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Graphical Abstract

Abstract

Computational predictions in cardiovascular medicine have largely relied on explicit models derived from physical and
hysiological principles. Recently, the application of artificial intelligence in cardiovascular medicine has grown substantially.
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owever, successful application of purely data-driven methods requires a sufficiently large and rich dataset. An alternative to
urely data-driven methods is to incorporate prior physics-based knowledge into the learning process to reduce the amount
nd quality of data necessary for a performant model. We analyzed the benefit of this alternative for prediction of pressure
nd flow in pathological coronary arteries. We trained fully-connected feed forward neural networks (NN) to predict pressure
osses in coronary arteries. The training and test data were obtained by solving the 3D incompressible Navier–Stokes (3D iNS)
quations. The coronary flow and various geometrical data were used as inputs to train a purely data-driven NN. We investigated
wo methods for incorporation of prior physics-based knowledge from a reduced-order model (ROM) into NNs that predicted
ressure losses across stenotic and healthy coronary segments. First, we trained NNs to predict the discrepancy between
he ROM and 3D iNS pressure loss. Second, we augmented the data by including the ROM pressure loss prediction as an
nput feature to a NN that predicted 3D iNS pressure. Both approaches for incorporation of prior knowledge from the ROM
ignificantly improved prediction of pressure losses across healthy and stenotic segments relative to the purely data-driven
pproach, especially for lower amounts of data. The incorporation of NN predictions of coronary segment pressure losses in
coronary network model resulted in Fractional Flow Reserve (FFR) predictions with error standard deviation of 0.021 with

espect to 3D iNS FFR. In comparison, the standard deviation of repeated FFR measurements is 0.018.
c 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

eywords: Computational FFR; Physics-informed neural networks; Reduced-order modeling

1. Introduction

Physical principles have long been applied to study physiology, and advancements in mathematical and computa-
ional models have led to continued growth in related research over the past few decades. This has culminated in the
pplication of physics-based computational models in the clinic, such as for diagnosis of obstructive coronary artery
isease (CAD) [1]. More recently, artificial intelligence and machine learning techniques have gained popularity, and
heir application may result in a paradigm shift in cardiovascular medicine [2]. Machine learning techniques have
hown great utility in cardiovascular imaging [3,4] and risk assessment [5,6]. Machine learning enables a data-driven
pproach that can infer outputs of interest directly from minimally processed data (with the limitations of biases
resent in the algorithm and chosen datasets). Data-driven approaches are, however, dependent on the quality and
epresentation of the data available for training. Importantly, machine learning algorithms perform poorly or fail
o generalize when trained on insufficient data. In addition, predictions from purely data-driven approaches may
iolate physical principles as well as regulatory requirements [7].

The limitations of data-driven approaches motivate the incorporation of prior knowledge into the learning
rocess to improve generalization and constrain the problem [7]. For example, Raissi et al. [8] employed automatic
ifferentiation to neural networks (NNs) to add an additional term to the loss function that penalized violation
f governing laws of physics. Other efforts have incorporated prior knowledge through addition of physics-based
omputer simulations to the input dataset [9–12]. These prior efforts demonstrate that combining physics-based
nowledge with data-driven machine learning approaches might offer the best of both worlds, particularly in cases
ith sparse data [11,13]. In this work we explore various approaches for prediction of pressure losses in coronary

rteries based on pure physics, pure machine learning, and combinations that include prior physics-based information
n the learning process.

Fractional Flow Reserve (FFR) is the gold standard for diagnosis of intermediate stenoses in patients with chronic
oronary artery disease [14]. FFR is measured during invasive coronary angiography (see the left part of Fig. 1)
y insertion of a catheter with a pressure sensor and is calculated as the ratio between the cardiac cycle averaged
ressure distal and proximal to the stenosis

FFR =
Pd

Pp
,

here Pp is normally measured at the ostium, i.e. where the coronary tree branches off the aorta. If FFR is
elow 0.8 the stenosis is considered hemodynamically significant, and it is generally recommended to intervene
y percutaneous coronary intervention. If FFR is above 0.8 optimal medical therapy alone is recommended.
espite the European Society of Cardiology’s recommendation to use FFR to guide revascularization in chronic
AD patients [14], FFR remains underused due to associated costs, its invasive nature, and the need for trained
nterventionalists [15].
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The underuse of invasive FFR in clinical practice has motivated research towards noninvasive prediction of
FR. Most early attempts for non-invasive FFR prediction relied on solving the incompressible 3D Navier–Stokes
quations (3D iNS) in segmented coronary arteries [16–18]. This approach requires minimal assumptions about
he physical behavior of blood flow. However, clinical applicability requires fast and accurate prediction, which
imits the applicability of full 3D models, the use of which is difficult to automate since they require additional
re/post-processing steps and have considerably higher computational cost with respect to simpler models.

Recent research to improve clinical applicability of noninvasive FFR prediction has focused on developing
impler and faster models based on; (1) reduced-order physics such as 1D blood flow or lumped parameter
odels [19–22], and (2) purely data-driven approaches [23–27].
In this work, we propose a hybrid approach to integrate reduced-order physics-based models with data-driven

odels for prediction of pressure losses in the context of computational FFR prediction. First, segmented coronary
rteries are split into stenotic and healthy segments by applying a Gaussian filtering procedure. Next, NNs are
rained to reproduce the pressure losses predicted by 3D iNS across the segments. We consider a purely data-driven
pproach which only include the flow and various geometrical data as inputs. Further, we consider two approaches
f informing NNs with prior physics-based knowledge: (1) training NNs to predict the discrepancy between 3DiNS
ressure loss and pressure loss predicted by idealized reduced-order models (ROM) and (2) including the ROM
ressure loss as a feature. Subsequently, we incorporate trained NNs into a FFR prediction-pipeline.

We compare segment pressure losses and FFR predicted by the purely data-driven NN model and the physics-
nformed NN models with those obtained with the 3D iNS model. We repeat these comparisons for NNs trained
n three different dataset sizes to investigate if informing the NNs with physics-based knowledge reduces the
equired dataset size to achieve a given accuracy. Finally, we compare all considered approaches for FFR prediction,
ith invasive FFR measurements. To the best of our knowledge such a comparison between a purely data-driven

pproach, a purely physics-based approach and physics informed data-driven approaches for prediction of pressure
oss and FFR has not been done. Fig. 1 illustrates how FFR is measured in the clinic as well as providing a graphical
verview of the different modeling approaches for noninvasive FFR prediction compared in the study.

. Methods

.1. Data collection and processing

We collected data from 64 patients with stable coronary artery disease and a clinical indication for invasive
nvestigation with FFR due to significant coronary artery disease diagnosed with coronary CT angiography (CCTA).
he patients were included in an ongoing clinical trial at St. Olavs hospital, Trondheim, Norway [28]. Furthermore,
6 patients were recruited retrospectively. Positive FFR prevalence (FFR ≤ 0.8) was 40 % and 22% in the
rospectively and retrospectively recruited populations, respectively. We present here only a brief description of
he data collection and study procedures, as a more detailed description of recruitment criteria, exclusion criteria,
nd procedure protocols has been reported previously [29].

ecruitment. All patients included in this study underwent CCTA, which found at least one clinically significant
tenosis, and were further referred to Invasive Coronary Angiography and FFR measurement.

essel segmentation and computational domain meshing. For each patient both the left and the right coronary trees
ere segmented. All patients were segmented with ITK-SNAP [30], while for 28 patients additional independent

egmentations were performed with Mimics (Materialise’s Interactive Medical Image Control System; Materialise,
euven, Belgium). The coronary arteries were segmented until their presence was difficult to distinguish from
ackground tissue, corresponding to a radius of ∼ 1 mm.

Surface mesh processing, addition of flow extensions and 3D meshing was performed using the open-source
ibrary Vascular Modeling ToolKit (VMTK) [31,32]. The meshing refinement level was determined by a radius-
daptive meshing algorithm parameter called edge-length factor lf, which was set to lf = 0.21 for all simulations.
hus the total number of elements varied per case, ranging from ∼1 to ∼5 million. A mesh independence
tudy showed that such discretization provided mesh independent FFR predictions for a set of 4 patient-specific
eometries. The 3D volume meshes formed the basis for both the reference 3D iNS model, the ROM, the purely
ata-driven NN model and physics-informed NN models.
3
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Fig. 1. Illustration of FFR measurement obtained during invasive coronary angiography (ICA) and overview of the non-invasive approaches
for prediction of FFR used in this study. For the non-invasive methods, the coronary geometry was segmented from CT images (top).
Simulations based on the 3D incompressible Navier–Stokes equation were run to yield pressure and flow in the 3D domain, from which
non-invasive FFR3D was calculated (top right). Processing of the 3D domain was performed to split the domain into different segments,
which formed the basis for the simplified models considered in this work (bottom right). The pressure loss across the different segments
was predicted by (1) reduced-order physics and/or (2) by neural networks. Individual pressure losses along the different segments were
incorporated into a coronary network model to yield pressure distribution in the coronary domain, from which non-invasive FFRsimpl was
alculated.

The 3D volume mesh was used without additional processing for the reference 3D iNS model, however, for the
emaining approaches the volume mesh was processed further. Centerlines were extracted from the 3D domain [32],
nd cross-sectional areas were calculated at an average spacing of 0.125 mm and used to calculate the radius, r , of
n equivalent axi-symmetric cross-section. The centerlines were split into individual arteries (separated by junctions)
sing VMTK [22,32], and further split into stenotic and healthy segments. Healthy reconstructions of each artery’s
adius were estimated based on a Gaussian kernel filtering procedure [33]. Stenotic segments were automatically
etected based on the deviation between the actual and reconstructed radii. The length of the stenotic segments was
4
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Fig. 2. Left: example patient, depicting the left and right coronary trees, which is split into arteries (separated by bifurcations in opaque),
in addition to detected stenotic (red) and healthy segments (blue). A single FFR measurement was performed for this patient, indicated by
the arrow. Middle: flowchart indicating the steps performed to collect data used for training NNs. Right: Overview of the origin of the test
data in addition to the three training set sizes considered. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

automatically calculated based on a threshold for the similarity of the actual and reconstructed radii, in addition
to a threshold based on the spatial variation of the radius. The left part of Fig. 2 shows an example patient where
junctions are shown as semi-transparent regions, stenoses are depicted as red areas, while blue portions correspond
to healthy segments. See [22,29] for further details related to the classification of segments as healthy or stenotic.

