
DEPARTMENT OF INFORMATION ENGINEERING AND COMPUTER SCIENCE
IECS Doctoral School

DEEP LEARNING

APPROACHES FOR

TIME-EVOLVING SCENARIOS

Alessia Bertugli

Advisor:
Prof. Andrea Passerini
Università degli Studi di Trento

Co-Advisor:
Prof. Simone Calderara
Università degli Studi di Modena e Reggio Emilia

April 2023

Review committee composed of:

Prof. Simone Palazzo
Assistant Professor

Università degli Studi di Catania
Catania

Prof. Vincenzo Lomonaco
Assistant Professor
Università di Pisa

Pisa

Deep Learning Approaches for Time-Evolving Scenarios iii

A mio nonno Dante, per aver reso Casa del Vento cosı̀ speciale.

Deep Learning Approaches for Time-Evolving Scenarios v

Abstract

One of the most challenging topics of deep learning (DL) is the analysis of tem-
poral series in complex real-world scenarios. The majority of proposed DL meth-
ods tend to simplify such environments without considering several factors. The
first part of this thesis focuses on developing video surveillance and sports ana-
lytic systems, in which obstacles, social interactions, and flow directions are rel-
evant aspects. A DL model is then proposed to predict future paths, taking into
account human interactions sharing a common memory, and favouring the most
common paths through belief maps. Another model is proposed, adding the pos-
sibility to consider agents’ goals. This aspect is particularly relevant in sports
games where players can share objectives and tactics. Both the proposed models
rely on the common hypothesis that the whole amount of labelled data is avail-
able from the beginning of the analysis, without evolving. This can be a strong
simplification for most real-world scenarios, where data is available as a stream
and changes over time. Thus, a theoretical model for continual learning is then
developed to face problems where few data come as a stream, and labelling them
is a hard task. Finally, continual learning strategies are applied to one of the
most challenging scenarios for DL: financial market predictions. A collection of
state-of-the-art continual learning techniques are applied to financial indicators
representing temporal data. Results achieved during this PhD show how artificial
intelligence algorithms can help to solve real-world problems in complex and
time-evolving scenarios.

Keywords
[Trajectory forecasting, continual learning, meta-learning, finance]

Deep Learning Approaches for Time-Evolving Scenarios 1

Contents

Contents 3

List of Tables 7

List of Figures 9

1 Introduction 13
1.1 The context . 13
1.2 Summary of contributions . 14

1.2.1 Trajectory forecasting 14
1.2.2 Continual learning in complex scenarios 15
1.2.3 Continual learning in finance 16

1.3 Structure of the thesis . 16

2 Literature Survey 19
2.1 Trajectory forecasting . 19

2.1.1 Position-based models 20
2.1.2 Graph-based models 20

2.2 Complex learning environments 21
2.2.1 Continual learning . 21
2.2.2 Meta-learning . 22
2.2.3 Meta-learning for continual learning 24

2.3 Financial predictions . 25

3 Trajectory Forecasting in Real-World Environment 27
3.1 Problem formulation . 29
3.2 Predictive VRNN . 30

Deep Learning Approaches for Time-Evolving Scenarios 3

3.3 Attentive hidden state refinement 31
3.4 AC-VRNN: conditional-VRNN on belief maps 33
3.5 DAG-Net: conditioning VAE to agents’ goals 36
3.6 Experiments . 39

3.6.1 Datasets . 39
3.6.2 Metrics . 40
3.6.3 Training protocol . 40
3.6.4 Quantitative results . 41
3.6.5 Ablation experiments 45

3.6.5.1 AC-VRNN 48
3.6.5.2 DAG-Net . 48

3.6.6 Qualitative results . 50
3.6.6.1 AC-VRNN 50
3.6.6.2 DAG-Net . 54

3.6.7 Implementation details 55
3.6.7.1 AC-VRNN 55
3.6.7.2 DAG-Net . 56

4 Meta-Continual Learning in Complex Scenarios 59
4.1 Method . 62

4.1.1 Embedding learning 63
4.1.2 Clustering . 64
4.1.3 Meta-continual train 64
4.1.4 Meta-continual test . 68

4.2 Experiments . 69
4.2.1 Few-shot Unsupervised Continual Learning 69

4.2.1.1 Datasets . 69
4.2.1.2 Architecture 69
4.2.1.3 Training protocol 70
4.2.1.4 Performance analysis 70

4.2.2 Supervised continual learning 72
4.2.2.1 Datasets . 72
4.2.2.2 Architecture 73
4.2.2.3 Training protocol 73
4.2.2.4 Performance analysis 73
4.2.2.5 Time analysis 74

4.2.3 Ablation experiments 75
4.2.4 Generalisation across datasets 79

4 Deep Learning Approaches for Time-Evolving Scenarios

4.2.4.1 Datasets . 79
4.2.4.2 Architecture 79
4.2.4.3 Training protocol 79
4.2.4.4 Performance analysis 80

5 Continual Learning Techniques for Financial Market Predictions 81
5.1 Method . 82

5.1.1 Financial time series and indicators 83
5.1.2 Definition of domain regimes 85
5.1.3 Continual learning techniques 86

5.1.3.1 Gradient Episodic Memory 86
5.1.3.2 Averaged Gradient Episodic Memory 87
5.1.3.3 Synaptic Intelligence 88
5.1.3.4 Elastic Weight Consolidation 89
5.1.3.5 Experience Replay 90
5.1.3.6 Dark Experience Replay 90

5.2 Experiments . 91
5.2.1 Datasets . 91
5.2.2 Metrics . 92
5.2.3 Architecture . 92
5.2.4 Quantitative results . 93

6 Conclusions 96
6.1 Trajectory forecasting in real-world environment 96
6.2 Meta-Continual learning in complex scenarios 97
6.3 Continual learning techniques for financial market predictions . 98

List of publications 101

Bibliography 107

Deep Learning Approaches for Time-Evolving Scenarios 5

List of Tables

3.1 Quantitative results of considered methods for ETH and UCY
datasets. We report Average Displacement Error (ADE) and Final
Displacement Error for unimodal methods and TopK ADE and
TopK FDE (with K = 20) for multi-modal ones. The results
were obtained for tobs = 8 and tpred = 12 (in meters). The first
block of experiments regards the use of data employed by S-GAN
and STGAT models; the second one uses the SR-LSTM version
of data while the last experiments are trained with the S-Ways
protocol. On average, our model outperforms several methods
showing a slightly worse FDE error when the S-Ways protocol is
employed. No belief maps appear necessary for SR-LSTM data
version. 42

3.2 Results for tobs = 8 and tpred = 12 on Stanford Drone Data-
set (in meters). AC-VRNN significantly reduces TopK ADE and
TopK FDE error metrics. Average NLL is the best one among all
approaches while collision errors are below 1% for all methods. 43

3.3 Results for tobs = 10 and tpred = 40 in feet on STATS SportVU
NBA dataset. 43

3.4 Results for tobs = 8 and tpred = 12 in meters on inD dataset. . . 43
3.5 Results for tobs = 9 and tpred = 12 in meters on TrajNet++.

For unimodal methods ADE and FDE metrics are reported while
for multimodal ones we reported the TopK ADE and TopK FDE
metrics with K = 3. 44

3.6 Long-term quantitative evaluations for DAG-Net model on STATS
SportVU NBA dataset. 45

Deep Learning Approaches for Time-Evolving Scenarios 7

3.7 Ablation experiments showing TopK ADE and TopK FDE for
tobs = 8 and tpred = 12 in meters on ETH, UCY and SDD
datasets. The AVG column reports average results for ETH and
UCY datasets. 48

3.8 Ablation experiments showing TopK ADE and TopK FDE for
tobs = 8 and tpred = 12 for SDD dataset. 49

3.9 Ablation experiments for DAG-Net on STATS SportVU NBA
dataset. 49

3.10 Ablation experiments for DAG-Net on Stanford Drone Dataset. . 50
3.11 Main hyperparameters used to train both AC-VRNN and A-VRNN

models on tested datasets. 55
3.12 Detailed description of each module of our AC-VRNN architecture. 56

4.1 Features comparison between FUSION and several works recently
proposed in the literature involving continual learning and few-
shot learning in the wild. 61

4.2 Meta-test test accuracy on Omniglot. 71
4.3 Meta-test test accuracy on Mini-ImageNet. 72
4.4 Training time and GPU usage of MEML and MEMLX compared

to OML on Omniglot and Mini-ImageNet. 72
4.5 MEML and MEMLX compared to state-of-the-art continual learn-

ing methods on Sequential MNIST (left) and Sequential CIFAR-
10 (right) in class-incremental learning. 74

4.6 Forward transfer, backward transfer and forgetting comparison
on Sequential MNIST (left) and Sequential CIFAR-10 (right) in
class-incremental learning. 75

4.7 Meta-test accuracy on balanced vs. unbalanced CACTUs-MAML
on Omniglot. 78

4.8 Meta-test test accuracy on CIFAR-100. 80
4.9 Meta-test test accuracy on Cub. 80

5.1 Results of tested methods on the Brent Oil dataset. For accuracy,
backward and forward transfer bigger is better. 93

5.2 Results of tested methods on the copper dataset. For accuracy,
backward and forward transfer bigger is better. 93

8 Deep Learning Approaches for Time-Evolving Scenarios

List of Figures

3.1 Illustration of each phase of our AC-VRNN architecture for a
time step t. A recurrent variational autoencoder is conditioned
on prior belief maps bt−1. The hidden state of the RNN ht−1 is
refined with an attentive module obtaining h′t, that replaces ht in
the next step of recurrence. At inference time, it generates future
displacements using the prior network on ht and makes an online
computation of the adjacency matrix which defines connections
between pairs of nodes. 30

3.2 Scheme of the proposed attentive hidden state refinement process.
(a) The adjacency matrix is an irregular block matrix where each
block size is defined by the number of pedestrians in the current
scene. (b) Belief map during training for one sample using heat
similarity-based strategy. The map is centred at t − 1 to display
the sampled displacements distribution at t. 35

3.3 In (a) we can observe how goals deeply influence past and future
trajectories, guiding agents to specific portions of the court. In (b)
we can observe the similarities between the green player and his
teammates: these values will directly influence the recombination
of both goals and hidden states at the green node. 37

3.4 Scheme of DAG-Net architecture. It is composed of a Goal-Net
that learns to predict agents’ future goals; a VAE to generate dis-
placements at every time step; a RNN to consider the temporal
nature of the sequence. 38

Deep Learning Approaches for Time-Evolving Scenarios 9

3.5 Long-term quantitative evaluations: the method is evaluated both
in TopK ADE and TopK FDE for increasing prediction lengths,
from 10 to 40 time-steps on STATS SportVU NBA dataset. At-
tack on the top, defence on the bottom. All the metrics are in
feet. 46

3.6 Illustration of predicted trajectories using AC-VRNN, baselines
and competitive methods on Eth (left) and Zara1 (middle) scenes
of ETH and UCY datasets and gates 0 and deathCircle 1 of SDD
(right). 50

3.7 Heatmaps of the predictions probability distribution for long-term
predictions. The predictions are made for tobs = 8 and tpred =
20, 60, 120 and 200, respectively (from left to right). We select
Zara1 scene and observe that the trajectories are coherent with
the scene topology. 51

3.8 Multiple predictions of AC-VRNN trajectories to highlight the
multi-modality nature of our model on ETH and UCY datasets. . 52

3.9 Heatmaps representing probability distributions generated by our
model for ETH and UCY datasets. 53

3.10 Basketball roll-outs. After an initial observation stage (black),
model predictions (red) are evaluated against the ground truth
(blue), The top roll-outs refer to three different attack plays, while
the bottom one represents three different defensive actions. . . . 57

3.11 Qualitative samples that compare DAG-Net and state-of-the-art
methods on Stanford Drone Dataset. 58

10 Deep Learning Approaches for Time-Evolving Scenarios

4.1 Overview of FUSION learning strategy. The model is composed
of 4 phases: 1) an embedding learning network that learns a suit-
able embedding for each sample; 2) an unsupervised task con-
struction phase in which clustering is applied over these embed-
ding 3) a meta-continual training phase consisting of a two-loop
procedure performed on the unsupervised tasks built in phase 2.
The architecture for meta-continual training consists of a fea-
ture extraction network (FEN) that learns features useful across
tasks, a self-attention-based aggregation module that collapses
examples in the inner loop into a single meta-example, and a
classification network (CLN) that performs tasks-level classifica-
tion. The FEN is frozen in the inner loop (grey box); 4) a meta-
continual test phase that fine-tunes only the classification network
for new unseen classes. 60

4.2 Balanced vs unbalanced tasks flow. In the balanced version, tasks
contain a fixed number of elements for the inner loop (10 samples)
and outer loop (15 samples, 5 from the current cluster and 10 ran-
domly sampled from other clusters). In the unsupervised model,
tasks are unbalanced and contain two-thirds of cluster data for the
inner loop and one-third for the outer loop in addition to a fixed
number of random samples. 65

4.3 Augmentation technique adopted in MEMLX. 68
4.4 Training time comparison with respect to the accuracy between

the most important state-of-the-art continual learning methods. . 75
4.5 Experiments showing the capability of meta-example on Omniglot. 76
4.6 Comparison between unbalanced and balanced settings on Om-

niglot. 76
4.7 Comparison between unbalanced and balanced data on Omniglot. 76
4.8 Accuracy with different numbers of clusters on Mini-ImageNet. 76

5.1 Data flow of a financial time series in our setting. The prices time
series is subdivided into tasks by a change-point detector (dashed
red lines). Raw prices, relative to a certain period (determined
by a window length), are turned into financial indicators, that be-
come the inputs of the neural network. The problem consists of a
binary classification to predict prices trend (positive or negative)
at N time step later. 83

Deep Learning Approaches for Time-Evolving Scenarios 11

5.2 Performance results. Dashed lines indicate task change: reg-
ularization methods performance on Brent Oil dataset (a), re-
hearsal method performance on Brent Oil dataset (b), regular-
ization methods performance on the copper dataset (c), rehearsal
method performance on the copper dataset (d). 94

5.3 Training time comparison on Brent Oil dataset (a) on the left and
the copper dataset (b). 95

12 Deep Learning Approaches for Time-Evolving Scenarios

Chapter 1

Introduction

1.1 The context
Deep learning is commonly asked to solve difficult problems in real-world scen-
arios where many factors are involved. Among them, video surveillance and
time series forecasting are particularly challenging due to the interaction between
agents, the multiplicity of future possible paths, and the presence of static and
moving obstacles [2, 94, 117, 56, 121]. State-of-the-art DL methods usually face
these problems by reducing the amount of influencing factors, leading to poor
performance in the most evolution-prone contexts. Another aspect that influ-
ences the performance is how data are presented to the neural network. Indeed,
in most real-world applications, data are not available in fixed batches but come
as a stream [85, 89, 12, 73]. This way, the models should be able to rapidly adapt
to changeling data in order to achieve good performance. One of these targeted
problems is financial market prediction, where price time series generate trend
regimes evolving and repeating over time [74].
In this thesis, we focus on all these aspects. Firstly, we face trajectory forecast-
ing in video surveillance and sports analytics, proposing two methods able to
make predictions with interacting agents and obstacles. Then, continual learning
is studied to face a data stream. A novel method is proposed to be applied in
complex scenarios where traditional methods fail due to a lack of independent
and identically distributed labelled data. Then, continual learning techniques are
applied to financial time series predictions, showing successful performance on
repeating regimes.

Deep Learning Approaches for Time-Evolving Scenarios 13

The research on trajectory forecasting rises within PRIN PREVUE - PRedic-
tion of activities and Events by ”Vision in an Urban Environment” project (CUP
E94I19000650001), PRIN National Research Program, MUR.
The research on meta-continual learning is born from a collaboration between the
University of Modena and Reggio Emilia and the University of Trento.
Then, the research on continual learning in finance is realised in collaboration
with the University of Modena and Reggio Emilia and the company Axyon AI. It
is supported by FF4EuroHPC: HPC Innovation for European SMEs, Project Call
1, funded by the European High-Performance Computing Joint Undertaking (JU)
under grant agreement No 951745.

These three topics find their link to the complexity of the time-evolving scenarios.
All these topics are faced with applying novel deep learning techniques to real-
world complex environments with the aim of overcoming the limitation of state-
of-the-art approaches.

1.2 Summary of contributions
This thesis will present several contributions in three research areas: trajectory
forecasting, continual learning in complex scenarios, and continual learning ap-
plied to finance. We report below a summary of each topic and the proposed
solutions.

1.2.1 Trajectory forecasting
Anticipating human motion in crowded scenarios is essential for developing in-
telligent transportation systems, social-aware robots, advanced video surveillance
applications and sport tactics analysis. A key component of this task is rep-
resented by the inherently multi-modal nature of human paths which makes so-
cially acceptable multiple futures when human interactions are involved. To this
end, we propose two solutions. A generative architecture for multi-future tra-
jectory predictions based on Conditional Variational Recurrent Neural Networks
(C-VRNNs). Conditioning mainly relies on prior belief maps, representing most
likely moving directions and forcing the model to consider past observed dynam-

14 Deep Learning Approaches for Time-Evolving Scenarios

ics in generating future positions. Human interactions are modeled with a graph-
based attention mechanism enabling an online attentive hidden state refinement
of the recurrent estimation. This method is particularly useful in crowd scenarios
with obstacles, that can be avoided conditioning on belief maps. On the other
end, we consider that people activities, especially in sports, are often driven by
goals, e.g. reaching particular locations or interacting with the environment. We
address this aspect by adding to the aforementioned recurrent generative model
the possibility to take into account both single agents’ future goals and interac-
tions between different agents. The model exploits a double attention-based graph
neural network to collect information about the mutual influences among differ-
ent agents and integrates it with data about agents’ possible future objectives. To
corroborate our models, we perform extensive experiments on publicly-available
datasets (e.g., ETH/UCY, Stanford Drone Dataset, STATS SportVU NBA, In-
tersection Drone Dataset and TrajNet++) and demonstrate their effectiveness on
both crowded scenes and interactive sports compared to several state-of-the-art
methods.

1.2.2 Continual learning in complex scenarios
Future deep learning systems call for techniques that can deal with the evolving
nature of temporal data and scarcity of annotations when new problems occur.
This is indeed the case of video surveillance, autonomous robots, industrial AI
applications and all the deployed solutions that should, as humans do, aim for
life-long learning capabilities. As a step towards this goal, we present FUSION
(Few-shot UnSupervIsed cONtinual learning), a learning strategy that enables a
neural network to learn quickly and continually on streams of unlabelled data and
unbalanced tasks. The objective is to maximise the knowledge extracted from the
unlabelled data stream (unsupervised), favor the forward transfer of previously
learnt tasks and features (continual) and exploit as much as possible the super-
vised information when available (few-shot). The core of FUSION is MEML -
Meta-Example Meta-Learning – that consolidates a meta-representation through
the use of a self-attention mechanism during a single inner loop in the meta-
optimisation stage. To further enhance the capability of MEML to generalise
from few data, we extend it by creating various augmented surrogate tasks and by
optimising over the hardest. An extensive experimental evaluation on public com-
puter vision benchmarks shows that FUSION outperforms existing state-of-the-
art solutions both in the few-shot and continual learning experimental settings.
We also empirically demonstrate that FUSION maximises the positive feature

Deep Learning Approaches for Time-Evolving Scenarios 15

transfer and reuse across different datasets.

1.2.3 Continual learning in finance
Nowadays, financial markets produce a large amount of data, in the form of his-
torical time series, which quantitative researchers have recently attempted at pre-
dicting with deep learning models. These models are constantly updated with new
incoming data in an online fashion. However, artificial neural networks tend to
exhibit poor adaptability, fitting the last seen trends, without keeping the informa-
tion from the previous ones. Continual learning studies this problem, called cata-
strophic forgetting, to preserve the knowledge acquired in the past and exploiting
it for learning new trends. This thesis evaluates and highlights continual learning
techniques applied to financial historical time series in a context of binary classi-
fication (upward or downward trend). The main state-of-the-art algorithms have
been evaluated with data derived from a practical scenario, highlighting how the
application of continual learning techniques allows for better performance in the
financial field against conventional online approaches.

1.3 Structure of the thesis
This thesis is organised as follows. In Chapter 2, a review of the state of the art of
the proposed topics is presented. In particular, in Section 2.1 a survey of traject-
ory forecasting methods is done; in Section 2.2 complex learning environments
involving continual learning and meta-learning are described; in Section 2.3 ma-
chine learning and deep learning techniques for financial time series prediction
are introduced.
Chapter 3 depicts the proposed method for trajectory forecasting. In particular, in
Section 3.1, Section 3.2 and Section 3.3 the problem formulation, the variational
recurrent neural network architecture and the hidden state refinement method,
used in both the proposed models are presented. In Section 3.4 and Section 3.5
AC-VRNN, conditioning the VRNN on belief map, and DAG-Net, conditioning
agents’ goals are described in details. Finally, Section 3.6 shows extensive exper-
imental analysis of the two methods.
Chapter 4 proposes the description of our learning strategy in a meta-continual
learning setting, FUSION and our novel algorithms, MEML and MEMLX in
Section 4.1, and the experimental results comparing to other state-of-the-art ap-
proaches in Section 4.2.

16 Deep Learning Approaches for Time-Evolving Scenarios

Chapter 5 investigates continual learning techniques in finance. In detail, Sec-
tion 5.1 introduces financial time series and indicators, domain regimes, and the
most famous state-of-the-art continual learning methods; while Section 5.2 shows
results of the latter on market price datasets.
Finally, Chapter 6 presents a discussion on the three topics faced in this thesis,
along with a brief introduction to future intentions. Trajectory forecasting, con-
tinual learning, and finance conclusions are reported respectively in Section 6.1,
Section 6.2, and Section 6.3.

Deep Learning Approaches for Time-Evolving Scenarios 17

Chapter 2

Literature Survey

In this section, a review of the state of the art of the research topics investigated
in this thesis is reported. In particular, Sec. 2.1 depicts the principal methods
introduced in literature for trajectory forecasting. Sec. 2.2 illustrates continual
learning and meta-learning techniques implied in complex scenarios, in which
neural networks struggle to learn. Finally, Sec. 2.3 describes financial market
prediction, and the continual learning approaches that can be used to face cata-
strophic forgetting.

2.1 Trajectory forecasting

Traditionally, trajectory prediction has been approached with rule-based and so-
cial force models ([40, 76, 118]) that have been proven to be effective in simple
contexts, but fail to generalize to complex domains. In recent years, generative
models ([37, 120, 101, 56, 45]) have been focusing on the multi-modal nature
of this task since multiple human paths could be regarded as socially acceptable
despite being different from ground-truth annotations. In the following, we group
related work into position-based models, which use only spatial information, and
graph-based models, which rely on connected structures.

Deep Learning Approaches for Time-Evolving Scenarios 19

2.1.1 Position-based models

Social-LSTM ([2]) models individual trajectory as a long short-term memory
(LSTM) encoder-decoder and considers interactions using a social pooling mech-
anism. Social GAN ([37]) uses a pooling mechanism in combination with a gen-
erative model to predict socially acceptable trajectories. SoPhie ([94]) consists of
a Generative Adversarial Network (GAN), which leverages the contribution of a
social attention module and a physical attention module. SS-LSTM ([113]) uses
different inputs to also take into account the influence of the environment and
maps of the neighbourhood to narrow the field of mutual influences.

2.1.2 Graph-based models

Graph Neural Networks (GNNs) have been used to model interactions between
different trajectories. Graph Variational RNNs ([116]) model multi-agent traject-
ory data mainly focusing on multi-player sports games. Each agent is repres-
ented by a VRNN where the prior, the encoder and the decoder are modelled as
message-passing GNNs, allowing the agents to weakly share information through
nodes. Graph-structured VRNN network ([101]), based on relation networks, in-
fers the current state and forecasts future states of basket and football players’
trajectories. SR-LSTM ([121]) uses a state refinement module through a motion
gate and pedestrian-wise attention. Social-BiGAT ([56]) presents a graph-based
generative adversarial network based on GAT ([108]) that learns reliable future
representations that encode the social interactions between humans in the scene
and contextual images to incorporate scene information. ST-GAT ([117]) pro-
poses a model based on two levels of LSTMs to incorporate interactions through
a hidden state refinement. It uses GAT into the encoding part, while a decoder
generates future positions.
Compared to approaches based on Variational Autoencoders (VAEs) ([116, 101,
54]), our methods do not model the prediction as a graph yet use an attentive
module to refine the hidden state of a recurrent network. In doing so, information
about other agents influences the prediction. Unlike sports games, where all play-
ers share the same goal, in urban scenarios neighbourhood information is crucial
since future paths may depend on mutual distances among people. Our models
resemble SR-LSTM ([121]) and STGAT ([117]) combining LSTMs and GNNs.
Nevertheless, SR-LSTM ([121]) exploits cell states of LSTMs limiting the ob-
servation horizon. STGAT ([117]) uses GAT ([108]) as hidden state refinement,
but it employs a sequence-to-sequence model without an online refinement. Both

20 Deep Learning Approaches for Time-Evolving Scenarios

methods do not take into account contextual information or collective behaviours
(e.g., belief maps) in order to avoid uncommon paths.

