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Preface

In this Ph.D. thesis we study some examples of stochastic partial differ-

ential equations on bounded domains which are subject to different kinds of

boundary conditions, such as equations arising in heat diffusion problems in

material with thick boundary (see e.g. [36, 37, 38]) or in mathematical biol-

ogy, for the potential diffusion on neuronal cells and networks (see e.g. [51]).

In our approach, it is useful to rewrite the concrete problem in abstract

form, where by-now classical results of existence and regularity for the solution

are known, see e.g. [22, 23]. We define ”classical” homogeneous boundary

conditions which are either of Dirichlet type (zero boundary value for the un-

known function) or of Neumann type (zero boundary value for the normal

derivative). Boundary value problems with “classical” boundary conditions,

are frequently converted into an abstract Cauchy problem; let us cite as ref-

erences for instance [31] or [40]. The abstract problem can be seen as an

evolution equation in a suitable Banach space, driven by a given operator, and

boundary values are necessary for defining the domain of this operator.

On the other hand, in this thesis we shall be concerned mainly with non-

classical boundary conditions, where, for instance, the boundary value is a

non-constant function of time. Further, this function can also depend on the

function itself, and can also involve time-derivatives, thus modelling a different

dynamics which can act on the boundary. Similar problems are already solved

in the literature with different techniques: the case of boundary white-noise

perturbation were studied, among others, by [2, 24, 73], the case of stochastic

dynamical boundary conditions is treated, e.g., in [18].

A different approach to evolution problem with dynamical boundary con-

ditions were recently proposed in functional analysis, motivated by the study

on matrix operator theory [30]. Starting from the paper [15], this approach

has shown useful to translate non-classical boundary value problems in an ab-

stract setting, where the semigroup techniques are available. We will now give
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an overview of the contents of the different chapters, additional information

may be found at the beginning of every chapter.

In chapter 1 we discuss in some details the main examples of stochastic

boundary value problems with time-inhomogeneous or dynamical conditions,

comparing some of the approaches found in the literature and we explain the

motivations that drive toward a matrix theory for unbounded matrices oper-

ator. Then we give a short abstract setting and some generation results that

will permit us to treat many examples those follow later. The results presented

here are mainly taken from [15] and [69]. In the last part of the chapter we

present some evolution problems on domains derived by physical models, which

involve dynamical boundary conditions. They arise from models for impulse

propagation through dendritic spine with random potential’s source, diffusion

problem on bounded region with mixed boundary conditions and applications

to optimal control problems. The last argument is taken mainly from [11] and

[9].

Chapter 2 collects the relevant results, connected with our work, that

are present thorough the thesis. In the first part of the chapter we state some

generation properties and spectral theory for matrix operators obtained in

recent articles [30, 66, 68]. In the second part, motivated by the theory of

stochastic differential equations in infinite dimensions, we introduce shortly the

basic tools of stochastic integration with respect to Lévy processes developed

for example by [63] and [43].

Chapters 3 and 4 are applications of the techniques developed before

to some problems in neurophysiology and in heat diffusions in material with

memory. In the former we prove global well-posedness in the mild sense for

a stochastic partial differential equation with a power-type nonlinearity and

driven by an additive Lévy noise. Such a system of nonlinear diffusion equa-

tions on a finite network in the presence of noise arises in various models of

neurophysiology; as an example we consider the FitzHugh-Nagumo equations

(see the monograph [51] for more details).

Chapter 4 is devoted to study existence, uniqueness and asymptotic be-

haviour of the solution for a class of stochastic partial differential equations

arising in the theory of heat conduction, in presence of a nonlinear, tempera-

ture dependent heat source located on the boundary, perturbed by a Wiener
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noise, to cover the case of rapidly varying, highly irregular random pertur-

bation. An existence and uniqueness result in pathwise sense is achieved.

Further, we provide the existence of a random attracting set, according to the

definition arising in the theory of random attractors.
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beautiful world of Lévy processes.
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CHAPTER 1

Introduction

When one studies a space-time partial differential equation on a bounded

domain, has to specify, in addiction to the initial data, a set of additional

restraints on the boundary. In case of the behaviour along the boundary curve

is independent from time, usually one fixes the boundary value of the function

(the well known Dirichlet boundary conditions) or the boundary value

of the normal derivative (Neumann b.c.) or a combination of the two (Robin

or mixed b.c.). Also more unusual choices are possible, like generalized

Wentzell b.c. (involving the second space derivative). As an example, let

us consider a reaction-diffusion problem in a bounded domain O with boundary

layer ∂O, endowed with inhomogeneous Robin b.c., given in the form:






ut(t, x) =
∑n

i,j=1 ai,j(x)uxixj(t, x) + f(t, u(t, x))

αu(t, y) + βuν(t, y) = g(y)

u(0, x) = u0(x)

where t ∈ [0, T ], x ∈ O, y ∈ ∂O, α, β ∈ R and ∂
∂ν is the normal derivative.

In some cases, it would be natural to assign the boundary value in depen-

dence of time, such as

αu(t, y) + βuν(t, y) = g(t, y).

Such boundary conditions clearly extend the static case mentioned above.