2.2. Non-invasive FFR prediction-pipeline

All approaches for non-invasive FFR prediction (3D iNS approach, ROM approach, data-driven NN approach
and physics informed NN approaches) considered in this study shared a common data flow from clinical data to
predicted FFR which was introduced by Müller et al. [29]. These predictions were made in two stages: first a
baseline state of resting coronary hemodynamics was predicted from non-invasive clinical measurements. Second,
the hyperemic state was predicted based on the distribution of pressure and flow in the baseline state. These two
stages are necessary to model the drug induced dilation of peripheral coronary arteries that is required to invasively
measure FFR.

The FFR prediction-pipeline may be summarized as follows:

1. Prediction of a baseline coronary state with prescribed inlet pressure and prescribed outlet flows.
2. Computation of resistances:

Rbln
out,l =

Pbln
out,l − Pv

Qbln
out,l

, with l = 1, . . . , Nout , (1)

where Pbln
out,l and Qbln

out,l are the baseline pressure and flow at the lth of a total of Nout outlets. These values
were extracted from the simulation results from the previous step. Pv is a reference venous pressure, which
was set to Pv = 5 mmHg throughout this work.

3. prediction of a hyperemic state with prescribed inlet pressure and prescribed resistances at outlets. Such
resistances were computed as

Rhyp
out,l =

Rbln
out,l

, with l = 1, . . . , Nout , (2)

TCRI

5
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where Total Coronary Resistance index (TCRI) is the factor by which peripheral coronary resistance drops
from its value at baseline condition to its value in hyperemia. In this work we have used TCRI = 4 [34].

In both the baseline and hyperemic states, the inlet pressure was based on non-invasive cuff measurements. For
urther details on the pipeline and estimation of outlet flows, see [29]. For a given coronary tree, several sets of
utlet flows were considered, resulting in a database of simulation results, as described in Section 2.3.1. Prediction
f the hyperemic pressure (point 3. above) was used to estimate FFR non-invasively.

.3. Reference 3DiNS approach

The steady state 3D iNS simulations treated segmented coronary arteries as rigid domains. Pressure was
rescribed at the inlet boundary-condition and either flows (via prescribed parabolic velocity profiles) or resistance
odels were used at the outlet boundaries. A no-slip condition was assumed between the interface between the vessel
alls and the blood. Laminar flow and an incompressible Newtonian fluid were assumed and the simulations were
erformed with FEniCS using CBCFLOW [35,36]. See [29] for further details related to the 3D iNS framework.

.3.1. 3DiNS simulation database
We sought to develop a simplified approach for prediction of FFR with the aim to match the predicted 3D iNS

FD pressure losses as accurately as possible by means of simplified and computationally cheaper models. The
N models were thus trained to predict the pressure drop that the 3D iNS model predicted for a given segment and

nflow.
For each coronary tree considered in this study, 3D iNS simulations with a number of different flow conditions

ere performed. The different flow conditions were obtained by applying different ways to prescribe outlet coronary
ows in the FFR-pipeline described in Section 2.2. For each patient, total coronary flow was estimated as a fraction
f cardiac output, which in turn was derived from patient-specific ultrasound measurements. Then, different flow
istribution methods – distal Murray (DM), proximal Murray (PM) and transluminal attenuation gradient (TAG) –
ere used to distribute flow to each outlet, as described in [29]. In addition, a version of the vessel length flow
istribution method proposed in [37] was used. This resulted in a dataset containing several hyperemic and baseline
imulations of pressure and flow for each coronary tree, each corresponding to a flow distribution method. The
umber of available simulations per coronary tree was not the same. The most extensive number (10), of simulations
ere available for coronary trees with FFR measurements in the prospectively recruited patients. This database of

imulations was available from a previous study [29]. In addition the database was augmented with simulations
erformed on newly available volume meshes from independent segmentations of a subset of coronary trees,
oronary trees without FFR measurements, and coronary trees in retrospectively recruited patients (see Section 2.5.2
nd Fig. 2). The number of simulations per coronary tree was lower for these cases (average number: 6).

For NN training and evaluation, a dataset was formed where each row corresponds to a particular healthy or
tenotic segment of a particular coronary tree subjected to a specific flow and pressure state, as illustrated in
ig. 3. The coronary flow and various geometric measures formed the set of input features as described later in
ection 2.5.1. The pressure drop across the segment was used as the training output.

.4. Reduced-order model approach

In the ROM, a steady state 1D-axisymmetric model was used to predict pressure losses across healthy segments
∆Ph):

∆Ph = Q
∫ l

0

2 (ζ + 2) πµ

A (x)2 dx +
ρ

2

(
1

A2
out

−
1

A2
in

)
Q2 , (3)

here µ and ρ are the viscosity and density of blood respectively, and ζ is a velocity profile parameter set to 4.31
ased on results from a comparison of 1D and 3D theory in healthy coronary arteries [22]. Furthermore, l is the
egment’s length, Q is the flow across the segment, A (x) is the spatially varying cross-section and Ain and Aout
re the cross-sectional areas at the inlet and outlet of the segment, respectively.

6
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Fig. 3. Illustration of the extraction of relevant features for a specific stenotic segment (left), pressure drop (∆P) for different flows (Q)
cross the segment (top right), and schematic of how the data for this specific segment is included as row-entries in a database containing
any such segments (bottom right). The values were extracted from the 3D domain and 3D iNS solutions. The centerline of the artery

s visible (blue/red line). The red part corresponds to the stenotic segment, which is also highlighted by the black line. Relevant features
nclude the flow into the domain (Q), proximal radius (rp), minimum radius (rs ), distal radius (rd ) and length (l). Radius values were based

on extracting data from cross-sections as indicated, which were also used to extract minimum (dmin) and maximum (dmax) diameter values
or each cross-section. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
rticle.)

The assumptions related to 1D theory of blood flow do not hold in stenotic segments. A modified version of
he 1D model which includes an additional term related to flow separation, was applied to predict pressure loss at
tenotic segments (∆Ps):

∆Ps = Q
∫ l

0

8 π µ

A2 dx +
Ktρ

2 A2
0

(
A0

As
− 1

)2

Q2, (4)

where A0 and As refer to the reference (average of inlet and outlet) and minimal cross-sectional areas of the stenotic
segment respectively. Further, Kt = 1.52 is an empirical coefficient [38]. Note that the expression for the viscous

art in Eq. (4) is different from that in [29] and originally proposed in [38]. In contrast to the original formulation,
hich includes experimentally motivated viscous and flow separation terms, the viscous part in the current form

epresented by Eq. (4), is physically motivated (Poiseuille flow), and is more in line with 3D theory in coronary
rteries according to a recent study [39]. The integral terms in Eqs. (3) and (4) were solved numerically using the
rapezoidal rule, with the integrands being evaluated at points with average spacing of 0.125 mm (corresponding to
he centerline-points). Finally, conservation of total pressure was imposed as a coupling condition between connected
rteries.

.5. Purely data-driven NN and physics-informed NN models

Neural Networks are extremely powerful as they can in principle learn any relationship between arbitrary input
nd output data (assuming all relevant features are included). However, the amount of data required to adequately
rain a NN may be prohibitive. Further, complex NNs may generalize poorly when the training data only partially
epresents the range of possible inputs and outputs. We sought to investigate if incorporation of information from
hysically motivated models may improve the performance and training of NNs.
7
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First, we trained NNs to predict ∆P3D directly without incorporation of physics-based, reduced-order model
information. Next, we trained NNs to predict the discrepancy between the pressure losses predicted by the
reduced-order model and 3D iNS:

ϵ∆P = ∆P3D − ∆P0D , (5)

where ∆P0D refers to the reduced-order model’s prediction of pressure loss, and is introduced as a common term
to refer to either ∆Ph or ∆Ps depending on whether the predictions were made for pressure loss across healthy or
stenotic segments respectively. Resulting NNs for prediction of pressure loss can thus be formulated as:

∆PNN,∆P (X) = f∆P (X) , (6a)

∆PNN,ϵ∆P (X) = ∆P0D + fϵ∆P (X) , (6b)

where f represents the functional form of the neural networks and X is the vector of input features (to be
defined). Additionally, we applied an alternative method to include physics-based knowledge by augmenting the
input features, X , with the reduced-order model’s prediction of pressure loss. We thus generated two additional
approaches for predicting pressure losses across segments:

∆PNN,∆P
(
X0D)

= f∆P
(
X0D)

, (7a)

∆PNN,ϵ∆P

(
X0D)

= ∆P0D + fϵ∆P

(
X0D)

, (7b)

where the superscript 0D in X0D indicates that ∆P0D (i.e. ∆Ph or ∆Ps) was included in the feature set.

2.5.1. Input features
The neural networks were trained using the following sets of input features:

X1 =
[
rp, rd , rs, l, Q

]
, (8a)

X2 =
[
rp, rd , rs, l, Q, PC Ar,1, PC Aec,1, rmin,min

]
, (8b)

X3 =
[
rp, rd , rs, l, Q, PC Ar,1, PC Aec,1, rmin,min,∆Psep

]
, (8c)

X0D
1 =

[
rp, rd , rs, l, Q,∆P0D

]
, (8d)

X0D
2 =

[
rp, rd , rs, l, Q, PC Ar,1, PC Aec,1, rmin,min,∆P0D

]
, (8e)

X0D
3 =

[
rp, rd , rs, l, Q, PC Ar,1, PC Aec,1, rmin,min,∆Psep,∆P0D

]
, (8f)

where rp, rd , rs are the proximal, distal and minimum segment radius, respectively, and l is the length of the segment.
Moreover, VMTK was used to extract the cross-sectional area (A), minimum diameter (dmin), and maximum
diameter (dmax) of each cross-section. These were further used to calculate the average (r =

√
A/π ), minimum

(rmin = dmin/2) and maximum (rmax = dmax/2) radius values corresponding to each centerline point. In relation to
this, rmin,min represents the minimum observed minimum radius. For each segment, the radius data was re-sampled
with equidistant spacing using 100 points for which the eccentricity (rmin/rmax) was also computed. Based on re-
sampled data, a principal component analysis [40] was performed on both the eccentricity and equivalent radius to
reduce the input data by using only the largest component for each variable (i.e. PC Ar,1, PC Aec,1). Fig. 3 illustrates
the extraction of geometrical features. See Appendix A.4 for a more detailed description of the principal component
analysis. Finally, in an effort to incorporate dynamic and flow separation changes/losses on upstream pressure, ∆Psep

was calculated as the sum of the Bernoulli term in the healthy segments ( ρ

2

{
1

A2
out

−
1

A2
in

}
Q2) and the separation

erm in the stenotic segments ( Kt ρ

2 A2
0

{
A0
As

− 1
}2

Q2)1 over a region 1 cm upstream of the beginning of the segment.
We note that feature-set X3 was not evaluated for the purely data-driven NN approach, since ∆Psep is physically
motivated.