2.2 Complex learning environments

2.2.1 Continual learning

Continual learning is one of the most challenging problems in deep learning re-
search since neural networks are heavily affected by catastrophic forgetting when
data are available as a stream of tasks. In more detail, neural networks tend
to focus on the most recent tasks, overwriting their past knowledge and con-
sequently causing forgetting. Further, a common continual learning scenario is
task-incremental classification, where each task Ti denotes a particular classi-
fication dataset. The model’s evaluation occurs by averaging the metrics across
all tasks (the same tasks, with different samples, already seen at train time). As
theoretically exposed in [105], there are three main evaluation protocols for com-
paring methods’ performance: Task-IL, Domain-IL and Class-IL. Task-IL is the
easiest scenario since task identity is always provided, even at test-time; Domain-
IL only needs to solve the current task, no task identity is necessary; Class-IL
instead intends to solve all tasks seen so far with no task identity given. Much of
the recent literature [47, 6, 12] is directed towards methods that do not require the
detection of task change. Our proposed approach follows this line of research,
using a rehearsal technique to avoid forgetting without the need for task identity
and targeted solutions to find them. Finally, continual learning methods can be
divided into three main categories.
Architectural strategies. They are based on specific architectures designed to
mitigate catastrophic forgetting [91, 95]. Progressive Neural Networks (PNN) [91]
are based on parameter-freezing and network expansion, but suffer from a capa-
city problem because it implies adding a column to the neural network at each
new task, so growing up the number of tasks training the neural network be-
comes more difficult due to exploding/vanishing gradient problems. Progress &
Compress [95] tries to solve this problem by augmenting and reducing the neural
network size.
Regularisation strategies. They rely on putting regularisation terms into the loss
function, promoting selective consolidation of important past weights [55, 119].
Elastic Weights Consolidation (EWC) [55] uses a regularization term to control
catastrophic forgetting by selectively constraining the model weights that are im-

Deep Learning Approaches for Time-Evolving Scenarios 21

portant for previous tasks through the computation of the Fisher information mat-
rix of weights importance. Synaptic Intelligence (SI) [119] can be considered as
a variant of EWC, that computes weights importance online during SGD.
Rehearsal strategies. Rehearsal strategies focus on retaining part of past in-
formation and periodically replaying it to the model to strengthen connections
for memories, involving meta-learning [86, 100], a combination of rehearsal and
regularisation strategies [73, 19], knowledge distillation [34, 65, 42, 62], gener-
ative replay [96, 97, 70] and channel gating [1]. Experience Replay [89] stores a
limited amount of information from the past and then adds a further term to the
loss that takes into account loss minimization on the buffer data, besides the cur-
rent data. Meta-Experience Replay (MER) [86] is based on Reptile [78], which
induces a meta-learning update in the process and integrates an experience re-
play buffer, updated with reservoir sampling, facilitating continual learning while
maximizing transfer and minimizing interference. Gradient Episodic Memory
(GEM) [73] and its more efficient version A-GEM [19] is a mix of regularization
and rehearsal strategies. They use a fixed dimensional memory to store the last
examples for each task and then add a constraint to the loss that leads to updates
that do not increase the loss of the previous tasks.
Other Approaches. Only a few recent works have studied how to solve a con-
tinual learning task with unlabelled data, which mainly involves representation
learning. Previously iCaRL [85] introduces a method involving a representation
learning network and an incremental classifier in a supervised setting, resembling
the idea proposed by unsupervised methods. CURL [83] propose an unsupervised
model built on a representation learning network. This latter learns a mixture of
Gaussian encoding task variations, and then integrates a generative memory re-
play buffer as a strategy to overcome forgetting.

2.2.2 Meta-learning
Meta-learning, or learning to learn, aims to improve the neural network’s abil-
ity to rapidly learn new tasks with few training samples. The tasks can com-
prise a variety of problems, such as classification, regression and reinforcement
learning, but differently from Continual learning, training doesn’t occur with in-
cremental tasks and models are evaluated on new unseen tasks. The majority of
meta-learning approaches proposed in the literature are based on Model-Agnostic
Meta-Learning (MAML) [31, 82, 78, 92].
MAML. By learning an effective parameter initialisation, with a double loop pro-
cedure, MAML limits the number of stochastic gradient descent steps required to

22 Deep Learning Approaches for Time-Evolving Scenarios

learn new tasks, speeding up the adaptation process performed at meta-test time.
The double loop procedure acts as follow: an inner loop that updates the para-
meters of the neural network to learn task-specific features and an outer loop
generalises to all tasks. In this way, the neural network learns a parameter initial-
ization that needs a small number of SGD steps to learn new tasks. The success of
MAML is due to its model-agnostic nature and the limited number of parameters
it requires. Nevertheless, it suffers from some limitations related to the amount of
computational power it needs during the training phase. To solve this issue, the
authors propose a further version, First Order MAML (FOMAML) that focuses
on removing the second derivative causing the need for large computational re-
sources. Other works have attempted to solve this issue, such as [82], a MAML
algorithm with an implicit gradient that requires only the result of the inner loop
optimization and not all the path, considerably reducing the computation cost.
ANIL [80] investigates the success of MAML finding that it mostly depends on
feature reuse rather than rapid learning. This way, the authors propose a slim ver-
sion of MAML, removing almost all inner loops except for task-specific heads.
Unsupervised meta-learning. Although MAML is suitable for many learning
settings, few works investigate the unsupervised meta-learning problem. CAC-
TUs [44] proposes a new unsupervised meta-learning method relying on clus-
tering feature embeddings through the k-means algorithm and then builds tasks
upon the predicted classes. The authors employ representation learning strategies
to learn compliant embeddings during a pre-training phase. From these learned
embeddings, a k-means algorithm clusters the features and assigns pseudo-labels
to all samples. Finally, the tasks are built on these pseudo-labels. The authors
proposed two versions of the model, one based on MAML and the other on
Protonets [98] to classify data. CACTUs exhibits promising results on standard
meta-learning benchmarks, reaching performances that are not so far from the
supervised version Oracle-MAML. UMTRA [51] is a further method of unsuper-
vised meta-learning based on a random sampling and data augmentation strategy
to build meta-learning tasks, achieving comparable results with respect to CAC-
TUs. During meta-training N unlabelled data points are randomly sampled from
the training set, and then a single pseudo-label is randomly assigned to each data
point, approximating that all data points belong to different classes. In this way,
the meta-training is performed in a one-shot learning setting. UFLST [49] pro-
poses an unsupervised few-shot learning method based on self-supervised train-
ing, alternating between progressive clustering and update of the representations.
It shows promising results not only on standard benchmarks but also on more
complex datasets recalling real-world applications.

Deep Learning Approaches for Time-Evolving Scenarios 23

2.2.3 Meta-learning for continual learning

Meta-learning has been extensively merged with continual learning for different
purposes. We highlight the existence of two strands of literature [13]: meta-
continual learning, which aims to incremental task learning, and continual-meta
learning that instead focuses on fast remembering. To clarify the difference
between these two branches, we adopt the standard notation that denotes S as
the support set andQ as the query set. The sets are generated from the data distri-
bution of the context (task) C and respectively contain the samples employed in
the inner and outer loops (e.g. in a classification scenario, both S and Q contain
different samples of the same classes included in the current task). We define the
meta-learning algorithm as MLϕ and the continual learning one with CLϕ.
Continual-meta learning. Continual-meta learning mainly focuses on making
meta-learning algorithms online, to rapidly remember meta-test tasks [32, 48, 38].
In detail, it considers a sequence of tasks S1:T , Q1:T , where the inner loop com-
putation is performed through fθt = MLϕ(St−1), while the learning of ϕ (outer
loop) is obtained using gradient descent over the lt = L(fθt, St). Since local sta-
tionarity is assumed, the model fails on its first prediction when the task switches.
At the end of the sequence, MLϕ recomputes the inner loops over the previous
supports and evaluates on the query set Q1:T . Some recent works propose dif-
ferent strategies to deal with continual-meta learning. Online meta-learning [32]
is an online version of MAML, with the limitation of not considering the cata-
strophic forgetting problem. In [48], the authors propose a Dirichlet process mix-
ture of hierarchical Bayesian models that is able to deal with a potentially infinite
mixture in a continual learning fashion. MOCA [38] extends meta-learning to
operate with a stream of tasks, finding the change of task through online change-
point analysis.
Meta-continual learning. More relevant to our work are meta-continual learning
algorithms [110, 47, 6, 115, 69, 81, 102], which use meta-learning rules to “learn
how not to forget”. Resembling the notation proposed in [13], givenK sequences
sampled i.i.d. from a distribution of contexts C, Si,1:T , Qi,1:T ∼ Xi,1:T |Ci,1:T ,
CLϕ is learned with∇ϕ

∑
t L(CLϕ(St), Qt) with i < N < K and evaluated on

the left out sets
∑K
i=N L(CLϕ(St), Qt). In particular, OML [47] and its variant

ANML [6] favour sparse representations by employing a trajectory-input update
in the inner loop and a random-input update in the outer one. The algorithm
jointly trains a representation learning network (RLN) and a prediction learning
network (PLN) during the meta-training phase. Then, at meta-test time, the RLN
layers are frozen and only the PLN is updated. ANML replaces the RLN network

24 Deep Learning Approaches for Time-Evolving Scenarios

with a neuro-modulatory network that acts as a gating mechanism on the PLN
activations following the idea of conditional computation. HSML [115] is a hier-
archically structured approach to meta-continual learning involving a hierarchical
task clustering strategy to resemble the human brain’s way to associate know-
ledge. Other works, such as [69, 81, 102], focus on incrementally learning new
tasks in a few-shot setting, respectively through a metric-based, a task-agnostic
learner and a neural gas network.
We follow the setting introduced by these OML [47] and ANML [6], adapting it
to an unsupervised stream of data. We further propose a different architecture -
employing an attentive module - which not only tackles the memory limitation of
MAML-based approaches but also robustly improves the generalization capabil-
ity of the model.

2.3 Financial predictions
Time series research has experienced strong growth in several sectors in the last
few years: from the prediction of pedestrian and car trajectories for video surveil-
lance [77, 9] to the prediction of machinery failures in industries. Among them,
financial market predictions have been deeply investigated leading to the develop-
ment of increasingly sophisticated algorithms capable of predicting the trend of
the financial market. Machine learning and deep learning techniques have been
applied to financial time series, to make these algorithms as automatic as pos-
sible to facilitate the traders’ decisions. However, due to the unpredictability of
the market is still hard to design machine learning algorithms that can properly
work on financial time series [25]. In fact, deep learning models, like 1-D convo-
lutional neural networks, multi-layer perceptrons, temporal transformers [107]),
that achieve the state-of the-art performance on other tasks, do not always exhibit
satisfactory performance on financial problems. For this reason, deep learning for
finance is at the cutting edge of research and in the last few years, several methods
have been designed or adapted specifically to financial time series [71, 27, 74].

Deep Learning Approaches for Time-Evolving Scenarios 25

Chapter 3

Trajectory Forecasting in
Real-World Environment

Trajectory forecasting has recently experienced exponential growth in several re-
search areas such as video surveillance, sports analytics, self-driving cars and
physical systems ([90]). Its main applications include pedestrians dynamics pre-
diction ([40, 2, 113, 37, 117, 121]), vehicles behaviour analysis ([50, 75, 15, 63])
as well as intent estimation of people and cars on roads to avoid possible crashes.
In sports analytics ([29, 116, 120, 101, 21, 43]), being able to predict players’
trajectories can improve the action interpretation of each player while in physical
systems it can be fundamental to predict particles dynamics in complex domains
([54, 4, 111]).
We focus on predicting human dynamics in crowded contexts (e.g., shop en-
trances, university campuses and intersections) where people and autonomous
vehicles mainly manifest their complex and multi-modal nature. Typically, two
different strategies are employed to model human interactions: pooling-based
and graph-based methods. Pooling-based methods ([2, 113, 37, 46, 67, 68]) em-
ploy sequence-to-sequence models to extract features and generate subsequent
time steps, interspersed with pooling layers to model interactions between neigh-
bours. By contrast, graph-based methods ([117, 121, 75, 116, 101, 109, 66])
apply graph neural networks to model interactions. Although these approaches
have proven to be effective, some problems are still open, such as efficiently ex-
ploiting context cues and appropriately capturing human interactions in critical

Deep Learning Approaches for Time-Evolving Scenarios 27

situations. Another relevant aspect to consider in trajectory prediction is repres-
ented by scene constraints like walls and other obstacles which strongly influence
human motion. A common approach to overcome this issue is to introduce visual
elements into the network such as images or semantic segmentation ([67, 56, 94])
yet this implies the availability of video streams both at train and test time. To
this end, we propose two novel methods for multi-future trajectory forecasting
that works in a completely generative setting, enabling the prediction of multiple
possible futures. During online inference, we integrate human interactions at time
step level, allowing other agents to affect the whole trajectory generation pro-
cess. As a consequence, online interactions computation improves the predicted
trajectories as the number of time steps increases limiting the error growth.
AC-VRNN. To take into account past human motion, local belief maps steer
future positions towards more frequent crossed areas when human interactions are
limited or absent. Technically, our model is a Conditional-VRNN, conditioned
by prior belief maps on pedestrians’ frequent paths, that predicts future positions
one time step at a time, by relying on recurrent network hidden states refined with
an attention-based mechanism. *

The main contributions of this work are two-fold:

(i) We propose a novel method to integrate human interactions into the model
in an online fashion, relying on a hidden state refinement process with a
graph attentive mechanism. We employ a similarity-based adjacency mat-
rix to take into account pedestrians’ neighbourhoods.

(ii) We introduce local belief maps to encourage the model to follow a prior
transition distribution whenever the prediction is uncertain and to discour-
age unnatural behaviour such as crossing obstacles, avoiding employing
additional visual inputs. In this way, future positions may take advantage
of prior knowledge while being predicted. Such behaviour is imposed dur-
ing training by a Kullback–Leibler (KL) divergence loss between ground-
truths and samples contributing to the model performance refinement.

DAG-Net. Interactions heavily impact future trajectories [37, 2]: since people
plan their paths by reading each other’s future possible behaviours, each person’s
motion is influenced by the subjects around them. In team sports, interactions
take on an even more important role: an attacker could put in place a certain set
of movements just because the rest of his team has a specific disposition, as well

*Code is available at https://github.com/alessiabertugli/AC-VRNN.

28 Deep Learning Approaches for Time-Evolving Scenarios

https://github.com/alessiabertugli/AC-VRNN

as the whole defending team could in turn react and put in place a predefined tac-
tic only because some opponents are arranged in a certain way. The varied nature
of interactions and their heavy impact on agents’ behaviour leads to develop soph-
isticated methods to accurately interpret and integrate such information into the
prediction method. Even the future knowledge about interacting agents’ positions
can be a relevant feature that affects the development of every single path. Tak-
ing into account this aspect during trajectory prediction can improve the accuracy
of the model. To address these challenges we propose DAG-Net, a double at-
tentive graph neural network for trajectory forecasting. The network backbone
is a recurrent version of the Variational Autoencoder (VAE) [53]: time-step after
time-step, the autoencoder is used to generate future positions in terms of dis-
placements from the current locations. The modules of our recurrent autoencoder
are conditioned on subjects’ current objectives so that the model can accordingly
produce likely future positions. The backbone is integrated with a double Graph
Neural Network (GNN)-based mechanism: the first GNN defines the future ob-
jectives of each agent in a structured way, distilling each goal with proximity
knowledge; the second one models agents’ interactions, filtering the hidden states
of the recurrent network through neighbourhood information. Both the GNNs use
a self-attention mechanism to assign different weights to each edge of the graph. †

We demonstrate that our models achieve state-of-the-art performance on several
standard benchmarks using different evaluation protocols. We also outperform
our competitors on the challenging Stanford Drone Dataset (SDD) and the recent
Intersection Drone Dataset (InD) showing the robustness of our architecture to
more complex urban contexts. Furthermore, we test our models on human dy-
namics collected from basketball players to analyze their ability to capture com-
plex interactions in confined areas on STATS SportVU NBA dataset. Finally, our
architecture positions among the best models on the TrajNet++ benchmark.

3.1 Problem formulation
Given a pedestrian at time step t, his/her current position is represented by 2-D
coordinates. Our models analyze Tobs time steps to predict motion dynamics dur-
ing the next Tpred time steps. Similarly to [37], our models use displacements
with respect to the previous points. More specifically, given a sequence of dis-
placements (x0, .., xTpred), we observe a part of the sequence (x0, ..., xTobs) and

†Code is available at https://github.com/alexmonti19/dagnet.

Deep Learning Approaches for Time-Evolving Scenarios 29

https://github.com/alexmonti19/dagnet

ℎ!"#

Prior Generation Recurrence Inference Overall

𝑥!

𝑧!

ℎ!

𝑏!"# 𝑥!

𝑧!

ℎ!ℎ!"#

𝑥!

𝑧!

ℎ!ℎ!"#

𝑥!

𝑧!

ℎ!ℎ!"#

𝑥!

𝑧!

ℎ!ℎ!"#

𝑏!"# 𝑏!"# 𝑏!"#

𝐴𝑡𝑡 − 𝐺𝑁𝑁 𝐴𝑡𝑡 − 𝐺𝑁𝑁

(a) (b) (c) (d) (e)

Figure 3.1: Illustration of each phase of our AC-VRNN architecture for a time step t. A
recurrent variational autoencoder is conditioned on prior belief maps bt−1. The hidden
state of the RNN ht−1 is refined with an attentive module obtaining h′

t, that replaces ht

in the next step of recurrence. At inference time, it generates future displacements using
the prior network on ht and makes an online computation of the adjacency matrix which
defines connections between pairs of nodes.

predict the subsequent one (xTobs+1, ..., xTpred).

3.2 Predictive VRNN

VRNNs ([23]) explicitly model dependencies between latent random variables zt
across subsequent time steps. They contain a Variational Autoencoder (VAE) ([53])
at each time step conditioned on the hidden state variable ht−1 of an RNN to take
into account temporal structures of sequential data. At each time step, prior, en-
coder and decoder output multivariate normal distributions, with three functions
(fpri, fenc and fdec) modelling their means and variances. Since the true posterior
is intractable, it is approximated by a neural network qϕ, which also depends on
the hidden state ht−1 under recurrency equations as follows:

pθ (zt|x<t, z<t) = N
(
zt|µpri,t, (σpri,t)

2
)
, (prior) (3.1)

qϕ (zt|x≤t, z<t) = N
(
zt|µenc,t, (σenc,t)

2
)
, (inference) (3.2)

pθ (xt|x<t, z≤t) = N
(
xt|µdec,t, (σdec,t)

2
)
, (generation) (3.3)

ht = frnn (xt, zt,ht−1) . (recurrence) (3.4)

30 Deep Learning Approaches for Time-Evolving Scenarios

These functions can be deep neural networks with learnable parameters θ and
ϕ that output (µpri,t,σpri,t), (µenc,t,σenc,t) and (µdec,t,σdec,t), respectively.
The generative and inference processes are jointly optimized by maximizing the
following variational lower bound (ELBO) with respect to their parameters‡:

ELBO = Eqϕ,t(zt)

[
T∑
t=1

(−KL (qϕ,t(zt)∥pθ,t(zt)) + log pθ,t(xt))

]
. (3.5)

VRNNs are typically employed to generate sequences from scratch, in a fully
generative setting. However, our task is to imitate training data rather than gener-
ate completely new data at evaluation time. In a predictive setting, the predicted
positions must rely on the observed ones; without any information coming from
the past, future positions would only be random. Using a fully generative setting,
the model would not have any chance to exploit previous observations. For this
reason, we have modified the inference protocol to generate sequences using the
hidden state of the last observed time step. VRNN learns at each time step to
generate the current displacement, given the input and the RNN’s hidden state.
At inference time, the model only uses the last hidden state from the observed
sequence, then generates the subsequent time step. For the above reasons, AC-
VRNN and DAG-Net are generative models used in a predictive setting: they
generate one displacement at a time, and embedding human interactions at time
step level becomes easy.

3.3 Attentive hidden state refinement
Pedestrian dynamics are mainly influenced by surrounding agents. Our mod-
els handle human interactions using an attentive hidden state refinement of our
recurrent network through a graph neural network, as shown in Figure 3.2(a).
Our hidden state refinement resembles the idea proposed by [108] which adopts
an attention mechanism to learn relative weights between two connected nodes,
through specific transformations called graph attentional layers. At time step
t, our refinement strategy considers a set of hidden state nodes {h1

t , . . . ,h
N
t },

where each hit ∈ RF represents the hidden state of the ith agent in the scene.
The attention layer produces a new set of node features {ĥ1

t , . . . , ĥ
N
t }, ĥit ∈ RF ′

as its output. The transformation is parametrized by a weight matrix W ∈ RF ′×F

‡In order to keep the notation light we omit the conditioning variables.

Deep Learning Approaches for Time-Evolving Scenarios 31

(shared between graph nodes) and a weight vector a ∈ R2F ′
. Self-attention coef-

ficients αi,j between the nodes hit and hjt are computed as follows:

αi,j =
exp

(
LeakyReLU

(
aT

[
Whit∥Whjt

]))
∑
k∈Ni exp

(
LeakyReLU

(
aT

[
Whit∥Whkt

])) , (3.6)

where ∥ represents the concatenation operator. The normalized attention coeffi-
cients are used to compute a linear combination of the features which represents
the final output feature for every node, followed by an ELU non-linearity ([24])
acting on the neighbourhood Ni of the ith node:

ĥit = ELU

∑
j∈Ni

αi,jWhjt

 . (3.7)

The neighbourhood Ni defines the set of nodes with positive adjacency with re-
spect to the ith agent. The adjacency matrix follows a similarity-based principle,
and it is computed, inspired by proxemics interaction theory ([87]), considering
the heat kernel of the distance d(i, j) between each pedestrian, exp

(
−d(i,j)2σ2

)
,

where σ is a smoothing hyperparameter. During training, our VRNN takes as
input a set of sequences for a time step t. Then, it samples the next position xit
for each pedestrian i. Finally, the graph attention mechanism acts on the hidden
state hit (provided by Eq. (3.4)) to compute the corresponding interaction-refined
state ĥit. The refined hidden state ĥit is concatenated to the original one and a
final linear projection is applied as follows:

h
′i
t = Linear

(
hit ∥ ĥit

)
. (3.8)

At the next time step, our VRNN uses the refined hidden state h
′i
t which carries

information about interactions of previous time steps.

Although AC-VRNN and DAG-Net are different models, designed to address
specific problems, they share the predictive VRNN baseline and manage agents’
interactions through the attentive hidden state refinement method described above.
In the following subsections, the particular features of the two approaches are de-
scribed in detail.

32 Deep Learning Approaches for Time-Evolving Scenarios

3.4 AC-VRNN: conditional-VRNN on belief maps
Attentive Conditional Variational Recurrent Neural Network (AC-VRNN) is com-
posed of three building blocks: (i) a VRNN to generate a sequence of displace-
ments in a multi-modal way; (ii) a hidden state refinement based on an attentive
mechanism to model the interactions within the neighbourhood, performed at a
time step level during training and inference phases; (iii) a belief map to encour-
age the model to follow prior belief maps when it is uncertain, avoiding predicting
samples that may fall within never crossed areas. A complete illustration of all
phases of AC-VRNN is shown in Figure 3.1.
Since AC-VRNN is a stochastic model, it could potentially exhibit high predictive
variance hence generating predictions far from expected ones. To balance the bi-
as/variance trade-off of the predictor, we introduce belief maps on displacements.
Belief maps collect data about crossed areas at training time; therefore, they con-
tain information about the collective behaviour of monitored agents. Condition-
ing the prediction to such maps may lead the model to follow past behaviours
and, at the same time, discourage it to predict displacements far from past crossed
areas, avoiding the generation of non-realistic paths.
Belief maps are computed by dividing the coordinate space for each scene into a
N ×M grid. The boundaries of this grid are defined by minimum and maximum
coordinates along x and y directions. Both past and future information on training
trajectories are considered. These values could also be obtained manually by
defining the allowed area for predicting new coordinates. The values of N and
M define the grid coarse and are computed considering the average displacement
µ and its standard deviation σ as follows:

N =

⌊
(xmax − xmin)

µ+σ
2

⌋
, M =

⌊
(ymax − ymin)

µ+σ
2

⌋
. (3.9)

For each grid location (bin), a L × L neighbourhood is then considered (with
L = 5). For each (x, y) location, we get the corresponding L×L neighbourhood
and compute heat kernels between the next location and the neighbourhood bins
centres§. This procedure is repeated for all the trajectories and bins values are
accumulated by summation. Each belief map b, i.e. a L×L sub-grid indexed by
the (x, y) location in the scene, is subsequently normalized in order to transform
the cumulative grid into a probability distribution. Unlike the recurrent process

§5× 5 belief maps along with the proposed global grid’s partition guarantee that future displace-
ments fall into the corresponding belief maps.

