, . . . , xn) is a NE of G if and

only if the corresponding ν is such that

P [ν] > P [ν + 1] and P [ν] > P [ν − 1] if 1 6 ν 6 n, or

P [ν] > P [ν + 1] if ν = 0, or

P [ν] > P [ν − 1] if ν = n.

Proof. By Definition 10 (x1, . . . , xn) is a NE of G if for each i ∈ N and

for each yi ∈ Xi we have ui(xi, x−i) > ui(yi, x−i). Since G is a potential

game, then (x1, . . . , xn) is a NE if for each i ∈ N and for each yi ∈ Xi

we have P (xi, x−i) > P (yi, x−i). By symmetry of G, P is function of the

number of players choosing the same strategies and X1 = . . . = Xn. But G

is also binary, then X1 = {0, 1}, P is function only of the discrete variable

ν (which represents the number of players choosing the strategy 1), and the

only unilaterally deviations happen when ν increases by one and decreases

by one. From this, the claim follows.



Chapter 3

Naming Games

3.1 Introduction

Inspiration for this chapter came from the TUIC games. This extension of

the standard definition of TU game was given in Moretti-Patrone (2004),

as a way to take into account the costs incurred when one needs to obtain

the values of the various v(S) (or c(S), for a cost game). In that paper,

particular emphasis was given to a special case, that of shared facilities,

which we shall re-analize in this chapter.

Consider, for example, the problem of sharing the cost of printers, copiers,

faxes among the members of a Department. An easy way to divide costs is

to divide them evenly among all the Department members. But this way

violates fairness, and, at the same time, seems to lack good incentive pro-

perties. It would be reasonable to take into account whether a member uses

or not a given facility (e.g. a printer), and also some measure of intensity

of its use. Here we shall concentrate on the case in which the ’fixed costs’

of a facility are the only ones significant, that is we neglect the intensity of

use. In such a case, a natural approach could be that of dividing the cost of

a facility among the users (Young 1994).

Even if it is common knowledge who the users are, to be able to enforce

the payment one perhaps needs to have a way to make verifiable to a third

part who the users are (possible solutions could be: locked rooms, cards, or

some ad hoc software to detect the users of a given facility): so, to make it

verifiable an additional cost is to be added. If a group of people finds that

the costs generated by these operations are less than the imputed costs for

the use of facilities that they do not use, then they will have an incentive to

41
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ask that costs are made verifiable. The question is whether and how a fair

allocation can be achieved. A relevant aspect is the institutional setting,

that is the way in which players reach such a decision.

A rule could be that if there is someone who asks for the verification,

then it must be done, and these additional costs will be imputed to the set

of people that ask for the verification. These costs will be divided evenly,

while costs for the use of facilities, will be divided among the users (evenly).

This rule allows us to consider a non cooperative game in strategic form,

in which each player has just two alternatives, to ask/not to ask that the

verification is made. It turns out that, by deleting dominated strategies, the

game can be reduced to one with a potential, which guarantees that it has

a Nash equilibrium in pure strategies (this result can be achieved also by

exploiting the symmetry structure of the game). Notice that this procedure

could be applied to more than one facility. It is fairly obvious that, in such

a case, the problem simply amounts to treating each facility independently.

Another rule that we shall investigate is the decision by voting (in par-

ticular, the absolute majority rule will be considered). In such a case, it

becomes relevant whether there will be a set of independent votations (one

for each facility) or a unique one. In the latter case, linkage effects can be

obviously present.

If we introduce the possibility of abstention from voting, the effect con-

sists in increasing the number of equilibria. That is, by adding a third

strategy to the binary game, the new game has the same outcomes as the

original one.

The paper is structured as follows. In Section 3.2 we introduce the

notations and assumptions. In Section 3.3 we present the first model, the

naming game, in which each player names the machine for which he asks for

verification. We examine first the case with only one machine (Subsection

3.3.2) and then with different ones (Subsection 3.3.3). Since a symmetric

game with only two strategies is a potential game and then it has a pure

Nash Equilibrium, we can model a special case of environmental game via

naming game, that is via a potential or congestion game, a result processed

in Section 3.6, whose proofs are in Section 3.9. In Section 3.4 we investigate

the correlated equilibria and games with contracts applied to the model of

Naming game with one facility. In Section 3.5 we analyze the printer game

on the condition of a majority decision with only one facility (Subsection

3.5.1) or with more machines (Subsection 3.5.2). In Section 3.7 we intro-

duce the possibility of abstention from voting. In Section 3.8 we present

the obtained results in this Chapter.
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3.2 Notations and Assumptions

We shall assume that there is a finite set of players or agents

A = {1, . . . , a},

which can use a set of facilities (or cost components)

M = {1, . . . ,m}.

Let

Mi ⊆M , with mi = |Mi|,

be the set of the machines not used by player i ∈ A while, dually, let

N j ⊆ A , with nj = |Nj|,

be the set of the players not using the facility j ∈M . Assuming that N j 6= A

it is non restrictive. Then,

N
.
=
⋂
j∈M

N j , with n = |N|,

is the set of non users, and

U
.
= A \N , with u = |U|,

the set of machine users. Lastly, let

cj > 0

be the cost associated to j ∈M : we shall assume that this cost is given and

independent of the (non empty) set of players using the facility j and that,

to make the set of users for a game facility verifiable an additional cost

χj > 0

is needed. When we look at only one machine, we will call the facility m,

the machine cost c and the “checking” cost χ.

We shall use the index to indicate sets or objects linked with a specific

player and the apex to indicate those with a specific machine.

The situation as described leads in a natural way to a TUIC game

(Moretti and Patrone, (2004)). In our case, N is A, T is P(M) and ≺ is the
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relation of strict inclusion in P(M). The characteristic function associated

with the parameter t ∈ T is

ct : P(A) −→ R,

with

ct(S) =
∑

j∈t|S∩(A\Nj) 6=∅

Cj +
∑
j 6∈t

Cj

and with

χt =
∑
j∈t

χj .

3.3 Naming Games

3.3.1 An example

We begin introducing a very simple example, to show the kind of issues we

shall consider. “To name” here means asking for checking.

We have three players I, II, III and one facility m, used only by player

III. The associated strategic (cost) game is G = 〈X1, X2, X3, C1, C2, C3〉,
where Xi = {0, 1} is the strategy set for player i (1 stands for naming, 0

for not), in Figure 3.1 below:

I
\
\II 0 1

0 c
3

c
3

c
3 0 χ c

1 χ 0 c χ
2

χ
2 c

I
\
\II 0 1

0 0 0 χ+ c 0 χ
2 c+ χ

2

1 χ
2 0 χ

2 + c χ
3

χ
3

χ
3 + c

0 1

III

Figure 3.1: Cost game G = 〈X1, X2, X3, C1, C2, C3〉.

Since player III has a strongly dominated strategy, we work with the

reduced game G = 〈X1, X2, C1, C2〉 with cost matrix:

Let us consider the function P : X1 × X2 → R given by: It follows that

P (0, x−i)− P (1, x−i) = Ci(0, x−i)−Ci(1, x−i) ∀i ∈ {1, 2}, i.e., the function

P measures the gap of game costs of an unilaterally deviating player. So

this symmetric game is a (cost) potential game, and it has two pure Nash

equilibria (0, 1) and (1, 0), obtained by minimizing the function P . Since it
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I
\
\II 0 1

0 c
3

c
3 0 χ

1 χ 0 χ
2

χ
2

Figure 3.2: Reduced game G = 〈X1, X2, C1, C2〉.

I
\
\II 0 1

0 c
3 χ

1 χ 3
2χ

Figure 3.3: Potential P .

has a potential, the game can be interpreted as a congestion game 1, with

two roads from A to B, which we shall identify as no check and check.

0 c/3

no checkuA u B

check

χ χ/2

The cost for using the road no check is 0 if one player uses it and c
3 if both

players use it; the cost of using the road check is χ if one player asks for

checking and χ
2 if both ask.

All of these results generalize to the case of any number of players and

facilities. This will be the subject of the following subsections. Hereafter,

given a strategy profile (x1, . . . , xn), in our model ν will always denote the

number of players asking for check.

1Given a finite set of facilities, whose costs depend on the number of users, a congestion

game (Rosenthal (1973) or Monderer and Shapley (1996) or Voorneveld (1999)) is a cost

game where each player pays the cost of all facilities he uses. Every congestion game is a

potential game and every finite potential game is isomorphic to a congestion game.
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3.3.2 The one facility case

We can now formalize the case with one facility. Let G = 〈(Xi)i∈A, (Ci)i∈A〉
be the elementary game, that is the game with only one machine, where

Xi = {0, 1} is the strategy set for player i and Ci :
∏
i∈A

Xi → R is the cost

for player i.

The strategy check of all users i ∈ A\N is strongly dominated by

the strategy no check, since Ci(1, x−i) = c
a−n + χ

ν > Ci(0, x−i), where

Ci(0, x−i) = c
a if x−i = (0, . . . , 0) and Ci(0, x−i) = c

a−n otherwise. Af-

ter removing strongly dominated strategies, we get the reduced game G =

〈(Xi)i∈N , (Ci)i∈N 〉. It is a symmetric binary game, so, from Theorem 9, it is

a potential game and, for Corollary 2, it has at least a pure Nash equilibrium.

The potential function is P :
∏
i∈N

Xi → R, given by

P (x1, . . . , xn) = P [ν] =

{
c
a if ν = 0

χ+ χ
2 + . . . χν otherwise.

In particular we have the following results.

Theorem 12. Let G = 〈(Xi)i∈N , (Ci)i∈N 〉 be the game reduced from ele-

mentary game G.

i. If χ < c
a , then G has n pure NE, with ν = 1.

ii. If χ > c
a , then G has only one pure NE, with ν = 0.

iii. If χ = c
a , then G has n+ 1 pure NE, with ν = 0 and ν = 1.

Proof. For 1 < ν 6 n, we have χ <
ν∑
k=1

χ
k . Then the discrete variable func-

tion P is a strictly increasing function when ν > 1and the strategy profiles

corresponding to ν with ν > 1 are not NE. So we search the equilibrium

profiles between ν = 0 and ν = 1.

If χ < c
a , the NE are (x1, . . . , xn) corresponding to ν = 1. The symmetry

assumption implies that there is not a single NE in the game, but n, i.e. the

number of players of the reduced game.

If χ > c
a , the only NE is (0, . . . , 0), that is ν = 0.

If χ = c
a , the NE are (x1, . . . , xn) corresponding to ν = 0 and ν = 1.
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3.3.3 The general case

We can generalize to the case of m machines. We will show that a game with

m facilities is the sum of m elementary potential games, so it is a potential

game itself. Furthermore, the potential function is the sum of elementary

potential functions.

Let Gj = 〈(Xj
i )i∈A, (C

j
i )i∈A〉 be the elementary game of machine j ∈M ,

where A is the set of players, Xj
i = {0, 1} is the strategy set for player i ∈ A

w.r.t. machine j ∈M and

Cji :
∏
i∈A

Xj
i → R

is the cost for player i ∈ A w.r.t. machine j ∈M .

Let G = 〈(Xi)i∈A, (Ci)i∈A〉 be the global game, where A is the set of

players, Xi =
∏
j∈M

Xj
i is the strategy set for player i ∈ A and

Ci :
∏
i∈A

∏
j∈M

Xj
i → R

is the cost for player i ∈ A so defined

Ci((x
1
1, . . . , x

m
1 ), (x1

2, . . . , x
m
2 ), . . . , (x1

a, . . . , x
m
a ))

.
=

C1
i (x1

1, x
1
2, . . . , x

1
a) + C2

i (x2
1, x

2
2, . . . , x

2
a) + . . .+ Cmi (xm1 , x

m
2 , . . . , x

m
a ).

We shall briefly refer to this fact saying (somehow improperly) that G =

G1 + . . .+Gm. So, we focus the attention on one machine j and we look at

the elementary game Gj . We eliminate the strongly dominated strategies

and work on G
j

= 〈(Xj
i )i∈Nj , (C

j
i )i∈Nj 〉, a game reduced to players in N j .

Since the reduced game is a symmetric binary game, for theorem 9 it has

potential P j . So the overall game G 2 - sum of games G
j

- has potential P

- sum of potential P j of games G
j
. Then the game G has at least one pure

Nash equilibrium. We formulate the following general result.

Proposition 5. Let Γ = Γ1 + . . . + Γm be a game defined for players in
m⋃
j=1

N j with m facilities such that each game Γj = 〈(Xj
i )i∈Nj , (u

j
i )i∈Nj 〉 is a

2 The player set of game G is
m⋃
j=1

N j . Some players of G
j

can use facility k, that is

N j 6= Nk with j, k ∈M . So, in the game G, the strategy of player i /∈ Nk is xki = 0, being

i a user of facility k.
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potential game with potential P j :
∏
i∈Nj

Xj
i → R, ∀j = 1, . . . ,m. Then the

function

P :
∏

i∈
m⋃
j=1

Nj

∏
j∈Mi

Xj
i → R

so defined

P ((xji )j∈Mi)
i∈

m⋃
j=1

Nj

.
=

∑
j∈

m⋃
i=1

Mi

P j((xji )i∈Nj )

is a potential of Γ.

Proof. For each i ∈
m⋃
j=1

N j , each x−i = (xj−i)j∈Mi ∈
∏

k∈
a⋃
j=1

Nj ,k 6=i

∏
j∈Mk

Xj
k,

and all xi = (xji )j∈Mi , yi = (yji )j∈Mi ∈
∏
j∈Mi

Xj
i , we have

P (x−i, yi)− P (x−i, xi) = P ((xj−i, y
j
i )j∈Mi)− P ((xj−i, x

j
i )j∈Mi) =

=
m∑
j=1

P j(xj−i, y
j
i )−

m∑
j=1

P j(xj−i, x
j
i ) =

m∑
j=1

uji (x
j
−i, y

j
i )−

m∑
j=1

uji (x
j
−i, x

j
i ) =

= ui((x
j
−i, y

j
i )j∈Mi)− ui((x

j
−i, x

j
i )j∈Mi) = u(x−i, yi)− u(x−i, xi).

We apply the previous result to the sum of reduced gamesG =
∑

j∈
a⋃
j=1

Mi

G
j

with elementary potential P j :
∏
i∈Nj

Xj
i → R, ∀j = 1, . . . ,m. Then the func-

tion P :
∏

i∈
m⋃
j=1

Nj

∏
j∈Mi

Xj
i → R is a potential of G.

3.4 Cutting down on paying or paying fairly

Here we make some comments on the reduced naming game G with one

facility. First, we search for lower costs and then how to remove the problem

of many equilibria.

If χ > c
a the strategy 1 for each player i ∈ N is strongly dominated.

Eliminating it, the game becomes trivial and we cannot improve the outcome

cost.
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If χ < c
a we have found n non symmetric pure NE, but a special case of

Nash’s theorem 3 ensures the existence of at least a symmetric mixed NE.

The reduced game of the example of the Subsection 3.3.1 for χ < c
3 has, in

addition to the two pure equilibria, a mixed NE consisting, for each player,

in playing 0 with probability χ
2 /(

c
3 −

χ
2 ) and with payoff χ

2
c
3/(

c
3 −

χ
2 ).

Is it possible to find a solution yielding better outcomes without having

to turn to binding agreements? The correlated equilibria (Aumann (1974))

add nothing from a cost point of view. In the example of the Subsection

3.3.1 the expected payoff is (χ2 ,
χ
2 ) playing correlated equilibria µ, where µ

allocates probability (0, α, α, 1 − 2α) with 0 6 α 6 1, to the strategy pairs

((0, 0), (0, 1), (1, 0), (1, 1)). The correlated equilibrium is more efficient than

a mixed equilibrium, since χ
2 < χ

2
c
3/(

c
3 −

χ
2 ), even if it induces the same

payoff as the one when players vote unanimously for check.

How do we solve the problem of more equilibria? Moreover the ex-

post situation is unworthy, while the ex-ante phase was fair. Any NE is a

priori fair, but in our example only one player in equilibrium behaves as the

scapegoat of the situation, taking all the checking costs upon himself. The

situation is better understood with more players. If all the non-users are

ex-ante identical, who sacrifices oneself ex-post? How to remedy to social

injustice? We examine two possible ways which provide no new insight but

at the same time orient towards the outcome of the great coalition of a

cooperative game.

A possible solution to reduce coordination problems is to play on the

symmetry of the problem and to force all the players to choose the same

strategy. The equilibrium profile is realized by total coordination of players.

We can still resort to correlated equilibrium or to games with contracts

(Myerson (1991)). The game Ḡ assumes the form:

I
\
\II 0 1 c

0 c
3

c
3 0 χ c

3
c
3

1 χ 0 χ
2

χ
2 χ 0

c c
3

c
3 0 χ χ

2
χ
2

where c is the contract-signing strategy for each player 4. The tran-

3Every finite symmetric game has a symmetric Nash equilibrium, in the sense that all

the players are playing the same mixed strategy. (Nash (1951))
4If this contract is signed by both players, they promise to choose 1 and the payoff is

χ
2

for both undersigned, while if it is signed by only one player, then he will choose 0.
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sformed game has, in addition, the equilibrium (c, c), with cost allocation

(χ2 ,
χ
2 ).

Another proposal is in the direction of a partial cooperative agreement

(Mallozzi and Tijs (2006)). Let G = 〈X1, . . . , Xn, u1, . . . , un〉 be a game,

with the same strategy set X1 = . . . = Xn for each player in N = {1, . . . , n}.
We suppose that a group {k + 1, . . . , n} of players participate in an agree-

ment, the remaining players acting, as singletons, in a non-cooperative way.

k is the level of non cooperation. The game is a two-stage game: first signa-

tories announce their joint strategy, then non-signatories react by playing a

non-cooperative game.

Definition 45. [Mallozzi and Tijs (2006)] Given k, a partial cooperative

equilibrium is a strategy profile (x1, . . . , xn) ∈
∏
i∈N

Xi, such that the signato-

ries {k+ 1, . . . , n} choose the same strategy xk+1 = . . . xn = y ∈ X1 and the

non signatories {1, . . . , k} play a NE of the partial game

〈X1, . . . , Xk, {y}, . . . , {y}, u1, . . . , un〉.

We apply this concept to a naming game with one facility. The coopera-

tive players choose 1 and we can read ν = n− k as the level of cooperation.

Since our game is binary, each partial game, fixed ν, has trivially a unique

NE, so the partial cooperative equilibrium is assured. Comparing the cost

of a single signatory player, we choose the more opportune ν. The result is

again the total cooperation. Once more we have interiorized the external-

ities: each player incurs expenses from which he will benefit like the other

players.

We remark, lastly, that, in order to induce the cooperative solution, we

can also impose an efficient disciplinary system, which is extern to the parts

involved in the cooperation.

3.5 The Decision by Majority Rule: Voting Game

Now we set another rule depending on which group of players is able to get

their decision implemented. Checking is made if the minimum number of

votes, called quorum q, is reached. This is what usually happens in several

decision-making situations. We re-analyze our model on the condition of

a majority decision. There are two types of NE, the indifferent NE and

the allure NE. We define indifferent a NE if the payoff/cost to unilaterally
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deviating player is invariant, and allure a NE if it appreciably changes. The

latter equilibrium is more interesting than the former.

At first we will work with only one machine to simplify matters and

afterwards we will examine the cases with more facilities. In Voting Game

with one facility two cases occur. Let n be the number of non users. i) If

n 6 q, there are only indifferent NE, since, not executing the checking, all

players pay c
a . The equilibria are obtained when ν players ask for check with

0 6 ν < q − 1 or when ν = q users do not ask. ii) If n > q, in addition to

indifferent NE there are allure NE when exactly q non users ask for check.

We will study the latter case, because it is more interesting.

Since in the naming game only one vote was sufficient to make the check,

the naming model can be read as a majority decision model with q = 1.

3.5.1 The one facility case

LetG = 〈(Xi)i∈A, (Ci)i∈A〉 be the elementary game as described in 3.3.2 with

quorum q. The strategy check for all users i ∈ A\N is strictly dominated by

strategy no check. In fact, for 0 < ν < q, Ci(1, x−i) = c
a = Ci(0, x−i) and,

for q 6 ν 6 a, Ci(1, x−i) = χ
ν + c

a−n >
c

a−n = Ci(0, x−i). Removing strictly

dominated strategies, the reduced game G = 〈(Xi)i∈N , (Ci)i∈N 〉 is a binary

symmetric game and, for theorem 9, it is a potential game with potential

P (x1, . . . , xn) = P [ν] =

{
c
a for 0 6 ν 6 q − 1
χ
q + . . .+ χ

ν for q 6 ν 6 n.

We have the following result.

Theorem 13. Let G = 〈(Xi)i∈N , (Ci)i∈N 〉 be the game reduced from the

elementary game G.

i. If χ
q >

c
a , then G has only indifferent NE, for 0 6 ν 6 q − 1.

ii. If χ
q <

c
a , then G has both indifferent NE, for 0 6 ν < q−1, and allure

NE for ν = q.

iii. If χ
q = c

a , then G has both indifferent NE, for 0 6 ν 6 q − 1. and

allure NE, for ν = q.

The number of NE is
q−1∑
ν=0

(
n

ν

)
in case (i),
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q−2∑
ν=0

(
n

ν

)
+

(
n

q

)
in case (ii), and

q∑
ν=0

(
n

ν

)
in case (iii).

Proof. The potential P = P [ν] is a discrete variable function, constant for

ν ∈ {0, . . . , q − 1}, and strictly increasing for ν ∈ {q, . . . , n}. Then, each

ν ∈ {0, . . . , q − 2} corresponds to indifferent NE. For ν ∈ {q, . . . , n}, P is

strictly increasing, then the strategy profiles corresponding to ν > q are not

NE. So we compare v = q − 1 and ν = q.

If P [q − 1] = c
a < P [q] = χ

q , then q − 1 corresponds to indifferent NE.

If P [q − 1] = c
a > P [q] = χ

q , then q corresponds to allure NE.

If P [q − 1] = c
a = P [q] = χ

q , then v = q − 1 and ν = q correspond to

indifferent NE.

A simple numerical example can help understanding the above analysis.

Let us suppose to have seven players, only one user of one facility, and q = 4.

The actions of players in N and their costs are summarized in the following

table.

ν action individual cost NE

0 0 0 0 0 0 0 c
7

c
7

c
7

c
7

c
7

c
7 indifferent

1 1 0 0 0 0 0 c
7

c
7

c
7

c
7

c
7

c
7 indifferent

2 1 1 0 0 0 0 c
7

c
7

c
7

c
7

c
7

c
7 indifferent

3 1 1 1 0 0 0 c
7

c
7

c
7

c
7

c
7

c
7

4 1 1 1 1 0 0 χ
4

χ
4

χ
4

χ
4 0 0 allure

5 1 1 1 1 1 0 χ
5

χ
5

χ
5

χ
5

χ
5 0

6 1 1 1 1 1 0 χ
6

χ
6

χ
6

χ
6

χ
6

χ
6

Remark 1. Also with a majority decision, the correlated equilibria, sup-

posing χ < c
N , improve the outcomes of each player because the total cost

is constant in each equilibrium outcome.