Notice that, from an abstract point of view, the evolution of the system can

be defined in term of a differential operator A(t) (defined, for instance, on the

Hilbert space L2(O)), with time dependent domain:

A(t)u =
n∑

i,j=1

ai,j(x)uxixj(x)

D(A(t)) = {u ∈ H2(O) : αu + βuν = g(t)}.
1
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More generally, we can consider the same reaction-diffusion problem, but fur-

ther we suppose that the region O is taken by a heat conductor and the

boundary material on ∂O has a certain thickness and sufficiently large thermal

conductivity so that to permit heat exchange between internal and boundary

environment. Then there exists a different diffusion process on the boundary,

surely connected to, and maybe influenced by, the interior process. We point

out as examples, free boundary problems like multiphase Stefan problem or

two-phase systems like Cahn-Hilliard equation, where the border has a proper

evolution. The mathematical model at this time can be assumed of the form





ut(t, x) =
∑n

i,j=1 ai,j(x)uxixj(t, x) + f(t, u(t, x))

u(t, y) = v(t, y)

αvt(t, y) + βuν(t, y) =
∑n

i,j=1 ci,j(y)vyiyj(t, y) +
∑n

i=1 di(y)vyi(t, y)

u(0, x) = u0(x)

v(0, y) = v0(y)

where t ∈ [0, T ], x ∈ O, y ∈ ∂O.

This case of boundary conditions are called dynamical boundary con-

ditions and are often motivated in literature by control problems. These

boundary conditions are qualitative different from the static ones, because

they contain the time derivative of the state function on the boundary, in

order to describe the physical evolution of the system in the boundary ∂O.

Similar models arise in hydrodynamics, chemical kinetics, heat transfer theory

and have been studied by many authors, see for instance [46, 65].

In this work we examine a stochastic version of these problems. Actually,

in several applications, external forces enter the system through the boundary

of the region where the system evolves; in some cases, we may assume that

these forces are of random type. Working at different time scales, we can

approximate this random influence either with Gaussian noise, at a fast time

scale, or with a Poisson noise, working at a slower time scale. So in general we

will consider stochastic partial differential equations driven by a Lévy noise.

1. The stochastic boundary value problems

In this section, we give a brief account of the literature concerning stochas-

tic problems with boundary noise, that is motivated as a comparison with the

approach that we will use here. In many interesting examples, the external
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forces – modelled as a white noise– are introduced as dynamical boundary

conditions of the problem.

Da Prato and Zabczyk consider in [24] the nonlinear evolution equa-

tion, with white-noise boundary conditions, on a Hilbert space H

∂X

∂t
(t) = AX(t) + F (X(t)), t > 0 (1.1)

τX(t) = Q1/2∂W

∂t
, t > 0

X(0) = X0

with different boundary conditions.

The semigroup approach followed in [24, 25] allows to study problem (1.1)

with both Dirichlet and Neumann boundary conditions, depending on the

choice of the boundary operator τ . Here, W (t) is a cylindrical Wiener process

with values in a Hilbert space U and Q is a symmetric nonnegative bounded

operator on U . Using the so called Dirichlet or Neumann map Dλ, they study

the associated problem with homogeneous boundary conditions. On account

of that, they define the operator A

Ax = Ax,

D(A) = {x : Ax ∈ H; τx = 0}

and assume that A is the infinitesimal generator of a strongly continuous

semigroup S(t), t ≥ 0.

In case of Neumann b.c., an H-valued, H-continuous, adapted process X

is the mild solution of the problem (1.1) if it is a solution of the following

integral equation:

X(t) = S(t)X0 + (λ− A)

∫ t

0

S(t− s)DλQ
1/2 dW (s)

+

∫ t

0

S(t− s)F (X(s)) ds (1.2)
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Under dissipative conditions on the operator A and on the nonlinearity F

the authors obtain a result of global existence and uniqueness of the mild so-

lution. Moreover they give sufficient conditions for continuity of the Ornstein-

Uhlenbeck process

Z(t) = (λ− A)

∫ t

0

S(t− s)DλQ
1/2 dW (s)

in the Sobolev spaces of fractional order Hα = D((−A)α).

More interesting is the case of Dirichlet b.c., where the solution takes value

in a larger space than H. In fact the problem (1.1) does not have a solution

in the original state space H, but has a Hα continuous version for α < −1
4 .

A similar approach is used in Maslowski [62] to study stochastic nonlin-

ear boundary value parabolic problems with boundary or pointwise noise on

a bounded domain G ⊂ Rn. The kind of problem which he deals is given, for

example, by the second order stochastic parabolic equation

∂y

∂t
(t, x) = −A(x, D)y(t, x) + F (y(t, x)) + Γ(y(t, x))η1(t, x),

(t, x) ∈ R+ ×G, with initial and boundary conditions

y(0, x) = y0(x) x ∈ G,

By(t, x) = h(y(t, ·))(x) + K(y(t, ·))(x)η2(t, x) (t, x) ∈ R+ × ∂G,

where η1 and η2 stand for mutually stochastically independent, space depen-

dent Gaussian noises on G and ∂G, respectively. Following the previous ap-

proach he reduces the boundary value problem to a semilinear equation of the

form

dXt = [AXt + f(Xt) + Bh(Xt)] dt + g(Xt) dWt + Bk(Xt) dVt t ≥ 0 (1.3)

where Wt and Vt are independent cylindrical Wiener process on different

Hilbert spaces H and U . The author obtains an existence and uniqueness

statement for the mild solution of the equation by a standard fixed point ar-

gument, as well as basic results on their asymptotic behaviour, such as expo-

nential stability in the mean and the existence and uniqueness of an invariant

measure.
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Sowers in [73] studies a stochastic reaction-diffusion equation on some

n-dimensional (n ≥ 2) Riemannian manifold M with smooth boundary, in the

case of mixed boundary conditions

∂u

∂t
=

1

2
∆u + (b,∇u) + cu + f(x, u) (1.4)

u(·, 0) = u0

(ν,∇u) + β(x)u|R+×∂M = σ(x)ζ,

where x takes values on M and ζ is a space-time white noise on R+ × ∂M .