Deep Learning Approaches for Time-Evolving Scenarios 33

Algorithm 1 Belief Maps Generation Algorithm
1: function BELIEF MAPS GENERATION(trajectories)
2: N,M, δx, δy ← get grid coarse(trajectories)
3: xmin, ymin, xmax, ymax ← get min max(trajectories)
4: global grid← make global grid(xmin, ymin, N,M, δx, δy)
5: for all bin ∈ global grid do
6: maps← [0, .., 0]
7: for all trajectory ∈ trajectories do
8: neighbour centres← get neighbour centres(bin, δx, δy)
9: for all index, coord ∈ trajectory do

10: if coordx ∈ [binx, binx + δx] and coordy ∈ [biny, biny + δy] then
11: next coord← trajectory[index+ 1]
12: map← similarity matrix(next coord, neighbour centres,map)
13: end if
14: end for
15: end for
16: map← normalize(map)
17: maps← insert(map)
18: end for
19: returnmaps
20: end function

21: function GET GRID COARSE(trajectories)
22: µx, µy ← mean displacements(trajectories)
23: σx, σy ← standard deviation displacements(trajectories)
24: xmin, ymin, xmax, ymax ← get min max(trajectories)

25: N ← xmax−xmin
µx+σx

2

;M ← ymax−ymin
µy+σy

2

26: δx ←
xmax−xmin

N ; δy ←
ymax−ymin

M
27: returnN,M, δx, δy
28: end function

29: function SIMILARITY MATRIX(next coord, neighbour centres,map)
30: for all index, centre ∈ neighbour centres do

31: map[index]← accumulate(e
−

√
(next coordx−centrex)2+(next coordy−centrey)2

)
32: end for
33: returnmap
34: end function

within the VRNN, the creation of belief maps is a Markov process, as their gen-
eration only depends on single-step transitions. Details in Algorithm 1 each step
for generating our belief maps.
Conditional-VRNN. We exploit the belief maps to encourage the model to fol-
low the average behaviour shown by previously observed agents. In our work, we
use a recurrent version of CVAE ([52]), conditioning VRNN on belief maps. At
each time step, prior, encoder and decoder networks take the belief map at t− 1
as input, conditioning the resultant Gaussian distribution. We embed belief maps
with a linear projection before feeding them into the VRNN blocks:

34 Deep Learning Approaches for Time-Evolving Scenarios

(a) (b)

Figure 3.2: Scheme of the proposed attentive hidden state refinement process. (a) The
adjacency matrix is an irregular block matrix where each block size is defined by the
number of pedestrians in the current scene. (b) Belief map during training for one sample
using heat similarity-based strategy. The map is centred at t − 1 to display the sampled
displacements distribution at t.

µpri,t,σpri,t = fpri (ht−1,bt−1; θ) (3.10)
µenc,t,σenc,t = fenc (xt,ht−1,bt−1;ϕ) (3.11)
µdec,t,σdec,t = fdec (zt,ht−1,bt−1; θ) (3.12)

In addition to conditioning the model on belief maps, a further loss term is in-
serted, in order to optimize the affinity between ground-truth maps and those
generated by the model. By sampling multiple displacements from the model,
we obtain the sampled candidate belief map b′t−1, which identifies a probability
distribution over local bin transitions. For each sampled displacement and sub-
sequent location, we firstly index the corresponding grid bin, then the heat kernel
value between the sampled next location and theL×L neighbourhood bin centres
is used to fill the grid (see Figure 3.2(b)). To build the non-ground truth belief
maps, we only use the information about the position at xt−1, and then draw N
samples from our model. The aforementioned procedure allows the model to un-
roll the sub-grids, obtaining for every location a discrete probability density of
possible transitions. Thus, it is possible to compare generated belief maps b′t−1
and ground-truth ones bt−1 by means of the KL divergence, exploiting the his-
togram loss term proposed by [104]. We add this contribution to the ELBO loss
in Eq. (3.5) encouraging the model to be compliant with the collective behaviour
of all agents. Such a divergence measure is multiplied by a constant k for loss

Deep Learning Approaches for Time-Evolving Scenarios 35

balancing to ensure that its weight is comparable to the other loss components:

L = Eqϕ,t(zt)
[T∑
t=1

(
−KL (qϕ,t(zt)∥pθ,t(zt)) + log pθ,t(xt)

+kKL(bt−1∥b′t−1)
)]
.

(3.13)

3.5 DAG-Net: conditioning VAE to agents’ goals
DAG-Net leverages two graph attentive networks to model two different kinds of
interactions: the interactions between future goals and the interactions between
agents. In structured motion environments, where agents’ behaviours are moved
not only by single intentions but also by social rules and/or common goals, it is
important to condition the trajectory prediction on both individual and neighbour
objectives. DAG-Net jointly employs past data and future predictions to improve
forecasting in such contexts.
Inspired by [52, 99, 120, 10, 30, 50], we provide additional input to our back-
bone in order to condition the displacements generation process on agents’ future
objectives. We choose to describe agents’ future goals in terms of spatial inform-
ation (Fig. 3.3a). To make our model as invariant as possible with respect to the
different characteristics of the environment, we divided the top-down view of the
scene into a grid of macro-areas: each cell can potentially represent the future
objective of a single agent. Agent i’s goal at time t, gi

t, is then represented by a
one-hot encoding of the grid, where the cell in which the agent will land in the
future is filled with a 1.
To obtain ground-truth objectives, a sliding window approach has been used: a
window of size w slides through the original absolute trajectory and captures a
goal every w time-steps. This information is used to condition the prior, the
encoder and the decoder networks, as shown in Eq. (3.14), (3.15) and (3.16)
where we drop the superscripts to refer to the behaviour of a general agent.

µµµ0,t,σσσ0,t = φprior (ht−1,gt), (3.14)
µµµz,t,σσσz,t = φenc (φx(xt),ht−1,gt), (3.15)

µµµx̂,tσσσx̂,t = φdec (φz(zt),ht−1,gt). (3.16)

To produce likely goals during the inference phase, we employed a further net-
work. This network is again conditioned on the hidden state ht−1 of the recurrent

36 Deep Learning Approaches for Time-Evolving Scenarios

(a)

0
,3
5

0,
1

0,15

0,4

(b)

Figure 3.3: In (a) we can observe how goals deeply influence past and future trajector-
ies, guiding agents to specific portions of the court. In (b) we can observe the similarities
between the green player and his teammates: these values will directly influence the re-
combination of both goals and hidden states at the green node.

cell and takes as additional inputs the last predicted objective for the agent plus
the concatenation dt−1 of the absolute positions of all the other agents in the
scene (i.e. their disposition).

g′t = φgoal(g′t−1,dt−1,ht−1) (3.17)

Eqϕ(z≤T |x≤T)

[
T∑
t=1

K∑
k=1

log pθ(xt | z≤t,x<t)− gkt log(g
′k
t)

−DKL (qϕ(zt | x≤t, z<t) || pθ(zt | x<t, z<t))

] (3.18)

The additional loss term is computed as a Cross-Entropy between the ground-
truth goal gt and the predicted one g′t, where K is total the number of cells
inside their one-hot encoding.
Goals Structure. Agents’ future objectives are used to condition the backbone
network: nevertheless, without further solutions, a single predicted goal g′t fo-
cuses only on the corresponding agent objective. To effectively capture the co-
ordination between the different subjects in the scene, DAG-Net shares this kind

Deep Learning Approaches for Time-Evolving Scenarios 37

𝑅𝑁𝑁

𝑜𝑛𝑒 − ℎ𝑜𝑡
𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔

Inputs
𝑥𝑡 ,𝑔𝑡

Output
𝑥𝑡

Input
𝑔𝑡

Output
𝑔𝑡

Output

ℎ𝑡

𝑉𝐴𝐸

ℎ𝑖𝑑𝑑𝑒𝑛 𝑠𝑡𝑎𝑡𝑒𝑠

𝐺𝑜𝑎𝑙𝑠 − 𝑁𝑒𝑡

𝑧𝑡

A𝑡𝑡𝑒𝑛𝑡𝑖𝑣𝑒 𝐺𝑁𝑁

A𝑡𝑡𝑒𝑛𝑡𝑖𝑣𝑒 𝐺𝑁𝑁

Inputs
𝜑𝑥 𝑥𝑡 ,
𝜑𝑧 𝑧𝑡 ,

ℎ𝑡

Figure 3.4: Scheme of DAG-Net architecture. It is composed of a Goal-Net that learns to
predict agents’ future goals; a VAE to generate displacements at every time step; a RNN
to consider the temporal nature of the sequence.

of information relying on group interactions. To model the structure of future in-
teractions, an attentive GNN [108] is employed. At every time step, the network
takes as an input node the one-hot encoding of each agent’s predicted goal g′t and
produces a new distilled goal g̃t built on proximity notions. After the concaten-
ation of the distilled goal with the original one, the final refined goal is obtained
through a linear projection:

ĝt =W (g′t ∥ g̃t) (3.19)

where the parameter matrix W ∈ Rdxd (with d the number of goals grid cells)
is learnt in an end-to-end fashion during training. The new produced goal ĝt will
then take the place of g′t inside the ELBO loss presented in Eq. 3.18. Our whole
model is depicted in Fig. 3.4.

38 Deep Learning Approaches for Time-Evolving Scenarios

3.6 Experiments

3.6.1 Datasets
We present experiments on different datasets to prove the robustness of our model
on various scenarios and protocols. More specifically, we define multiple ex-
periments on ETH ([79]), UCY([64]), Stanford Drone Dataset ([88]), STATS
SportVU NBA ¶, Intersection Drone Dataset (inD) ([11]), and TrajNet++ ([57]).
ETH-UCY. ETH ([79]) consists of two scenes, Eth and Hotel, while UCY ([64])
consists of three scenes, Zara1, Zara2 and Univ. The benchmark contains differ-
ent types of interactions among pedestrians and fixed obstacles such as buildings
or parked cars.
Stanford Drone Dataset (SDD) ([88]). SDD is a large-scale dataset, containing
urban scenes of a university campus, streets and intersections, shot by a drone.
More specifically, it is composed of 31 videos of 8 different scenarios. The tra-
jectories are split into segments of 8s: we observe 3.2s of history and predict
over a 4.8s future horizon. Operating at 0.4s per time-step results in 8 time steps
of observation and a future prediction span of 12 time steps; all the metrics are
in meters. This dataset provides more complex scenes compared to the previous
ones, involving various types of human interactions. We use the version proposed
by TrajNet benchmark ([93, 7]) which contains only pedestrian annotations. We
split the training set into three sets for the learning process selecting 70% of data
as training, 10% as validation and the remaining part as testing.
STATS SportVU NBA ¶. It consists of tracked trajectories of 10 basketball play-
ers (5 attackers, 5 defenders) during the 2016 NBA season monitoring 1600
matches. Each trajectory contains 50 time steps sampled at 5 Hz with x, y, and
z coordinates expressed in feet. 40 time steps are used as observations and 10
time steps for predictions. All trajectories are normalized and shifted to obtain
zero-centred sequences in the middle of the court.
Intersection Drone Dataset (inD) ([11]). It captures four different German in-
tersections from a bird’s-eye-view perspective and contains more than 11000 tra-
jectories of various road users (e.g., pedestrians, cars, cyclists) saved in 33 re-
cordings. Data is collected at 25 Hz using a drone.
TrajNet++ ([57]). It is a large-scale interaction-centric trajectory prediction
benchmark composed of a real-world dataset and a synthetic dataset. The real-
world dataset contains selected trajectories of different datasets (ETH [79], UCY [64],

¶SportVU - STATS Perform, https://www.statsperform.com/
team-performance/basketball/optical-tracking/

Deep Learning Approaches for Time-Evolving Scenarios 39

https://www.statsperform.com/team-performance/basketball/optical-tracking/
https://www.statsperform.com/team-performance/basketball/optical-tracking/

WildTrack [20], L-CAS [114] and CFF [3]). This benchmark defines a primary
pedestrian per scene and his/her categorization into four different types: static,
linear, interacting and non-interacting.

3.6.2 Metrics
TopK Average Displacement Error (TopK ADE): Average Euclidean distance
over all estimated points and ground-truth positions of a trajectory as proposed in
[79]:

ADE =

P∑
i=1

Tpred∑
t=Tobs+1

√
(x̂it − xit)2 + (ŷit − yit)2

Tpred · P
; (3.20)

TopK Final Displacement Error (TopK FDE): Average Euclidean distance between
predicted and ground-truth final destinations:

FDE =

P∑
j=1

√
(x̂jTpred − x

j
Tpred

)2 + (ŷjTpred − y
j
Tpred

)2

P
. (3.21)

P represents the number of pedestrians and Tpred is the predicted time horizon.
The above metrics are evaluated using the top-k (or best-of-N) i.e., we sample N
trajectories and consider the ADE and FDE of the lowest-error trajectory.
Average Log-Likelihood (Avg LL): Average Log-Likelihood of ground truth tra-
jectories over the predicted time horizon considering a distribution fitted with N
output predictions. We compute this metric as in ([57]).
TopK Collisions: Similarly to [57], we consider two types of collisions, Col-I
and Col-II, measuring the collisions of a pedestrian w.r.t his/her neighbours con-
sidering a fixed neighbourhood. Col-I (or prediction collision) uses the neigh-
bours’ predicted trajectories to check a collision, while Col-II relies on their
ground-truth annotations. Nevertheless, since we use these metrics in a multi-
modal context, we consider predictions with the lowest ADE (TopK ADE) for
both primary and neighbour pedestrians. We report the percentage of collisions
averaged over all test scenes.

3.6.3 Training protocol
During training, we let the network see the entire T = Tobs + Tpred time steps
from ground-truth sequences. The solution gives the model the possibility to

40 Deep Learning Approaches for Time-Evolving Scenarios

learn useful features also from the latest time steps of the sequence: this is useful
in urban contexts and results particularly effective in sports, where we have long
trajectories that usually start as linear but seldom continue in the same way, often
bending and turning back upon themselves. On the other hand, during validation
and testing, we divide the trajectories into an observation and a prediction split:
specifically, the network burns in for Tobs time-steps observing the first pieces of
ground-truth trajectories, then it’s let alone predicting the remaining Tpred time-
steps.

3.6.4 Quantitative results
ETH-UCY. We evaluate our model, AC-VRNN, using different versions of ETH-
UCY datasets since multiple data and protocols are available for these scenes.
Quantitative results are reported in Table 3.1. We indicate with AC-VRNN our
full model including the hidden state refinement process and belief maps and
with A-VRNN our model without belief maps. Firstly, we consider a leave-
one-out training protocol (A) as in S-GAN ([37]). Our model outperforms all
baselines on Eth (FDE) and Zara2 (TopK ADE and TopK FDE with K = 20)
scenes and exhibits the best values on average metrics. AC-VRNN significantly
outperforms A-VRNN suggesting the beneficial effect of belief maps condition-
ing. For the remaining scenes, the slightly worse performance of AC-VRNN
could be ascribed to the leave-one-out protocol since training belief maps may
not entirely comply with test scenes increasing uncertainty for future predictions.
SR-LSTM ([121]) defines different Eth annotations considering 6 frames at 0.4s
instead of 10 frames due to a frame rate issue of original annotations, affecting
each cross-validation fold (B). In this case, our model outperforms SR-LSTM
baseline or achieves comparable results on all scenes for both metrics. Finally,
S-Ways ([46]) does not use a leave-one-out protocol. Each dataset is split into 5
subsets, using 4 subsets for training and the remaining ones for testing purposes
(C). We achieve better performance on TopK ADE and slightly worse perform-
ance on TopK FDE. Without the leave-one-out protocol, AC-VRNN significantly
outperforms A-VRNN on TopK FDE suggesting the beneficial effect of belief
maps conditioning.
Stanford Drone Dataset. To consider more complex urban scenarios, we test
AC-VRNN and DAG-Net also on Stanford Drone Dataset. We compare our res-
ults with S-GAN-P ([37]) and STGAT ([117]). As shown in Table 3.2, AC-VRNN
outperforms A-VRNN version and both selected baselines. DAG-Net outper-
forms all the approaches except for AC-VRNN. With more complex trajectories

Deep Learning Approaches for Time-Evolving Scenarios 41

Method ETH HOTEL UNIV ZARA1 ZARA2 AVG

(A)

S-LSTM ([2]) 1.09/2.35 0.79/1.76 0.67/1.40 0.47/1.00 0.56/1.17 0.72/1.54
S-GAN-P ([37]) 0.87/1.62 0.67/1.37 0.76/1.52 0.35/0.68 0.42/0.84 0.61/1.21
S-GAN ([37]) 0.81/1.52 0.72/1.61 0.60/1.26 0.34/0.69 0.42/0.84 0.58/1.18
Trajectron ([45]) 0.59/1.14 0.35/0.66 0.54/1.13 0.43/0.83 0.43/0.85 0.56/1.14
SoPhie ([94]) 0.70/1.43 0.76/1.67 0.54/1.24 0.30/0.63 0.38/0.78 0.54/1.15
Social-BiGAT ([56]) 0.69/1.29 0.49/1.01 0.55/1.32 0.30/0.62 0.36/0.75 0.48/1.00
Next ([67]) 0.73/1.65 0.30/0.59 0.60/1.27 0.38/0.81 0.31/0.68 0.46/1.00
STGAT ([117]) 0.78/1.60 0.30/0.54 0.51/1.08 0.33/0.72 0.29/0.63 0.44/0.91
A-VRNN (Ours) 0.73/1.45 0.34/0.65 0.53/1.14 0.33/0.69 0.26/0.54 0.44/0.89
AC-VRNN (Ours) 0.61/1.09 0.30/0.55 0.58/1.22 0.34/0.68 0.28/0.59 0.42/0.83

(B) SR-LSTM ([121]) 0.63/1.25 0.37/0.74 0.51/1.10 0.41/0.90 0.32/0.70 0.45/0.94
A-VRNN (Ours) 0.60/1.18 0.37/0.74 0.55/1.20 0.39/0.83 0.27/0.59 0.44/0.91

(C)
S-Ways ([46]) 0.39/0.64 0.39/0.66 0.55/1.31 0.44/0.64 0.51/0.92 0.46/0.83
A-VRNN (Ours) 0.60/1.24 0.22/0.45 0.61/1.34 0.46/1.06 0.30/0.67 0.44/0.95
AC-VRNN (Ours) 0.55/1.06 0.18/0.26 0.76/1.59 0.37/0.72 0.33/0.70 0.44/0.87

Table 3.1: Quantitative results of considered methods for ETH and UCY datasets. We
report Average Displacement Error (ADE) and Final Displacement Error for unimodal
methods and TopK ADE and TopK FDE (with K = 20) for multi-modal ones. The results
were obtained for tobs = 8 and tpred = 12 (in meters). The first block of experiments
regards the use of data employed by S-GAN and STGAT models; the second one uses the
SR-LSTM version of data while the last experiments are trained with the S-Ways protocol.
On average, our model outperforms several methods showing a slightly worse FDE error
when the S-Ways protocol is employed. No belief maps appear necessary for SR-LSTM
data version.

and scene topologies, our attentive module is able to better capture interactions
among pedestrians and belief maps help to avoid incorrect behaviours following
the prior distribution of displacements in the monitored scene.
STATS SportVU NBA. Additionally, we test our model using basketball play-
ers’ trajectories whose dynamics are clearly different from the ones exhibited by
pedestrians in urban scenes. We evaluated separately offence and defence: since
agents are placed in an explicit competitive setting, their nature is intrinsically
different, both from the goals and the trajectories points of view. The attackers
have to enter into the area and score, while the defenders usually just react to
their moves: training the network simultaneously on both teams would distract
the final results. As reported in Table 3.3, our A-VRNN reduces TopK ADE and
TopK FDE metrics on both offensive and defensive players’ trajectories com-
pared to STGAT [117] and Weak-Supervision [120]. Avg LLs are similar for
all methods, whereas collision errors given by A-VRNN are mainly smaller than

42 Deep Learning Approaches for Time-Evolving Scenarios

Method SDD
TopK ADE (↓) TopK FDE (↓) Avg LL (↑) Col-I (↓) Col-II (↓)

S-GAN-P ([37]) 0.65 1.26 −3.79 0.00 0.33
STGAT ([117]) 0.57 1.09 −2.70 0.00 0.40
DAG-Net (Ours) ([77]) 0.54 1.07 −2.54 0.49 0.25
A-VRNN (Ours)([9]) 0.55 0.98 −1.11 0.00 0.11
AC-VRNN (Ours) ([9]) 0.51 0.90 -0.18 0.16 0.22

Table 3.2: Results for tobs = 8 and tpred = 12 on Stanford Drone Dataset (in meters).
AC-VRNN significantly reduces TopK ADE and TopK FDE error metrics. Average NLL
is the best one among all approaches while collision errors are below 1% for all methods.

Team Method STATS SportVU NBA
TopK ADE (↓) TopK FDE (↓) Avg LL (↑) Col-I (↓) Col-II (↓)

STGAT ([117]) 9.94 15.80 −8.65 0.21 0.32
ATK Weak-Supervision ([120]) 9.47 16.98 −6.29 0.57 0.20

A-VRNN (Ours)([9]) 9.32 14.91 −7.60 0.09 0.18
DAG-Net (Ours) ([77]) 8.98 14.08 -0.02 0.14 0.21

STGAT ([117]) 7.26 11.28 −7.88 0.20 0.27
DEF Weak-Supervision ([120]) 7.05 10.56 −5.69 0.70 0.57

A-VRNN (Ours) ([9]) 7.01 10.16 −6.70 0.13 0.43
DAG-Net ([77]) 6.87 9.76 -0.05 0.31 0.66

Table 3.3: Results for tobs = 10 and tpred = 40 in feet on STATS SportVU NBA dataset.

Method inD
TopK ADE (↓) TopK FDE (↓) Avg LL (↑) Col-I (↓) Col-II (↓)

S-GAN ([37]) 0.48 0.99 −1.84 0.51 0.55
STGAT ([117]) 0.48 1.00 −1.55 0.60 0.58
A-VRNN (Ours) 0.45 0.97 −1.69 0.61 0.52
AC-VRNN (Ours) 0.42 0.80 -0.29 0.78 0.61

Table 3.4: Results for tobs = 8 and tpred = 12 in meters on inD dataset.

the errors generated by competitive approaches. In this case, belief maps cannot
properly steer future positions since basketball courts do not have obstacles and
never-crossed areas. Moreover, basketball players do not typically follow collect-
ive behaviour. On the other end, by jointly considering agents’ interactions and
future goals, DAG-Net is more able to capture the nature of real paths and reach
smaller errors with respect to all these competitive methods.

Deep Learning Approaches for Time-Evolving Scenarios 43

Method TrajNet++
ADE/TopK ADE (↓) FDE/TopK FDE (↓)

S-LSTM ([2]) 0.55 1.18
S-ATT ([109]) 0.56 1.22
S-GAN ([37]) 0.51 1.09
D-LSTM([57]) 0.57 1.23
AC-VRNN (Ours) 0.57 1.17

Table 3.5: Results for tobs = 9 and tpred = 12 in meters on TrajNet++. For unimodal
methods ADE and FDE metrics are reported while for multimodal ones we reported the
TopK ADE and TopK FDE metrics with K = 3.

