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Abstract
We consider a sharp interface formulation for the multi-phase Mullins–Sekerka flow.
The flow is characterized by a network of curves evolving such that the total surface
energy of the curves is reduced, while the areas of the enclosed phases are conserved.
Making use of a variational formulation, we introduce a fully discrete finite element
method. Our discretization features a parametric approximation of the moving inter-
faces that is independent of the discretization used for the equations in the bulk. The
scheme can be shown to be unconditionally stable and to satisfy an exact volume con-
servation property. Moreover, an inherent tangential velocity for the vertices on the
discrete curves leads to asymptotically equidistributed vertices, meaning no remesh-
ing is necessary in practice. Several numerical examples, including a convergence
experiment for the three-phase Mullins–Sekerka flow, demonstrate the capabilities of
the introduced method.

Mathematics Subject Classification 35K55 · 35R35 · 65M12 · 65M50 · 65M60 ·
74E10 · 74E15 · 80A22

1 Introduction

In this paper, we consider the problem of networks of curves moving under the multi-
phase Mullins–Sekerka flow, see, e.g., [14]. These networks feature triple junctions,
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Fig. 1 Three open curves with
two triple junctions

at which certain balance laws need to hold. The network depicted in Fig. 1 consists of
three time dependent curves �i (t), i = 1, 2, 3, that meet at two triple junction points
T1(t) and T2(t). We assume that the curve network�(t) := ∪3

i=1�i (t) lies in a domain
� ⊂ R

2 for all times t ∈ [0, T ], and it partitions � into the three subdomains � j (t),
j = 1, 2, 3. The three domains correspond to different phases in the multi-component
system. The evolution of the interfaces �1(t), �2(t), and �3(t) is driven by diffusion.
As in [14], given a time T > 0 and the hyperplane T� := {u ∈ R

3 | ∑3
j=1 u j = 0},

we introduce a vector of chemical potentials w : (0, T ]×� → T� which fulfills the
quasi-static diffusion equation for j = 1, 2, 3 and t ∈ (0, T ],

�w = 0 in � j (t) (1.1a)

together with

∂�ν�
w = 0 on ∂�, (1.1b)

where �ν� denotes the outer unit normal vector to ∂�.
To close the system, we need boundary conditions on �(t) and on T1(t) and T2(t).

These boundary conditions are given by a Stefan-type kinetic condition and theGibbs–
Thomson law on the moving interfaces, and Young’s law at the triple junctions, see
[14]. The kinetic condition reads

[∇w]�ν = −V [χ] on �(t), (1.1c)

where χ = (χ1, χ2, χ3)
T denotes the vector which consists of the characteristic

functions χ j = X� j (t) of � j (t), �ν is the unit normal vector on �(t), and V is the

velocity of �(t) in the direction of �ν. We write �ν = ∑3
i=1 �νiX�i (t) and use this

convention for quantities defined on �(t) throughout the paper. The orientation of the
three normal vectors is shown in Fig. 1. In addition, the quantity [q] represents the
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jump of q across �(t) in the direction of �ν defined by [q](�x) := limε↘0{q(�x + ε�ν) −
q(�x − ε�ν)}. Furthermore, the Gibbs–Thomson equations can be written as

w · [χ] = σκ on �(t), (1.1d)

where κ denotes the curvature of �(t) (well-defined on the interiors of �i (t)), and
σ = ∑3

i=1 σiX�i (t) is a surface tension coefficient on �(t). Our sign convention is
such that unit circles have curvature κ = −1, which is different to the one used in
[14]. Finally, denoting by �μi , the outer unit co-normal to �i (t), we further require
Young’s law, which is a balance of force condition at the triple junction as follows:

3∑

i=1

σi �μi = �0 on ∂�1(t) ∩ ∂�2(t) ∩ ∂�3(t). (1.1e)

In order to be able to fulfill this condition, we require σ1 ≤ σ2 + σ3, σ2 ≤ σ1 + σ3
and σ3 ≤ σ1 + σ2. It can be shown that solutions to (1.1) reduce the weighted length∑3

i=1 σi |�i (t)| of the curve network, while conserving the areas of the subdomains
�1(t) and �2(t) (and hence trivially also of �3(t)), see Sect. 2 for the precise details.
Our aim in this paper is to introduce a numerical method that preserves these two
properties on the discrete level.

Prescribing an initial condition �(0) = �0 for the interface, we altogether obtain
the following system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

�w = 0 in (� \ �(t)) × (0, T ],
w · [χ] = σκ on �(t), t ∈ (0, T ],
[∇w] �ν = −V [χ] on �(t), t ∈ (0, T ],
∂�ν�

w = 0 on ∂� × (0, T ],
∑3

i=1 σi �μi = �0 on ∂�1(t) ∩ ∂�2(t) ∩ ∂�3(t), t ∈ (0, T ],
�(0) = �0.

(1.2)

The system (1.2) at present is written for the setup from Fig. 1, i.e. a network of
three curves, meeting at two triple junctions and partitioning � into three phases. We
will later generalize this to an arbitrary network of curves. The simplest case is given
by a single closed curve that partitions the domain into two phases. Then we obtain the
classical two phaseMullins–Sekerka problem, see [18] and the references given below.
Indeed, let (w, {�(t)}0≤t≤T ), withw = (w1, w2)

T , be a solution to the corresponding
problem (1.2) with σ = 1, and let �ν point into �2(t), the interior domain of �(t).
Then we have [χ] = (−1, 1)T on �(t), and it holds that w = w2 − w1 is a solution
to the system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�w = 0 in (� \ �(t)) × (0, T ],
w = κ on �(t), t ∈ (0, T ],
1
2 [∇w] · �ν = −V on �(t), t ∈ (0, T ],
∂�ν�

w = 0 on ∂� × (0, T ].
(1.3)
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The multi-phase Mullins–Sekerka problem (1.2) arises naturally as the sharp
interface limit of a nondegenerate multi-component Cahn–Hilliard equation. Let
� := {u ∈ R

3 | ∑3
j=1 u j = 1} and let T �̃ be the family of all functionsw : � → R

3

such that Im (w) ⊂ T�. Let ψ : R
3 → R be a potential whose restriction to �

has exactly three distinct and strict global minima, say pi ∈ �, i = 1, 2, 3, with
ψ( p1) = ψ( p2) = ψ( p3). Let F : R

3 → R
3 be the projection of ∇ψ onto T �̃.

According to [14, Section 2], the system (1.2) is derived as the limit with ε → 0 of
a chemical system consisting of three species governed by the vector-valued Cahn–
Hilliard equation whose form reads as:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tu = �w in � × (0, T ],
w = −ε�u + 1

ε
F(u) in � × (0, T ],

∂�ν�
u = ∂�ν�

w = 0 on ∂� × (0, T ],
u(0, ·) = u0 in �,

(1.4)

where u0 : � → � denotes the initial distribution of each component and
u : � × [0, T ] → � and w : � × (0, T ] → T� indicate the concentration and
the chemical potential of each component in time, respectively. A distributional solu-
tion concept to (1.2) was proposed, and its existence was established via an implicit
time discretization and under the assumption that no interfacial energy is lost in the
limit in the time discretization (see [14, Definition 4.1, Theorem 5.8]). See [28] for a
related work which treated the case without triple junctions and with a driving force.

Compared to the multi-phase Mullins–Sekerka problem, the binary case, namely
the two-phase case, has been well studied so far. For classical solutions, Chen et al.
[18] showed the existence of a classical solution to the Mullins–Sekerka problem
local-in-time in the two-dimensional case, whereas Escher and Simonett [22] gave
a similar result in the general dimensional case. When it comes to the notion of
weak solutions, Luckhaus and Sturzenhecker [33] established the existence of weak
solutions to (1.2) in a distributional sense. Therein, the weak solution was obtained
as a limit of a sequence of time discrete approximate solutions under the no mass
loss assumption. The time implicit scheme is the basis of the approach in [14]. After
that, Röger [40] removed the technical assumption of no mass loss in the case when
the Dirichlet–Neumann boundary condition is imposed by using geometric measure
theory. Recently, researches which treat the boundary contact case gradually appear.
Garcke and Rauchecker [27] considered a stability analysis in a curved domain in R

2

via a linearization approach. Hensel and Stinson [29] proposed a varifold solution to
(1.2) by starting from the energy dissipation property. For a gradient flow aspect of
the Mullins–Sekerka flow, see e.g., [42, Section 3.2].

The numerical scheme that we propose in this paper is based on the BGN method,
a parametric finite element method that allows the variational treatment of triple junc-
tions and was first introduced by Barrett, Garcke, and Nürnberg in [6, 7]. We also refer
to the review article [9] for more details on the BGN method, including in the context
of the standard Mullins–Sekerka problem (1.3). Alternative front-tracking methods
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for geometric flows of curve networks have been considered in, e.g., [15, 35, 38, 39,
43].