Existence and uniqueness of the solution are obtained by the integration of the

fundamental solution with respect to the boundary data σ(x)ζ. The solution is

degenerate near the boundary, and using some estimates for the fundamental

solution and its derivatives, one can study the boundary behaviour of u(t, x)

when x is close to ∂M . The main result is that u(t, x) has a continuous version

in [0, T ]× (M \ ∂M) which satisfies

lim sup
x→∂M,t∈[0,T ]

(dist(x, ∂M))γ|u(t, x)| = 0,

for each γ > (n− 1)/2.

Alòs and Bonaccorsi in [2] treat the case of a stochastic evolution

equation

du = (∂2
xu + b(x)∂xu) dt + g(u) dW (t) (1.5)

on the real positive half-line with inhomogeneous time dependent Dirichlet

boundary condition u(t, 0) = ∂V (t)/∂t for a real standard Brownian motion

V (t) independent from W (t). The mild solution of the equation is given in a

certain weighted space Lp
γ(R+), in terms of the fundamental solution of the

corresponding linear stochastic parabolic equation on the half-line

dp(t, x) =
∂2

∂x2
p(t, x) dt + b(x)

∂

∂x
p(t, x) dW (t), t > 0, x ∈ R+,

p(t, 0) = 0 (1.6)

Using techniques of the Malliavin calculus, the authors prove the existence

of the solution u ∈ Lp(Ω × [0, T ]; Lp
γ) for every γ ∈ ]0, 1[. Moreover, if some

additional estimate holds, then the function u(t, ·) is continuous on ]0,∞[ and

x1+αu(t, x) → 0 as x ↘ 0 almost surely for any α > 0. In [3] the asymptotic
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behaviour of the solution is studied, and it is proved that the equation has an

unique invariant measure that is exponentially mean-square stable.

Yang and Duan in [28] study the impact of stochastic dynamic boundary

conditions on the long term dynamics of a stochastic viscous Cahn-Hilliard

equation of the form:

(ε + A−1) dφ = (∆φ− 〈∂νφ〉 − f(φ)) dt + σ1A
−1 dW 1 on G (1.7)

φ(0) = φ0

dψ = (∆‖ψ − λψ − ∂nuφ) dt + σ2 dW 2 on Γ

ψ(0) = ψ0

φ|Γ = ψ

where G :=
∏n

i=1(0, Li), Li > 0, n ∈ {1, 2, 3} with boundary Γ and A coin-

cides with the operator −∆ with homogeneous Neumann boundary conditions

and zero average on the domain. This problem is a system of Itô parabolic

stochastic partial differential equations. Following a classical method in sto-

chastic analysis, they compute the unique stationary solution for the linear

stochastic equations with additive noise

(ε + A−1) dz1 = Az1 dt + σ1A
−1 dW 1

dz2 = (∆‖z
2 − λz2) dt + σ2 dW 2

As known, the stochastic convolutions

z1(t) = σ1

∫ t

−∞
e−Aε(t−s)(I + εA)−1 dW 1(s)

and

z2(t) = σ2

∫ t

−∞
eAλ(t−s) dW 2(s)

are the unique stationary mild solutions for these problems with Aε = A(ε +

A−1)−1 and Aλ = (∆‖ − λ). Setting (u, v) = (φ − z1, ψ − z2) they obtain

a family of deterministic systems which depends on parameter ω ∈ Ω and

solve it pathwise. By a result contained in [65] for deterministic Cahn-Hilliard

equation with dynamic boundary conditions, there exists a continuous operator
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Sε(t, s; ω) on a suitable Banach space that describes the solution for every

initial value. The corresponding stochastic flow can be defined by

ϕ(t, ω)(φ(0), ψ(0)) = Sε(t, 0; ω)(φ(0), ψ(0))

where P-a.s.

Sε(t, s; ω) = Sε(t− s, 0; θsω)

and

θs(ω)(t) = ω(t + s)− ω(s).

In order to examine the impact of stochastic boundary conditions on the sys-

tem, the authors study how the random attractor varies with the dynamic

intensity parameter ε0 in the equation:

1

ε0
dψ = (∆‖ψ − λψ − ∂nuφ) dt + σ2 dW 2 on Γ

They show that the dimension’s estimation of the random attractor increases

as the coefficient 1
ε0

for the dynamic term in the stochastic dynamic boundary

condition decreases. However, in the limiting case ε0 = ∞, that is the sto-

chastic dynamic boundary conditions reduce to the stochastic static boundary

conditions

0 = (∆‖ψ − λψ − ∂nuφ) dt + σ2 dW 2 on Γ (1.8)

the dimension does not tend to infinity. Instead, (1.8) does not have impact

on the dimension.

Chueschov and Schmalfuss in [18] consider a system of quasi-linear

Itô parabolic SPDEs, whose coefficients for the spatial differential operators

depending on space and time, of the form

du = [−A(t)u + f(t, u,∇u)] dt + g(t, u) dW 0 on O× R+

ε2 du = [−B(t)u + h(t, u)] dt + εσ(t, u) dW 1 on Γ1 × R+

B(t)u = 0 on Γ2 × R+

u|t=0 = u0

where O ⊂ Rn is a bounded domain with boundary Γ0 = Γ̄1∪Γ̄2 and Γ1, Γ2 are

open subset of Γ0 such that Γ1∩Γ2 = ∅. They study existence and uniqueness

for these partial differential equations under the influence of a white noise

as the temporal derivative of an infinite-dimensional Wiener process. The
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presence of the parameter ε ∈ (0, 1] emphasizes that this problem is treated

as a perturbation of a parabolic SPDE with classical boundary conditions. At

first they consider the linear deterministic partial differential equation with

dynamical boundary conditions obtained by removing nonlinearities and noise

∂tu + A(t)u = 0 on O× (0, T ]

ε2∂t(γ1u) + B1(t)u = 0 on Γ1 × (0, T ]

B2(t)u = 0 on Γ2 × (0, T ]

The authors prove, under some assumptions, that this problem generates a

fundamental solution or equivalently a family of evolution operators U(t, s).