To evaluate whether DAG-Net could show appreciable performance on different
prediction horizons, we produced some long-term evaluations: since basketball
trajectories offered a high number of time steps with which we could produce
various splits, we focused on sports. For producing such evaluations, we con-
centrated on different observation-prediction sequences: given 10 time steps of
observation, we evaluated all the methods on increasing prediction splits, from
10 time steps to 40 time steps, with steps of 10. As Fig. 3.5 shows, our method
globally outperforms the competitors in all the different evaluations and in both
metrics. As for the numbers in Table 3.3, the difference is more pronounced for
the attack than for the defence.
We have also run some long-term quantitative evaluations considering a longer
observation period (Table 3.6), mainly to observe how the prediction accuracy
changes when the model is allowed to adjust to a greater initial period: we let the
model burn-in for 20 initial time steps and then predict the remaining ones, again
with increasing steps of 10. In this setting, we are able to compare DAG-Net
to a further autoencoder architecture, by Felsen et al. [30], that briefly employs
a C-VAE [99] conditioned on players’ role. Our model, even without additional
information about players’ identities, shows better metrics in terms of the average
distance from ground-truth positions.
Intersection Drone Dataset. On InD dataset, we adopt the same evaluation pro-
tocol used for Stanford Drone Dataset considering, for each scene, 70% of data
as training, 10% as validation and the remaining part for testing. We retain only
pedestrians’ trajectories and downsample each scene to obtain 20 time steps in
8 s. In Table 3.4 we compare our model to S-GAN ([37]) and STGAT ([117]).
AC-VRNN overcomes all the competitive methods on TopK ADE and TopK FDE

44 Deep Learning Approaches for Time-Evolving Scenarios

Model Team
20-10 Split 20-20 Split 20-30 Split
TopK ADE TopK ADE TopK ADE

C-VAE [30] ATK 3.95 5.80 7.08

DAG-Net (Our) ATK 2.09 4.58 6.66

C-VAE [30] DEF 3.01 4.10 4.98
DAG-Net (Our) DEF 2.05 4.07 5.01

Table 3.6: Long-term quantitative evaluations for DAG-Net model on STATS SportVU
NBA dataset.

and Avg LL. S-GAN gives a smaller Col-I error with respect to AC-VRNN and
S-GAN, while A-VRNN shows a smaller Col-II error.
TrajNet++. Finally, we test our model on TrajNet++ ([57]) real-world dataset.
The results are reported in Table 3.5 where ADE and FDE metrics are used for
unimodal methods and TopK ADE and TopK FDE (with K = 3) metrics for
multimodal ones. We find that our model reaches competitive performance with
respect to other approaches, especially for TopK FDE. Our results are obtained
by submitting the results to the evaluation server averaging the results on differ-
ent types of scenes considering only the real dataset. We compare AC-VRNN
against published competitive approaches as competing with a lead board that is
updated every day is out of the scope of this quantitative analysis. Other methods’
results are reported from ([57, 72]). Since the Avg LL for competitive methods is
missing, we do not report this metric in Table 3.5. However, our method attains
an Avg LL of −8.33.

3.6.5 Ablation experiments

We also present an ablation study to show the contribution of different compon-
ents of our model on the prediction task. In the following, we detail each com-
ponent and report quantitative results in Table 3.7 and Table 3.8.
Vanilla Variational Recurrent Network. We investigate the ability of Vanilla
VRNNs to predict accurate trajectories on ETH, UCY and SDD datasets. This
model does not consider any human interactions or prior scene knowledge. ETH
scenes appear mainly affected by the lack of additional information while UCY

Deep Learning Approaches for Time-Evolving Scenarios 45

Figure 3.5: Long-term quantitative evaluations: the method is evaluated both in TopK
ADE and TopK FDE for increasing prediction lengths, from 10 to 40 time-steps on STATS
SportVU NBA dataset. Attack on the top, defence on the bottom. All the metrics are in
feet.

scenes attain comparable results to our models, especially for the TopK ADE
metric. Such a result highlights the importance of trajectory forecasting task to
go beyond a time-series problem and the need of including contextual informa-
tion about the scene, such as human interactions or experience gained in similar
contexts.

Hidden State Refinement with Graph Convolutional Neural Network. This
experiment models interaction with a hidden state refinement based on a standard
Graph Convolutional Networks (GCN). The model has worse performance com-
pared to our models and Vanilla VRNN models on ETH and UCY datasets while
obtaining comparable results to AC-VRNN on SDD dataset. The experiments
suggest that, for complex contexts, attention mechanisms are able to capture more
useful information in order to model interactions among pedestrians compared to
simple scenarios where interactions may be reduced.

46 Deep Learning Approaches for Time-Evolving Scenarios

Adjacency Matrix. We also evaluate our model using different kinds of adja-
cency matrices to corroborate the use of the similarity one. We consider an all-1
adjacency matrix where edges are equally weighted and all pedestrians in the
scene are connected. This model attains good performance but is slightly worse
than the ones obtained with a similarity matrix on both ETH/UCY and SDD,
proving that assuming the same importance for all involved agents negatively af-
fects the results. k-NN matrix only considers nearby pedestrians. The neighbour-
hood is computed by sorting mutual distances between each pedestrian, retaining
only the first k nearest neighbours (with k = 3), defined as a set Si. Each element
is set to 1 if ai,j ∈ Si, to 0 otherwise. k-NN matrix obtains quite the worst results
on ETH and UCY datasets and performs poorly on SDD dataset. This experi-
ment demonstrates that a small neighbourhood is not able to capture interactions
in large scenes where pedestrians show mutual influences also at long distances.
Hidden State Initialization. The hidden state initialization has a strong impact
on the RNN training process. We experiment with three different initialization
approaches:

• Zero initialization: a simple zero-tensor initialization.

• Learned initialization: a linear layer is trained to learn an optimal initializ-
ation.

• Absolute coordinate initialization: the tensor is initialized with the first
absolute coordinates to provide spatial information to the learning process
that is based on displacement generation.

We experimentally notice that the absolute coordinate initialization has a signi-
ficant impact on the recurrent process leading to a performance improvement on
ETH/UCY dataset and on SDD, while on STATS SportVU NBA InD and Tra-
jNet++ the zero initialization is preferable.
Block Irregular Adjacency Matrix. AC-VRNN and DAG-Net are based on a
single Variational Recurrent Neural Network with shared parameters. To jointly
compute a unique adjacency matrix for each time step, we build a block matrix
where each block contains the matrix corresponding to a single scene, randomly
chosen from the training dataset. Blocks can have different dimensions since a
variable number of agents may be present in the scene.

Deep Learning Approaches for Time-Evolving Scenarios 47

Method ETH HOTEL UNIV ZARA1 ZARA2 AVG

Vanilla VRNN 0.79/1.61 0.46/0.94 0.55/1.20 0.34/0.75 0.26/0.58 0.48/1.02
GCN-VRNN 0.81/1.58 0.41/0.85 0.59/1.31 0.38/0.84 0.41/0.96 0.52/1.11
AC-VRNN w/o KLD 0.73/1.41 0.52/1.07 0.64/1.36 0.43/0.89 0.39/0.83 0.54/1.11
All-1 ADJ Matrix 0.77/1.52 0.37/0.73 0.55/1.19 0.34/0.75 0.26/0.58 0.46/0.95
kNN ADJ Matrix 0.76/1.54 0.47/0.99 0.57/1.26 0.42/0.95 0.26/0.58 0.50/1.01

A-VRNN (Ours) 0.73/1.45 0.34/0.65 0.53/1.14 0.33/0.69 0.26/0.54 0.44/0.89
AC-VRNN (Ours) 0.61/1.09 0.30/0.55 0.58/1.22 0.34/0.68 0.28/0.59 0.42/0.83

Table 3.7: Ablation experiments showing TopK ADE and TopK FDE for tobs = 8 and
tpred = 12 in meters on ETH, UCY and SDD datasets. The AVG column reports average
results for ETH and UCY datasets.

3.6.5.1 AC-VRNN

AC-VRNN without KLD Loss on Belief Maps. To demonstrate the importance
of KL-divergence loss on belief maps, we train our model without this term yet
still conditioning the model on them. We obtain the worst results on all datasets
proving that the network is not able to integrate belief maps information condi-
tioning only VAE components. KL-divergence allows the network to generate
displacement distributions similar to the ground-truth ones and to follow prior
knowledge about local behaviours.
Belief Maps Dimension. Since belief maps define the probability that a pedes-
trian in a cell will move towards another one, it is important to consider a proper
cell dimension. If we consider a fine-grained grid (L = 3), we could discard in-
formation about pedestrians whose displacement is greater than the defined one.
Likewise, if we consider a course-grained grid (L = 9), the outermost cells may
not be properly filled. To select the best value of the parameter L, we test our
model using different cell dimensions and found that L = 5 is the best choice for
our datasets.

3.6.5.2 DAG-Net

In Table 3.9 and Table 3.10, we present ablation experiments to prove the im-
provements performed by each component of our model. Results present two
baselines: the Vanilla VRNN and A-VRNN, the version with one single attentive
graph on hidden states. Our DAG-Net outperforms both baselines on STATS

48 Deep Learning Approaches for Time-Evolving Scenarios

Method SDD
TopK ADE (↓) TopK FDE (↓)

Vanilla VRNN 0.56 1.15
GCN-VRNN 0.53 1.05
AC-VRNN w/o KLD 0.60 1.11
All-1 ADJ Matrix 0.57 1.11
kNN ADJ Matrix 0.73 1.43
A-VRNN 0.56 1.14
AC-VRNN (L = 3) 0.67 1.31
AC-VRNN (L = 5) 0.51 0.92
AC-VRNN (L = 7) 0.68 1.33

Table 3.8: Ablation experiments showing TopK ADE and TopK FDE for tobs = 8 and
tpred = 12 for SDD dataset.

Team Model
Agents’ Future

ADE FDE
interact. object.

Vanilla VRNN [23] ✗ ✗ 9.58 15.83

ATK A-VRNN ✓ ✗ 9.67 15.96

DAG-Net (Our) ✓ ✓ 9.18 13.54
Vanilla VRNN [23] ✗ ✗ 7.07 10.62

DEF A-VRNN ✓ ✗ 7.01 10.42

DAG-Net (Our) ✓ ✓ 7.01 9.76

Table 3.9: Ablation experiments for DAG-Net on STATS SportVU NBA dataset.

SportVU NBA and SDD. The Vanilla VRNN experiments show that using a
stand-alone network without considering interactions between agents does not
allow the model to capture the nature of real paths. For this reason, A-VRNN
achieves better performance than Vanilla VRNN; still, the model is not able to
capture future structured dependencies between agents. The results obtained with
DAG-Net highlight the importance of inserting future information into the pre-
diction and combining humans’ objectives in a structured way.

Deep Learning Approaches for Time-Evolving Scenarios 49

Figure 3.6: Illustration of predicted trajectories using AC-VRNN, baselines and competit-
ive methods on Eth (left) and Zara1 (middle) scenes of ETH and UCY datasets and gates 0
and deathCircle 1 of SDD (right).

Model
Agents’ Future

ADE FDE
interact. object.

Vanilla VRNN [23] ✗ ✗ 0.57 1.16

A-VRNN ✓ ✗ 0.56 1.14

DAG-Net (Our) ✓ ✓ 0.54 1.05

Table 3.10: Ablation experiments for DAG-Net on Stanford Drone Dataset.

3.6.6 Qualitative results
3.6.6.1 AC-VRNN

Figure 3.6 presents some qualitative experiments, comparing our model with
baselines and competitive methods. On Eth, GCN-VRNN, based on a Graph
Convolutional Neural Network, generates trajectories that significantly drift from
the ground-truth ones. On Zara1, all considered models are able to follow correct
paths, but AC-VRNN appears more able to predict complex trajectories such as
the entrance into a building, following the collective agents’ behaviour. For SDD,

50 Deep Learning Approaches for Time-Evolving Scenarios

Figure 3.7: Heatmaps of the predictions probability distribution for long-term predictions.
The predictions are made for tobs = 8 and tpred = 20, 60, 120 and 200, respectively
(from left to right). We select Zara1 scene and observe that the trajectories are coherent
with the scene topology.

we randomly select two scenes and show our model samples against competitive
methods. All methods predict plausible paths, but AC-VRNN generates more
realistic trajectories in some cases, following the sidewalk rather than crossing
the road diagonally.
Long-term predictions. Since AC-VRNN is a completely generative model, it
is possible to generate an unlimited number of future positions as well as create
trajectories without any observations. This could be especially useful for applica-
tions that require sampling a large number of trajectories to simulate realistic mo-
tion dynamics as required by synthetic scenarios mimicking real-life situations.
Obviously, as the number of time steps increases, the predicted paths tend to drift
from realistic ones, but our model qualitatively predicts plausible trajectories even
after several time steps. To this end, we show in Figure 3.7 some qualitative ex-
periments considering up to 200 time steps.
Multimodal predictions. Figure 3.8 depicts other qualitative examples gener-
ated by the AC-VRNN model showing multiple paths to demonstrate the abil-

Deep Learning Approaches for Time-Evolving Scenarios 51

Figure 3.8: Multiple predictions of AC-VRNN trajectories to highlight the multi-modality
nature of our model on ETH and UCY datasets.

52 Deep Learning Approaches for Time-Evolving Scenarios

Figure 3.9: Heatmaps representing probability distributions generated by our model for
ETH and UCY datasets.

Deep Learning Approaches for Time-Evolving Scenarios 53

ity of our model to predict multi-modal trajectories. Finally, Figure 3.9 shows
probability distributions of future paths. When interactions among pedestrians
are limited or absent, our model correctly predicts continuous linear paths. By
contrast, the increasing number of human interactions leads the predictions to
simulate complex patterns.

3.6.6.2 DAG-Net

In competitive settings such as sports, the opposing teams are deeply different.
The attacking team drives the game trying to score, while the defenders often
limit to just counter-react to its moves. These behaviours deeply affect the res-
ulting trajectories, as can be clearly seen in the roll-outs presented in Fig. 3.10.
Attackers’ trajectories tend to be particularly varied and intricate, often bending
and intersecting; on the contrary, defenders tend to move linearly and occasion-
ally deflect to follow an opponent or to close a gap. Despite some sudden changes
of direction in the real trajectories, especially for the attackers, our model is able
to correctly predict the overall future movement of the players. Because of the
complexity of such trajectories, the predictions do not always precisely resemble
the expected output: nevertheless, even when the predictions fail to follow the
real ground-truth trajectories, the model still predicts a likely behaviour coher-
ent with the play development, proving its strength in capturing the multi-modal
nature of players’ movements.

On the other hand, urban trajectories are more straightforward, because pedes-
trians obviously tend to move linearly, doing only some occasional deviations
to avoid collisions or to turn. Nevertheless, the adoption of agents’ goals gives
the model the possibility to produce more likely trajectories. Since gents are
constrained to pass through specific portions of the scene coherent with their mo-
tion behaviour, predictions can closely resemble real future movements: in both
the plot reported in Fig. 3.11, DAG-Net is able to keep closer to the ground-
truth, while both the competitors tend to predict more linear trajectories and con-
sequently deviate from the expected output. For the very same reasons, final
predictions can also be more precise: having important insights about the regions
the agent will occupy in the future can help the model appropriately predict the
overall portion of the scene where the agent will land at the end of his trajectory.
DAG-Net predicted the final location resembles the agent’s real destination, while
both the competitors fail to approximately forecast such information.

54 Deep Learning Approaches for Time-Evolving Scenarios

Hyperparameter ETH/UCY SDD STATS SportVU NBA TrajNet++ inD

Optimizer Adam Adam Adam SGD Adam
Learning rate 10−3 10−3 10−3 3× 10−4 10−4/5× 10−4

Batch size 16 16 32 8 16
Latent space size 16 16 32 16 16
Warm-up epochs 50 50 - 3 50

Table 3.11: Main hyperparameters used to train both AC-VRNN and A-VRNN models on
tested datasets.

3.6.7 Implementation details

3.6.7.1 AC-VRNN

We train our model for 500 epochs on ETH-UCY and SDD, for 300 epochs on
STATS SportVU NBA, for 300 epochs on inD and for 25 epochs on TrajNet++.
Except for ETH/UCY, we re-train all competitive methods for the same number
of epochs and report the best results after performing a hyperparameter search
retaining the best model on the validation set. For ETH/UCY we report results
from the original paper except for STGAT ([117]) which has been re-trained with
the best hyperparameters proposed by the authors. We use gradient clipping set
to 10. For the SGD optimizer we use a momentum of 0.9. The RNN is a GRU
with 1 layer and hidden size equal to 64. The attentive GNN has a hidden size
of 8 with 4 attention heads. Each belief map during training is generated by
sampling 100 displacements. In Eq. 3.13, k is set to 100 for all the datasets. Other
hyperparameters that vary according to the dataset are reported in Table 3.11. In
Table 3.12 an overall description of AC-VRNN architecture is reported. ||

Warm-up on VRNN KL-Divergence. VRNN is trained with the ELBO loss
that is composed of two terms: Negative Log-Likelihood and KL-Divergence.
To correctly balance these two terms, we use a warm-up method that increases
the weight in the range [0, 1] of the KL-Divergence up to N epochs. After this
learning period, we fix the KL weight to 1. This technique favours the reconstruc-
tion error during the early epochs in order to first teach the network to generate
correct samples and then to approach both encoder’s and prior’s means and log-
variances.

||For a more detailed explanation see ([108]) and https://github.com/Diego999/
pyGAT

Deep Learning Approaches for Time-Evolving Scenarios 55

https://github.com/Diego999/pyGAT
https://github.com/Diego999/pyGAT

Module Architecture

Features extraction (trajectory) Linear (2, 64)→ LeakyReLU→ Linear(64, 64)→ LeakyReLU

Features extraction (belief map) Linear (64, 64)→ LeakyReLU

Prior Linear(128, 64)→ LeakyReLU
Mean Linear(64, 16)

Log-variance Linear(61, 16)

Encoder Linear(192, 64)→ LeakyReLU→ Linear(64, 64)→ LeakyReLU
Mean Linear(64, 16)

Log-variance Linear(64, 16)

Latent space Linear(16, 64)→ LeakyReLU

Decoder Linear(192, 64)→ LeakyReLU→ Linear(64, 64)→ LeakyReLU
Mean Linear(64, 16)→ HardTanH(-10, 10)

Log-variance Linear(64, 16)

Recurrence GRU(128, 64, 1)

Graph GraphAttentionLayer(64, 64, hidden units=8, heads=4, α = 0.2)→ BatchNorm1D→ TanH

Table 3.12: Detailed description of each module of our AC-VRNN architecture.

3.6.7.2 DAG-Net

The VRNN recurrent cell is a GRU with 1 recurrent layer and a hidden state di-
mension of 64; the dimension of the latent variable is set to 32. For each graph,
we then employ two attentive GNN layers: the first layer reduces the input to
lower-dimensional hidden space, and the second layer returns instead to the ori-
ginal input space. Each GNN layer uses 4 attention heads. The entire model
has been optimised with Adam optimiser. To cope with the differences between
urban and sports settings, we employ different sets of hyper-parameters.
For the urban setting, we use a learning rate of 10−4 and a batch size of 16; the
Cross-Entropy contribution is weighted with a factor of 10−2. The hidden state
dimension between the two graph layers is set to 4. The model has been trained
for 500 epochs.
For the sports setting, we use a learning rate of 10−3 and a batch size of 64; the
Cross-Entropy contribution is weighted with a factor of 10−2. The hidden state
dimension between the two graph layers is set to 8. The model has been trained
for 300 epochs.

56 Deep Learning Approaches for Time-Evolving Scenarios

Figure 3.10: Basketball roll-outs. After an initial observation stage (black), model predic-
tions (red) are evaluated against the ground truth (blue), The top roll-outs refer to three
different attack plays, while the bottom one represents three different defensive actions.

Figure 3.11: Qualitative samples that compare DAG-Net and state-of-the-art methods on
Stanford Drone Dataset.

Chapter 4

Meta-Continual Learning in
Complex Scenarios

Human-like learning has always been a challenge for deep learning algorithms.
Neural networks work differently than the human brain, needing a large num-
ber of independent and identically distributed (iid) labelled data to face up the
training process. Due to their weakness in directly dealing with few, online, and
unlabelled data, the majority of deep learning approaches are bounded to specific
applications. Continual learning, meta-learning, and unsupervised learning try to
overcome these limitations by proposing targeted solutions.
In particular, continual learning has been largely investigated in the last few years
to solve the catastrophic forgetting problem that affects neural networks trained
on incremental data. When data are available as a stream of tasks, neural net-
works tend to focus on the most recent, overwriting their past knowledge and
consequently causing forgetting. Several methods [55, 73, 19, 86, 119, 85] have
been proposed to solve this issue involving a memory buffer, network expansion,
selective regularisation, and distillation. Some works [48, 110, 81, 69, 38, 115]
take advantage of the meta-learning abilities of generalisation on different tasks
and rapid learning on new ones to deal with continual learning problems, giving
life to meta-continual learning [47] and continual-meta learning [13]. Due to the
complex nature of the problem, the proposed approaches generally involve su-
pervised or reinforcement learning settings. Furthermore, few works on unsuper-
vised meta-learning [44, 51, 49] and unsupervised continual learning [83] have

Deep Learning Approaches for Time-Evolving Scenarios 59

1. Embedding Learning 3. Meta-Continual Train

𝐶!

𝐶"

𝐶#

𝑍 = 𝑍! , 𝑍",…, 𝑍$

𝑝 𝜏 = 	𝜏! , 𝜏", …, 𝜏% , …

𝐷 = 𝑋! ,𝑋",…, 𝑋$

Self-
supervised

learning

𝑍

2. Clustering 4. Meta-Continual Test

FEN
𝜃

FEN
𝜃’

CLN
𝑊

CLN
𝑊’

𝜏!~𝑝 𝜏 , 𝑆"#$%&'(, 𝑆)$'(*

Single
inner
loop

Outer
loop

Loss with respect to 𝑊
𝐿(𝑌!"#$%+𝑌&'"()#$, 𝑌′!"#$%+ 𝑌′&'"()#$)

FEN
𝜃’

CLN
𝑊’

𝜏′!~𝑝 𝜏′

Meta-test
Train

Meta-test
Test

FEN
𝜃

CLN
𝑊

+

Unbalanced	task	distribution

Aggregation
module

Meta-Example

Figure 4.1: Overview of FUSION learning strategy. The model is composed of 4 phases:
1) an embedding learning network that learns a suitable embedding for each sample; 2) an
unsupervised task construction phase in which clustering is applied over these embedding
3) a meta-continual training phase consisting of a two-loop procedure performed on the
unsupervised tasks built in phase 2. The architecture for meta-continual training consists of
a feature extraction network (FEN) that learns features useful across tasks, a self-attention-
based aggregation module that collapses examples in the inner loop into a single meta-
example, and a classification network (CLN) that performs tasks-level classification. The
FEN is frozen in the inner loop (grey box); 4) a meta-continual test phase that fine-tunes
only the classification network for new unseen classes.

been recently proposed, but the first ones deal with iid data, while the second one
assumes the availability of a huge dataset. Moreover, the majority of continual
learning solutions assume that data are perfectly balanced or equally distributed
among classes. This problem is non-trivial for continual learning since specific
solutions have to be found to preserve a balanced memory in presence of an im-
balanced stream of data [22].
In this thesis, we introduce FUSION (standing for Few-shot UnSupervIsed cON-
tinual learning), a new learning strategy for unsupervised meta-continual learning

60 Deep Learning Approaches for Time-Evolving Scenarios

Few-shot Unsupervised Continual Imbalance OoD Algorithm
- - ✓ - - iCARL [85]
- ✓ ✓ - - CURL [83]
✓ ✓ - - - CACTUs [44]
✓ ✓ - - - UMTRA [51]
✓ ✓ - - - UFLST [49]
✓ - - ✓ ✓ L2B [61]
- ✓ ✓ - ✓ GD [62]
✓ - ✓ - - OML [47]
✓ - ✓ - - ANML [6]
✓ - ✓ - ✓ Continual-MAML [13]
✓ - ✓ - - iTAML [81]
✓ ✓ ✓ ✓ ✓ FUSION (Ours)

Table 4.1: Features comparison between FUSION and several works recently proposed in
the literature involving continual learning and few-shot learning in the wild.

that can learn from small datasets and does not require the underlying tasks to be
balanced. *

To the best of our knowledge, an unsupervised meta-continual learning setting has
never been studied before in the literature. However, a plethora of various works
proposes “learning in the wild” problems involving a mixture of non-trivial set-
tings. In Table 4.1 we provide a comparison between these approaches and FU-
SION, highlighting the features of each one. FUSION is the only approach that
can deal with a complex setting involving few-shot learning, continual learning
and unbalanced tasks, while also proving capable of generalizing across datasets.
As reported in Figure 4.1, FUSION is composed of four phases: embedding
learning, clustering, meta-continual train and meta-continual test. In the embed-
ding learning phase, a neural network is trained to generate embeddings that fa-
cilitate the subsequent separation. Embeddings can be learned in different ways,
through generative models [8, 28] or self-supervised learning [14, 5]. Then clus-
tering is applied to these embeddings, and each cluster corresponds to a task
(i.e., a class) for the following phase. As clustering is not constrained to pro-
duce balanced clusters, the resulting tasks are also unbalanced. For the meta-
continual training phase, we introduce a novel meta-learning-based algorithm that
can effectively cope with unbalanced tasks. The algorithm, named MEML (for

*The code is available at https://github.com/alessiabertugli/FUSION

Deep Learning Approaches for Time-Evolving Scenarios 61

https://github.com/alessiabertugli/FUSION

Meta-Example Meta-Learning), relies on a single inner loop update performed
on an aggregated attentive representation, which we call meta-example. In so do-
ing, MEML learns meta-representations that enrich the general features provided
by large clusters with the variability given by small clusters, while existing ap-
proaches simply discard small clusters [44] or force the network to generate bal-
anced clusters [5]. Finally, on the meta-continual test, the learned representation
is frozen and novel tasks are learned acting only on classifications layers.
We perform extensive experiments on two few-shot datasets, Omniglot [59] and
Mini-ImageNet [26] and on two continual learning benchmarks, Sequential MNIST [60]
and Sequential CIFAR-10 [58] widely outperforming state-of-the-art methods.
We also show the generalisation capability of FUSION across datasets.