1 We note that the value for Kt was set to 2.2 in this term (while Kt was set to 1.52 in the evaluation of ∆Ps as noted earlier). We
experimented with values 1.52 and 2.2, however, final hyper-parameter searches were run with Kt = 2.2 for this input-feature and (to not

ave to run lengthy hyper-parameter searches again) were thus used in the presented results.
8
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.5.2. Training, testing and validation sets
We split the data into a training set and a test set. Importantly, the test set was not used during the training

rocess. The test set was composed of data from coronary trees with FFR measurement from the last 29 prospectively
ecruited patients. For each patient, data from either the left, right or both coronary trees were included depending on
he location of invasive FFR-measurement(s). e.g. if invasive FFR was only measured in the left coronary tree, only
ata (from healthy/stenotic segments) in the left tree was included. The presented results are based on evaluation of
odels on the test set unless stated otherwise. While the same test set was used throughout this work we considered

hree different training set sizes in order to assess whether the dependence on dataset size differed between purely
ata-driven NN and physics-informed NN models. The three training sets are illustrated in Fig. 2 and described
elow:

In Training set 1, only data from 3D iNS simulations from one set of segmentations from the first 35 prospec-
ively recruited patients were included. Moreover, only data from coronary trees which had FFR measurement was
ncluded.

In Training set 2, additional data from the 28 first prospectively recruited patients who had independent
egmentations (Mimics) were included in the training set. Previous studies have showed that the uncertainty in
oronary geometry is one of the main sources of errors in predicted FFR [22,29]. We compared FFR predicted by
D iNS for the distinct segmentations and found a similar variation as reported in prior studies of the impact of
eometric uncertainty on FFR prediction. As such these segmentations provide a meaningful level of independent
raining data as the variations in geometry are sufficient to change the resulting FFR; however, the additional
nformation is likely less than would be added from a completely independent case from a new patient.

In Training set 3, additional data (to training set 2) from the retrospectively recruited patients was added.
Furthermore, flow and pressure data from coronary trees without FFR measurements from the 64 prospectively
recruited patients was also included.

2.5.3. Hyperparameters and learning
We trained fully connected feed forward neural networks to predict pressure ( f∆P (X)) or pressure discrepancy

fϵ∆P (X)) functions. Neural network training and evaluation was performed using the high-level neural network
PI Keras [41] to interact with TensorFlow machine learning implementations [42]. The TensorFlow optimizer
dam [43] was used to minimize the mean absolute error (MAE) of the difference between pressure or pressure
iscrepancy function:

MAE∆P =
1
n

n∑
j=1

⏐⏐∆P3D j − f∆P
(
X j

)⏐⏐ (9a)

MAEϵ∆P =
1
n

n∑
j=1

⏐⏐ϵ∆P j − fϵ∆P

(
X j

)⏐⏐ (9b)

Learning was performed using mini-batches and the maximum number of epochs was set to 20 000. In an effort
o avoid over-fitting, we split the training set into a validation set and a learning set [44]. The learning set was used
y an optimizer [43] to fit the NN’s parameters, and after each epoch the performance of the NN was evaluated
n the validation set. If the loss-function value was smaller relative to all previous epochs, the NN was saved as
he “best” NN. Moreover, if the validation loss did not improve for the last 5000 epochs, the optimization was
erminated (even if the maximum number of epochs, 20 000, was not reached).

For all approaches and training set sizes considered in this work, the validation set consisted of 25% of the
egments in the training data, and the split of the training data into a learning and validation set was performed
y random sub-sampling. The random sub-sampling was performed 10 times (i.e. for each approach the training
rocedure was repeated 10 times), in order to evaluate the sensitivity to the learning/validation split.

We performed hyper-parameter searches for the different approaches considered in this study to determine a set
f parameters used to train for pressure loss/discrepancy across stenotic and healthy segments. This was used to
efine the number of hidden layers, number of neuron in each layer, the activation function in the hidden layers, in
ddition to the learning rate, l regularization term and batch size. Such parameters are listed in Table 1.
1

9
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Table 1
Hyperparameters for neural networks for prediction of pressure and pressure discrepancy across
stenotic and healthy segments. Number of hidden layers (nHl), number of neurons per layer (Nn),
activation function (act. func.), l1 regularization term (reg. term) and mini batch size.

Segment type Act. func. nHl Nn L. rate Reg. term Batch size

Stenotic ReLu 2 50 0.018 0.0004 291
Healthy ReLu 2 54 0.016 0.0004 315

2.6. Evaluation of predictive performance

The performance of each simplified approach for prediction of pressure losses across segments was assessed by
number of statistics based on the difference δi = ∆P3D − ∆Psimpl. Here, i indexes the segments in the dataset

nd ∆Psimpl refers to predictions based on the ROM, the purely data-driven NN or informed NNs respectively. We
onsidered the bias, standard deviation (std. error), mean absolute error, mean squared error (MSE), and R2 score
f ∆Psimpl vs. ∆P3D. In addition we wanted to test the performance when excluding “outliers” in the dataset and
hus computed the mean absolute error when only considering 90% of the test data (excluding the 10% highest
ressure losses). For all NN approaches and for all dataset sizes and input feature sets considered, 10 different NNs
ere trained (corresponding to the 10 random learning/validation splits). Error metrics were computed for all the
0 NNs and the values reported here represent the mean and standard deviation of such error metrics.

We integrated the prediction of pressure losses across segments from the simplified approaches into a coronary
etwork model (see Fig. 1). We then applied the FFR pipeline described in Section 2.2 to predict FFRsimpl
nd corresponding 3D iNS FFR predictions (FFR3D) for the 29 patients in the test set. In these patients 50
nvasive FFR measurements were performed, and the locations of these measurements determined the point of
omparison between FFRsimpl and FFR3D. In order to assess the performance in a range of flow/pressure states,
hree different flow distribution methods were considered, hence a total of 150 FFR predictions formed the basis
or this comparison.

We note that the training of the individual NN models for prediction of pressure losses across segments was
erformed by using the 3D iNS flow as an input feature (in addition to any other features). However when the
N models were incorporated into the coronary network model, pressure and flow distribution in the coronary tree

esults from the non-linear interaction of pressure losses across segments, junctions and boundary-conditions. As
uch the flow, in addition to other dependent input features (∆Ps , ∆Ph and ∆Psep) were based on the distribution of
ow obtained by solution of the non-linear problem. The nonlinear problem was solved in an iterative manner, and

he above mentioned input features were recalculated for each iteration. For more details regarding the numerical
reatment related to the coronary network model the reader is referred to [22,29].

We evaluated the performance of FFRsimpl vs. FFR3D based on the bias, standard deviation, and mean absolute
rror based on the quantity FFR3D − FFRsimpl. Furthermore, accuracy, sensitivity and specificity were calculated
ased on dichotomized data (FFR3D ≤ 0.8). For the NN approaches, error metrics resulting from the 10 trained
Ns (corresponding to the 10 random training splits) were computed and the values reported here represent the
ean and standard deviation of such error metrics.
Following the comparison with 3D iNS FFR predictions, we also evaluated the performance of FFRsimpl and

FFR3D for predicting the 50 invasive FFR measurements. In this comparison a single flow distribution method was
considered, namely the best performing method according to the study by Müller et al. [29]. Error metrics were
calculated in an equivalent manner as described above, however with invasive FFR used as reference.

3. Results

3.1. Training data

Tables 2 and 3 show an overview of the number of stenotic and healthy coronary artery segments in addition to
the total number of pressure and flow pairs in the test set and in the three different training dataset sizes considered
in this study. In addition average, standard deviation and the 10th, 25th, 50th, 75th and 90th percentiles for proximal
radius, minimum radius, distal radius, length, flow and pressure are given.
10
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Fig. 4. Results for machine learning approaches for prediction of pressure losses across stenotic segments. The values presented by each
ine are the average of the metric across the 10 random training splits, while the vertical lines represent the standard deviation of the metric
cross the training splits. The bias, standard deviation, mean squared error, mean absolute error and mean average error considering 90% of
he data, were calculated based on the quantity ∆P3D −∆Psimpl, where ∆Psimpl represent predictions based on the ROM or NN approaches.
imilarly R2 was calculated based on ∆Psimpl vs. P3D. See Table 5 in the Appendix for corresponding numerical values. (For interpretation
f the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. Results for machine learning approaches for predicting pressure losses across healthy segments. The values presented by each line
are the average of the metric across the 10 random training splits, while the vertical lines represent the standard deviation of the metric
across the training splits. The bias, standard deviation, mean squared error, mean absolute error and mean average error considering 90% of
the data, were calculated based on the quantity ∆P3D −∆Psimpl, where ∆Psimpl represent predictions based on the ROM or NN approaches.

imilarly R2 was calculated based on ∆Psimpl vs. P3D. See Table 6 in the Appendix for corresponding numerical values. (For interpretation
f the references to color in this figure legend, the reader is referred to the web version of this article.)
12
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verview of data for stenotic segments for the test set and for training set sizes 1, 2 and 3.

Training set 1

Number of segments: 529 Number of P–Q pairs: 5290

Avg Std 10% 25% 50% 75% 90%

rp [cm] 0.13 0.05 0.08 0.09 0.12 0.15 0.19
rs [cm] 0.10 0.04 0.05 0.07 0.09 0.12 0.16
rd [cm] 0.12 0.05 0.07 0.09 0.12 0.15 0.19
l [cm] 0.43 0.24 0.18 0.28 0.38 0.53 0.74
Q [ml/s] 1.21 1.32 0.14 0.31 0.77 1.53 2.95
∆P3D [mmHg] 1.43 4.35 0.03 0.10 0.33 1.07 3.21

Training set 2

Number of segments: 936 Number of P–Q pairs: 8546

Avg Std 10% 25% 50% 75% 90%

rp [cm] 0.12 0.04 0.07 0.09 0.11 0.15 0.18
rs [cm] 0.09 0.04 0.05 0.07 0.09 0.11 0.15
rd [cm] 0.12 0.04 0.07 0.09 0.11 0.14 0.18
l [cm] 0.43 0.23 0.19 0.29 0.39 0.53 0.73
Q [ml/s] 1.19 1.28 0.14 0.31 0.77 1.54 2.89
∆P3D [mmHg] 1.53 4.00 0.03 0.12 0.42 1.36 3.64

