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Connectivity by the Frontal Aslant Tract (FAT) Explains
Local Functional Specialization of the Superior and Inferior
Frontal Gyri in Humans When Choosing Predictive over
Reactive Strategies: A Tractography-Guided TMS Study
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Predictive and reactive behaviors represent two mutually exclusive strategies in a sensorimotor task. Predictive behavior con-
sists in internally estimating timing and features of a target stimulus and relies on a cortical medial frontal system [superior
frontal gyrus (SFG)]. Reactive behavior consists in waiting for actual perception of the target stimulus and relies on the lat-
eral frontal cortex [inferior frontal gyrus (IFG)]. We investigated whether SFG-IFG connections by the frontal aslant tract
(FAT) can mediate predictive/reactive interactions. In 19 healthy human volunteers, we applied online transcranial magnetic
stimulation (TMS) to six spots along the medial and lateral terminations of the FAT, during the set period of a delayed reac-
tion task. Such scenario can be solved using either predictive or reactive strategies. TMS increased the propensity toward re-
active behavior if applied to a specific portion of the IFG and increased predictive behavior when applied to a specific SFG
spot. The two active spots in the SFG and IFG were directly connected by a sub-bundle of FAT fibers as indicated by diffu-
sion-weighted imaging (DWI) tractography. Since FAT connectivity identifies two distant cortical nodes with opposite func-
tions, we propose that the FAT mediates mutually inhibitory interactions between SFG and IFG to implement a “winner
takes all” decisional process. We hypothesize such role of the FAT to be domain-general, whenever competition occurs
between internal predictive and external reactive behaviors. Finally, we also show that anatomic connectivity is a powerful
factor to explain and predict the spatial distribution of brain stimulation effects.
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Significance Statement

We interact with sensory cues adopting two main mutually-exclusive strategies: (1) trying to anticipate the occurrence of the
cue or (2) waiting for the GO-signal to be manifest and react to it. Here, we showed, by using noninvasive brain stimulation
[transcranial magnetic stimulation (TMS)], that two specific cortical regions in the superior frontal gyrus (SFG) and the infe-
rior frontal gyrus (IFG) have opposite roles in facilitating a predictive or a reactive strategy. Importantly these two very dis-
tant regions but with highly interconnected functions are specifically connected by a small white matter bundle, which
mediates the direct competition and exclusiveness between predictive and reactive strategies. More generally, implementing
anatomic connectivity in TMS studies strongly reduces spatial noise.
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Introduction
Whenever synchronizing our movements to a sensory cue, we
can adopt two opposite, mutually exclusive, strategies: a reactive
or a predictive strategy (Schmidt, 1968). In the trade-off between
speed and accuracy, predictive strategies are faster, but more
prone to anticipation errors, while reactive strategies are slower,
but more accurate. The reactive strategy consists in waiting for
the GO-signal, bottom-up processing its sensory characteristics,
and mapping the sensory cue onto a movement commitment.
The neural bases of such arbitrary sensorimotor association have
been identified, by human imaging studies, in a diffuse network
of parietal, premotor and prefrontal regions including the infe-
rior frontal gyrus (IFG), the dorsal premotor region, around the
junction between the superior frontal sulcus and the dorsal seg-
ment of the precentral sulcus and the regions of the medial wall.
The predictive strategy is an internally generated behavior and
consists in moving without waiting for the actual sensory infor-
mation to be available, estimating the time of onset of the
GO-signal based on prior knowledge. The neural bases of such
top-down process are necessarily different from those of the re-
active modality, because, using a predictive strategy, no sensory
information is necessary to complete the task. Motivated, inter-
nally generated goals are set in the medial prefrontal cortex
(MPFC; O’Reilly, 2010; Stuss, 2011) and find a motor outlet in
the motor cortices of the medial wall of the hemispheres, i.e., the
presupplementary motor area (pre-SMA) and the supplementary
motor area (SMA). Unsurprisingly, electrophysiological findings
in monkeys indicate in the SMA the presence of neuronal ma-
chinery for internal clocking of actions (Shima and Tanji, 2000;
Mita et al., 2009). Summing up, predictive behavior is seemingly
based on a medial frontal system, anatomically consistent with
the orbital cortex and the medial and lateral surfaces of the whole
superior frontal gyrus (SFG), while reactive behavior is coded in
a lateral frontal system, anatomically consistent with the IFG. In
the recent years, a white matter system connecting directly the
medial and the lateral frontal regions has been described, that
could be a means of direct integration between predictive and re-
active behavior. The frontal aslant tract (FAT) is a white matter
tract connecting the caudal portion of the SFG (including both
its convexity and medial wall) with the ventral premotor cortex
and the caudal IFG (Catani et al., 2012). The FAT has been
hypothesized to be involved in a series of functions related to
language processes, both in the phonological and lexical domain,
but also in motor and cognitive functions such as verbal and
visuospatial working memory functions, social communication
processes, rhythm and music processing, and attentional proc-
esses (Serra et al., 2017; Garic et al., 2019; Vallesi and Babcock,
2020; La Corte et al., 2021). We hypothesize that such a variety
of functional involvement is supported by an underlying do-
main-general function that is the coordination between top-
down internally generated, predictive behavior with bottom-up,
externally triggered actions. To test this hypothesis, we used a
task that assess the propensity to adopt either predictive or reac-
tive strategies. In a precued reaction task with a fixed, predictable
set-period, participants tend to switch, trial-by-trial between a
predictive strategy [identified by very short response times
(RTs)] and a reactive strategy (identified by longer RTs). In a
previous work we showed that transcranial magnetic stimulation
(TMS) applied over the SFG during the SET period induced a
preference for predictive behavior, interpreted as a “gain-of-
function” of SFG properties (Cattaneo and Parmigiani, 2021). In
the present experiment, capitalizing on a model in which IFG
and SFG produce two opposing, mutually exclusive behavior, we

hypothesized that TMS to the SFG or the IFG should produce a
double-dissociation pattern, with SFG stimulation leading to a
increased predictive behavior and IFG stimulation leading to
increased reactive behavior and. Importantly, we hypothesized
that anatomic connectivity by FAT fibers should be a spatial con-
straint in indicating the specific regions of the SFG and IFG
where the double dissociation pattern was to be expected.