Contributions. We remark on our contributions as follows:
• We propose FUSION, a novel strategy dealing with unbalanced tasks in an

unsupervised meta-continual learning scenario;
• As part of FUSION, we introduce MEML, a new meta-learning-based al-

gorithm that can effectively cope with unbalanced tasks, and MEMLX,
a variant of MEML exploiting an original augmentation technique to in-
crease robustness, especially when dealing with undersized datasets;

• We test FUSION on an unsupervised meta-continual learning setting reach-
ing superior performance compared to state-of-the-art approaches. Abla-
tions studies empirically show that the imbalance in the task dimension
does not negatively affect the performance, and no balancing technique is
required;

• We additionally test MEML, our meta-continual learning method, in stand-
ard supervised continual learning, achieving better results with respect to
specifically tailored solutions;

• Finally, we report experiments highlighting the generalisation capacity of
FUSION across datasets.

4.1 Method
Meta-continual learning [47, 6] deals with the problem of allowing neural net-
works to learn from a stream of few, non-i.i.d. examples and quickly adapt to
new tasks. It can be considered as a few-shot learning problem, where tasks are
incrementally seen, one class after the others. Formally, we define a distribution
of training classification tasks p(T) = T0, T1, ..., Ti, During meta-continual
training, the neural network sees all samples belonging to T0 first, then all samples

62 Deep Learning Approaches for Time-Evolving Scenarios

belonging to T1, and so on, without shuffling elements across tasks as in tradi-
tional deep learning settings. The network should be able to learn a general rep-
resentation, capturing important features across tasks, without catastrophic for-
getting, meaning to overfit on the last seen tasks. During the meta-test phase, a
different distribution of unknown tasks p(T ′) = T ′0 , T ′1 , ..., T ′i , ... is presented
to the neural network again in an incremental way. The neural network, starting
from the learned representation, should quickly learn to solve novel tasks.

In this thesis, differently from standard meta-continual learning, we focus on the
case where no training labels are available and tasks have to be constructed in
an unsupervised way, using pseudo-labels instead of the real labels in the meta-
continual problem. To investigate how neural networks learn when dealing with
a real distribution and flow of unbalanced tasks, we propose FUSION, a novel
learning strategy composed of four phases reported in Algorithm 2 and described
in detail below.

4.1.1 Embedding learning

Rather than requiring the task construction phase to directly work on high di-
mensional raw data, an embedding learning network, which is different from
the one employed in the following phases, is used to determine an embedding
that facilitates the subsequent task construction. Through an unsupervised train-
ing [14, 8], the embedding learning network produces an embedding vector set
Z = Z0, Z1, ..., ZN , starting from the N data points in the training set D =
X0, X1, ..., XN (see Figure 4.1.1). Embeddings can be learned in different ways,
through generative models [8, 28] or self-supervised learning [14, 5]. In particu-
lar, DeepCluster [14] is a clustering method that jointly learns the parameters of a
neural network and the cluster assignments of the resulting features. It groups the
features with standard k-means clustering and uses these assignments as labels for
a supervised learning procedure. ACAI [8] is an autoencoder-based architecture
that aims to encourage high-quality interpolations into the latent space, extracting
the most salient features from the dataset (without labels) and performing a sort
of dimensionality reduction. The model is based on two encoders, one decoder
and one critic. Here, the critic tries to predict the interpolation coefficient cor-
responding to an interpolated data point, while the autoencoder is trained to fool
the critic into outputting a zero coefficient. In Figure 4.1.1 an illustration of an
unsupervised embedding learning based on self-supervised learning is shown.

Deep Learning Approaches for Time-Evolving Scenarios 63

4.1.2 Clustering

As done in [44], the task construction phase exploits the k-means algorithm
over suitable embeddings obtained with the embedding learning phase previ-
ously described. This simple but effective method assigns the same pseudo-
label to all data points belonging to the same cluster. This way, a distribution
p(T) = T0, T1, ..., Ti, ... of tasks is built from the generated clusters as reported
in Figure 4.1.2. Applying k-means over these embeddings leads to unbalanced
clusters, which determine unbalanced tasks. This is in contrast with typical meta-
learning and continual learning problems, where data are perfectly balanced. To
recover a balanced setting, in [44], the authors set a threshold on the cluster di-
mension, discarding extra samples and smaller clusters. A recent alternative [5]
forces the network to balance clusters, imposing a partition of the embedding
space that could contrast with the extracted features. We believe that these ap-
proaches are sub-optimal as they alter the data distribution. In an unsupervised
setting, where data points are grouped based on the similarity of their features,
variability is an essential factor. In a task imbalanced setting, the obtained meta-
representation is influenced by both small and large clusters. Large clusters allow
learning robust features that are broadly useful, while small clusters inject a vari-
ability that can help with fine-grained discrimination.

4.1.3 Meta-continual train

Motivation. The adopted training protocol is related to the way data are provided
at meta-test train time. In that phase, the model receives as input a stream of new
unseen tasks, each with correlated samples; we do not assume access to other
classes (as opposed to the training phase) and only the current one is available. In
this respect, since the network’s finetuning occurs with this stream of data, during
training we reproduce a comparable scenario. In particular, we need to design a
training strategy that is sample efficient and directly optimize for a proper initial
weights configuration. These suitable weights allow the network to work well on
novel tasks after a few gradient steps using only a few samples. In the context
of meta-learning, MAML relies on a two-loop training procedure performed on
a batch of training tasks. The inner loop completes N step of gradient updates
on a portion of samples of the training tasks, while the outer loop exploits the re-
maining ones to optimize for a quickly adaptable representation (meta-objective).
Recent investigations on this algorithm explain that the real reason for MAML’s
success resides in feature reuse instead of rapid learning [80], proving that learn-

64 Deep Learning Approaches for Time-Evolving Scenarios

Inner loop
10 samples

Outer loop
15 samples

Task 1
Inner loop
10 samples

Outer loop
15 samples

Task N

Inner loop
15 samples

Outer loop
11 samples

Task 1
Inner loop
7 samples

Outer loop
17 samples

Task N

Balanced

Unbalanced

Figure 4.2: Balanced vs unbalanced tasks flow. In the balanced version, tasks contain a
fixed number of elements for the inner loop (10 samples) and outer loop (15 samples, 5
from the current cluster and 10 randomly sampled from other clusters). In the unsupervised
model, tasks are unbalanced and contain two-thirds of cluster data for the inner loop and
one-third for the outer loop in addition to a fixed number of random samples.

ing meaningful representations is a crucial factor. Based on this assumption, we
focus on the generalisation ability of the feature extraction layers to develop our
meta-continual learning algorithm.

Procedure. The created tasks are sampled one at a time Ti ∼ p(T) for the un-
supervised meta-continual training phase as shown in Figure 4.1.3. The training
process happens in a class-incremental way - where one task corresponds to one
cluster - following a two-loop update procedure. The inner loop involves samples
belonging to the ongoing task, while the outer loop contains elements sampled
from both the current and other random clusters. In fact, during this stage, the
network may suffer from the catastrophic forgetting effect on the learned repres-
entation if no technique is used to generalise or remember. To this end, the query
set, used to update parameters in the outer loop, have to be designed to simulate
an iid distribution, containing elements belonging to different tasks. We illustrate
the tasks flow in Figure 4.2. The unbalanced case takes two-thirds of the current
cluster data for the inner loop and adds one-third to a fixed number of random
samples for the outer loop. The balanced case - usually adopted with supervised
data - instead takes the same number of samples among tasks for both the inner
and the outer loop.
To deal with the meta-continual train in FUSION (Figure 4.1.3), we propose
MEML, a meta-learning procedure based on the construction of a meta-example,

Deep Learning Approaches for Time-Evolving Scenarios 65

a prototype of the task obtained through self-attention. The whole architecture
is composed of a Feature Extraction Network (FEN), an aggregation module and
a CLassification Network (CLN). The FEN is updated only in the outer loop
(highlighted in blue in the figure), while frozen during the inner (grey). Both the
aggregation module and the CLN are renewed in the inner and outer loops.
MEML. We remove the need for several inner loops, maintaining a single in-
ner loop update through a mechanism for aggregating examples based on self-
attention. This way, we considerably reduce the training time and computational
resources needed for training the model and increase global performance. The
use of a meta-example instead of a trajectory of samples is particularly helpful
in class-incremental continual learning to avoid catastrophic forgetting. In fact,
instead of sequentially processing multiple examples of the same class and up-
dating the parameters at each one (or at each batch), the network does it only
once per class, reducing the forgetting effect. At each time-step, as pointed out
in Figure 4.2, a task Ti = (Scluster,Squery) is randomly sampled from the task
distribution p(T). Scluster contains elements of the same cluster:

Scluster = {(Xk, Yk)}Kk=0, (4.1)

where Ycluster = Y0 = ... = Yk is the cluster pseudo-label and K is the number
of data points in the cluster. Instead, Squery contains a variable number of ele-
ments belonging to the current cluster and a fixed number of elements randomly
sampled from all other clusters:

Squery = {(Xq, Yq)}Qq=0, (4.2)

where Q is the total number of elements in the query set. Scluster is used for
the inner loop update, while Squery is used to optimise the meta-objective during
the outer loop. All the elements belonging to Scluster are processed by the FEN,
parameterised by θ, computing the feature vectors R0, R1, ..., RK in parallel for
all task elements:

R0:K = fθ(X0:K). (4.3)

The obtained embeddings are refined with an attention function, parameterised
by ρ, that computes the attention coefficients a⃗ from the features vectors:

a⃗ = Softmax[fρ(R0:K)]. (4.4)

Then, the final aggregated representation vector RME , for meta-example repres-
entation, captures the most salient features:

RME = a⃗⊺R0:K . (4.5)

66 Deep Learning Approaches for Time-Evolving Scenarios

The single inner loop is performed on this meta-example, which adds up the
weighted-features contribution of each element of the current cluster. Then, the
cross-entropy loss L between the predicted label and the pseudo-label is com-
puted and both the classification network parameters W and the attention para-
meters ρ are updated with a gradient descent step:

ψ ← ψ − α∇ψL(fψ(RME), Ycluster), (4.6)

where ψ = {W,ρ} and α is the inner loop learning rate. Finally, to update the
whole network parameters ϕ = {θ,W, ρ}, and to ensure generalisation across
tasks, the outer loop loss is computed from Squery. The outer loop parameters
are thus updated as follows:

ϕ← ϕ− α∇ϕL(fϕ(X0:Q), Y0:Q), (4.7)

where β is the outer loop learning rate.
Note that with the aggregation mechanism introduced by MEML, a single inner
loop is made regardless of the number of examples in the cluster, thus eliminating
the problem of unbalancing at the inner loop level. However, the representation
updated in the outer loop remains unbalanced since the FEN calculate the embed-
dings for each example.
MEMLX. Since the aim is to learn a representation that generalises to unseen
classes, we introduce an original augmentation technique inspired by [36]. The
idea is to generate multiple sets of augmented input data and retain the set with
maximal loss to be used as training data. Minimising the average risk of this
worst-case augmented data set enforces robustness and acts as a regularisation
against random perturbations, leading to a boost in the generalisation capability.
Starting from the previously defined Scluster and Squery we generate m sets of
augmented data:

{Sicluster, Siquery}mi=1 ← A(Scluster), A(Squery), (4.8)

whereA is an augmentation strategy that executes a combination of different data
transformations for each i ∈ m. Hence, for each of these newly generated sets
of data we perform an evaluation forward pass through the network and compute
the loss, retaining the Siccluster and Siqquery sets giving the highest loss to be used
as input to MEML for the training step:

ic = argmaxi∈1,..mL(f(Sicluster), Ycluster),
iq = argmaxi∈1,..mL(f(Siquery), Y0:Q).

(4.9)

Deep Learning Approaches for Time-Evolving Scenarios 67

MEML

MEML

MEML

L1 = CE(logits1, target) = 1.27

L2 = CE(logits2, target) = 1.31

L3 =CE(logits3, target) = 1.40

Argmax [𝐿𝑖]𝑖=1
3

Input batch

Augmented batch 1

Augmented batch 2

Augmented batch 3

Figure 4.3: Augmentation technique adopted in MEMLX.

Algorithm 2 FUSION
Require: : D = X0, X1, ..., XN : unlabeled training set
Require: α, β: inner loop and outer loop learning rates

1: Run embedding learning onD producing Z0:N fromX0:N

2: Run k-means on Z0:N generating a distribution of unbalanced tasks p(T) from clusters
3: Meta-train with MEML in Algorithm 3
4: Meta-test with MEML

In Figure 4.3, we illustrate the overall augmentation process employed in MEMLX.
Three different augmented batches are created starting from the input batch,
each forwarded through the network producing logits. The Cross-Entropy losses
between those latter and the targets are computed, keeping the augmented batch
corresponding to the highest value. In detail, we adopt the following augmenta-
tion:

• Augmented batch 1: vertical flip, horizontal flip;
• Augmented batch 2: colour jitter (brightness, contrast, saturation, hue);
• Augmented batch 3: random affine, random crop.

We report the whole algorithm in Algorithm 3, where MEMLX steps are high-
lighted in blue.

4.1.4 Meta-continual test

At meta-continual test time, novel and unseen tasks T ′i ∼ p(T ′) from the test set
are provided to the network, as illustrated in Figure 4.1.4. Here p(T ′) represents
the distribution of supervised test tasks and T ′i corresponds to a sampled test
class. The representation learned during the meta-train remains frozen, and only
the prediction layers are fine-tuned. The test set is composed of novel tasks, that

68 Deep Learning Approaches for Time-Evolving Scenarios

Algorithm 3 MEML
Require: : D = X0, X1, ..., XN : unlabelled training set
Require: α, β: inner loop and outer loop learning rates

1: Randomly initialise θ andW
2: while not done do
3: Sample a task Ti = (Scluster,Squery) ∼ p(T)
4: Randomly initialiseWi

5: if MEMLX then
6: {Sicluster,S

i
query}

m
i=1←A(Scluster), A(Squery) 4.8

7: ic = argmaxi∈1,..mL(f(S
i
cluster), Ycluster)

8: iq = argmaxi∈1,..mL(f(S
i
query), Y0:Q) 4.9

9: Scluster = Siccluster , Squery = Siqquery
10: end if
11: R0:K = fθ(X0:K) 4.3
12: a⃗ = Softmax[fρ(R0:K)] 4.4
13: RME = a⃗

⊺
R0:K 4.5

14: ψ, ϕ = {W, ρ}, {θ,W, ρ}
15: ψ←ψ − α∇ψL(fψ(RME), Ycluster) 4.6
16: ϕ←ϕ− β∇ϕL(fϕ(X0:Q), Y0:Q) 4.7
17: end while

can be part of the same distribution (e.g. distinct classes within the same dataset)
or even belong to a different distribution (e.g. training and testing performed on
different datasets).

4.2 Experiments

4.2.1 Few-shot Unsupervised Continual Learning
4.2.1.1 Datasets

We employ Omniglot and Mini-ImageNet, two datasets typically used for few-
shot learning evaluation. The Omniglot dataset contains 1623 characters from 50
different alphabets with 20 greyscale image samples per class. We use the same
splits as [44], using 1100 characters for meta-training, 100 for meta-validation,
and 423 for meta-testing. The Mini-ImageNet dataset consists of 100 classes of
realistic RGB images with 600 examples per class. As done in [84, 44], we use
64 classes for meta-training, 16 for meta-validation and 20 for meta-test.

4.2.1.2 Architecture

Following [47], we use for the FEN a six-layer CNN interleaved by ReLU activa-
tions with 256 filters for Omniglot and 64 for Mini-ImageNet. All convolutional

Deep Learning Approaches for Time-Evolving Scenarios 69

layers have a 3 × 3 kernel (for Omniglot, the last one is a 1 × 1 kernel) and are
followed by two linear layers constituting the CLN. The attention mechanism is
implemented with two additional linear layers interleaved by a Tanh function,
followed by a Softmax and a sum to compute attention coefficients and aggregate
features. We use the same architecture for competitive methods. We do not ap-
ply the Softmax activation and the final aggregation but we keep the added linear
layers, obtaining the same number of parameters. The choice in using two simple
linear layers as an attention mechanism is made specifically since the aim of the
thesis is to highlight how this kind of mechanism can enhance performance and
significantly decrease both training time and memory usage. Investigating the be-
haviour of more sophisticated attention mechanisms is beyond the scope of this
work.

4.2.1.3 Training protocol

For Omniglot, we train the model for 60000 steps while for Mini-ImageNet for
200000, with meta-batch size equal to 1. The outer loop learning rate is set to
1e−4 while the inner loop learning rate is set to 0.1 for Omniglot and 0.01 for
Mini-ImageNet, with Adam optimiser. As embedding learning networks, we em-
ploy Deep Cluster [14] for Mini-ImageNet and ACAI [8] for Omniglot. Since
Mini-ImageNet contains 600 examples per class, after clustering, we sample ex-
amples between 10 and 30, proportionally to the cluster dimension to keep the
imbalance between tasks. We report the test accuracy on a different number of
unseen classes, which induces increasingly complex problems as the number in-
crease. Following the protocol employed in [47], all results are obtained through
the mean of 50 runs for Omniglot and 5 for Mini-ImageNet.

4.2.1.4 Performance analysis

In Table 4.2 and Table 4.3, we report results respectively on Omniglot and Mini-
ImageNet, comparing our model with competing methods. To see how the per-
formance of MEML within our FUSION is far from those achievable with the
real labels, we also report for all datasets the accuracy reached in a supervised
case (oracles). We define Oracle OML [47] and Oracle ANML [6] † as super-

†Our results on Oracle ANML are different from the ones presented in the original paper due to a
different use of data. To make a fair comparison we use 10 samples for the support set and 15 for the
query set for all models, while in the original ANML paper the authors use 20 samples for the support
set and 64 for the query set. We do not test ANML on Mini-ImageNet due to the high computational
resources needed.

70 Deep Learning Approaches for Time-Evolving Scenarios

Omniglot
Algorithm/Tasks 10 50 75 100 150 200

Oracle OML [47] 88.4 74.0 69.8 57.4 51.6 47.9
Oracle ANML [6] 86.9 63.0 60.3 56.5 45.4 37.1
Oracle MEML (Ours) 94.2 81.3 80.0 76.5 68.8 66.6
Oracle MEMLX (Ours) 94.2 75.2 75.0 67.2 58.9 55.4

OML 74.6 32.5 30.6 25.8 19.9 16.1
ANML 72.2 46.5 43.7 37.9 26.5 20.8
MEML (Ours) 89.0 48.9 46.6 37.0 29.3 25.9
MEMLX (Ours) 82.8 50.6 49.8 42.0 34.9 31.0

Table 4.2: Meta-test test accuracy on Omniglot.

vised competitors, and Oracle MEML is the supervised version of our model.
MEML outperforms OML on Omniglot and Mini-ImageNet and ANML on Om-
niglot, suggesting that the meta-examples strategy is beneficial on both FUSION
and fully supervised cases. MEMLX, the advanced version exploiting a specific
augmentation technique is able to improve the MEML results in almost all exper-
iments. In particular, MEMLX outperforms MEML on both Omniglot and Mini-
ImageNet in FUSION and even in the fully supervised case on Mini-ImageNet.
The only experiment in which MEML outperforms MEMLX is on Omniglot, in
the supervised case. In our opinion, the reason is to be found in the type of data-
set. Omniglot is a dataset made up of 1100 classes and therefore characters are
sometimes very similar to each other. Precisely for this reason, applying aug-
mentation can lead the network to confuse augmented characters for a class with
characters belonging to other classes. In the unsupervised case, the clusters are
grouped by features, which should better separate the data from a visual point of
view, thus favouring our augmentation technique.

Time and Computation Analysis. In Table 4.4, we compare training time and
computational resources usage between OML, MEML and MEMLX on Omni-
glot and Mini-ImageNet. We measure the time to complete all training steps in
hours and minutes and the computational resources in gigabytes occupied on the
GPU. Both datasets confirm that our methods, adopting a single inner update,
train considerably faster and use approximately one-third of the GPU resources
with respect to OML. MEMLX undergoes minimal slowdown, despite the use of

Deep Learning Approaches for Time-Evolving Scenarios 71

Mini-ImageNet
Algorithm/Tasks 2 4 6 8 10

Oracle OML [47] 50.0 31.9 27.0 16.7 13.9
Oracle MEML (Ours) 66.0 33.0 28.0 29.1 21.1
Oracle MEMLX (Ours) 74.0 60.0 36.7 51.3 40.1

OML 49.3 41.0 19.2 18.2 12.0
MEML (Ours) 70.0 48.4 36.0 34.0 21.6
MEMLX (Ours) 72.0 45.0 50.0 45.6 29.9

Table 4.3: Meta-test test accuracy on Mini-ImageNet.

Omniglot Mini-ImageNet
Algorithm Time GPU Time GPU

OML [47] 1h 32m 2.239 GB 7h 44m 3.111 GB
MEML 47m 0.743 GB 3h 58m 1.147 GB
MEMLX 1h 1m 0.737 GB 4h 52m 1.149 GB

Table 4.4: Training time and GPU usage of MEML and MEMLX compared to OML on
Omniglot and Mini-ImageNet.

our augmentation strategy. To a fair comparison, all tests are performed on the
same hardware equipped with an NVIDIA Titan X GPU.

4.2.2 Supervised continual learning
To further prove the effectiveness of our meta-example strategy, we put MEML
and MEMLX in standard supervised continual learning and show their perform-
ance compared to state-of-the-art continual learning approaches.

4.2.2.1 Datasets

We experiment on Sequential MNIST and Sequential CIFAR-10. In detail, the
MNIST classification benchmark [60] and the CIFAR-10 dataset [58] are split
into 5 subsets of consecutive classes composed of 2 classes each.

72 Deep Learning Approaches for Time-Evolving Scenarios

4.2.2.2 Architecture

For tests on Sequential MNIST, we employ as architecture a fully-connected
network with two hidden layers, interleaving with ReLU activation as proposed
in [73], [86]. For tests on CIFAR-10, following [85], we rely on ResNet18 [39].

4.2.2.3 Training protocol

We train all models in a class-incremental way (Class-IL), the hardest scenario
among the three described in [105], which does not provide task identities. We
train for 1 epoch for Sequential MNIST and 50 epochs for Sequential CIFAR-10.
SGD optimiser is used for all methods for a fair comparison. A grid search of
hyperparameters is performed on all models taking the best ones for each (for
further details see the supplementary material). For rehearsal-based strategies,
we report results on buffer sizes 200, 500 and 5120. The standard continual
learning test protocol is used for all methods, where the accuracy is measured
on test data composed of unseen samples of all training tasks at the end of the
whole training process. We adapt our meta-example strategy to a double class
per task making a meta-example for each class corresponding to two inner loops.
The query set used within FUSION mirror the memory buffer in continual learn-
ing. The memory buffer contains elements from previously seen tasks, while the
query set samples elements from all training tasks. For MEMLX, we apply our
augmentation technique on both current task data and buffer data.

4.2.2.4 Performance analysis

In Table 4.5 we show accuracy results on Sequential MNIST and Sequential
CIFAR-10 ‡ respectively. MEML and MEMLX consistently overcome all state-
of-the-art methods on both datasets. We denote that MEML is significantly differ-
ent from MER, which adopts a Reptile [78] update style, processing one sample
at a time and making an inner loop on all samples. This greatly increases the
training time, making this strategy ineffective for datasets such as CIFAR-10. On
the contrary, MEML makes as many inner loops as there are classes per task and
finally a single outer loop on both task data and buffer data. This way, MEML
training time is comparable to the other rehearsal strategy, but with the general-
isation benefit given from meta-learning. To further confirm the beneficial role of
the meta-learning procedure, we observe that EXP REPLAY, using only one loop,

‡Due to high training time we do not report MER results on Sequential CIFAR-10.