Let us briefly review numerical methods being available in the literature for the
Mullins–Sekerka problem and for its diffuse interface model, the multi-component
Cahn–Hilliard equation (1.4). To the best of our knowledge, there are presently no
sharp interface methods for the numerical approximation of the multi-phase Mullins–
Sekerka problem. For the boundary integralmethod for the two-phase case,we refer the
reader to [10, 11, 16, 34, 44]. A level set formulation of moving boundaries together
with the finite difference method was proposed in [17]. For an implementation of
the method of fundamental solutions for the Mullins–Sekerka problem in 2D, see
[23]. For the parametric finite element method in general dimensions, see [8, 37].
Numerical analysis of the scalar Cahn–Hilliard equation is dealt with in the works [3,
4, 13, 21]. Feng and Prohl [25] proposed a mixed fully discrete finite element method
for the Cahn–Hilliard equation and provided error estimates between the solution
of the Mullins–Sekerka problem and the approximate solution of the Cahn–Hilliard
equation which are computed by their scheme. The established error bounds yielded
a convergence result in [26]. Aside from the sharp interface model, the Cahn–Hilliard
equation for the multi-component case has been computed in several works, see [5,
12, 24, 31, 36]. The multi-component Cahn–Hilliard equation on surfaces has recently
been considered in [32].

This paper is organized as follows. In the first part, we focus on the three-phase case,
as outlined in the introduction. In Sect. 2, we show a curve-shortening property and
an area-preserving property of strong solutions to the system. In Sect. 3, we introduce
a weak formulation of the system, which in Sect. 4 will then be approximated with
the help of an unfitted parametric finite element method. The scheme, which is linear,
can be shown to be unconditionally stable. Section5 is devoted to discussing solution
methods for the linear systems that arise at each time level. In Sect. 6, we adapt our
approximation to allow for an exact area-preservation property on the fully discrete
level, leading to a nonlinear scheme. Section7 is devoted to generalizations of the
problem formulation and our numerical approximation to the generalmulti-phase case.
Finally, we will show several results of numerical computation in Sect. 8, including
convergence experiments for a constructed solution in the three-phase case.

2 Mathematical properties

In this section, we shall present two important properties of strong solutions to (1.2).

Proposition 2.1 (Curve shortening property of strong solutions) Assume that (w,

{�(t)}0≤t≤T ) is a solution to (1.2). Then it holds that

d

dt
|�(t)|σ +

∫

�

|∇w|2 dL2 = 0,
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where we have defined the weighted length |�(t)|σ = ∑3
i=1 σi |�i (t)| = ∑3

i=1 σi∫
�i (t)

1 dH1. Here dL2 and dH1 refer to integration with respect to the Lebesgue

measure and the one-dimensional Hausdorff measure in R
2, respectively.

Proof Since the curvature is the first variation of the curves’ length in the normal
direction, we deduce, on recalling (1.1d) and (1.1c), that

d

dt

3∑

i=1

σi |�i (t)| = −
3∑

i=1

σi

∫

�i (t)
κi Vi dH1 = −

∫

�(t)
σκV dH1 = −

∫

�(t)
w · [χ]V dH1

=
∫

�(t)
w · [∇w]�ν dH1 =

3∑

j=1

∫

�(t)
w j [∇w j ] · �ν dH1. (2.1)

Now for each 1 ≤ j ≤ 3 it follows from integration by parts, (1.1a) and (1.1b) that

∫

�

|∇w j |2 dL2 =
3∑

k=1

∫

�k (t)
|∇w j |2 dL2 = −

∫

�(t)
w j [∇w j ] · �ν dH1. (2.2)

Summing (2.2) for j = 1, 2, 3 and combining with (2.1) yields the desired result. ��
Proposition 2.2 (Area preserving property of strong solutions) Let �1(t),�2(t), and
�3(t) be the domains bounded by�2(t)∪�3(t),�1(t)∪�3(t), and�1(t)∪�2(t)∪∂�,
respectively, see Fig.1. Then for any solution to (1.2), it holds that

d

dt
|� j (t)| = 0, j = 1, 2, 3.

Proof We first deduce from the motion law (1.1c) that

d

dt
|�1(t)| =

∫

�2(t)
V2 dH1 +

∫

�3(t)
−V3 dH1

=
∫

�2(t)
− [χ1] [∇w1] · �ν dH1 +

∫

�3(t)
[χ1] [∇w1] · �ν dH1

=
∫

�2(t)
− [∇w1] · �ν dH1 +

∫

�3(t)
− [∇w1] · �ν dH1

=
∫

∂�1(t)∩�(t)
− [∇w1] · �ν dH1 =

∫

�(t)
− [∇w1] · �ν dH1.

(2.3)

Here,we note that∇w1 does not jumpover�1(t) to derive the last equality.Meanwhile,
integration by parts with (1.1a) and (1.1b) shows

0 =
∫

�(t)
�w1 dL2
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=
∫

�1(t)
�w1 dL2 +

∫

�\�1(t)
�w1 dL2 =

∫

�(t)
− [∇w1] · �ν dH1. (2.4)

Combining (2.3) and (2.4) gives the assertion. The cases for j = 2, 3 can be shown
in the same manner. ��

3 Weak formulation

Let us derive a weak formulation for (1.2). In the sequel, we often abbreviate � j (t)
and �i (t) as� j and �i , for simplicity. Now 1 ≤ j ≤ 3. Then, testing the first equation
of (1.2) with ϕ ∈ H1(�), we deduce similarly to (2.4) that

0 =
∫

�

�w jϕ dL2

=
3∑

k=1

∫

�k

�w jϕ dL2 =
3∑

k=1

∫

�(t)
− [∇w j

] · �νϕ dH1 −
∫

�

∇w j · ∇ϕ dL2.

Then, we obtain from the second equality of (2.3) that
⎧
⎪⎪⎨

⎪⎪⎩

∫
�2

V2ϕ dH1 − ∫
�3

V3ϕ dH1 − ∫
�

∇w1 · ∇ϕ dL2 = 0,
∫
�3

V3ϕ dH1 − ∫
�1

V1ϕ dH1 − ∫
�

∇w2 · ∇ϕ dL2 = 0,
∫
�1

V1ϕ dH1 − ∫
�2

V2ϕ dH1 − ∫
�

∇w3 · ∇ϕ dL2 = 0.

(3.1)

Hence, w ∈ T �̃ ∩ [H1(�)]3 is such that

∫

�

∇w : ∇ϕ −
∑

(i, j,k)∈

∫

�i

Vi (ϕ j − ϕk) dH1 = 0

∀ ϕ ∈ T �̃ ∩ [H1(�)]3, (3.2)

where

 := {(1, 3, 2), (2, 1, 3), (3, 2, 1)}. (3.3)

The Gibbs–Thomson relation (1.1d) is encoded as follows:
⎧
⎪⎪⎨

⎪⎪⎩

∫
�1

(w2 − w3 + σ1κ1)ξ dH1 = 0 ∀ξ ∈ L2(�1),∫
�2

(w3 − w1 + σ2κ2)ξ dH1 = 0 ∀ξ ∈ L2(�2),∫
�3

(w1 − w2 + σ3κ3)ξ dH1 = 0 ∀ξ ∈ L2(�3).

(3.4)

Finally,we give aweak formulation of theweighted curvature vectorκσ := σκ, which
means that κσ = σiκi on �i (t) for i = 1, 2, 3. Let �Id denote the identity map in R

2.
Then, it holds that σ�s �Id = κσ �ν on �, see [20]. Take a test function �η ∈ H1(�; R

2)
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with �η |�1
= �η |�2

= �η |�3
on ∂�1 ∩ ∂�2 ∩ ∂�3. Then applying integration by parts

gives
∫

�

κσ �ν · �η dH1 =
∫

�

σ�s �Id · �η dH1 =
3∑

i=1

∫

�i

σi�s �Id · �η dH1

=
3∑

i=1

(

σi

∫

∂�i

(∇s �Id �η) · �μi dH0 − σi

∫

�i

∇s �Id · ∇s �η dH1

)

=
2∑

j=1

{(
3∑

i=1

σi �μi

)

· (∇s �Id �η)

}

|T j −
3∑

i=1

σi

∫

�i

∇s �Id · ∇s �η dH1

= −
∫

�

σ∇s �Id · ∇s �η dH1. (3.5)

Here, we have used Young’s law (1.1e) to get the last equality. For later use, we define
inner products on � and � as follows:

〈u, v〉� :=
∫

�

u v dL2 for u, v ∈ L2(�), 〈u, v〉� :=
∫

�

u v dH1 for u, v ∈ L2(�).

