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Abstract 

We investigate the extent to which the “siloed” nature of regions’ knowledge base affects their 
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the local SPI incidence in technologies negatively correlates with their regional entry for an average 
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1. Introduction 

Local specialisations, denoted by those economic activities in which regions specialise at a certain 

moment in time, are exposed to a constant pressure of renewal. As the economic effects of the 

Covid-19 pandemic and of the Russia-Ukraine war have shown to an unprecedent scale, an 

important part of this pressure comes from external shocks. These might even force regions to 

restart their business operations from scratch in an uncharted scenario. The push to change is 

however also and above all endogenous, due to the stagnation and decline of the activities in which 

regions specialise, following the unfolding of techno-economic evolution and competition (Xiao et 

al., 2018). The incessant pression of these forces has led to identify in regional diversification a 

crucial leverage of competitiveness and structural change and has put the analysis of its 

determinants on the top of both research and policy agendas (Neffke et al., 2011). 

Among the different approaches adopted in its analysis, the so-called “relatedness” approach has 

shown that regional diversification mainly occurs as the “branching” of pre-existing activities, to 

which newly developed ones are cognitively related (Neffke et al. 2011; Boschma and Gianelle, 

2014, Hidalgo et al., 2018). Despite important nuances and exceptions (Zhu et al., 2017), regions 

predominantly enter new activities that share similar capabilities to pre-existing ones, confirming 

the theoretical predictions about the role of path-dependence, local search and routinised 

behaviors in evolutionary economic geography (Boschma and Frenken, 2006). 

The relatedness approach has been applied also and above all to the analysis of regional 

technological diversification, amounting to the regions’ capacity of innovating and entering 

previously unmastered technological domains. This analysis is carried out by extending to the 

regional realm the recombinant theory of firms’ innovations (Weitzman, 1998) and claiming that, 

through the meso-aggregation of the latter, new regional technologies mainly emerge through 

novel recombinations of pre-existing ones (Balland, 2016). Indeed, within this theoretical 

framework, relatedness captures the cognitive proximity between acquired and pre-existing 

technologies and appears a crucial facilitator of the recombinantion of extant local ideas into new 

ones (Boschma et al., 2015; Rigby, 2015; Kogler et al., 2013). On this basis, a normative prediction 

has been derived, encouraging regions to develop smart specialization strategies (S3) by supporting 

related (technological) diversification (Boschma and Giannelle, 2014). 

Despite this ample stream of literature, we claim that an important aspect has so far been neglected 

in grounding the relatedness approach at stake in the recombinant innovation theory. While a due 
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focus has been placed on the role of cognitive proximity between technologies in the recombination, 

little if no attention has been paid to the range of knowledge domains that regions have available 

to recombine within specific technologies. The knowledge underpinning some technologies can be 

pretty “simple”, while that of other ones more “complex”, for example, in terms of multi-

disciplinarity and interconnectedness, and this crucially affects the way ideas can be combined and 

recombined with respect to them. This aspect has been recognised as very relevant in micro and 

sectoral innovation studies, particularly in those about “technological regimes” (Winter, 1984; 

Malerba and Orsenigo, 1996), and its neglect in regional ones about technological diversification 

appears an unfortunate gap.  

In filling this gap, we argue that the relatedness argument and results could be affected by the 

extent to which the knowledge that underpins regional technologies – i.e., their knowledge base 

(Malerba and Orsenigo, 1996) – appears marked by unique, rather than multiple, domains or, 

metaphorically, by “knowledge silos”. We argue that, with respect to technologies whose regional 

knowledge is (more) “siloed”, diversification could be harder to implement, given the factual gap (if 

not even absence) of knowledge-combination opportunities to exploit locally, on which 

technological diversification relies. On the same basis, we also argue that the disadvantages of 

targeting more siloed technologies in knowledge terms could be attenuated by their higher 

relatedness to existing ones. Indeed, the knowledge combinatorial gaps entailed by a more siloed 

technology for the sake of diversification, could be compensated by the benefits of pursuing a 

technology that draws on more similar capabilities to existing ones. 

To test these arguments, we propose to proxy the siloed nature of local technologies  by measuring 

the extent to which the relative inventive activities occur only in one knowledge domain. Alluding 

to the “codes” (in generic terms) attributed to patent applications (by the applicants and/or the 

examiners) with respect to existing patent classification systems (e.g., IPC or CPC), this can be 

captured by the incidence of “Single Patent-code Inventions” (SPIs) in regional technologies. We 

then plug this region-technology-specific SPI indicator in a standard econometric model of regional 

technological diversification based on relatedness – i.e., a regional technological branching model – 

and address the relationship between the two with respect to the EU28 NUTS2 regions over the 

period 1986-2017. 

To start with, our analysis shows that, with respect to the “global” knowledge space (Balland, 2016), 

the incidence of SPIs is far from negligible, regardless of the IPC aggregation level and of the 

considered geographical area, thus deserving investigation also and above all in the analysis of 
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regional technological branching. As we did expect, conditionally on an average level of relatedness, 

the incidence of local SPIs by technology shows a significant negative relationship with the regional 

capacity to specialize in it ex-novo: in other word, a higher SPIs’ incidence and a more siloed 

knowledge base of technologies, actually hampers the regional diversification in them. 

Furthermore, as we also expected, a higher average level of relatedness negatively moderates the 

impact that the incidence of SPI in a regional technology has on the region’s capacity to diversify in 

it. However, results appear conditional on, and differ with, the actual level of relatedness of new 

technological entries. When this is quite high, a siloed knowledge base even switches the sign of its 

relationship with technological diversification into a positive one.  

These results provide an important additional rationale for recommending regions to pursue smart 

specialization strategies in research and innovation (S3). Indeed, implementing this policy in 

stringent terms, by targeting highly related technologies, makes of this policy an effective remedy 

to reverse the difficulties in diversifying faced by regions with a more siloed knowledge base. 

Accordingly, the measurement of this last feature of the regional innovation system appears a 

crucial aspect to consider by regional policy makers involved in the implementation of S3. 

The rest of the paper is structure as follows. Section 2 illustrates the conceptual and empirical 

background of our idea of siloed regional knowledge base and of the SPI proxy that we propose. 

