
Weigh your Preferences!
Towards using hierarchies for building personal libraries

Hamza Hydri Syed, Periklis Andritsos

October 2006

Technical Report # DIT-06-062

Weigh your Preferences! :
Towards using hierarchies for building personal libraries

Hamza H. Syed, Periklis Andritsos
Department of Information and Communication Technology

University of Trento, Italy
{syed, periklis} @dit.unitn.it

Abstract
The existence of a vast amount of document collections both on-line or off-line leads to an over-

whelming experience when users attempt to query them. This emphasises the need to develop col-
laborative approaches for acquiring data/knowledge from distributed and semantically heterogeneous
sources of knowledge/information. Work on user preferences has recently acquired more attention in
order to retrieve and rank documents which are relevant to the user’s interests. In this paper, we present
a hierarchical modeling of a user’s interests/preferences. The proposed hierarchical structure results in
a better semantic handling of the users’ interests and proper matching of documents over these nodes
representing the user preferences. Our preliminary experiments show the merits of such an approach
and open new avenues of research in this area.

1 Introduction and Problem Description

Alice is a graduate student in Medical Sciences with interests in gardening and cooking. Bob is a pho-
tographer, who loves traveling in Europe and is a big football fan. Imagine a situation when both of
them are browsing an online digital library. Alice would be pleased to find the system recommend her
books/documents/journals related to her interests, while Bob would prefer the system to reflect his inter-
ests. The whole scenario is similar to searching or retrieving documents for a user, from a large noisy data
set, having documents from a large domain of topics/themes/subjects. In such a case, the performance
of the system would be more appreciable if it reflected the users preferences and react in a personalised
manner to the user queries. The relevancy of the recommended documents to the user, would be very good
if the system had prior knowledge of the user’s interests.

In an IR system, the user is without doubt the most essential part of the system and implementing
User Preferences in the Recommendation Systems or Data Retrieval/Search Engines has attracted a good
amount of research in the recent times. In this paper, we present our approach towards implementing user
preferences and make use of a running example to explain the advantages of this approach. In Section 2
we survey some related work done and in Section 3 we present our approach and elicit its finer details. In
Section 4 we describe our implementation with a test collection and report some results of user evaluations
in Section 5. In Section 6 we conclude with some recommendations of future work.

2 Related Work

Query personalization and modeling of user’s needs have attracted interest in both IR and Database re-
search communities. Koutrika and Ioannidis define a preference model for personalization of queries

3

in database systems [12]. The authors present a framework which makes use of structured user pro-
files(storing simple, unconditional preferences) for personalizing the database queries. While the rewrit-
ing of the queries needs some optimization work, under the constraints of running time, this work provides
one of the first solutions towards a good integration of databases and user personalization. Satisfying user
needs could be done in an efficient manner by implementing user preferences in a Database System, at the
same time personalization of the services requires a flexible modeling technique for user preferences.

There is a strong contrast in the Database queries, which are characterized by hard constraints, de-
livering the objects if available or rejecting the user’s request and the ”real world” where the personal
preferences behave differently. The preferences in the real world negotiate for the best possible match and
are hence treated as soft constraints as in [11]. Kießling et al propose a model which treats preferences as
strict partial orders. They present several constructors and algebraic laws for modeling of preferences. To
bypass the problems posed by empty-result, exact-match query models and flooding effect in e-commerce
applications, a ”Best Matches Only” (BMO) query model is proposed, which makes the suitable matches
between wishes(preferences) and reality [11].

A similar framework has been suggested by Chomicki in [6], where preferences are specified using
first-order logical formulas and embedding them into relational algebra by introducing a new operator
called winnow that selects the most preferred tuples. The author focuses mostly on intrinsic preferences,
based only on values occurring in tuples. The semantics of the winnow operator are similar to the BMO
Query model. Several properties of preferences (intrinsic, extrinsic, etc.) including iterated preferences
are discussed, however it does not mention about Pareto preferences as in [11]. The framework of [1]
uses quantitative preferences in queries and discusses the issue of combining various user preferences.
However, it does not provide any description of the semantics for these queries. As an extension to
their work [7], presents few semantic optimization techniques for preference queries to remove redundant
occurances of their winnow operator. But application of these techniques is limited to the authors previous
work and does not cover several aspects, for example the referential integrity constraints. our work is
orthogonal to the work done on utility elicitation techniques, such as the one by [5], where the authors
tackle the problem of eliciting the user utility function as a classification problem.