Deep Learning Approaches for Time-Evolving Scenarios 73

Sequential MNIST Sequential CIFAR-10
Algorithm/Buffer None 200 500 5120 None 200 500 5120

LWF [65] 19.62 - - - 19.60 - - -
EWC [55] 20.07 - - - 19.52 - - -
SI [119] 20.28 - - - 19.49 - - -
SAM [35] 62.63 - - - - - - -
iCARL [85] - - - - - 51.04 49.08 53.77
HAL [18] - 79.80 86.80 88.68 - 32.72 46.24 66.26
GEM [73] - 78.85 85.86 95.72 - 28.91 23.81 25.26
EXP REPLAY [89] - 78.23 88.67 94.52 - 47.88 59.01 83.65
MER [86] - 79.90 88.38 94.58 - - - -
MEML (Ours) - 84.63 90.85 96.04 - 54.33 66.41 83.91
MEMLX (Ours) - 89.94 92.11 94.88 - 51.98 63.25 83.95

Table 4.5: MEML and MEMLX compared to state-of-the-art continual learning methods
on Sequential MNIST (left) and Sequential CIFAR-10 (right) in class-incremental learn-
ing.

reaches lower performance. In Table 6 we report results on additional continual
learning metrics: forward transfer, backward transfer and forgetting. In partic-
ular, forward transfer (FWT) measure the capability of the model to improve
on unseen tasks with respect to a random-initialized network. It is computed by
making the difference between the accuracy before the training on each task and
the accuracy of a random-initialized network averaged on all tasks. Backward
transfer [73] (BWT) is computed making the difference between the current ac-
curacy and its best value for each task, making the assumption that the highest
value of the accuracy on a task is the accuracy at the end of it. Finally, forget-
ting [16] is similar to BTW, without the letter assumption. We compare the best
performer algorithms on both Sequential MNIST and Sequential CIFAR. MEML
and MEMLX outperform all the other methods on backward transfer and for-
getting, while a little lower performance is reached on forward transfer. Since
results are consistent for all buffer dimensions, we report results on buffer 5120.
The results on buffers 200 and 500 are reported in the supplementary material.

4.2.2.5 Time analysis

We make a training time analysis between the most relevant state-of-the-art con-
tinual learning strategy on Sequential MNIST. We measure the training time in

74 Deep Learning Approaches for Time-Evolving Scenarios

Sequential MNIST Sequential CIFAR-10
Algorithm/Metric FWT BWT Forgetting FWT BWT Forgetting

HAL [18] -10.06 -6.55 6.55 -10.34 -27.19 27.19
GEM [73] -9.51 -4.14 4.30 -9.18 -75.27 75.27
EXP REPLAY [89] -10.97 -6.07 6.08 -8.45 -13.99 13.99
MER [86] -10.50 -3.22 3.22 - - -
MEML (Ours) -9.74 -3.12 3.12 -12.68 -10.97 10.97
MEMLX (Ours) -9.74 -1.72 1.92 -12.74 -12.42 12.42

Table 4.6: Forward transfer, backward transfer and forgetting comparison on Sequential
MNIST (left) and Sequential CIFAR-10 (right) in class-incremental learning.

100 200 300 400 500 600
Time (seconds)

0

20

40

60

80

100

A
cc

ur
ac

y

MER
GEM
EXP REPLAY
MEML (Ours)
MEMLX (Ours)

Figure 4.4: Training time comparison with respect to the accuracy between the most im-
portant state-of-the-art continual learning methods.

seconds since the last task. We find that MEML and MEMLX are slower only
compared to EXP REPLAY due to the meta-learning strategy, but they are faster
with respect to both GEM and MER, reaching higher accuracy.

4.2.3 Ablation experiments

Deep Learning Approaches for Time-Evolving Scenarios 75

10 50 75 100 150 200
Tasks

0

20

40

60

80

100

A
cc

ur
ac

y

OML
OML single update
MEML mean ME
MEML (Ours)
MEMLX (Ours)

Figure 4.5: Experiments
showing the capability of
meta-example on Omniglot.

10 50 75 100 150 200
Tasks

0

20

40

60

80

100

A
cc

ur
ac

y

MEML balanced
MEML balancing param
MEML augmentation
MEML (Ours)
MEMLX (Ours)

Figure 4.6: Comparison
between unbalanced and bal-
anced settings on Omniglot.

10 50 75 100 150 200
Tasks

0

20

40

60

80

100

A
cc

ur
ac

y

MEML balanced data
MEML unbalanced data (Ours)

Figure 4.7: Comparison
between unbalanced and
balanced data on Omniglot.

2 4 6 8 10
Tasks

0

20

40

60

80

100

A
cc

ur
ac

y

64 clusters
128 clusters
256 clusters
512 clusters

Figure 4.8: Accuracy with
different numbers of clusters
on Mini-ImageNet.

76 Deep Learning Approaches for Time-Evolving Scenarios

Meta-Example Single Update vs. Multiple Updates. To prove the effectiveness
of our method - MEML - based on meta-examples, we compare it with:

• OML [47] - performing multiple updates, one for each element of the
cluster;

• OML with a single update - adopting a single update over a randomly
sampled data point from each task;

• MEML with mean ME - a version exploiting the mean between the feature
vector computed by the FEN.

In Figure 4.5, we show that MEML and MEMLX consistently outperform all
the other baselines on Omniglot. OML with a single update gives analogous per-
formance to the multiple updates, confirming the idea that the strength of general-
isation relies on feature reuse. Also, the MEML with mean ME has performance
comparable with the multiple and single update ones, proving the effectiveness
of our aggregation mechanism to determine a suitable and general embedding
vector for the CLN.
Balanced vs. Unbalanced Tasks. To justify the use of unbalanced tasks and
show that allowing unbalanced clusters is more beneficial than enforcing fewer
balanced ones, we present some comparisons in Figure 4.6. First of all, we in-
troduce a baseline in which the number of clusters is set to the true number of
classes, removing from the task distribution the ones containing less than N ele-
ments and sampling N elements from the bigger ones. We thus obtain a perfectly
balanced training set at the cost of less variety within the clusters; however, this
leads to poor performance as small clusters are never represented. To verify if
maintaining variety and balancing data can lead to better performance, we try
two balancing strategies: augmentation, at the data level, and a balancing para-
meter, at the model level. For the first one, we keep all clusters, sampling N
elements from the bigger and using data augmentation for the smaller to reach N
elements. At the model level, we multiply the loss term by a balancing parameter
to weigh the update for each task based on cluster length. These tests result in
lower performance with respect to MEML and MEMLX, suggesting that the only
thing that matters is cluster variety and unbalancing does not negatively affect the
training. However, this ablation experiment is not complete. In fact, these good
results of the unbalanced version could be due to the fact that the original data
distribution is balanced. The unbalancing of the tasks is due only to the clustering
procedure, but there is not real unbalancing in the feature space. With this aim,
we verify the behaviour of our model with the imbalance in the data distribution
in Figure 4.7. We sample a balanced and reduced version of Omniglot with 15 im-
ages per class and another unbalanced version sampling randomly 15×1100 data

Deep Learning Approaches for Time-Evolving Scenarios 77

Algorithm/Ways Shots 5,1 5,5 20,1 20,5

CACTUs-MAML, 20

Balanced, 5 60.50 84.00 40.50 67.62
Unbalanced, 5 62.50 85.50 42.62 71.87
Balanced, 15 67.00 86.00 32.50 64.62
Unbalanced, 15 72.00 89.00 40.00 66.25

Table 4.7: Meta-test accuracy on balanced vs. unbalanced CACTUs-MAML on Omniglot.

points from the whole distribution to generate two datasets with the same number
of data points. For the unbalanced one, since we randomly sample data points
from different classes the data resultant data distribution is truly unbalanced. To
test different unbalanced distributions, we make 5 runs of the same experiment
with random seeds and report the mean. Our results show that MEML with bal-
anced data and MEML with unbalanced data distribution have similar perform-
ance. We further want to confirm that our intuition about unbalancing is valid in
an unsupervised meta-learning model without incremental training. We perform
the balanced/unbalanced experiments also on an alternative method named CAC-
TUs [44]. We compare their standard methodology using balanced clusters as
input with another exploiting unbalanced data. In detail, they obtain the balanced
version discarding the smaller clusters. The results are shown in Table 4.7 and
attest that the model trained on unbalanced data outperforms the balanced one,
further proving the importance of task variance to better generalise to new classes
at meta-test time. We report the results of training the algorithms on 20 ways and
5 shots and 15 shots, to have enough data points per class to create the imbalance.

Number of Clusters. In an unsupervised setting, the number of original classes
could be unknown. Consequently, it is important to assess the performance of
our model by varying the number of clusters at meta-train time. In Figure 4.8
we report the results on Mini-ImageNet because it is particularly suitable for
this type of test, as it has few classes and many examples per class §. We test
our method with 64, 128, 256, and 512 clusters. We report the mean of 3 runs
each with a random seed that determines random number generation for k-means
centroid initialization. We obtain the best results with 256 clusters, suggesting

§We do not report the same test on Omniglot because it has only 20 examples per class and by
increasing the number of classes compared to the original ones we would have classes with very few
examples and we would not be able to generate a task containing a sufficient number of examples for
training.

78 Deep Learning Approaches for Time-Evolving Scenarios

that with complex datasets, the number of clusters is crucial to reach higher meta-
test performance and to find general features. To corroborate the above findings,
we observe that using 512 clusters degrades performance with respect to the 256
case, proving that tasks constructed over an embedding space with too specific
features fail to generalise. Using a lower number of clusters, such as 64 or 128,
also achieves worse performance.

4.2.4 Generalisation across datasets
We investigate how our model behaves in few-shot continual learning, where the
data distribution shift from the meta-continual train to the meta-continual test.
Since our model is unsupervised, FEN training is based only on feature embed-
dings, with no class-dependent bias. This way, our model could generalise across
datasets, where the training tasks belong to a different data distribution (i.e., a
different dataset) with respect to the test tasks.

4.2.4.1 Datasets

To investigate this conjecture, we test our model on Cub [112] and CIFAR-
100 [58] datasets following the split used in [61, 103]. In detail, on Cub, we
retain a total of 40 classes, while on Cifar, we keep 10 classes, both with 20
samples each. On both datasets, we exploit 15 samples for the meta-test train-
ing phase and the remaining 5 for the meta-test testing, on which the accuracy is
calculated.

4.2.4.2 Architecture

We use the same architecture of MEML experiments within FUSION.

4.2.4.3 Training protocol

We perform the meta-continual train of MEML and Oracle MEML on the training
set of Mini-ImageNet, while the meta-test is done on the test set of CIFAR-100.
Likewise, we use models obtained through the meta-continual train on Omniglot
to test on Cub. Oracle OML CIFAR-100 and Oracle OML Cub indicate the super-
vised OML model trained on the same dataset we test. MEML Mini-ImageNet
and Oracle MEML Mini-ImageNet indicate our unsupervised model and the cor-
responding supervised version trained on Mini-ImageNet (the same notation is
used for Omniglot).

Deep Learning Approaches for Time-Evolving Scenarios 79

CIFAR-100
Algorithm/Tasks 2 4 6 8 10

Oracle OML [47] CIFAR-100 66.0 45.0 34.0 30.0 29.5

Oracle MEML Mini-ImageNet 70.0 56.0 46.7 45.3 35.6
MEML Mini-ImageNet 64.0 42.0 43.3 49.4 31.8

Table 4.8: Meta-test test accuracy on CIFAR-100.

Cub
Algorithm/Tasks 2 10 20 30 40

Oracle OML [47] Cub 50.0 13.9 25.8 4.5 8.9

Oracle MEML Omniglot 44.0 49.1 32.7 27.0 25.1
MEML Omniglot 66.0 53.3 28.3 26.2 25.6

Table 4.9: Meta-test test accuracy on Cub.

4.2.4.4 Performance analysis

Results in Table 4.8 show that by training on Mini-ImageNet and testing on
CIFAR-100 Oracle MEML outperforms Oracle OML trained on CIFAR-100 sug-
gesting that learning a good representation can be favourable even with respect
to training on the same data distribution. In Table 4.9 MEML generally outper-
forms the supervised Oracle MEML. In the latter case, it also outperforms the
supervised Oracle OML trained on Cub, which is incapable of learning a mean-
ingful representation.

80 Deep Learning Approaches for Time-Evolving Scenarios

Chapter 5

Continual Learning
Techniques for Financial
Market Predictions

The financial market is a worldwide virtual place meant for the exchange of fin-
ancial instruments, such as shares, contracts, stocks, or commodities. In the past,
investments were made in person by a small circle of domain experts, basing
their decisions on experience and a small amount of data. Nowadays, the act-
ors and the dynamics involved have radically changed. The strong availability of
real-time data and the great computational capabilities of computers brought that
most of the investments are not made only by human traders. Therefore, they are
assisted by an ever-increasing number of equipped “intelligent machines” able to
understand the best timing for carrying out financial transactions. Consequently,
the concept of algorithmic trading has taken hold. The algorithms are charac-
terized by a set of rules defined to perform certain actions based on the state of
the market. These rules are written by human traders who study particular tech-
niques for market choices. The natural evolution of these algorithms is the use
of cutting-edge machine learning and deep learning techniques to develop pre-
dictive models. This way, human intervention is no longer required to define
steady rules, and decision support tools can rely only on data and their patterns
over time, through the use of tailored neural networks. The problem with using
machine and deep learning techniques with time series is the need to periodically

Deep Learning Approaches for Time-Evolving Scenarios 81

retrain the model to allow for the updating and acquisition of knowledge of the
most recent data. This leads neural networks to suffer from catastrophic forget-
ting, meaning that their weights are overwritten in favour of the last seen data,
losing their predictive power over the older data. It has been shown that market
trends over time are qualitatively similar, and therefore learning the behaviour of
the time series in the past could be useful for predicting its future trend. The study
and application of CL techniques could be relevant within the financial market,
due to their cyclical nature.
Exploring the potential of continual learning is a novel topic in the financial
world and therefore, to the best of our knowledge, this is the first work that ana-
lyzes and evaluates the potential of continual learning in-depth. In particular, we
analyzed whether catastrophic forgetting could lead to a bad predictive perform-
ance in financial time series classification, comparing the classical online learning
paradigm with continual learning techniques designed to overcome catastrophic
forgetting. *

Specifically, a problem of binary classification of time series has been studied,
where each time series consists of a vector of consecutive daily samplings. The
goal is to predict whether this will have an increasing or decreasing trend in the
future, leading to a “buy” or “sell” decision. We define continual learning tasks
as periods, which may have different lengths, but specific behaviour. For ex-
ample, the first task can be represented by a stationary price trend, the second
one by a sudden increase in prices, and the third one by a slow drop. Each task
is time bounded by a change in these regimes. Approaching the problem this
way, we place it in a Domain-Incremental Learning (Domain-IL) scenario [105],
where the distribution of the classes remains unchanged while the change of task
is defined by a variation of the distribution of input data. Several state-of-the-art
continual learning methods have been developed and deeply analyzed. Eventu-
ally, the experimental results achieved suggest that CL techniques, alleviating the
forgetting phenomenon, exhibit better performance than online learning.

5.1 Method

A great advantage of trading using algorithms is the ability to process a large
amount of data in real-time to extract as much information as possible. It is
necessary to provide the model with data that best reflects the state of the market

*Code is available at https://github.com/albertozurli/cl_timeseries.

82 Deep Learning Approaches for Time-Evolving Scenarios

https://github.com/albertozurli/cl_timeseries

Figure 5.1: Data flow of a financial time series in our setting. The prices time series is
subdivided into tasks by a change-point detector (dashed red lines). Raw prices, relative to
a certain period (determined by a window length), are turned into financial indicators, that
become the inputs of the neural network. The problem consists of a binary classification
to predict prices trend (positive or negative) at N time step later.

at each time step to make the most appropriate investment choice. In this section,
we present the data, their structure, and the features generated by the models.

5.1.1 Financial time series and indicators

The input provided to the model consists of fixed-length sequences representing
the trend of financial time series (daily close values) over a period of one month
(i.e. 20 business days) of observations. Sequences are constructed by taking all
possible consecutive 20-day windows in the available data. Each series is used to
obtain the features and time sequences by building a different dataset, giving rise
to an analysis of multivariate historical series for each financial series. Even if a
neural network can extrapolate the information it deems relevant in a completely
autonomous way, using only time series does not carry out any learning despite
copying the label of the previous example in the output. This fact demonstrates
a dependence between time series even where they have no provable relation-

Deep Learning Approaches for Time-Evolving Scenarios 83

ships. Consequently, it was necessary to manipulate the series by carrying out
various engineering operations to obtain features. The first step is carried out
to eliminate copying between outputs, a phenomenon that is not uncommon in
time series and which is usually solved by creating a series obtained as the dif-
ference between data points of two consecutive instants. The input has doubled
its dimensionality from a vector to a matrix. The increase in dimensionality is an
aspect to be taken into account in a problem of this type: if, on the one hand, only
the raw series is insufficient, on the other hand, using too many features could
push the model to focus on unnecessary or worse misleading information. This
aspect was taken into account in choosing which financial indicators to use as
features that could provide helpful information. Thanks to moving averages, we
can catch the real market trends, removing irrelevant fluctuations in the original
series. Using Weighted Moving Average, we put a specific weight which decades
overtime to any timestep, giving a higher impact on more recent timesteps. Rate
of Change provides a first qualitative analysis regarding possible change-points
computing the percentual difference between the current timestep and another n
step in the past. A minor variation means that current data do not differ from
previous ones, while a bigger one indicates a possible change in the distribu-
tion. To measure variation speed and magnitude in time series, we used Relative
Strength Index. This momentum oscillator reports the strength of the current time
series trend, highlighting periods of excessive overconfidence and underconfid-
ence in stocks. Chande Momentum Oscillator provides more fine-grain values
with respect to RSI, enabling the model to confirm or deny results of the previ-
ous indicator while at the same time finding out new change-points. Finally, we
can keep track of market reversals with the Percentage Price Oscillator, another
momentum oscillator able to compare moving averages with different temporal
horizons. An exciting feature of the chosen indicators is that they collect inform-
ation about the past and mediate it with the present. This allows for forming
features that represent the current state and a set of past timesteps used to consti-
tute the feature itself. Many indicators are characterized by an observation period
over time in the series. Those listed below have been generated for 5 to 20 days to
extract informative content both in the short and long term. Shorter periods could
capture information that is too little specific for the sequence, just as long periods
would provide information of a greater window than the observation window of
the model itself.

84 Deep Learning Approaches for Time-Evolving Scenarios

5.1.2 Definition of domain regimes

The classic problems of continual learning do not deal with time series, but rather
images. Consequently, it is necessary to understand which algorithms could be
applied, taking into account that input data of a different nature lead to different
assumptions. The first is the temporal aspect of the financial series, where the
time series itself defines the order of tasks and examples. Namely, the only way
to learn from these series is by respecting the temporal order, hence excluding
data shuffling or any kind of offline learning. However, this assumption does not
indicate a limitation in the study of the problem since the training of the tasks
is sequential. Continual learning is defined for different scenarios (task, domain,
and class-IL) and the next step was to identify in which of these the problem
treated is found. Since all the tasks come from the same time series, the data dis-
tribution of each task will also be the same; therefore, we can discard the class-IL
scenario. Considering the problem of predicting the market by classification, for
each task, the model receives as input a sequence equal to one month of data up-
dated every day at the close of the markets, for a sequence length equivalent to 20
days. The reason for this choice is dictated above all by the opening and closing
of the world market. The second reason for choosing a window of this size is
given by the assumption that in a month of daily observations it is possible to col-
lect a sufficient amount of data to make a reliable analysis. There is also a label
associated with each sequence. There will be y = 1 if the value of the time series
20 days after the end of the sequence will be greater than the last data of the same,
zero otherwise. This corresponds to one month of observation and prediction for
the following month. The labels predicted by the model indicate how to act: a
positive prediction suggests an increase in market value, and therefore it is gen-
erally advisable to buy. In contrast, a negative prediction invites you to sell. For
each task, the possible outputs will belong to the same domain and consequently,
we are faced with a domain-IL scenario. In this scenario, there is no information
regarding a task identifier, leading to discard architectural or parameter isolation
methods. Figure 5.1 shows the data flow in our setting. Dashed red lines indicate
a change of regime (task in the continual learning problem) in the raw time series;
the network takes as input a series of financial indicators, derived from the raw
prices series, relative to a period, defined by a window on the timeline; the neural
networks operate a binary classification defining if the series exhibits a positive
or a negative trend.

Deep Learning Approaches for Time-Evolving Scenarios 85

5.1.3 Continual learning techniques

In this section, all the examined algorithms will be explored, describing the tricks
we sometimes employed to adapt these methods to the problem. In fact, not all of
the state-of-the-art methods are suitable for the problem of classifying financial
time series or do not offer the desired performance.

5.1.3.1 Gradient Episodic Memory

The early learning problems of multiple sequential tasks were based on Empirical
Risk Minimization (ERM) [106], which defines the theoretical limits of the learn-
ing algorithm performance. This limitation comes from the inability to know the
data distribution on which the algorithm will work. Gradient Episodic Memory
(GEM) [73] was proposed as a learning method disconnected from data distribu-
tion and focused on an example-by-example observation. In particular, the classic
example-label pair (x, y) is abandoned in favour of a triplet (x, y, t), where t is
a task descriptor. Applied to financial time series, the task descriptor can be the
task-id, as done in this work, or a complex structure describing the distribution to
which the data belong. The main feature of this method is the episodic memory
Mt capable of saving a subset of each task t. With T tasks and a total budget of
M memory locations, each task will have an exclusive memory equal to M/T . If
the total number of tasks is not known a priori, it is possible to gradually reduce
the number of examples for each task as the number of tasks increases. The goal
of this method is to sequentially train a model on T tasks, preventing overwriting
in future tasks with the constraint that training a task should not lead to worse
performance in previous tasks. Given a triplet (x, y, t), the optimization problem
to be solved is the following:

minimizeθ ℓ(fθ(x, t), y)

subject to ℓ(fθ,Mk) ≤ ℓ(f t−1θ ,Mk) for all k < t, (5.1)

The problem is complex to solve with this formulation, but it is possible to make
two observations. The first one concerns the conservation of the parameters of
each task: if the constraint on the loss is maintained, it is no longer necessary
to save the state of the network at the end of each task. The second and, more
important, allow us to represent the variation of the loss between two updates
through the angle between the two gradient vectors if the function is locally linear,
an assumption valid between two gradient steps. The second observation allows

86 Deep Learning Approaches for Time-Evolving Scenarios

us to rewrite the optimization constraints:

⟨g, gk⟩ :=
〈
∂ℓ(fθ(x, t), y)

∂θ
,
∂ℓ(fθ,Mk)

∂θ

〉
≥ 0, for all k < t. (5.2)

For every training step, there is, therefore, a system of k inequalities to resolve. It
is easy to guess that this operation becomes more onerous as the number of tasks
increases. In case of at least one constraint is not met, a gradient step in a new dir-
ection is required. This makes the optimization problem a QP-complete problem
for that specific training step. Only approximations of the optimal solution are
valid, and the authors of the method proposed a valid one using the dual problem.
Buffer size plays a relevant role in the performance evaluation: if we use more
memory, we could expect better performances. But, in time series problems, this
becomes tricky. A too big memory should allow saving too much data, going to
a pseudo-parallel training of more tasks, and, in a scenario where temporal order
is fundamental, this aspect must be avoided.

5.1.3.2 Averaged Gradient Episodic Memory

Averaged Gradient Episodic Memory (A-GEM) [19] has been proposed as an
optimization of the forerunner. To alleviate the weight of the computation, the
authors opted for a relaxation of the constraints, going from loss reduction on
examples of each of past tasks to an average on all the episodic memory. While
the objective function to minimize remains the same, the constraints collapse to
a single one valid for all past tasks.
As before, we can reformulate the objective function and the constraints regarding
the previous observation of the loss variation and gradient vectors:

minimizeg̃
1

2
||g − g̃||22 s.t. g̃⊤gref ≥ 0 (5.3)

where gref indicates the gradient computed from a random batch obtained by the
episodic memory from all previous tasks; in other words, A-GEM replaces t− 1
inequalities with only one. However, it remains possible that the unique constraint
is not met. In this scenario, there is no particular problem or approximation to
compute but the solution is given by the projected gradient method:

g̃ = g − g⊤gref
g⊤refgref

gref (5.4)

Deep Learning Approaches for Time-Evolving Scenarios 87

As GEM, this method exploits different algorithms to fill the buffer. Since in A-
GEM, we got a single batch sampled from the whole buffer, the data distribution
of the batch could not reflect the original distribution between tasks. We opted
for a different strategy to fill the buffer to maintain the correct distribution, equal
as far as possible to the stream one, using the reservoir sampling algorithm.