Section 3 illustrates the empirical application and Section 4 the relative results. Section 5 concludes. 

2. Background studies 

2.1 Theoretical background and research hypotheses 

The geography of innovation reveals an uneven regional distribution of new knowledge production 

and technological novelty. Regions present heterogeneous knowledge bases (Asheim, 2007), 

marked by different combinations of knowledge typologies (e.g. synthetic, analytical, and symbolic) 

and by networks of knowledge domains with diverse structures (Asheim and Coenen, 2005). 

Following the Schumpeterian account of innovation as ‘Neue Kombinationen’ of ideas (Becker et al., 

2012; Weitzman, 1998; Evenson and Kislev, 1976), this heterogeneity in regional knowledge bases 

has been taken to explain the emergence of different patterns of regional innovations as emerging 

from the re-combinations of their constitutive ideas. In the revival of this Schumpeterian account 

by the so-called “relatedness approach” (Balland, 2016), the regional knowledge base has been 

argued and shown to affect the regions’ capacity to diversify their technologies over time. In brief, 

following this approach, regions enter new technological fields that are cognitively proximate to 
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pre-existing ones, as they require similar capabilities (Boschma et al., 2015; Rigby, 2015; Kogler et 

al., 2013). 

In developing this argument, the extent to which the knowledge base of regions does actually 

provide opportunities of innovative re-combinations has been mainly interpreted in Jacobsian terms 

(1969) and accounted by its “variety”: more precisely, by the variants along which the variety 

concept has been lately disentangled, e.g. related and unrelated variety (Frenken et al., 2007). In 

brief, a variegated technological knowledge in the region has been claimed and found responsible 

of spillovers and cross-fertilisation of ideas, which can lead regions to innovate even in a radical 

manner (Castaldi et al., 2015; Mewes, 2019; Berkes and Gaetani, 2020). The relatedness approach 

to diversification in fact draws on the benefits of knowledge variety and, as a step forward, rather 

than opposing it to the Marshallian idea of specialization, it synthesizes the two in that of 

“diversified specialization” (Farhauer and Kroll, 2012). 

While the previous kind of variety of the knowledge base is for sure relevant, the extent to which 

recombinant innovations occur and lead regions to develop new technologies can be affected by a 

different feature of the regional knowledge base, which could be metaphorically denoted as its 

cognitively “siloed” nature. Rather than to the distribution of regional inventive efforts/outcomes 

across different knowledge domains and technologies, to which the idea of variety refers, that of 

siloed knowledge base that we propose to investigate, looks at the extent to which technologies 

draw on single knowledge domains, evoking the idea of technological trajectories that appear like 

“silos”. 

Looking at technological change according to a knowledge-based theory of production (Rosenberg, 

1976), the array of knowledge domains that underpin a focal technology, represents an important 

element for characterizing the cognitive environment in which the problem-posing and problem-

solving activities leading to innovations take place: in Nelson and Winter (1982)’s terminology, of 

the relevant “technological regime”. As evolutionary economics has shown since long (Dosi, 1982; 

Winter 1984; Malerba and Orsenigo 1996; Breschi et al., 2000), technological regimes differ among 

them along two connected levels of analysis: i) the conditions with which innovation processes take 

place in the regime;1 ii) the characteristics of the knowledge inputs and outputs of the same 

innovation processes, typically represented by the tacitness, observability, complexity, and systemic 

 
1 These conditions refer to technological opportunities (e.g., high rather than low probability (risk) to innovate (non-
innovate)), appropriability (e.g., ease vs. difficulty of protection against imitation), and of cumulativeness (e.g., high vs. 
low path-dependence and innovation persistence). 
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nature of knowledge (Winter, 1987). In extreme nuthsell, tacitness refers to the extent to which 

technological knowledge can be articulated into symbols and codes, like in patent documents, and 

observability to that it can be fully disclosed  and inspected, like with the acquisition, license and/or 

expiration of patents. As for complexity, low-complex technological regimes distinguish from high-

complex ones for the small, rather that high number of knowledge items and fields that mark their 

knowledge base (Breschi et al., 2000). Similarly, high-systemic and low-systemic technological 

regimes differ for knowledge items that are largely interconnected rather than independent in the 

development of the focal technology (ibid.). 

Focusing on these last two features, and contextualizing them in a regional framework, the 

incidence of “knowledge silos” in the regional knowledge base can be associated to the pervasive 

presence of technological regimes that are “simple” and marked by a low or no-complex / systemic 

nature. Such an incidence has important implications for the regional capacity of specializing in 

them ex-novo, that is, of diversifying their technological repertoire. These implications descend 

from the fact that, as we have noticed above, technological diversification mainly draws on the 

regions’ capacity to explore and envisage new combinations among different knowledge items of a 

certain technological domain, which in the case of a siloed knowledge for it are drastically reduced 

or even absent. Indeed, a siloed regional knowledge for a certain technology, being accompanied 

by a negligible or even nil extent of multi-disciplinarity, dampens the set of knowledge linkages that 

can be explored for the region to diversify in it. As we will argue in the following, a typical case of 

siloed knowledge is that of a technology in which regional inventive activities lead to patents that 

refer to a single “code”, among those in which technological knowledge is classified following 

available international schemes at patent offices (like IPC and CPC). As we will also see in the 

following, this is not an extreme event at all, especially in some technologies like medical and digital 

communication, in which the share of what we will call “Single Patent-code Inventions” (SPIs), is 

appreciable. In front of such a kind of patents, it could be claimed that scope of possible 

combinations could be stimulated by the use that inventions within a certain technological domain 

makes of the inventive knowledge obtained in other domains, as it is typically reflected by the 

relative citation patterns. Citations surely convey knowledge links, which could counteract the silo-

effect entailed by single patent-code inventive activities. However, because of their nature of 

knowledge spillovers, citations might represent less actual and workable knowledge links than those 

represented by the simultaneous presence of different knowledge items in the same invention (co-

occurrence) (Balland, 2016). Furthermore, for simply computational reasons, the extent to which 
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citations unfold and interconnect the knowledge base, decreases with the extent to which 

inventions are based on single knowledge domains. 