3.5.2 Overall Game: m machines - Majority Decision

Let us review a game with m machines. We can choose between various

rules of the game. By instituting disjoint votations each player votes for

each machine so we have m independent ballots, then the overall game is

split into the sum of m elementary games, whose equilibria are obtained by

juxtapposing the equilibria of each elementary game. Hence we are back

to the situation of a single machine. Using a unique votation instead, each
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player votes for all the machines. The case is more ticklish since the outcomes

are due to the combination of different factors such as the amount of users

and the cost of each individual printer.

We remind that M \Mi is the set of machines used by player i, A\N j is

the set of players using machine j with a−nj its cardinality, and U
.
= A\N

the set of facility users.

We sort out the players into three sets.

Ǎ := {i ∈ A | χ
q

+
∑

j∈M\Mi

cj

a− nj
>

1

a

∑
j∈M

cj},

Ā := {i ∈ A | χ
q

+
∑

j∈M\Mi

cj

a− nj
=

1

a

∑
j∈M

cj},

and

Â := {i ∈ A | χ
q

+
∑

j∈M\Mi

cj

a− nj
<

1

a

∑
j∈M

cj},

with the convention that we set
∑

j∈M\Mi

cj

a−nj = 0, when i ∈ N , that is when

i is a non-user, or equivalently when the set M \Mi is empty. If i ∈ Ǎ,

the strategy check is strictly dominated by the strategy no check. So we

eliminate it, passing to the reduced game Ĝ = 〈(Xi)i∈Â∪Ā, (Ci)i∈Â∪Ā〉. In

this way, we are supposing that it is convenient for some users to ask for

check. The game Ĝ is binary, but non symmetric, since the players are not

identical. Further more Ĝ is a non potential game, since for i ∈ Â \N and

k ∈ N :

Cqi (1, x−i)−Cq−1
i (0, x−i)+C

q+1
k (1, x−k)−Cqk(0, x−k)+C

q
i (0, x−i)−Cq+1

i (1, x−i)+

+Cq−1
k (0, x−k)−Cq−1

k (1, x−k) = +(
χ

q
+

∑
j∈M\Mi

cj

a− nj
)−1

a

∑
j∈M

cj+
χ

q + 1
−0+

+
∑

j∈M\Mi

cj

a− nj
−(

χ

q + 1
+

∑
j∈M\Mi

cj

a− nj
))+

1

a

∑
j∈M

cj−χ
q

=
∑

j∈M\Mi

cj

a− nj
.

The apex over cost function informs about the number of checking requests.

The condition of Corollary 3 is dealt only in the simple closed path of length

four. Obviously, if Â = N and Ā = ∅, then the game G is reduced to only

the players in N and Ĝ = 〈(Xi)i∈N , (Ci)i∈N 〉 is a potential game.

The game has indifferent NE for 0 6 ν < q − 1 and allure NE for ν = q,

the profiles for q < ν 6 n are not NE since for each player that asks for
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check, it is convenient to deviate and to not ask for it. Also for ν = q − 1

the strategy profile is not NE, since if i ∈ Â \N , Cq−1
i (0, x−i) = 1

a

∑
j∈M

cj >

χ
q +

∑
j∈M\Mi

cj

a−nj = Cqi (1, x−i). We get down to examining the possible devia-

tions for allure outcomes since for the indifferent equilibria the proof is obvi-

ous, as the outcome has the same costs. Let i ∈ Â∪Ā be a player of reduced

game. Then Cqi (1, x−i) = χ
q +

∑
j∈M\Mi

cj

a−nj 6 1
a

∑
j∈M

cj = Cq−1
i (0, x−i)

5, and

Cqi (0, x−i) =
∑

j∈M\Mi

cj

a−nj <
χ
q+1 +

∑
j∈M\Mi

cj

a−nj = Cq−1
i (1, x−i). Between

the non symmetric allure NE, neither is Pareto efficient.

3.6 Environmental Game

The model presented in this paper is suitable for concrete situations where

at most one coalition can be formed. The economic applications are, for

example, joint ventures, cartels, or enviromental protocols. We pause over

the last ones, considering in particular the model studied by Carraro and

Marchiori (2003) about policy coordination on greenhouse gases emission,

since it corresponds to our model. The standard environmental game is

a two-stage game whose players are a finite set of countries. In the first

stage (coalition game), countries decide non-cooperatively and simultane-

ously whether or not to sign the agreement, (i.e. to join a coalition) thus

accepting the burden sharing rule of the coalition. In the second stage (emis-

sion game) the countries in each coalition decide the level of gases emission

in order to maximize the welfare of the coalition. Formally, the two stage

game in its normal form is

〈Y1, . . . , Yn, v1, . . . , vn〉,

where N = {1, . . . , n} is a finite set of countries, Yi is the strategy set for

player i ∈ N , and the utility function vi allocates the coalition gain shared

according to the coalition burden-sharing rule, if i is a signatory in the first

game, or his payoff, if i is a singleton. In order to particularize the model,

Carraro and Marchiori (2003) make the following assumptions. a1) Uniquss.

The emission game has a unique NE for each coalition. a2) PANE. Inside

each coalition, in the emission game, players act cooperatively in order to

maximize the joint payoff, whereas coalitions and singletons compete in a

non-cooperative way. a3) Symmetry. All players are ex-ante identical. a4)

5The sign of equality holds only if i ∈ Ā.
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Single coalition. Only one coalition can be formed, the non-signatoring

countries play as singletons.

For the assumption a1), the second stage of the game can be reduced

to a partition function obtained (for assumption a2)) as a NE payoff of the

coalition game. Then, the study of the two-stage game is reduced to the

analysis of the first-stage game. The symmetry assumption a3) means that

each player has the same strategy space in the emission game and receives

the same payoff as the other members of his coalition. So, each coalition can

be identified with its size c. For the assumption a4), the strategies of the

coalition game consist in a binary choice. The environmental game becomes

a binary choice game:

〈X1, . . . , Xn, u1, . . . , un〉,

where Xi has two options ( sign/not sign) and ui divides in equal proportions

the gain of coalition among the signatories while allocating the singleton his

payoff. The structure of this game is the same as our model, even if our

model is a cost game. Whereas we work on the game in a normal form,

Carraro and Marchiori (2003) study the game in a partition function form,

in particular they analize the per-member partition function p(c, π) and

the non-member one p(1, π) which represent respectively the payoff ui of a

player i belonging or not to the coalition π of size c. By symmetry a3), these

functions depend on the coalition size c, as in our model the cost to be paid

depends only on the number ν of players asking for check.

In their work, Carraro and Marchiori determine the equilibrium coalition

and how it changes modifying the rules of the game. The equilibrium coali-

tion structure depends on important features: the membership rules, the

order of moves, the players’ conjectures, the shape of profitability function,

the type of free-riders. Specifying these features, it is possible to match our

model with theirs. It is enough to assume that the players are free to join

or to leave the coalition without the consensus of the other coalition mem-

bers (open membership): the game is with Nash conjectures (each player

takes his decision given the decisions of the others, which do not change as

a consequence of the decision of the first player) and the payoff function is

humped-shaped. In particular assuming orthogonal free-riding 6 their model

corresponds to our naming game, while assuming non-orthogonal free-riding
7 corresponds to our voting game. The Appendix features the proof of our

6The free-riders are orthogonal if they benefit from the cooperative abatement of the

coalition, but have no incentive to damage it: in international environmental games, there

is no leakage (Carraro and Marchiori (2001) page163)
7The free-riders are non orthogonal if they benefit from countries’ cooperation and
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claim. The research of Carraro and Marchiori and ours have been tackled in

different ways. They worked to identify the size of the unique Nash stable

coalition, or rather internally and externally stable coalition. By contrast,

we fixed the quorum to make the checking and morover we used the con-

dition of Nash equilibrium. They assume the payoff functions ui are twice

continuously differentiable functions, while we work with discrete functions

ci. Again, they formulate the game with at least three players and require

at least two players to make a coalition, instead we suppose the players of

the game to be at least two (otherwise there is no game) and the coalition

to be composed of at least one player. The little difference between their

size of an equilibrium coalition and our quorum is thus explained . Lastly,

we note that environmental game turns out to be a potential game, being a

symmetric two-strategy game. This guarantees the existence of pure Nash

equilibria.

3.7 Abstention from Voting

Once again let us perturb the rules of the game. We introduce the possibility

of abstention from voting, adding a third strategy Ab for each player. We

shall analyze two cases: the abstentionists do not pay the checking cost or

they pay a part of the quota.

When the abstentionists do not pay the cost of a possible checking,

the strategy abstention has the same effects as strategy no check, since

Ci(Ab, x−i) = Ci(0, x−i), for i ∈ A. We can thus think in terms of only

two strategies: check and no check, and, at the end, we have duplicated the

equilibria (substituting Ab with 0 in the strategy profiles).

Let us analyze the situation when the checking cost is divided into equal

parts among the abstentionists and the players who vote 1, since we can

refer to it also the case when the abstentionist pays a share of cheching cost

( that is αχ, with α ∈ (0, 1]) and the players who vote 1 the remaining

quota.

First, we consider the naming game with one facility. The strategy check

for a player in U is strongly dominated by the strategy no check, so we

eliminate it. There are various possibilities. i) If c
a <

χ
a , that is c < χ, the

strategy check for a player in N is strongly dominated by the strategy no

check. By eliminating it, the checking is never made since the only strategies

damage the coalition, for example, in environmental games, by increasing emission when-

ever cooperating countries reduce their own. (Carraro and Marchiori (2001) page 164)
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of players, users or not, are no check and abstention, so the game has only

one outcome. ii) If c
a > χ the strategy abstention for a player in U is strictly

dominated by strategy check. By removing it, we lose no equilibrium. So let

us consider the game limited to the players in N . Also for them the strategy

abstention is strictly dominated by the strategy check, so the reduced game

is a binary symmetric game. That is, by adding a strategy to the game,

the equilibria are the same as the original game with two strategies. iii) In

the intermediate cases, χ
a 6 c

a 6 χ, the equilibria are indifferent since the

checking is not made.

Now, let us consider the majority game with one facility. The strategy

check for a user is strictly dominated by the strategy no check, so we eli-

minate it. The strategy Ab for an user is again strictly dominated by the

strategy no check, so we eliminate it and we study the symmetric game

reduced to players in N . But the strategy Ab for a non user is strictly domi-

nated by the strategy no check, so, by eliminating it, the reduced symmetric

game becomes a binary game. Then, also in this case, adding a strategy,

the equilibria are the same with two strategies, but larger in number since

the strategy Ab has the same rule as strategy 0.

3.8 Conclusions

This Chapter presents a study of two games from the same model, the

naming game and the majority decision game, both framed in two subcases

(one and more facilities) working on a game reduced to only non user players.

In the naming game with one facility the NE is reached when only one

player asks for checking. The game with M facilities is shared in sum of

M elementary games. In the majority decision game with one facility, with

quorum q, the allure NE is reached when q players ask for checking. With

M facilities, beyond non users, the players of the reduced game are players

such that

{i ∈ U | χ
q

+
∑

j∈M\Mi

cj

a− nj
<

1

a

∑
j∈M

cj}.

Also in this case we have an allure NE with q votes for checking. It is

immediately noticeable that the naming game is a special majority decision

game with quorum q = 1. We can generalize claiming that, setting q the

quorum with 1 6 q 6 a, we have the allure equilibria exactly when q players

ask for check, while we have indifferent equilibria with 1 6 ν < q − 1. The

existence of pure NE is guaranteed only for first three cases examinated

by the original result of this paper: given a symmetric game, a sufficient
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condition to have a potential game consists in having only two strategies.

This theorem cannot be applied to the fourth case since it is not a symmetric

game.

A possible improvement of this work is in the area of cooperative tran-

sferable utility games which measure the power of influence among players.

It is assumed that players have to make a yes-no decision and each player

has an inclination to say yes or no. But, due to influence of others, the

decision of the player can be different from his inclination. A careful study

of influence indices and influential functions, also with abstention, has been

performed by Grabisch and Rusinowska (2008) and (2009).

3.9 Appendix

In this Appendix we compare the model of Carraro and Marchioni (2003)

with ours. Obviously, the two models are not identical since we have con-

structed a discrete game, while Carraro and Marchioni (2003) made a contin-

uous game applied to a discrete example. In their paper (2003), Carraro and

Marchiori introduce three functions relating to a standard (payoff) game:

the profitability function

P = P (c)
.
= p(c, π)− p(1, πS),

the free-riding function

Q = Q(c)
.
= p(1, π)− p(1, πS),

and the stability function

L = L(c)
.
= p(c, π)− p(1, π′) = P (c)−Q(c− 1),

where π is a coalition of size c, π
′

is a coalition of size c− 1, and πS is the

singleton structure, that is all the players are singletons. P measures the

profitability and L is useful to identify the size of a Nash stable coalition.

In fact,

c∗ is stable⇔ c∗ = max{[x]|L(x) = 0 and L′(x) < 0}.

For convenience, let c∗ = 1 when L(c) < 0 for all c ∈ (1, n]. Moreover, they

define

c] = max{[x]|L(c) = 0 and L′(c) > 0}.
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Again, it turns out that: i) if Q or the partition function of a player out-

side the coalition p(1, π) is increasing in c, then the game is with positive

spillovers, ii) if P > 0 and Q is convex, then the free riders are orthogonal,

and iii) if P is negative for c < cm, null in cm, positive for c > cm and if Q

is concave, then the free riders are non orthogonal. Hence, the definition of

cm follows.

The conversion of their continuous model into our discrete model is the

following: c corresponds to ν, cm corresponds to q, p(c, π) = ui(1, x−i) when

ν 6= 0, p(1, π) = ui(0, x−i) when ν 6= 0, p(1, πS) = ui(0, x−i) when ν = 0,

and πS corresponds to ν = 0. Since our model is a cost game, the cost

profitability and the cost free-riding functions are defined in the opposite

way, that is P (c)
.
= p(1, πS) − p(c, π) and Q(c)

.
= p(1, πS) − p(1, π). We

analyze first the naming game with one facility under assumption χ < c
a .

p(1, π) = ui(0, x−i) = c
a if ν = 0 and p(1, π) = ui(0, x−i) = 0 if ν 6= 0,

so the game is with positive spillovers. p(c, π) = ui(1, x−i) = χ
ν if 1 6

ν 6 n. p(1, πS) = ui(0, x−i) = c
a with ν = 0, P [ν]

.
= p(1, πS) − p(c, π) =

c
a −

χ
ν > 0. P is increasing in ν and cm that is q is 1. Also the per-

member partition function is monotonic since it differs from P in a constant.

p(1, π) = ui(0, x−i) = 0 if ν 6= 0, then Q[ν]
.
= p(1, πS)− p(1, π) = c

a > 0 and

constant. Since P [ν] > 0 and Q[ν] is convex, the game is with orthogonal

free-riding. L = L[ν]
.
= P [ν] − Q[ν − 1] = −χ

ν . We have: L[ν] < 0, so by

convention ν∗ = 1 that corresponds to our NE. The naming game with one

facility under assumption χ < c
a satisfies the conditions of Proposition 6 of

Carraro and Marchiori (2003).

Proposition 6 (Carraro and Siniscalco (1993), Barret (1994)). In a game

with Nash conjectures and open membership, in which the reaction functions

are orthogonal, the stable coalition structures are π∗ of size c∗ when 1 < c∗ <

n and the grand coalition structure πn of size n when c∗ > n, that is L(c) > 0

for all c ∈ [2, n], both when the per-member partition function is monotonic

and when it is humped-shaped.

Then we analyze the majority game with one facility assuming χ < c
a .

We have: p(1, π) = ui(0, x−i) = c
a if 0 6 ν 6 q−1 and p(1, π) = ui(0, x−i) =

0 if q 6 ν 6 n. Here, the partition function of a non member is constant, so

the game is with positive spillovers. p(c, π) = ui(1, x−i) = c
a if 0 6 ν 6 q−1

and p(c, π) = ui(1, x−i) = χ
ν if q 6 ν 6 n. p(1, πS) = ui(0, x−i) = c

a with ν =

0, P [ν]
.
= p(1, πS)−p(c, π) = 0 if 0 6 ν 6 q−1 and P [ν] = c

a−
χ
ν if q 6 ν 6 n.

We have P [ν] > 0 if q 6 ν 6 n, cm is just our quorum q and P [ν] is humped

shaped, that is it is locally concave. p(1, π) = ui(0, x−i) = c
a if 1 6 ν 6 q−1

and p(1, π) = ui(0, x−i) = 0 if q 6 ν 6 n, then Q[ν]
.
= p(1, πS)− p(1, π) = 0
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if 1 6 ν 6 q − 1 and Q[ν] = c
a > 0 if q 6 ν 6 n. Since P [ν] is null for

ν < q and positive for ν > q, and since Q[ν] is concave, the game is with

non orthogonal free-riding. L = L[ν]
.
= P [ν]−Q[ν− 1] = 0 if 1 6 ν 6 q− 1,

L[ν] = c
a if ν = q, and L[ν] = −χ

ν if q + 1 6 ν 6 n. We have: DL[ν] = 0 for

1 6 ν 6 q − 1, DL[q] = c
a , DL[q + 1] = − χ

q+1 −
c
a , and DL[ν] = χ

ν(ν−1) for

q+ 2 6 ν 6 n, where DL is the discrete derivative of L. Since L[q] = c
a > 0

and L[q+1] = −χ
ν < 0,and DL[q+1] = L[q+1]−L[q]

1 = − q+1
ν −

c
a < 0, we have

ν∗ = q, which corresponds to our allure NE. Our indifferent NE are given

by searching ν such that L[ν] = 0 and DL[ν] = 0, that is 1 6 ν 6 q−1. The

majority decision game with one facility under assumption χ < c
a satisfies

the conditions of Proposition 7 of Carraro and Marchiori (2003).

Proposition 7 (Carraro and Marchiori (2003)). In a game with Nash con-

jectures and open membership, in which the profitability function is positive

for c > cm and humped-shaped, and the free-riding is non orthogonal, the

stable coalition structures are π∗ of size c∗ when cm 6 c] 6 c∗ 6 n and the

singleton structure πS of size 1 when c] > n.



Chapter 4

Quality Unilateral

Commitments

4.1 Introduction

The words Unilateral Commitments assume a lightly different meaning, de-

pending on its context. In Economics, for example, the term Unilateral

Commitment indicates the commitment, assumed in an independent way,

by an individual towards an organization, to undertake a single action. For

example, in Pereau and Tazdait (1999), a unilateral commitment occurs

when some countries decide to reduce their emission in an individual man-

ner, without coordination, if bargaining with the scope to solve global en-

vironmental problems fail. That is, they provide for a new strategy, next

to the strategies to cooperate or not with the other countries. In Game

Theory, instead, the term Unilateral Commitment means the commitment

of an action before the other players can move, that is the player chooses

to commit a single strategy or to keep all of their strategies for a later de-

cision. We will mean the second acceptation, in a more advanced version.

For us, Unilateral Commitments means to assume binding commitments,

taken simultaneously and unilaterally by all the players before the begin-

ning of the game. This model is very close to delegation models, as showed

in Garćıa-Jurado and González-Dı́az (2006).

A Unilateral Commitments Game is a game, in which players can make

unilateral commitments regarding their set of strategies. Formally, we add to

a game, called component game or basic game, an initial round in which each

player simultaneously, unilaterally, and publicly declare, in an enforceable

61
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way, that he will play only certain strategies of the basic game. We refer to

these choices as unilateral commitments (briefly UC). In the second stage

every player is committed to use strategies only from the subset choosen in

the preliminary round. We underline that i) the unilateral commitments

become common knowledge before the second stage starts, when they are

publicly announced, ii) if the commitments are not made simultaneously

and unilaterally, the players could influence each other, the new game could

be played cooperatively, and then the players could achieve in equilibrium

the cooperative payoffs of the game, and iii) the behavior can be considered

as a signal used by the players to convey information about their type.

The tool of UC is suitable for repeated games especially, but in this

chapter we consider only unilateral commitments in one-shot game for two

reasons. First, we want to make a Nash equilibrium self-enforcing, without

maving to recur to the finitely repeated games tool. Second, if we repeat a

game G a finite number of times m, Gm is nothing else but another game.

This justifies to pay attention to UC added to a generic strategic game, that

is, to a game which is not necessarily a finite repetition of some constituent

game.

There are many strategic situations, in real life, in which people disregard

some of their possible strategies. For example, a firm announces a limited

edition of a certain product or picks its capacity constraints or subscribes to

quality programs in which it commits to follow certain rules, a department

makes the commitment of not hiring its own graduate students, a party

announces, during the election campaign, that it is not going to make certain

alliances regardless of the final result of the election, or a candidate promises

not to raise taxes by more than x%,

The benefits of using Unilateral Commitments for a finite component

game has already been studied and sounded by Fáıña-Med́ın et al. (1998),

Garćıa-Jurado et al. (2000), and Garćıa-Jurado et al. (2006). Fáıña-Med́ın

et al. (1998) proved that, if a preliminary round is included in a Prisoners’

Dilemma repeated a large enough number of times, then not only the players

have incentives to commit themselves to a limited strategy set, but there

is also a symmetric subgame perfect equilibrium in which both players act

cooperatively through the post-commitment stages of the game. Instead,

Garćıa-Jurado et al. (2000) worked in a more general framework, consider-

ing finite repetitions of a n-person strategic game form, and they obtain a

Nash folk theorem for finitely repeated games with UC. They proved that,

if a n-strategic game is repeated a number of times large enough and players

restrict their strategy sets in a preliminary round of the game, then every
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outcome, strictly preferred to the minimax outcome by every player, can be

supported by a Nash equilibrium in pure strategies. Again, adding unilate-

ral commitments to a constituent game without Nash equilibria generates

Nash equilibria when the game is sufficiently repeated and can generate

Nash equilibria even in the one-shot constituent game. Garćıa-Jurado et al.

(2006) deepen the influence of UC in the assumption needed for the folk

theorems for repeated games. They show that, when UC are possible, it is

easier to find both Nash and subgame perfect equilibria supporting the coo-

perative payoff of the original game, so no condition on component game is

needed for the Nash folk theorem to hold, when UC are considered. Again,

they introduce a new equilibrium concept for extensive games: the virtual

subgame perfect equilium, which we will present in Section 5.12 in Chapter

5.

Instead, Bade et al. (2006) consider the Unilateral Commitments of

a infinite component game, where the players can choose a subset of their

strategy set. They start from a paper of Schelling (1960) in which players can

commit to a single action before the other players move or keep all of their

actions for a later decision. Not much is gained, since the only outcomes of

this commitment game are the original NE and some equilibrium outcomes

of the sequential version of the game. So, they allow more flexibility in term

of possible commitments assuming the players keep any non-empty, compact,

convex subset of their original strategy space for their choice in the second

stage. Allowing players to commit on sets of strategies affects the set of

equilibrium outcomes. They prove that a strategy profile is implementable by

a commitment 1 if and only if it is implementable by a simple commitment,

that is the commitment where a player chooses a single strategy and the

other a set depending on the best reply to it. Again they prove that all

strategy profiles implementable by a commitment can be described as the

equilibrium outcome of a generalized sequential version of the UC game.