Training set 3

Number of segments: 1765 Number of P–Q pairs: 12 971

Avg Std 10% 25% 50% 75% 90%

rp [cm] 0.12 0.04 0.07 0.09 0.11 0.15 0.18
rs [cm] 0.09 0.04 0.05 0.07 0.09 0.11 0.15
rd [cm] 0.12 0.05 0.07 0.08 0.11 0.14 0.18
l [cm] 0.42 0.23 0.19 0.28 0.38 0.53 0.71
Q [ml/s] 1.09 1.23 0.11 0.28 0.68 1.42 2.67
∆P3D [mmHg] 1.34 3.58 0.03 0.10 0.35 1.14 3.22

Test set

Number of segments: 381 Number of P–Q pairs: 3784

Avg Std 10% 25% 50% 75% 90%

rp [cm] 0.13 0.05 0.08 0.10 0.12 0.16 0.19
rs [cm] 0.10 0.04 0.06 0.07 0.09 0.13 0.16
rd [cm] 0.13 0.05 0.08 0.09 0.12 0.15 0.19
l [cm] 0.41 0.21 0.18 0.28 0.39 0.51 0.69
Q [ml/s] 1.33 1.42 0.18 0.38 0.84 1.75 3.25
∆P3D [mmHg] 1.37 4.32 0.03 0.09 0.31 1.10 2.87

3.2. Performance of simplified approaches for prediction of pressure loss

The error metrics for prediction of pressure loss across stenotic segments are shown in Fig. 4, and those for
ealthy segments are shown in Fig. 5. Each line represents the mean value of error metrics for a given approach
the error bars denote the standard deviation of the metrics across the ten random training splits). The color of the
ines denotes the input feature set (X1 blue, X2 yellow and X3 green) and each column corresponds to a particular
N modeling approach: from left ∆PNN,∆P (X), ∆PNN,ϵ∆P (X), ∆PNN,∆P

(
X0D

)
, ∆PNN,ϵ∆P

(
X0D

)
. Here we would

like to remind the reader that ∆PNN,∆P (X) refers to the purely data-driven NN model, and the remaining NN models
ave incorporated prior physics-based knowledge from the ROM — either through predicting the discrepancy ϵ∆P
f the ROM and 3D iNS pressure loss, or through addition of the ROM pressure loss across the healthy (∆Ph) or
tenotic (∆Ps) segment as indicated by X0D. The position on the x-axis corresponds with the dataset size (training
et 1 → training set 3). In addition we evaluated the performance of the ROM on the same test set, and the
esulting error metrics are shown for comparison (horizontal black line in each panel). The Appendix provides
13
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verview of data for healthy segments for the test set and for training set sizes 1, 2 and 3.

Training set 1

Number of segments: 804 Number of P–Q pairs: 8040

Avg Std 10% 25% 50% 75% 90%

rp [cm] 0.13 0.05 0.08 0.10 0.13 0.17 0.20
rs [cm] 0.12 0.05 0.07 0.08 0.11 0.15 0.19
rd [cm] 0.13 0.06 0.07 0.09 0.12 0.17 0.20
l [cm] 1.01 0.98 0.18 0.35 0.70 1.35 2.27
Q [ml/s] 1.30 1.50 0.14 0.31 0.79 1.66 3.26
∆P3D [mmHg] 0.67 1.59 0.00 0.04 0.17 0.61 1.74

Training set 2

Number of segments: 1505 Number of P–Q pairs: 13 648

Avg Std 10% 25% 50% 75% 90%

rp [cm] 0.13 0.05 0.07 0.09 0.12 0.16 0.20
rs [cm] 0.12 0.05 0.06 0.08 0.10 0.15 0.18
rd [cm] 0.12 0.05 0.07 0.08 0.11 0.16 0.20
l [cm] 1.05 1.08 0.18 0.35 0.69 1.37 2.33
Q [ml/s] 1.30 1.49 0.13 0.31 0.79 1.67 3.22
∆P3D [mmHg] 0.83 1.96 0.00 0.05 0.21 0.76 2.18

Training set 3

Number of segments: 2762 Number of P–Q pairs: 20 457

Avg Std 10% 25% 50% 75% 90%

rp [cm] 0.13 0.05 0.07 0.09 0.12 0.16 0.20
rs [cm] 0.11 0.05 0.06 0.08 0.10 0.14 0.18
rd [cm] 0.12 0.05 0.07 0.08 0.11 0.16 0.20
l [cm] 1.07 1.10 0.19 0.36 0.70 1.38 2.37
Q [ml/s] 1.21 1.42 0.12 0.29 0.72 1.54 3.04
∆P3D [mmHg] 0.79 1.86 0.00 0.05 0.20 0.72 2.04

Test set

Number of segments: 574 Number of P–Q pairs: 5702

Avg Std 10% 25% 50% 75% 90%

rp [cm] 0.14 0.05 0.08 0.10 0.13 0.17 0.20
rs [cm] 0.12 0.05 0.07 0.09 0.11 0.15 0.18
rd [cm] 0.13 0.05 0.08 0.09 0.12 0.16 0.20
l [cm] 1.18 1.19 0.20 0.39 0.77 1.66 2.58
Q [ml/s] 1.42 1.54 0.17 0.38 0.88 1.87 3.56
∆P3D [mmHg] 0.95 2.75 0.00 0.06 0.21 0.75 2.17

tabulated versions of Fig. 4 (Table 5) and Fig. 5 (Table 6), where the numerical value of the error metrics for the
NN approaches is given.

3.3. Performance of simplified approaches for prediction of FFR

We incorporated the simplified approaches for prediction of pressure losses across segments in a coronary
etwork model to yield predictions of FFR, as illustrated in Fig. 1 and described in Section 2.6. Error metrics
or evaluation of model performance for FFRsimpl relative to FFR3D are presented in Fig. 6. Each line represents the

mean value of error metrics for a given approach (the error bars denote the standard deviation of the metric across the
ten random training splits). The color of the lines denotes the input feature set (X1 blue, X2 yellow and X3 green)
nd each column corresponds to a particular NN modeling approach: from left FFRNN,∆P (X), FFRNN,ϵ∆P (X),

FFRNN,∆P
(
X0D

)
, FFRNN,ϵ∆P

(
X0D

)
. FFRNN,∆P (X) thus represents the FFR predictions when the purely data-driven
NN models for predictions of pressure loss across stenotic and healthy segments were incorporated into the network

14
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rror metrics of FFRNN,ϵ∆P

(
X0D

3

)
(trained on training set 3) vs. 3D iNS FFR predictions, on a per vessel basis. Here, N refers to the

umber of FFR locations (times three flow conditions = total number of FFR evaluations). Further, the bias, Std error and mean absolute
rror were calculated based on the quantity FFR3D − FFRNN. The minimum, maximum, 25th, 50th and 75th percentiles of FFR3D are also

given. Abbreviations: LAD: left anterior descending, LCX: left circumflex artery, RCA: right coronary artery.

N Bias Std error MAE min max 25% 50% 75%

ALL 50 (150) −0.005 0.021 0.016 0.34 0.99 0.82 0.90 0.94
LAD 26 (78) −0.007 0.018 0.014 0.55 0.99 0.85 0.91 0.94
LCX 13 (39) −0.006 0.025 0.022 0.34 0.98 0.64 0.87 0.95
RCA 11 (33) 0.003 0.019 0.016 0.56 0.95 0.83 0.87 0.90

solver. Further, the notation X0D indicates that the ROM prediction of pressure loss (∆Ph or ∆Ps) was included
as input feature in the NNs for prediction of pressure loss across healthy and stenotic segments respectively. The
position on the x-axis corresponds with the dataset size (training set 1 → training set 3). In addition we evaluated
the performance of the ROM (FFR0D) on the same test set and the resulting error metrics are shown for comparison
(horizontal black line in each panel). The Appendix provides a tabulated version of Fig. 6 (Table 7) where the
numerical values of the error metrics for the NN approaches are given.

Fig. 8 shows scatter and Bland–Altman plots of FFR0D and FFRNN vs. FFR3D. FFRNN was obtained by averaging
he individual predictions from the ten FFR predictions corresponding to FFRNN,ϵ∆P

(
X0D

3

)
for training set size 3.

n the scatter plots, the horizontal and vertical dashed lines represent the FFR cut-off value for classifying ischemia
ausing stenoses (FFR ≤ 0.8). In the Bland–Altman plots, horizontal lines represent ± 2 standard deviations of
odel error (black) and of repeated FFR measurements (red). The mean difference ± standard errors for the ROM

nd NN augmented ROM with respect to FFR3D were -0.042 ± 0.034 and −0.005 ±0.021 respectively. Standard
eviation of repeated FFR measurement is 0.018 [45]. Further, Table 4 provides a break up of the bias, std error and
ean absolute error of FFRNN vs. FFR3D on a per vessel basis (LAD: left anterior descending, LCX: left circumflex

rtery, RCA: right coronary artery). The minimum, maximum, 25th, 50th and 75th percentiles of FFR3D are also
resented.

Finally, Fig. 7 presents error metrics of the simplified approaches for prediction of FFR with respect to invasively
easured FFR. In addition, corresponding error metrics for FFR3D are also indicated (horizontal dotted lines). The

Appendix provides a tabulated version of Fig. 7 (Table 8) where the numerical values of the error metrics for the
N approaches are given.

. Discussion

We analyzed the effect of incorporating prior physics-based knowledge in the learning process for prediction of
ressure and FFR in coronary arteries. Fully connected feed forward NNs were trained to predict pressure losses
btained by solution of the 3D iNS equations in segmented coronary arteries. We incorporated prior physics-based
nowledge from a reduced-order model of blood flow in stenotic and healthy coronary arteries. The prior information
as included by training NNs to (1) predict the discrepancy between the reduced-order model and 3D iNS pressure

oss rather than pressure directly and (2) incorporated in the learning process by including the ROM pressure loss
rediction as a feature. The physics informed NNs were compared with a corresponding purely data-driven NN for
hree different training sets with increasing amount of data. Both approaches for incorporation of prior knowledge
rom the ROM significantly improved prediction of pressure losses across healthy and stenotic segments relative to
he purely data-driven approach, especially for lower amounts of training data.

.1. Prediction of pressure loss

We separated the coronary domain into healthy and stenotic segments. For each segment, solutions of 3D iNS for
everal different pressure and flow states served as the basis for the dataset for training NNs to predict the pressure
osses across the segments.