Then they investigate mild solution of very general stochastic evolution equa-

tions with time dependent coefficients, i.e. solutions of the following stochastic

integral equation

u(t) = U(t, 0)u0 +

∫ t

0

U(t, s)F (s, ω, u(s)) ds

+

∫ t

0

U(t, s)G(s, ω, u(s)) dW (s, ω)

assuming existence of a fundamental solution U(t, s). At end they use this gen-

eral result to show that the nonlinear stochastic dynamical boundary problem

has a unique mild solution if the nonlinear drift and diffusion coefficients are

Lipschitz continuous with respect to the unknown function on both the domain

and the boundary.

Remark 1.1. In the next section we explain the technical motivations that

lead toward a semigroup approach. In particular we introduce the concept of

matrix operator in order to convert an evolution problem to an abstract Cauchy

problem on a product space.

2. Operator matrices and generation of semigroups

The abstract semigroup theory, developed during last century, provides a

natural setting, where it is possible, to study the existence and uniqueness of

linear dynamical systems, starting with the simple case of systems that evolve

in time with a constant law: “semigroups everywhere” as stated in [31]. Writ-

ing the problem in an abstract setting it is possible to give general conditions
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of existence and uniqueness of the solution in suitable classes of functions. Re-

cently this approach has been extended to cover dynamical systems described

by a set of unknows, see the paper [68] by R. Nagel. Linear evolution equa-

tions can be in fact naturally embedded in an abstract framework introducing

a suitable Banach space X and a (possibly unbounded) infinitesimal operator

A on X that describes the rate of change of the abstract dynamical system.

In this functional setting, the evolution of the system can be written formally

as an Abstract Cauchy Problem in X:
{

Ẋ(t) = AX(t)

X(0) = X0.
(1.9)

The generation properties of the operator A allow to solve the question of well

posedness of the problem (existence, uniqueness and continuous dependence

on the data for solution) and to characterize the regularity of the solution.

2.1. Derivation of an abstract setting. Let u(t, x) be a physical quan-

tity that verifies a differential problem in a bounded domain O. To describe the

phenomenon we have to specify its behaviour on the boundary. We shall see

in Chapter 4 that, when we incorporate the boundary conditions into the for-

mulation of the problem, different physical assumptions lead to all of standard

boundary conditions as well as general Wentzell and dynamical boundary con-

ditions. Classical applications of semigroup requires homogeneous (possibly

zero) boundary conditions, normally given by fixing the value of the function

(Dirichlet b.c.) or of the normal derivative (Neumann b.c.). The evolution

operator A then incorporates these conditions into the definition of its do-

main. A direct extension of this approach is possible even when Wentzell or

dynamic boundary conditions are given; however in this case we obtain a time

dependent family of operators A(t) which generate a two parameter family of

evolution operators. An application of this framework is given in the paper

[18, 28]. On the other hand, in the last ten years, several papers proposed to

set the problem in the space Lp(Ō, dµ) with dµ = dx|O⊗ dσ|∂O, where dx

denotes the Lebesgue measure on the domain O and dσ the natural surface

measure on the boundary ∂O. This space is isometric to the product space

Lp(O, dx)× Lp(∂O, dσ) and the problem is written as a system of two equa-

tions, which define, respectively, the internal and the boundary dynamics. On
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this space we define a matrix-valued operator A, whose components describe

the evolution of the system, while its domain should contain the relationship

between the two dynamics and it is of non-diagonal type. Differential equa-

tions with dynamical b.c. are considered, for instance, in [15, 54], see also the

references therein; also Wentzell b.c. enter in this setting and were the object

of a series of papers (see e.g. [32]).

In this thesis we apply the techniques of product spaces and operator matri-

ces to solve stochastic evolution equations with randomly perturbed dynamic

boundary conditions. Moreover, we combine these tools with stochastic analy-

sis in infinite dimensions to obtain existence and uniqueness for mild solutions.

By spectral methods for the matrix operators we derive some properties of sta-

bility like existence of invariant measure and random attractors. We will see

in the next chapter several results on generation and spectral properties for

matrix operators and a short introduction to stochastic integration in infinite

dimension with respect to a Lévy process.

2.2. Setting of the problem. We give as a general reference for this in-

troduction the following stochastic dynamic boundary value problem,

given in the form





du(t) = [Amu(t) + F (u(t))] dt + G(u(t)) dW (t), t > 0

x(t) := Lu(t),

dx(t) = [Bx(t) + Φu(t)] dt + Γ(x(t)) dV (t), t > 0

u(0) = u0, x(0) = x0.

(1.10)

When W,V are infinite dimensional Brownian motion, this approach leads us

to models studied in [23, 24, 25] for stochastic differential equations in infinite

dimension, while in the case that are general Lévy noises we refer to [5, 4] or

[61]. In the following, we present an appropriate setting for our problem.

Let X and ∂X be two Hilbert spaces, called the state space and bound-

ary space, respectively, and X = X×∂X their product space. Then u(t) ∈ X

describes the state of the system at time t while x(t) ∈ ∂X is its boundary

value.

We consider the following linear operators:

• Am : D(Am) ⊂ X → X, called maximal operator, describes the

internal dynamics on X,
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• B : D(B) ⊂ ∂X → ∂X describes a different dynamics on ∂X;

• L : D(Am) → ∂X, called boundary operator is the map which

associates the internal and the boundary dynamics;

• Φ : D(Φ) ⊂ X → ∂X, called feedback operator defines the

effects of the internal dynamics on the boundary; we assume that

D(Am) ⊂ D(Φ).

Finally, we define on the product space X the matrix operator

A =

(
Am 0

Φ B

)
, D(A) =

{(
u

x

)
∈ D(Am)×D(B)

∣∣Lu = x

}
.