Materials and Methods
Behavioral measurement of response times (all experiments)
We aimed to exploit here the same task as in Cattaneo and Parmigiani
(2021), consisting in a precued simple reaction time, as in a “ready-set-
GO” scenario. Subjects were required to place their head on a fixed
chinrest for the entire length of the experiment at 60 cm from a 27-inch
standard monitor with a refresh rate of 60Hz, and a keyboard placed in
front of them. Stimulus presentation was performed using MATLAB
(Psychtoolbox) scripts and delivered by MATLAB v.2018b. The experi-
mental task used in both experiments consisted in a precued GO-task,
i.e., a sequence of “rest,” “set-period,” and “GO-signal 1 response.” The
trial structure is illustrated in Figure 1. Participants were warned of the
upcoming GO-signal by the set-period, which had a fixed (800ms) or
variable (200–1400ms) duration in experiment 1 and only a fixed
(800ms) duration in experiment 2. The color of a circle in the center of
a white screen informed the Participant of the phase of the trial: gray for
rest, yellow for the set-period, and green for the GO-signal. The instruc-
tion was to press the spacebar with the right hand as fast as possible on
the occurrence of the green dot. Experimental instructions included the
information that the duration of the set-period was fixed or variable.
Feedback was given when the button was pressed before the GO-signal
(false start) in the form of the words “too early” on the screen and when
the button was pressed too late “too late” if occurring later than 600ms
from the GO-signal. The whole script for stimulus presentation and
TMS triggering is available as supplementary material at: https://osf.io/
x76cm/. The gray circle duration (rest phase) varied randomly according
to a square-wave function, between 1000 and 3000ms. In experiment 1
the yellow circle (set-period) varied randomly according to a square-
wave function, between 200 and 1400ms in blocks referred to as
RANDOM (see below) or persisted for a constant time duration of
800ms in blocks referred to as FIXED condition. Conversely, in the

Figure 1. Schematization of single trials in the two experiments. Upper, RANDOM condi-
tion of experiment 1: the duration of the set-period was unpredictable and varied between
200 and 1400ms. Middle, FIXED condition of experiment 1: the set-period duration is
800 ms in every trial. Lower, TMS was delivered at a random time (square-wave function)
comprised between 400 and 800 ms form the beginning of the set-period.
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TMS Experiment the yellow dot, and hence the set-period, had a fixed
duration of 800ms. The green dot (GO-period) was always presented for
600ms. Participants wore earphones for the entire duration of both
experiments, listening to white noise interspersed with sounds of TMS
stimulation, generated by the MATLAB script TAAC-TMS Adaptable
Auditory Control (Russo et al., 2022). Before the actual experiment
the participants familiarized with the task in a series of at least one
practice block, until they reported confidence with the task.

Experiment 1 (behavioral validation of RT distribution)
Experimental design
As stated earlier, we capitalized on the data from Cattaneo and Parmigiani
(2021) in which, in a precued RT task, the participants’ responses are seem-
ingly distributed following a bimodal pattern, with a late peak (.200ms)
corresponding to reactive behavior, and an early peak (,100ms), which
cannot possibly be the result of actual perceptual processing of the GO-sig-
nal. Indeed, in untrained volunteers minimum RTs with the upper limb, to
simple detection tasks are around 200ms (Woods et al., 2015). To validate
and quantitatively demonstrate the actual existence of the predictive behav-
ior, we applied the precued RT task to 20 healthy participants aged 22–
49years (12 females). The experiment consisted in two blocks of 60 trials
each. In one block the duration of the set-period (yellow dot) was variable

between 200 and 1400ms (RANDOM block) and in the other block, the
set-period was fixed, corresponding to 800ms (FIXED block). The order of
the two blocks was counterbalanced between participants.

Data analysis
Response times (RTs) were considered starting from the GO-signal.
Therefore, negative RTs indicated that the button press had occurred
before the onset of the GO-signal. Data analysis was aimed at demon-
strating that if participants have access to the information on the dura-
tion of the set-period, they can produce responses that are anticipatory,
of the GO-signal, following a predictive strategy, rather than a reactive
strategy. To do so we modeled the distribution of RTs in the two condi-
tions to a function that is the sum of two separate skew-Normal func-
tions, to account for our expectation of a bimodal distribution. To do so
we first expressed the distribution of the actual individual RTs by means
of Gaussian kernel density estimates (Peter, 1985) using MATLAB’s
‘ksdensity’ function (Fig. 2A,B) and then we plotted the mean value of all
kernel estimates to obtain a grand average of all data (Fig. 2A,B, red
lines). We then fitted the population data to the sum of two skewed-
Normal functions, by means of MATLAB’s ‘curveFitter’ function.
Specifically, we adopted the following formula for each of the skewed-
Normal distribution (O’Hagan and Leonard, 1976; Azzalini, 1985):