3 Modeling of User Preferences

In [15], the authors list out the key issues related to implementing preference-based search systems.
Among these, in this paper, we deal with the preference modeling assuming that the system has prior
knowledge of users preferences.

We consider a hierarchical structure to model the user preferences (as shown in Figure 1). The higher
a node appears in the Preference Tree, the more general is the concept it represents. As she traverses
deeper down the tree, the user becomes more and more specific with her preferences. In our Preference
Tree model, each of the node consists of a tuple - 〈name, ω〉.

- where ’name’ is the preference name, and ’ω’ is the preference-weight, which we introduce as a
measure of relative preference among the siblings of a particular node

For example consider a section of a user’s preference tree as shown in figure 2. The hierarchy of
preferences for Germany and Italy, both being sibling nodes with common ancestors Sports and
Football, are as shown

Figure 1: Model Preference Tree

Figure 2: Sample Preference Tree

Sports −→ Football −→ Germany

Sports −→ Football −→ Italy

where ωGermany and ωItaly (0.4 and 0.6 respectively in the figure) parameters give an indication of
the relative preference between them.

ω - Properties: for all the sibling nodes on one level the ω values are normalised to 1.

•
∑

ωi = 1 where ωi is the weight for a node ”i”. We do this to normalize the sibling preferences,
to quantize the relative preference among them.

• if ωA < ωB ⇒ the user prefers B as compared to A. Referring to the above example, ωGermany <
ωItaly, i.e. the user gives higher preference to the Italian Football team as compared to the German
Football team, though both these preferences are of some interest to the user.

• the preference weight for a node ωA is independent of the preference weights of its parents or
children and is only related to preference weight of its sibling nodes. Considering the same example
preference, if a user prefers the Italian Football team, we consider its relative preference as compared

to its sibling preferences, as the preference weight of its parent (Football), would not influence in
anyway the relativeness of sibling preferences.

These user preferences are stored in a database and are loaded into the runtime environment while
doing similarity matching with the documents from the collection corpus. Further issues regarding how
we implement it are dealt with in the next section.

3.1 Preference Weight Vector

We claim that the semantic information of a preference is stored latently in the hierarchical architecture we
propose, as our ideas are based on the ones proposed by [9] and [10]. Similar to the Conjunctive Normal
Forms suggested by the authors, we store the relationship between a node and its ancestors in the form a
preference-weight-vector, which is stored along each of the nodes in the tree. Considering the example
illustrated in figure 3, let us look at the two different sections of the preference tree having a common root
node.

Figure 3: Sample Preference Tree

The node Italy under the path
Sports −→ Football −→ Italy
is semantically different from the node Italy under the path
Travel −→ Europe −→ Italy,
since their position in the tree and hence their semantic meanings are different from one another i.e. if we
follow the formalism proposed by Giunchiglia et al. the logical formulas corresponding to the node would
be

[...Sports∧Football∧Italy]

[...Travel∧Europe∧Italy]

With this approach it becomes easier to distinguish between documents having the same terms but hav-
ing totally different semantic meanings. For instance, a document is describing some touristic information
about Italy, with some travel tips etc. The term Italy appears prominently in its text. Usually with the
regular document matching methods involving similarity measure of vectors, this document would find

a match on the node Italy under Sports as well as at the node Italy under Travel. But with
our approach, it becomes easier to disambiguate the semantic sense, perform proper matching and place
this document at the node Italy under Travel. In this way, if the document matching is done using
the preference weight vector, it becomes easier for the algorithm to distinguish between two documents
having Italy as a prominently appearing term, but both being different semantically - one describing the
travel tips for Italy and the other describing the Italian football team.

For any given node in the preference tree, we store this preference weight vector (containing the given
node term along with its ancestors) at each node of the tree.

One would argue that while doing similarity matching between the preference weight vector of a
node with the document vectors from the collection corpus, there could be some false positives in the
results, since the ancestor node terms appear along with their ω-values in the preference weight vector of
a particular node. For this reason we introduce the scaling of the ancestor ω-values for a given node.