Based on the previous arguments, we expect that a high incidence of inventive activities in single 

knowledge domains renders the relative regional technological knowledge “thin” in terms of 

combination opportunities and makes technological diversification harder to occur. Using our idea 

of the siloed nature of the knowledge underlaying a certain technology, our first research hypothesis 

is thus the following: 

Hp1: The more siloed is the regional knowledge base of technologies, the lower is the regional 

capacity to diversify in them. 

A siloed kind of knowledge for regional technologies does also interfere with the role that 

relatedness has in influencing technological diversification. As we have recalled above, regions have 

been pervasively found to entry into new technologies that are cognitively related to their pre-

existing ones; targeting technologies marked by higher relatedness has accordingly become a policy 

prescription in the S3 framework. A higher level of relatedness facilitates technological 

diversification by enabling regions to control new technologies, which draw on capabilities similar 

to those underlying the existing ones in the knowledge base (Balland, 2016). This similarity in the 

required capabilities represents an important diversification enabler, which could make the lack of 

knowledge combinatorial opportunities of a siloed technology less hampering for it. In other words, 

a new technology with a certain degree of siloed knowledge is less difficult to master by regions in 

which it is closer to the existing knowledge base.  As Castellani et al. (2022) have found by 

investigating the (green) technology diversification role of inward FDIs in a region, the level of 

relatedness between new and existing technologies represents an important moderating, and even 

conditioning, factor of the effect exerted by a focal diversification enabler. In our case, the expected 

moderation effect is negative and lead us to put forward the following hypothesis:   

Hp2: The higher the relatedness of new technologies, the lower is the impact of their siloed 

knowledge base on the regional capacity to diversify. 

 

2.2 Empirical background 

The idea of a siloed regional knowledge (base), and its role in the conceptual framework of the 

relatedness approach, can be better grasped by looking at the way this approach has been 
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implemented in empirical research, that is, using patent data (Acs et al., 2012). Following this stream 

of literature, the technological codes through which patents are classified at patent offices can be 

taken to identify the so-called ‘knowledge space’: a network of technological fields, whose structure 

affect the dynamics of regional innovation and industries, thus inspiring regional policies for their 

‘smart’ development (Rigby, 2015; Balland et al., 2018). 

As the idea of knowledge combination has turned out pivotal in innovation geography, searching 

for combinations among patent codes has become an essential tool to map the knowledge space 

and, by locating regions within it, the structure of their knowledge base. More precisely, knowledge 

combinations have been mapped either by looking at the co-occurrence of the different codes with 

respect to which patents claim to have brought novelty, or by following the citations that patents 

make among their relative codes (usually the primary ones). In both kinds of search for technological 

relatedness, and particularly in that based on the frequency with which two technological codes 

appear on the same patent (see Balland et al., 2018), the number of patents that present more than 

one code reveals of course decisive. Indeed, those patents to which only one patent code is assigned 

do not make, by definition, combinations between components and/or principles, irrespectively 

from their being novel or not.  

As we will see in the following section, patents of this kind, which we consider denoting Single 

Patent-code Inventions (SPIs), can be retained to provide an interesting proxy of the siloed 

knowledge base of a certain regional technology addressed in the previous sub-section. In the light 

of that, they are an important typology of patents. However, in the studies on the identification and 

geographical distribution of technological novelty by this knowledge re-combination (e.g., 

Verhoeven et al., 2016; Mewes, 2019), these SPIs are usually ruled out and/or retained 

uninformative of the knowledge base of the regions where they locate2. 

The neglect of SPIs in the regional distribution of (radical) innovation is however unfortunate also 

from an empirical point of view, as their incidence is far from exiguous. Referring to the PATSTAT 

dataset (Spring 2022 version, consulted on 7/2/2023), and to the International Patent Classification 

(IPC), it emerges that, at its highest level of disaggregation (full IPC or “subgroups”, amounting to 

 
2 For example, in their recent study on technological novelty, Verhoeven et al. (2016, p. 711) maintain that: “When only 
1 IPC group code is assigned, our […] indicator of technological novelty is underdefined, as we fail to identify at the IPC 
group level the recombination of components/principles it is making. In our analyses, we treat these cases as missing 
values when we analyze the […] indicator. […] Alternatively, we could consider the patents with only 1 IPC group code 
as not making any substantial recombination that cross IPC groups and therefore also not having any novel 
recombination and thus scoring zero on [our indicator]”. 
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70,191 codes), around 20% of the world patent applications are SPIs. Such a share holds for all main 

patent offices (EPO, USPTO, JPO and WIPO) over the last decades and it even overcomes the share 

of 30% in entering the 2000s. 

The overall relevance of SPIs across all patent offices is confirmed, and obviously increases, when 

looking at a more aggregated level of their classification codes. Figure 1 reports the share of SPIs at 

the IPC43 or “subclasses” (647 in total) level for year 2017, that is the last one of our empirical 

analysis. In 2017 the SPI share is around the 50% across the board and, although this share for the 

USPTO in year 2017 is just above 40%, it is closer or even higher than 50% in other years of the time-

series (e.g., 50.3% in 2012 or 52.1% in 2008). 

 

Figure 1 – Share of SPIs on total patent applications, at the IPC4 level, by patent office (2017) 

 
Source: own elaboration on PATSTAT, Spring 2022 version 

 

Overall, the evidence about the relevance of SPIs does not change that much if we refer to the 

applications at a single patent office, like the European Patent Office (EPO), as we do hereafter and 

in our empirical application. The SPI phenomenon is however heterogeneous across different kinds 

of technologies, as Figure 2 shows using the aggregation of IPC subclasses into the 35 technological 

fields proposed by Schmoch (2008). In 2017, for all the considered 35 fields, the share of SPIs is at 

least 10%, with the only exception of field 22 (Micro-structure and nano-technology). The share is 

 
3 At this level of disaggregation, a focal patent is retained SPI even if it includes more IPC codes (full IPC, that is the 
most disaggregated ones as in Figure 1), but they all belong to the same IPC 4 digit “subclass”. 
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the highest and close to 50% for medical technology (13) and digital communication (4), while the 

lowest incidence of SPIs (lower than 20%) can be found, as expected, given their “complexity”, in 

fields as pharmaceuticals (16), organic fine chemistry (14), macromolecular chemistry, polymers 

(17), surface technology, coating (21), and materials, metallurgy (20). 