Let us summarize the weak formulation of the system (1.2) as follows, where we recall
(3.3).
[Motion law] For all ϕ ∈ T �̃ ∩ [H1(�)]3,

〈∇w,∇ϕ〉� −
∑

(i, j,k)∈

〈
Vi , ϕ j − ϕk

〉
�i

= 0. (3.6a)

[Gibbs–Thomson law] For all ξ ∈ L2(�),

〈κσ , ξ 〉� −
∑

(i, j,k)∈

〈
w j − wk, ξi

〉
�i

= 0. (3.6b)

[Curvature vector] For all �η ∈ H1(�; R
2) with �η1 = �η2 = �η3 on ∂�1 ∩ ∂�2 ∩ ∂�3,

〈
κσ �ν, �η〉

�
+
〈
σ∇s �Id,∇s �η

〉

�
= 0. (3.6c)

4 Finite element approximation

To approximate theweak solution (w, V , κσ ) of (1.2), we use ideas from [6, (2.30a,b)]
and [37, Section 3]. Let the time interval [0, T ] be split into M sub-intervals [tm−1, tm]
for m = 1, · · · , M whose lengths are equal to τm . Then, given a triplet of polygonal
curves �0 = (�0

1, �
0
2, �

0
3), our aim is to find time discrete triplets �1, · · · , �M gov-

erned by discrete analogues of (3.1, (3.4)) and (3.5). For each m ≥ 0 and 1 ≤ i ≤ 3,
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�m
i = �Xm

i (I ) is parameterized by I = [0, 1] � ρ �→ �Xm
i (ρ) ∈ R

2 and I is split into

sub-intervals as I = ∪Ni
j=1[qi, j−1, qi, j ], where Ni ∈ N≥2. Then, we note that

〈u, v〉
�m
i

=
∫

I
u v |( �Xm

i )s | dL1.

Set �qmi, j := �Xm
i (qi, j ). Let be a of triangulation of� and let Sm be the associated scalar-

and vector-valued finite element spaces be defined by

Sm := {
v ∈ C(�) |v |o is affine ∀o ∈ Tm} ,

Sm := [Sm]3 and Sm� := Sm ∩ T �̃.

Let V h
i be the set of all piecewise continuous functions on I which are affine on

each sub-interval [qi, j−1, qi, j ], and let πh
i : C(I ) → V h

i be the associated standard
interpolation operators for 1 ≤ i ≤ 3. Similarly, V h

i denotes the set of all vector valued

functions such that each element belongs to V h
i . Let {�i, j }Ni

j=1 be the standard basis

of V h
i for 1 ≤ i ≤ 3, namely �i, j (qi,k) = δ jk holds. We set V (�m) := ⊗3

i=1 V
h
i

and

V (�m) :=
{

( �Xm
1 , �Xm

2 , �Xm
3 ) ∈

3⊗

i=1

V h
i | �Xm

1 = �Xm
2 = �Xm

3 on ∂ I

}

.

Let emi, j denote the edge [�qmi, j−1, �qmi, j ] := {(1 − s)�qmi, j−1 + s �qmi, j | 0 ≤ s ≤ 1}. We
define the normal vector to each edge of �m

i by

�νm
i, j− 1

2
:= (�qmi, j − �qmi, j−1)

⊥

|emi, j |
for 1 ≤ j ≤ Ni ,

where
(a
b

)⊥ = (−b
a

)
denotes the anti-clockwise rotation of �p through π

2 and |emi, j | is
the length of the interval emi, j . Let �νmi be the normal vector field on �m

i which is equal
to �νm

i, j− 1
2
on each edge emi, j (1 ≤ j ≤ Ni ).

For two piecewise continuous functions on I , which may jump across the points
qi, j (1 ≤ j ≤ Ni ), we define the mass lumped inner product

〈u, v〉h
�m
i

:= 1

2

Ni∑

j=1

|emi, j |((u v)(q−
i, j ) + (u v)(q+

i, j−1)),

where u(q−
i, j ) := lim[qi, j−1,qi, j ]�y→qi, j u(y) and u(q+

i, j ) := lim[qi, j ,qi, j+1]�y→qi, j u(y)
for each 1 ≤ i ≤ 3.We extend these definitions to vector- and tensor-valued functions.
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Moreover, we define

〈u, v〉(h)
�m :=

3∑

i=1

〈
u |�m

i
, v |�m

i

〉(h)

�m
i

,

where here and throughout, the notation ·(h) means an expression with or without the
superscript h. The vertex normals �ωm

i ∈ V h
i on �m

i are defined through the lumped
L2 projection

〈
�ωm
i , �ξ

〉h

�m
i

=
〈
�νmi , �ξ

〉

�m
i

for ∀�ξ ∈ V h
i , (4.1)

see [9, Definition 51].
We make an assumption on the discrete vertex normals �ωm , following [6, Assump-

tion A] and [9, Assumption 108], which will guarantee well-posedness of the system
of linear equations:

Assumption 1 Assume that span { �ωm
i, j }1≤ j≤Ni−1 �= �{0} for 1 ≤ i ≤ 3 and

span

⎧
⎨

⎩

∑

(i, j,k)∈

〈 �ωm
i , ϕ j − ϕk

〉(h)

�m
i

| ϕ ∈ Sm�

⎫
⎬

⎭
= R

2.

Here, for �ξ ∈ V h
i and ϕ ∈ Sm , we use the slight abuses of notation

〈�ξ, ϕ
〉

�m
i

=
∫
�m
i

�ξϕ dH1 and
〈�ξ, ϕ

〉h

�m
i

= ∫
�m
i

πh[�ξϕ] dH1.

We remark that the first condition basically means that each of the three curves has
at least one nonzero inner vertex normal, something that can only be violated in very
pathological cases. The proof of Theorem 4.1 shows that it is actually sufficient to
require this for just two out of the three curves, but for simplicity we prefer to state
the stronger assumption. The second condition in Assumption 1, on the other hand, is
a very mild constraint on the interaction between bulk and interface meshes. In fact, it
can only be violated if all the vectors in the set are linearly dependent, which happens,
for example, if the three curves are straight lines that lie on top of each other.

Given ( �Xm, κm
σ ) ∈ V (�m) × V (�m), we find (Wm+1, �Xm+1, κm+1

σ ) ∈ Sm� ×
V (�m) × V (�m) such that the following conditions hold:
[Motion law] For all ϕ ∈ Sm� ,

〈
∇Wm+1,∇ϕ

〉

�
−

∑

(i, j,k)∈

〈

πh
i

[ �Xm+1
i − �Xm

i

τm
· �ωm

i

]

, ϕ j −ϕk

〉(h)

�m
i

=0. (4.2a)
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[Gibbs–Thomson law] For all ξ ∈ V (�m),

〈
κm+1
σ , ξ

〉h

�m
−

∑

(i, j,k)∈

〈
Wm+1

j − Wm+1
k , ξi

〉(h)

�m
i

= 0. (4.2b)

[Curvature vector] For all �η ∈ V (�m),

〈
κm+1
σ �ωm, �η

〉h

�m
+
〈
σ∇s �Xm+1,∇s �η

〉

�m
= 0. (4.2c)

We stress that (4.2) encodes two different schemes: One that uses mass lumping
in the two bulk-surface terms in (4.2a) and (4.2b), and one that uses true integration
in both. The interpolation operator πh

i in (4.2a) is superfluous in the former case,
but necessary for the stability proof of the latter. Writing (4.2) as above allows for
a compact presentation. Observe that the implementation of the scheme with mass-
lumping is far easier, since there bulk finite element functions only need to be evaluated
at the vertices of the curve network. We refer to [8] for more details.

Theorem 4.1 (Existence and uniqueness) Let Assumption 1 hold and let m ≥ 0. Then
there exists a unique solution (Wm+1, �Xm+1, κm+1

σ ) ∈ Sm� × V (�m) × V (�m) to
(4.2).