3.2 Scaling of ω values

The preference weight vector for a node A, contains its preference weight ωA and the scaled value of its
ancestors preference weights.

for a given preference node A with preference-weight ωA,

if node B is a parent/ancestor then its scaled preference-weight is

ωB′ = ωB ∗ 1/mk

where m ≥ 2, (for the experiments in this work, we consider m = 2, we are currently studying the
relation of m over the retrieved results and shall report any interesting observation in our follow-up
work)

k is its path distance, along the tree, from the node A

The scaling of the ω values of the ancestors is necessary to reflect the hierarchical relationship between
the nodes and to diminish the influence of the preference weights of the ancestor nodes, relative to the
distance of the ancestor node from the particular node.

For each step k one goes up the tree along the path of the ancestors, the scaled weight is 1/2k ∗ ωA

where ωA is the original preference weight of node A.
Consider a sample path as shown below, with the arrow direction indicating the parent −→ child

relation

... A[ωA] −→ B[ωB] −→ C[ωC] −→ D[ωD]

so the preference-weight-vector for the node D looks like

[..., A = ωA′ , B = ωB′ , C = ωC′ , D = ωD]

this is how the calculations are done:

- for node A, k = 3 ⇒ ωA′ = ωA ∗ 1/23

- for node B, k = 2 ⇒ ωB′ = ωB ∗ 1/22

- for node C, k = 1 ⇒ ωC′ = ωC ∗ 1/21

In this manner the influence of the preference weight of the ancestors is slowly diminishing as we are
moving away from the node. Considering an example similar to the one mentioned before.

... Sports[ωSports] −→ Football[ωFootball] −→ Italy[ωItaly] −→ Buffon[ωBuffon]

the preference-weight-vector for the node Buffon would be

[..., Sports = ωSports′ , Football = ωFootball′ , Italy = ωItaly′ , Buffon = ωBuffon]

In this case the documents talking about Buffon and having semantics of Italian Football would have
the highest similarity match to this node, while documents on Italian football, Football in general or Sports
in general sense would have lower similarity match. In this way, though we retain the semantic information
from the ancestor nodes, we reduce the possibility of false positives occuring caused by the ancestor terms,
while doing similarity matching with term weight vectors for the documents.

4 Experiments

For our implementation work, we adapt the Model-View-Controller1 paradigm - separating the applica-
tion’s data model, user interface and the control logic into three distinct components so that modifications
to one component can be made with minimal impact to the others. The Model encapsulates the core ap-
plication data and functionality, the View obtains data from the model and presents it to the user and the
Controller receives and translates input to requests on the Model or the View.

We made use of the Cranfield Test Collection [8] to test our algorithm. In addition to the 1400
documents available in this collection, we have added some more documents, obtained after crawling
and parsing the text of the web pages collected from the websites of BBC2 and Wikipedia3. This was
done to add some variance to the content and themes of the documents available, so that we could test
the functioning of the algorithm for different sets of preference profiles. For each of the document in the
collection corpus, we create the term frequency - inverse document frequency vector using the classical
TF-IDF measure [14], where wgt of a term in the particular document is given by

wgt = tf * idf

where

tf = ni
Σknk

ni is the frequency of occurance for the ith term and k is total number of terms appearing in the
document.

idf = log |D|
|(di⊃ti)|−|D|

where log |D| is the total number of documents in the corpus, |(di ⊃ ti)| is the number of documents
in which the term appears.

1http://www.phpwact.org/pattern/model view controller
2http://www.bbc.co.uk/
3http://en.wikipedia.org/wiki/Main Page

We apply the Porter Stemmer algorithm [13], on each of these terms to strip any suffixes, if
present.

The user preferences were obtained explicitly from the users and stored in the form of a hierarchical
Tree structure. We implemented the hierarchical trees in SQL, using the Adjacency List Model prescribed
by [4]. The SQL tables containing the tree nodes and their relations were stored in a PostGres database.

The user interface and the control logic was implemented in Java. At present we have an elementary
user interface. In this paper we are introducing our inceptual ideas, improvising the GUI to interact
effectively with the user - to capture the users preferences/interests implicitly and to present the retrieved
results in a better way is part of our future work.