Figure 2 – Share of SPIs on total patent applications at EPO by IPC field: 2017 

 
Source: own elaboration on PATSTAT, Spring 2022 version 

 

The heterogenous picture revealed by Figure 2 suggests us to investigate the incidence of SPIs by 

carefully retaining their technological specificity: that is, at the technology level. Further suggestions 

emerge by looking at the geographical distribution of SPIs across European regions. A definitively 

non-negligible number of regions host the development of technologies whose regime is, not only 

“non-complex”, but as we said, “the simplest”. Quite interestingly, Figure 3 reveals that several EU 

regions with the highest number of SPIs are also peripheral regions, hinting at the location of the 

simplest technological regimes precisely in these lagging behind territories. However, the map also 

shows strong heterogeneity within each country – also the most advanced ones – and among 

leading/peripheral regions across countries. Unlike other innovation variables, which mostly map in 

the classical core-periphery gradient of European regions (see, for instance, Marsan & Maguire, 
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2011; Capello & Lenzi, 2013; De Noni et al., 2018), we detect an only partial overlapping between 

SPIs and lagging-behind regions and countries, which for sure deserves attention in future research. 

The distribution of SPIs across technologies and regions represents the starting point of our 

empirical analysis of technological diversification, to which we move in the next Section. 

 

Figure 3 – Number of SPIs by European NUTS2 regions (2014-2017) 

 
 

3. Empirical application 

We test our research hypotheses (see Section 2) using a brand-new dataset that we have built up 

with respect to 264 NUTS2 regions of the EU28 over the period 1986-2017.4 This dataset was 

obtained by inspecting regional patent data, extracted from raw patent applications to the EPO in 

the EPO PATSTAT database (Spring 2022 version), and by merging them with other regional data 

from the EUROSTAT and the European Regional Database maintained by Cambridge Econometrics. 

 
4 The upper boundary of this temporal window is due to data availability in connection with data truncation with respect 
to the most recent patents, while the lower boundary is consistent with that of previous studies about regional 
technological diversification for the EU (see, for example, Balland et al., 2018). As we refer to pre-Brexit period, our 
analysis considers the EU28. However, given the change in NUTS classification for some EU countries, minor adjustments 
have been needed: Greek regions EL41 and EL62 have been excluded; values for UKI1 region result from the average of 
UKI3 and UKI4 regions; values for UKI2 region result from the average of UKI5, UKI6 and UKI7 regions.  

Commentato [CC1]: Viene molto diversa da quella 
precedente perché in valore assoluto, mentre l'altra era in 
percentuale… non so se ha senso così, perché ovviamente 
vengono più scure le regioni che brevettano di più 
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Referring to the extant literature, patent data have been fractionally regionalised using the inventor 

address and technologically classified according to the International Patent Classification (IPC), at 

the IPC4 or “subclass” level,5 obtaining a set of 638 IPC subclass codes. 

3.1 Dependent variable 

Using the analytical framework of regional technological branching (Tanner, 2014), our focal 

dependent variable is represented by the “entry” of a new technology in the regional knowledge 

base. Consistently with this literature, such an entry measures the regional capacity of getting a new 

technological specialisation at time t: that is, a specialisation in a certain technology, c, which region 

r did not have at t – k. Measuring this technological specialisation through an index of Revealed 

Technological Advantages (𝑅𝑇𝐴!"#), amounting to a Balassa indicator of Revealed Comparative 

Advantages obtained with patent instead of export data, our dependent variable is a dummy 

indicator defined as follows: 

𝑁𝑒𝑤𝑅𝑇𝐴!"# = 1,			𝑖𝑓		𝑅𝑇𝐴!"# ≥ 1	𝑎𝑛𝑑	0 ≤ 𝑅𝑇𝐴!"#$% < 1           (1) 

𝑁𝑒𝑤𝑅𝑇𝐴!"# = 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

where 𝑅𝑇𝐴!"  is usually defined as 𝑄 𝑄!: according to the following definitions and positions: 

 

𝑄 =	 &!
&

 ; 𝑄! =	
&"!
&"

  

n: total number of EU-28 patents; 

𝑛": total number of EU patents having IPC4 code c;  

𝑛!: total number of patents in region r; 

𝑛!": number of patents in region r having IPC4 code c. 

 

As usual, the presence (absence) of a regional specialization in technology c is signalled by a share 

of regional patents in the same technology, which is higher (lower) than the regional share of total 

patents, that is, by '
'"
≥ 1 (0 ≤ '

'"
≤ 1). The entry of the same technology c in the knowledge base 

of region r is denoted by the shift from the absence to the acquisition of the same specialization 

from t – k to t: using k = 1 as a benchmark. To smooth the typical erratic trend of patent data over 

 
5 At this level of disaggregation, a focal patent is retained SPI even if it includes more IPC codes (full IPC, that is the 
most disaggregated ones as in Figure 1), but they all belong to the same IPC 4 digit “subclass”. 
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questo livello di analisi stiamo guardando solo i brevetti 
chiesti all'EPO. In questo sotto-insieme, le classi sono 638 
mentre nei dati sottostanti alla figura 1 (in cui c'erano anche 
USPTO, JPO e WIPO) si arrivava a 647; nulla di strano. 
 
 INOLTRE, E Più IMPORTANTE, POSSIAMO DIRE CHE LIVELLI 
PIù DISAGGREGATI DI IPC AVREBBERO CREATO QUALCHE 
PROBLEMA ECONOMETRICO? perché DIVERSAMENTE 
OCCORRE DARE UNA GIUSTIFICA, SE NO CI CHIEDONO UN 
CONTROLLO CON UN ALTRO LIVELLO 
ALESSANDRO: LA DISAGGREGAZIONE DEGLI IPC NON E’ MAI 
CAMBIATA DALL’INIZIO E CREDO/SPERO (MA QUESTO LO 
SAPETE MEGLIO VOI) CHE SEGUA LO STANDARD NELLA 
LETTERATURA! OVVIAMENTE SE CAMBIA LA GRANULARITA’ 
CAMBIERANNO ANCHE I RISULTATI MA QUESTO VALE PER 
TUTTI I PAPER CHE UTILIZZANO PATENTS…UNICO MODO DI 
ADDRESSARE QUESTO CONCERN E’ DIRE CHE SEGUIAMO LA 
LETTERATURA PRECEDENTE (CON LA SCUSA DI BENCHMARK 
RESULTS ETC..) 
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time, we follow previous literature (e.g., Montresor and Quatraro, 2019) and define our dependent 

variable and the regressors by subdividing the reference period into 8 four-year sub-periods, the 

first one being 1986-1989 and the last one 2014-2017. 