In the next section, following [15], we introduce the main assumptions and

results concerning the generation property of the matrix operator A, and dis-

cuss sufficient conditions in order to solve (1.10); then in section 3 we discuss

some examples that fit into our framework.

2.3. Notation and main results. Given Hilbert spaces U , V , we shall

denote L(U ; V ) (resp. L(U)) the space of linear bounded operators from U into

V (resp. into U itself) and L2(U ; V ) the space of Hilbert-Schmidt operators

from U into V . In order to consider the evolution of the system with dynamic

boundary conditions, we start by introducing the operator A0 on X, defined

by {
D(A0) = {f ∈ D(Am) | Lf = 0}
A0f = Af for all f ∈ D(A0),

i.e. the internal evolution operator with homogeneous boundary conditions.

We are in the position to formulate the main set of assumptions on the

deterministic dynamic of the system.

Assumption 1.1.

(1) A0 is the generator of a strongly continuous semigroup (T0(t))t≥0 on

the space X;

(2) B is the generator of a strongly continuous semigroup (S(t))t≥0 on

the space ∂X;

(3) L : D(Am) ⊂ X → ∂X is a surjective mapping;

(4) the operator

(
Am

L

)
: D(Am) ⊂ X → X = X × ∂X is closed.
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2.4. No boundary feedback. In order to separate difficulties, in this

section we consider the case Φ ≡ 0. In order to treat (1.10) using semigroup

theory, we consider the operator matrix A on the product space X given by

A =

(
Am 0

0 B

)
, D(A) =

{(
u

x

)
∈ D(Am)×D(B)

∣∣Lu = x

}

Our first step is to introduce the Dirichlet operator Dµ. This construc-

tion is justified by [41, Lemma 1.2]. For given µ ∈ ρ(A0), assume that the

stationary boundary value problem

µw − Amw = 0, Lw = x

has a unique solution Dµx := w ∈ D(Am) for arbitrary x ∈ ∂X. Then Dµ is

the Green (or Dirichlet) mapping associated with Am and L. Let us define the

operator matrix

Dµ =

(
IX −Dµ

0 I∂X

)
;

from [69, Lemma 2] we obtain the representation

(µ−A) = (µ−A0)Dµ

where A0 is the diagonal operator matrix

A0 =

(
A0 0

0 B

)

on the diagonal domain D(A0) = D(A0)×D(B).

Using [15, Theorem 2.7 and Corollary 2.8], we are in the position to char-

acterize the generation property of (A, D(A)).

Lemma 1.2. Assume that A0 is invertible. Then A generates a C0 semi-

group on X if and only if the operator Q0(t) : D(B) ⊂ ∂X → X,

Q0(t)y := −A0

∫ t

0

T0(t− s)D0S(s)y ds, y ∈ ∂X (1.11)

has an extension to a bounded operator on ∂X, satisfying

lim sup
t↘0

‖Q0(t)‖ < +∞. (1.12)
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Moreover, in this case we can also give a representation of T(t):

T(t) =

(
T0(t) Q0(t)

0 S(t)

)
. (1.13)

Note that this result can be extended to the case λ ∈ ρ(A0), defining

Qλ(t)y := (λ− A0)

∫ t

0

T0(t− s)DλS(s)y ds, y ∈ ∂X

This lemma explains the fact that in lack of feedback term, it is possible to solve

the two equations separately, considering the internal equation with homoge-

neous boundary conditions and providing to add the further term −D0S(t)y0.

Corollary 1.3. Assume that A0 and B generate analytic semigroups on

X and ∂X, respectively; then A generates an analytic semigroup (T(t))t≥0 on

X.

Corollary 1.4. If B ∈ L(∂X) is bounded, then A generates a C0 semi-

group on X; in particular, if A0 is invertible and B = 0, then Q0(t) =

(I − T0(t))D0.

We are now in position to write the original problem (1.10) in a equivalent

problem as a stochastic abstract Cauchy problem
{

dx(t) = [Ax(t) + F(x(t))] dt + G(x(t)) dW(t),

x(0) = x0
(1.14)

In order to solve this stochastic problem, we introduce some assumptions on

the nonlinear and stochastic terms which appear in (1.10); these assumptions,

in turn, will be reflected to the operators F and G in (1.14).

Assumption 1.5.

We are given a stochastic basis (Ω, F , Ft, P);

(1) W and V are Wiener noises on X and ∂X, respectively, and W =

(W,V ) is a Q-Wiener process on X, with trace class covariance oper-

ator Q;

(2) the mappings F : X → X and G : X → L2(X, X) are Lipschitz

continuous, i.e. exists a constant C > 0 such that

|F (x)− F (y)| + ‖G(x)−G(y)‖ ≤ C|x− y|, ∀x, y ∈ X
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with linear growth bound

|F (x)|2 + ‖G(x)‖2 ≤ C(1 + |x|2); ∀x ∈ X

(3) the mapping Γ : ∂X → L2(∂X, ∂X) is Lipschitz continuous with

linear growth bound:

‖Γ(x)− Γ(y)‖ ≤ C|x− y|, ‖Γ(x)‖2 ≤ C(1 + |x|2) ∀x ∈ ∂X.

Let us recall the relevant result from [23].

Lemma 1.6. Assume that A is the generator of a C0 semigroup (T(t))t≥0

on X and Assumption 1.5 holds. Then for every x0 ∈ X, there exists a unique

mild solution X to (1.14) defined by

X(t) = T(t)x0 +

∫ t

0

T(t− s)F(X(s)) ds +

∫ t

0

T(t− s)G(s) dW(s) P− a.s.

Moreover, it has a continuous modification.