For example the lead-follow equilibrium outcomes is implementable in the

following way. First we modify G such that one player is moving first and

the other follows suit (Stakelberg duopoly). To implement such outcomes

it suffices that the leader commits to a single strategy (his strategy in the

lead-follow profile) and the other player does not restrict his strategy space

at all.

The previous literature has analyzed how allowing players to commit

on (finite or infinite) sets of strategies affects the equilibrium outcome and

1A strategy profile implementable by a commitment is a strategy profile of component

game such that, when played in the second stage, is a subgame perfect equilibrium of the

UC game.



64 Unilateral Commitments

which strategy profiles can be sustained as equilibrium outcomes. In this

chapter, we are interested in a slightly different question. We ask whether,

in order to obtain an efficient equilibrium, the commitment are sufficient

or an other escamotage is needed? The answer we propose is the model of

Quality Unilateral Commitments, i.e. unilateral commitments where, in the

first stage, each player declares that he will pay a penalty if he will not play,

in the second stage, the restricted strategies. This simple sequential game

structure, assuming a self-punishing scheme, makes self-enforcing the Nash

equilibria of the constituent game, if any. We analyze the case of a two

player game G, in which strategy sets and permissible restrictions of them

are compact subintervals of the real line and in which players have strictly

quasi-concave payoff functions. We embed G into a two stage game, in which

players can restrict their strategy spaces in the first stage. In the second

stage, if a player chooses a strategy from his restricted strategy space, he

obtains the same payoff as in the basic game G, otherwise he pays a penalty

dependent on the square of the distance from his restricted strategy space.

The choice of each player to make quality commitments is not only in

order to build a reputation, but also because, when the relations climate

has been so positive and harmonious, the players will behave properly and

make commitments, as it is proved in Snape and Redman (2006). Since a

commitment is a binding of an individual to the others, it measures an atti-

tude to the sense of altruism, compliance, identification and loyalty towards

the group.

Our outlook has been inspired by the declaration of high-quality of very

different products, from mineral water to jeans. For example, a well-known

mineral water bottling factory guarantees the purity of mineral water in a

newpaper promotion and, in order to give the highest guarantee of security,

the firm endows itself with ISO certification, while a famous firm, producing

brand-name jeans, hides away facing a declaration of intent, which guaran-

tees the handmade cure with which they have been realized.

It is no accident we have called our model as quality commitments in-

stead of penalty commitments. The Corporate Social Responsability (briefly,

CSR) is developping and will develop in the following years. CSR is an en-

terprise, which not only produces wealth, makes products on the cheap, but

also is dealing with business within the competence of State, Church, civil

society, and family. The CSR, according to the opinion of Bruni ((2008a),

(2008b)), is an oxymoron between capitalist enterprise and civil economy.

The modern civil economy is based on market, symbol of freedom and equal-

ity. The capitalist enterprise has inherited the hierarchic structure by feudal



Unilateral Commitments 65

society, like Churches, military structure, and family. The oxymoron is also

in the way they are realized. The civil economy and market are based on

contract, that is an exchange between ugual agents. In order to favour the

cooperation, there is an efficient disciplinary system, extern to the parts

involved in the contract. The hierarchic mechanism has asymmetric struc-

ture: there are a principal and one or more agents. The CSR develops on

public fides or faith and on civic virtue, in order to overcome the dualism

between interprise and market. Since the enterprice is the more efficient,

the more it is similar to market, then CRS extends the contract, tipical of

market, to the enterprise. It imports into the enterprise the pact, which is

contract plus fides. It is no accident that, one year after the publication of

Dei delitti e delle pene of Beccaria, Dragonetti (1768) publishes Delle virtú

e dei premi, where he write the virtue cannot be negotiated (like penalty is

settled by contract), but it is a product of free will. The same it happens

in our model of QUC, since the sanctions is self declared by the players,

then it is internal to the game. In the 2005 a famous food firm told the

press to launch on the market a fair-solidarity product. This move has been

choosen by other producers, while the importers have made a trademark

on producing instead of product. The die of fair-solidarity market gives a

new responsability to market, since it gives value to values. The rewards

are beginning always more qualitative, and the users more sensible to ethi-

cal values, to environmental respect and then they pretend corporate social

responsability, otherwise they punish the enterprises.

This chapter is organised as follows. In Section 4.2, we introduce the

Unilateral Commitments of a game. In Section 4.3, we present the con-

ditions that assure the existence of NE for infinite games. In Section 4.4,

we introduce the Penalty Function Method, while in Section 4.5 we apply

it to our model. Finally, in Section 4.6 we study the Quality Unilateral

Commitments of Cournot Duopoly.

4.2 Unilateral Commitments

Remark 2. For ease of definition of UC(G), the games G and UC(G) are

expressed in strategic form. At the same time, UC(G) is a two-stage game,

grafically it is represented in extensive form, and hence the subgame perfect

equilibrium is the concept of solution more suitable for our analysis.

Given a game G = 〈(Xi)i∈N , (ui)i∈N 〉, the corresponding game with uni-

lateral commitments consists of embedding the component game G into a
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two-stage game. In the first stage, each player, independently and simulta-

neously, chooses a nonempty subset Si of his strategy set Xi, i.e. he commits

to play only the choosen strategies in Si. After this preliminary stage, the

choices made by all of the players are publicly known, and the game G,

restricted to S1, . . . , Sn, is played. The commitments are assumed to be

perfectly binding, in the sense that if player i restricts his strategy set to

Si, any strategy choosen in the second stage must belong to Si. We note

that a commitment does not necessarily prescribe the choice of a strategy.

Ex-post, the players are free to choose from the set of strategies specified in

the commitment.

Now, we formalize the UC-extension of a game G.

Definition 46. Let G = 〈(Xi)i∈N , (ui)i∈N 〉 be a strategic form game. The

UC-extension of G is the game

UC(G) = 〈(XU
i )i∈N , (u

U
i )i∈N 〉,

where:

i. the set of players N remains the same of G,

ii. the set XU
i of strategies available to player i ∈ N is the set of all the

couples (Si, φi) such that

j)Si ⊆ Xi, Si 6= ∅, and jj)φi :
∏
k∈N

2Xk −→ Xi, with

φi(T1, . . . , Tn) ∈ Si, for each (T1, . . . , Tn) ∈
∏
k∈N

2Xk ,

iii. the payoff function of player i is uUi :
∏
i∈N

XU
i −→ R defined by

uUi ((S1, φ1) . . . , (Sn, φn)) = ui(φ1(S1, . . . , Sn), . . . , φn(S1, . . . , Sn)).

Obviously, the condition j) refers to the first stage, and the jj) to the second

stage. That is, a strategy for player i prescribes a choice of a restriction Si
(first-stage strategy) and of a strategy φi (second-stage strategy), for each

possible choice of a restriction for all players in the first stage. Again the

condition φi(T1, . . . , Tn) ∈ Si imposes that the commitments are binding.

The outcome of a strategy profile

((S1, φ1) . . . , (Sn, φn))
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is the vector

((S1, . . . , Sn), (s1, . . . , sn)),

where, for each i ∈ N ,

φi(Si) = si.

The payoffs over outcomes ((S1, . . . , Sn), (s1, . . . , sn)) are assumed to depend

only on the strategy profiles choosen in the second stage of the game and

are given by the payoffs of the UC(G). That is, the utility ui(s1, . . . , sn)

of player i derives from outcome ((S1, . . . , Sn), (s1, . . . , sn)). The result of

((S1, φ1) . . . , (Sn, φn)) is

(s1, . . . , sn),

where ((S1, . . . , Sn), (s1, . . . , sn)) is the outcome of strategy profile

((S1, φ1) . . . , (Sn, φn)).

We illustrate the model with a simple example.

Example 2. In the following Figure 4.1, it is depicted the game form Γ and

its Unilateral Commitments extension. To make more readable the drawing,

some labels are omitted.

Let us recall briefly the following properties due to Garćıa-Jurado et al.

(2000).

i) If the original game G has a NE (x̄1, . . . , x̄n), then UC(G) has a NE

with the same outcome. Let us just consider ((S1, φ1), . . . , , (Sn, φn)), where

the commitment (S1, . . . , Sn), is defined by Si
.
= xi, for each i ∈ N , and

the strategy profile (φ1, . . . , φn) as follows, for each i ∈ N : φi(S1, . . . , Sn)
.
=

xi, φi(Tj , S−j)
.
= xi for all i ∈ N\{j} (i.e. if a unique player j deviates

from the commitment (S1, . . . , Sn), the others stick to their NE strategies),

and φi is defined ad libitum otherwise. (To avoid cumbersome notations,

the definition is given in a colloquial style). Checking that, the couple

((S1, φ1), . . . , (Sn, φn)) is a NE for UC(G), is straightforward.

ii) If the original game G does not have a NE, it cannot be guaranteed

that UC(G) has a NE: an example in pure strategies is Matching Pennies.

iii) It can happen that a game G does not have a NE, while UC(G)

has, as shown in the following example (see Figure 4.2). The game G

does not have NE, but ((S1, φ1), (S2, φ2)) defined by (S1, S2) = ({t}, {l, r}),
φ1(T1, T2) = t, φ2(S1, T2) = t and φ2(T1, S2) = r if T1 6= {t}, for each

T1 ∈ 2X1 and T2 ∈ 2X2 , do provide a NE for UC(G).

For this reason, in the model of Quality Unilateral Commitment, we con-

sider a component game with non-empty compact real intervals as strategic
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spaces, and continuous and strictly quasi-concave payoff functions. These

assumptions, met by many economic models, ensure that the equilibria set

of a component game is a non-empty set.

4.3 Existence and Properties of Nash Equilibria

In this section we now tackle the question of the existence of Nash equilibria.

In the case of finite games, the theorem of Nash (1950) guarantees the

existence of a mixed-strategy equilibrium.

Theorem 14. (Nash (1950)) Every finite strategic-form game has a mixed-

strategy equilibrium.

In the case of infinite games with continuous payoffs, the existence of

Nash equilibria in pure strategies is ensured by the theorem of Debreau,

Glicksberg, and Fan (1952). In its formulation, we adopt the concept of

nice game introduced in Rn by Bade, Haeringer and Renou (2005), and we

give the definition in the context of Euclidean spaces.

Before stating the theorem, some preliminaries are needed. We recall

that a real Euclidean space of finite dimension is a linear vector space of

finite dimension on R with a scalar product. So, it is equipped with a norm,

a metric, and a Hausdorff topology, admitting convex bases, where vector

operations of addition and scalar multiplication are continuous.

Definition 47. A subset X of a Euclidean space is compact2 if every se-

quence in X has a subsequence that converges to a limit point in X.

Definition 48. A subset X of a linear vector space is convex if, for any

x, y ∈ X and any α ∈ [0, 1],

αx+ (1− α)y ∈ X.

Definition 49. Let X be a convex subset of an Euclidean space. The func-

tion f : X −→ R is concave if for any x, y ∈ X and for any α ∈ (0, 1) we

have

f(αx+ (1− α)y) > αf(x) + (1− α)f(y).

2The notion of compactness for more general topological spaces uses the notion of

cover, which is a collection of open sets whose union includes the set X. X is compact if

any cover has a finite subcover.
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The function f is strictly concave if for any x, y ∈ X and for any α ∈ (0, 1)

we have

f(αx+ (1− α)y) > αf(x) + (1− α)f(y).

Definition 50. Let X be a convex subset of an Euclidean space and let

f : X −→ R. The function f : X −→ R is quasi-concave if, for each t ∈ R,

the set

{x ∈ X : f(x) > t}

is convex. The function f : X −→ R is strictly quasi-concave if, for each

t ∈ R, the set

{x ∈ X : f(x) > t}

is convex.

Or, equivalently,

Definition 51. The function f is a quasi-concave function if for any x, y ∈
X and for any α ∈ [0, 1] we have

f(αx+ (1− α)y) > min(f(x), f(y)).

The function f is a strictly quasi-concave function if for any x, y ∈ X and

for any α ∈ [0, 1] we have

f(αx+ (1− α)y) > min(f(x), f(y)).

Remark 3. If f is a strictly concave function, it is also quasi concave. The

converse is false. For example, f : R −→ R such that f(x) = x3.

Definition 52. A game 〈X1, . . . , Xn, u1, . . . , un〉 in strategic form is a nice

game if for each player i ∈ N , Xi is a non-empty compact, convex subset

of an Euclidean space, and the payoff function ui is continuous in all its

arguments, and strictly quasi-concave in xi.

The continuity is with respect to the topology induced by the metric.

Example 3. A non-empty closed real interval is a compact, convex subset

of the real line.

Definition 53. Let F : X −→ X be a function (or a multifunction). x̄ ∈ X
is a fixed point for F if x̄ ∈ F (X).

Definition 54. Let X,Y be topological spaces, F : X
−→→ Y be a multifunc-

tion, and gph(F ) = {(x, y) ∈ X × Y : y ∈ F (x)} be its graph. F is said to

have closed graph if gph(F ) is a closed of X × Y .
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If X,Y ⊆ Rn, the definition 54 is formulable in a sequential way: F has a

closed reduced graph if the following condition holds. If (xk, yk) ∈ X × Y
such that (xk, yk) −→ (x, y), as k → +∞, then (x, y) ∈ X × Y .

Or, equivalently.

If xk −→ x, yk −→ y, as k → +∞, and yk ∈ F (xk), then y ∈ F (x).

Definition 55. Let X be a topological space. A function f : X −→ R is

called upper hemicontinuous if and only if the set {x ∈ X : f(x) > t} is

open for each t.

Upper hemi-continuity property requires that, for any x0 and for any open

set V that contains f(x0), there exists a neighborhood U of x0 such that

f(x) ⊆ V if x ∈ U . In general, this differs from the closed-graph notion, but

the two concepts coincide if the range of f is compact and f(x) is closed for

each x, conditions which are generally satisfied when applying fixed-point

theorems.

Theorem 15. (Kakutani3) Let K ⊆ Rk be a non-empty, compact, convex

set. If F : K
−→→ K is a non-empty, convex-valued multifunction with closed

graph, then F has a fixed point.

If F (x) is a singleton for each x ∈ X, then we come across again the Browner

fixed point theorem, focal theorem in differential and algebraic topology.

Theorem 16. (Berge) Let X,Y be metric spaces, and f : X × Y −→ R be

a continuous function, then the multifunction F : X
−→→ Y , so defined

F (x) = argmaxy∈Y f(x, y),

has a closed graph.

Theorem 17. (Debreau (1952), Glicksberg (1952), and Fan (1952)) Every

nice game G = 〈X1, . . . , Xn, u1, . . . , un〉 has a Nash equilibrium in pure

strategies.

Proof. The idea of the proof is to apply the theorem of fixed-point of Kaku-

tani to the best reply correspondences. The set of (pure) best replies of

player i to x−i ∈ X−i, for each player i ∈ N , is defined as follows:

BRi(x−i)
.
= argmaxxi∈Xi ui(xi, x−i)

3With the intention of simplifying the original proof of von Neumann, Kakutani (1941)

extended the classical Brouwer’s theorem to set valued maps and derived the minimax

theorem as an easy corollary.
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With variation of x−i ∈ X−i, we define the best replay multifunction for the

player i

BRi : X−i
−→→ Xi,

which associates, with each element of X−i, only one subset of Xi, empty

too. But, for hypothesis, Xi is a compact, ui is continuous, and

BRi(x−i) = {xi ∈ Xi : ui(xi, x−i) > ui(yi, x−i) for all yi ∈ Xi},

then BRi is a continuous, non-empty, single-valued function in any nice

game. We define the correspondence BR as the Cartesian product of the

best reply BRi:

BR : X1 × . . .×Xn −→ X1 × . . .×Xn

BR(x1, . . . , xn)
.
=
∏
i∈N

BRi(x−i)

A fixed point of BR is a strategy profile (x̄1, . . . , x̄n) such that

BR(x̄1, . . . , x̄n) = (x̄1, . . . , x̄n),

that is such that

BRi(x̄−i) = x̄i, for each i ∈ N,

thus, a fixed point of BR is a Nash equilibrium of G. In order to prove our

statement, we show that BR satisfies the hypotesis of Kakutani’s theorem

to have a fixed point.

i) (X1 × . . . × Xn) is a compact, convex, non-empty subset of a finite-

dimensional Euclidean space.

ii) BR(x1, . . . , xn) is non-empty for all (x1, . . . , xn).

iii) BR(x1, . . . , xn) is convex for all (x1, . . . , xn).

iv) BR(·) has a closed graph or is upper hemi-continuous.

Condition i) is easy to verify. Since the Cartesian product of non-empty sets

or compact sets or convex sets is a non-empty set or compact set or convex

set, respectively, then X1 × . . .×Xn satisfies immediately the condition i).

From the definition of BR as Cartesian product, it is sufficient to check

that each BRi satisfies conditions ii) and iii). Now, BRi has non empty

values for Weierstrass theorem (in fact Ri is a continuos function defined on

a compact set). Let us prove that Ri is convex-valued. By definition,

Ri(x−i)
.
= argmaxyi∈Xi ui(yi, x−i) = {xi ∈ Xi : ui(xi, x−i) > max

yi∈Xi
ui(yi, x−i)},
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where the last set is convex since ui is a quasi-concave function. If we

choose t = max
yi∈Xi

ui(yi, x−i), then Ri is convex-valued. At least, for each

i ∈ N the payoff function ui : Xi × X−i −→ R is a continuous function

on metric space payoffs, so Berge’s Theorem 16 implies closed-graph best

reply BRi(x−i)
.
= argmaxxi∈Xi ui(xi, x−i). Since the sufficient conditions of

Kakutani’s Theorem 15 are satisfied, BR has a fixed point.

By using Theorem 17 for a symmetric game, we have the following exi-

stence results of a pure symmetric equilibrium.

Corollary 4. A symmetric nice game 〈X1, . . . , Xn, u1, . . . , un〉 has at least

one symmetric pure NE.

Proof. Theorem 17 states that there exist a strategy (x̄1, . . . , x̄n) ∈ X1 ×
. . .×Xn such that

BR(x̄1, . . . , x̄n) = (x̄1, . . . , x̄n),

that is such that

BRi(x̄−i) = x̄i, for each i ∈ N.

But G is a symmetric game, so, for each i, j ∈ N ,

x̄i = BRi(x−i) = argmaxxi∈Xi ui(xi, x−i) = argmaxxj∈Xj uj(xj , x−j) =

= BRj(x−j) = x̄j .

Corollary 5. Let 〈X1, . . . , Xn, u1, . . . , un〉 be a symmetric potential game,

where X1 = . . . = Xn is a closed real interval, P is a continuous function in

all its arguments and quasi-concave in xi for all i ∈ N = {1, . . . , n}, there

exists at least one pure symmetric NE.

Remark 4. Let G = 〈(Xi)i∈N , (ui)i∈N 〉 be a nice game. When the second-

stage of UC(G) is played, we can consider the sub-game G limited to

(S1, . . . , Sn), denoted with GS1,...,Sn , as a restriction of G. So we can ap-

ply the results of Bade, Haeringer and Renou (2005), concerning the rela-

tions between the equilibria of a nice game4 and its restriction. The first

property is an obvious property of a restricted game: any equilibrium of

G, which belongs to the restricted set of strategies (S1, . . . , Sn), is also an

equilibrium of GS1,...,Sn . That is, if there exists a NE (t̄1, . . . , t̄n) such that

4If the game G is finite, the results do not hold.
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(t̄1, . . . , t̄n) ∈ (S1, . . . , Sn), then (t̄1, . . . , t̄n) is a NE of GS1,...,Sn . The con-

verse is obviously not true. However, Bade, Haeringer and Renou (2005)

prove that any interior equilibrium of GS1,...,Sn is also an equilibrium of G,

where a strategy profile is interior if (t̄1, . . . , t̄n) ∈ int
∏
i∈N

Si. It follows that

the equilibria of GS1,...,Sn , which are not equilibria of G, are on the boundary

of
∏
i∈N

Si. In particular, if the players are two, the equilibria of the GS1,S2 ,

which are not equilibria of G, are in number less than or equal to four.

4.4 Penalty Function Method

The statement of the problem of QUC recurs to the Penalty Method, which is

one of the techniques of Constrained Optimization. Sometimes, a problem of

optimization with equality constraints and/or inequality constraints can be

transformed into an equivalent unconstrained problem. The transformations

can be made on the variables or on the objective function. For example, with

linear constraints, it is to be preferred to treat the constraints directly and

to transform the variables. Instead, when the constraints are nonlinear, it is

particularly useful to use a method, such as the penalty, which acts on the

objective function.

When solving a nonlinear programming problem, in which the con-

straints cannot easily be eliminated, it is necessary to balance the aims

of reducing the objective function and staying inside or close to the feasible

region, in order to induce global convergence, that is convergence to a local

solution from any initial approximation. This inevitably leads to the idea of

a penalty function, which is some combination of the objective function and

the constraint function. Early penalty functions are smooth so as to enable

to use efficient techniques for smooth unconstrained optimization.

The penalty method approximates a given constrained problem with

unconstrained problems, penalizing each deviation from acceptable values.

Let us consider the following problem in Rn:

(P ) max{f(x1, . . . , xn) | (x1, . . . , xn) ∈ K}.

where f : Rn −→ R, with n ∈ N∗, is the objective function and K ⊆ Rn is

the feasible region, usually defined by

K = {(x1, . . . , xn) ∈ Rn| gj(x1, . . . , xn) > 0, j = 1, . . . ,m},
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with assigned constraint functions gj : Rn −→ R, for all j = 1, . . . ,m.

We underline the general formulation of the problem (P ): we can switch the

maximum research to minimum, only changing the sign of f .

The penalty method associates with a constrained problem (P ) a se-

quence of unconstrained problems (Pk)k∈N, where

(Pk) max{pk(f(x1, . . . , xn), gj(x1, . . . , xn)) | j = 1, . . . ,m, (x1, . . . , xn) ∈ Rn}.

The solution of each problem (Pk) is a point (xk1 , . . . , xkn), which maximizes

the relative unconstrained function pk = pk(f, g1, . . . , gm). These functions

are constructed so that, as k → +∞, a convergent sequence of unconstrained

maximizer approaches a constrained maximizer of problem (P ).

Let us assume f defined, continuous on Rn, and strictly concave. We

assume K is a closed convex set defined by only one concave function g on

Rn. Again, for simplicity we assume n = 2.

There is a lot of offers for penalty function p. The earliest penalty

function (Courant (1943)) is

pn(x, y) = f(x, y)− 1

2
ng2(x, y).

The penalty is formed from a difference of squares of constraint violations

and the parameter n determines the amount of penalty.