Figure 2. Results of experiment 1. The left panels refer to the RANDOM condition and the right panels refer to the FIXED condition. In all panels, the vertical dashed line indicates t¼ 0 ms,
i.e., the onset of the GO-signal. Upper panels (A and B) show the superimposed individual Gaussian kernel density estimates of the 20 participants (thin blue lines) together with the mean
Gaussian kernel density estimate of the whole population (thick red line). Lower panels show a superimposition of the actual data and of the fitting functions, together with an indication of
the goodness-of-fit. Actual data are presented as a scatterplot of hollow red circles, indicating the Gaussian kernel density estimates of the population (repeating the data of the thick red line
of the upper panels). Fitting skewed-Normal functions are shown as continuous lines. In panel C, the function of a single skewed-Normal function is shown in blue because optimal fitting
occurred with a single curve. In panel D, the two skewed-Normal functions required to obtain optimal fitting are shown in purple and blue, and their sum is shown in green. The solid vertical
line represents the point of optimal separation between the two distributions (i¼ 172 ms). The goodness of fit is shown as the R2 value.
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y ¼ ½a1 p exp�ðx�m1Þ2
s12 p ð11erfð x�m1ð Þ p b1Þ�

1 ½a2 p exp�ðx�m2Þ2
s22 pð11 erf x�m2ð Þ p b2ð Þ�;

where a is the gain factor for the height of the distribution, m is the
mean of the distribution, s is an index of the SD (width) of the distribu-
tion and b is the index od skewness (set between �1 and 11). Finally,
the goodness of the resulting fit was assessed by the adjusted R2 index.
Note that all parameters, a, m, s and b are duplicated as a1, a2, m1, m2,
because the fit is performed to the sum of two skewed-Normal curves.

Experiment 2 (TMS experiment)
A total of 19 subjects participated in the study (10 females and 9 males
aged 22–36 years). The experiment was approved by the local Ethical
Committee of the University of Trento (protocol 2020_035) and
all participants signed informed consent papers to join the study.
Participants were screened for TMS contraindications before the
experiment (Wassermann, 1998; Rossi et al., 2009, 2021). All partici-
pants were required to join two separate sessions: the first one was an
MRI-DTI session and the second one a neuronavigated TMS stimula-
tion session during the performing of a task.

MR imaging
The anatomic images were acquired by a 3T MAGNETOM Prisma
(Siemens Healthcare) with a 64-channel head-neck RF receive coil was
used to acquire 3D T1-weighted (T1w, multiecho-MPRAGE, 1 mm
isotropic), and diffusion-weighted (dMRI) data (2 mm isotropic, TE/
TR¼ 76/4200ms, shells: b ¼ {0,700,1000,2850} s/mm, 32/64/64 direc-
tions. DW imges processing. T1-w images of all the subjects under-
went a standard preprocessing. First of all, the raw DICOM T1-w
images were converted to NifTI format using dcm2niix software.
Then, an AC-PC (anterior-posterior commissures) alignment was per-
formed by means of rigid registration to the MNI152 T1-w template
(Avants et al., 2008). The brain mask was estimated using a pretrained
3D U-Net (Ronneberger et al., 2015; Çiçek et al., 2016). The brain
mask was used to perform the Bias-Field Correction restricted on the
brain voxels, using N4-Bias Field Correction tool (Tustison et al.,
2010). Furthermore, the T1-w images were segmented into 6 brain tis-
sue by means of a pretrained 3D-Unet (Amorosino et al., 2020). To
support the alignment of structural and diffusion images we computed
a synthetic T2-w image using AFNI toolkit (Cox, 1996).

DWI data preprocessing
The preprocessing of the diffusion-weighted imaging (DWI) data
were conducted using TORTOISE toolkit (Pierpaoli et al., 2010).
With DIFFPREP tool (Okan et al., 2017), we computed the correction
for Gibbs ringing, thermal noise, eddy current, and motion distortion.
Furthermore, we used DRBUDDI tool to perform the susceptibility
induced echoplanar imaging (EPI) distortion correction through dif-
feomorphic registration (Avants et al., 2008) of the DWIs volumes.
DRBUDDI was operated combining both DWI reversed-phase encod-
ing directions (i.e., AP and PA acquisitions) and also the information
from an undistorted structural MRI. The DWIs data were also cor-
rected for bias field inhomogeneities (Tustison et al., 2010). The
reconstruction of the streamline tractography was performed using MRtrix3
software (Tournier et al., 2012). We performed the multishell, multitissue
constrained spherical deconvolution (CSD; lmax¼ 6; threshold¼ 0.5) to
obtain the WM fiber orientation distribution function (fODF) from the
estimation of the response function using the Dhollander method
(Dhollander et al., 2016, 2019). Then, we computed the deterministic trac-
tography based on CSD (cutoff 0.001, maximum angle of 75°, step of
0.5 mm) constraining the length of the streamlines between 20 and 250 mm.
We initialized the tractography using random seeding of 10^7 seeds on a
WM mask, estimated by thresholding the DTI fractional anisotropy (FA)
scalar map with a heuristic value of 0.15.We stopped the tracking by select-
ing 2*10^6 streamlines.

Individual FAT dissection and neuronavigation
Once the full masked tractogram was obtained, it was processed in
TrackVis to dissect the left FAT portion of interest. Note that while there
is consensus on the caudal limit of the FAT from the ventral precentral
gyrus, the anatomic definition of the FAT lacks a clear rostral border
(Varriano et al., 2018). Therefore, a rostral limit was set in the present
work to a region of interest i.e., the group of fibers connecting the SFG
with the ipsilateral ventral precentral gyrus and IFG-pars opercularis
(Fig. 3A). The seed ROIs in the SFG and IFG were set manually, follow-
ing individual anatomies. False positive tracks were excluded by applying
a bandpass length filter (50–90 mm), a x-plane filter, excluding fibers
that crossed the midline, a y-plane filter excluding fibers caudal to the
central sulcus and finally by means of manual removal on visual inspec-
tion using the Tractome toolbox (Porro-Muñoz et al., 2015). The left
FATs were then divided into three equal sub-bundles, hereafter named
posterior, middle, and anterior (Fig. 3B). The six dorsal and lateral corti-
cal origins of the three sub-bundles were then used as targets for