2.5. Boundary feedback. We are now in the position to include the

feedback operator Φ into our discussion. In order to simplify the exposition,

and in view of the examples below, we choose to concentrate on two cases,

which are far from being general.

We shall prove some generation results for the operator matrix

A =

(
Am 0

Φ B

)
, D(A) =

{(
u

x

)
∈ D(Am)×D(B) | Lu = x

}
,

where we assume that A0 is the generator of a C0 analytic semigroup with

0 ∈ ρ(A0).

As in Section 2.4 we write

A = A0D
Φ
0 ,

where the operator matrix DΦ
0 is given by

DΦ
0 =

(
IX −D0

B−1Φ I∂X

)
= IX +

(
0 −D0

B−1Φ 0

)
.

The first result can be proved as in [15, Section 4].

Lemma 1.7. Assume that the feedback operator Φ : D(Am) → ∂X is

bounded. Then the matrix operator A is the generator of a C0 semigroup.



3. MOTIVATING EXAMPLES 15

Next, we consider a generation result in case Φ is unbounded, which is

the case in several applications (see for instance [18]). This case may be

treated using the techniques of one-sided coupled operators, compare

[30, Theorem 3.13 and Corollary 3.17].

Lemma 1.8. Assume that B ∈ L(∂X) and D0Φ is a compact operator;

then the matrix operator A is the generator of an analytic semigroup.

Remark 1.2. Assume that the boundary space ∂X is finite dimensional;

this is the case, for instance, when the boundary consists of a finite number of

points. Then B ∈ L(∂X) is bounded and D0Φ is a finite rank operator, hence

it is compact, so that A is the generator of an analytic semigroup thanks to

previous lemma.

3. Motivating examples

We are concerned with the following examples from [11]. The first two are

special cases of the paper [18]; notice that the first one has some applications

in mathematical biology (for instance, to study impulse propagation along a

neuron). The third example was considered in the paper [24] and (in the

special case discussed here) in the paper [26].

3.1. Impulse propagation with boundary feedback. A widely ac-

cepted model for a dendritic spine with passive spine activity can be described

by means of the following equation for the potential

∂u

∂t
(t, ξ) =

∂2u

∂ξ2
(t, ξ) + f(ξ, u(t, ξ)), t > 0, ξ > 0;

the extremal point ξ = 0 denotes the cellular soma, where the potential

evolves with a different dynamic; setting x(t) = u(t, 0), the following equation

is a possible model for this dynamic

dx(t) = [−bx(t) + cu′(t, 0)] dt + σ(x(t)) dW (t),

where W (t) is a real standard Brownian motion.
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In order to set the problem in an abstract setting, we consider the spaces

X = L2(R+) and ∂X = R; the matrix operator A is given by

A =





∂2

∂x2 0

c ∂
∂x

∣∣
x=0

−b



 .

Since the boundary space ∂X is finite dimensional and the leading operator
∂2

∂x2 on R+ with Dirichlet boundary condition generates an analytic semigroup,

then so does A on X = X × ∂X. Therefore, we write our problem in the

equivalent form

dx(t) = [Ax(t) + F(x(t))] dt + G(x(t)) dW(t)

x(0) = x0

and we obtain existence and uniqueness of the solution thanks to Lemma 1.6.

3.2. Dynamic on a domain with mixed boundary conditions. In

previous example, the boundary space was finite dimensional. Here, we shall

be concerned with a dynamical system which evolves in a bounded region

O ⊂ Rd, with smooth boundary Γ = ∂O. We assume that Γ = Γ̄1 ∪ Γ̄2, where

Γi are open subsets of Γ with Γ1 ∩ Γ2 = ∅.
We are given the second order differential operator

A(x, ∂)u(x) =
d∑

k,j=1

∂

∂xk

(
akj(x)

∂

∂xj
u(x)

)

+
d∑

k=1

ak(x)
∂

∂xk
u(x) + a0(x)u(x),

uniformly elliptic, with regular coefficients:

akj(x), ak(x) and a0(x) ∈ C2(Ō) j, k = 1, ..., d.

We are concerned with the Sobolev spaces Hs(O), s > 0 (see for instance

[59] for the definition). The construction of the Sobolev spaces Hs(Γ) for

functions defined on the boundary Γ = ∂O is given in terms of the Laplace-

Beltrami operator B := ∆Γ on Γ; indeed we have

Hs(Γ) = domain of (−∆Γ)s.
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Denote Bs(Γ) = Hs− 1
2 (Γ), for s > 1

2 , and similarly for Bs(Γi). Then the trace

mapping γ (and similarly for γi) is continuous from Hs(O) into Bs(Γ), for

s > 1
2 .

In order to state the equation in an abstract setting, we introduce, on the

Sobolev space X = L2(O), the operator

Amu := A(x, ∂)u(x), with domain

D(Am) = {ϕ ∈ H1/2(O) ∩H2
loc(O) | Amϕ ∈ X}.

We also consider the normal boundary derivative

B2(x, ∂) =
d∑

k,j=1

akj(x)νkγ2
∂

∂xj
, x ∈ Γ2,

where ν = (ν1, . . . , νd) is the outward normal vector field to Γ. Then we

consider the following linear equation





du(t) = Amu(t) dt + G(u(t)) dW (t),

x1 = γ1u, dx1(t) = Bx1(t) dt + Γ(x1(t)) dV (t),

x2 = B2u, dx2(t) = 0,

(1.15)

with the initial conditions

u(0) = u0, x1(0) = γ1u0, x2(0) = 0.