Remark 5. We suppose (xn, yn) is a point of maximum for pn in R2. If

g(xn, yn), as n → +∞, does not converge to zero, the term −1
2ng

2(x, y)

diverges to −∞ as n→ +∞. So, for a great value of n, the values pn(xn, yn)

become very small, if f is not upper limited, and (xn, yn) cannot maximize

pn, as we have assumed. That is, the sequence of free problems defined

by pn is equivalent to penalize the point (x, y) if it does not belong to the

constraint g(x, y) = 0. Multiplying g2(x, y) by −1
2n implies that we subtract

from f a quantity which diverges, so −1
2ng

2(x, y) has very small values and

then is not competitive in order to calculate the maximum of pn. We say

that pn is obtained penalizing the constraint.

Obviously, g(x, y) = 0 if and only if (x, y) ∈ K, and, since pn(x, y) ≤
f(x, y) and stricly convex, only one (xn, yn) ∈ R2 exists such that

pn(xn, yn) = max
(x,y)∈R2

fn(x, y).

Then, we have the following theorem.
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Theorem 18. Under the previous assumption on f , g, and pn, we have

(xn, yn)→ (x̄, ȳ), as n→ +∞,

where (x̄, ȳ) is the maximum point of f on K.

Proof. We have:

f(xn, yn) > pn(xn, yn) > max
(x,y)∈K

pn(x, y) > max
(x,y)∈K

f(x, y) = f(x̄, ȳ).

From which, (xn, yn) is in a limited set of R2. We extract a subsequence in

R2 (xnk , ynk)→ (x∗, y∗), as k → +∞. From 4.4 follows

f(x∗, y∗) > f(x̄, ȳ).

Again, from 4.4, we have

1

2
kg2(xnk , ynk) > f(x̄, ȳ)− f(xnk , ynk),

and then

g2(x∗, y∗) = lim
k→+∞

g2(xnk , ynk) = 0.

From which, (x∗, y∗) ∈ K which, with 4.4, implies (x∗, y∗) = (x̄, ȳ).

It is interesting to observe that this result is obtained in absence of

differentiability or Karush-Kuhn-Tucker regularity assumptions. However,

not only the method suffers from necessity of a sequence of maximizations,

but also these maximizations become more and more difficult numerically,

as k grows.

It is also possible to get asymptotic estimates of the rate of convergence.

These estimates can be used to terminate the penalty function iteration and

also to provide better initial approximations when maximizing pk = pk(f, g).

Aubin (1969) proves that, under suitable assumptions, there is a valuation of

maximum points xk = (xk1 , . . . , xkn) of problem (Pk) to maximum point x =

(x, . . . , xn) of problem (P ) like |x−xk| ≤ C 1
k , with C appropriate constant.

Lucchetti and Patrone (1977) notice that this result cannot improve, that

is, a convergence like |x− xk| ≤ C( 1
k )α, with α > 1, is not possible.

The penalty method is an exterior point algorithm, so called since it ge-

nerates a sequence of maxima exterior to the constraints, forcing convergence

to a feasible point in the limit as n → +∞. Equality constraints problems
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can only be handled by using exterior point algorithms. Instead, problems

with inequality constraints can be handled by exterior point algorithms or

interior point algorithms, where the sequence of maxima is interior to the

constraints set.

4.5 The model

We model the choice of quality unilateral commitments applied to a one-

shot game, looking at the reputation, trust and loyalty effect between the

players. The structure of the QUC model is traced out from UC model, but

here the commitments are assumed to be not binding, since in the second

stage a player can play a strategy not belonging to his restricted set declared

in the first stage. The role, played in UC by binding commitments, is in

the QUC performed by penalty. In fact, we must interpret in a positive

way the penalty of a player, as guarantee towards the others of his perfect,

unobjectable and fair behavior, and not in a negative way, as a punishment

for his (possible) deviation. Again, the QUC want to make self-enforcing

any NE of the reduced game GS1,...,Sn .

Given a game G = 〈(Xi)i∈N , (ui)i∈N 〉, the corresponding game with

quality unilateral commitments consists in embedding the component game

G into a two-stage game. In the first stage, each player, independently and

simultaneously, chooses a nonempty subset Si of his strategy set Xi, i.e. he

commits to play only the choosen strategies in Si. After this preliminary

stage, the choices made by all players are publicly known, and the game G

is played. If player i adheres to his declaration and plays a strategy in Si,

he obtains the payoff ui of G, otherwise his payoff is cut down.

In order to make self-enforcing a NE of the reduced gameGS1,...,Sn , we ap-

proximate to the problem of maximizing each ui, subject to the constraints

S1, . . . , Sn, by a maximization problem without constraints, in which the

function to be maximized is modified by the subtraction of a penalty term,

equal to the square of the distance between the strategy xi and the declara-

tion set Si, multiplied by a large penalization factor. To be precise, we take

a natural k, which will be made to tend to infty, and we associate with it

the problem of finding, for each i ∈ N ,

argmax{ui(x1, . . . , xn)− k[dist(xi, Si)]
2 : (x1, . . . , xn) ∈ X1 × . . .×Xn},

where the distance between a strategy profile xi and a set Si is so defined

dist(xi, Si)
.
= inf{d(xi, y) : y ∈ Si},
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with d the usual distance of the metric space R.

As reminded earlier, the existence of NE for the component game G is

not a guarantee of existence of equilibria for its extension with UC. So, we

assume for G and for its extension QUC(G) the same hypothesis as Theorem

17. In particular, we assume that each player i has, as strategy set of G,

a non-empty closed real interval (i.e. a compact, convex subset of the real

line), and that in the preliminary stage of QUC(G), i chooses a non-empty

closed interval of his available strategies 5. We denote the compact real

interval Si of player i by

[xi, xi] ⊆ Xi,

where xi is the minimum of Si and xi its maximum. Player i can also commit

to a singleton, when xi = xi. Again, we assume that the payoff functions of

both games is continuous in all its arguments, and strictly quasi-concave in

the respective variables.

We limited the analysis of the model, for simplycity, to the case of two

players, but it extends immediately up to the case of n players. We suppose

that the players are symmetric, for example two identical firms producing

the same good, and we propose the same type of penalty for each player.

Let G = 〈X,Y, f, g〉 be a nice game, that is the strategy set X,Y are

non-empty compact, convex subset of the real line, and the payoff functions

f, g are continuous in (x, y), and strictly quasi-concave in x and in y, respec-

tively6. Then Theorem 17 assures that the set of NE of G is non-empty.

Now, we can formalize the QUC-extention of a game G.

Definition 56. Let G = 〈X,Y, f, g〉 be a nice game. The QUC-extension of

G, briefly QUC(G), is the sequence of games

Gn = 〈[x, x], [y, y], pn, qn〉,

where, for each n ∈ N,

i. the set of players N = {I, II} remains the same of G,

5 Without loss of generality, we have assumed convex the restricted strategy space Si.

Imposing some Lipschitz conditions is sufficient to ensure that the game played in the

second-stage, has a NE. We also note that imposing a convex strategy space is a common

assumption in Economics literature.
6 The model developed in this section cannot be applied to mixed extensions of finite

games. In fact, payoff functions are not strictly quasi-concave, and mixed strategy space

is not a subset of the real line, except for a binary game.
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ii. [x, x] and [y, y] are respectively the set of strategies declared by player

I and II,

iii. the payoff function pn of player i is given by

pn(x, y) =


f(x, y)− n(x− x)2 if x < x

f(x, y) if x ∈ [x, x]

f(x, y)− n(x− x)2 if x > x

and the payoff function qn of player i is given by

qn(x, y) =


g(x, y)− n(y − y)2 if y < y

g(x, y) if y ∈ [y, y]

g(x, y)− n(y − y)2 if y > y

It is immediately noted that the penalty functions are strictly quasi-

concave, since payoff functions of G are strictly quasi-concave and penalty

is concave since it is proportional to square of the deviation.

Remark 6. The model is very flexible and foresees many enhancements.

For example we could investigate what happens when the penalty functions

are different,one for each player, or what happens when the players do not

commit simultaneously but they play hierarchically, for example a monopo-

list and its consumers.

4.6 An Example: QUC of Cournot Duopoly

4.6.1 Cournot Duopoly

Let us consider a simplified version of Cournot Duopoly. Two firms I and

II produce a homogeneous good, for example mineral water, and simulta-

neously choose their respective output level. If producer I brings on the

market an amount x ∈ [0,+∞), and II a quantity y ∈ [0,+∞), then the

price p of mineral water depends on the total amount q = x+ y brought on

the market. We assume a linear demand p(q) = a − q7, where a > 0 is a

7 Our choice for p(q) is due only to technical reasons. It simplifies the scenarios when

we apply QUC to Cournot Duopoly. Obviously, our choice for p(q) is less realistic than

the classical assumption p(q) = max(0, a− q) of Cournot Duopoly, but it is irrelevant for

the purpose of QUC. With classical assumptions, the total profit has linear and quadratic

expression, but after application of QUC, the penalty function becomes quadratic, like in

our model.
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costant, and a symmetric linear output cost cx and cy for each correspon-

ding firm, where c > 0 is the constant unit price. The firm total profits are

then, respectively,

f(x, y) = xp(q)− cx = −x2 + (a− c− y)x,

and

g(x, y) = yp(q)− cy = −y2 + (a− c− x)y.

We assume that c < a, otherwise the market price for good unit, being less

than or equal to a, does not exceed the output price.

The duopoly situation can be modeled as a game in strategic form where,

the players are the two firms, the strategies are quantities x, y ∈ [0,+∞) of

produced good, the payoff functions are total profits f, g. Formally,

G = 〈X,Y, f, g〉,

where X = Y = [0,+∞) and, for all strategy profiles (x, y) ∈ X × Y ,

f(x, y) = xp(q)− cx = −x2 + (a− c− y)x,

g(x, y) = yp(q)− cy = −y2 + (a− c− x)y.

It follows immediately that the Cournot game G is a nice game. The in-

tersection (if any exists) of the two reaction functions BRI : Y −→ X and

BRII : X −→ Y are the Nash equilibria of the Cournot game: neither firm

can gain by a change in output, given the output level of its opponent. The

best reply of firm I to strategy y of firm II is

BRI(y) = argmax{−x2 + (a− c− y)x : y ∈ [0,+∞)} =

=

{ a−c−y
2 if 0 6 y < a− c

0 if y > a− c
By simmetry, the best reply of firm II to strategy x of firm I is

BRII(x) = argmax{−y2 + (a− c− x)y : x ∈ [0,+∞)} =

=

{
a−c−x

2 if 0 6 x < a− c
0 if x > a− c

The NE must satisfy {
x = BRI(y)

y = BRII(x)

then, there is only one NE given by

(
a− c

3
,
a− c

3
).
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At the equilibrium, each firm gains

f(
a− c

3
,
a− c

3
) = g(

a− c
3

,
a− c

3
) =

(a− c)2

9
.

The sale price is

p(q) = p(2
a− c

3
) =

a+ 2c

3
.

Since, for hypothesis, c < a, the sale price is greater than unit price, so each

firm gets a profit.

We assume firm I has a monopoly on mineral water, so II produces

y = 0, without profit. Then, the best strategy for I is the quantity of

monopoly

x =
a− c

2
,

which gives to I a profit

f(
a− c

2
, 0) =

(a− c)2

4
.

The sale price is

p(q) = p(
a− c

2
),

which is greater than sale price of duopoly. So the monopolist makes a

profit.

If the firms agree on producing half of monopoly quantity and dividing

the profit in half, their payoff is

f(
a− c

4
,
a− c

4
) = g(

a− c
4

,
a− c

4
) =

(a− c)2

8
,

which is greater then payoff of duopoly. But the strategy profile (a−c4 , a−c4 )

is not a NE, since a−c
4 6= BRI(

a−c
4 ) and a−c

4 6= BRII(
a−c

4 ), so the NE

(a−c3 , a−c3 ) is inefficient.

4.6.2 QUC of Cournot Duopoly

The QUC-extention of the Cournot game G, QUC(G), is the sequence of

games

Gn = 〈[x, x], [y, y], pn, qn〉,
where, [x, x] ⊆ [0,+∞) and [y, y] ⊆ [0,+∞), and the payoff functions are

given by

pn(x, y) =


−x2 + (a− c− y)x− n(x− x)2 if x ∈ [0, x]

−x2 + (a− c− y)x if x ∈ [x, x]

−x2 + (a− c− y)x− n(x− x)2 if x ∈ [x,+∞)
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=


−(1 + n)x2 + (a− c− y + 2xn)x− nx2 if x ∈ [0, x]

−x2 + (a− c− y)x if x ∈ [x, x]

−(1 + n)x2 + (a− c− y + 2xn)x− nx2 if x ∈ [x,+∞)

and

qn(x, y) =


−y2 + (a− c− x)y − n(y − y)2 if y ∈ [0, y]

−y2 + (a− c− x)y if x ∈ [y, y]

−y2 + (a− c− x)y − n(y − y)2 if y ∈ [y,+∞)

=


−(1 + n)y2 + (a− c− x+ 2yn)y − ny2 if y ∈ [0, y]

−y2 + (a− c− x)y if x ∈ [y, y]

−(1 + n)y2 + (a− c− x+ 2yn)y − ny2 if y ∈ [y,+∞)

We focus on pn(x, y) to study the best reply function. pn is composed of

three parables, then the best reply of firm I to strategy y of firm II is

the quantity corresponding to one of the vertices of parables, which are

respectively,

V = (
a− c− y + 2nx

2(1 + n)
,
(a− c− y)2 + 4nx(a− c− y − x)

4(1 + n)
),

V = (
a− c− y

2
,
(a− c− y)2

4
),

and

V = (
a− c− y + 2nx

2(1 + n)
,
(a− c− y)2 + 4nx(a− c− y − x)

4(1 + n)
).

Set

xV
.
=
a− c− y + 2nx

2(1 + n)
, xV

.
=
a− c− y

2
, and xV

.
=
a− c− y + 2nx

2(1 + n)
,

we have:

j) xV < xV ⇔ x < xV ,

in fact, a−c−y+2nx
2(1+n) < a−c−y

2 ⇔ a− c− y+ 2nx < a− c− y+ n(a− c− y) ⇔
x < a−c−y

2 .

We have, again,

jj) xV < x ⇔ xV < x,

in fact, a−c−y+2nx
2(1+n) < x ⇔ a− c− y + 2nx < 2x+ 2nx ⇔ a−c−y

2 < x.

If xV 6 0, that is y > a−c, it is immediate to verify that, for each x > 0,

pn(0, y) = 0 > pn(x, y),

so BRnI (y) = 0.
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If xV > 0, that is y < a − c, then, there are three scenarios, corresponding

to

i) x < x < xV , ii) x < xV < x and iii) xV < x < x.

Case i) x < x < xV . Then,{
xV > x

xV < xV
and

{
xV > x

xV < xV

So, BRnI (y) = xV .

Case ii) x < xV < x. Then,{
xV > x

xV < xV
and

{
xV < x

xV > xV

So, BRnI (y) = xV .

Case iii) xV < x < x. Then,{
xV < x

xV > xV
and

{
xV < x

xV > xV

So, BRnI (y) = xV . The best reply of firm I to strategy y of firm II is

BRnI (y) = argmax{pn(x, y : x ∈ [0,+∞)} =

=


a−c−y+2nx

2(1+n) if 0 6 y 6 a− c− 2x
a−c−y

2 if a− c− 2x < y < a− c− 2x
a−c−y+2nx

2(1+n) if a− c− 2x 6 y < a− c
0 if y > a− c

Simmetrically, the best reply of firm II to strategy x of firm I is

BRnII(x) = argmax{qn(x, y) : y ∈ [0,+∞)} =

=


a−c−x+2ny

2(1+n) if 0 6 x 6 a− c− 2y
a−c−x

2 if a− c− 2y < x < a− c− 2y
a−c−x+2ny

2(1+n) if a− c− 2y 6 x < a− c
0 if x > a− c

Since the reaction functions are linear, there is only one NE, given by the

intersection of the two reaction functions. It depends on the overall sixteen

scenarios.
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4.6.3 A particular case

Let’s consider a particular situation: both firms commit to produce only

one quantity, that is the restricted action space is a singleton, the same for

both players:

x = x = y = y.

The penalty function for firm I becomes, for each x ∈ [0,+∞),

pn(x, y) = −(1 + n)x2 + (a− c− y + 2xn)x− nx2.

If xV 6 0, that is y > a− c+ 2nx, we have, for each x > 0,

pn(0, y) = −nx2 > pn(x, y),

so BRnI = 0. If xV > 0, that is 0 6 y < a− c+ 2nx, the best reply of firm

I to strategy y of firm II is the quantity corresponding to the vertex of the

parable pn, that is

BRnI (y) =
a− c− y + 2nx

2(1 + n)
.

Then, the best reply of firm I to strategy y of firm II is

BRnI (y) =

{
a−c−y+2nx

2(1+n) if 0 6 y 6 a− c+ 2nx

0 if y > a− c+ 2nx

Simmetrically, the best reply of firm II to strategy x of firm I is

BRnII(x)

{
a−c−x+2nx

2(1+n) if 0 6 x 6 a− c+ 2nx

0 if x > a− c+ 2nx

Then, there is only one NE given by the intersection of the two reaction

function graphics in the plane xy:

(
a− c+ 2nx

2n+ 3
,
a− c+ 2nx

2n+ 3
).

As n → +∞, the NE converges to (x, x), that is the wished result. (We

recall that, the Cournot duopoly equilibrium is not Pareto efficient, but if

each player commits to play half the monopoly quantity, then we obtain a

NE for QUC game.). At the equilibrium, each firm gains

pn(
a− c+ 2nx

2n+ 3
,
a− c+ 2nx

2n+ 3
) = qn(

a− c+ 2nx

2n+ 3
,
a− c+ 2nx

2n+ 3
) =

(n+ 1)(
a− c+ 2nx

2n+ 3
)2 − nx2.
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The sale price is

p(q) = p(2
a− c+ 2nx

2n+ 3
) =

(2n+ 1)a+ 2c− 4nx

2n+ 3
.

In particular, if x is the NE duopoly quantity, that is x = a−c
3 , the sale

price is the same sale price as for NE duopoly quantity p(2a−c+2nx
2n+3 ) = a+2c

3 .

Instead, if x is half of the monopoly quantity, that is x = a−c
4 , the sale price

is p(2a−c+2nx
2n+3 ) = (n+1)a+(n+2)c

2n+3 .
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Figure 4.1: Extension of the game form Γ.
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Figure 4.2: G without NE, but UC(G) with NE.
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Chapter 5

Essentializing Equilibrium

Concepts

5.1 Introduction

We live in a society in which information, the cost of information, and the

quality of products are very important. The efficient use of information is

one of the important matters of Game Theory. In this Chapter we present

a framework to identify what information about a game may be neglected,

in order to check whether a specific profile corresponds to an equilibrium

outcome or not.

Given a game, the goal is usually to find all equilibrium profiles. In this

work, we reverse the perspective. We select a strategy profile and check

whether it is an equilibrium of the game. Why this different approach?

The starting point of this research is a question raised in Garćıa-Jurado and

González-Dı́az (2006). Given an extensive game, an equilibrium concept se-

lects a set of strategy profiles (even empty ) satisfying well-defined conditions

testing on all game trees 1. Dealing with unilateral commitments, we face

extremely large game trees, with many subgames, some of which correspond

to senseless commitments. From here, the demands of “pruning” the tree

springs, i.e. locating the irrelevant parts of the game tree which need not be

considered. So, in the preliminary stage of the unilateral commitment game,

we have to choose the commitment corresponding an efficient outcome, and

then to check whether the profile is an equilibrium. To essentialize an EC

for a fixed strategy profile means to locate the parts of the game tree needed

1Hereafter we will shorten EC for equilibrium concept.
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to check whether the profile satisfies the EC conditions.

5.1.1 An example

Let us begin by introducing a simple example to understand the essentializ-

ing of an equilibrium concept. We consider the following extensive game G

in Figure 5.1. The NE are (L, l) and (R, r). To check whether the strategy
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Figure 5.1: G.

profile b = (L, l) is a subgame perfect equilibrium 2, the payoff (2, 2) is irrel-

evant, since the outcome z4 can never be reached after unilateral deviations.

Let G′ be the game in Figure 5.2, obtained by G replacing the terminal

node z4 with a matching pennies game. We consider b′ = ((L,L1), (l, l1)),

which restricted to G coincides with b. To check if b′ = ((L,L1), (l, l1)) is

a SPE for G′, in this case the behavior in the subgame matters. Indeed, b′

is not a SPE of G′, because the matching pennies subgame has not a Nash

equilibrium. The problem becomes to search for an equivalent profile. That

is, we search any SPE of G′ realization equivalent to b′, in the sense that

it coincides with b′ in the part of the game relevant for b′. To answer this

question, the payoffs and the behavior in the matching pennies game are

completely irrelevant since this subgame cannot be reached via unilateral

deviations from b′.

If we replace again the matching pennies payoffs with all zero, b′ is a

2Hereafter we will shorten SPE for subgame perfect equilibrium.



Unilateral Commitments 89

Ic
L

�
�

�
�
�

�
��	 R

@
@
@
@
@s
A
A
A
A
A

�
�
�
�
�

�
���

s
A
A
A
A
A

�
�
�
�
�

�
���l r l r

II

Irrelevant

Ix s
@
@
@
@
@

�
�

�
�
�

�
��	L1 R1

s
A
A
A
A
A

�
�
�
�
�

�
���

s
A
A
A
A
A

�
�
�
�
�

�
���l1 r1 l1 r1

II

s
1
1

s
1
0

s
0
1

s
1
−1

s
−1

1

s
−1

1

s
1
−1

Figure 5.2: G’.

SPE of the new game, but the matching pennies subgame is not relevant

for b′, since it cannot be reached via unilateral deviations from b′. For this

reason we abstract the game form Γ from the game G and we focus only on

the game form. Throughout this chapter, a game in extensive form G is a

game form together with a payoff function G = (Γ, h). Then, for every game

having the same game form as G, the payoffs and behavior in the proper

subgame of the game are irrelevant to know if the outcome of b is a SPE

outcome.

The above discussion suggests that we may determine whether the out-

come of a given strategy profile is an equilibrium outcome, without taking

into account all the parts of the game tree. So we identify the relevant part

of the tree and disregard the information about the irrelevant part of the

tree. Formally we study the following problem:
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“Given an equilibrium concept EC, an (extensive) game form Γ,

and a (behavior) strategy profile b, identify W , a minimal collection

of information sets of Γ, with the following property:

If a game G has game form Γ and b is an equilibrium of G, then,

whatever changes are made in the payoffs and strategies outside W ,

the outcome of b will be an equilibrium outcome in the resulting

game.”

The concept of inessentiality is very intuitive. Not being in W , i.e. being

irrelevant,it is related to the fact of not being reachable through unilateral

deviations or sequences of unilateral deviations. The difficulty lies in find-

ing an appropriate mathematical formulation of the above problem that is

operative for all equilibrium concepts. Under our approach, given an equili-

brium concept, a game form, and a strategy profile, there is a unique minimal

collection of information sets satisfying the above property. We refer to it as

the essential collection for EC, Γ, and b. Then, we characterize the essential

collections of different equilibrium concepts, such as Nash equilibrium, sub-

game perfect equilibrium, perfect equilibrium, sequential rationality, weak

perfect Bayesinan equilibrium, and sequential equilibrium. The contribution

of this chapter is to provide a definition of essential collection useful in the

various applications, as described below.