 

3.2 Focal regressors and controls 

The first focal regressor of our analysis is an indicator of regional SPIs by technology, c, which proxies 

the siloed nature of the relative regional knowledge. Consistently with the extant literature on the 

topic, we do not claim for causality in inspecting the possible drivers of regional technological 

diversification, including this one, and just inspect for correlations. Still, in trying to attenuate 

endogeneity issues in terms of reverse causality, this indicator and the other regressors are lagged 

with respect to the dependent variable and defined at t – 1.6 

The indicator that we propose, 𝑆𝑃𝐼!"#$(, is both technology and region specific, and measures the 

siloed nature of the regional knowledge of a certain technology in relative terms, with the share of 

mono-IPC patents within each focal IPC4 code. Netting out the scale of inventive activities, which 

would affect the simple count of mono-IPC patents within each IPC4 code, 𝑆𝑃𝐼!"#$( provides us with 

more reliable information about the extent to which a siloed kind of knowledge is characteristic of 

a certain technology c. Using the same notation as before, we define it as: 

											𝑆𝑃𝐼!"#$( = 𝑄!"#$( =	
&"!,$%&
'()(

&"!,$%&
   (2) 

In addition to the previous SPI indicator, another focal regressor of our analysis is represented by 

the relatedness of the new technology c in which the region specialises at t, to the technologies it 

has already specialised at t – 1. In particular, we follow previous studies (Boschma et al., 2015; Rigby, 

2015; Balland et al., 2018) and build up a Relatedness Density indicator for technology c in region r, 

𝑅𝐷!"#, by using the relatedness function of the EconGeo R package (Balland, 2017). 

In analytical terms, having defined the (cognitive) relatedness coefficients between the focal 

technology c and each other technology i, 𝜑"), in terms of co-occurrence, 𝑅𝐷!"  is defined as their 

(normalised) weighted sum, using as weights the binary indicators of region r ‘s Revealed 

Technological Advantages in technologies i, as from Eq.(1) (𝑅𝑇𝐴!)): 

 

 
6 Results, available from the authors upon request, do not change when a different lag is used. 
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𝑅𝐷!" =	
**	,!+,-"*∙/!*

**	,!	/!*
	 ∙ 100   (3) 

 

The set of explanatory variables of the regional capacity to enter new technologies is completed by 

controlling for: the total number of technological claims in the region (𝑇𝑒𝑐ℎ 𝑆𝑡𝑜𝑐𝑘𝑟t-1), as a proxy of 

regional technological size; the total number of technological claims for each IPC4 code (𝑇𝑒𝑐ℎ 𝑆𝑖𝑧𝑒ct-

1), as an indicator of its weight in the knowledge space; regional total employment (Employmentrt-

1) as a proxy of regional economic size (Balland et al., 2018). 

Table 1 reports the main descriptive statistics of the variables we have defined. 

Table 1 – Descriptive statistics 

Variable Mean s.d. Min Max 

New RTA 0.085 0.278 0 1 

Relatedness Density (RD) 25.960 7.224 0 100.00 

SPI 0.326 0.380 0 1 

No. of forward citations 1.08 6.52 0 601.5 

TechStock 1.410 1.948 0 12.637 

TechSize 1.252 2.389 0 27.206 

Employment 4.242 3.414 0.060 24.436 
Number of observations is 340,960. TechStock and TechSize are measured in no. of patents. 
Employment is measured in no. of employees. 

 

3.3 Regression models 

Given the dichotomic nature of our dependent variable, we account for its determinants by 

estimating a Linear Probability Model for the probability that region r develops a new RTA in a given 

technology c.7 In order to test our Hp1 (Section 2), we start by estimating a baseline model (Eq.(4)), 

in which we augment the technological branching framework. Accordingly, we consider the  

technological relatedness of the new technology, c, 𝑅𝐷!"#$(  as the main regressor, and we add to 

it our focal explanatory variable, 𝑆𝑃𝐼!"#$(, and our set of control variables, in vector 𝑋!"#$(: 

𝑁𝑒𝑤𝑅𝑇𝐴!"# = 𝛼 + 𝛽1𝑅𝐷!"#$( + 𝛽(𝑆𝑃𝐼!"#$( + 𝛽2𝑋!"#$( + 𝑌# + 𝑅! + 𝐶" + 𝜀!"#       (4) 

 

 
7 As a robustness check, we also estimate our model using a Logit estimator obtaining very similar results (see Table 4 
in Section 4.1).  
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In Eq.(4), 𝑌#, 𝑅!, and 𝐶"  are year-, region-, and technology-specific fixed effects that account for, 

respectively, common annual and technology shocks and regional time-invariant unobserved 

characteristics. 𝜀!#" 	is an idiosyncratic error term. 

In order to test our Hp2, we further augment the baseline model (Eq.(4)) by plugging  in it the 

interaction term between 	𝑅𝐷!"# and 𝑆𝑃𝐼!"#$(, as in the following model: 

𝑁𝑒𝑤𝑅𝑇𝐴!"# = 𝛼 + 𝛽1𝑅𝐷!"#$( + 𝛽(𝑆𝑃𝐼!"#$( + 𝛽2(𝑅𝐷!"#$( × 𝑆𝑃𝐼!"#$()+𝛽3𝑋!"#$( + 𝑌# + 𝑅! +

𝐶" + 𝜀!"#      (5) 

In all model specifications, we cluster standard errors at the regional level. 