Proof Since (4.2a), (4.2b) and (4.2c) is a linear system with the same number of
unknowns and equations, existence follows from uniqueness. To show the latter, it is
sufficient to prove that only the zero solution solves the homogeneous system. Hence
let (W , �X , κσ ) ∈ Sm� × V (�m) × V (�m) be such that

τm
〈∇W ,∇ϕ

〉
�

−
∑

(i, j,k)∈

〈
πh
i

[ �Xi · �ωm
i

]
, ϕ j − ϕk

〉(h)

�m
i

= 0 ∀ϕ ∈ Sm�, (4.3a)

〈κσ , ξ 〉h�m −
∑

(i, j,k)∈

〈
Wj − Wk, ξi

〉(h)

�m
i

= 0 ∀ξ ∈ V (�m), (4.3b)

〈
κσ �ωm, �η〉h

�m +
〈
σ∇s �X ,∇s �η

〉

�m
= 0 ∀�η ∈ V (�m). (4.3c)

Choosing ϕ = W in (4.3a), ξ = πh[ �X · �ωm] in (4.3b) and �η = �X ∈ V (�m) in (4.3c)
gives

0 = τm‖∇W ‖22 −
〈
κσ �ωm, �X

〉h

�m
= τm‖∇W ‖22 +

〈
σ∇s �X ,∇s �X

〉

�m
. (4.4)

Thus, we see that Wi = Ci ∈ R and �Xi = �Xc ∈ R
2, for 1 ≤ i ≤ 3, are constant

functions, with
∑3

i=1 Ci = 0. We deduce from (4.3a) that

�Xc ·
∑

(i, j,k)∈

〈 �ωm
i , ϕ j − ϕk

〉(h)

�m
i

= 0 ∀ϕ ∈ Sm�, (4.5)
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and so the second condition in Assumption 1 yields that �X = �Xc = �0. Moreover, it
follows from (4.3b) that κσ,1 = C3−C2, κσ,2 = C1−C3, and κσ,3 = C2−C1 are also
equal to constants. We now choose as a test function in (4.3c) the function �η ∈ V (�m)

with �ηi = κσ,i �zmi , where �zmi = ∑Ni−1
j=1 �ωm

i, j�i, j for i = 1, 2, 3. Hence, we obtain

3∑

i=1

(κσ,i )
2 〈�zmi , �zmi

〉h
�m
i

= 0,

so that the first condition in Assumption 1 implies that κσ,i = 0 for i = 1, 2, 3, i.e.
κσ = 0. Since C1 = C2 = C3, they must all be zero, and so W = 0 also follows.
Hence, we have shown the existence of a unique solution (Wm+1, �Xm+1, κm+1

σ ) ∈
Sm� × V (�m) × V (�m) to (4.2). ��

Before proving the stability of our scheme, we recall the following lemma from [9,
Lemma 57] without the proof.

Lemma 4.2 Let �h be a polygonal curve in R
2. Then, for any �X ∈ V (�h), it holds

that
〈
∇s �X ,∇s( �X − �I d)

〉

�h
≥ | �X (�h)| − |�h | +

〈
|∇s �X | − 1, |∇s �X | − 1

〉

�h
,

where |�h | and | �X (�h)| are the lengths of �h and �X (�h), respectively.

Theorem 4.3 (Unconditional stability) Let m ≥ 0 and let (Wm+1, �Xm+1, κm+1
σ ) ∈

Sm� ×V (�m)×V (�m) be a solution to (4.2). Then the following estimate is satisfied:

|�m+1|σ + τm‖∇Wm+1‖22 ≤ |�m |σ ,

where we recall that |�m |σ = ∑3
i=1 σi |�m

i |.
Proof We choose ϕ = Wm+1 in (4.2a) and ξ = πh

[ �Xm+1− �Xm

τm
· �ωm

]
in (4.2b) to

obtain

‖∇Wm+1‖22=
〈

κm+1
σ , πh

[ �Xm+1 − �Xm

τm
· �ωm

]〉h

�m

= 1

τm

〈
κm+1
σ �ωm, �Xm+1− �Xm

〉h

�m
.

(4.6)

Choosing �η = �Xm+1 − �Xm ∈ V (�m) in (4.2c), gives

〈
κm+1
σ �ωm, �Xm+1 − �Xm

〉h

�m
= −

〈
σ∇s �Xm+1,∇s( �Xm+1 − �Xm)

〉

�m
. (4.7)

We compute from (4.6) and (4.7), on recalling Lemma 4.2, that

τm‖∇Wm+1‖22 = −
〈
σ∇s �Xm+1,∇s( �Xm+1 − �Xm)

〉

�m
≤ |�m |σ − |�m+1|σ .
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This proves the desired result. ��
Remark 4.4 Similar stability results for the discretization of other gradient flows of
curve networks can be found in [6, 7]. For the two-phase Mullins–Sekerka problem,
related stability results were derived in [8, 37].

5 Solution of the linear system

In this section, we discuss solution methods for the systems of linear equations arising
from (4.2) at each time level. To this end, we make use of ideas from [6, 8]. Here
the crucial idea is to avoid having to work with the trial and test spaces V (�m) and
Sm� directly, and rather employ a technique that is similar to a standard treatment of
periodic boundary conditions for ODEs and PDEs. In particular, following [6, (2.44)]
we introduce the orthogonal projectionsP : [V (�m)]2 → V (�m) andQ : Sm → Sm� .
On letting 1 = (1, 1, 1)T , it is easy to see that for W ∈ Sm it holds that

QW = W − W · 1
1 · 1 1

point-wise in �.
Now, given �Xm ∈ V (�m), let (Wm+1, κm+1

σ , �Xm + δ �Xm+1) ∈ Sm� × V (�m) ×
V (�m)be the unique solution to (4.2)whose existence has been proven inTheorem4.1.
Let N := ∑3

i=1(Ni + 1) be the sum of the vertices on each individual curve, and let
Km

� be the number of vertices of the mesh Tm inside�. From now on, as no confusion
can arise, we identify (Wm+1, κm+1

σ , δ �Xm+1) with their vectors of coefficients with
respect to the bases {�m

i }1≤i≤Km
�
and {{�i, j }1≤ j≤Ni }3i=1 of the unconstrained spaces

Sm and V (�m). In addition, we let P : (R2)N → {(�z1, �z2, �z3) ∈ (R2)N | [�z1]0 =
[�z2]0 = [�z3]0, [�z1]N1 = [�z2]N2 = [�z3]N3} be the Euclidean space equivalent of P , and
similarly for the equivalent Q : (R3)K

m
� → W := {(v1, v2, v3)T ∈ (R3)K

m
� | v1 +

v2 + v3 = 0 ∈ R
Km

� } of Q.
Then the solution to (4.2) can be written as (QWm+1, κm+1

σ , �Xm + Pδ �Xm+1) for

any solution of the linear system

⎛

⎜
⎝

τmQA�Q O Q �NT
�,�P

B�,�Q C� O
O P �D� PE�P

⎞

⎟
⎠

⎛

⎝
Wm+1

κm+1
σ

δ �Xm+1

⎞

⎠ =
⎛

⎜
⎝

O
O

−PE�P �Xm

⎞

⎟
⎠ , (5.1)

where A� ∈ R
3Km

�×3Km
� , �N�,� ∈ (R2)N×3Km

� , B�,� ∈ R
N×3Km

� ,C� ∈ R
N×N , �D� ∈

(R2)N×N and E� ∈ (R2×2)N×N are defined by

A� :=
⎛

⎝
A O O
O A O
O O A

⎞

⎠ , �N�,� :=
⎛

⎝
O �N1 − �N1

− �N2 O �N2
�N3 − �N3 O

⎞

⎠ , B�,� :=
⎛

⎝
O B1 −B1

−B2 O B2
B3 −B3 O

⎞

⎠ ,
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C� :=
⎛

⎝
C1 O O
O C2 O
O O C3

⎞

⎠ , �D� :=
⎛

⎝

�D1 O O
O �D2 O
O O �D3

⎞

⎠ , E� :=

⎛

⎜
⎜
⎝

σ1E1 O O

O σ2E2 O

O O σ3E3

⎞

⎟
⎟
⎠ ,

with

[A]i, j :=
〈
∇�m

j ,∇�m
i

〉
,

[ �Nc

]

l,i
:=

〈
�m

c,l , �
m
i

〉(h)

�m
c

�ωm
c,l ,

[Bc]k, j :=
〈
�m

j ,�m
c,k

〉(h)

�m
c

, [Cc]k,l :=
〈
�m

c,l ,�
m
c,k

〉h

�m
c

,

[ �Dc

]

k,l
:=

〈
�m

c,l ,�
m
c,k

〉h

�m
c

�ωm
c,l ,

[

Ec

]

k,l
:=

〈
∇s�

m
c,l ,∇s�

m
c,k

〉

�m
c

,

(5.2)

for each 1 ≤ c ≤ 3. The advantage of the system (5.1) over a naive implementation
of (4.2) is that complications due to nonstandard finite element spaces are completely
avoided. A disadvantage is, however, that the system (5.1) is highly singular, in that
due to the presence of the projections the dimension of its kernel is larger than the
dimension of the scalar bulk finite element space Sm . This makes it difficult to solve
(5.1) in practice. A more practical formulation can be obtained by eliminating one of
the components of Wm+1 completely. In particular, on recalling that Wm+1 · 1 = 0,
we can reduce the unknown variablesWm+1 ∈ (R3)K

m
� to (Wm+1

1 ,Wm+1
2 ) ∈ (R2)K

m
�

by introducing the linear map Q̂ : (R2)K
m
� → W ⊂ (R3)K

m
� defined by

Q̂ :=
⎛

⎝
IKm

�
O

O IKm
�−IKm

�
−IKm

�

⎞

⎠ ,

where IM denotes the identity matrix of size M for M ∈ N.
Then the solution to (4.2) can be written as (Q̂Ŵ

m+1
, κm+1

σ , �Xm + Pδ �Xm+1) for

any solution of the reduced linear system

⎛

⎜
⎝

Â� O N̂T
�,�P

B̂�,� C� O
O P �D� PE�P

⎞

⎟
⎠

⎛

⎝
Ŵ

m+1

κm+1
σ

δ �Xm+1

⎞

⎠ =
⎛

⎜
⎝

O
O

−PE�P �Xm

⎞

⎟
⎠ , (5.3)

where

Â� :=
(
A O
O A

)

, B̂�,� := B�,� Q̂ =
⎛

⎝
B1 2B1

−2B2 −B2
B3 −B3

⎞

⎠ , N̂�,� :=
⎛

⎝
O �N1

− �N2 O
�N3 − �N3

⎞

⎠ .