Applications

The possible applications of essentializing equilibrium concepts concern the

reduced games, the structural robustness, and the virtual equilibrium con-

cepts.

Given an equilibrium concept, a game G, and a strategy profile b of G,

the reduced version of G is a game sufficient to check whether b is an equi-

librium for G. That is, if b restricted to the reduced game is an equilibrium

of the reduced game, then b is an equilibrium of the original game G. Since

the reduced game might be smaller than the original game, the above verifi-

cation might be easier. A similar approach to the concept of reduced game

has already been used for SPE in Osborne (1993) in a model of political

competition. In Section 5.5 we use the model of Osborne to illustrate the

different implications and applications of the essentializing of an EC and in

Section 5.11 we treat the concepts of reduced game.

The results obtained for the reduced game also allow us to understand

the structural robustness of the equilibrium concepts to modifications in the

game, such as changes in the sets of strategies, in the players of the game, in
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the information available to the players, and also in the payoffs. The checks

of robustness for Nash equilibrium have already been made in Kalai (2005)

and in Kalai (2006) in the so-called large games Moreover, we show that

sometimes we may determine whether a given outcome is an equilibrium

outcome of a game only partially-specified.

The virtual equilibrium concept is the other main application of our re-

sults. For each equilibrium concept we define its virtual version by nar-

rowing the checking conditions on the relevant parts of the game tree. We

show that, given an equilibrium concept, if the original game has at least

an equilibrium, the sets of equilibrium outcomes and virtual equilibrium

outcomes coincide. In general, there are games without equilibria but with

virtual equilibria, the virtual equilibria being still sensible in the spirit of

their non-virtual counterpart. The concept of virtual equilibrium for SPE

has been introduced by Garćıa-Jurado and González-Dı́az (2006) to get a

folk theorem for a class of repeated games in which the existence of subgame

perfect equilibria is not guaranteed. The equilibrium notion used in Osborne

(1993) is also very close to the virtual SPE, as well as the approach taken in

Groenert (2007) in order to introduce the idea of trimmed equilibrium and

apply it to subgame perfect equilibrium and weak perfect Bayesian equili-

brium. In Section 5.12 we define the virtual equilibria of various equilibrium

concepts according to the analysis developed for SPE in Garćıa-Jurado and

González-Dı́az (2006).

This chapter is organized as follows. In Section 5.2, we introduce the

basic notations and, in particular, the concept of W-combination of games,

profiles, and beliefs (Subsection 5.2.3). In Section 5.3 we define the main

concepts of essential collection which we will analyze. In Section 5.4, we

present an overview of the main results and, in Section 5.5, we build upon

the model in Osborne (1993) to illustrate some implications and applica-

tions. In Sections 5.6 and 5.8, we characterize the essential collections for

the most used equilibrium concepts (NE, SPE, PE, and SR, WPBE, and

SE). In the remaining sections we present some applications of our analy-

sis. In particular, in Sections 5.9 and 5.11, we introduce the decomposition

(with respect to a collection) of a game into two games, the reduced and the

complementary. In Subsection 5.11.1, we analyze the robustness of different

equilibrium concepts with respect to changes in the games, and what hap-

pens when a game is partially-specified game. Finally, in Section 5.12 we

study the concept of Virtual Equilibrium.
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5.2 Notations

5.2.1 Game and Game Form

We develop our analysis for finite extensive games with perfect recall, al-

though it can be extended to extensive games of infinite length. We fol-

low the representation of an extensive game given in Fudenberg and Tirole

(1991a), representation equivalent to the classic one given by Kuhn (1953)

and further developed in Selten (1975) and Kreps and Wilson (1982).

Definition 57. A game form Γ in extensive form is characterized by

i) a finite game tree with root r(Γ), ii) a finite set of players N = {1, . . . , n},
iii) the sets of nodes X(Γ), terminal nodes Z(Γ), and information sets U(Γ),

iv) the probabilities of natural choice, if any.

Under this representation, nature moves only once at r(Γ) and U(Γ) is a

partition of X(Γ), i.e. each terminal node is also an information set. Let

Ui(Γ) denote the information sets belonging to a player i ∈ N .

Definition 58. A game G in extensive form is a pair 〈Γ, h〉, where Γ is

a game form and h : Z(Γ) → Rn is the payoff function, such that h(z) =

(h1(z), . . . , hn(z)). hi(z) is the payoff of player i ∈ N if z is occurred.

G(Γ) denotes the set of games with game form Γ, B(Γ) =
n∏
i=1

Bi(Γ) the set

of behavior strategy profiles of a game G or a game form Γ, and, with slight

abuse of notation, hi(b) the (expected) payoff to player i when b ∈ B(Γ) is

played. Given G ∈ G(Γ), let MG := max
i∈N,z∈Z(Γ)

|hi(z)|+ 1.

Definition 59. Let Γ be a game form, and b, b̄ ∈ B(Γ). b and b̄ are realiza-

tion equivalent if all the nodes of Γ are reached with the same probabilities

under b and b̄.

Being b and b̄ realization equivalent does not mean that b ≡ b̄, as proved by

Figure 5.3.

We will show that b and b̄ are equivalent realization if the profiles are

the same when restricted to an essential collection W . In fact, by Defini-

tion 70 of essential collection, W contains π(b), which in turn contains the

nodes reached with positive probability. Out of W , the information sets are

reached with null probability. Then, if two behavior strategy profiles coin-

cide in W , they coincide in the information sets we can reach with positive

probability.
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Figure 5.3: b and b̄ are equivalent realization.

Given b ∈ B(Γ), π(b) denotes the collection of information sets that are

reached with positive probability when b is played, i.e., π(b) can be seen

as the union of all paths of play that might be realized when b is played.

Hence, with slight abuse of language, we refer to π(b) itself as the path of b.

Only if the strategies are pure, we can characterize two equivalent profile in

the following way.

The profiles b, b′ ∈ B(Γ) are equivalent realization if and only if π(b) = π′(b).

In fact, with mixed strategies, there might be two strategy profiles which

reach the same nodes but with different probability.

The concept of equivalence which we apply to profiles is similar to the

one introduced for strategies by Aumann and Hart (1992). The authors

define equivalent two strategies bi and b
′
i of player i if they yield the same

payoffs for any strategies b−i of the other players. They show that, for each

terminal node z, the probabilities that z is reached under (bi, b−i) and under

(b
′
i, b−i) are the same for any b−i. The two concepts are different, not only

since we apply to strategy profiles instead of strategies, but also because our
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case equivalent realization requires that the probability that each node is

reached is the same for the two strategy profiles.

Now we define some binary relations for the sets X(Γ) and U(Γ).

Definition 60. The node x ∈ X(Γ) is a predecessor of y ∈ X(Γ), denoted

by x ≺ y, if x 6= y and x is in the path from the root to y; x 4 y means that

either x ≺ y or x = y. If x 4 y, then the path of nodes from x to y is the

sequence formed by x, y, and the nodes between x and y.

The precedence relation is transitive (if x ≺ y and y ≺ z, then x ≺ z) and

asymmetric (if x ≺ y then not y ≺ x), hence it is a partial order. It is

not a complete order since two nodes may not be comparable: in figure 5.1,

neither z1 ≺ z3 nor z3 ≺ z1.

Similarly,

Definition 61. The information set u ∈ U(Γ) is a predecessor of v ∈ U(Γ),

denoted by u ≺ v, if u 6= v and there are x ∈ u and y ∈ v such that x ≺ y;

u 4 v means that either u ≺ v or u = v. 3 If x 4 y, then the path

of information sets from x to y is the sequence formed by ux, uy, and the

information sets containing nodes in between x and y.

Whenever we represent a path of nodes or information sets as a sequence

{x1, . . . , xk} it is implicitly assumed that x1 ≺ x2 ≺ . . . ≺ xk. Also, given

x ∈ X(Γ) and u ∈ U(Γ), x ≺ u and u ≺ x are defined in the obvious manner.

5.2.2 Collections

Definition 62. A collection W of information sets is a subset of U(Γ).

We denote Wi the information sets belonging to player i ∈ N .

Definition 63. A collection W ⊂ U(Γ) is closed (under 4) if, for each

v ∈W and each u ∈ U(Γ),

u ≺ v ⇒ u ∈W.

It is immediate to prove that arbitrary unions and intersections of closed

collections lead to closed collections. Then, given an arbitrary family of

3Note that it is possible to have both u ≺ v and v ≺ u.
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closed collections containing a collection W , it makes sense to introduce the

smallest closed collection containing W , since this set is the intersection of

all elements of the family. According to the previous considerations, 〈W 〉
denotes the smallest closed collection containing a collection W . Then, we

can define a closed collection.

Definition 64. A collection W ⊂ U(Γ) is closed (under 4), if

〈W 〉 = W.

Remark 7. In the definition of Essential Collection, we will require closed-

ness, not only in order to facilitate the analysis (and the proofs) of the results

in Sections 5.6 and 5.8, and applications in Section 5.11, but also since we

want, from a game form,to build a structure which is as close as possible to

a game form. The Example in Figure 5.8 shows a collection sufficient but

not closed.

Definition 65. A collection W ⊂ U(Γ) is terminal if, for each u ∈W and

each x ∈ u, there is z ∈W ∩ Z(Γ) such that x 4 z.

It is immediate to prove that arbitrary unions of terminal collections

lead to terminal collections.

The next lemma is useful for the proofs of the main results in this chapter.

We show that a closed and terminal collection is different from a terminal

collection in terminal nodes only.

Lemma 3. Let Γ be a game form. Let W and W̄ be two collections in U(Γ)

closed under 4. If W̄ is terminal and W̄\W 6= ∅, then (W̄\W )∩Z(Γ) 6= ∅.

Proof. Let u ∈ W̄\W . Since W̄ is terminal, there is z ∈ W̄ ∩Z(Γ) such that

u 4 z. Now, since W is closed under 4, u /∈ W , and u 4 z, we have that

z /∈W .

5.2.3 W-combination

Given a collection W relating to a given game form Γ, we define an operation

⊗W which allows to combine games, payoffs, strategy profiles, and beliefs.

Given b ∈ B(Γ) and W ⊂ U(Γ), bW denotes the restriction of b to the

information sets in W . Similarly, b−W denotes the restriction of b to the

information sets outside W .
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Definition 66. Given a collection W ⊂ U(Γ), the W -combination of two

games G = (Γ, h), Ḡ = (Γ, h̄) ∈ G(Γ) is the game of G(Γ)

G⊗W Ḡ := (Γ, h⊗W h̄),

where

h⊗W h̄(z) =

{
h(z) if z ∈ Z(Γ) ∩W and

h̄(z) if z ∈ Z(Γ)\W .

The Figures 5.4, 5.5, and 5.6 show the two games with their combination

and that ⊗W is not commutative.
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Figure 5.4: First factor game: G b = (L, l).

Similarly,

Definition 67. Given a collection W ⊂ U(Γ), the W -combination of two

profiles b, b̄ ∈ B(Γ) is the profile of B(Γ)

b⊗W b̄ := (bW , b̄−W ),

i.e., the profile that consists of playing according to b in W and to b̄ else-

where.

Clearly, the payoffs associated with b and b ⊗W b̄ coincide, since they

define the same path.

Let M(Γ) denote the set of all beliefs that can be defined on Γ.
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Figure 5.5: Second factor game: Ḡ b̄ = (R, r).

Definition 68. Given a collection W ⊂ U(Γ), the W -combination of two

beliefs µ, µ̄ ∈M(Γ) is the belief of M(Γ)

µ⊗W µ̄ := (µW , µ̄−W ).

For sake of notation, when no confusion arises, we use the abbreviated

notations G⊗, h⊗, b⊗, and µ⊗.

5.3 Essential collections

5.3.1 Essential collections

Definition 69. Fixed an equilibrium concept EC, let Γ be a game form and

b ∈ B(Γ). A collection W ⊂ U(Γ) is sufficient for EC, Γ, and b if it satisfies

the following properties:

i. π(b) ⊂W , i.e., W contains the path of b.

ii. If G, Ḡ ∈ G(Γ) are such that b ∈ EC(G) and EC(Ḡ) 6= ∅, then, there

is b̂ ∈ EC(G⊗W Ḡ) such that b and b̂ coincide in W .

Note that the conditions i) and ii) together imply that b and b̂ are real-

ization equivalent. If EC(Ḡ) = ∅, the definition is without consequences.

The property ii) contains the gist of being a sufficient collection and the
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Figure 5.6: The combination of games.

property i) imposes some minimality requirement, since an empty collection

always satisfies ii). Thus, the path of b is a natural candidate since we then

ensure that (bW , b̂−W ) is realization equivalent to b, which was an important

element in the motivation section.

In place of condition ii), the most natural thing to do would be to request

that:

iii. b ∈ EC(G) and b̄ ∈ EC(Ḡ) ⇒ b⊗W b̄ ∈ EC(G⊗W Ḡ).

This natural condition is suitable for non belief-based equilibria (see Section

5.6), but it is too restrictive for belief-based equilibria. We will debate about

it in Section 5.8, where we will show that, for SE as equilibrium concept,

condition iii) is false.

The idea behind the sufficient collections is the following. Taken a col-

lection W sufficient (for EC, Γ, and b) and taken G ∈ G(Γ) for which b is

an equilibrium, if we change the payoffs outside W , provided that the new

game has some equilibrium, then there will be one that is realization equiva-

lent to b. Consider again the game G′ introduced in section 5.1.1, with SPE

as the equilibrium concept. There will always be a SPE of the game that

is realization equivalent to b′, whatever payoffs we put instead of those of

the matching pennies subgame, since the collection W , left after removing

the matching pennies subgame, is sufficient for SPE, Γ, and b′. Indeed to

answer the question “does any equilibrium of G′ coincide with b′ in W?”,

the behavior outside W does not matter and if the answer is positive, then it
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remains positive for the new game, regardless of how we change the payoffs

outside W . In particular, the outcome of b′ will be an equilibrium outcome

in the new game.

The property of being a sufficient collection only depends on the equi-

librium concept at hand and on the given game form and strategy profile,

while it does not depend on the possible payoffs associated with the game

form.

Lemma 4. If W is sufficient for EC, Γ and b, then it is also sufficient for

any other b̄ such that bW = b̄W .

Proof. Straightforward.

Lemma 5. The finite intersection of sufficient collections is a sufficient

collection.

Proof. Fixed an equilibrium concept EC, let Γ be a game form, b ∈ B(Γ),

and W ,W̄ be two sufficient collections (for EC, Γ, and b). First, the de-

finition of sufficient collection implies W ∩ W̄ contains π(b). Then, let G

and Ḡ ∈ G(Γ) be such that b ∈ EC(G) and EC(Ḡ) 6= ∅. We want to find

b̂ ∈ EC(G ⊗W∩W̄ Ḡ) such that b and b̂ coincide in W ∩ W̄ . Since W is a

sufficient collection, there is b̃ ∈ EC(G ⊗W Ḡ) that coincides with b in W .

Let G̃ = G⊗W Ḡ. Since W̄ is a sufficient collection, there is b̂ ∈ EC(G̃⊗W̄ Ḡ)

that coincides with b̃ in W̄ . Now, by definition, b̂ coincides with b in W ∩ W̄
and G̃⊗W̄ Ḡ = G⊗W∩W̄ Ḡ.

Corollary 6. Fixed an equilibrium concept EC, let Γ be a game form and

b ∈ B(Γ). Then, there is a unique minimal collection that is sufficient for

EC, Γ, and b. Moreover, there is a unique minimal collection that is closed

and sufficient for EC, Γ, and b.

Proof. We consider the intersection of all the sufficient collections for EC,

Γ, and b. Since Γ is always a sufficient collection and all the sufficient col-

lections contain π(b), non-emptiness is guaranteed. The above intersection

is contained in all the sufficient collections and its sufficiency follows from

Lemma 5. The proof of the second statement is analogous, since Γ is a closed

collection and the intersection of closed collections is a closed collection.

Remark 8. If W and W̄ are two collections such that W ⊂ W̄ and W is

sufficient (for some EC, Γ, and b), then W̄ need not be also sufficient. In

fact the condition that b and b̂ coincide in W̄ (see Definition 69) can be

much more demanding than the corresponding condition for W .
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Definition 70. Fixed an equilibrium concept EC, let Γ be a game form and

b ∈ B(Γ). The essential collection for EC, Γ, and b, denoted by WEC(Γ, b),

is the unique minimal collection closed under 4 and sufficient for EC, Γ,

and b.

Definition 71. To essentialize an equilibrium concept EC is to find the map

WEC that assigns, to each pair (Γ, b), the essential collection WEC(Γ, b).

The closing request for an essential collection is quite natural. For exam-

ple, in the case of belief-based equilibrium concept, let u ∈ Ui(Γ) be an

information set in the essential collection, that is player i’s behavior at u

is relevant for EC, Γ, and b. The closedness under 4 assures that what b

prescribes for information sets that precede u should also be relevant, as it

might affect the beliefs and behavior of i at u. The closedness provides to a

collection a structure similar to a game form. Again, if this requirement is

removed, then some unnatural essential collections might appear.

5.4 Discussion of the contribution

The definition of essentializing an equilibrium concept is so general that it

is implementable to all the classical equilibrium concepts. But the analysis

is cumbersome already for Nash equilibrium. Before the formal charac-

terization of the essential collections associated with different equilibrium

concepts, we present in this section the main results of the chapter.

We divide the equilibrium concepts into two groups: non-belief-based

equilibrium concepts (NE, SPE, and PE) and belief-based-equilibrium con-

cepts (SR, WPBE, SE, and a whole family of intermediate equilibrium con-

cepts). i) The characterization for the first group is quite intuitive and

provides no new insights into the nature of those equilibria. Let Γ be a

game form and b ∈ B(Γ), then we have:

Nash equilibrium: the essential collection consists of all the information

sets that can be reached after an unilateral deviation from b.

Subgame perfect equilibrium: the essential collection is constructed ite-

ratively. At each step, we add to the essential collection those infor-

mation sets that can be reached after an unilateral deviation from b,

deviation narrowed to subgames reached in the previous step.

Perfect equilibrium: every information set belongs to the essential col-

lection.
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In particular, in a game with perfect information, since a subgame begins

at every node, the essential collection for SPE contains all the nodes of

the game, that is it coincides with the essential collection for PE. This is

not the case for NE. For the above characterizations, the more demanding

an equilibrium concept is, the larger its corresponding essential collection.

ii) This natural result does not hold for belief-based equilibrium concepts,

rather the opposite one does. More specifically, let Γ be a game form and

(b, µ) an assessment, where b ∈ B(Γ), and µ ∈M(Γ), then

Sequential rationality: every information set belongs to the essential col-

lection.

Weak perfect Bayesian equilibrium: µ is calculated using Bayes rule

in the path of b and the essential collection is constructed iteratively.

At each step, we add to the essential collection those information sets

that can be reached after an unilateral deviation from b, deviation

narrowed to the continuation games reached with positive probability,

according to µ, in the previous step.

Sequential equilibrium: µ is consistent with b and the essential collec-

tion is constructed iteratively. At each step we add to the essential

collection those information sets that can be reached after an unilate-

ral deviation from b narrowed to the continuation games reached with

positive probability, according to µ, in the previous step.

We can note the parallelism between the characterization of essential col-

lection for WPBE and for SE. When we use the same approach to SR, we

require that µ is a system of beliefs and we apply the iterative construc-

tion for the essential collection. With no restrictions on the beliefs, every

node can always be reached after a series of unilateral deviations. From the

characterization for belief-based-equilibrium concepts, the more demanding

an equilibrium concept is, the smaller its corresponding essential collection.

For instance, for every game form and every strategy profile, the essential

information sets for SE are a subset of those for WPBE or, equivalently, if an

information set is irrelevant for WPBE, then it is irrelevant for SE as well.

We show in the example below that the converse is not true in general. The

definition of essential collection for belief-based equilibrium concepts, com-

pared to one for non-belief-based equilibrium concepts, requires a condition

on the belief set to be considered. The less restrictive equilibrium concepts

allow for more beliefs, hence more parts of the game tree can be reached af-

ter a sequence of unilateral deviations, then the essential collections became

larger.
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We present now an example to illustrate some implications of the above

characterizations and also some applications of results in the paper. We

mainly concentrate our discussion on the essential collections for WPBE

and SE.

5.5 A candidate positioning game (Osborne (1993))

In this Section, we read the model of Osborne (1993) in the light of the argu-

ments introduced in the Chapter. We omit some elements not needed to our

approach. We consider a game with three players, which represent the three

potential candidates in an election. We denote Γ(3) the three player game.

The voters are a continuum set, each of whom has a most preferred or ideal

policy. The ideal policies of voters are given by the continuous distribution

function F , whose support is the [0, 1] interval. Voters vote sincerely, i.e.

each voter endorses the candidate whose position is closest to his ideal, if

indifferent, he decides randomly. The candidate, who obtains a majority

(plurality rule), wins. At each period t ∈ {1, . . . , T}, with T > 2, candidates

simultaneously decide whether to wait, which is denoted by w, or to enter

the competition announcing a policy pi ∈ [0, 1]. Policies are decided once

and for all. Hence, at each period, a player who has already announced a po-

licy cannot take any further action and, otherwise, he can either announce a

policy, i.e. a number in [0, 1], or decide to wait, i.e. w. Candidates can only

use pure strategies4. The player who plays w in every period has decided to

stay out of the election. Once reached period T , the election is held and the

candidate with more votes wins. The notion of essential collection is very

close to the idea behind the observation of Osborne: “in Γ(3), as in other

sequential games in which some choices are made simultaneously, the spirit

of subgame perfect equilibrium is captured by a notion that requires only a

partial specification of the player’s strategies”.

Suppose we want to study the strategy profile b where the player I and

II enter in period 1 with policies p1 and p2 respectively, whereas player III

chooses w in each period. Again, following Osborne (1993): to fully describe

b, for player I we must “specify an action in period 2 for every first-period

profile of action (w, s2, s3), where s2 and s3 are members of [0, 1] ∪ {w}.
However, there is just one relevant subgame in which player I has to take

an action: the one that follows the first-period action profile (w, s2, w)”.

4Osborne argues that, in this setting, “the problem of finding equilibria in mixed

strategies seems intractable” and, moreover, ”voters may have an aversion to candidates

who choose their positions randomly. . .”
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Essential collection for SPE. Let WSPE be the essential collection for

SPE, Γ, and b. Then, following the informal characterization above, the

only information set of the form (w, x2, w) that would belong to WSPE would

indeed be (w, s2, w), since all the others involve a multilateral deviation at

period 1. That shows an important advantage of the essentializing approach.