Four methods for predicting ∆P3D with NNs were applied. First, a naive pure machine learning approach trained

NN to predict ∆P3D without incorporation of any prior physical knowledge, while the remaining approaches

15



F.E. Fossan, L.O. Müller, J. Sturdy et al. Computer Methods in Applied Mechanics and Engineering 384 (2021) 113892
Fig. 6. Results for machine learning approaches for prediction of FFR vs. FFR3D. The values presented by each line are the average of
the metric across the 10 random training splits, while the vertical lines represent the standard deviation of the metric across the training
splits. The bias, error standard deviation and mean absolute errors were calculated based on the quantity FFR3D − FFRsimpl, where FFRsimpl
represent predictions based on the ROM or NN approaches. The accuracy, sensitivity and specificity were calculated based on dichotomized
data (FFR3D < 0.8). All metrics are without units. See Table 7 in the Appendix for corresponding numerical values.
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Fig. 7. Results for machine learning approaches for prediction of FFR vs. FFRmeas. The values presented by each line are the average of
the metric across the 10 random training splits, while the vertical lines represent the standard deviation of the metric across the training
splits. The bias, error standard deviation and mean absolute errors were calculated based on the quantity FFRmeas − FFRpred, where FFRpred
represent predictions based on the 3D model, ROM or NN approaches. The accuracy, sensitivity and specificity were calculated based on
dichotomized data (FFRmeas < 0.8). All metrics are without units. See Table 8 in the Appendix for corresponding numerical values.
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Fig. 8. Scatter and Bland–Altman plots of ROM predictions (top) and NN augmented ROM predictions (bottom) of FFR relative to 3D iNS
FR predictions. FFRNN was calculated based on the mean prediction (corresponding the 10 random training/validation splits) for those
btained by the combined physics informed approach, FFRNN,ϵ∆P

(
X0D

3

)
when trained on dataset size 3. In scatter plots, the horizontal and

ertical dashed lines represent the FFR cut-off value for classifying ischemia causing stenoses. In the Bland–Altman plots, horizontal lines
epresent ± 2 standard deviations of model error (black) and of repeated FFR measurements (red). The mean difference ± standard errors

for the ROM and NN augmented ROM with respect to FFR3D were -0.0416 ± 0.034 and −0.0045 ±0.020 respectively.

included prior knowledge either through prediction of the discrepancy function (∆P3D −∆P0D), by including ∆P0D
as an input-feature, or through a combination of the two former approaches.

The top left panel of Fig. 4 shows that all NN-approaches achieved similar values in terms of the bias in prediction
of pressure loss across stenotic segments (mean values ranging between 0.01–0.07 mmHg), all of which represent
major reductions relative to the bias of the pure physics-based approach (0.56). For the remaining error metrics
(MAE, std error, MSE, R2), which better capture the NNs ability to predict pressure losses for individual segments,
the effect of including physics-based information in the design or learning process, substantially impacted the results
and dependence on data.

4.1.1. Effect of training-set size
A key obstacle for successful application of NNs is the amount of suitable data available for the task at hand.

When too little data is available, NNs may generalize poorly and provide erroneous predictions in regions that are
poorly represented in the dataset, and for unseen parameter combinations.

From Fig. 4, considering input feature X1, we can observe that the error metrics for all approaches had a tendency
to improve with the inclusion of more data. The most notable improvement was observed for the pure data-driven
learning approach (MAE: 0.39 to 0.33 (15% reduction), MSE: 2.4 to 1.47 (39%), std: 1.54 to 1.21 (21%), R2: 0.87

to 0.92 (6% improvement) from training set sizes 1 to 3). The incorporation of physics-based information reduced

18



F.E. Fossan, L.O. Müller, J. Sturdy et al. Computer Methods in Applied Mechanics and Engineering 384 (2021) 113892

s
t
f
(

l
o
m
i
o
b
d

m
p

4

t
w
p
a

uch dependence. For these approaches the MAE and MSE for training sets 1 and 3 (with percent change between
hese training set reported in parentheses) follow. For ∆PNN,ϵ∆P (X1) MAE went from 0.33 to 0.30 (9%) and MSE
rom 1.38 to 1.09 (21%). For ∆PNN,∆P

(
X0D

1

)
MAE went from 0.33 to 0.30 (9%) and MSE from 1.29 to 0.99

23%). For ∆PNN,ϵ∆P

(
X0D

1

)
MAE went from 0.32 to 0.30 (6%) and MSE from 1.10 to 1.00 (9%).

This reveals that including physics-based knowledge reduced the amount of data required to train NNs to a certain
evel of accuracy. Interestingly, the middle right plot in Fig. 4 shows that, when excluding the highest 10% percent
f pressure losses, differences in mean absolute error between purely data-driven and physics informed NNs were
uch lower. This indicates that the physics-informed approaches performed better on regions poorly represented

n the dataset. Moreover, we note that both pure data-driven NNs and physics-informed NNs performed similarly
n the training datasets (see supplementary Fig. A.2) despite the fact that physics-informed NNs performed much
etter on the test dataset. This suggests that the purely data-driven NNs may be more prone to overfit to the training
ata in comparison to physics-informed NNs.

By both reducing the need for data and improving the generalization of NNs, physics informed machine learning
ight in many circumstances offer the best of both worlds, and these results motivate similar approaches for

roblems with sparse data in particular.

.1.2. Different approaches for incorporation of prior physics-based knowledge
A variety of approaches for incorporation of prior knowledge into machine learning have been proposed [7,11]. In

his study, we proposed three such approaches for NN based prediction of pressure losses in coronary arteries. First,
e proposed training NNs to predict model discrepancy of the ROM. Second, we included the ROM prediction of
ressure loss as a feature. Finally, we trained NNs to predict the discrepancy while also using the ROM prediction
s an input.

Still considering results for pressure drop across stenotic segments, columns 2–4 in Fig. 4 provide error metrics
for the different approaches for incorporation of physics-based information in the learning process. The mean
squared errors were 1.38 (0.13), 1.29 (0.26) and 1.10 (0.06) considering training set size 1, for ∆PNN,ϵ∆P (X1),
∆PNN,∆P

(
X0D

1

)
, ∆PNN,ϵ∆P

(
X0D

1

)
respectively (the values in the parentheses represent the standard deviation of

the error for the ten random learning/validation splits). Corresponding values for training set size 3 were 1.09
(0.13), 0.99 (0.05) and 1.00 (0.04). Similar trends may be seen for the std. error and R2 score. The approach which
included physics-based information as a feature, ∆PNN,∆P thus achieved better results than the discrepancy method,
∆PNN,ϵ∆P . A possible explanation for this might be that the former approach allows for more interaction between
ROM predictions and other features. If the physics-based prediction is accurate the NN can easily learn to predict
the true quantity and if biases are present, then correlations with these and the other features may be learned. The
inclusion of physics-based simulations as features is perhaps the most common approach for including prior physics-
based information in machine learning [9–12]. Our results indicate that a combined approach, ∆PNN,ϵ∆P

(
X0D

)
is

less sensitive to dataset size and split and provides the most reliable results for lower dataset sizes.
The physics informed approaches considered in this study do not require an explicit trade off between physics-

based knowledge and data, which is in contrast to another approach that informs the NNs by incorporating a
physics-based term to the loss function [13,46,47]. The latter approach for including prior physics-based information
may enable machine learning with very little data, since part of the training only relates to evaluation of the physical
loss term which can be performed without “real” data. However in the limit when no additional real data is included,
one cannot expect better predictions than from the underlying physical model. In practice a choice about the balance
between data and governing physics must be made when specifying the algorithm. In contrast, the inclusion of the
physics-based model prediction allows the machine learning algorithm to learn this balance by itself, and thus
exploiting the power of the data-driven learning algorithm. On the other hand, our approaches do not explicitly
penalize violation of the governing physics, a property that might be beneficial in some applications [11].

4.1.3. Effect of incorporation of 3D geometrical data and upstream dynamics
Most physics-based reduced-order models for prediction of pressure drop in arteries and across stenoses assume

axisymmetry and do not incorporate upstream dynamics [21,38,48]. However, the pressure drop along a segment is
not entirely a local phenomena, and in addition to the flow (which depends on upstream and downstream dynamics)
geometrical asymmetries and eccentricity may effect the pressure drop along a segment [38,49,50]. We thus

sought to explicitly evaluate the impact of these assumptions by comparing feature-arrays which represented only
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ocal dynamics and idealized geometric axisymmetric properties with arrays that contain more generic geometric
nformation and upstream dynamics. In feature-array X1 we included the inputs most commonly observed in
educed-order models for prediction of pressure loss across stenoses. To incorporate more geometrical information,
nput feature-array X2 included the most important components of a principal components analysis of the radius
nd eccentricity along the centerline, as well as the minimum cross sectional radius in the segment. Feature-array

X3 augmented X2 with flow-separation related pressure losses and changes to the dynamic pressure in a region
cm upstream of the beginning of the segment.
The addition of more geometrical data incrementally improved predictions across stenotic segments for the

hysics informed NNs, as illustrated by the improvements in error metrics from going from X1 (blue lines) to
X2 (orange lines) in Fig. 4 (e.g. MAE: 0.30 to 0.29 for all physics-informed approaches considering training set
ize 3). Such trends were less prominent for healthy segments (see Fig. 5), where no reliable improvement was seen
y adding more geometrical data to the physics informed approaches (MAE: 0.25 to 0.25 for both ∆PNN,ϵ∆P (X)

nd ∆PNN,∆P
(
X0D

)
and MAE :0.26 to 0.25 for ∆PNN,ϵ∆P

(
X0D

)
). This may be a result of the fact that stenotic

and healthy segments were differentiated based on the relative smoothness of local variation in radius. As, such
healthy segments tend to be relatively straight and much of the geometrical variation is already filtered out.

In contrast to geometric information, the addition of upstream pressure data influenced the prediction capacity
across both stenotic and healthy segments, but with a more notable improvement across healthy segments, illustrated
by the improvements in error metrics from X2 (orange lines) to X3 (green lines) in Figs. 4 and 5. For instance, the

ean squared error was reduced from 0.46 to 0.35 (24% reduction) for healthy segments (considering the combined
hysics informed approach for data-set size 3), while corresponding values for stenotic segments were 0.96 to 0.89
7%). Streamline disturbances and flow separation may occur distal of stenoses and will effect the pressure drop at
uch regions [38], which may explain why prediction performance of healthy segments was particularly improved
y the inclusion of upstream information.

imilarities and differences in pressure loss across stenotic and healthy segments. The previous two paragraphs
ighlight different effects on prediction of pressure across stenotic and healthy segments for different input features.
n Section 4.1.1 we stated a clear dependence on dataset size for error metrics for prediction of pressure loss across
tenotic segments for the purely data-driven approach. Incorporation of physics-based information to the NN’s
educed such dependence. See input feature X1 (blue lines) in Fig. 4. While a clear dependence is seen for the
urely data-driven approach also in the case of prediction of pressure loss across healthy segments (first column
n Fig. 5), it is not as evident for the physics informed approaches (columns 2–4). Hence the learning seems to be
lose to saturation already for the lowest data-set size when including physics-based information for the healthy
egments.