In contrast to (5.1), the kernel of (5.3) is small. In fact, it has dimension 8 due to the
fact that P has a kernel of dimension 8. Hence, iterative solution methods, combined
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with good preconditioners, work very well to solve (5.3) in practice. For our numer-
ical results in Sect. 8, below, we employ a GMRes iterative solver with least squares
solution of the block matrix in (5.3) without P as preconditioners.

6 Obtaining a fully discrete area conservation property

Although the linear scheme (4.2) introduced in Sect. 4 can be shown to be uncon-
ditionally stable, recall Theorem 4.3, in general the areas occupied by the discrete
approximations of the three phases will not be conserved. In this section, we state how
to modify the previously introduced scheme (4.2) in such a way, that it satisfies both
of the structure defining properties from Sect. 2. To this end, we follow the discussion
in [37, Section 3] in order to obtain an exact area preservation property on the fully
discrete level. We remark that our approach hinges on ideas first presented for area-
conserving geometric flows for closed curves in [2, 30]. See also [1, Section 3.2] for
related work in the context of the surface diffusion flow for curve networks with triple
junctions.

Let us define families of polygonal curves {�h
i (t)}t≥0, i = 1, 2, 3, that are

parameterized by the time variable. In particular, for each 0 ≤ m ≤ M , t ∈ [tm, tm+1]
and 1 ≤ i ≤ 3, we define the polygonal curve �h

i (t) by

�h
i (t) := tm+1 − t

τm
�m
i + t − tm

τm
�m+1
i .

Precisely speaking, the vertices of �h
i (t) are defined as follows:

�qhi, j (t) := tm+1 − t

τm
�qmi, j + t − tm

τm
�qm+1
i, j for 0 ≤ j ≤ Ni ,

while we write each edge of �h
i (t) as ehi, j (t) := [�qhi, j−1(t), �qhi, j (t)] for 1 ≤ i ≤ 3 and

1 ≤ j ≤ Ni .

Lemma 6.1 For each m ≥ 0 and (i, j, k) ∈ , it holds that

|�m+1
i | − |�m

i | =
〈
�Xm+1
j − �Xm

j , �νm+ 1
2

j

〉

�m
j

−
〈
�Xm+1
k − �Xm

k , �νm+ 1
2

k

〉

�m
k

,

where

�νm+ 1
2

i := 1

τm |emi, j |
∫ tm+1

tm
�νh |ehi, j (t)| dt on σm

i, j for 1 ≤ j ≤ Ni . (6.1)

Proof The desired result for i = 1, 2 is shown in [1, Lemma 3.1], and the result for
i = 3 follows analogously on noting that ∂� is fixed. ��
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Now the weighted vertex normal vector �ωm+ 1
2

i ∈ V h
i , for i = 1, 2, 3, associated

with �νm+ 1
2

i is defined through the following formula:

〈

�ωm+ 1
2

i , �ξ
〉h

�m
i

=
〈

�νm+ 1
2

i , �ξ
〉

�m
i

∀�ξ ∈ V h
i . (6.2)

Consequently, we obtain a nonlinear system with the aid of �ωm+ 1
2

i : Given ( �Xm, κm
σ ) ∈

V (�m) × V (�m), find (Wm+1, �Xm+1, κm+1
σ ) ∈ Sm� × V (�m) × V (�m) such that

[Motion law] For all ϕ ∈ Sm� ,

〈
∇Wm+1,∇ϕ

〉

�
−

∑

(i, j,k)∈

〈

πh
i

[ �Xm+1
i − �Xm

i

τm
· �ωm+ 1

2
i

]

, ϕ j − ϕk

〉(h)

�m
i

= 0.

(6.3a)

[Gibbs–Thomson law] For all ξ ∈ V (�m),

〈
κm+1
σ , ξ

〉h

�m
−

∑

(i, j,k)∈

〈
Wm+1

j − Wm+1
k , ξi

〉(h)

�m
i

= 0. (6.3b)

[Curvature vector] For all �η ∈ V (�m),

〈
κm+1
σ �ωm+ 1

2 , �η
〉h

�m
+
〈
σ∇s �Xm+1,∇s �η

〉

�m
= 0. (6.3c)

We can now prove the area preserving property of each domain surrounded by the
polygonal curve on the discrete level.

Theorem 6.2 (Area preserving property for the discrete scheme) Let m ≥ 0 and let
(Wm+1, �Xm+1, κm+1

σ ) ∈ Sm� ×V (�m)×V (�m) be a solution of (6.3). Then, for each
1 ≤ j ≤ 3 it holds that

|�m+1
j | = |�m

j |.

Proof We will argue similarly to the proof of [37, Theorem 3.3]. Choosing ϕ =
(− 2

3 ,
1
3 ,

1
3 )

T ∈ Sm� in (6.3a), we obtain from (6.2) and Lemma 6.1 that

0 =
〈

πh
3

[ �Xm+1
3 − �Xm

3

τm
· �ωm+ 1

2
3

]

, 1

〉(h)

�m
3

+
〈

πh
2

[

−
�Xm+1
2 − �Xm

2

τm
· �ωm+ 1

2
2

]

, 1

〉(h)

�m
2

=
〈 �Xm+1

3 − �Xm
3

τm
, �ωm+ 1

2
3

〉h

�m
3

+
〈

−
�Xm+1
2 − �Xm

2

τm
, �ωm+ 1

2
2

〉h

�m
2
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=
〈 �Xm+1

3 −�Xm
3

τm
, �νm+ 1

2
3

〉

�m
3

+
〈 �Xm+1

2 − �Xm
2

τm
,−�νm+ 1

2
2

〉

�m
2

= 1

τm
(|�m+1

1 | − |�m
1 |).

This yields the desired result for k = 1. The other cases can be treated analogously. ��
Theorem 6.3 (Stability for the area-conserving scheme) Let m ≥ 0 and let
(Wm+1, �Xm+1, κm+1

σ ) ∈ Sm� × V (�m) × V (�m) be a solution of (6.3). Then, it
holds that

|�m+1|σ + τm‖∇Wm+1‖22 ≤ |�m |σ .

Proof The proof is analogous to the proof of Theorem 4.3 once we replace �ωm by

�ωm+ 1
2 . ��

Remark 6.4 We observe that as �ωm+ 1
2

i depends on �Xm+1
i , the scheme (6.3) is no longer

linear. In practice the nonlinear systems of equations arising at each time level of (6.3)
can be solved with the aid of a simple lagged iteration as mentioned in [37, Section
3]. In particular, given �m , let �m+1,0 = �m . Then for � ≥ 0, and until convergence,

define �ωm+ 1
2 ,� through (6.2) and (6.1), but with �m replaced by �m+1,�, and find

(Wm+1,�+1, �Xm+1,�+1, κm+1,�+1
σ ) ∈ Sm� × V (�m) × V (�m) such that

〈
∇Wm+1,�+1,∇ϕ

〉

�
−

∑

(i, j,k)∈

〈

πh
i

[ �Xm+1,�+1
i − �Xm

i

τm
· �ωm+ 1

2 ,�

i

]

, ϕ j − ϕk

〉(h)

�m
i

= 0,

〈
κm+1,�+1
σ , ξ

〉h

�m
−

∑

(i, j,k)∈

〈
Wm+1,�+1

j − Wm+1,�+1
k , ξi

〉(h)

�m
i

= 0,

〈
κm+1,�+1
σ �ωm+ 1

2 ,�, �η
〉h

�m
+
〈
σ∇s �Xm+1,�+1,∇s �η

〉

�m
= 0,

for all ϕ ∈ Sm� , ξ ∈ V (�m), �η ∈ V (�m).

7 Generalization tomulti-component systems

In order to simplify the presentation, in the previous sections we concentrated on the
simple three phase situation depicted in Fig. 1. However, it is not difficult to generalize
our introduced finite element approximations to the general multi-phase case. We
present the details in this section, following closely the description of the general
curve network used in [1, Section 2].