Figure 3. A, Left panel, The left FAT in a representative participant. Right panel, The central sulcus (in red) and the precentral sulcus (in yellow). B, Division of the left FAT in three sub-bun-
dles and identification of the three pairs of homolog cortical targets for TMS.
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neuronavigated TMS by means of a neuronavigational system (SofTaxic
software v.3.4, EMS, Italy connected to a Polaris infrared camera), labeled
as points (P) from P01 to P06 with odd points in the dorsal origins and
even points in the medial origins. For the purpose of further analysis, the 6
points were treated as three pairs of homologous points, one dorsal and
one ventral and each connected by a single sub-bundle (Fig. 3B). To obtain
post hoc, population-level, localization of the stimulated spots, the individ-
ual brains were then normalized in MNI space and the P01–P06 coordi-
nates were extracted. Table 1 shows all individual coordinates and the
mean and SD values. Figure 4 shows the mean coordinates of the six stimu-
lated points. Individual T1-weighdMRs were used for stereotaxic frameless
neuronavigation, by means of an optical infrared camera and reflective
markers placed on the participant’s head and TMS coil. The rationale for
dividing the FAT into three sub-bundles is related to the expected spatial
granularity of functional specialization in the SFG and IFG. To use TMS as
a mapping tool, we must use a spatial sampling frequency that is adequate
to the spatial granularity of the local functional specialization (Cattaneo,
2018). Our previous work on the SFG (Parmigiani et al., 2015, 2018;
Parmigiani and Cattaneo, 2018; Lega et al., 2020a,b) shows that local spe-
cializations in that region are appropriately sampled with a spatial sampling
frequency of one sample every 1.5–2 cm on the cortical surface. The result-
ing dense grid was therefore made of three spots.

TMS session
We used a MagPro 100 stimulator, connected to a figure-of-eight TMS
coil with 65-mm diameter of each winding (model MagPro MCF-B65).

The individual resting motor threshold (rMTh) was assessed in the left
hemisphere by stimulating the optimal spot for the visible contraction at
rest of the right opponens pollicis muscle (OP). RMTh was assessed as
the minimum stimulation intensity that elicits a visible contraction in
intrinsic hand muscles with a 50% probability over a series of 10 stimuli.
TMS was delivered in one single pulse per trial and the stimulation in-
tensity for the experiment was then set to 120% of the individual rMTh.
The coil of the TMS was placed tangentially on the relative left FAT end-
point (i.e., spots P01–P06) selected on the T1 image, with a local error
,1.7 mm and single-pulse TMS was delivered at a random time at 400–
800ms from the onset of the set-period. Single-pulse TMS was delivered
to the left hemisphere, contralateral to the responding (right) hand. In
the attempt to keep the direction of the induced electrical field roughly
perpendicular to the main sulci in the stimulated region, we stimulated
the SFG with the handle pointing laterally, with a 90° angle to the midline
and for the IFG positions we positioned the coil with the handle pointing
backwards, parallel to the midline. Sham stimulation was achieved by tilt-
ing the coil by 90° to the scalp surface. The position of coil placement on
the scalp for sham stimulation was different in each of the three sham
blocks. It was on the SFG region in one block, on the IFG region in
another block and midway between the two in the third block.

Experimental design
The experiment had a within-subjects design, in which the dependent
variable was a measure of the frequency of reactive behavior [the reactive
index (RI), see below] and the independent variables were the stimula-
tion sites. We employed a blocked design in which a single stimulation
site was targeted in a single block of 40 trials. The order of the six blocks
(and therefore of stimulation sites) was randomized between partici-
pants. In addition, we ran three extra blocks with sham stimulation,
which occurred always at the beginning, in the middle and at the end of
the sequence of blocks. This accounted for a total of 40 trials (one block)
for each active TMS site, and 120 trials (three blocks) for sham TMS.
The behavioral task was performed with a fixed duration of the set-period,
corresponding to 800ms. Participants wore earphones for the entire dura-
tion of the experiment, listening to white noise interspersed with sounds
of TMS stimulation, generated by the MATLAB script TAAC-TMS
Adaptable Auditory Control (Russo et al., 2022)

Data processing
The response time (RT) was calculated as difference between the time of
response and the GO-signal and therefore could have both negative and
positive values. RT was the main experimental output and index of

Figure 4. Surface render of the MNI-152 template with indication of the average cortical
location of each of the six spots.

Table 1. Individual coordinates in standard MNI space of the six stimulation spots

Participant # P01 (x, y, z) P02 (x, y, z) P03 (x, y, z) P04 (x, y, z) P05 (x, y, z) P06 (x, y, z)