For some error metrics (std. error, and MSE) we observed examples of non-monotone relation between error
etrics and data-set size, and even worsening of metrics with increasing data-set size (columns three and four in the
SE and std. plots in Fig. 5). For prediction of pressure loss across stenotic segments occurrence of non-monotone

elation between error metrics and data-set size was seen for the expanded input features X2 and X3 (columns three
nd four in the MSE and std plots in Fig. 4). In terms of the mean absolute error however, all approaches (both for
tenotic and healthy segments and for all feature-sets) demonstrated a monotone improvement for increased data-set
ize. This should be seen in relation with the origin of the added training data going from training data size 1 →

. For instance, going from training set size 2 to training set size 3, consisted in adding data from coronary trees
ithout FFR measurements (i.e. without suspected CAD) and coronary trees from a prospective population with

ow prevalence of severe CAD. This partly explains the fact that most predictions were improved (indicated by the
mprovement in MAE), while at the same time showing non-monotone relation in terms of predictions with higher
bsolute errors (indicated by the behavior of MSE and std error).

.2. Prediction of FFR

Several approaches for non-invasive FFR prediction based on reduced-order physics-based models have been
eveloped [19–22]. Moreover, Itu. et al. [27] trained a neural network to reproduce FFR predictions based on
reduced-order model akin to the ROM in this work. The model denoted CT − FFRML was trained on 12,000

ynthetically generated coronary artery models, where ground truth predictions based on a physics-based reduced-
rder model were used as reference. This approach is thus still limited by the shortcomings and assumptions related
20
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o the reduced-order model as opposed to 3D iNS. Further, Sankaran et al. trained a bootstrapped aggregated decision
ree, which included geometrical, clinical and reduced-order model input-features [9,10]. The machine learning
egressor was trained to predict full FFRCT at selected centerline points, with the primary motive to calculate
ensitivity indices in uncertainty quantification analysis.

In contrast to previous works, we have explicitly focused on training NNs to predict pressure losses in both
ealthy and diseased coronary artery segments. We incorporated the trained NNs into a coronary network model
o predict FFR. The discrepancy between the combined physics-informed NN FFR predictions and 3D FFR had a
tandard deviation of 0.022 for the lowest dataset size (see column four, feature-set X1 in Fig. 6). In comparison, the
urely data-driven NN had a standard deviation of 0.03 for the smallest data-set size (see column one, feature-set

X1 in Fig. 6). Dependence on data-set size was seen for the purely data-driven NN, where standard deviation was
educed to 0.024 (20% reduction) in training-set size 3 (the corresponding value for the combined physics-based
pproach was 0.021). In comparison the standard deviation of repeated FFR measurements is 0.018 according
o a previous study [45]. Furthermore Fig. 8 illustrates the reduction in both bias and scatter resulting from the
N-augmented FFR models (exemplified by FFRNN,ϵ∆P

(
X0D

3

)
), relative to the purely physics based FFR model.

The incorporation of more geometrical data regarding segment shape and eccentricity and inclusion of upstream
ressure dynamics resulted in incremental reduction in mean absolute error of NN based FFR versus 3D iNS FFR
see mean absolute error plot in Fig. 6). Still, even with the inclusion of these features, the reduced-order model can
e considered a very coarse representation of the 3D problem. To improve predictions, incorporation of more of the
eometrical information is likely necessary. This could be obtained by extended application of principal component
nalysis or by application of auto-encoders of the 3D mesh/domain [51]. However, in order to successfully train
Ns to incorporate such subtle information might require significantly more data than even the largest dataset in

his study.
It is known that the LAD is the most affected vessel by CAD, and also that most of FFR assessments are for

he LAD. Moreover, previous studies have shown that the accuracy of FFR prediction can vary according to the
essel [29]. We assessed the potential influence of such bias by evaluating the performance of the NN augmented
OMs (exemplified by FFRNN,ϵ∆P

(
X0D

3

)
and corresponding to Fig. 8) on a per vessel basis. Table 4 shows that the

AE and std. error of FFRNN vs. FFR3D were similar in the LAD and RCA, despite the fact that almost 52% of
ocations were in the LAD while only 22% were in the RCA. The std error and MAE were substantially higher in
he LCX (26% of cases). However, as can be seen from the distribution of FFR3D, there were more severe (low)
FR cases in the LCX. This indicates that the differences in performance to predict FFR by the NN augmented
FR model were more related to the severity of CAD (i.e. more extreme geometries and pressure drops), rather

han related to an implicit bias concerning the frequency of CAD in a vessel.
In Fig. 7 the different models for prediction of FFR are compared with invasive measurements. As can be

een from the top left plot, the purely physics-based ROM, and NN-augmented ROMs were biased in opposite
irections. This may be seen in relation with the lower sensitivity, but higher specificity for the purely physics-
ased ROM. The most comprehensive model considered in this work, namely the full 3D iNS model produced the
est trade-off between sensitivity and specificity, indicating that model differences had an effect on classification
f ischemia. However, the 3D iNS model also resulted in the highest standard deviation between measurements
nd predictions. Hence there is not necessarily a direct link between model complexity and standard deviation
f errors between model prediction and invasive FFR. With model errors close to the standard deviation of
epeated FFR measurements, intrinsic uncertainties related to geometry, and the setting of boundary-conditions
i.e. flow-distribution, and the effects of adenosine) dominate [29]. Thus even though the potential exists for further
mprovement of the NN augmented reduced-order model (relative to the full 3D iNS model), such improvements
re unlikely to improve prediction errors relative to invasive measurements substantially.

Currently, models based on very different assumptions about the underlying physics perform to similar levels
f accuracy with respect to invasive FFR measurements [52]. In some cases, the accuracy in FFR prediction may
ome at the cost of physically implausible predictions for other variables such as the volumetric flow rate [52]. This
ay be an important issue to consider during model design, particularly if FFR is not the only model quantity of

nterest. Thus, even though further improvements to the ROM relative to the 3D iNS model may not result in more

ccurate FFR prediction, they may be crucial for estimation of other clinical indices.
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Fig. A.1. Cumulative pressure drop for segment types as a ratio of total pressure drop from the coronary inlet to the measurement location.

. Limitations and future work

Several factors are necessary for successful application of neural networks. The perhaps most important aspect
n this context relates to the amount of data available for training. We found that the incorporation of physics-
ased prior knowledge efficiently improved NN pressure loss predictions in cases with sparse data. There are,
owever, other factors that have an effect on the performance of NNs, and even though NNs are universal function
pproximators, the exact design and input features that will predict a relation optimally is not known a priori. In this
ontext, we performed hyperparameter searches that resulted in the design of the neural networks used in this study.
n addition we applied other common approaches, such as adopting validation/learning splits in attempts to avoid
ver-fitting. We also explored incorporation of other features, such as more geometrical information from radius and
ccentricity information through including more PCA components, and information regarding curvature, however
ithout providing improvement in results (not shown here). The latter is somewhat surprising given that previous

tudies indicate that inclusion of curvature to lumped parameter models could improve predictions relative to 3D
FD simulations [53,54]. One might question if the physical effect of curvature is correlated with some combination
f other included input features (and thus partly learned, e.g. it is known that the effect of curvature depends on the
eynolds number, which was indirectly included) or alternatively if there were insufficient variability in our training
ata to learn the impact of curvature. Nevertheless, even though there is still the possibility that other means of
roviding relevant input features could lead to improved results, such alterations should have the same potential of
mprovement on all NN approaches.

The choice of including cumulative upstream information from 1 cm upstream of the segment was based on
nspection of flow separation regions in relevant stenoses. However, the effective length of disturbed/separated flow
s known to vary according to stenosis severity and Reynolds number [38]. Predictions by fully connected feed
orward neural networks are restricted by the supplied input features. This complicates incorporation of information
hat is based on predictions of nearby segments, since such information has to be explicitly included as features.
he inclusion of upstream information improved prediction of pressure by the NNs, however more sophisticated

recurrent) neural networks and particularly Long Short-Term Memory networks which are designed to allow
nformation of nearby predictions (in time or space) to persist might be more suited to include such information
nd might lead to improved results [55,56].

The simplified coronary network model considered in this study separated the coronary domain into healthy,
tenotic and junction regions. FFR predictions result from the nonlinear interaction of pressure losses across the
egments and junctions (in relation with the prescribed boundary-conditions). We chose to focus on prediction of
ressure loss across stenotic and healthy segments (and not pressure losses across junctions) based on an analysis
here the relative importance of segment types was quantified (see supplementary Fig. A.1). This revealed that

he relative importance of pressure losses at junctions was small in comparison to those seen across healthy and in
articular stenotic segments, and that improvements in the junction model would not reduce standard deviation of

FR predicted by the ROM with respect to 3D iNS FFR. However for individual cases, errors introduced by the
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j
o

unction model were not negligible and might effect the sensitivity and specificity for classifying the significance
f the stenoses (FFR ≤ 0.8) and will thus be considered in future works.

6. Conclusion

Neural networks can in theory represent any functional relationship between inputs and output. However, in many
applications the amount of data required to obtain this is prohibitive. We proposed that incorporating physics-based
knowledge when designing and training NNs may reduce this burden and investigated this concept when training
NNs for prediction of pressure drop in coronary arteries.

We evaluated three methods to incorporate physics-based knowledge in the learning process: learning the model
discrepancy between ROM and 3D iNS, providing the physics-based ROM’s predictions as an input feature, and
the combination of both prior approaches. All three approaches significantly improved the prediction capacity of
NN predictions of pressure loss relative to an uninformed approach. In addition, the inclusion of prior physics
significantly reduced the amount of data required to obtain reliable and accurate predictions. The performance
of the three approaches was similar, however subtle benefits were seen by the approach that included the ROM
pressure loss as a feature, and the combined approach resulted in the most reliable prediction for the lowest dataset
size considered.

Although the purely data-driven NN performed better than the physics-based reduced-order model relative to
3D iNS, this was not reliably obtained until enough data was used to train the NN. Further, the predictions by the
informed NNs remained better than predictions by the purely data-driven NN for all data-sizes considered. As such,
the combination of physics-based knowledge with data-driven machine learning leveraged the best of both worlds
and motivates application of this combined approach for problems with sparse data.

The incorporation of informed NN predictions of coronary segment pressure losses in a coronary network model
resulted in FFR predictions with standard deviation with respect to 3D iNS FFR of 0.021 for the lowest dataset
size considered. This is comparable with the standard deviation of repeated FFR measurements, which is 0.018.
Incorporation of features that represent more of the geometry and better representation of non-local effects might
be needed to further reduce the error.