Based on our discussion in the previous section, Hp1 is confirmed if, in Eq.(4) and Eq.(5), 𝛽(is 

significant an negative. Hp2 is confirmed if relatedness negatively moderates (i.e., attenuates) the 

relationship between SPI and NewRTA, that is, if 𝛽2 is significant and negative. As we will see in the 

following, in order to refine our analysis about the role of SPIs, we will investigate how its marginal 

effect from Eq.(5) varies by considering different values of 	𝑅𝐷!"#. 

4. Results 

Table 2 reports the results of our estimates for the baseline model (Column 1), using SPI as a focal 

regressor, to which we progressively add region (Column 2), year (Column 3) as well as technology-

group fixed effects (Column 4).  

Before moving to the results about our SPI regressor, let us notice that in all the specifications, 

including our preferred and more demanding one of Column 4, results confirm the technological 

branching framework we have adopted. The entry in a focal region of a new technology is facilitated 

by its relatedness to the technologies that pre-exist in the same region: RD is in fact positive and 

strongly significant. Confirming the basic insights of geography of innovation, technological 

diversification is actually of related nature, as new technologies are developed in a place-dependent 

way. Still consistently with expectations, the acquisition of a new revealed technological advantage 

appears more likely to occur in regions that can benefit from a larger endowment of technological 

knowledge in general terms, and by the technological size of the focal technology: both TechStock 

and TechSize are in fact significantly positive. As for the other non-technological control, total 

regional employment negatively correlates with technological diversification in Column 4. This is 

somehow unexpected and suggests that, while possibly less endowed with tangible and intangible 
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resources and capabilities, smaller regions might be also more prone and flexible in modifying their 

knowledge base for accommodating the entry of a new technology. 

Coming to our SPI indicator, as we did expect in formulating our Hp1, it shows a significant and 

negative correlation with NewRTA. A larger endowment of mono-IPC patents in the regional 

technologies does correlate with a reduced capacity to specialise in them, conditionally on their 

relatedness to pre-existing technologies. Consistently with our interpretative framework, an 

increase in the siloed nature of the regional knowledge base for a certain technology might in fact 

reduce the scope of recombining existing knowledge for the acquisition of a new revealed 

comparative advantage in it.  

Table 2 – New Revealed Technological Advantages (NewRTA): 
relatedness (RD) and Single Patent-code Inventions (SPI) 

  (1) (2) (3) (4) 

 New RTA New RTA New RTA New RTA 
RD 0.005*** 0.013*** 0.014*** 0.014*** 

 [0.000] [0.001] [0.001] [0.001] 
SPI -0.017*** -0.019*** -0.019*** -0.019*** 

 [0.001] [0.001] [0.001] [0.001] 
TechStock -0.003*** 0.009*** 0.010*** 0.010*** 

 [0.001] [0.002] [0.002] [0.002] 
TechSize 0.004*** 0.003*** 0.003*** 0.002*** 

 [0.000] [0.000] [0.000] [0.000] 
(log)Employment -0.004 -0.036*** -0.038** -0.039** 

 [0.002] [0.013] [0.017] [0.017] 
Constant -0.033*** -0.231*** -0.237*** -0.239*** 

 [0.006] [0.020] [0.023] [0.024] 
Observations 340,961 340,960 340,960 340,960 
R-squared 0.014 0.027 0.027 0.029 
Region FE NO YES YES YES 
Year FE NO NO YES YES 
Tech. class FE NO NO NO YES 
 Notes: Coefficients represent marginal effects. Standard errors, in parentheses, are clustered on 
regions. SPI is the fraction of Single Patent-code Inventions over total patents. Coefficients for 
employment, TechStock and TechSize are multiplied by 1,000. Significance level: *p<0.10, 
**p<0.05, ***p<0.01. 

 

A second important result concerns the augmented specification of the model that, in addressing 

our Hp2, includes the interaction term between technological relatedness (RD) and SPI. In apparent 

contradiction with our Hp1, the sign of SPI turns out to be significantly positive now, suggesting that 

a more siloed knowledge base for a technology could even make its entry in the regional knowledge 

base more possible. This switch in the result with respect to Table 2 is evidently due to the 
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consideration of the different levels of relatedness at which SPI exerts its effect on NewRTA. For an 

average level of relatedness (i.e., RD), our Hp1 is confirmed. However, when its specific values are 

considered, through the inclusion of the interaction between RD and SPI, the picture becomes more 

nuanced. To start with, by confirming our Hp2, the interaction at stake is significantly negative.8 As 

we have suggested in Section 2, targeting more related technologies in diversifying, and thus 

benefiting from similar capabilities to existing ones in doing that, makes the lack of knowledge 

combinatorial opportunities entailed by higher SPIs less hampering. In brief, an increasingly higher 

level of relatedness reduces the average impact that SPI has on regional technological 

diversification. 

Table 3 – New Revealed Technological Advantages (NewRTA): 
Relatedness (RD), Single Patent-code Inventions (SPI), and their interaction 

  (1) (2) (3) (4) 
VARIABLES New RTA New RTA New RTA New RTA 
RD 0.006*** 0.014*** 0.014*** 0.015*** 

 [0.000] [0.001] [0.001] [0.001] 
SPI 0.030*** 0.028*** 0.028*** 0.027*** 

 [0.005] [0.005] [0.005] [0.005] 
RD#SPI -0.002*** -0.002*** -0.002*** -0.002*** 

 [0.000] [0.000] [0.000] [0.000] 
TechStock -0.003** 0.009*** 0.010*** 0.010*** 

 [0.001] [0.002] [0.002] [0.002] 
TechSize 0.004*** 0.003*** 0.003*** 0.002*** 

 [0.000] [0.000] [0.000] [0.000] 
(log)Employment -0.004* -0.037*** -0.040** -0.041** 

 [0.002] [0.013] [0.017] [0.017] 
Constant -0.048*** -0.247*** -0.252*** -0.254*** 

 [0.005] [0.021] [0.023] [0.024] 
Observations 340,961 340,960 340,960 340,960 
R-squared 0.014 0.028 0.028 0.030 
Region FE NO YES YES YES 
Year FE NO NO YES YES 
Tech. class FE NO NO NO YES 
Diff.: 42.46 35.18 35.35 34.94 
p-value 0.0000 0.0000 0.0000 0.0000 
 Notes: Coefficients represent marginal effects. Standard errors, in parentheses, are clustered on 
regions. SPI is the fraction of Single Patent-code Inventions over total patents. Coefficients for 
employment, TechStock and TechSize are multiplied by 1,000. Significance level: *p<0.10, 
**p<0.05, ***p<0.01. 