The pseudo code of our algorithm is as described below. The CollectionCorpus is our Test Collection
as described above. PreferenceTree is the hierarchical tree of user preferences which is loaded from
the data base into the Java environment. The variable parameter ’k’ can be set at run time. For our tests
we select (an arbitrary choice of) the top 30% of the retrieved results. The end result is a ranked list of
documents which are relevant to the users interests.

Algorithm 1 Weight-based Preference matching
Input: PreferenceTree, k
Output: Matching documents

for all document ∈ CollectionCorpus do
form the term− frequency − vector
for all term ∈ term− frequency − vector do

apply Porter Stemmer to remove any suffix
end for

end for
for all node ∈ PreferenceTree do

get the ancestors
form the preference− weight− vector
scale the ω values of the ancestors
perform similarity measure with the term− frequency − vectors
rank documents with highest match
return top-k documents

end for
return overall ranked list of documents for the entire PreferenceTree

The similarity measurement is done using the classical cosine similarity given by the formula

sim(pwv,tfv) = |pwv • tfv|/|pwv| ∗ |tfv|

where pwv and tfv are preference−weight−vector and term−frequency−vector respectively

As for the ranking function, we have now implemented a simple ordering based on frequency of
occurence. Currently we are exploring some better ways to rank our retrieved results, based on the ideas
proposed in [2] . In our follow up work, we shall implement a better ranking algorithm.

5 Evaluation with Users

We evaluated the effectiveness of the results retrieved by our algorithm, by doing a study involving 15
users4. The users were asked explicitly for their interests and preferences on a wide range of topics. These
preferences were later stored as personal preference trees for each of the users and given as an input to the
retrieval system. The documents retrieved by the system were ranked and distributed among the users for
evaluation. We asked for their feedback on the relevancy of these retrieved documents to their interests.

Figure 4: Questionnaire

The feedback questionnaire was as depicted in the figure above, asking explicitly for the users opinion
on the relevancy for each of the document - by marking it as either Not Relevant, Relevant, or
Highly Relevant. The users were also asked for their general opinion on the retrieved documents,
about the overall relevancy to their interests in general. The evaluation results show some interesting
results.

5.1 Results

All the users (with one exception) reported that the documents returned by the system were relevant to
their interests (as depicted in figure 5). A look into the relevancy percentage of the documents show
some positive results. We observed one interesting pattern - the users, who had elicited in detail their
preferences, by giving an exhaustive list of their interests and relative choices among them, had found a
larger percentage of the retrieved documents to be relevant to them, as compared to those users who were
very brief in describing their preferences.

Figure 5: Relevancy of Documents
4graduate students from our University Campus

If we make a deeper analysis of the documents labeled as relevant, we find some skewed results (as
seen in Figure 6). Many users found a majority of the documents to be just relevant and not highly relevant.
We interpret this behavior due to two reasons.

• Firstly, our approach in this paper is to find documents relevant to a user by matching her pref-
erences. We are not doing any work on evaluating the interestingness of the document, before
recommending it to her. Interestingness of a document is a measure of the information content or
quality of information contained in the document, and is an altogether different research problem
in the data mining community. For instance, in one user evaluation feedback, the student found
most of the documents were not highly relevant to her. According to her, the information content
in the recommended documents was very general in tone, as she was not gaining any new infor-
mation. Though these documents were relevant to her preferences, she did not find them to be of
high information value. (In this case, since this student was passionate about photography, she said
that though the documents about photography in general were relevant to her, they did not give any
detailed information about any specialised form of photography). However, we make a note of it as
a probable extension for our work. Since this paper presents our introductory work, we leave this
issue for future work.

• Secondly, the nature of the Test Collection we have used could have influenced the results. The
Cranfield Collection is not very huge and does not cover a variety of themes. The pages we added to
the collection, after having crawled from the websites mentioned were also very general in content,
with not much specialised information. We think by adding a much larger number of documents
to our collection, or probably by retrieving results by searching on the Internet using the user pref-
erences (which is one of our major extensions for future work), we can retrieve documents which
would be highly relevant to the user.

Figure 6: Specific Relevancy

6 Conclusion and Future Work

This is our preliminary work in this direction and the implementation discussed is inceptual if not com-
prehensive. We present our work as a proof-of-concept in this paper.