1 (�14, 9, 75) (�63, 14, 12) (�15, 24, 63) (�56, 17, 0) (�23, 33, 56) (�57, 26, 8)
2 (�20, 6, 75) (�63, 14, 14) (�12, 30, 63) (�60, 15, 2) (�11, 35, 62) (�62, 21, 15)
3 (�17, 3, 75) (�62, 12, 15) (�15, 17, 71) (�57, 15, �2) (�17, 30, 65) (�60, 21, 11)
4 (�17, 9, 72) (�62, 6, 17) (�11, 27, 65) (�59, 12, 0) (�14, 48, 54) (�60, 20, 15)
5 (�12, 6, 75) (�62, 6, 15) (�9, 21, 71) (�60, 14, 3) (�11, 30, 63) (�62, 17, 12)
6 (�23, 15, 71) (�60, 8, 12) (�9, 29, 66) (�59, 14, 3) (�17, 29, 65) (�60, 17, 17)
7 (�24, �9, 78) (�57, 17, 12) (�15, 12, 71) (�57, 17, �2) (�14, 24, 68) (�59, 26, 9)
8 (�12, 6, 75) (�62, 5, 12) (�15, 20, 69) (�60, 12, 6) (�18, 26, 63) (�62, 17, 20)
9 (�20, �2, 77) (�62, 5, 17) (�18, 14, 69) (�60, 12, 5) (�18, 30, 60) (�60, 18, 14)
10 (�23, 12, 72) (�62, 8, 17) (�17, 26, 65) (�60, 12, 2) (�18, 35, 59) (�62, 17, 14)
11 (�20, 2, 75) (�59, 12, 17) (�18, 17, 71) (�59, 15, 2) (�20, 29, 62) (�60, 23, 8)
12 (�15, 5, 74) (�61, 8, 12) (�20, 17, 69) (�62, 11, 0) (�20, 29, 62) (�60, 17, 11)
13 (�14, 3, 78) (�62, 9, 18) (�18, 18, 69) (�63, 9, 5) (�23, 30, 60) (�62, 17, 6)
14 (�15, 2, 77) (�62, 8, 18) (�14, 17, 72) (�60, 14, 3) (�20, 23, 66) (�62, 17, 14)
15 (�20, 9, 74) (�62, 15, 18) (�14, 26, 68) (�60, 15, 5) (�18, 33, 62) (�60, 23, 6)
16 (�18, 2, 77) (�62, 6, 15) (�15, 17, 74) (�62, 12, 6) (�23, 12, 72) (�62, 17, 17)
17 (�21, 2, 75) (�62, 6, 18) (�21, 17, 69) (�60, 12, 3) (�18, 32, 59) (�62, 14, 12)
18 (�14, 8, 71) (�62, 6, 17) (�12, 26, 63) (�60, 9, 0) (�12, 36, 60) (�59, 18, 6)
19 (�12, 12, 75) (�63, 2, 17) (�12, 24, 69) (�60, 14, 2) (�23, 33, 59) (�63, 15, 17)
Mean (�17.4, 5.3, 74.8) (�61.6, 8.8, 15.4) (�14.7, 21, 68.3) (�59.7, 13.2, 2.3) (�17.8, 30.4, 61.9) (�60.7, 19, 12.2)
SD (3.8, 5.4, 2.1) (1.4, 4, 2.3) (3.3, 5.2, 3.2) (1.7, 2.2, 2.4) (3.8, 6.8, 4) (1.5, 3.4, 4.1)
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performance because it allowed to classify trials as product of a reactive
strategy or of a predictive strategy.

To verify the assumptions of the present experiment, i.e., that when
the set-period is predictable, RTs are distributed bimodally, we per-
formed the same analysis on RT distribution that is described for experi-
ment 1, on the data obtained in the sham condition in the present
experiment. Note that in experiment 2, all trials had a fixed, predictable
SET-period of 800ms, identical to the FIXED condition in experiment 1.
We validated the RT distribution on trials in the sham condition
(because the hypothesis of the present work is that TMS affects the dis-
tribution of different strategies) by a curve fitting procedure identical to
that used in experiment 1 (see above for the fitted function). As shown
in Figure 5 and detailed below in Results, we observed that the RT distri-
bution in the sham trials of experiment 2 was very similar to that in the
FIXED condition of experiment 1 (compare Figs. 5 and 2, right panels),
with a limit between the two distributions of 172ms. Therefore, trials
were classified according to the response time, as: (1) anticipatory
trials (i.e., trials with RT less or equal to 172ms) and (2) reactive trials
(trials with RTs. 172ms). The choice of analyzing also responses
given before the actual GO-signal is that most of these responses are
part of the distribution of the reactive trials, as evident from Figures 2
and 5. As a consequence, also responses given before the GO-signal are
eloquent of the employment of a predictive strategy. Trials with
responses given before TMS were excluded from analysis because they
were the result of neural processes unaffected by TMS. The percentage

of discarded trials was on average 5.6% of the total (around 2 trials per
condition), therefore negligible. We then took into consideration the pool
of trials within each single condition (40 trials per each active TMS site)
and 120 trials for the sham, and built a ratio called reactive index (RI), by
dividing the number of reactive trials by the total number of trials.

RI ¼ number of reactive trials
total number of trials

:

The RI is distributed between 0 (100% of predictive behavior) and 1
(100% of reactive trials). In this way, the data from all participants were
reduced to seven data points per subject: the RI from the six active TMS
sites and the RI from the sham condition. Finally, further data reduction
was obtained by subtracting the RI from Sham TMS from the 6 RI values
of the active TMS spot. The differential RI obtained was a number dis-
tributed between �1 and 11 and indicated, if negative, that effective
TMS had increased the number of predictive trials compared with Sham
and, when positive, that TMS had increased the number of reactive trials
compared with Sham. The differential RIs were the actual variable that
was used in the statistical analysis.

Statistical analysis
The aim of statistical analysis was to assess whether TMS over a specific
site significantly biased the propensity to act with a reactive or a predic-
tive strategy compared with sham TMS. We therefore performed a
univariate ANOVA on the RI as dependent variable and with 1 within-
subjects factor: TMS (seven levels ¼ sham, P01, P02, P03, P04, P05, and
P06). To explore the main effect of the TMS factor, we used six planned
comparisons comparing the RI of the sham condition to each of the six
active TMS spots by means of t tests for paired samples. We lowered the
significance threshold of p¼ 0.05/6, i.e., to p¼ 0.008. ANOVA assump-
tions of normality of data distribution and of similar variance between
conditions were verified. The Kolmogorov–Smirnov test showed that all
the distributions of the data in each of the six cells of the design were not
different from a normal distribution (all p-values. 0.2). Equal variances
in the samples were tested by means of Mauchly’s test for sphericity,
which did not reject the sphericity assumption (min p-value¼ 0.6).