5.1.3.3 Synaptic Intelligence

A significant limitation in the development of neural networks capable of learn-
ing multiple sequential tasks lies in the one-dimensional structure of the neuron,
leading a network to catastrophic forgetting. Defining which neurons are most re-
sponsible for learning is necessary to consolidate acquired knowledge on a task.
The best way to assess how significant a neuron is for a task is to calculate its
contribution to the global loss of the current task. In this way, at the end of
each task, it will be possible to determine which neurons contribute most to the
current task’s learning and prevent their update in the future, maintaining know-
ledge of past tasks, thus avoiding forgetting. Synaptic Intelligence (SI) [119]
does not require external memories or architecture variation. Still, it acts only on
network parameters, defining an additional loss related to the state of the neur-
ons themselves. When training on a new task, changes to important parameters
are penalized to prevent old memories from being overwritten. We can compute
weight importance ωµk for each neuron θk related to task µ. During the training
of a task, a learning trajectory θ(t) is described in the network parameter space.
This trajectory will come as close as possible to a minimum for the loss function
for each task. We can now consider an update δ(t) at time t, leading to a variation
in the loss of the current task. This variation can be approximated by the gradient
gk and in such case the relation

ℓ(θ(t) + δ(t))− ℓ(θ(t)) ≈
∑
k

gk(t) · δk(t) (5.5)

can be considered valid. The variation δk(t) = θ′k(t) =
∂θk
∂t therefore contributes

to the variation of the global loss. If we want to compute the variation over the
entire trajectory, we must sum up all small updates. This amounts to comput-
ing the path integral of the gradient vector along the parameter trajectory. Since
the gradient is a conservative field, the value of the integral is equal to the dif-
ference in loss between the endpoint tend and start point tstart. In addition, the
integral can be decomposed as the sum of the impact of the importance ωµk on
loss variation. In practice, ωµk is the online approximation of the running sum

88 Deep Learning Approaches for Time-Evolving Scenarios

of the product of the gradient gk(t) = ∂L
∂θk

with the update θ′k. In a sequential
tasks scenario, the model will have only a loss Lµ available on the current task µ.
Catastrophic forgetting occurs when minimizing Lµ there is a significant increase
of the loss Lυ of past tasks υ < µ. In this context, the importance of paramet-
ers θk is determined by: 1) how much the parameter contributes to a loss drop
and 2) the difference θk(tµ)− θk(tµ−1). To avoid a significant variation in these
parameters, a modified loss has been proposed:

L̃µ = Lµ + c
∑
k

Ωµk(θ̃k − θk)
2 (5.6)

with θ̃k = θk(t
µ−1) and parameter c to manage regularization. Coefficient Ωµk

determines the regularization strength of each parameter:

Ωµk =
∑
υ<µ

ωυk
(∆υ

k)
2 + ϵ

(5.7)

with ∆υ
k = θk(t

υ)− θk(tυ−1).

5.1.3.4 Elastic Weight Consolidation

Like the previous one, this method presented by Kirkpatrick et al. [55] is based
on the possibility of determining a coefficient of importance for each neuron to
be used in the computing of the global loss. Given task A, multiple valid network
weights configurations θA ensure the same performances. In this way, when task
B occurs, the model will maintain the performance binding model parameters in a
solution space with low error for the previous task while maximizing performance
on the new task B. Elastic Weight Consolidation (EWC) does not aim to find the
optimal solution for each task but focuses on finding an intersection of low-error
solution space. To find which parameters are the most significant for a task, the
authors addressed the problem from a probabilistic point of view. Optimizing the
parameters of a network given the training set D is equal to probability p(θ|D).
In presence of two independent tasks A(DA) and B(DB), with the Bayes’ law we
can write:

log p(θ|D) = log p(DB |θ) + log p(θ|DA)− log p(DB) (5.8)

where the right-hand side depends only on the loss on task B log p(DB |θ). Sim-
ultaneously, all the information regarding task A log p(θ|DA) is soaked up by the

Deep Learning Approaches for Time-Evolving Scenarios 89

posterior probability. Suppose the true posterior probability cannot be computed.
In that case, we can obtain a good approximation from a Gaussian distribution
with mean given by parameters θA and angular precision from the diagonal of
the Fisher Information Matrix F . This matrix has three key properties: 1) it
is equivalent to the second derivative of the loss near a minimum, 2) it can be
computed from first-order derivates, and 3) it is guaranteed to be positive semi-
definite. Given this approximation, the loss function L to minimize:

L(θ) = LB(θ) +
∑
i

λ

2
Fi(θi − θ∗A,i)2 (5.9)

where LB(θ) is the loss for task B, λ sets the importance of the old task compared
to the new one. When moving to a third task C, EWC will try to keep the model
parameters close to the learned parameters on both tasks A and B, where this can
be enforced either with two separate penalties.

5.1.3.5 Experience Replay

The consolidation of acquired knowledge can occur in several ways in the human
brain. One consists of periodic observation to consolidate the knowledge ac-
quired but potentially overwritten over time. Experience Replay (ER) [89] uses
an external memory buffer to save data from previous tasks, as example-label
couple (x, y), without any reference to the task that the data belong to. During
each training step, in addition to the batch of examples of the current task, another
batch composed of examples from past tasks is sampled from the buffer, and the
loss is computed on both of its, driven by hyperparameters α and β:

L = α · E(x,y)∼Dt [l(y, f(x))] + β · E(x,y)∼M [l(y, f(x))] (5.10)

where Dt denotes training set of the current task andM the external memory.

5.1.3.6 Dark Experience Replay

Several CL algorithms have been proposed as improvements to ER. Dark Ex-
perience Replay (DER) [12] is one of these, and it relies on dark knwowledge for
distilling past experiences, sampled over the entire training trajectory. Differently
from the other rehearsal-based methods, this method retains the network’s logits
z ≜ hθt(x), instead of the ground truth labels y. This stratagem allows for avoid-
ing the loss of information due to the compression made by the final activation

90 Deep Learning Approaches for Time-Evolving Scenarios

function. The corresponding loss function results:

E(x,y)∼Dt [l(y, f(x))] + αE(x,z)∼M
[
∥z − hθ(x)∥22

]
(5.11)

This approach is related to Knowledge Distillation [41], a paradigm that allows
the transfer of knowledge from a teacher to a student model. In particular, DER
exploits a variant of this, known as self-distillation [33], in which transfer oc-
curs between the same architecture. In this scenario, by saving logits of previ-
ous task examples, the model transfers knowledge to a version of itself in the
future. Moreover, Dark Experience Replay ++ has been proposed that equips
equation 5.11 with an additional term on buffer datapoints, promoting higher
conditional likelihood concerning their ground labels.

5.2 Experiments

5.2.1 Datasets
For the experimental analysis, two datasets have been employed. We used Brent
Oil dataset †, the historical series of the oil prices on a daily basis. In particular,
we used 9282 time steps, collected between 02/01/1986 and 31/07/2021 ‡. We
also employed the copper dataset †, consisting in 8500 time steps, taken from
02/01/1989 and 31/07/2021 ‡. An example contains twenty consecutive daily
observations. The next example is obtained by shifting the time window by one
timestep. To provide more refined information to the model, it was decided to
proceed towards an engineering of the features using some of the most fam-
ous financial and statistical indicators, as explained in section 5.1.1. Finally,
for the definition of the various tasks within the time series, Bayesian Online
Change-point Detection (BOCD) was used, an online algorithm for the detection
of change-points, i.e. moments in which a significant change occurs in the data
distribution. To verify the validity of this technique, we asked a financial expert to
manually find out the change-points on the time series. The results almost com-
pletely coincide with those found by the algorithm, with an occasional variation
of maximum 1 or 2 time steps. This allows the whole continual learning process
to work without the need for further human intervention to detect regime changes,
allowing us to use public datasets without further processing. Within each task,

†https://datahub.io/core/oil-prices, https://help.yahoo.com/kb/
SLN2311.html

‡Dates are reported as DD/MM/YY.

Deep Learning Approaches for Time-Evolving Scenarios 91

https://datahub.io/core/oil-prices
https://help.yahoo.com/kb/SLN2311.html
https://help.yahoo.com/kb/SLN2311.html

we split the data into two different sets: the train and evaluation sets. Between the
two sets, we leave a gap excluding any sample whose evaluation time is posterior
to the earliest prediction time in the validation set. This ensures that predictions
on the validation set are free of look-ahead bias.

5.2.2 Metrics

To properly assess learning quality at training time, it is mandatory to consider
both single tasks as the whole training process. In other words, a CL algorithm
should be evaluated both on the past and the present tasks to reflect its behaviour
on the future unseen tasks. It is crucial to assess the ability to transfer knowledge
across tasks to achieve this, along with average accuracy (ACC). More specific-
ally, we would like to measure Forward Transfer (FWT) and Backward Transfer
(BWT) [73] (Forgetting (FRG) [17] has been omitted because it is equal to BT
except for the sign). The first one assesses the influence that learning a task t has
on the performance on a future task k > t, whereas the second and third ones
measure the performance degradation in subsequent tasks. FWT is computed as
the difference between the accuracy before starting training on a given task and
the random-initialized network, then averaged across all tasks. FRG and BWT
compute the difference between the current accuracy and its best value for each
task, presumably at the end of the training of the task itself. Except for FRG, the
larger these metrics, the better the model. If two models have similar ACC, the
preferable one is the one with a larger BWT and FWT. While BWT measures the
influence of a task on the previous ones and FWT the influence on the following
ones, it is meaningless to discuss backward for the first task or forward for the
last one.

5.2.3 Architecture

All the methods under examination were evaluated with the same architecture, us-
ing a fully-connected network composed of three hidden layers with respectively
100, 50, and 25 neurons each and with LeakyReLu as an activation function. All
methods were tested using Stochastic Gradient Descent (SGD) with momentum
as an optimizer for a total of 480000 training steps for each task. For rehearsal
methods, we set the buffer size to 500 samples.

92 Deep Learning Approaches for Time-Evolving Scenarios

Online SI EWC ER GEM A-GEM DER DER++

Accuracy 65.04 70.34 71.64 72.29 65.25 65.47 72.59 73.37
Backward Transfer - -6.06 -4.15 -3.72 -11.29 -5.74 -4.96 -4.11
Forward Transfer - 25.28 26.02 24.05 12.21 25.97 23.39 27.24

Table 5.1: Results of tested methods on the Brent Oil dataset. For accuracy, backward and
forward transfer bigger is better.

Online SI EWC ER GEM A-GEM DER DER++

Accuracy 58.28 65.46 68.01 68.00 54.23 58.86 64.09 68.77
Backward Transfer - -5.08 -3.28 -0.85 -8.94 -6.74 -4.22 -3.11
Forward Transfer - 14.45 11.64 17.92 7.02 13.39 14.32 12.28

Table 5.2: Results of tested methods on the copper dataset. For accuracy, backward and
forward transfer bigger is better.

5.2.4 Quantitative results

This section will discuss the results of each Continual Learning method, com-
paring them with the sequential training of each task without any continual tech-
nique, called online learning. Each method is evaluated not only with accuracy
across all tasks but also with ad hoc Continual Learning metrics: forward trans-
fer and backward transfer. In Table 5.1 and Table 5.2 are reported performances
measured at the end of the whole training, respectively on the Brent oil dataset
and on the copper dataset. To obtain less noisy performance estimates, values are
reported as averages of three runs with different initialization. In the regulariz-
ation methods, SI and EWC, we found an attenuation of the average forgetting
across all tasks, even if the task nature heavily influences the accuracy of past
tasks. This aspect is emphasized in SI, while EWC demonstrates good stabil-
ity. Figure 5.2(a) shows the evolution of the accuracy of these methods during
the training, compared to online learning on the Brent oil dataset, while Fig-
ure 5.2(c) on the copper dataset. SI and EWC experience similar accuracy on
both datasets, while in the continual metrics, EWC performs slightly better. In
replay-based methods (Figure 5.2(b) on the Bernt oil dataset and Figure 5.2(d)
on the copper dataset), GEM and A-GEM are complex and hard-to-evaluate al-
gorithms. GEM experiences the worst performance across all continual methods
tested, especially on the copper dataset; probably due to the constraints violations
introduced by the technique, even more and more frequently as the number of

Deep Learning Approaches for Time-Evolving Scenarios 93

0 480 960 1440 1920
Training Steps x 103

55.0

57.5

60.0

62.5

65.0

67.5

70.0

72.5

Ac
cu

ra
cy

 [%
]

(a) Regularization Evaluation Brent Oil

EWC
SI
Online

0 480 960 1440 1920
Training Steps x 103

45

50

55

60

65

70

75

Ac
cu

ra
cy
 [%

]

(b) Rehearsal Evaluation Brent Oil

DER++
DER
ER

A-GEM
GEM
Online

0 480 960 1440 1920 2400
Training Steps x 103

55.0

57.5

60.0

62.5

65.0

67.5

70.0

72.5

Ac
cu

ra
cy

 [%
]

(c) Regularization Evaluation Copper
EWC
SI
Online

0 480 960 1440 1920 2400
Training Steps x 103

40

45

50

55

60

65

70

75

Ac
cu

ra
cy
 [%

]

(d) Rehearsal Evaluation Copper

DER++
DER
ER

A-GEM
GEM
Online

Figure 5.2: Performance results. Dashed lines indicate task change: regularization meth-
ods performance on Brent Oil dataset (a), rehearsal method performance on Brent Oil data-
set (b), regularization methods performance on the copper dataset (c), rehearsal method
performance on the copper dataset (d).

tasks increases. Although A-GEM significantly relaxes the constraints, accuracy
remains aligned with baseline online learning while continual metrics are com-
parable to other methods. Vice versa, ER, DER and, DER++ experience the best
performances. DER++ combines the features of the other two methods taking
advantage of them: replaying past data from the buffer as ER, it uses logits in-
formation context as done in DER to improve further the predictions, bringing it
to be the most performing method. In Figure 5.3(a) and (b) are reported the train-
ing times of each method, respectively on the Brent oil dataset and on the copper
dataset. Again, the behaviour is similar on both datasets, demonstrating the ro-
bustness of these algorithms on financial time series. SI demonstrates to be the
quickest to be trained thanks to online estimate model weights. Simultaneously,
the other regularization method, EWC, is the second most time-consuming al-
gorithm due to the necessity to compute the Fisher Information Matrix at the end

94 Deep Learning Approaches for Time-Evolving Scenarios

0 1000 2000 3000 4000
Training Time [s]

SI

Online

DER

A-GEM

ER

DER++

EWC

GEM

(b) Training Time Brent Oil

0 1000 2000 3000 4000 5000
Training Time [s]

SI

A-GEM

Online

DER

ER

DER++

EWC

GEM

(b) Training Time Copper

Figure 5.3: Training time comparison on Brent Oil dataset (a) on the left and the copper
dataset (b).

of each task. GEM constraints, finally, do not make up a complexity element
only from a computational perspective, but they also make this method the most
time-consuming for model training.

Deep Learning Approaches for Time-Evolving Scenarios 95

Chapter 6

Conclusions

This thesis involves three important research topics I investigated as a PhD stu-
dent, resulting in several contributions in trajectory forecasting, continual learn-
ing, and financial market prediction areas. In this final chapter, a summary of the
contribution of each of them, along with future objectives, is reported.

6.1 Trajectory forecasting in real-world environment

We proposed two novel architectures for multi-future trajectory forecasting. The
first one uses VRNNs in a predictive setting. An attentive module includes inter-
actions through a hidden state refinement process based on a graph neural network
in an online fashion at a time step level. In AC-VRNN, local belief maps encour-
age the model to follow a future displacement probability grid when the model
is not confident about its prediction. We test our algorithm on several trajectory
prediction datasets collected in different urban scenarios achieving the best per-
formance compared to state-of-the-art methods. On the other end, DAG-Net is
composed of a double graph-based network that deals with both past interactions
and future goals through an attentive mechanism. By facing trajectory prediction
as a structured problem, our models overcome state-of-the-art performances on
several trajectory forecasting benchmarks, proving their strength in team sports
and urban contexts. They show impressive results also on long-term predictions.
Our future work will be towards a detailed analysis of long-term predictions in
order to deal with more complex and uncertain scenarios. Furthermore, an inter-

96 Deep Learning Approaches for Time-Evolving Scenarios

esting aspect would be to include into the model additional scene context (e.g.,
depth data or WiFi/BLT signals) in order to design a multi-modal architecture to
gain the advantage of multiple modalities. Of course, these two approaches are
just a starting point for a research on trajectory forecasting in real-world environ-
ments.

Although these approaches are promising in the context of trajectory forecast-
ing, they are not designed to deal with an environment in which interactions and
obstacles considerably evolve over time. To face this issue, the aim of our future
research is to apply continual learning techniques to trajectory forecasting and to
improve video surveillance systems in online and evolving scenarios.

6.2 Meta-Continual learning in complex scenarios

We tackle a novel problem concerning few-shot unsupervised continual learn-
ing, proposing an effective learning strategy based on the construction of unbal-
anced tasks and meta-examples. With an unconstrained clustering approach, we
find that no balancing technique is necessary for an unsupervised scenario that
needs to generalise to new tasks. Our model, exploiting a single inner update
through meta-examples, increase performance as the most relevant features are
selected. In addition, an original augmentation technique is applied to reinforce
its strength. We show that MEML and MEMLX not only outperform the other
baselines within FUSION but also exceed state-of-the-art approaches in class-
incremental continual learning.

However, our proposed approach has to deal with the limitation of rehearsal
strategies, such as the availability of memory, with the risk of incurring cata-
strophic forgetting. Novel approaches can be studied to overcome this issue.
Moreover, our method is applicable to Out-of-Distribution tasks, but it is not
specifically designed for them. Interesting future research is to investigate a
more effective strategy that further improves performance when facing Out-of-
Distribution data and domain shifts.

Deep Learning Approaches for Time-Evolving Scenarios 97

6.3 Continual learning techniques for financial mar-
ket predictions

An experimental analysis of continual learning algorithms on market predictions
has been conducted, highlighting their significant contribution to the field of arti-
ficial intelligence applied to finance. A deep investigation of the most promising
state-of-the-art continual learning algorithms has been made, discovering that not
all of them are suitable for financial time series. Furthermore, we found that other
factors such as training time, computational complexity, and memory require-
ments can be decisive in defining the scenario and choosing the most appropriate
algorithm to apply. The formulation adopted represents only an exemplifying
model of more complex dynamics, but the development of this tool could be a
concrete help for professional traders in the future.

The major limitation of this research is the fact that no specifically designed solu-
tion has been introduced to face regime changes in financial time series. In the
future, continual learning algorithms could be studied, to take into account the
variety and complexity of the markets.

98 Deep Learning Approaches for Time-Evolving Scenarios

Acknowledgements

This thesis has been made possible thanks to the help and contributions of a lot
of people.

First of all, I would like to acknowledge my advisors, Simone and Andrea, who
encouraged and helped me in my research activities. A special thank also goes to
Axyon AI, and in particular to Jacopo and Alberto.

I would like to acknowledge my best friends Stefano, Roberta and Chiara, my
partner Nicola, and all my family for sustaining me on this long path.

List of publications

- Alessia Bertugli, Stefano Vincenzi, Simone Calderara, and Andrea Passerini.
Generalising via meta-examples for continual learning in the wild. The 8th In-
ternational Conference on machine Learning, Optimization and Data science,
2022.

- Alberto Zurli, Alessia Bertugli, and Jacopo Credi. Does catastrophic forgetting
negatively affect financial predictions? The 8th International Conference on
machine Learning, Optimization and Data science, 2022.

- Alessia Bertugli, Simone Calderara, Pasquale Coscia, Lamberto Ballan, and
Rita Cucchiara. Ac-vrnn: Attentive conditional-vrnn for multi-future trajectory
prediction. Computer Vision and Image Understanding, 210, 2021. 25, 43

- Alessia Bertugli, Stefano Vincenzi, Simone Calderara, and Andrea Passerini.
Few-shot unsupervised continual learning through meta-examples. Neural In-
formation Processing Systems Workshops, 2020.

- Alessio Monti, Alessia Bertugli, Simone Calderara, and Rita Cucchiara. Dag-
net: Double attentive graph neural network for trajectory forecasting. In Inter-
national Conference on Pattern Recognition, 2020. 25, 43

Deep Learning Approaches for Time-Evolving Scenarios 101

Activities

Beside the research constituting the main corpus of the thesis, I was involved
in several supplemental activities, such as teaching and other services. In the
remainder of the chapter I will report them.

Partecipation to national and European research projects

• European High-Performance Computing Joint Undertaking (JU) project
“FF4EuroHPC: HPC Innovation for European SMEs”, grant agreement
No 951745.

• MIUR PRIN project “PREVUE: PRediction of activities and Events by
Vision in an Urban Environment”, grant ID E94I19000650001.

Collaborations

• Aliza Technologies, Los Angeles, June 2020 - November 2022

• Axyon AI, Modena, January 2020 - May 2020

Master thesis supervision

• “Continual learning techniques applied to financial time-series”, University
of Modena and Reggio Emilia, October 2021 - Dott. Alberto Zurli

• “Meta-learning with unsupervised training in a continual few shot scen-
ario”, University of Modena and Reggio Emilia, October 2020 - Dott.
Emanuele Frascaroli

• “ Forecasting future trajectories by agents’ interactions and goals”, Univer-
sity of Modena and Reggio Emilia, April 2020 - Dott. Alessio Monti

Deep Learning Approaches for Time-Evolving Scenarios 103

Reviewing activities

• The 8th International Online & Onsite Conference on Machine Learning,
Optimization, and Data Science (LOD), 2022

• IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2021, 2022

• International Conference on Computer Vision (ICCV), 2021

• Neural Information Processing Systems (NeurIPS) Workshop on Meta-
Learning, 2020

• International Conference on Pattern Recognition (ICPR), 2020

Conferences and schools

• The 8th International Online & Onsite Conference on Machine Learning,
Optimization, and Data Science (LOD), 2022

• Mediterranean Machine Learning Summer School, 2021

• Neural Information Processing Systems (NeurIPS) 2020

• Ph.D. School on Advanced Topics in Deep Learning, Verona, 2019

Seminars and courses

• Geometric Computer Vision: from Images to 3D Models, Virtual, 2021

• Academic Writing for Sciences and Engineering, Virtual, 2020

• Research Methodology, Trento, 2020

• Teaching Computers to Imagine with Deep Generative Models, Trento,
2019

• Brain-Inspired Computing: from Neuroscience to Artificial Intelligence,
Modena, 2019

104 Deep Learning Approaches for Time-Evolving Scenarios

Awards

• Outstanding reviewer at IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR 2021)

• Invited spotlight at 25th International Conference on Pattern Recognition
(ICPR 2020), International Workshop on Pattern Forecasting

Deep Learning Approaches for Time-Evolving Scenarios 105

Bibliography

[1] Davide Abati, Jakub Tomczak, Tijmen Blankevoort, Simone Calderara, Rita
Cucchiara, and Babak Ehteshami Bejnordi. Conditional channel gated net-
works for task-aware continual learning. IEEE International Conference on
Computer Vision and Pattern Recognition, 2020. 22

[2] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and S. Savarese.
Social LSTM: Human trajectory prediction in crowded spaces. In IEEE In-
ternational Conference on Computer Vision and Pattern Recognition, 2016.
13, 20, 27, 28, 42, 44

[3] A. Alahi, V. Ramanathan, and L. Fei-Fei. Socially-aware large-scale crowd
forecasting. In IEEE International Conference on Computer Vision and Pat-
tern Recognition, 2014. 40

[4] Ferran Alet, Erica Weng, Tomás Lozano-Pérez, and Leslie Pack Kaelbling.
Neural relational inference with fast modular meta-learning. In Neural In-
formation Processing Systems, 2019. 27

[5] Yuki Markus Asano, Christian Rupprecht, and Andrea Vedaldi. Self-labelling
via simultaneous clustering and representation learning. In International
Conference on Learning Representations, 2020. 61, 62, 63, 64

[6] Shawn Beaulieu, Lapo Frati, Thomas Miconi, Joel Lehman, Kenneth O Stan-
ley, Jeff Clune, and Nick Cheney. Learning to continually learn. In European
Conference on Artificial Intelligence, 2020. 21, 24, 25, 61, 62, 70, 71

[7] Stefan Becker, Ronny Hug, Wolfgang Hübner, and Michael Arens. Red: A
simple but effective baseline predictor for the trajnet benchmark. In European
Conference on Computer Vision Workshops, 2018. 39

Deep Learning Approaches for Time-Evolving Scenarios 107

[8] David Berthelot*, Colin Raffel*, Aurko Roy, and Ian Goodfellow. Under-
standing and improving interpolation in autoencoders via an adversarial reg-
ularizer. In International Conference on Learning Representations, 2019. 61,
63, 70

[9] Alessia Bertugli, Simone Calderara, Pasquale Coscia, Lamberto Ballan, and
Rita Cucchiara. Ac-vrnn: Attentive conditional-vrnn for multi-future traject-
ory prediction. Computer Vision and Image Understanding, 210, 2021. 25,
43

[10] Apratim Bhattacharyya, Michael Hanselmann, Mario Fritz, Bernt Schiele,
and Christoph-Nikolas Straehle. Conditional flow variational autoencoders
for structured sequence prediction. In Neural Information Processing Sys-
tems Workshops, 2019. 36

[11] J. Bock, R. Krajewski, T. Moers, S. Runde, L. Vater, and L. Eckstein. The
inD Dataset: A drone dataset of naturalistic road user trajectories at german
intersections. In IEEE Intelligent Vehicles Symposium, 2020. 39

[12] Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Si-
mone Calderara. Dark experience for general continual learning: a strong,
simple baseline. In Neural Information Processing Systems, 2020. 13, 21, 90