Finally, we note that the diagnostic accuracy of FFR predictions versus invasive FFR measurements varied for
the different models, i.e. the full 3D iNS, the physics-based and the machine learning augmented ROMs. This
indicates that the level of detail by which a physical process is modeled can have an impact on the diagnostic
accuracy of the resulting FFR prediction algorithm. However, with uncertainty in predicted FFR being dominated
by intrinsic uncertainties related to geometry and boundary-conditions, it is unlikely that further improvements in
ROM predictions with respect to 3D iNS FFR will significantly and reliably improve predictions of invasive FFR
measurements.
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Appendix. Results

A.1. Tabulated results
See Tables 5–8 for tabulated error metrics corresponding to Figs. 4–7 .
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esults for machine learning approaches for prediction of pressure losses across stenotic segments. The values represent the averages (standard
eviation) of the metrics across the 10 random training splits. The bias, standard deviation, mean squared error, mean absolute error and
ean absolute error considering 90% of the data, were calculated based on the quantity ∆P3D −∆PNN, where ∆PNN represent predictions

based on the NN approaches. Similarly R2 was calculated based on ∆PNN vs. P3D.

Training-size ∆PNN,∆P (X) ∆PNN,ϵ∆P
(X) ∆PNN,∆P

(
X0D

)
∆PNN,ϵ∆P

(
X0D

)
X1 X2 X1 X2 X3 X1 X2 X3 X1 X2 X3
Bias

1 0.05 (0.05) 0.05 (0.02) 0.04 (0.02) 0.04 (0.02) 0.05 (0.02) 0.05 (0.03) 0.05 (0.03) 0.07 (0.03) 0.04 (0.02) 0.04 (0.03) 0.07 (0.02)
2 0.02 (0.04) 0.02 (0.04) 0.03 (0.03) 0.03 (0.03) 0.04 (0.02) 0.04 (0.02) 0.04 (0.02) 0.06 (0.03) 0.02 (0.02) 0.03 (0.02) 0.04 (0.02)
3 0.01 (0.02) 0.01 (0.03) 0.02 (0.02) 0.03 (0.02) 0.05 (0.01) 0.02 (0.01) 0.04 (0.02) 0.05 (0.02) 0.02 (0.01) 0.04 (0.03) 0.05 (0.01)

Std error

1 1.54 (0.17) 1.79 (0.14) 1.17 (0.06) 1.14 (0.06) 1.05 (0.08) 1.13 (0.11) 1.04 (0.05) 0.98 (0.08) 1.05 (0.03) 1.00 (0.06) 0.96 (0.05)
2 1.36 (0.17) 1.22 (0.14) 1.08 (0.08) 1.04 (0.05) 1.02 (0.05) 1.04 (0.02) 1.00 (0.04) 1.00 (0.04) 1.01 (0.02) 0.98 (0.03) 0.96 (0.04)
3 1.21 (0.09) 1.21 (0.12) 1.04 (0.06) 1.04 (0.06) 1.06 (0.05) 0.99 (0.02) 0.97 (0.04) 0.95 (0.03) 1.00 (0.02) 0.98 (0.04) 0.94 (0.02)

Mean absolute error

1 0.39 (0.02) 0.38 (0.01) 0.33 (0.01) 0.31 (0.01) 0.29 (0.01) 0.33 (0.01) 0.31 (0.01) 0.30 (0.01) 0.32 (0.00) 0.30 (0.01) 0.29 (0.01)
2 0.34 (0.01) 0.32 (0.01) 0.31 (0.01) 0.29 (0.01) 0.28 (0.01) 0.31 (0.01) 0.29 (0.01) 0.29 (0.01) 0.31 (0.00) 0.29 (0.01) 0.28 (0.01)
3 0.33 (0.01) 0.31 (0.01) 0.30 (0.01) 0.29 (0.01) 0.28 (0.01) 0.30 (0.00) 0.29 (0.00) 0.28 (0.01) 0.30 (0.00) 0.29 (0.01) 0.28 (0.00)

Mean absolute error 90%

1 0.18 (0.01) 0.17 (0.00) 0.17 (0.01) 0.16 (0.00) 0.16 (0.01) 0.17 (0.00) 0.16 (0.00) 0.15 (0.00) 0.17 (0.00) 0.16 (0.01) 0.15 (0.00)
2 0.17 (0.00) 0.17 (0.01) 0.17 (0.00) 0.16 (0.00) 0.15 (0.01) 0.16 (0.01) 0.15 (0.00) 0.15 (0.01) 0.16 (0.00) 0.15 (0.00) 0.15 (0.00)
3 0.17 (0.00) 0.16 (0.01) 0.16 (0.00) 0.15 (0.00) 0.15 (0.00) 0.16 (0.00) 0.15 (0.00) 0.14 (0.00) 0.16 (0.00) 0.15 (0.00) 0.14 (0.00)

Mean squared error

1 2.40 (0.52) 3.22 (0.50) 1.38 (0.13) 1.29 (0.13) 1.11 (0.17) 1.29 (0.26) 1.10 (0.11) 0.98 (0.17) 1.10 (0.06) 1.01 (0.12) 0.93 (0.09)
2 1.87 (0.46) 1.51 (0.36) 1.17 (0.17) 1.09 (0.10) 1.04 (0.09) 1.08 (0.05) 1.01 (0.07) 1.00 (0.07) 1.02 (0.05) 0.97 (0.06) 0.92 (0.08)
3 1.47 (0.21) 1.47 (0.28) 1.09 (0.13) 1.09 (0.12) 1.12 (0.11) 0.99 (0.05) 0.95 (0.08) 0.90 (0.07) 1.00 (0.04) 0.96 (0.07) 0.89 (0.04)

R2

1 0.87 (0.03) 0.83 (0.03) 0.93 (0.01) 0.93 (0.01) 0.94 (0.01) 0.93 (0.01) 0.94 (0.01) 0.95 (0.01) 0.94 (0.00) 0.95 (0.01) 0.95 (0.00)
2 0.90 (0.02) 0.92 (0.02) 0.94 (0.01) 0.94 (0.01) 0.94 (0.01) 0.94 (0.00) 0.95 (0.00) 0.95 (0.00) 0.95 (0.00) 0.95 (0.00) 0.95 (0.00)
3 0.92 (0.01) 0.92 (0.02) 0.94 (0.01) 0.94 (0.01) 0.94 (0.01) 0.95 (0.00) 0.95 (0.00) 0.95 (0.00) 0.95 (0.00) 0.95 (0.00) 0.95 (0.00)

Table 6
Results for machine learning approaches for prediction of pressure losses across healthy segments. The values represent the averages (standard
deviation) of the metrics across the 10 random training splits. The bias, standard deviation, mean squared error, mean absolute error and
mean absolute error considering 90% of the data, were calculated based on the quantity ∆P3D −∆PNN, where ∆PNN represent predictions
based on the NN approaches. Similarly R2 was calculated based on ∆PNN vs. P3D.

Training-size ∆PNN,∆P (X) ∆PNN,ϵ∆P
(X) ∆PNN,∆P

(
X0D

)
∆PNN,ϵ∆P

(
X0D

)
X1 X2 X1 X2 X3 X1 X2 X3 X1 X2 X3
Bias

1 −0.02 (0.04) −0.02 (0.03) −0.02 (0.02) −0.02 (0.02) 0.00 (0.02) −0.01 (0.03) −0.02 (0.02) −0.01 (0.03) −0.02 (0.03) −0.02 (0.03) −0.02 (0.02)
2 −0.07 (0.03) −0.01 (0.02) −0.03 (0.02) −0.01 (0.01) −0.00 (0.01) −0.01 (0.01) −0.02 (0.01) 0.01 (0.02) −0.02 (0.01) −0.01 (0.02) 0.00 (0.02)
3 −0.04 (0.02) −0.01 (0.02) −0.03 (0.01) −0.01 (0.01) 0.01 (0.01) −0.01 (0.01) −0.00 (0.01) 0.01 (0.01) −0.01 (0.01) −0.01 (0.02) 0.01 (0.01)

Std error

1 0.97 (0.04) 0.97 (0.05) 0.72 (0.03) 0.72 (0.06) 0.68 (0.05) 0.69 (0.03) 0.67 (0.01) 0.62 (0.03) 0.68 (0.02) 0.69 (0.05) 0.60 (0.02)
2 0.89 (0.02) 0.88 (0.04) 0.69 (0.01) 0.68 (0.02) 0.63 (0.02) 0.69 (0.02) 0.68 (0.02) 0.61 (0.02) 0.69 (0.01) 0.68 (0.01) 0.62 (0.03)
3 0.87 (0.02) 0.82 (0.04) 0.67 (0.02) 0.68 (0.02) 0.62 (0.02) 0.69 (0.02) 0.68 (0.02) 0.61 (0.02) 0.69 (0.02) 0.67 (0.02) 0.60 (0.01)

Mean absolute error

1 0.32 (0.01) 0.30 (0.01) 0.26 (0.00) 0.26 (0.01) 0.25 (0.01) 0.26 (0.01) 0.25 (0.01) 0.24 (0.01) 0.26 (0.00) 0.26 (0.01) 0.24 (0.01)
2 0.30 (0.01) 0.28 (0.01) 0.25 (0.00) 0.25 (0.01) 0.23 (0.00) 0.26 (0.00) 0.26 (0.01) 0.23 (0.00) 0.26 (0.00) 0.25 (0.00) 0.23 (0.01)
3 0.29 (0.00) 0.26 (0.00) 0.25 (0.00) 0.25 (0.00) 0.23 (0.00) 0.25 (0.00) 0.25 (0.00) 0.23 (0.00) 0.26 (0.00) 0.25 (0.00) 0.23 (0.00)

Mean absolute error 90%

1 0.19 (0.00) 0.17 (0.00) 0.17 (0.00) 0.17 (0.00) 0.16 (0.00) 0.17 (0.01) 0.16 (0.00) 0.15 (0.00) 0.17 (0.00) 0.17 (0.00) 0.15 (0.00)
2 0.19 (0.00) 0.17 (0.00) 0.17 (0.00) 0.17 (0.00) 0.15 (0.00) 0.17 (0.00) 0.16 (0.00) 0.14 (0.00) 0.16 (0.00) 0.16 (0.00) 0.15 (0.00)
3 0.18 (0.00) 0.16 (0.00) 0.17 (0.00) 0.17 (0.00) 0.15 (0.00) 0.16 (0.00) 0.16 (0.00) 0.14 (0.00) 0.16 (0.00) 0.16 (0.00) 0.14 (0.00)