We shall transform our problem in an abstract Cauchy problem in a larger

space. We define the Hilbert space X = L2(O) × L2(Γ1) × L2(Γ2), and we

denote x ∈ X the column vector with components (u, x1, x2). On the product

space X we introduce the matrix operator A, defined as

A :=




Am 0 0

0 B 0

0 0 0





on

D(A) =
{
x = (u, x1, x2) | u ∈ H2(O), x1 = γ1u, x1 ∈ D(B),

x2 = B2u, x2 = 0
}

.
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Then A satisfies the assumptions of Corollary 1.3, hence it is the generator of

an analytic semigroup; we solve problem (1.15) in the equivalent form

{
dx(t) = Ax(t) dt + G(x(t)) dW(t)

x(0) = x0

using assumption (1.5) and Lemma 1.6.

3.3. Inhomogeneous boundary conditions. Let us consider, with the

notation of previous example, the case when the boundary conditions on Γ2

are given by x2(t) = f(t) for a function f : R+ → Γ2 that is continuously

differentiable in time; in order to separate the difficulties we consider the

following form of (1.10)






du(t) = Amu(t) dt, t > 0,

x(t) = Lu(t), t ≥ 0,

dx(t) = [Bx(t) + Π2f ′(t)] dt + R dW (t), t > 0,

u(0) = u0, x(0) = x0, f(0) = f0.

(1.16)

We define the abstract problem

{
dx(t) = [Ax(t) + f ′(t)] dt + R dW (t),

x(0) = ζ,
(1.17)

where R ∈ L(U,X) is defined by

R · h :=

(
0

R · h

)
for all h in the Hilbert space U ,

f(t) =

(
0

Π2f(t)

)
and ζ = (u0, x0, f0)

∗.

The solution in mild form is given by the formula

x(t) = x(t, τ, ζ) = T(t− τ)ζ +

∫ t

τ

T(t− s)

(
0

Π2f ′(s)

)
ds

+

∫ t

τ

T(t− s)R dW (s).

(1.18)
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We consider first the middle integral in (1.18); using the representation of the

semigroup T(t) given by formula (1.13) we obtain

∫ t

τ

T(t− s)

(
0

Π2f ′(s)

)
ds = −T(t− τ)f(τ) + f(t)

− A0

∫ t

τ

T0(t− σ)D0Π2f(σ) dσ.

We then write (1.18) in the form

X(t) = T(t− τ)ζ +

(
0

Π2f(t)

)
− A0

∫ t

τ

T0(t− σ)D0Π2f(σ) dσ

+

∫ t

τ

T(t− s)R dW (s);

notice that we do not need anymore the differentiability condition on f .

In the next statement, we are concerned with the properties of the stochas-

tic convolution process

WR
A(t) =

∫ t

0

T(t− s)R dW (s). (1.19)

Corollary 1.9. Under the assumptions of Proposition 1.3, assume

∫ t

0

‖T(s)R‖2
HS ds < +∞ ∀ t ∈ [0, T ]. (1.20)

Then WR
A is a gaussian process, centered, with covariance operator defined by

Cov WR
A(t) = Qt :=

∫ t

0

[T(s)RR∗T∗(s)]ds (1.21)

and Qt ∈ L2(H) for every t ∈ [0, T ].

Remark 1.3. Condition (1.20) is verified whenever R ∈ L2(U, ∂X) and,

in particular, in case R ∈ L(U, ∂X) and U is finite dimensional.
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3.4. Stochastic boundary conditions. In several papers, the case of a

white-noise perturbation on the boundary f(t) = V̇ (t) is considered. Following

[24], we shall define as mild solution of (1.18) in the interior of the domain

the process u(t) given by

u(t) = T0(t)u0 + Q0(t)x0 − A0

∫ t

0

T0(t− σ)D0(Π21) dV (σ) (1.22)

We study this example with state space O = [0, 1] and mixed boundary

condition on ∂O, that is, D(A0) = {u ∈ X : u(0) = 0, u′(1) = 0}, A0u(ξ) =

u′′(ξ), U = R, Q = I, R = I and we choose

B =

(
−1 0

0 0

)
=⇒ S(t) =

(
e−t 0

0 1

)
,

which determine the boundary condition at 0, while there exists a continuous

function f(t) which determines the boundary condition d
dxu(t, 1) = f(t).

In this case we can explicitly work out the solution. At first, notice that

(D0Π2α)(x) = αx; next, we construct the orthogonal basis {gk : k ∈ N},
setting gk(x) = sin((π/2 + kπ)x), to which it correspond the eigenvalues λk =

−(π/2 + kπ)2. Since

T0(t)(x) =
∞∑

k=1

〈x, gk(x)〉eλktgk(x)

and ∫ 1

0

x sin((π/2 + kπ)x) dx =
(−1)k

|λk|
,

we obtain

−A0

∫ t

0

T0(t− σ)D0(Π21) dV (σ) = −
∞∑

k=1

(−1)k+1gk(x)

∫ t

0

eλk(t−σ) dV (σ).

(1.23)

In this setting estimate (1.20) is verified due to the choice of ∂X = R2,

see Remark 1.3. Also, the new stochastic term is well defined for every t ≥ 0,

since

E

∣∣∣∣A0

∫ t

0

T0(t− σ)D0(Π21) dV (σ)

∣∣∣∣
2

≤ C
∞∑

k=1

1

λk
< +∞, (1.24)

with a constant C independent from t, compare (1.23).
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3.5. Application to an optimal control problem. In the paper [9],

the authors are concerned with a one dimensional semilinear diffusion equa-

tion in a bounded interval, where interactions with extremal points cannot be

disregarded. The extremal points have a mass and the boundary potential

evolves with a specific dynamic. The overall dynamic of the system is con-

trolled through a control process acting on the boundary; stochasticity enters

through fluctuations and random perturbations both in the interior as on the

boundaries; in particular, this means that the control process is perturbed by

a noisy term.