Correlation with fractional anisotropy
We analyzed the mean fractional anisotropy (FA) of the FAT to evaluate
whether the observed behavior correlates in any way with the anatomic
microstructure of the FAT. FA from the frontal lobe white matter has been
previously used to assess interindividual variance in white matter connectiv-
ity, to explain variability in observed behavioral performance as for example
in (Smolker et al., 2015) and, more importantly, FA of the FAT has been
shown previously to be predictive of individual behavioral variations (Vallesi
and Babcock, 2020). We extracted mean FA from the left FAT in tis middle
portion, where its fibers are the most coherent (corresponding to horizontal
plane with z¼ 40) and we correlated it with the RI obtained in the seven
conditions of the experimental design (six active TMS and one sham).

Data availability
The whole dataset of anatomic data and the TMS-behavioral data are ac-
cessible at the following repository: https://osf.io/x76cm/.

Results
Experiment 1
Results are shown in Figure 2. The optimal fitting was obtained
with the following parameters. In the random condition: a1¼ 0;
a2¼ 0.0046; m1¼ 0; m2¼ 230.1; s1¼ 1; s2¼ 99.95; sk1¼ 0
sk2¼ 0.04; the goodness of fit procedure produced a value of R2

of 0.98. For the FIXED condition, the parameters were: a1¼
0.0014; a2¼ 0.0037; m1¼ 140; m2¼ 226; s1¼ 150.8; s2¼ 92.88;
sk1 ¼ �0.011; sk2¼ 0.0135; the goodness of fit showed a R2 of
0.99. It is worth noting that the R2 values were extremely high,
showing that the fitted functions justified practically all the var-
iance of the data. Second, it should be noted that in the random

Figure 5. Analysis of distribution of the RTs in the sham condition of experiment 2. The
vertical dashed line indicates t¼ 0 ms, i.e., the onset of the GO-signal. Upper panel shows
the superimposed individual Gaussian kernel density estimates of the 19 participants (thin
blue lines) together with the mean Gaussian kernel density estimate of the whole population
(thick red line). Lower panel shows a superimposition of the actual data and of the fitting
functions, together with an indication of the goodness-of-fit. Actual data are presented as a
scatterplot of hollow red circles, indicating the Gaussian kernel density estimates of the pop-
ulation (repeating the data of the thick red line of the upper panels). Fitting skewed-Normal
functions are shown as continuous lines. The two skewed-Normal functions required to
obtain optimal fitting are shown in purple and blue, and their sum is shown in green. The
solid vertical line represents the point of optimal separation between the two distributions
(t¼ 172 ms). The goodness of fit is shown as the R2 value.
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(unpredictable) condition, the optimal fit was obtained with the
parameter a2 set to a null value, therefore transforming the dis-
tribution in a unimodal one. The separation point between the
early and the late distribution in the FIXED condition corre-
sponded to the value of x (response time)¼ 172ms. We assumed
based on these data therefore that the early (predictive) trials and
the late (reactive) trials were optimally separated by the cutoff
value of 172ms of response time.

Experiment 2
None of the participants reported any significant immediate nor
delayed undesired effect of TMS. The results of the evaluation of

the distribution of RTs are shown in Figure 5. Specifically, we
observed that the function that we applied, based on the sum of two
skewed Gaussians, fitted very well the data. The optimal function
parameters were: a1¼ 0.0041; a2¼ 0.00,162; m1¼ 224.7; m2¼ 85;
s1¼ 76.5; s2¼ 100; sk1¼ 0.014; sk2¼ 0.0. Goodness of fit showed
an R2 of 0.97.We therefore confirmed here, in an independent sam-
ple, that predictability of the SET-period allows for two different
decisional processes, that produce two different RT distributions.
Strikingly, the cutoff value of response times was identical to that in
the Behavioral experiment, i.e., x¼ 172ms.

The mean RIs for every participant are presented in Table 2.
The results of the ANOVA are illustrated in Figure 6. The one-
way ANOVA showed a main effect of the TMS factor [F(6,108) ¼
5.61, p¼ 0.00,004; partial h 2¼ 0.238; observed power (a¼ 0.05)¼
0.996]. Planned comparisons between each of the six active TMS
spots with the sham stimulation are summarized in Table 3 and
showed that only the mean RI in the P03 and the P04 spots were
different from the mean RI of Sham stimulation. In particular, (1)
TMS over P03 induced significantly more predictive behavior
compared with Sham; and (2) TMS over P04 induced significantly
more reactive behavior compared with Sham.

The regression analysis on the FA values of the FAT showed
that the individual FA value was a valid predictor of the RI index,
in all but one (spot P06) of the seven experimental conditions.
The results of the analysis and their graphical illustration are
found in Table 4 and Figure 7, respectively. These final findings
indicated that the behavior that we study is partially predicted by
the FA of the FAT; in particular, that the greater the FA, the
more the subject has tendency to act with a predictive strategy.