7.1 Problem setting

For later use, we let N≤M := {1, · · · , M} for each M ∈ N. First, let us introduce
counters which will be used frequently later on. Given a curve network �(t), IC ≥ 1
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denotes the number of curves which are included in �(t). Thus, we have �(t) =
∪IC
i=1�i (t), where each �i (t) is either open or closed. Let IP ≥ 2 be the number of

phases, i.e. the not necessarily connected subdomains of � which are separated by
�(t). This means that�\�(t) = ⋃IP

j=1 � j (t). Finally, each endpoint of an open curve
included in �(t) is part of a triple junction. We write the number of triple junctions as
IT ≥ 0.

Assumption 2 [Triple junctions] Every curve �i (t), i ∈ N≤IC , must not self-intersect,
and is allowed to intersect other curves only at its boundary ∂�i (t). If ∂�i (t) = ∅,
then �i (t) is called a closed curve, otherwise an open curve. For each triple junction
Tk(t), k ∈ N≤IT , there exists a unique tuple (ck1, c

k
2, c

k
3) with 1 ≤ ck1 < ck2 < ck3 ≤ IC

such that Tk(t) = ∂�
ck1

(t) ∩ ∂�
ck2

(t) ∩ ∂�
ck3

(t). Moreover, ∪IC
i=1∂�i (t) ⊂ ∪IT

k=1Tk(t).

Assumption 3 (Phase separation) The curve network �(t) is equipped with a matrix
O : {−1, 0, 1}IP×IC that encodes the orientations of the phase boundaries. In particu-
lar, each row contains nonzero entries only for the curves that make up the boundary
of the corresponding phase, with the sign specifying the orientation needed for the
curves normal to make it point outwards of the phase. I.e. for p ∈ N≤IP and i ∈ N≤IC
we have

Opi =

⎧
⎪⎨

⎪⎩

1 �i (t) ⊂ ∂�p(t) and �νi is outward to �p(t),

−1 �i (t) ⊂ ∂�p(t) and �νi is inward to �p(t),

0 �i (t) �⊂ ∂�p(t).

For every i ∈ N≤IC , there exists a unique pair (p1, p2) with 1 ≤ p1 ≤ p2 ≤ IP
such that Op1,i = −Op2,i = 1. In this situation, we say that �p1(t) is a neighbour to
�p2(t).

Clearly, given the matrix O, the boundary of �p(t) can be characterized by

∂�p(t) =
{⋃

{ j :Opj �=0} � j (t) 1 ≤ p < IP ,

∂� ∪⋃
{ j :Opj �=0} � j (t) p = IP ,

where we have assumed that �IP (t) is the only phase with contact to the external
boundary.

Remark 7.1 (Examples) We note that for the three-phase problem shown in Fig. 1,
we have IC = 3, IP = 3, IT = 2, (c11, c

1
2, c

1
3) = (c21, c

2
2, c

2
3) = (1, 2, 3) and

O =
⎛

⎝
0 −1 1
1 0 −1

−1 1 0

⎞

⎠. Examples for more complicated networks, and their description

in our general framework, can be found in the numerical results section, see Sect. 8.2.

Under these preparations, we can generalize the system (1.2) to the multi-phase
case. Where no confusion can arise, we use the same notation as before, e.g., T� =
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{u ∈ R
IP | ∑IP

j=1 u j = 0}. Given an initial curve network �0, our aim is to find
w : � → T� and the evolution of a curve network {�(t)}t≥0 which satisfy

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

�w = 0 in �\�(t), t ∈ (0, T ],
w · [χ ] = σκ on �(t), t ∈ (0, T ],
[∇w] �ν = −V [χ ] on �(t), t ∈ (0, T ],
∂�ν�

w = 0 on ∂�,
∑3

i=1 σcki
�μcki

= 0 on Tk(t), 1 ≤ k ≤ IT , t ∈ (0, T ],
�(0) = �0t ∈ (0, T ], ,

(7.1)

whereχ denotes the vector of the characteristic functionsχ j = X� j (t), j = 1, . . . , IP ,
as before.

Remark 7.2 The system (7.1) does not depend on the choice of normals �νi , for i ∈
N≤IC . Indeed, if we take −�νi as the unit normal vector to �i (t), then the sign of κi

reverses. On the other hand, the sign of the jump [χ ] is also reversed. Thus, the second
law of (7.1) does not change. Meanwhile, the sign of the normal velocity Vi in the
third condition is also reversed, balancing with the sign change of �νi on the left hand
side.

7.2 Weak formulation

Similarly to Sect. 3, it is possible to derive a weak formulation of the multi-phase
problem (7.1). On noting that the jump of the j-th characteristic function χ j across
the curve �i is −O j i , we can compute from the third condition in (7.1) that

[∇w j
] · �νi = −Vi [χ j ] = O j i Vi on �i (t), 1 ≤ i ≤ IC , 1 ≤ j ≤ IP .

Hence, overall we obtain the following weak formulation:
[Motion law] For all ϕ ∈ T �̃ ∩ [H1(�)]IP ,

〈∇w,∇ϕ〉� +
IC∑

i=1

IP∑

j=1

O j i
〈
Vi , ϕ j

〉
�i

= 0. (7.2a)

[Gibbs–Thomson law] For all ξ ∈ L2(�),

〈κσ , ξ 〉� +
IC∑

i=1

IP∑

j=1

O j i
〈
w j , ξi

〉
�i

= 0. (7.2b)
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[Curvature vector] For all �η ∈ H1(�; R
2) such that �ξ |�

ck1

= �ξ |�
ck2

= �ξ |�
ck3

on Tk for
all k ∈ N≤IT ,

〈
κσ �ν, �ξ

〉

�
+
〈
σ∇s �Id,∇s �ξ

〉

�
= 0. (7.2c)

7.3 Finite element approximations

We now generalize our finite element approximation (4.2) to the multi-phase case.
The necessary discrete function spaces are the obvious generalizations, for example

V (�m) =
⎧
⎨

⎩
�X = ( �X1, · · · , �XIC ) ∈

IC⊗

i=1

V h
i | �X

ck1
(ρk

1 ) = �X
ck2

(ρk
2 ) = �X

ck3
(ρk

3 ) 1 ≤ k ≤ IT

⎫
⎬

⎭
,

where ρk
i ∈ {0, 1} encodes at which if its two endpoints the discrete curve �m

cki
meets

the k-th triple junction.
Given �Xm ∈ V (�m), we find (Wm+1, �Xm+1, κm+1

σ ) ∈ Sm� × V (�m) × V (�m)

such that the following conditions hold:

[Motion law] For all ϕ ∈ Sm� ,

〈
∇Wm+1,∇ϕ

〉

�
+

IC∑

i=1

IP∑

j=1

O j i

〈

πh
i

[ �Xm+1
i − �Xm

i

τm
· �ωm

i

]

, ϕ j

〉(h)

�m
i

= 0. (7.3a)

[Gibbs–Thomson law] For all ξ ∈ V (�m),

〈
κm+1
σ , ξ

〉h

�m
+

IC∑

i=1

IP∑

j=1

O j i

〈
Wm+1

j , ξi

〉(h)

�m
i

= 0. (7.3b)

[Curvature vector] For all �η ∈ V (�m),

〈
κm+1
σ �ωm, �η

〉h

�m
+
〈
σ∇s �Xm+1,∇s �η

〉

�m
= 0. (7.3c)

Remark 7.3 (Linear system) The linear system of equations arising at each time level
of (7.3) is given by the obvious generalization of (5.1), where the block matrix
entries of (5.1) are now defined by A� = diag (A) j=1,...,IP , C� = diag (Ci )i=1,...,IC�N�,� = (O j i �Ni )i=1,...,IC , j=1,...,IP , B�,� = (O j i Bi )i=1,...,IC , j=1,...,IP

�D� =
diag ( �Di )i=1,...,IC and E� = diag (σi Ei )i=1,...,IC . Once again the generalized sys-

tem (5.1) can be reduced by eliminating the final component Wm+1
IP

from Wm+1.
We obtain the same block structure as in (5.3), with the new entries now given
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by Â� = diag (A) j=1,...,IP−1, B̂�,� = ((OIP ,i − O j i )Bi )i=1,...,IC , j=1,...,IP−1 and
N̂�,� = (O j i �Ni )i=1,...,IC , j=1,...,IP−1.

Finally, on using the techniques from Sect. 6, we can adapt the approximation (7.3)
to obtain a structure preserving scheme that is unconditionally stable and that conserves
the areas of the enclosed phases exactly. Given ( �Xm, κm

σ ) ∈ V (�m) × V (�m), find
(Wm+1, �Xm+1, κm+1

σ ) ∈ Sm� × V (�m) × V (�m) such that
[Motion law] For all ϕ ∈ Sm� ,

〈
∇Wm+1,∇ϕ

〉

�
+

IC∑

i=1

IP∑

j=1

O j i

〈

πh
i

[ �Xm+1
i − �Xm

i

τm
· �ωm+ 1

2
i

]

, ϕ j

〉(h)

�m
i

= 0.