In order to study whether an outcome of the game is an equilibrium out-

come or not, we need to check the incentive only in some subgames of the

game. The reduced game. In Section 5.11, given a game G, we associate a

reduced game GW with each closed collection of information sets W . The

idea is to remove from G all the information sets that are not in W , in such

a way that what is left still forms a game. For instance, when studying the

strategy profile b, none of subgames starting at information sets of the form

(w, s2, s3) would be the root of a subgame in the reduced game, except for

(w, x2, w). Now, for Proposition 15, if the restriction of b to the reduced

game is a SPE of the reduced game, then b is a SPE of the game Γ(3),

provided that Γ(3) indeed has at least one SPE. Structural robustness. The

reduced game is also applied to the study of the structural robustness of the

different equilibrium concept. For example, let b ∈ SPE(Γ(3)). How robust

would this equilibrium be to the structural changes in the game? We sup-

pose that the following rule is valid, in order to encourage early positioning

of candidates. If no candidate has entered the competition after period 2,

then the election is suspended. Would b still be an equilibrium of the new

game? Since no subgame at which the election is suspended belongs to the

reduced game associated with b (they cannot be reached after unilateral de-

viations from b, where two candidates enter already in period 1), the above

change in the rules of the game would have no impact for the profile b. That

is, whether b is an equilibrium outcome or not is independent (robust) from

those changes in the rules of Γ(3) that only affect information sets outside

the reduced game associated with b. Partial-specifications of the game. This

issue is related to the one above. The idea is that essential collections may

provide some information about the equilibrium outcomes of games that are

not completely specified. We suppose that in Γ(3) we have no idea about

how the game unfolds if no player has entered the competition after period

T . Even in this case, we know (by Corollary 9) that, no matter how the game

is defined from that point onwards, the outcome of b is going to be an SPE

outcome. Hence, essential collections help to identify what misspecifications

in the game are irrelevant for different strategies and equilibrium concepts.

Virtual equilibrium concepts. We suppose that there are some subgames of

game Γ(3) for which we do not even know whether a Nash equilibrium exists

or not. Then, it might be that the game Γ(3) has no SPE. The concept of

virtual equilibrium intervenes in studying a game with subgames for which
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we do not even know whether a Nash equilibrium exists or not. A strategy

profile b is a virtual SPE, if it is a SPE of the reduced game associated

with its collection essential for SPE and the game form at hand. The vir-

tual version of any other equilibrium concept is defined analogously. Hence,

for the strategy b to be a virtual SPE it is needed that all the subgames

of the corresponding reduced game have a Nash equilibrium, but we do not

care about this for subgames outside the essential collection associated with

b. Given a virtual equilibrium, we can always replace the non-equilibrium

behavior outside the essential collection by equilibrium behavior (if this ex-

ists) to get an equilibrium in the classic sense. Then, by Proposition 15, if

the set of SPE of the original game is nonempty, the set of SPE outcomes

and virtual SPE outcomes coincides: which justify the name virtual. The

equilibrium notion introduced in Osborne (1993) is extremely close to the

virtual version of SPE. Indeed, Osborne wrote “the advantage of working

with this notion of equilibrium in the game Γ(3) is that it is not necessary . . .

to worry about the existence of an equilibrium, in irrelevant subgames” and

“ the relation between an equilibrum in this sense and a subgame perfect

equilbrium is close: a subgame perfect equilibrium is an equilibrium and

if every subgame has a subgame perfect equilibrium then an equilibrium is

associated with at least one subgame perfect equilibrium”, which is anolo-

gous to what we said above for virtual equilibrium concepts: every EC is a

V EC and, if an EC exists, for each V EC we can find an EC with the same

outcome.

5.6 Essentializing non-belief-based equilibrium con-

cepts

The classic equilibrium concepts not based on beliefs are the Nash equili-

brium, the subgame perfect equilibrium, and the perfect equilibrium. In

this section we present their essentializing, even if the characterizations add

nothing more to common knowledge of each equilibrium concept. We report

these intuitive results not only for completeness, but also to support the ade-

quacy of definitions and to make the readers familiar with the approach and

with the tecniques of the proofs.

We introduce the stronger concept of sufficiency that will be quite useful

to prove the characterization results.

Definition 72. Fix an equilibrium concept EC. Let Γ be a game form and

b ∈ B(Γ). A collection W ⊂ U(Γ) is strongly sufficient for EC, Γ, and b if

it has the following properties:
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i) π(b) ⊂W , i.e. W contains the path of b.

ii) Let b̄ ∈ B(Γ) and G, Ḡ ∈ G(Γ) be such that b ∈ EC(G) and b̄ ∈ EC(Ḡ).

Then b⊗W b̄ ∈ EC(G⊗W Ḡ) .

Obviously a strongly sufficient collection is also a sufficient collection.

5.6.1 Nash equilibrium

Let Γ be a game form and b ∈ B(Γ). First, we consider the collection V of

information sets reached after at most one unilateral deviation from b.

V := {u ∈ U(Γ) : ∃i ∈ N, b′i ∈ Bi(Γ) such that u ∈ π(b−i, b
′
i)}.

Then, we consider its closure under 4:

W b
NE := 〈V 〉.

We note that W b
NE ⊃ π(b) taking b′i = bi and W b

NE is a terminal collection.

Figure 5.7 illustrates the definition of W b
NE . The collection W b

NE suffices to

essentialize NE.

Proposition 8. W b
NE is the essential collection for NE, Γ, and b.

Proof. First we prove that W b
NE is strongly sufficient for NE, Γ, and b.

By definition, choosing b′i = b, we have W b
NE ⊃ π(b). Let b̄ ∈ B(Γ) and

G = (Γ, h), Ḡ = (Γ, h̄) ∈ G(Γ) be such that b ∈ NE(G) and b̄ ∈ NE(Ḡ).

We suppose, by contradiction, b⊗ /∈ NE(G⊗). Then, there are a player

i ∈ N and b
′
i ∈ Bi(Γ) such that h⊗i (b⊗−i, b

′
i) > h⊗i (b⊗). Since W b

NE ⊃
π(b), h⊗i (b⊗) = hi(b). By definition of W b

NE , π(b⊗−i) ⊂ W b
NE . Hence,

h⊗i (b⊗−i, b
′
i) = hi(b

⊗
−i, b

′
i). Moreover, since(b−i, b

′
i) and (b⊗−i, b

′
i) coincide in

W b
NE , π(b−i, b

′
i) = π(b⊗−i, b

′
i). Hence, hi(b−i, b

′
i) = hi(b

⊗
−i, b

′
i) > hi(b

⊗) =

hi(b), contradicting the fact that b ∈ NE(G).

Second, we show that W b
NE is a minimal closed and sufficient collection

and thus, essential. By definition, W b
NE = 〈W b

NE〉. Let W be a sufficient

and closed collection for NE, Γ, and b that does not contain W b
NE . By

Lemma 3, since W b
NE is terminal, there is z̄ ∈ (W b

NE\W )∩Z(Γ). Let i ∈ N
and b′i ∈ B(Γ) such that z̄ ∈ π(b−i, b

′
i). Consider the path of information

sets from the root to z̄, {u1, . . . , uk}, i.e., u1 = r(Γ) and uk = z̄. Since W b
NE

is closed, {u1, . . . , uk} ⊂ W b
NE . Since W is closed, u1 ∈ W and uk /∈ W ,

there is a unique k̄ such that uk̄−1 ∈ W and uk̄ /∈ W . Let G = (Γ, h) be

such that, for each i ∈ N and each z ∈ Z(Γ), hi(z) = 0. Let Ḡ = (Γ, h̄)
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Figure 5.7: The collection W b
NE .

be such that, for each i ∈ N and each z ∈ Z(Γ), if uk̄ 4 z, h̄i(z) := 1 and

h̄i(z) := 0 otherwise. Note that, since W is closed, h̄i(z) := 1 implies that

z /∈ W . Note that b ∈ NE(G) and G⊗W Ḡ = Ḡ. Since π(b) ⊂ W , in game

Ḡ, all the payoffs in π(b) are 0. Take now b̂ ∈ B(Γ) such that it coincides

with b in W . Then, for each i ∈ N , hi(b̂) = 0. By construction, there is

z ∈ Z(Γ) such that uk̄ 4 z and z ∈ π(b̂−i, b̄i). Hence, hi(b̂−i, b̄i) > 0 = hi(b̂),

b̂ /∈ NE(G⊗W Ḡ), contradicting the sufficiency of W .

In general, W b
NE 6= V , as depicted in Figure 5.8. The node x cannot be

reached by unilateral deviations, but x belongs to W b
NE . The closedness is

a natural request to an essential collection since it gives to the collection a

structure similar to a game form. In fact, given any game in G(Γ), x is not

relevant to know if there is a NE that is realization equivalent to b. This
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example cannot be trivially adapted, for instance, to SE, since the beliefs

of player III might depend on the behavior at x and hence, adding x to an

essential collection might be natural.
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Figure 5.8: W b
NE 6= V .

5.6.2 Essentializing NE in Strategic Form

In the previous section we have essentialized the Nash equilibrium concept

for an extensive game. It is natural to query what happens whether we

make a similar analysis for a strategic game. We are going to show that the

two procedures reach the same conclusion, and, hence, the analysis starting

from strategic form sustains the validity of the other through extensive form.

Using strategic games to identify inessential elements for other equilibrium

concepts like SPE or SE would become very cumbersome.

We consider the two-players strategic gameG = 〈X,Y, f, g〉 in Figure 5.9.

Using the definition of NE, we identify which elements of G are essential to

check if a given strategy profile is a NE. In fact, (B,R) is a Nash equilibrium

for G, since

f(B,R) > f(x,R) ∀x ∈ X

and

g(B,R) > g(B, y) ∀y ∈ Y.
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I
\
\II W L C R E

N 0 2 1 0 4 1 1 1 0 3

T 2 1 4 0 3 1 2 1 1 4

M 1 2 0 0 2 1 0 4 2 1

B 2 1 3 0 1 1 2 2 3 0

S 3 0 0 2 0 0 0 1 0 4

Figure 5.9: Essentializing NE in strategic game.

Then, all the essential strategy profiles are only shaped like

(x,R), ∀x ∈ X and (B, y), ∀y ∈ Y.

We cannot change these strategy profiles, without the risk of losing the

equilibrium, while the strategy profiles outside the cross, formed by row B

and column R (see figure 5.9), are irrelevant, that is, they do not influence

the fact that (B,R) is a NE.

Note that the restriction of G to the set ({B}×Y )∪ (X×{R}) ⊆ X×Y
is not a game in strategic form. We recall that, in the essentializing pro-

cess with an extensive game, we were looking for “something” very close

to the structure of an extensive game. It is sufficient to work with the

outcomes, corresponding to the selected strategy profiles, in order to recon-

struct “something” very close to a game or to a game form. Note again

that the correspondence that maps each strategy profile into its outcomes is

surjective, but not injective. The following example will clarify better this

statement.

Let us consider the extensive game G depicted in Figure 5.10. The game

has two NE: (E, l) and (L, r). Let b = (L, r), then W b
NE = {u, v, z2, z4, z5}.

The game G in strategic form is depicted in Figure 5.11, where the outcomes

corresponding to the terminal nodes in W b
NE are underlined. Instead, the

strategy profiles relevant are those inside the cross, formed by row L and

column r (see figure 5.11). It is immediately noted that the strategy profile

(E, l) appears. This happens since, in the node z5, player II does not have

to move and two strategy profiles (E, l) and (E, r) correspond to the same

outcome. It is sufficient to make a quotient, in order to solve the problem.

If the strategy profile b is (E, l), it adds up.

Formally, let G = (Γ, h) be an extensive game, and b ∈ B(Γ) a profile.
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I
\
\II l r

L 1 1 3 2

R 0 3 1 5

E 2 6 2 6

Figure 5.11: G in strategic form.

Essentializing the NE for the extensive game, we find the collection W b
NE .

Let, in parallel, G = 〈X1, . . . , Xn, u1, . . . , un〉 and (x1, . . . , xn) be the same

game G and the same profile b in strategic form. Essentializing the NE for

the strategic game, we find the set

P xNE
.
= {(xi, x−i) : xi ∈ Xi, x−i ∈

∏
j 6=i

Xj , i = 1, . . . , n}.

To each terminal node of the collection W b
NE , we associate the correspon-

ding outcome and to each outcome the class of equivalence of a strategy

profile (x1, . . . , xn), where we define two strategy profiles equivalent if they

have the same outcome of the game. This way we find the set P xNE of the

essentialized strategy profiles. The equivalent strategy profiles are such that

they prescribe the same actions in the decision-making nodes in W b
NE , such

as Proposition 15 establishes. It is no coincidence that we again come across

the theme of the equivalence between two strategy profiles. In fact, we may

tackle in a different way the following Essentializing problem.
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“Given an equilibrium concept EC, an (extensive) game form Γ,

and a (behavior) strategy profile b, identify W , a minimal collection

of information sets of Γ, with the following property:

If a game G has game form Γ and b is an equilibrium of G, then,

whatever changes are made in the payoffs and strategies outside W ,

the outcome of b will be an equilibrium outcome in the resulting

game.”

We rephrase the property in the case of non belief based equilibria.

“If a game G has game form Γ and b is an equilibrium of G, that

is it satisfies the specifications of the concept, then, b⊗W b satisfies

the specifications of the concept and has the same path as b, for

every profile b satisfying the specification of the concept.”

Let us assume, for simplicity, the Nash equilibrium as an equilibrium con-

cept. We essentialize NE, identifying those information sets reachable with

a unilateral deviation from b, that is W b
NE . We construct a partition of

strategy profile relating to equivalence relation so defined.

Definition 73. Let Γ be a game form, and b, b̄ ∈ B(Γ). We say that b and

b̄ are realization equivalent, if W b
NE = W b̄

NE.

Then, the following propositions are true.

Proposition 9. If b ∈ [b] and b̄ ∈ [b̄] (where [b] and [b̄] denote, respectively,

the equivalence classes of b and b̄, possibly coincident) then b⊗W b
NE

b ∈ [b].

Proposition 10. b and b̄ are equivalent if and only if they have the same

actions in the information set in W b
NE.

That is, we once more come across the definition of realization equivalence.

The method through partition of profiles supports the results of the Essen-

tializing method, since the first method, starting from the collection of infor-

mation sets, determines the equivalence relation, while the second, starting

from the equivalent realization, obtains the results established in Proposition

15.

5.6.3 Subgame perfect Nash equilibrium

A Subgame perfect equilibrium is a solution concept defined in recursive way:

a SPE is a Nash equilibrium which induces a Nash equilibrium in every
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subgame. The same recursion is needed to define the essential collection

W b,Γ
SPE . To test if a fixed strategy profile b is a SPE, we restrict it to each

subgame (identified through its root) or, more generally, to each continuation

game.

Given u ∈ U(Γ), let Wu
.
= {v ∈ U(Γ) : u 4 v} be the continuation game,

and let bu the restriction of b to Wu. In particular, given x ∈ u ∈ U(Γ), bx
denotes the restriction of b to Wu.

Definition 74. A node x ∈ X(Γ) is elemental if either x is a terminal node

or, for each game (Γ, h), a subgame begins at x. 5.

In particular if x is elemental, then ux = x, that is, x is a singleton, where

we recall that

Definition 75. A node x ∈ X(Γ) is a singleton if its information set is

degenerate.

Singleton node and elemental node are two different notions. A singleton

node is a node with no other nodes in its information set. An elemental

node is a singleton which, moreover, has the property that a subgame starts

at this node.

We consider the following construction of nested subsets of U(Γ), that

is, of elemental nodes, each of them identifying a subgame.

• Step 0: X0(b) coincides with the root of Γ.

• Step t: An elemental node x belongs to Xt(b) if there are i ∈ N ,

b′i ∈ Bi(Γ), and y ∈ Xt−1(b) such that x is reached by (b−i, b
′
i)y.

Then, we consider the limit of these sequence

XSPE(b) := lim
t→+∞

Xt(b).

Since the game tree is finite, XSPE(b) is well defined. In other words,

XSPE(b) consists of the elemental nodes that can be reached with a se-

ries of unilateral deviations from b. Step by step, we identify each subgame

and the elemental nodes which we manage to reach. Finally, we close the

collection. Let

W b
SPE := 〈XSPE(b)〉.

5The notion of subgame we use is the standard one introduced in Selten (1975).
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We note that we can exchange the order of operations: if first we close each

collection Xt(b) and then we take the limit, the result is invariant. We

observe still that W b
SPE is a terminal collection, since 〈X1(b)〉 = W b

NE .

We consider, for example, the game G in Figure 5.12 and the profile

b = ((L, l), L). At each step of the procedure, we identify all the sub-
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Figure 5.12: Essentializing SPE.

games of G, that in our example are only two. At step 1, we identify G,

while at step 2 the proper subgame beginning at s. So X0(b) = {root},
X1(b) = {root, z1, s, z2, z4}, X2(b) = {root, z1, s, z2, z4, z3} = Xt(b) for

each t > 3. Now we close the collection, passing from a set of elemental

nodes to a collection of information sets. The collection becomes W b
SPE =

{root, z1, s, z2, z4, z3, x, y}. z5 /∈ W b
SPE since in non subgame we can reach

this node only with unilateral deviations. We note, further, that W b
SPE do

not constitute a game form, since the nodes x, y of the same information set

do not have the same actions.

Proposition 11. W b
SPE is the essential collection for SPE, Γ and b.

Proof. First, we show that W b
SPE is strongly sufficient for SPE, Γ and b.

Obviously W b
SPE ⊃ π(b). Let b̄ ∈ B(Γ) and G, Ḡ ∈ G(Γ) be such that

b ∈ SPE(G) and b̄ ∈ SPE(Ḡ). We show that b⊗W b̄ ∈ SPE(G⊗W Ḡ), or,

in short form, that b⊗ ∈ SPE(G⊗). Let x ∈ X(Γ) be an elemental node. If

x /∈ W b
SPE , then, since W b

SPE is closed, Wux ∩W b
SPE = ∅. Since b⊗x = b̄x
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and b̄ ∈ SPE(Ḡ), b⊗ induces a Nash equilibrium in the subgame of G⊗ that

begins at x. If x ∈W b
SPE , by definition of W b

SPE , no elemental node outside

W b
SPE can be reached with unilateral deviation from b at nodes in W b

SPE .

Hence, since b⊗x = bx and b ∈ SPE(G), b⊗ induces a Nash equilibrium in

the subgame of G⊗ that begins at x. Hence b⊗ ∈ SPE(G⊗W Ḡ).

Secondly, we show that W b
SPE is a minimal closed and sufficient col-

lection, and, thus, essential. By definition, W b
SPE = 〈W b

SPE〉. Let W be a

closed and sufficient collection for SPE, Γ, and b that does not containW b
SPE .

By Lemma 3, since W b
SPE is terminal, there is z̄ ∈ (W b

SPE\W ) ∩ Z(Γ).

We consider the elemental nodes in the path from the root to z̄, namely

{x1, . . . , xk}, where x1 = r(Γ) and xk = z̄. By definition W b
SPE = 〈W b

SPE〉,
so W b

SPE is closed and then {x1, . . . , xk} ⊂ W b
SPE . But also W is closed,

then for Lemma 3, there is a unique k̄ > 1 such that xk̄−1 ∈W and xk̄ /∈W .

Since W is sufficient, π(b) ⊂ W and hence, xk̄ ∈ W b
SPE\π(b). Then, there

are i ∈ N , b
′
i ∈ Bi(Γ), and y ∈ XSPE(b) such that xk̄ is reached by (b−i, b

′
i)y

and not by by. Let G = (Γ, h) be such that, for each i ∈ N and each

z ∈ Z(Γ), hi(z) = 0. Let Ḡ = (Γ, h̄) be such that, for each i ∈ N and

each z ∈ Z(Γ), h̄i(z)
.
= 1 if xk̄ 4 z and h̄i(z)

.
= 0 otherwise. Since W is

closed, h̄i = 1 implies z /∈ W . Note that b ∈ SPE(G) and G ⊗W Ḡ = Ḡ.

We consider b̂ ∈ B(Γ) such that it coincides with b in W . Then, for each

i ∈ N , hi(b̂) = 0. By construction, there is z ∈ Z(Γ) such that xk̄ 4 z

that is reached by (b̂−i, b
′
i)y. Hence, in the subgame of Ḡ that begins at y,

payoff 1 is obtained with positive probability instead of getting 0 for sure.

Therefore, b̂ /∈ SPE(Ḡ) = SPE(G ⊗W Ḡ), contradicting the sufficiency of

W .

5.7 Perfect equilibrium

Given a game form Γ and a strategy profile b ∈ B(Γ), the unique sufficient

collection for PE, Γ, and b is U(Γ). Therefore, U(Γ) is the essential collection

for PE, regardless of the strategy profile b.

Proposition 12. U(Γ) is the essential collection for PE, Γ and b.

Proof. By definition, U(Γ) is always a closed and sufficient collection. Hence,

it is sufficient to show that U(Γ) is a minimal closed and sufficient collection

and thus essential. Let W be a closed and sufficient collection for PE, Γ and

b, strictly contained in U(Γ). By Lemma 3, since U(Γ) is terminal, there
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is z̄ ∈ (U(Γ)\W ) ∩ Z(Γ) and, in particular, z̄ /∈ π(b). Let G = (Γ, h) be

such that, for each i ∈ N and each z ∈ Z(Γ), hi(z)
.
= 0. Let Ḡ = (Γ, h̄) be

such that, for each i ∈ N , hi(z̄)
.
= 1 and hi(z)

.
= 0 for each z ∈ Z(Γ)\{z̄}.

Note that b ∈ PE(G) and G⊗W Ḡ = Ḡ. Note that G has an unique perfect

equilibrium in which z̄ is reached with probability 1. Hence, if b̂ ∈ B(Γ)

coincides with b in W , since z̄ /∈ π(b), then b̂ /∈ PE(Ḡ) = PE(G ⊗W Ḡ),

contradicting the sufficiency of W.

5.8 Essentializing belief-based equilibrium concepts

In this Section, we head towards some primary concepts for extensive games

with imperfect information. So the main result of this Chapter, that is the

Theorem 19, applies to a wide family of belief-based equilibrium concepts.

The extensive game refinements based on beliefs are principally the se-

quential equilibrium, the perfect Bayesian equilibrium, the weak perfect

Bayesian equilibrium or weak sequential equilibrium. They require that

each player i assigns to each node x of each his information set u ∈ Ui a

probability, which represents his belief to be in x, provided he is in u. The

previous equilibrium concepts impose different limitations to belief systems.

In principle, they require the beliefs in the equilibrium path are derived by

strategy profile using the theory of conditioned probability, the beliefs out

of the equilibrium path, on the other hand, can be arbitrary, as it happens

for weak perfect Bayesian equilibrium, or not, as for sequential equilibrium.

5.8.1 Belief-based equilibrium concepts. A first approach.

Let G = (Γ, h) be an extensive game, (b, µ) an assessment, where b ∈ B(Γ)

is a profile and µ ∈ M(Γ) a belief system. We consider the following con-

struction of nested closed subset of U(Γ). For the sake of exposition, we do

not make explicit the dependence of U t and V t on b and µ.

• Step 0: U0 = 〈π(b)〉.