 

 
8 The interacted coefficient statistically differs from the single estimated coefficient of SPI as confirmed by the Wald test reported in 
Table 3.  
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In the same respect, interesting results emerge by observing how the marginal effect of SPI varies 

for different level of relatedness, as Figure 4 shows with respect to different deciles of the RD 

distribution (with the first decile as reference category). Quite interestingly, a progressively higher 

level of relatedness would seem to make the marginal effect of SPI less negative, but this is not 

significant until very high levels of RD are retained. For the last two deciles of relatedness, a higher 

incidence of SPI in a regional technology makes its entry in the relative knowledge space more 

possible, thus accounting for the positive sign of SPI in Table 3. In other words, a siloed knowledge 

base does not seem to affect the regional diversification in technologies marked by very low or 

average values of relatedness. This might be so because, with such a (low) level of relatedness, the 

constraints posed by cognitive proximity in recombining knowledge for the sake of diversification, 

might be so low to neutralise the lack of combinatorial opportunities of siloed technologies.  

Conversely, very high levels of relatedness come to ease the entry of a new technology. This is 

interesting and still possibly consistent with the recombinant theory of innovation at the regional 

level. When regions target new technologies that draw on very similar capabilities to existing ones, 

and thus opt for a very narrow case of technological branching, a more siloed knowledge base serves 

to increase the degree of cognitive homogeneity between to-be-combined knowledge, thus 

reinforcing the diversification enabling role of relatedness. At (very) high level of relatedness, this 

even counterbalance the reduction in combinatorial opportunities that SPIs entail and make them 

facilitate the relative technological diversification. 

Figure 4 – New Revealed Technological Advantages (NewRTA): 
Single Patent-code Inventions (SPI) for different deciles of relatedness (RD) 

 

Notes: marginal effects with respect to the omitted category (first decile of RD). Confidence intervals at 95%. 
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4.1 Robustness checks 

The results we have obtained are robust with respect to different checks we have implemented. 

The first robustness check that we propose refers to the econometric estimator we have employed 

to estimate the relationship between SPI and NewRTA. Since our dependent variable is binary, we 

have run our model using a Logit estimator. The main results about RD and SPIs, presented in Table 

4, are qualitatively identical to those obtained using a Linear Probability Model, confirming our main 

finding about Hp1. However, the interaction between SPI and RD is not significant now, possibly 

because of the reduced spectrum of individual RD values for which SPI exerts its effect.  

 
  

Table 4 – New Revealed Technological Advantages (NewRTA): 

 Relatedness (RD), Single Patent-code Inventions (SPI) and their interaction 

 Logit Estimates 

  (1) (2) 
 New RTA New RTA 
RD 0.2160*** 0.2155*** 
 [0.003] [0.003] 
SPI1 -0.1451*** -0.1653*** 
 [0.005] [0.021] 
RD#SPI  0.0006 
  [0.001] 
TechStock 0.1750*** 0.1751*** 
 [0.013] [0.013] 
TechSize 0.0820*** 0.0826*** 
 [0.002] [0.002] 
(log)Employment -0.3861*** -0.3844*** 
 [0.131] [0.131] 
Constant -7.5462*** -7.5341*** 
 [0.262] [0.262] 
Observations 338,766 338,766 
   
Region FE YES YES 
Year FE YES YES 
Tech. class FE YES YES 
Diff. p-value  0.000 

Logit estimates. Standard errors, in parentheses, are clustered on 
NUTS-2 regions. Significance level: *p<0.10, **p<0.05, ***p<0.01. 

 

The second robustness check we run is more substantial and refers to the hypotheses, implicitly 

made so far, that SPIs are characterised by a homogenous knowledge content across them. This 

represents a simplifying assumption that does not reflect the (actual) highly heterogenous quality 

Commentato [CC4]: CI PUò STARE? COME SI PUO’ 
SPIEGARE ALESSANDRO: NON SO SE INTERPRETO BENE LA 
TUA SPIEGAZIONE, IL FATTO CHE NON E’ SIGNIFICATIVO (E 
POSITIVO) CON LOGIT CI CREA PROBLEMI MA IO QUI 
STRESSEREI PRINCIPALMENTE IL RISULTATO FORTE SU SPI, 
ANCHE CONSIDERANDO CHE L’EFFETTO INTERAGITO SI 
APPREZZA MEGLIO QUANDO SPECIFICATO IN MODO NON 
LINEARE (GRAFICO), CHE PASSA DA NEGATIVO A POSITIVO. 
FORSE LOGIT CATTURA IN MODO DIVERSO LA 
DISTRIBUZIONE DI SPI E RD IN MODO TALE CHE LA MEDIA 
GENERALE RISULTANTE SIA NON SINGIFICATIVO? HO 
QUESTA INTUIZIONE MA NON SAPREI SPIEGARLO 
TECNICAMENTE. FORSE POSSIAMO MOSTRARE IL GRAFICO 
INTERAGITO ANCHE CON LOGIT SPERANDO CHE IL PATTERN 
SIA UGUALE? 
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distribution of patent inventions (Hall et al., 2005; Lanjouw and Schankerman, 2004, among others). 

Despite the number of SPIs is historically lower than multi-code patents, if SPIs systematically 

embodied a superior knowledge content and a greater invention quality, the regional capacity of 

diversifying (Hp1) and that of taking stock of relatedness in entering new technologies (Hp2) may 

be differently affected by the presence of SPIs. To test the validity of our findings, we thus account 

for heterogenous SPI quality distribution using forward patent citations as a proxy for patent quality. 

The number of citations received by each patent in fact represents the most notable standard 

indicator to measure the success and quality of the innovative content of patents (Criscuolo and 

Verspagen, 2008; Hall et al., 2005; Squicciarini et al., 2013). Operationally, we have collected patent-

level data on forward citations received at five years after publication, included in the Patent Quality 

Indicators Database provided by the OECD (Squicciarini et al., 2013), and we have re-run our 

estimates by using citation-weighted SPIs. 