Discussion
TMS on the SFG promotes predictive behavior and on the
IFG promotes reactive behavior
We have investigated the reciprocal role of the SFG and IFG in
selecting a predictive or a reactive action strategy. Our specific
hypothesis was that the SFG and IFG have reciprocally opposite

Table 2. Individual reactivity index (RI) values for the sham condition and for
each of the six active TMS conditions

Participant

Reactivity index (RI)
Fractional
anisotropy (FA)Sham P01 P02 P03 P04 P05 P06

#1 0.765 0.816 0.692 0.543 0.9 0.41 0.675 0.65
#2 0.55 0.486 0.595 0.59 0.553 0.324 0.316 0.57
#3 0.555 0.65 0.575 0.538 0.55 0.5 0.65 0.54
#4 0.877 0.775 0.947 0.85 0.897 0.865 0.85 0.46
#5 0.686 0.769 0.95 0.595 0.974 0.692 0.821 0.57
#6 0.915 0.974 0.95 0.9 0.974 0.975 0.925 0.47
#7 0.707 0.811 0.564 0.658 0.865 0.757 0.538 0.42
#8 0.9 0.95 0.744 0.825 0.925 0.925 0.725 0.54
#9 0.876 0.842 0.9 0.846 0.892 0.875 0.895 0.44
#10 0.804 0.857 0.897 0.583 0.811 0.615 0.842 0.51
#11 0.712 0.825 0.744 0.725 0.925 0.744 0.795 0.52
#12 0.554 0.375 0.605 0.41 0.595 0.333 0.436 0.55
#13 0.828 0.821 0.75 0.711 0.95 0.641 0.605 0.45
#14 0.28 0.361 0.351 0.25 0.485 0.237 0.455 0.65
#15 0.759 0.615 0.436 0.675 0.811 0.75 0.6 0.61
#16 0.643 0.692 0.73 0.632 0.605 0.564 0.706 0.58
#17 0.33 0.303 0.333 0.286 0.5 0.576 0.296 0.5
#18 0.459 0.448 0.412 0.344 0.514 0.342 0.405 0.61
#19 0.559 0.583 0.595 0.444 0.538 0.658 0.676 0.62

The last column on the right contains the individual FA values of the left FAT.

Table 3. Mean values of the RI for each active stimulation spot and for the
sham condition

TMS spot Mean Std. Dv. t-value df P

P01 0.681 0.204 0.54 18 0.59
P02 0.672 0.201 0.03 18 0.98
P03 0.600 0.191 24.32 18 0.0004
P04 0.750 0.189 3.77 18 0.001
P05 0.620 0.219 �1.60 18 0.13
P06 0.642 0.192 �1.00 18 0.33
SHAM stimulation 0.671 0.187 — — —

The t statistics for paired data comparing each active stimulation spot with the sham condition are shown.
Significant conditions are highlighted in bold. Note that the threshold for significance has been set to
p¼ 0.05/6, i.e., p ¼ 0.008 to correct for the six multiple comparisons.

Figure 6. Results of experiment 2. Box-whisker plot indicating mean, median (horizontal
segment in the box) first and third quartiles (box extremities) and maximum and minimum
values. p-values indicate the significant comparisons between sham and the active TMS
spots. Note that only P03 and P04 differed significantly from sham stimulation.

Table 4. Results of the multiple regression analysis on RI values, with FA as
continuous predictor

Adjusted R2 df F p-value

Sham 0.207 17 5.69 0.028
P01 0.165 17 4.57 0.047
P02 0.169 17 4.65 0.045
P03 0.305 17 8.91 0.008
P04 0.190 17 5.23 0.035
P05 0.349 17 10.64 0.005
P06 0.050 17 1.95 0.181
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roles, with the SFG promoting predictive behavior and the IFG
promoting reactive behavior and that their interaction is medi-
ated by the FAT. We employed a validated task that simulates a
“starting block” scenario that can be solved in every single trial
by means of two mutually exclusive strategies: predictive or reac-
tive. TMS delivered during the SET-period to a specific portion
of the SFG, induced a bias toward predictive behavior, thus repli-
cating the data from Cattaneo and Parmigiani (2021). The effec-
tive TMS spot was P03 (Figs. 3, 4 for the location of TMS spots).
Stimulation of the IFG, specifically of the P04 spot, produced be-
havioral effects opposite to those over P03, i.e., an increase the
propensity to perform reactive responses. The polarity of the
effects of TMS on behavior can be unpredictable, depending on
the interaction between well-controllable stimulation parameters
(such as stimulus intensity and timing) with much less controlla-
ble subject-dependent parameters (such as state dependency and
local anatomy; Silvanto and Muggleton, 2008; Perini et al., 2012).
We assume here that TMS had a facilitatory “gain-of-function”
effect on behavior as shown in Cattaneo and Parmigiani (2021).
Such assumption stems from the comparison of behavioral
effects of TMS and previous knowledge on the stimulated brain
regions. Specifically, we hypothesize that TMS induced a gain-of-
function of the SFG, specifically in the capacity to serve as clock
for internal timing of action. In the SFG, several neural signals
have been described, that are causally linked to time processing
and to timing of action, at the basis of movement based on inter-
nally cued anticipatory strategy (Mauk and Buonomano, 2004;
Chen et al., 2006; Mita et al., 2009; Casini and Vidal, 2011).
Similarly, we hypothesize that TMS induced transient facilitation
of IFG, specifically in its capacity to code sensorimotor associa-
tions in rule-dependent behavior, that has been suggested in
humans (Toni et al., 1999, 2001a,b; Lega et al., 2020a,b) and non-
human primates (Rizzolatti et al., 2014).

Coexistence of different motor programs and parallel
processing of information
We show here that TMS applied during the SET period can
induce biases toward one of the two strategies, predictive or reac-
tive. This indicates that up to the actual time of movement, dur-
ing the SET-period, both strategies are still available and present
in parallel channels in the participant’s motor system. If the com-
mitment to one of the strategies was determined earlier on dur-
ing neural processing, we would not be able to induce a strategy
switch with TMS during the SET period. The present data pro-
vide evidence in favor of parallel processing of the two possible
strategies. Several lines of empirical evidence in human neuro-
physiology (Michelet et al., 2010; Barchiesi and Cattaneo, 2013;
Ubaldi et al., 2015) and human behavior (Van Zoest and Donk,
2006; Barchiesi and Cattaneo, 2015) confirm that top-down con-
trol and bottom-up sensorimotor processes seem to coexist up to

the very distal phases of action production. The concept of paral-
lel channels in the action system that mediate bottom-up (in this
case the reactive strategy) and top-down (the predictive strategy
in our protocol), that compete for motor output, is well estab-
lished in several theoretical models of the action system
(Kornblum et al., 1990; Ridderinkhof et al., 2004; Cisek and
Kalaska, 2010; McBride et al., 2012).