• Step t: An information set v ∈ U(Γ) belongs to V t if there are i ∈ N ,

b′i ∈ Bi(Γ), and an information set u ∈ U t−1 ∩ Ui(Γ) such that v is

reached with positive probability by (b−i, b
′
i)u when the probabilities

of the nodes in u are given by µ. Let

U t := 〈V t〉.
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Then, we consider the limit of these sequence

W b,µ := lim
t→+∞

U t.

Since the game tree is finite, W b,µ is well defined. Note that W b,µ is a

terminal collection.

We consider, for example, the game in Figure 5.13 with the assessment

(b, µ), where b = ((L, l), L) and µ(x) = 0 µ(y) = 1. Then the collection

is W b,µ = {r, z1, t, x, z2, y, z4, z5}. In fact, at step 0, U0 = {r, z1}. At

step 1, we have V 1 = {r, z1; t, x, z2}, since t, x, z2 are reached with positive

probability (µ(r) = 1) from ((R, l), L){r} = ((R, l), L), and, closing V 1,

U1 = {r, z1; t, x, z2; y}. At step 2 we have V 2 = {r, z1; t, x, z2, y; z4, z5}, since

z4 is reached with positive probability (µ(y) = 1) from b{x,y} = (l), and z5

is reached with positive probability (µ(y) = 1) from ((L, r), L){x,y} = (r),

and closing V 2, U2 = V 2. For each t > 3 V t = U t = U2. In no way, z3

can be reached from an information set in U2 with unilateral deviations. So

W b,µ = U2.
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Figure 5.13: Example of W b,µ.

Weak perfect Bayesian equilibrium

Definition 76. Let G = (Γ, h) be an extensive game. An assessment (b, µ)

is weakly consistent with Bayes rule if µ is derived using Bayesian updating
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in the path of b.

Definition 77. Let G = (Γ, h) be an extensive game. A Weak Perfect

Bayesian Equilibrium (or, briefly, WPBE) is an assessment (b, µ) sequen-

tially rational and weakly consistent with Bayes rule.

Let G = (Γ, h) be an extensive game and (b, µ) be an assessment weakly

consistent with Bayes rule. W b,µ is a natural candidate to be a sufficient

collection for WPBE, Γ, and b, but it is not enough. Let us consider, in

Figure 5.13, the game G with the assessment (b, µ), where b = ((L, l), L),

µ(x) = 0, and µ(y) = 1, and in Figure 5.14, the same game G with the

assessment (b, µ̄), where b = ((L, l), L), µ̄(x) = 1, and µ̄(x) = 0.
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Figure 5.14: G (b, µ̄).

We know, beforehand, that the collection W b,µ is W b,µ = U(Γ)\{z3} =

{r, z1, t, x, z2, y, z4, z5}. Since the information set of player 2 is off-path, all

the beliefs in this game are weakly consistent with Bayes rule. Note that

(b, µ) /∈ WPBE(G), and (b, µ̄) ∈ WPBE(G). Then, in order to know that

b ∈ WPBE(G), it does not suffice to look at the payoffs in W b,µ. In fact,

W b,µ is not sufficient for WPBE, Γ, and b. Recall that b ∈WPBE(G).

Now, let us consider, in Figure 5.15, the game Ḡ with the assessment

(b, µ̄). That is, Ḡ is identical to G, except for the fact that h̄(z3) = (0, 2).

Then, b̄ = ((R, l), R) ∈ WPBE(Ḡ). Now, let us consider, as depicted

in Figure 5.16, the combination of two games and the combination of two
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assessments. We have: G⊗W Ḡ = Ḡ, b⊗W b̄ = b, and, obviously, µ̄⊗W µ̄ = µ̄.

Again, b⊗W b,µ b̄ = b /∈WPBE(G⊗W b,µ Ḡ), since, in G⊗W b,µ Ḡ the choice

L for player II is strictly dominated and hence no beliefs make that choice

sequentially rational. Similarly, by adequately rearranging the payoffs in the

game G, it can be shown that W b,µ̄ is not sufficient for WPBE, Γ, and b.
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Figure 5.15: Ḡ (b̄, µ̄).

Despite of discussion above, the collections W b,µ are the key to essen-

tialize WPBE. Let

Mwc(b) := {µ ∈M(Γ) : (b, µ) is weakly consistent with Bayes rule}.

Now, define the collection W b
WPBE :=

⋃
µ∈Mwc(b)

W b,µ. Since the union of

closed and terminal collections is a closed and terminal collection, W b
WPBE

is closed and terminal.

Proposition 13. W b
WPBE is the essential collection for WPBE, Γ and b.

Proof. This result is a particular case of the general result in Section 5.8.2.
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Figure 5.16: G⊗W Ḡ (b⊗W b̄, µ̄⊗W µ̄).

5.8.2 Belief-based equilibrium concepts. A general result.

Let us develop a general approach that concerns several belief-based equili-

brium concepts, but a sequential equilbrium that needs a separate treatment.

Let F be the set of all correspondences that select, for each game form

Γ and each b ∈ B(Γ), a subset of M(Γ) (the set of all beliefs that can be

defined for Γ) 6. Let Γ be a game form, b ∈ B(Γ), and G ∈ G(Γ). Let

f ∈ F . We say that b is sequentially rational under f in game G, denoted

by b ∈ SRf (G), if there is µ ∈ f(Γ, b) such that the assessment (b, µ) is

sequentially rational. The above definition can be used to account for most

belief-based solution concepts:

• Sequential rationality: fSR(Γ, b) :=M(Γ).

• WPBE: fWPBE(Γ, b) := {µ ∈M(Γ) : µ is derived by Bayes rule inπ(b)} =

Mwc(b).

• SE: fSE(Γ, b) := {µ ∈M(Γ) : µ is consistent with b}.

• Moreover, also the different versions of perfect Bayesian equilibrium,

that have been discussed in literature, can be defined as sequentially

6More formally, let A denote the set of all pairs (Γ, b), where Γ is a game form and

b ∈ B(Γ). Then, F .
= {functions from A to 2M(Γ)}.
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rational under some f ∈ F .

Given f ∈ F , a game form Γ, and b ∈ B(Γ), define the collection

W b
f :=

⋃
µ∈f(Γ,b)

W b,µ.

Note that, in particular,

W b
fWPBE = W b

WPBE .

Since the union of closed and terminal collections is a closed and terminal

collection, all the W b
f collections are closed and terminal.

Lemma 6. Let f, f ′ ∈ F be such that, for each Γ and each b ∈ B(Γ),

f(Γ, b) ⊂ f ′(Γ, b).

Then, for each game G,

SRf (G) ⊂ SRf ′(G).

Proof. Straightforward.

The next auxiliary lemma plays an important role in the proofs of the

results in this section. Let u, v ∈ U(Γ).

Lemma 7. Let f ∈ F . Let Γ be a game form and b ∈ B(Γ). Let W ⊂ U(Γ)

be a closed collection containing π(b) such that W b
f\W 6= ∅, Then, there

are i ∈ N , ũ ∈ W ∩ Ui(Γ), ũ ∈ W b
f\W , µ̃ ∈ f(Γ, b), xũ ∈ ũ, xṽ ∈ ṽ, and

b̃i ∈ Bi(Γ) such that

i) xũ ≺ xṽ (and hence, ṽ) is reached with positive probability under µ̃ by

(b−i, b̃i)ũ.

ii) let {x1 = xũ, . . . , x
l = xṽ} be the path from xũ to xṽ. For each l̄ < l,

uxl ∈W .

Proof. By Lemma 3, there is z ∈ (W b
f\W ) ∩ Z(Γ). Let µ̃ ∈ f(Γ, b) such

that z ∈ W b,µ̃. Recall the iterative definition of W b,µ̃. Since U0 ⊂ 〈π(b)〉
and π(b) ⊂ W = 〈W 〉, then U0 ⊂ W . Hence, there is t > 1 such that

z ∈ U t \ U t−1. Let ut := z. We now proceed backwards to identify the

information sets used to reach ut. Since ut ∈ U t \ U t−1, there is vt ∈
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V t \ U t−1 such that ut 4 vt (indeed, since ut = z ∈ Z(Γ), in this first step

vt = ut). Since vt ∈ V t \ U t−1, there are it ∈ N , btit ∈ Bit(Γ), and ut−1 ∈
(U t−1 \U t−2)∩Uit(Γ), 7 such that vt is reached with positive probability by

(btit , b−it)ut−1 . Hence, we can define a sequence {u0, v1, u1, . . . , vt, ut}, where

u0 ∈ 〈π(b)〉. Then, u0 ∈ W and, since ut /∈ W , W = 〈W 〉 and ut 4 vt,

we have that vt /∈ W . Similarly, for each t′ ∈ {0, . . . , t}, if ut
′
/∈ W , then

vt
′
/∈ W . Let t̄ := min

t′∈{0,...,t}
{t′ : ut

′−1 ∈ W and vt′ /∈ W}. Define i := it̄,

ũ := ut̄−1, and b̃i := ut̄
it̄

. Let x̄ ∈ vt̄ be such that x̄ is reached with positive

probability under µ̃ by (b̃i, b−i)ũ. Let xũ be the node in ũ such that xũ ≺ x̄.

Let {ũ = w0, w1, . . . , wk = vt̄} be the path of information sets from xū to

x̄. All the information sets in {ũ = w0, w1, . . . , wk = vt̄} are reached with

positive probability under µ̃ by (b̃i, b−i)ũ. Since w0 ∈ W , wk /∈ W , and

W = 〈W 〉, there is a unique k̄ such that wk̄−1 ∈ W and wk̄ /∈ W . Now

let us define ṽ
.
= wk̄ and let xṽ be the node in the path from xũ to x̄ that

belongs to ṽ. So defined, it is clear that ū ∈ W ∩ Ui, ṽ ∈ W b,µ̃, and hence,

ṽ ∈W b
f \W . i) and ii) follow from the construction.

For our general result, we need to restrict to a subset of F .

Definition 78. A function f ∈ F is regular if, given b, b̄ ∈ B(Γ), the

following properties hold.

i) for each µ ∈ f(Γ, b) and each µ̄ ∈ f(Γ, b̄), µ ⊗W b
f
µ̄ ∈ f(Γ, b ⊗W b

f
b̄),

and, conversely,

ii) for each µ̄ ∈ f(Γ, b ⊗W b
f
b̄), there is µ ∈ f(Γ, b) such that µ̄ and µ

coincide in W b
f .

In words, the beliefs inside W b
f do not impose any restrictions in the

beliefs outside W b
f and vice versa. According to the above definition, fSE

fails to be regular (see Example in SubSection 5.8.3) and hence, sequential

equilibrium needs to be studied on his own 8. Nonetheless, sequential ratio-

nality, WPBE, and many natural refinements of the latter can be defined

through regular functions 9 .

7If t = 1, then U t−2 = U−1 := ∅
8Moreover, also the perfect Bayesian equilibrium, as defined in Fudenberg and Tirole

(1991b) for multistage games with observed actions, fails to be regular.
9For instance, Kreps and Wilson (1982) defined an equilibrium concept called extended

subgame perfect equilibrium, a refinement of WPBE that imposes the use of Bayes rules

off the equilibrium path, and hence, refines SPE as well. This equilibrium concept can be

defined using regular functions.
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Lemma 8. Let f ∈ F be regular. If b and b̄ coincide in W b
f , then W b

f = W b̄
f .

Proof. Note that b̄ = b ⊗W b
f
b̄. We prove first that W b

f ⊂ W b̄
f . Suppose,

on the contrary, that there is u ∈ W b
f \ W b̄

f . Take i ∈ N , ũ ∈ W b̄
f ∩ Ui,

ṽ ∈W b
f \W b̄

f , µ̃ ∈ f(Γ, b), and b̃ ∈ Bi(Γ) as in Lemma 7 . Since f is regular,

there is µ̄ ∈ f(Γ, b̄) that coincides with µ̃ in W b
f . Since bW b

f
= b̄W b

f
and

W b
f = 〈W b

f 〉, for each w ∈ U(Γ) such that w ≺ ṽ, bw = b̄w and hence, ṽ is

reached with positive probability under µ̃ by (b̃i, b̄−i)ũ. Therefore, ṽ ∈ W b̄
f

and we have a contradiction. Hence W b
f ⊂W b̄

f .

We prove now that W b̄
f ⊂ W b

f . Suppose, on the contrary, that there is

u ∈ W b̄
f\W b

f . Take now i ∈ N , ũ ∈ W b
f ∩ Ui, ṽ ∈ W b̄

f\W b
f , µ̃ ∈ f(Γ, b̄), and

b̃i ∈ Bi(Γ) as in Lemma 7. Since f is regular, there is µ ∈ f(Γ, b), that

coincides with µ̃ in W b
f . If we had b

W b̄
f

= b̄
W b̄
f
, we could continue as above.

Yet, we just know that b
W b̄
f

= b̄
W b̄
f
. From ii) in Lemma 7, all the information

sets in the path from xũ to xṽ belong to W b
f . Hence, by i) in Lemma 7, if

b and b̄ coincide in W b
f , ṽ is reached with positive probability under µ by

(b−i, b̃i)ũ and we can derive the same contradiction as before.

Theorem 19. Let f ∈ F be regular. W b
f is the essential collection for

SRf ,Γ, and b.

Proof. First, we show that W b
f is a strongly sufficient collection for SRf ,

Γ, and b. By definition of strongly sufficient collection, π(b) ⊂ W b
f . Let

b̄ ∈ B(Γ) and G = (Γ, h), Ḡ = (Γ, h̄) ∈ G(Γ) be such that b ∈ SRf (G) and

b̄ ∈ SRf (Ḡ) respectively. We claim that (b⊗, µ⊗) ∈ SRf (G⊗). Since f is

regular, (b⊗, µ⊗) ∈ f(Γ, b⊗). We show now that it is sequentially rational.

Let first u ∈ U(Γ). There are two possibilities: u /∈W b
f or u ∈W b

f . Let u /∈
W b
f . For each z ∈ Z(Γ) such that u ≺ z, z /∈ W b

f since W b
f = 〈W b

f 〉. Hence

h⊗(z) = h̄(z). Therefore, since b̄ ∈ SRf (Ḡ), b⊗ is sequentially rational

at u in G⊗. Let now u ∈ W b
f . By definition of W b

f , as far as beliefs in

f(W, b) are considered, no terminal node outside W b
f is reached with positive

probability after unilateral deviations from b at information sets in W b
f .

Besides, by Lemma 8, W b
f = W b⊗

f and hence, those terminal nodes are not

reached either when the beliefs in the information sets in W b
f are taken from

f(W, b⊗). Hence, since b ∈ SRf (G), b⊗ is sequentially rational at u in G.

Then, b⊗ ∈ SRf (G⊗).

Now let us show the second condition, that is W b
f is a minimal closed and
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sufficient collection and thus essential. By definition, W b
f = 〈W b

f 〉. Let W

be a closed and sufficient collection for SRf , Γ, and b that does not contain

W b
f . By Lemma 3, since W b

f is terminal, there is z̄ ∈ (W b
f \W ) ∩ Z(Γ). Let

µ ∈ f(Γ, b) be such that z̄ ∈ W b,µ. Take i ∈ N , ũ ∈ W ∩ Ui, ṽ ∈ W b
f \W ,

µ̃ ∈ f(Γ, b), , b̃i ∈ Bi(Γ), xṽ, and xũ as in Lemma 7. Since xṽ is reached

with positive probability under µ̃, by (b̃i, b−i)ũ, µ̃(xũ) > 0. Let c̃ denote the

choice at xũ that is in the path to xṽ. We distinguish two cases, regardless

of whether ũ, and ṽ are singleton and whether ṽ is or is not a terminal node.

Case i): bi(c̃) = 0, i.e., according to b, choice c is never made. Then, ṽ is not

reached with positive probability under µ̃ by bµ̃. Let G = (Γ, h) the game

such that i) (b, µ̃) ∈ SRf (G) and ii) given a choice c 6= c̃ at ũ, conditional on

ũ being reached, c is strictly dominated by c̃ in all nodes of ũ but xũ. Since

µ̃(xũ) > 0, i) and ii) are compatible. Let Ḡ = (Γ, h̄) the game such that,

for each j ∈ N and each z ∈ Z(Γ), h̄j(z)
.
= MG if xṽ 4 z and h̄j(z)

.
= hj(z)

otherwise. Recall that MG
.
= max

i∈N,z∈Z(Γ)
|hi(z)| + 1. Since ṽ /∈ W and

W = 〈W 〉, for each z ∈ Z(Γ) such that ṽ ≺ z, we have z /∈ W . Now,

b ∈ SRf (G) and SRf (Ḡ) 6=, just take any strategy profile with payoff MG.

Let us claim that if b̂ ∈ B(Γ) coincides with b in W , then b̂ /∈ SRf (G⊗W Ḡ),

where G⊗W Ḡ = Ḡ. By construction, in the game Ḡ, conditional on ũ being

reached, c̃ is strictly dominant at ũ. In fact, to play b̃i(ũ) at xũ leads to a

payoff of MG. Since ũ ∈ W , b̃i(c) = 0 and b̃W = bW , b̃ is not sequentially

rational at ũ. Case ii): bi(c̃) = 0, i.e., ṽ is reached with positive probability

under µ̃ by bũ. Let G = (Γ, h) be the game such that i) (b, µ̃) ∈ SRf (G) and

ii) there is a choice c 6= c̃ at ū such that, conditional on ũ being reached, c

strictly dominates c̃ in all nodes of ũ but xũ. Let Ḡ = (Γ, h̄) be such that for

each j ∈ N and each z ∈ Z(Γ), h̄j(z)
.
= −MG if xṽ 4 z and h̄j(z)

.
= hj(z)

otherwise. The remaining proof is analogous to case i).

Corollary 7. U(Γ) is the essential collection for SR, Γ, and b.

Proof. It follows from Theorem 19 and from the fact f(Γ, b) =M(Γ).

Corollary 8. Let f, f ′ ∈ F be regular and let Γ and b ∈ B(Γ) be such that

f(Γ, b) ⊂ f ′Γ, b). Then WSRf (Γ, b) ⊂WSRf ′ (Γ, b).

U(Γ) is the essential collection for SR, Γ, and b.

The above Corollary and Lemma 6 imply that the following relation

holds. Let EC1 and EC2 be two belief-based equilibrium concepts such

that, for each game G,

EC1(G) ⊂ EC2(G),



Unilateral Commitments 123

then, for each game form Γ and each strategy profile b ∈ B(Γ),

WEC1(Γ, b) ⊂WEC2(Γ, b).

For example, let us just think of SR and WPBE.

5.8.3 Strong sufficiency and sequential equilibrium

The example below shows that fSE is not regular and that W b
SE needs not

be a strongly sufficient collection for sequential equilibrium.

We consider the game G ∈ G(Γ) in Figure 5.17. Let b = (L,L, (L,L)),
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Figure 5.17: G (b, µ).

then the assessment (b, µ) is consistent if and only if µ(a) = 1, µ(b) = µ(c) =

0, µ(x) = µ(x̄), µ(y) = µ(ȳ), and (b, µ) is sequentially rational if and only if

µ(x) 6 1
2 , µ(x̄) 6 2

5 . Now, W b
SE is the collection that consists of removing

the upper information set of player III and the four terminal nodes that

come after it. More formally, W b
SE = U(Γ)\Wx, where Wx

.
= {v ∈ U(Γ) :

ux 4 v}. Let µ ∈ Mcons(b) be such that µ(x) = µ(x̄) = 0. So defined,

(b, µ) ∈ SE(G). Now, let us take the game Ḡ, depicted in Figure 5.18,
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with the profile b̄ = b. Let µ̄ ∈ Mcons(b) = Mcons(b̄) such that µ̄(x) = 1

µ̄(x̄) = 1. So defined, (b̄, µ̄) ∈ SE(Ḡ). We consider now, in Figure 5.19, the
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Figure 5.18: Ḡ (b̄, µ̄).

game G⊗ = G⊗W Ḡ with the assessment (b⊗, µ⊗). Since b⊗ = b⊗W b̄ = b,

Mcons(b⊗) =Mcons(b). Therefore, since (µ⊗W µ̄)(x) = 1 6= (µ⊗W µ̄)(x̄) =

0, µ⊗ is not consistent with b⊗. Hence, (b, µ ⊗W µ̄) /∈ SE(G⊗). Since

µ ∈ Mcons(b) = fSE(Γ, b), µ̄ ∈ fSE(Γ, b̄), and µ⊗ /∈SE (Γ, b⊗), we have

shown that fSE is not regular.

5.9 Decomposition of a game with respect to a

collection

In this Section we introduce a decomposition of a game useful to characterize

the essential collections for sequential equilibrium in Section 5.10 and also

for the analysis in Section 5.11.

Let Γ be a game form, b ∈ B0(Γ), G = (Γ, h), and W ⊂ U(Γ). With

respect to the closed collection W , the game G is decomposable in two

games, the reduced game GW , containing the information sets in W , and its

complementary game G(−W, b), containing the information sets in U(Γ)\W .
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Figure 5.19: G⊗W Ḡ (b⊗W b̄, µ⊗W µ̄).

The reduced game GW is important since to check, whether a profile is an

equilibrium of original game G, it is necessary and sufficient to check only

on the reduced game.

To the construction of GW , we are interested in ΓW , obtained by re-

striction of Γ to X(W ), with the addition of some artificial terminal nodes,

necessary to ensure that ΓW is a game form. For example, we consider the

game in Figure 5.7. If we reduce Γ to the nodes in X(W ) without adding

any extra nodes, in the information set u the number of choices available to

player II would not be the same for the different nodes.

Figures 5.20 and 5.21 illustrate how decompose the game with respect

to a collection.

For the sole purpose of construction, we distinguish between three sets

of nodes: X(W), X(-W), and A(W ). X(W ) and X(−W ) are the sets of

nodes whose information sets are, respectively, in and out of the essential

collection W , while A(W ) is the set of nodes to be added, that is, A(W )

contains the nodes in X(−W ) with no predecessors in X(−W ).

X(W )
.
= {x ∈ X(Γ) : ux ∈W},
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X(−W )
.
= X(Γ)\X(W ),

and

A(W )
.
= {x ∈ X(−W ) : x ≺ y ⇒ y ∈ X(W )}.

Definition 79. Let Γ be a game form, G = (Γ, h), and W ⊂ U(Γ). The

reduced game form ΓW is characterized in the following way:

i) the set of nodes is X(ΓW )
.
= X(W ) ∪A(W ),

ii) the set of information sets is U(ΓW )
.
= (U(W ) ∩W ) ∪A(W ),

iii) the terminal nodes are Z(ΓW )
.
= (Z(W ) ∩W ) ∪A(W ), and

iv) all the other elements are defined restricting Γ to X(W ) in the natural

way.

Now, we can define the reduced game. Let M ∈ R be a fixed constant.

We can take M = MG, but the choice of the payoff for terminal nodes

outside W is irrelevant for the analysis, as the choice of setting equal all the

payoffs is irrelevant.

Definition 80. Let Γ be a game form, G = (Γ, h), and W ⊂ U(Γ). The

reduced game is GW = (ΓW , hW ), where hW (z) = h(z) if z ∈ Z(ΓW ) ∩W
and hW (z) = (M, . . . ,M) if z ∈ Z(ΓW ) \W .