Table 5 shows the results of this further model specification. Consistently with our previous 

estimates, when all the FEs are retained (Column 1), SPI reveals a negative significant correlation 

with NewRTA for an average level of  RD (though only weakly significant). Drawing on the discussion 

we have made in Section 2 on this point, it seems that the cognitive linkages that SPIs establish in 

terms of citations, because of their inner quality, and the effect these linkages could have in the 

generation of knowledge recombination opportunities, are not sufficient to compensate the 

hampering role that SPIs have in regional technological diversification. However, still consistently 

with the baseline model, the interaction between citation-weighted SPI and RD is again significantly 

negative in Column (2) and, once more, by making RD varies from its average value, the sign of 

(weighted) SPI switches from negative to positive. 

Table 5 – New Revealed Technological Advantages (NewRTA): 

 Relatedness (RD), Single Patent-code Inventions (SPI) and their interaction 

weighted by forward citations 

  (1) (2) 
 New RTA New RTA 
RD 0.001* 0.002*** 
 [0.000] [0.001] 
SPI (weighted) -0.025*** 0.035*** 
 [0.004] [0.011] 
RD#SPI (weighted)  -0.002*** 
  [0.000] 
TechStock 0.000 0.001 
 [0.001] [0.001] 
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TechSize -0.001** -0.001** 
 [0.000] [0.000] 
(log)Employment 0.018 0.017 
 [0.015] [0.015] 
Constant 0.014 -0.024 
 [0.025] [0.027] 
   
Observations 340,960 340,960 
R-squared 0.011 0.012 
Region FE YES YES 
Year FE YES YES 
Tech. class FE YES YES 
Diff.:  10.4324 
p-value   0.0014 

Estimates are weighted by the number of citations received in 5 year time after 
publication. Coefficients represent marginal effects. Standard errors are clustered 
on regions. Coefficients for employment TechStock and TechSize are multiplied 
by 1000. Significance level: *p<0.10, **p<0.05, ***p<0.01. 

 

5. Conclusions 

Diversification is a crucial leverage for regions to face the constant pressure of renew their 

technological specialisations, which exogenous and endogenous shocks are posing to them. Its 

analysis has been conspicuous in the last decades, showing that regions normally diversify, and 

should diversify, their set of technologies in a related way, by taking stock of pre-existing knowledge 

and searching for new recombination of it. In the same stream of research, several factors have 

been however identified that intervene in the unfolding of technological branching and make it 

occur with several nuances (see Boschma, 2016, for a review). To the best of our knowledge, this 

kind of “augmented” analysis of the relatedness approach has so far neglected the role of the siloed 

nature of the knowledge base that underlies regional technologies, as it is revealed by the diffusion 

and incidence of SPIs in local technologies. 

In this paper we fill in this gap, starting from the empirical recognition that the diffusion of Single-

Patent-code-Inventions, as a proxy of siloed knowledge base technologies, is far from exiguous. We 

then argue that this aspect of the geography of innovation could affect the way in which 

technological diversification unfolds at the regional level and show that this is so in an empirical 

application to EU28 NUTS2 regions over the period 1986-2017. 

As we did expect from a theoretical point of view, the siloed knowledge of technologies appears to 

pose regions an important challenge. With respect to a reduced spectrum of multi-domain 

inventions per technology, the existing knowledge base of the region becomes less rich of 

knowledge-recombination opportunities and this reduces the scope of technological diversification. 
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However, as we also expected, this effect is less in place with respect to technologies that are 

cognitively closer to the extant regional ones. To be sure, the SPI effect is significant only for high 

levels of such a relatedness, for which it switches from negative into positive. As we said, this is 

interesting and still possibly consistent with the recombinant theory of innovation at the regional 

level, pointing to the fact that, conditionally on the level of relatedness, the effect of a siloed 

knowledge base on diversification is in fact twofold. Not only a more siloed knowledge base reduces 

the scope of knowledge recombinations leading to diversification in a focal technology, but it also 

makes the knowledge to be combined more homogeneous and, for very related technologies, this 

helps in diversifying.  

These results suggest that an additional aspect emerges in the implementation of Smart 

Specialisation Strategies (S3), which are based on and recommend to regions a related process of 

technological diversification. According to the main S3 rationale (Boschma and Giannelle, 2014), 

targeting new technologies that are cognitively closer to pre-existing ones enable regions to escape 

the risks and costs of entering unfamiliar technological domains, of which they have little or no 

capabilities. To this standard S3 rationale, our study adds a further new one. Sticking to relatedness 

in diversifying can also be a way to neutralise the drawbacks of pursuing technologies that have a 

siloed knowledge base and thus lack of knowledge combinatorial opportunities. Even more, it serves 

to turn the “simple” nature of these technologies into an advantage for the sake of diversification. 

This is an important argument, which regional policy makers will have to retain, especially in those 

local contexts that pervasively host technologies marked by a siloed knowledge base. Indeed, this 

is the most important research avenue that our findings stimulate. Future research should try to 

investigate which are the regions that are more prone to host SPIs in developing their technologies, 

starting from the standard distinction between core vs. peripheral regions. At a more 

methodological level, other proxies of the siloed knowledge base of local technologies than the 

incidence of SPIs should be investigated, possibly by considering the extent to which citations, in 

addition to inventions, are marked by single patent code patterns. As usual, the most delicate issue 

however remains that of the possible endogeneity of our focal regressor, which we have only 

superficially considered by lagging it with respect to the dependent variable and by using a rich set 

of fixed effects in our econometric model. Still, future research should look for a more exogenous 

treatment of SPIs, which could lead us to consider its correlation with technological branching as an 

actual causal relationship. 
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Appendix 

 

Table A1 – Correlation matrix 

 
New 
RTA RD SPI RD#SPI Tech. 

Stock 
Tech. 
Size 

Empl. 
(log) 

New RTA 1       

RD 0,11 1      

SPI -0,01 0,07 1     

RD#SPI 0,09 0,29 0,93 1    

Tech. Stock 0,02 0,39 0,04 0,14 1   

Tech. Size 0,01 -0,13 0,08 0,04 -0,07 1  

Empl. (log) 0,03 0,48 0,05 0,16 0,59 -0,07 1 
 