As discussed, the existence of a vast amount of document collections leads to an overwhelming ex-
perience for users who attempt to browse through them. Work on user preferences has recently acquired
more attention in order to retrieve and rank the documents relevant to a user, from a large corpus of doc-
uments. We have presented an approach based on hierarchical modeling of a user’s interests/preferences.

We have also seen that by introducing a small metric of preference weight on each of the nodes of the
preference tree, we were able to handle the relative choice between common interests (which appear as
sibling nodes in the tree). The results and evaluation study with users, strengthen the claim that our pro-
posed hierarchical structure efficiently handles the semantics of the users’ interests and performs proper
gathering/matching of documents over these nodes. Our preliminary experiences demonstrate the merits
of such an approach and open new avenues of research in this area. Though our work may appear similar
to the one proposed by [3], as our Preference Tree may be inferred as the user ontology used by them,
we claim that our approach is different in the sense that we introduce the weight parameter to quantize
the relative preferences and we implement semantics latently in the Preference Weight Vector stored at the
nodes of the tree representing the user preferences.

As stated before, there are several issues we need to address to. As an extension work, we are now
looking into ways and methods to capture the users preferences implicitly, implement the whole system
over an existing search engine and perform comparative analysis with any existing state of the art pref-
erence handling systems. For this purpose we are now working on a GUI interface which the user can
interact and the results can be displayed to her. We also need to look into the scalability issues, and
optimize the run-time efficiency of the retrieval engine.

We want to expand our test collection and implement our algorithm over a much larger collection
of documents. As for the evaluation of the algorithm, we need to test it with a large set of people from
different backgrounds, so that we can observe how the algorithm reacts to different groups of people with
varied sets of preference profiles.

The overall ranking of the total retrieved documents should also reflect the relative hierarchy of pref-
erences among the users interests. We are exploring methods to implement this intuition, such that the
hierarchy of the user preferences is maintained in the overall retrieved document set. As mentioned earlier,
we also hope to implement some techniques to improve the interestingness of the content in the document
labeled as relevant to the user.

References

[1] R. Agrawal and E. L. Wimmers. A framework for expressing and combining preferences. In SIG-
MOD Conference, pages 297–306, 2000.

[2] B. T. Bartell. Optimizing ranking functions: a connectionist approach to adaptive information re-
trieval. PhD thesis, La Jolla, CA, USA, 1994.

[3] D. Caragea, J. Z. 0002, J. Bao, J. Pathak, and V. Honavar. Algorithms and software for collaborative
discovery from autonomous, semantically heterogeneous, distributed information sources. In ALT,
pages 13–44, 2005.

[4] J. Celko. SQL for Smarties: Advanced SQL Programming. Morgan Kaufmann, 1995.

[5] U. Chajewska, L. Getoor, J. Norman, and Y. Shahar. Utility elicitation as a classification problem.
In UAI, pages 79–88, 1998.

[6] J. Chomicki. Querying with intrinsic preferences. In EDBT, pages 34–51, 2002.

[7] J. Chomicki. Semantic optimization of preference queries. In CDB, pages 133–148, 2004.

[8] C. W. Cleverdon. The significance of the cranfield tests on index languages. In SIGIR, pages 3–12,
1991.

[9] F. Giunchiglia, M. Marchese, and I. Zaihrayeu. Towards a theory of formal classification. In Techni-
cal Report DIT-05-048, Informatica e Telecomunicazioni, University of Trento, 2005.

[10] F. Giunchiglia, P. Shvaiko, and M. Yatskevich. S-match: an algorithm and an implementation of
semantic matching. In ESWS, pages 61–75, 2004.

[11] W. Kießling. Foundations of preferences in database systems. In VLDB, pages 311–322, 2002.

[12] G. Koutrika and Y. E. Ioannidis. Personalization of queries in database systems. In ICDE, pages
597–608, 2004.

[13] M. F. Porter. An algorithm for suffix stripping. Program, 14(3):130–137, July 1980.

[14] G. Salton and C. Buckley. Term-weighting approaches in automatic text retrieval. Inf. Process.
Manage., 24(5):513–523, 1988.

[15] P. Viappiani and B. Faltings. Design and implementation of preference-based search. In Springer,
editor, The 7th International Conference on Web Information Systems Engineering, LNCS4255,
Wuhan, China, October 2006.