We discuss the importance of the reduced games in Section 5.11.

Now, we construct the complementary game. We need to fix a strategy

profile b ∈ B0(Γ). For each x ∈ A(W ), let p(x, b) denote the probability

that x is reached given b and conditional on X(−W ) being reached. Now,

we use b and the node in X(−W ) to define the complementary game form

Γ−W,b and the complementary game G(−W, b) = (Γ−W,b, h−W,b), as depicted

in Figures 5.20 and 5.21.

Definition 81. Let Γ be a game form, b ∈ B0(Γ), G = (Γ, h), and W ⊂
U(Γ). The complementary game form Γ−W,b is characterized in the following

way:

i) the root is a node r−W /∈ X(Γ),

ii) the set of nodes is X(Γ−W,b)
.
= X(−W ) ∪ r−W ,

ii) for each x ∈ A(W ) there is an arc from r−W to x, and the correspon-

ding choice has probability p(x, b),
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iii) the terminal node is Z(Γ−W,b)
.
= Z(Γ) ∩X(−W ), and

iv) all the other elements are defined restricting Γ to X(Γ−W,b) in the

natural way.

Definition 82. Let Γ be a game form, b ∈ B0(Γ), G = (Γ, h), and W ⊂
U(Γ). The complementary game is G(−W, b) = (Γ−W,b, h−W,b), where, for

each z ∈ Z(Γ−W,b), h−W,b = h(z).

Note that, given b, b̄ ∈ B0(Γ), G(−W, b) and G(−W, b̄) only differ in the

probabilities of nature move at the root. The games G(W, b) are crucial to

prove Proposition 14 below.

5.10 Sequential equilibrium

Proposition 14. W b
SE is the essential collection for SE, Γ, and b.

Proof. First we show that W b
SE is a sufficient collection for SE, Γ, and

b. By definition π(b) ⊆ W b
SE . Let G = (Γ, h), Ḡ = (Γ, h̄) ∈ G(Γ) be

such that b ∈ SE(G). We show that there is b̂ ∈ SE(G⊗) that coincides

with b in W b
SE . Since b ∈ SE(G), there is µ ∈ Mcons such that (b, µ)

is sequentially rational. Hence there is a sequence (bn)n∈N of completely

mixed strategies converging to b such that the associated consistent beliefs,

namely (µn)n∈N, converge to µ. For each bn ∈ B0(Γ) let us consider the

complementary game, so we have a sequence of games (Ḡ(−W b
SE , bn))n∈N.

Let n ∈ N and u be an information set of Ḡ(−W b
SE , bn), formed by nodes in

A(W b
SE). By definition, the beliefs induced by nature move at r−W b

SE
in u

coincide with µn. For each n ∈ N, let (b̄n, µ̄n) be a sequential equilibrium of

Ḡ(−W b
SE , bn). The sequence (b̄n, µ̄n)n∈N has a convergent subsequence. We

assume, without loss of generality, that the sequence itself converges to (b̄, µ̄).

We claim that (b⊗W b
SE
b̄, µ⊗W b

SE
µ̄) is a sequentially rational and consistent

assessment. Consistency. Let Γn be the game form of Ḡ(−W b
SE , bn). By

definition, for each n, n̄ ∈ N, B0(Γn) = B0(Γn̄). Let B̄0 .
= B0(Γn). Each

b̄n is a sequential equilibrium of Ḡ(−W b
SE , bn). Hence, for each n ∈ N,

there is {b̄n,k}k∈N ⊂ B̄0 converging to bn, and such that associated beliefs

(satisfying Bayes rule) converge to µ̄n. Hence, for each n ∈ N, there is

g(n) ∈ N such that ‖ b̄n − b̄n,g(n) ‖6 1
n . Then, ‖ b̄n − b̄n,g(n) ‖6‖ b̄n − b̄n̄ ‖

+ ‖ b̄n̄ − b̄n,g(n) ‖6‖ b̄n − b̄n̄ ‖ + 1
n . Hence, since b̄n −→ b̄, (b̄n,g(n))n∈N −→ b̄.

The convergence result for the corresponding beliefs, namely (µ̄n,g(n))n∈N,

to µ̄ is analogous. Our construction ensures that, for each n ∈ N and
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each x ∈ A(W b
SE), µn(x) = µ̄n(x) and µ(x) = µ̄(x), i.e. the beliefs match

in A(W b
SE). Hence, for each n ∈ N, the beliefs associated with bn ⊗W b

SE

b̄n,g(n) ∈ B0(Γ) are µn ⊗W b
SE
µ̄n,g(n). Therefore, the consistency of (b⊗W b

SE

b̄, µ ⊗W b
SE
µ̄) is obtained by considering the sequence (bn ⊗W b

SE
b̄n,g(n))n∈N.

Sequential rationality. The sequential rationality in the information sets in

W b
SE immediately follows from the sequential rationality of (b, µ) in G and

the fact that, according to µ, no node outside W b
SE can be reached with

unilateral deviations from information sets W b
SE and hence, the payoffs at

all the terminal nodes, that can be reached by unilateral deviations from

information sets in W b
SE , are given by h. Similarly, only terminal nodes

outside W b
SE can be reached with unilateral deviations from the information

sets outside W b
SE and hence, the payoffs are given by h̄. Thus, since all the

(b̄n, µ̄n)n∈N are sequentially rational also the limit, (b̄, µ̄), is sequentially

rational.

Second, since W b
SE = W b

fSE
, the proof is analogous to the one for W b

f

in Theorem 19 (the regularity of f was not needed to show that W b
f is

minimally sufficient).

It can be easily verified that

WSPE ⊂WSE ,

hence, combining the result in Sections 5.6 and 5.8, we have:

WNE ⊂WSPE ⊂WSE ⊂WWSPE ⊂WSR = WPE = U.

5.11 Reduced Game and its Applications

In this Section we present some applications of the concepts of sufficient and

essential collections. All of them are based on the reduced games defined in

Section 5.9.

Proposition 15. Let EC be an equilibrium concept, Γ a game form, and

b ∈ B(Γ) a strategy profile. Let G = (Γ, h) ∈ G(Γ) be such that EC(G) 6= ∅.
Let W be a closed collection sufficient for EC, Γ, and b. Then,

there is b̂ ∈ EC(G) such that b̂W = bW if and only if bW ∈ EC(GW ).

Moreover, since π(b) ⊂W ,

b and b̂ are realization equivalent.

Proof. We suppose there is b̂ ∈ EC(G) such that b̂W = bW and we prove

that bW is an equilibrium concept of the reduced game GW . We consider
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Ḡ ∈ G(Γ) a game with constant payoff (M, . . . ,M). Since b̂W = bW and

W is sufficient for EC, Γ, and b, then, for Lemma 4, W is sufficient for

EC, Γ, and b̂. Hence, there is b∗ ∈ EC(G ⊗W Ḡ) such that b∗W = b̂W .

Since in game G⊗W Ḡ, all the payoffs outside W coincide with (M, . . . ,M),

it is straightforward to check that bW ∈ EC(Γ). Now, we suppose that

bW ∈ EC(Γ) and we prove that there is b̂ ∈ EC(G) such that b̂W = bW .

We consider the game G∗ = (Γ, h∗), so defined: h∗(z)
.
= h(z) for each

z ∈ Z(Γ)∩W and h∗i (z)
.
= M for each z ∈ Z(Γ)\W and each i ∈ N . Since all

the players are indifferent among the choices outside W and bW ∈ EC(GW ),

we have b ∈ EC(G∗). By definition G∗⊗W G = G. Since W is sufficient for

EC, Γ, and b and EC(G) 6= ∅, there is b̂ ∈ EC(G) that coincides with b in

W and moreover, since π(b) ⊂W , b̂ is realization equivalent to b.

The above result provides a first application of sufficient collections.

Given a strategy profile b and a closed and sufficient collection W for b,

if bW is an equilibrium of the reduced game, then the outcome of b is an

equilibrium outcome in the original game. If bW is not an equilibrium out-

come of the reduced game, then no equilibrium of the original game will

coincide with b in W . In particular, the reduced game associated to the

essential collection would be the simplest among the games associated with

b. Quite generally, the reduced game associated with an essential collection

is simpler than the original game. Recall the discussion in the motivation

section and refer to the game in Figure 5.23. Beyond the immediate appli-

cation described above, the reduced games can also be applied in different

directions. We discuss two of them in the remainder of this section.

5.11.1 Structural robustness and partially-specified games

In the previous Section we have analyzed what happens when we reduce a

game to the essential collection. In this Subsection, we change direction since

we extend the reduced game. In order to measure the structural robustness

of essentializing equilibrium concept process, we will compare the reduced

game and the reduction of its extension.

Let G = (Γ, h) be a game, W ∈ U(Γ) a closed collection. Let Ω(Γ)

denote the set of game forms such that if Λ ∈ Ω(W ), then W ⊂ U(Λ), W is

closed in Λ and the nodes in W that are terminal in Γ are also terminal in Λ
10. Now, let G(W ) denote the set of games Ĝ = (Λ, ĥ) such that Λ ∈ Ω(W )

and ĥ(z) = h(z), for each z ∈ W ∩ Z(Γ). We consider, for example, the

10In a nutshell, Λ is made attaching a game tree to the root of W .
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game GW in Figure 5.21.c. Clearly, GW ∈ G(W ) and each game in G(W ) is

defined from GW by adding new branches to the nodes in A(W ). Those with

payoff (M,M,M) also belong to G(W ). The new branches can intersect each

other, but cannot intersect W , otherwise W would not be a closed collection

in the resulting game form. In particular, also the game G belongs to G(W ).

We refer to the elements of G(W ) as extension of GW .

Remark 9. Given an equilibrium concept EC, let Γ be a game form and W

be a closed collection. In the previous sections we have seen how to construct

the reduction Γw. Now we expand Γ to Λ ∈ Ω(W ). From definition of Ω(W )

and ΓW it follows ΓW = ΛW , that is the corresponding reduced forms,

associated with W , coincide.

In the remainder of this section EC refers only to the equilibrium con-

cepts whose essential collections we have characterized in Sections 5.6 and

5.8, that is NE, SPE, PE, and WPBE, SR, SE.

Proposition 16. Given an equilibrium concept EC, let Γ be a game form,

b ∈ B(Γ), and Λ ∈ Ω(WEC(Γ, b)). If b̄ ∈ B(Λ) is such that b and b̄ coincide

in WEC(Γ, b), then

WEC(Γ, b) = WEC(Λ, b̄),

i.e., the essential collection coincide.

Proof. We can show that WEC(Γ, b) is sufficient for EC, Λ, and b̄ using

the same arguments in the sufficiency part of the proof that WEC(Γ, b)

is sufficient for EC, Γ, and b, replacing clearly Γ and b with Λ and b̄.

Hence WEC(Λ, b̄) ⊃ WEC(Γ, b). Similarly, we can show that WEC(Λ, b̄)

is sufficient for EC, Γ, and b. Hence WEC(Λ, b̄) ⊂ WEC(Γ, b). Therefore

WEC(Γ, b) = WEC(Λ, b̄).

Now, let us simplify the notation, replacing WEC with W . Let W be the

essential collection for EC, Γ, and b. Let Ḡ be an extension of GW and let

b̄ a strategy in Ḡ that coincides with b in W . Then, the next result shows

that, an equilibrium of the reduced game is the reduction of a given game.

Thus, to check whether a profile of an extension game is an equilibrium,

equivalent to a fixed equilibrium profile, it is sufficient to check it in the

reduced game.

Corollary 9. Given an equilibrium concept EC, let G(W ) be the set of the

extensions of a reduced game GW = (ΓW , hW ), let b ∈ B(ΓW ) be such that

WEC(Γ, b) = W , let Ḡ = (Λ, h) ∈ G(W ) and b̄ ∈ B(Λ) be such that b = b̄W .

Then,
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i) WEC(Λ, b̄) = W .

ii) If b ∈ EC(GW ), then there is b̂ ∈ EC(Ḡ) such that b̂W = b̄W = b.

iii) If b /∈ EC(GW ), then there is no b̂ ∈ EC(Ḡ) such that b̂W = b̄W = b.

In the following Subsubsections 5.11.1 and 5.11.1 we describe two appli-

cations of Corollary 9.

Structural robustness

The first to use Structural robustness was Kalai (2005, 2006). Kalai studied

the robustness of Nash equilibrium in large games when similar changes are

made in the underlying games. Our approach allows us to study how robust

the different equilibrium concepts are with respect to structural changes in

the game. González-Dı́az et al.(2009) have already provided an illustration

of this fact when comparing SE and WPBE in the Licensing game.

Let EC be an equilibrium concept, G = (Γ, h) an extensive game, and

b ∈ EC(G). We assume to modify the game G by some changes in Γ or

by some changes in h, without eating into the path of b. We denote Ḡ

the modified game. It is natural to ask whether the outcome of b is an

equilibrium outcome for EC in Ḡ or not. Essential collections are very

useful here.

We suppose we have characterized the essential collections for EC. Then,

if the changes in G affected neither WEC(Γ, b) nor the payoffs in its terminal

nodes, b is indeed an equilibrium outcome for EC in G. In fact, in the latter

case, Ḡ ∈ G(WEC(Γ, b)), so Corollary 9 implies the desidered result.

The structural changes in a game can be of different nature, since they

can: affect payoffs, change the sets of strategies, change the information

available to the players, account for addiction, elimination, or merging of

players, enlarge or reduce the game, and so on. . . If these changes do not

affect the essential collection associated to a given equilibrium profile b, its

outcome will be an equilibrium outcome also in the modified game. On

the other hand, if the changes affected the essential collection, whether the

outcome of b remains an equilibrium outcome or not will depend on the

specific payoffs of the games at hand.

Therefore, if the essential collections associated with an equilibrium con-

cept EC1 are always smaller than the ones associated with EC2, then EC1 is

more robust to structural changes than EC2. The latter statement and the
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inclusion relations obtained for the essential collections analyzed in Sections

5.6 and 5.8, imply that SR and PE are the less robust equilibrium concepts

followed, in this order by WPBE, SE, SPE, and SR. The Licensing Game

in González-Dı́az et al.(2009) exemplified this fact for SE and WPBE.

Remark 10. We make ourselves plain, when we say that SE is structurally

more robust than WPBE. Let G be a game and the strategy profile b be

a SE. From the above discussion it follows that, after any change in G

that does not affect the essential collection for SE, Γ, and b, the outcome

b remains a SE outcome in the modified game. No further calculation is

needed, regardless of the actual payoffs of the modified game. On the other

hand, we suppose b is just a WPBE, but not a SE. Then, the latter changes

might have affected the corresponding essential collection for WPBE, which

is not smaller than the one for SE, b might not be a WPBE outcome

anymore. Yet, our statement is mute about changes inside the essential

collections. Indeed, since SE is more demanding than WPBE, it is natural

to think that SE will be less robust to changes inside the essential collection.

Partially-specified games

As also discussed in Kalai (2005, 2006), the idea of structural robustness

is very related to the possibility of dealing with partially-specified games.

Let Gp = (Γ, h) be a partially-specified game, i.e. it lacks a full description

of Γ or some payoffs are unknown. Can we still say something about the

equilibria of this game? Maybe. We suppose there is a possibly partially-

specified strategy b ∈ B(Γ) such that WEC(Γ, b) can be characterized and

the corresponding reduced game is completely specified. Then, if bWEC(Γ,b) ∈
EC(GpWEC(Γ,b)), we know that, for whatever specification of the unknown

elements of Gp, there is b̂ ∈ EC(Gp) that is realization equivalent to b, i.e.

the outcome of b will be an equilibrium outcome of any game satisfying the

partial specifications of Gp. A situation as the one described above may

arise even in very simple settings. We present now a simple example.

Example 4. We consider the partially-specified game G = (Γ, h) in Figure

5.22 below. We do not know how the game continues after node x. It may be

that x is a terminal node, or we know the subgame beginning there, but that

it is too complicated for its sequential equilibria to be found. And it might

also be that we do not know anything at all about how the game follows once

x is reached. In any case, W = {u, v, z1, z2, z3} is the essential collection for

SE, any such Γ and any strategy in which players I and II play L1 and L2

at their initial information sets. Hence, since b = (L1, L2) ∈ SE(GW ), there
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is a sequential equilibrium of G in which L1 and L2 are played, leading to

the payoff vector (1, 1).

5.12 Virtual Equilibrium Concepts

In the previous sections we worked on games for which the existence of

analyzed equilibrium concepts was assured. In this section we widen the

scope of the enquery also to games without equilibria, for example games

with non-compact sets of strategies, or discontinuous payoff functions, or

games in which only pure strategies are possible. In order to guarantee the

existence of an equilibrium, we introduce a new concept for extensive games:

the virtual equilibrium concept, shortly V EC. Once we have essentialized

an equilibrium concept 11, we define virtual equilibrium concept the strategy

profile which, restricted to essential collection, is an equilibrium concept.

Let us consider, for instance, the concept of SPE and the corresponding

V SPE. The virtual subgame perfect equilibrium is based on the same sim-

ple idea of SPE. The subgame perfect equilibrium (Selten (1965)) discards

those NE which are only possible if some players give credit to irrational

plans of others. That is, a SPE is a Nash equilibrium which induces a

Nash equilibrium in every subgames. In the same way, we can define the

virtual subgame perfect equilibrium, as a NE which induces a NE in every

subgame relevant or essential for a given strategy profile, and, more in ge-

neral, the virtual equilibrium concept as a profile that is EC in the essential

collection.

The V SPE has the same effect as subgame perfection, but, it has the

advantage, over the SPE concept, in that V SPE exists in many games

which do not have SPE. Hence, it is especially useful when dealing with

extensive games having large trees, since there are many extensive games

without SPE, but with sensible equilibria. For instance, the proper subgame

of MP in Example 5 is irrelevant for the strategy profile (L1, l1, L2, l2) and

it lacks Nash equilibria.

Now, we formalize our assertions. Let EC be an equilibrium concept, Γ

a game form, b a strategy profile, and WEC(Γ, b) the essential collection.

Definition 83. A strategy profile b is a virtual equilibrium concept (shortly

11To essentialize an equilibrium concept means to assign, to each pair (Γ, b), the essential

collection WEC(Γ, b).
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V EC) of an extensive game G = (Γ, h), if

bWEC(Γ,b) ∈ EC(GWEC(Γ,b)).

We denote V EC(G) the sets of V EC of the extensive game G.

The definition implies that, for each extensive game G,

EC(G) ⊆ V EC(G),

and

EC(G) 6= ∅ ⇒ EC(G) = V EC(G).

In fact, if the set of EC(G) is nonempty, the Proposition 15 provides that,

for each b ∈ V EC(G), there is b̂ ∈ EC(G), realization equivalent to b, which

justifies the name virtual. More exactly, the following statements hold.

Proposition 17. Let b, b̄ ∈ B(Γ) be two strategy profile of G = (Γ, h), and

b⊗
.
= b⊗WEC(Γ,b) b̄. Then,

i) the payoffs associated with b and b⊗ coincide, since they define the

same path,

ii) if b ∈ V EC(G), then b⊗ ∈ V EC(G), and

iii) if b ∈ V EC(G) and b̄ ∈ EC(G), then b⊗ ∈ EC(G).

The profile b⊗ inherits the virtual properties from b, that is to be an equi-

librium only in the essential collection, and from b̄ the property to be an

equilibrium in the remaining part of game. Given a virtual equilibrium, we

can always replace the non-equilibrium behavior outside the essential collec-

tion by an equilibrium behavior (if this exists) to get an equilibrium in the

classic sense. Hence, if the original game has some equilibrium, the sets of

equilibrium outcomes and virtual equilibrium outcomes coincide. But, that

is not always true. There can be games in which the set of virtual equilibria

is nonempty where there is no equilibrium, as illustrated by the following

example.

Example 5. We consider the extensive game G depicted in Figure 5.23

and we restrict the attention to pure strategies. Let b = ((L1, l1), (L2, l2))

be the strategy profile, but we might apply the same argument to b =

((L1, r1), (L2, l2)), or b = ((L1, r1), (L2, r2)). The subgame that begins in

x, after playing (R1, R2), is not essential for (Γ, b), since two deviations



Unilateral Commitments 135

are needed to reach it. We consider the reduced game GWSPE(Γ,b), with

M = MG, depicted in Figure 5.24. Clearly, b restricted to GWSPE(Γ,b) is a

SPE of GWSPE(Γ,b) and, hence, b is a V SPE(G). However, the game G does

not have any SPE in pure strategies, but the equilibrium b is “sensible”. A

sensible equilibrium, in the spirit of SPE, has the following meaning. The

players cannot use backwards induction to solve game G, because the proper

subgame does not have any NE. Still, we suppose the players keep on with

backwards induction and insist on assigning payoffs at that subgame and

then go backwards in the tree. Then it does not matter what payoffs they

assign to that subgame, they would find that b is a solution of the game.

The following result is an immediate consequence of the corresponding

characterizations of the essential collections for NE, SR, and PE. The

virtual versions of these equilibrium concepts coincide with the non-virtual

versions.

Corollary 10. For each game form Γ and each game G ∈ G(Γ), we have

NE(G) = V NE(G), SR(G) = V SR(G), and PE(G) = V PE(G).

Nonetheless, for other equilibrium concepts, the virtual version can lead

to reasonable equilibrium behavior in settings where the classic equilibrium

concepts do not exist. See, for example, 5.23. Sometimes, the set of equilib-

ria is empty. For example, since the payoff functions are discontinuous, as it

happens in the Licensing game in González-Dı́az et al. (2009), the payoffs

are unbounded. The second version of the Licensing game, LGm has some

V SE, but SE is not even defined.

Finally, the virtual subgame perfect equilibrium is applied to derive a

folk theorem in a repeated games setting in which the set of subgame perfect

equilibrium may be empty. We refer the reader to Garćıa-Jurado I. and

J.González-Dı́az (2006) for the proof of the results.

Remark 11. Virtual equilibria remind the trimmed equilibria introduced

in Groenert (2007). Although born from the same ideas, there are some

differences between the two equilibrium concepts, since the approaches were

different. First of all, the analysis in Groenert (2007) concerns the trimmed

versions of subgame perfect equilibrium and weak perfect equilibrium. Fur-

ther, for each assessment (b, µ) with µ ∈Mwc(b), the author identifies those

information sets that are irrelevant to check whether (b, µ) ∈ WPBE, i.e.

those outside W b,µ. Instead, our process of essentializing identifies, for each

strategy profile b, those information sets irrelevant to check if (for whatever



136 Unilateral Commitments

beliefs) b ∈WPBE, i.e. those information sets outside
⋃

µ∈Mwc(b)

W b,µ. Also,

the analysis in Groenert (2007) focuses on the definition of trimmed equilib-

ria and there is no closedness requirement involved. Hence, the differences

between the final equilibrium concepts. In fact, a virtual WPBE is always

a trimmed WPBE, but there can be trimmed WPBE that are not virtual

WPBE.
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