Mean squared error

1 0.95 (0.09) 0.93 (0.10) 0.52 (0.05) 0.53 (0.09) 0.47 (0.07) 0.48 (0.04) 0.45 (0.02) 0.39 (0.04) 0.46 (0.03) 0.48 (0.07) 0.37 (0.02)
2 0.80 (0.04) 0.77 (0.07) 0.48 (0.01) 0.47 (0.03) 0.39 (0.02) 0.48 (0.03) 0.47 (0.03) 0.38 (0.03) 0.47 (0.02) 0.46 (0.02) 0.39 (0.03)
3 0.76 (0.04) 0.67 (0.06) 0.46 (0.02) 0.46 (0.03) 0.39 (0.02) 0.47 (0.02) 0.46 (0.02) 0.37 (0.02) 0.48 (0.02) 0.46 (0.03) 0.35 (0.02)

R2

1 0.87 (0.01) 0.88 (0.01) 0.93 (0.01) 0.93 (0.01) 0.94 (0.01) 0.94 (0.01) 0.94 (0.00) 0.95 (0.01) 0.94 (0.00) 0.94 (0.01) 0.95 (0.00)
2 0.89 (0.01) 0.90 (0.01) 0.94 (0.00) 0.94 (0.00) 0.95 (0.00) 0.94 (0.00) 0.94 (0.00) 0.95 (0.00) 0.94 (0.00) 0.94 (0.00) 0.95 (0.00)
3 0.90 (0.00) 0.91 (0.01) 0.94 (0.00) 0.94 (0.00) 0.95 (0.00) 0.94 (0.00) 0.94 (0.00) 0.95 (0.00) 0.94 (0.00) 0.94 (0.00) 0.95 (0.00)
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esults for machine learning approaches for prediction of FFR vs. FFR3D. The values represent the averages of the metrics across the 10

random training splits. The bias, error standard deviation and mean absolute errors were calculated based on the quantity FFR3D − FFRNN,
where FFRNN represent predictions based on the NN approaches. The accuracy, sensitivity and specificity were calculated based on
dichotomized data (FFR3D < 0.8).

Training-size ∆PNN,∆P (X) ∆PNN,ϵ∆P (X) ∆PNN,∆P
(
X0D)

∆PNN,ϵ∆P

(
X0D)

X1 X2 X1 X2 X3 X1 X2 X3 X1 X2 X3

Bias

1 −0.004 −0.005 −0.006 −0.006 −0.002 −0.007 −0.007 −0.003 −0.007 −0.006 −0.003
2 −0.004 −0.005 −0.007 −0.006 −0.004 −0.008 −0.007 −0.004 −0.007 −0.007 −0.004
3 −0.003 −0.005 −0.006 −0.006 −0.005 −0.008 −0.008 −0.004 −0.008 −0.007 −0.005

Std error

1 0.030 0.035 0.023 0.024 0.022 0.023 0.023 0.022 0.022 0.023 0.022
2 0.026 0.025 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.021 0.021
3 0.024 0.023 0.021 0.022 0.022 0.021 0.021 0.021 0.021 0.021 0.021

Mean absolute error

1 0.021 0.022 0.018 0.018 0.016 0.018 0.018 0.016 0.018 0.017 0.016
2 0.019 0.018 0.017 0.017 0.017 0.017 0.017 0.016 0.017 0.017 0.016
3 0.018 0.017 0.017 0.017 0.016 0.017 0.017 0.016 0.017 0.017 0.016

Accuracy

1 95.533 95.467 95.600 96.533 95.133 96.400 96.667 96.533 96.267 97.000 96.133
2 95.533 96.533 96.067 96.800 95.733 96.533 97.133 96.400 97.067 96.800 96.200
3 95.267 96.067 95.533 96.933 96.400 96.533 97.400 97.267 96.200 97.000 96.600

Sensitivity

1 92.333 92.333 93.333 93.333 93.333 90.000 91.333 92.667 89.333 92.000 93.333
2 93.333 92.333 91.667 93.333 92.667 89.333 92.333 92.333 91.667 90.333 91.667
3 94.000 93.000 92.000 92.333 93.333 88.333 91.000 92.000 87.667 89.667 91.667

Specificity

1 96.333 96.250 96.167 97.333 95.583 98.000 98.000 97.500 98.000 98.250 96.833
2 96.083 97.583 97.167 97.667 96.500 98.333 98.333 97.417 98.417 98.417 97.333
3 95.583 96.833 96.417 98.083 97.167 98.583 99.000 98.583 98.333 98.833 97.833

A.2. Relative importance of pressure drop according to segment type

The centerlines were divided into healthy sections, stenotic sections and junction regions based on deviations of
he locally observed radius from the expected healthy radius of a smoothly tapering vessel predicted as described
reviously [22,33]. The 3D iNS pressure data from hyperemic simulations from the coronary inlet to the point of
easurement location was considered. In this context, Pinlet − Pdistal represents the total pressure drop from the inlet

o the point of measurement, and
∑

∆Psegment represents the cumulative pressure drop of all segments of a certain
egment type (stenotic, healthy or junction) along the same path, such that:∑

∆Pstenotic +

∑
∆Phealthy +

∑
∆Pjunction = Pinlet − Pdistal . (10)

As such, Fig. A.1 shows the relative contribution to the total pressure loss for each segment type, plotted vs.
FR3D. The data is represented as a scatter plot, and a second order polynomial function was fitted to the data for
ach segment type and is also indicated (solid lines). The shaded region represents the 95% confidence interval for
he fitted lines.
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esults for machine learning approaches for prediction of FFR vs. FFRmeas. The values represent the averages of the metrics across the 10

random training splits. The bias, error standard deviation and mean absolute errors were calculated based on the quantity FFRmeas − FFRNN,
here FFRNN represent predictions based on the NN approaches. The accuracy, sensitivity and specificity were calculated based on
ichotomized data (FFRmeas < 0.8).

Training-size ∆PNN,∆P (X) ∆PNN,ϵ∆P (X) ∆PNN,∆P
(
X0D)

∆PNN,ϵ∆P

(
X0D)

X1 X2 X1 X2 X3 X1 X2 X3 X1 X2 X3

Bias

1 0.017 0.018 0.014 0.016 0.020 0.013 0.014 0.018 0.013 0.015 0.019
2 0.017 0.017 0.014 0.015 0.018 0.013 0.014 0.016 0.013 0.014 0.018
3 0.018 0.016 0.015 0.015 0.017 0.013 0.013 0.017 0.013 0.014 0.017

Std error

1 0.125 0.118 0.127 0.127 0.128 0.128 0.129 0.129 0.129 0.130 0.129
2 0.125 0.127 0.128 0.129 0.128 0.130 0.129 0.128 0.130 0.130 0.129
3 0.126 0.127 0.129 0.128 0.127 0.130 0.130 0.129 0.131 0.130 0.129

Mean absolute error

1 0.080 0.076 0.078 0.077 0.079 0.077 0.076 0.077 0.078 0.077 0.077
2 0.078 0.078 0.078 0.078 0.078 0.078 0.077 0.077 0.079 0.077 0.078
3 0.078 0.078 0.078 0.077 0.078 0.079 0.077 0.077 0.079 0.077 0.078

Accuracy

1 81.400 82.600 83.600 82.400 82.000 82.200 82.600 82.000 82.400 82.600 82.000
2 82.000 82.400 82.400 82.600 82.200 83.400 82.600 82.000 83.200 82.800 82.000
3 82.200 83.000 82.200 82.800 82.000 83.200 82.200 82.000 83.000 82.400 82.000

Sensitivity

1 83.077 84.615 83.846 84.615 84.615 80.000 83.077 84.615 83.077 84.615 84.615
2 83.846 83.846 83.846 84.615 84.615 83.846 84.615 84.615 83.077 84.615 84.615
3 83.846 84.615 84.615 84.615 84.615 81.538 84.615 84.615 82.308 84.615 84.615

Specificity

1 80.811 81.892 83.514 81.622 81.081 82.973 82.432 81.081 82.162 81.892 81.081
2 81.351 81.892 81.892 81.892 81.351 83.243 81.892 81.081 83.243 82.162 81.081
3 81.622 82.432 81.351 82.162 81.081 83.784 81.351 81.081 83.243 81.622 81.081

A.3. Performance on test and training sets

The mean absolute error and mean squared error for the prediction of pressure drop across stenotic and healthy
egments are presented in Fig. A.2. In contrast to the values reported in the main manuscript where the NNs were
valuated on the test set only (solid lines), here we have also included error metrics for the evaluation of the NNs
n the learning sets (dashed lines).

.4. Principal component analysis of radius data

For each segment, the cross-sections were extracted corresponding to each centerline point using VMTK [31],
s visualized in Fig. A.3. The cross-sectional area was used to calculate the radius of an equivalent axisymmetric
ross-section, r for each centerline point. The minimum and maximum diameter (dmin and dmax) for each centerline
oint was extracted and converted to minimum and maximum radius values by division of a factor of two. The
adius data for each segment was then re-sampled using 100 points to produce the vectors

r⃗ =
[
r1, r2 . . . r99, r100

] 1
r1

(11a)

e⃗c =

[
dmin ,

dmin . . .
dmin ,

dmin
]

, (11b)
dmax 1 dmax 2 dmax 99 dmax 100
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Fig. A.2. Error metrics for the NN models for prediction of pressure losses across stenotic segments (top) and healthy segments (bottom)
reported in terms of the mean absolute error and mean squared error. The error metrics are reported for both the test set (solid lines) and
the learning sets (dashed lines).

where r⃗ represent a radius vector and e⃗c an eccentricity vector. For simplicity we consider a vector of observations
(i.e. either e⃗c or r⃗ ) and denote it x⃗ . All coronary segments (performed individually for stenotic and healthy segments)
were then considered and a matrix of row vector observations was assembled:

X⃗ =

⎡⎢⎣ x⃗1

...

x⃗ N

⎤⎥⎦ . (12)

The matrix of observations was then normalized by subtracting the columns mean and a principal component
analysis was performed for both radius and eccentricity [40]. The PCA transforms the data onto a new coordinate
system for which the first axis explains the maximum amount of information (variation) in the data. All axes are
orthogonal and the remaining axis explains decreasing amount of information/variation.

For each training set and validation split considered in this study, the learning data was used to generate the
PCA transformation. This transformation was then used to project the vector of observations onto the principal
axis/component, and the value/score along the first axis, was extracted for the radius and eccentricity data, i.e.

PC Ar,1, PC Aec,1.

27



F.E. Fossan, L.O. Müller, J. Sturdy et al. Computer Methods in Applied Mechanics and Engineering 384 (2021) 113892

R

Fig. A.3. Extraction of cross-sections and relevant geometrical data along the centerline of a stenotic segment.
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