(7.4a)

[Gibbs–Thomson law] For all ξ ∈ V (�m),

〈
κm+1
σ , ξ

〉h

�m
+

IC∑

i=1

IP∑

j=1

O j i

〈
Wm+1

j , ξi

〉(h)

�m
i

= 0. (7.4b)

[Curvature vector] For all �η ∈ V (�m),

〈
κm+1
σ �ωm+ 1

2 , �η
〉h

�m
+
〈
σ∇s �Xm+1,∇s �η

〉

�m
= 0. (7.4c)

We conclude this section by stating theoretical results for the generalized schemes.
Their proofs are straightforward adaptations of the proofs of Theorems 4.1, 4.3 and 6.2.

Assumption 4 Assume that span { �ωm
i, j }1≤ j≤Ni−1 �= �{0} for 1 ≤ i ≤ IC and

span

⎧
⎨

⎩

IC∑

i=1

IP∑

j=1

O j i
〈 �ωm

i , ϕ j
〉(h)

�m
i

| ϕ ∈ Sm�

⎫
⎬

⎭
= R

2.

Theorem 7.4 Suppose that Assumption 4 holds, and that m ≥ 0. Then, there exists a
unique solution (Wm+1, �Xm+1, κm+1

σ ) ∈ Sm� × V (�m) × V (�m) to (7.3). Moreover,
any solution to (7.3) or (7.4) satisfies the stability bound

|�m+1|σ + τm‖∇Wm+1‖22 ≤ |�m |σ .

Finally, a solution to (7.4) satisfies

|�m+1
j | = |�m

j | 1 ≤ j ≤ IP .
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8 Numerical results

We implemented the fully discrete finite element approximations (7.3) and (7.4) within
the finite element toolbox ALBERTA, see [41]. The arising linear systems of the form
(5.3) are solved with a GMRes iterative solver, applying as preconditioner a least
squares solution of the block matrix in (5.3) without the projection matrices P . For the

computation of the least squares solution we employ the sparse factorization package
SPQR, see [19].

For the triangulationTm of the bulk domain�, that is used for the bulk finite element
space Sm , we use an adaptive mesh that uses fine elements close to the interface �m

and coarser elements away from it. The precise strategy is as described in [8, Section
5.1] and for a domain � = (−H , H)d and two integer parameters Nc < N f results
in elements with maximal diameter approximately equal to h f = 2H

N f
close to �m and

elements with maximal diameter approximately equal to hc = 2H
Nc

far away from it.
For all our computations we use H = 4. An example adaptive mesh is shown in Fig. 3,
below.

We stress that due to the unfitted nature of our finite element approximations, special
quadrature rules need to be employed in order to assemble terms that feature both bulk
and surface finite element functions. For all the computations presented in this section,
we use true integration for these terms, andwe refer to [8, 37] for details on the practical
implementation. Throughout this section we use (almost) uniform time steps, in that
τm = τ for m = 0, . . . , M − 2 and τM−1 = T − tm−1 ≤ τ . Unless otherwise stated,
we set σ = 1.

8.1 Convergence experiment

In order to validate our proposed schemes, we utilize the following exact solution
for a network of three concentric circles. Let 0 < R1(t) < R2(t) < R3(t) and
�i (t) := ∂B(0, Ri (t)) for each i ∈ N≤3. Suppose that �ν1, −�ν2 and �ν3 are point-
ing towards the origin, and let �1(t) = B(0, R1(t)) ∪ (�\B(0, R3(t))), � j (t) =
B(0, R j (t))\B(0, R j−1(t)), j = 2, 3. Hence, with the notation from Sect. 7.1 we

have IC = 3, IP = 3, IT = 0 and O =
⎛

⎝
−1 0 1
1 1 0
0 −1 −1

⎞

⎠. See Fig. 2 for the setting.

We shall prove in Appendix A that (w, {�(t)}0≤t≤T ) is a solution to (7.1) with
σ = 1 if the three radii satisfy the differential algebraic equations:

R′
2(t)=−F(R2(t)), R1(t)=

√
R2(t)2 − A2, R3(t)=

√
R2(t)2 + A3, (8.1a)

where F(u) := ( 1√
u2−A2

+ 1
u + 1√

u2+A3
)/(u log u2+A3

u2−A2
) for u ∈ (

√
A2,∞), A2 :=

R2(0)2 − R1(0)2, and A3 := R3(0)2 − R2(0)2, and if the three chemical potentials
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are given by

w1(x, ·) = − 1

3R2
− 2

3R3
+

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
3α log

R4
3

R3
1 R2

, |x | ≤ R1

− 1
3α log R2|x |3

R4
3

, R1 < |x | ≤ R3

1
3α log R3

R2
, R3 < |x |,

w2(x, ·) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− 1
R1

− 1
3R2

− 2
3R3

+ 1
3α log

R4
3

R3
1 R2

, |x | ≤ R1

− 1
R1

− 1
3R2

− 2
3R3

+ 1
3α log

R4
3 |x |3
R6
1 R2

, R1 < |x | ≤ R2

2
3R2

+ 1
3R3

+ 1
3α log

R2
2

R2
3
, R2 < |x |,

w3(x, ·) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− 1
R1

− 4
3R2

− 2
3R3

+ 1
3α log

R2
2 R

4
3

R6
1

, |x | < R2

− 1
3R2

+ 1
3R3

+ 1
3α log |x |3

R2R2
3
, R2 ≤ |x | < R3

− 1
3R2

+ 1
3R3

+ 1
3α log R3

R2
, R3 ≤ |x |,

(8.1b)

where α(t) :=
1

R1(t) + 1
R2(t) + 1

R3(t)

2 log R3(t)
R1(t)

.

In order to accurately compute the radius R2(t), rather than numerically solving
the ODE in (8.1a), we employ a root finding algorithm for the equation

0 = t +
∫ R2(t)

R2(0)

1

F(u)
du, (8.2)

following similar ideas in [8, 37].
For the initial radii R1(0) = 2, R2(0) = 2.5, R3(0) = 3 and the time interval [0, T ]

with T = 1
2 , so that R1(T ) ≈ 1.60, R2(t) ≈ 2.20 and R3(T ) ≈ 2.75, we perform a

convergence experiment for the true solution (8.1). To this end, for i = 0 → 4, we set

Fig. 2 A network of curves
which consists of three
concentric circles
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Table 1 Convergence test for (8.1) over the time interval [0, 1
2 ] for the scheme (7.3)

h f hM� τ ‖Wh − w‖L∞ ‖�h − �‖L∞ KM
� N vM�

6.2500e−02 1.3487e−01 6.4e−2 3.4879e−02 4.7230e−03 3633 384 3.8e−02

3.1250e−02 6.7465e−02 1.6e−2 1.2459e−02 4.3450e−03 7321 768 9.7e−03

1.5625e−02 3.3747e−02 4.0e−3 4.8323e−03 2.8582e−03 14,881 1536 2.4e−03

7.8125e−03 1.6878e−02 1.0e−3 2.0917e−03 1.6382e−03 30,161 3072 6.1e−04

3.9062e−03 8.4405e−03 2.5e−4 1.4139e−03 8.4224e−04 72,537 6144 1.5e−04

Table 2 Convergence test for (8.1) over the time interval [0, 1
2 ] for the scheme (7.4)

h f hM� τ ‖Wh − w‖L∞ ‖�h − �‖L∞ KM
� N vM�

6.2500e−02 1.3469e−01 6.4e−2 3.8031e−02 1.3628e−02 3605 384 < 10−10

3.1250e−02 6.7442e−02 1.6e−2 1.3442e−02 6.7806e−03 7285 768 < 10−10

1.5625e−02 3.3744e−02 4.0e−3 5.0754e−03 3.4721e−03 14,905 1536 < 10−10

7.8125e−03 1.6878e−02 1.0e−3 2.1316e−03 1.7904e−03 30,193 3072 < 10−10

3.9062e−03 8.4404e−03 2.5e−4 1.4242e−03 8.8016e−04 72,537 6144 < 10−10

N f = 1
2K = 27+i , Nc = 4i and τ = 43−i × 10−3. In Tables 1 and 2 we display the

errors

‖�h − �‖L∞ = max
m=1,...,M

max
i=1,...,3

max
j=1,...,Ni

dist(�qmi, j , �i (tm))

and

‖Wh − w‖L∞ = max
m=1,...,M

max
i=1,...,3

‖Wm
i − Imwi (·, tm)‖L∞(�),

where Im : C0(�) → Sm denotes the standard interpolation operator, for the
schemes (7.3) and (7.4), respectively. We also let Km

� denote the number of degrees
of freedom of Sm , and define hm� = maxi=1,...,3 max j=1,...,Ni σm

i, j , as well as vM
� =

max j=1,...,IP | |�M
j |−|�0

j | |. As expected, we observe true volume preservation for the
scheme (7.4) in Table 2, up to solver tolerance, while the relative volume loss in Table 1
decreases as τ becomes smaller. Surprisingly, the two error quantities ‖�h − �‖L∞
and ‖Wh − w‖L∞ are generally lower in Table 1 compared to Table 2, although the
difference becomes smaller with smaller discretization parameters.