Anatomical connectivity explains the effects of TMS over
distant but interconnected regions
According to our experimental hypothesis, the FAT provides
the anatomic substrate for interaction between the SFG and the
IFG. Accordingly, we hypothesized that specific sectors of the
SFG and the IFG influencing the propensity to act in a predictive
or reactive way should be directly connected by FAT fibers. Indeed,
we demonstrated that stimulation of two limited portions of cortex
produced opposite behavioral effects compared with sham stimula-
tion. The two active regions (P03 and P04) are apparently distant
and unrelated and have been identified only by means dense spatial
mapping with TMS of the IFG and SFG. However, we show here
that coupling different sectors of the SFG and the IFG in terms
of homolog regions connected by sub-bundles of the FAT fully
explains the variance of the effects of TMS over the two gyri: the
only two regions that showed a behavioral effect are directly
connected by an anatomic pathway.

Amodel of FAT function mediating mutual inhibition
between SFG and IFG
What is even more striking, is that the effects of TMS on the
two FAT terminations were opposite in polarity, i.e., facili-
tation of predictive behavior on the SFG and facilitation of
reactive behavior on IFG. We hypothesize that these two
regions act with a mechanism of reciprocal (mutual) inhibi-
tion. On the microscale, mutual inhibition is a widely used
neural mechanism for selection between competing and
mutually exclusive actions, as observed in nonhuman species
(Machens et al., 2005; Koyama and Pujala, 2018). Mutual (or
lateral) inhibition circuits support winner-takes-all decision
processes, making it impossible to elicit two behavioral pat-
terns in response to a certain situation because one excludes
the other. Similarly in our study, at the single trial level, the re-
active and predictive strategies are mutually incompatible, but
participants do not commit to a single strategy forever, but
rather tend to choose one strategy over the other on a trial-by-
trial basis. Therefore, behavior in single trials is the product a
continuous fluctuation of an opaque decision process between
the two possible strategies. We show that two opposite biases
can be introduced in such decision process, by stimulating
two regions of SFG and IFG that are directly mutually inter-
connected by FAT fibers. We therefore hypothesize that the

Figure 7. Results of the regression analysis using fractional anisotropy (FA) of the FAT as continuous predictor of the individual reactivity index (RI). Refer to Table 4 for statistical
parameters.
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direct connectivity by FAT fibers mediates reciprocal, mutual
inhibition between the SFG and IFG. It is nevertheless impor-
tant to stress two aspects. The first is that this behavioral phe-
nomenon is specific for the two subregions in the SFG and
IFG and is not extended to the whole gyri. While the FAT may
connect SFG and IFG along most of their extensions, other be-
havioral (cognitive) paradigms may unravel other forms of
competitive inhibition more anteriorly or posteriorly. Second,
direct connectivity by means of the FAT is not the only possi-
ble explanation. SFG and IFG could influence each other by
means of indirect, subcortical, connections (Aron et al., 2007),
as has been suggested for right-lateralized circuits for action
inhibition. Similar subcortical connections have also been
proposed as integral portions of the FAT circuitry in recent
models of FAT function (Dick et al., 2019).

Consistence of the present data with current knowledge on
the FAT
We postulate a model for a domain-general function of the pos-
terior FAT, i.e., to directly mediate the interactions between
internally generated behavior in the medial frontal cortex and
externally triggered behavior in the ventral-lateral frontal cortex.
The concept of an all-purpose FAT was first proposed before its
actual description as an individual bundle. A white matter connec-
tion allowing right SFG-IFG cross-talk has been initially identified
by Aron (2007), suggesting these region could inhibit each other
directly or through interposition of subthalamic nucleus and hence
braking or stopping action. More recently, domain-general theo-
ries, proposed a role in motor planning and timing of more or less
complex motor sequences, in monitoring and in the interactions
between executive control and sensorimotor patterns as proposed
among others by Dick et al. (2019). Conversely, specific roles of the
FAT have been hypothesized in the language domain, for the left
hemisphere. Here, most researches have correlated posterior FAT
integrity and function with motor aspects of speech, such as articu-
lation and verbal fluency (Catani et al., 2013; Sierpowska et al.,
2015; Kronfeld-Duenias et al., 2016; Cipolotti et al., 2020), although
other authors found a relation of FAT structure with lexical deci-
sions and not verbal fluency (Vallesi and Babcock, 2020). The later-
alization of the FAT function and the apparent specialization are in
our view not in contrast with our model of FAT mediating interac-
tions between internally-timed, predictive behavior and externally-
cued, sensory-dependent behavior, because also verbal fluency
tasks require strict interaction between timing of word production
and the specific articulatory gestures, likely arising from SFG-IFG
interactions (Dick et al., 2019).

In conclusion, we show evidence in support of the FAT’s role
mediating interactions between predictive and reactive behavior.
Specifically, the FAT seems to mediate reciprocal competition
between two frontal regions that represent predictive (SFG) and re-
active (IFG) strategies. This connectivity system, because of its mu-
tual inhibition organization, supports the selection of actions in a
“winner takes all” manner. In addition, we show here for the first
time that individual information on anatomic connectivity (trac-
tography) coupled with TMS can significantly improve spatial
mapping of cortical functions, by identifying homologous regions.
Tractography-guided TMS provides a whole new way to interpret
functional brain mapping by means of noninvasive stimulation
techniques.
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