[13] Massimo Caccia, Pau Rodriguez, Oleksiy Ostapenko, Fabrice Normandin,
Min Lin, Lucas Caccia, Issam Laradji, Irina Rish, Alexande Lacoste, David
Vazquez, et al. Online fast adaptation and knowledge accumulation: a new
approach to continual learning. In Neural Information Processing Systems,
2020. 24, 59, 61

[14] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze.
Deep clustering for unsupervised learning of visual features. In European
Conference on Computer Vision, 2018. 61, 63, 70

[15] Yichuan Charlie, Tang, Ruslan, and Salakhutdinov. Multiple futures predic-
tion. In Neural Information Processing Systems, 2019. 27

[16] Arslan Chaudhry, Puneet K. Dokania, Thalaiyasingam Ajanthan, and Philip
H. S. Torr. Riemannian walk for incremental learning: Understanding forget-
ting and intransigence. In European Conference on Computer Vision, 2018.
74

108 Deep Learning Approaches for Time-Evolving Scenarios

[17] Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajanthan, and
Philip HS Torr. Riemannian walk for incremental learning: Understanding
forgetting and intransigence. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 532–547, 2018. 92

[18] Arslan Chaudhry, A. Gordo, P. Dokania, P. Torr, and David Lopez-Paz.
Using hindsight to anchor past knowledge in continual learning. ArXiv,
abs/2002.08165, 2020. 74, 75

[19] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed
Elhoseiny. Efficient lifelong learning with A-GEM. In International Confer-
ence on Learning Representations, 2019. 22, 59, 87

[20] T. Chavdarova, P. Baqué, S. Bouquet, A. Maksai, C. Jose, T. Bagautdinov,
L. Lettry, P. Fua, L. Van Gool, and F. Fleuret. Wildtrack: A multi-camera
hd dataset for dense unscripted pedestrian detection. In IEEE International
Conference on Computer Vision and Pattern Recognition, 2018. 40

[21] Chen Chieh-Yu, Lai Wenze, Hsieh Hsin-Ying, Zheng Wen-Hao, Wang Yu-
Shuen, and Chuang Jung-Hong. Generating defensive plays in basketball
games. In ACM International Conference on Multimedia, 2018. 27

[22] Aristotelis Chrysakis and Marie-Francine Moens. Online continual learning
from imbalanced data. In International Conference on Machine Learning,
2020. 60

[23] Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron Cour-
ville, and Yoshua Bengio. A recurrent latent variable model for sequential
data. In Neural Information Processing Systems, 2015. 30, 49, 50

[24] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and
accurate deep network learning by exponential linear units (ELUs). In Inter-
national Conference on Learning Representations, 2016. 32

[25] Marcos Lopez de Prado. Advances in Financial Machine Learning. Wiley
Publishing, 1st edition, 2018. 25

[26] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A
Large-Scale Hierarchical Image Database. In IEEE International Conference
on Computer Vision and Pattern Recognition, 2009. 62

Deep Learning Approaches for Time-Evolving Scenarios 109

[27] Matthew F. Dixon, Igor Halperin, and Paul Bilokon. Machine Learning in
Finance. Springer, Cham, 1st edition, 2020. 25

[28] Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Adversarial feature
learning. In International Conference on Learning Representations, 2017.
61, 63

[29] Panna Felsen, Patrick Lucey, and Sujoy Ganguly. Where will they go? pre-
dicting fine-grained adversarial multi-agent motion using conditional vari-
ational autoencoders. In European Conference on Computer Vision, 2018.
27

[30] Panna Felsen, Patrick Lucey, and Sujoy Ganguly. Where will they go? pre-
dicting fine-grained adversarial multi-agent motion using conditional vari-
ational autoencoders. In ECCV, 2018. 36, 44, 45

[31] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-
learning for fast adaptation of deep networks. In International Conference
on Machine Learning, 2017. 22

[32] Chelsea Finn, Aravind Rajeswaran, Sham Kakade, and Sergey Levine. On-
line meta-learning. In International Conference on Machine Learning, 2019.
24

[33] Tommaso Furlanello, Zachary Lipton, Michael Tschannen, Laurent Itti, and
Anima Anandkumar. Born again neural networks. In International Confer-
ence on Machine Learning, pages 1607–1616. PMLR, 2018. 91

[34] Tommaso Furlanello, Zachary Chase Lipton, Michael Tschannen, Laurent
Itti, and Anima Anandkumar. Born again neural networks. In International
Conference on Machine Learning, 2018. 22

[35] Mykola Pechenizkiy Ghada Sokar, Decebal Constantin Mocanu. Self-
attention meta-learner for continual learning. In International Conference
on Autonomous Agents and Multiagent Systems, 2021. 74

[36] Chengyue Gong, Tongzheng Ren, Mao Ye, and Qiang Liu. Maxup: A
simple way to improve generalization of neural network training. arXiv pre-
print arXiv:2002.09024, 2020. 67

110 Deep Learning Approaches for Time-Evolving Scenarios

[37] Agrim Gupta, Justin Johnson, Li Fei-Fei, Silvio Savarese, and Alexandre
Alahi. Social GAN: Socially acceptable trajectories with generative ad-
versarial networks. In IEEE International Conference on Computer Vision
and Pattern Recognition, 2018. 19, 20, 27, 28, 29, 41, 42, 43, 44

[38] James Harrison, Apoorva Sharma, Chelsea Finn, and Marco Pavone. Con-
tinuous meta-learning without tasks. Neural Information Processing Systems,
2020. 24, 59

[39] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016. 73

[40] Dirk Helbing and Peter Molnar. Social force model for pedestrian dynamics.
Physical review E, 51(5):4282, 1995. 19, 27

[41] Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. Distilling the knowledge
in a neural network. arXiv preprint arXiv:1503.02531, 2(7), 2015. 91

[42] Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin.
Lifelong learning via progressive distillation and retrospection. In European
Conference on Computer Vision, 2018. 22

[43] Hsieh Hsin-Ying, Chen Chieh-Yu, Wang Yu-Shuen, and Jung-Hong
Chuang. Basketballgan: Generating basketball play simulation through
sketching. In ACM International Conference on Multimedia, 2019. 27

[44] Kyle Hsu, Sergey Levine, and Chelsea Finn. Unsupervised learning via
meta-learning. In International Conference on Learning Representations,
2019. 23, 59, 61, 62, 64, 69, 78

[45] B. Ivanovic and M. Pavone. The Trajectron: Probabilistic multi-agent tra-
jectory modeling with dynamic spatiotemporal graphs. In IEEE International
Conference on Computer Vision, 2019. 19, 42

[46] Amirian Javad, Hayet Jean-Bernard, and Pettré Julien. Social ways: Learn-
ing multi-modal distributions of pedestrian trajectories with gans. In IEEE
International Conference on Computer Vision and Pattern Recognition Work-
shops, 2019. 27, 41, 42

Deep Learning Approaches for Time-Evolving Scenarios 111

[47] Khurram Javed and Martha White. Meta-learning representations for con-
tinual learning. In Neural Information Processing Systems, 2019. 21, 24, 25,
59, 61, 62, 69, 70, 71, 72, 77, 80

[48] Ghassen Jerfel, Erin Grant, Tom Griffiths, and Katherine A Heller. Recon-
ciling meta-learning and continual learning with online mixtures of tasks. In
Neural Information Processing Systems, 2019. 24, 59

[49] Zilong Ji, Xiaolong Zou, Tiejun Huang, and Si Wu. Unsupervised few-shot
learning via self-supervised training. ArXiv, abs/1912.12178, 2019. 23, 59,
61

[50] Li Jiachen, Ma Hengbo, and Tomizuka Masayoshi. Conditional generative
neural system for probabilistic trajectory prediction. In IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, 2019. 27, 36

[51] Siavash Khodadadeh, Ladislau Bölöni, and Mubarak Shah. Unsupervised
meta-learning for few-shot image and video classification. Neural Informa-
tion Processing Systems, 2019. 23, 59, 61

[52] Diederik P. Kingma, Danilo J. Rezende, Shakir Mohamed, and Max
Welling. Semi-supervised learning with deep generative models. In Neural
Information Processing Systems, 2014. 34, 36

[53] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In
International Conference on Learning Representations, 2014. 29, 30

[54] Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard
Zemel. Neural relational inference for interacting systems. In International
Conference on Machine Learning, 2018. 20, 27

[55] James N Kirkpatrick, Razvan Pascanu, Neil C. Rabinowitz, Joel Veness,
Guillaume Desjardins, Andrei A. Rusu, Kieran Milan, John Quan, Tiago
Ramalho, Agnieszka Grabska-Barwinska, Demis Hassabis, Claudia Clopath,
Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic forgetting
in neural networks. In Proceedings of the National Academy of Sciences of
the United States of America, 114 13:3521–3526, 2016. 21, 59, 74, 89

[56] Vineet Kosaraju, Amir Sadeghian, Roberto Martı́n-Martı́n, Ian D. Reid,
Seyed Hamid Rezatofighi, and Silvio Savarese. Social-BiGAT: Multimodal
trajectory forecasting using bicycle-gan and graph attention networks. In
Neural Information Processing Systems, 2019. 13, 19, 20, 28, 42

112 Deep Learning Approaches for Time-Evolving Scenarios

[57] Parth Kothari, S. Kreiss, and Alexandre Alahi. Human trajectory forecasting
in crowds: A deep learning perspective. IEEE Transactions on Intelligent
Transportation Systems, in press, 2020. 39, 40, 44, 45

[58] Alex Krizhevsky. Learning multiple layers of features from tiny images.
Technical report, Canadian Institute for Advanced Research, 2009. 62, 72,
79

[59] Brenden M. Lake, Ruslan Salakhutdinov, and Joshua B. Tenenbaum.
Human-level concept learning through probabilistic program induction. Sci-
ence, 350(6266):1332–1338, 2015. 62

[60] Yann LeCun. The mnist database of handwritten digits. http://yann. lecun.
com/exdb/mnist/, 1998. 62, 72

[61] Hae Beom Lee, Hayeon Lee, Donghyun Na, Saehoon Kim, Minseop Park,
Eunho Yang, and Sung Ju Hwang. Learning to balance: Bayesian meta-
learning for imbalanced and out-of-distribution tasks. In International Con-
ference on Learning Representations, 2020. 61, 79

[62] Kibok Lee, Kimin Lee, Jinwoo Shin, and Honglak Lee. Overcoming cata-
strophic forgetting with unlabeled data in the wild. In IEEE International
Conference on Computer Vision, 2019. 22, 61

[63] Namhoon Lee, Wongun Choi, Paul Vernaza, Christopher B. Choy, Philip
H. S. Torr, and Manmohan Krishna Chandraker. Desire: Distant future pre-
diction in dynamic scenes with interacting agents. In IEEE International
Conference on Computer Vision and Pattern Recognition, 2017. 27

[64] A. Lerner, Y. Chrysanthou, and D. Lischinski. Crowds by example. Com-
puter Graphics Forum, 26(3):1186–1194, 2007. 39

[65] Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 40:2935–2947, 2018.
22, 74

[66] Junwei Liang, Lu Jiang, Kevin Murphy, Ting Yu, and Alexander Haupt-
mann. The garden of forking paths: Towards multi-future trajectory pre-
diction. In IEEE International Conference on Computer Vision and Pattern
Recognition, 2020. 27

Deep Learning Approaches for Time-Evolving Scenarios 113

[67] Junwei Liang, Lu Jiang, Juan Carlos Niebles, Alexander G. Hauptmann, and
Li Fei-Fei. Peeking into the future: Predicting future person activities and
locations in videos. In IEEE International Conference on Computer Vision
and Pattern Recognition, 2019. 27, 28, 42

[68] Matteo Lisotto, Pasquale Coscia, and Lamberto Ballan. Social and scene-
aware trajectory prediction in crowded spaces. In IEEE/CVF International
Conference on Computer Vision Workshops, 2019. 27

[69] Qing Liu, Orchid Majumder, Avinash Ravichandran, Rahul Bhotika, and
Stefano Soatto. Incremental learning for metric-based meta-learners. ArXiv,
abs/2002.04162, 2020. 24, 25, 59

[70] Xialei Liu, Chenshen Wu, Mikel Menta, Luis Herranz, Bogdan Raducanu,
Andrew D. Bagdanov, Shangling Jui, and Joost van de Weijer. Generative
feature replay for class-incremental learning. IEEE International Conference
on Computer Vision and Pattern Recognition Workshops, 2020. 22

[71] Xiao-Yang Liu, Hongyang Yang, Qian Chen, Runjia Zhang, Liuqing Yang,
Bowen Xiao, and Christina Dan Wang. Finrl: A deep reinforcement learning
library for automated stock trading in quantitative finance. In Neural Inform-
ation Processing Systems Workshops, 2020. 25

[72] Yuejiang Liu, Qi Yan, and Alexandre Alahi. Social NCE: Contrastive learn-
ing of socially-aware motion representations. ArXiv, abs/2012.11717, 2020.
45

[73] David Lopez-Paz and Marc' Aurelio Ranzato. Gradient episodic memory
for continual learning. In Neural Information Processing Systems, 2017. 13,
22, 59, 73, 74, 75, 86, 92

[74] Marcos M. López de Prado. Machine Learning for Asset Managers. Cam-
bridge University Press, 2020. 13, 25

[75] Yuexin Ma, Xinge Zhu, Sibo Zhang, Ruigang Yang, Wenping Wang, and
Dinesh Manocha. Trafficpredict: Trajectory prediction for heterogeneous
traffic-agents. In AAAI Conference on Artificial Intelligence, 2018. 27

[76] Ramin Mehran, Alexis Oyama, and Mubarak Shah. Abnormal crowd beha-
vior detection using social force model. In IEEE International Conference
on Computer Vision and Pattern Recognition Workshops, 2009. 19

114 Deep Learning Approaches for Time-Evolving Scenarios

[77] Alessio Monti, Alessia Bertugli, Simone Calderara, and Rita Cucchiara.
Dag-net: Double attentive graph neural network for trajectory forecasting.
In International Conference on Pattern Recognition, 2020. 25, 43

[78] Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-
learning algorithms. ArXiv, abs/1803.02999, 2018. 22, 73

[79] S. Pellegrini, A. Ess, K. Schindler, and L. van Gool. You’ll never walk
alone: Modeling social behavior for multi-target tracking. In IEEE Interna-
tional Conference on Computer Vision, 2009. 39, 40

[80] Aniruddh Raghu, Maithra Raghu, Samy Bengio, and Oriol Vinyals. Rapid
learning or feature reuse? towards understanding the effectiveness of maml.
In International Conference on Learning Representations, 2020. 23, 64

[81] Jathushan Rajasegaran, Salman Khan, Munawar Hayat, Fahad Shahbaz
Khan, and Mubarak Shah. itaml : An incremental task-agnostic meta-
learning approach. IEEE International Conference on Computer Vision and
Pattern Recognition, 2020. 24, 25, 59, 61

[82] Aravind Rajeswaran, Chelsea Finn, Sham M. Kakade, and Sergey Levine.
Meta-learning with implicit gradients. In Neural Information Processing Sys-
tems, 2019. 22, 23

[83] Dushyant Rao, Francesco Visin, Andrei A. Rusu, Yee Whye Teh, Razvan
Pascanu, and Raia Hadsell. Continual unsupervised representation learning.
In Neural Information Processing Systems, 2019. 22, 59, 61

[84] Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot
learning. In International Conference on Learning Representations, 2017.
69

[85] Sylvestre-Alvise Rebuffi, Alexander I Kolesnikov, Georg Sperl, and Chris-
toph H. Lampert. icarl: Incremental classifier and representation learning.
IEEE International Conference on Computer Vision and Pattern Recognition,
2017. 13, 22, 59, 61, 73, 74

[86] Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish,
Yuhai Tu, , and Gerald Tesauro. Learning to learn without forgetting by max-
imizing transfer and minimizing interference. In International Conference on
Learning Representations, 2019. 22, 59, 73, 74, 75

Deep Learning Approaches for Time-Evolving Scenarios 115

[87] J. Rios-Martinez, A. Spalanzani, and C. Laugier. From proxemics theory to
socially-aware navigation: A survey. International Journal of Social Robot-
ics, 7(2):137–153, 2015. 32

[88] Alexandre Robicquet, Amir Sadeghian, Alexandre Alahi, and Silvio Sav-
arese. Learning social etiquette: Human trajectory understanding in crowded
scenes. In European Conference on Computer Vision, 2016. 39

[89] David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and
Gregory Wayne. Experience replay for continual learning. In Neural In-
formation Processing Systems, 2019. 13, 22, 74, 75, 90

[90] Andrey Rudenko, Luigi Palmieri, Michael Herman, Kris M. Kitani,
Dariu M. Gavrila, and Kai O. Arras. Human motion trajectory prediction:
A survey. International Journal of Robotics Research, 39(8):895–935, 2020.
27

[91] Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer,
James Kirkpatrick, Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell.
Progressive neural networks. ArXiv, abs/1606.04671, 2016. 21

[92] Andrei A. Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan
Pascanu, Simon Osindero, and Raia Hadsell. Meta-learning with latent em-
bedding optimization. In International Conference on Learning Representa-
tions, 2019. 22

[93] Amir Sadeghian, Vineet Kosaraju, Agrim Gupta, Silvio Savarese, and Alex-
andre Alahi. Trajnet: Towards a benchmark for human trajectory prediction.
ArXiv, 2018. 39

[94] Amir Sadeghian, Vineet Kosaraju, Ali Sadeghian, Noriaki Hirose, and
Silvio Savarese. Sophie: An attentive gan for predicting paths compliant to
social and physical constraints. In IEEE International Conference on Com-
puter Vision and Pattern Recognition, 2018. 13, 20, 28, 42

[95] Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina, Agnieszka
Grabska-Barwinska, Yee Whye Teh, Razvan Pascanu, and Raia Hadsell. Pro-
gress & compress: A scalable framework for continual learning. In Interna-
tional Conference on Machine Learning, 2018. 21

116 Deep Learning Approaches for Time-Evolving Scenarios

[96] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual
learning with deep generative replay. In Neural Information Processing Sys-
tems, 2017. 22

[97] Daniel L. Silver and Sazia Mahfuz. Generating accurate pseudo examples
for continual learning. In IEEE International Conference on Computer Vision
and Pattern Recognition Workshops, 2020. 22

[98] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for
few-shot learning. In Advances in Neural Information Processing Systems.
2017. 23

[99] Kihyuk Sohn, Xinchen Yan, and Honglak Lee. Learning structured output
representation using deep conditional generative models. In Neural Inform-
ation Processing Systems, 2015. 36, 44

[100] G. Spigler. Meta-learnt priors slow down catastrophic forgetting in neural
networks. ArXiv, abs/1909.04170, 2019. 22

[101] Chen Sun, Per Karlsson, Jiajun Wu, Joshua B. Tenenbaum, and Kevin
Murphy. Stochastic prediction of multi-agent interactions from partial obser-
vations. In International Conference on Learning Representations, 2019. 19,
20, 27

[102] Xiaoyu Tao, Xiaopeng Hong, Xinyuan Chang, Songlin Dong, Xing Wei,
and Yihong Gong. Few-shot class-incremental learning. IEEE International
Conference on Computer Vision and Pattern Recognition, 2020. 24, 25

[103] Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Utku
Evci, Kelvin Xu, Ross Goroshin, Carles Gelada, Kevin Swersky, Pierre-
Antoine Manzagol, and Hugo Larochelle. Meta-dataset: A dataset of data-
sets for learning to learn from few examples. In International Conference on
Learning Representations, 2020. 79

[104] Evgeniya Ustinova and Victor Lempitsky. Learning deep embeddings with
histogram loss. In Neural Information Processing Systems, 2016. 35

[105] Gido M van de Ven and Andreas S Tolias. Three scenarios for continual
learning. In Neural Information Processing Systems Workshops, 2018. 21,
73, 82

Deep Learning Approaches for Time-Evolving Scenarios 117

[106] Vladimir Vapnik. Principles of risk minimization for learning theory. In
Advances in Neural Information Processing Systems, 1991. 86

[107] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is
all you need. In Advances in Neural Information Processing Systems, 2017.
25

[108] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Liò, and Yoshua Bengio. Graph attention networks. In International
Conference on Learning Representations, 2018. 20, 31, 38, 55

[109] Anirudh Vemula, Katharina Muelling, and Jean Oh. Social attention: Mod-
eling attention in human crowds. In IEEE International Conference on Ro-
botics and Automation, 2018. 27, 44

[110] Risto Vuorio, Dong-Yeon Cho, Daejoong Kim, and Jiwon Kim. Meta
continual learning. ArXiv, abs/1806.06928, 2018. 24, 59

[111] Ezra Webb, Ben Day, Helena Andres-Terre, and Pietro Lió. Factorised
neural relational inference for multi-interaction systems. In International
Conference on Machine Learning, 2019. 27

[112] P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie, and
P. Perona. Caltech-UCSD Birds 200. Technical Report CNS-TR-2010-001,
California Institute of Technology, 2010. 79

[113] H. Xue, D. Q. Huynh, and M. Reynolds. SS-LSTM: A hierarchical lstm
model for pedestrian trajectory prediction. In IEEE Winter Conference on
Applications of Computer Vision, 2018. 20, 27

[114] Zhi Yan, Tom Duckett, and Nicola Bellotto. Online learning for human
classification in 3d lidar-based tracking. In IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, 2017. 40

[115] Huaxiu Yao, Ying Wei, Junzhou Huang, and Zhenhui Li. Hierarchically
structured meta-learning. In International Conference on Machine Learning,
2019. 24, 25, 59

[116] R. A. Yeh, A. G. Schwing, J. Huang, and K. Murphy. Diverse generation
for multi-agent sports games. In IEEE International Conference on Computer
Vision and Pattern Recognition, 2019. 20, 27

118 Deep Learning Approaches for Time-Evolving Scenarios

[117] Huang Yingfan, Bi Huikun, Li Zhaoxin, Mao Tianlu, and Wang Zhaoqi.
Stgat: Modeling spatial-temporal interactions for human trajectory predic-
tion. In IEEE International Conference on Computer Vision, 2019. 13, 20,
27, 41, 42, 43, 44, 55

[118] F. Zanlungo, T. Ikeda, and T. Kanda. Social force model with explicit
collision prediction. EPL (Europhysics Letters), 93(6):68005, mar 2011. 19

[119] Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learn-
ing through synaptic intelligence. In International Conference on Machine
Learning, 2017. 21, 22, 59, 74, 88

[120] Eric Zhan, Stephan Zheng, Yisong Yue, Long Sha, and Patrick Lucey.
Generating multi-agent trajectories using programmatic weak supervision.
In International Conference on Learning Representations, 2019. 19, 27, 36,
42, 43

[121] Pu Zhang, Wanli Ouyang, Pengfei Zhang, Jianru Xue, and Nanning Zheng.
SR-LSTM: State refinement for lstm towards pedestrian trajectory prediction.
In IEEE International Conference on Computer Vision and Pattern Recogni-
tion, 2019. 13, 20, 27, 41, 42

Deep Learning Approaches for Time-Evolving Scenarios 119

	Contents
	List of Tables
	List of Figures
	Introduction
	The context
	Summary of contributions
	Trajectory forecasting
	Continual learning in complex scenarios
	Continual learning in finance

	Structure of the thesis

	Literature Survey
	Trajectory forecasting
	Position-based models
	Graph-based models

	Complex learning environments
	Continual learning
	Meta-learning
	Meta-learning for continual learning

	Financial predictions

	Trajectory Forecasting in Real-World Environment
	Problem formulation
	Predictive VRNN
	Attentive hidden state refinement
	AC-VRNN: conditional-VRNN on belief maps
	DAG-Net: conditioning VAE to agents' goals
	Experiments
	Datasets
	Metrics
	Training protocol
	Quantitative results
	Ablation experiments
	AC-VRNN
	DAG-Net

	Qualitative results
	AC-VRNN
	DAG-Net

	Implementation details
	AC-VRNN
	DAG-Net

	Meta-Continual Learning in Complex Scenarios
	Method
	Embedding learning
	Clustering
	Meta-continual train
	Meta-continual test

	Experiments
	Few-shot Unsupervised Continual Learning
	Datasets
	Architecture
	Training protocol
	Performance analysis

	Supervised continual learning
	Datasets
	Architecture
	Training protocol
	Performance analysis
	Time analysis

	Ablation experiments
	Generalisation across datasets
	Datasets
	Architecture
	Training protocol
	Performance analysis

	Continual Learning Techniques for Financial Market Predictions
	Method
	Financial time series and indicators
	Definition of domain regimes
	Continual learning techniques
	Gradient Episodic Memory
	Averaged Gradient Episodic Memory
	Synaptic Intelligence
	Elastic Weight Consolidation
	Experience Replay
	Dark Experience Replay

	Experiments
	Datasets
	Metrics
	Architecture
	Quantitative results

	Conclusions
	Trajectory forecasting in real-world environment
	Meta-Continual learning in complex scenarios
	Continual learning techniques for financial market predictions

	List of publications
	Bibliography