For all the following numerical simulations, we always employ the fully structure-
preserving scheme (7.4).
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Fig. 3 The solution at times t = 0, 0.4, 0.8, 1, and a plot of the discrete energy over time. Below we show
the adaptive bulk mesh at times t = 0 and t = 1
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Fig. 4 The solution at times t = 0, 4, 4.5, 6, and a plot of the discrete energy over time

8.2 Evolutions with equal surface energies

8.2.1 3 Phases

In the next set of experiments, we investigate how a standard double bubble and a disk
evolve, when one phase is made up of the left bubble, and the other phase is made up
of the right bubble and the disk. With the notation from Sect. 7.1 we have IC = 4,

IP = 3, IT = 2, (c11, c
1
2, c

1
3) = (c21, c

2
2, c

2
3) = (1, 2, 3) and O =

⎛

⎝
0 −1 1 0
1 0 −1 −1

−1 1 0 1

⎞

⎠.

The two bubbles of the double bubble enclose an area of about 3.139 each, while
the disk has an initial radius of 5

8 , meaning it initially encloses an area of 25π
64 ≈ 1.227.

During the evolution the disk vanishes, and the right bubble grows correspondingly,
see Fig. 3. We note that our theoretical framework does not allow for changes of topol-
ogy, e.g., the vanishing of curves. Hence, in our computations we perform heuristic
surgeries whenever a curve becomes too short. Here a closed curve is simply dis-
carded, while a curve that was part of a network is removed. This will leave two triple
junctions, where only two curves meet, and the involved curves can be glued together
so that the simulation can continue.

Repeating the simulation with a bigger initial disk gives the results in Fig. 4. Here
the radius is 5

4 , so that the enclosed area is 4.909. Now the disk grows at the expense
of the right bubble, so that eventually two separate phases remain.
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Fig. 5 The solution at times t = 0, 4, 5, 7, and a plot of the discrete energy over time
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Fig. 6 The solution at times t = 0, 0.4, 0.6, 1, and a plot of the discrete energy over time

With the next simulation we demonstrate that, in the given setup, which of the two
components of phase 1 survives is not down to the initial size. In particular, we allow
the initial disk to have area 3.300, so that it is bigger than the other component of the
same phase: the right bubble in the double bubble. And yet, due to the perimeter of
the bubble being overall cheaper than the boundary of the disk, the latter shrinks to
extinction. See Fig. 5.

For the next experiment we start from a nonstandard triple bubble, where we choose
the right most bubble to have area 1.5, while the other two bubbles have unit area.
We assign the two outer bubbles to belong to the same phase. In particular, with the
notation from Sect. 7.1 we have IC = 6, IP = 3, IT = 4, (c11, c

1
2, c

1
3) = (1, 2, 5),

(c21, c
2
2, c

2
3) = (1, 3, 5), (c31, c

3
2, c

3
3) = (2, 4, 6), (c41, c

4
2, c

4
3) = (3, 4, 6) and

O =
⎛

⎝
−1 0 0 −1 1 1
0 1 1 0 −1 −1
1 −1 −1 1 0 0

⎞

⎠ .

Weobserve that during the evolution the larger bubble on the right grows at the expense
of the left bubble, until the latter one vanishes completely. The remaining interfaces
then evolve towards a standard double bubble with enclosed areas 1 and 2.5. See Fig. 6.

In the final numerical simulation for the setting with 3 phases, we consider the
evolution of two double bubbles. With the notation from Sect. 7.1 we have IC = 6,
IP = 3, IT = 4, (c11, c

1
2, c

1
3) = (c21, c

2
2, c

2
3) = (1, 2, 3), (c31, c

3
2, c

3
3) = (c41, c

4
2, c

4
3) =

(4, 5, 6) and

O =
⎛

⎝
0 −1 1 0 −1 1
1 0 −1 1 0 −1

−1 1 0 −1 1 0

⎞

⎠ .

The first bubble is chosen with enclosing areas 3.14 and 6.48, while the second double
bubbles encloses two areas of size 3.64. In each case, the left bubble is assigned to
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Fig. 7 The solution at times t = 0, 2, 4, 5, 6, 7, 8, 10, 12, and a plot of the discrete energy over time
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Fig. 8 The solution at times t = 0, 0.4, 0.7, 1, and a plot of the discrete energy over time

phase 1, while the right bubbles are assigned to phase 2. In this way, the lower double
bubble holds the larger portion of phase 1, while the upper double bubble holds the
larger portion of phase 2. Consequently, each double bubble evolves to a single disk
that contains just one phase. See Fig. 7.

8.2.2 4 Phases

In the next set of experiments, we investigate simulations for a nonstandard triple
bubble, with one of the bubbles making a phase with a separate disk. In particular, with
the notation from Sect. 7.1 we have IC = 7, IP = 4, IT = 4, (c11, c

1
2, c

1
3) = (1, 2, 5),

(c21, c
2
2, c

2
3) = (1, 3, 5), (c31, c

3
2, c

3
3) = (2, 4, 6), (c41, c

4
2, c

4
3) = (3, 4, 6) and

O =

⎛

⎜
⎜
⎝

0 0 0 −1 0 1 −1
0 1 1 0 −1 −1 0

−1 0 0 0 1 0 0
1 −1 −1 1 0 0 1

⎞

⎟
⎟
⎠ .

The three bubbles of the triple bubble enclose an area of unity each, while the disk
has an initial radius of 1

2 , meaning it initially encloses an area of π
4 ≈ 0.785. During

the evolution the disk vanishes, and the right bubble grows correspondingly, see Fig. 8.
Repeating the experiment with initial data where the disk is a unit disk leads to the

evolution in Fig. 9, where the disk now expands and survives, at the expense of the
right bubble in the triple bubble.
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Fig. 9 The solution at times t = 0, 0.4, 0.8, 1, and a plot of the discrete energy over time
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Fig. 10 The solution at times t = 0, 1, 2, 3, and a plot of the discrete energy over time
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Fig. 11 The solution at times t = 0, 1, 1.8, 3, and a plot of the discrete energy over time

8.3 Evolutions with different surface energies

8.3.1 3 Phases

As an example for non-equal surface energy densities for the various curves, we
repeat the simulation in Fig. 3, but now weigh curves 1 and 3 in the double bubble
with σ1 = σ3 = 2, while keeping the other two densities at unity. This now means
that in contrast to Fig. 3, it makes energetically more sense to increase the size of the
single bubble, while shrinking the bubble that is surrounded by the more expensive
interfaces. See Fig. 10 for the observed evolution.

8.3.2 4 Phases

Similarly, if we make the interface of the single circular bubble in the initial data in
Fig. 9 more expensive, it will no longer grow but shrink to a point. Setting the weight
for the curve to σ7 = 2 leads to the evolution seen in Fig. 11.
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Appendix A: An exact solution for the three-phase Mullins–Sekerka
flow

In this appendix, we shall prove that (8.1) is a solution to (7.1) with σ = 1. Firstly, it
directly follows from the definitions of F and α in (8.1) that F(R2(t)) = α(t)/R2(t).
Hence, (8.1a) immediately implies that the normal velocity V of �(t) satisfies

V = α(t)

⎧
⎪⎨

⎪⎩

1
R1(t)

on �1(t),

− 1
R2(t)

on �2(t),
1

R3(t)
on �3(t).

(A.1)

The first and fourth equations in (7.1) hold trivially since w as defined in (8.1b) is
constant in the two connected components of�1(t), and harmonic in�2(t) and�3(t).
Let us confirm the Gibbs–Thomson law. We see from (8.1b) that w1 − w2 = 1/R1(t)
on �1(t), w3 − w2 = −1/R2(t) on �2(t) and w3 − w1 = 1/R3(t) on �3(t). Thus, w
satisfies the second condition in (7.1).Wemove on themotion law. A direct calculation
shows

⎧
⎪⎨

⎪⎩

− [∇w1] · �ν1 = [∇w2] · �ν1 = α(t)
R1(t)

on �1(t),

[∇w2] · �ν2 = − [∇w3] · �ν2 = − α(t)
R2(t)

on �2(t),

− [∇w1] · �ν3 = [∇w3] · �ν3 = α(t)
R3(t)

on �3(t).

(A.2)

Hence, the third condition of (7.1) is valid by (A.1) and (A.2). Therefore, w =
(w1, w2, w3)

T given by (8.1) is an exact solution of (7.1) with σ = 1.
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