As reference interval is taken D = [0, 1]. Then, the internal dynamic is

described by the following stochastic evolution equation

∂tu(t, x) = ∂2
xu(t, x) + f(t, x, u(t, x)) + g(t, x, u(t, x))Ẇ (t, x) (1.25)

where f and g are real valued mappings, defined on [0, T ] × [0, 1]× R, which

verify some boundedness and Lipschitz continuity assumptions and W (t, x) is

a real-valued space time Wiener process.

This equation must be supplied with initial and boundary conditions. As

mentioned above, the latter are nonstandard in the mathematical literature,

although of some interest in the applications.

The boundary dynamic is governed by a finite dimensional system which

follows a (ordinary, two dimensional) stochastic differential equation

∂tvi(t) = −bivi(t)− ∂νu(t, i) + hi(t)[zi(t) + V̇i(t)], i = 0, 1 (1.26)

where bi are positive numbers and hi(t) are bounded, measurable functions,

V (t) = (V1(t), V2(t)) is a R2-valued Wiener process , that is independent from

W (t, x).; ∂ν is the normal derivative on the boundary, and coincides with

(−1)i∂x for i = 0, 1; z(t) = (z0(t), z1(t)) is the control process and takes values

in a given subset of R2.

The initial condition is given both for the state variable and the boundary

condition by

u(0, x) = u0(x), 0 < x < 1; vi(0) = v0(i), i = 0, 1. (1.27)
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The optimal control problem consists in minimizing, as the control process

z varies within a set of admissible controls, a cost functional of the form

J(t0, u0, z) = E
∫ T

t0

λ(s, uz
s, v

z
s , zs) ds + Eφ(uz

T , vz
T ) (1.28)

where λ and φ are given real functions.

The problem is formulated in an abstract setting, where it will be possible

to use results, already known in the literature, concerning the existence of

an optimal control for this problem. Introducing the vector u =

(
u(·)
v(·)

)
on

the space X = L2(0, 1) × R2 the original problem (1.25)–(1.26)–(1.27) can be

written in the form




duz
t = Auz

t dt + F(t,uz
t ) dt + G(t,uz

t )[Pzt dt + dWt]

u(0) = u0 =



u0

v0



 .
(1.29)

Here, P : R2 → X denotes the immersion of the boundary space in the product

space X = L2(0, 1)× R2: Pb :=

(
0

b

)
.

The first concern is to study existence and uniqueness for the solution of

(1.29). To this end, it is considered the uncontrolled equation




du = Au(t) + F(t,u(t)) dt + G(t,u(t)) dW(t)

u(0) = u0,
(1.30)

where the operators A, F and G are defined in terms of the coefficients of

the original problem. Then they prove that the operator A is the infinitesi-

mal generator of a strongly continuous, analytic semigroup of contractions etA,

self-adjoint and compact. Further, they obtain that A is a self-adjoint opera-

tor with compact resolvent, which implies that the semigroup etA is Hilbert-

Schmidt. Moreover, they can characterize the complete orthonormal system

of eigenfunctions associated to A. Following this approach, the authors char-

acterize existence and uniqueness of the solution to problem (1.30), by means

of standard results on stochastic evolution equations in infinite dimensions.

It is necessary to mention that different examples of stochastic problems

with boundary control are already present in the literature, see for instance
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Maslowski [62] and the references therein, or the paper [26] for a one dimen-

sional case where the boundary values are given by the control perturbed by

an additive white noise mapping.

Similarly to this paper, it is introduced the control process z = {z(t), t ∈
[0, T ]}, that is a square integrable process taking values in a bounded domain

in R2. Using the abstract setting delineated above, although the control lives

in a finite dimensional space, they obtain an abstract optimal control problem

in infinite dimensions. Such type of problems has been exhaustively studied by

Fuhrman and Tessitore in [34]. The control problem is understood in the usual

weak sense (see [33]). Finally they prove that, under a set of hypothesis, the

abstract control problem can be solved and characterize the optimal controls

by a feedback law.





CHAPTER 2

Matrix operator and stochastic integration

In section 3 we have shown how is possible to convert an initial stochas-

tic boundary value problem into an abstract Cauchy stochastic problem on

some product space, provided to introduce a suitable functional setting which

involves the concept of operator matrices. In the last thirty years, this ap-

proach has been applied to a wide class of systems of deterministic evolution

equations as well as fluid dynamics [74], Volterra integro-differential equations

[16, 27, 64], wave equations [40], delay equations [49, 50] or diffusion prob-

lems in viscoelastic materials [38, 37, 55, 57]. Motivated by the abstract

setting introduced in section 2, we want to define an appropriate framework

that permits to treat such problems also in presence of randomness. In the

first part of this chapter, we present some results from [30, 66, 68, 69] about

generation and spectral properties of matrix operators in order to characterize

either the well posedness of deterministic problems given in the form
{

Ẋ(t) = AX(t)

X(0) = X0.
(2.1)

or asymptotic behaviour and regularity of the solution. In case of stochastic

perturbations of the system, we obtain a linear stochastic evolution equation

driven, in general, by a Lévy process, given in the form
{

dX(t) = [AX(t) + F(X(t))] dt + G(X(t)) dL(t)

X(0) = X0.
(2.2)

So, following the semigroup approach given, for example in [23, 25], we have

to be able to define a solution of mild type for the stochastic problem (2.2)

defined P-a.s., formally, by

X(t) = T(t)X0 +

∫ t

0

T(t− s)F(X(s)) ds +

∫ t

0

T(t− s)G(X(s)) dL(s)

25
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where (T(t))t≥0 is the semigroup generated by A. Then, in section 2, we

give a short introduction to infinite stochastic integration for operator valued

functions with respect to Banach valued Lévy process.

1. Matrix theory for operator matrices

Suppose that we are interested for an evolution differential problem on

a certain domain, where the internal and boundary dynamics are connected

by some evaluation conditions and possibly a feedback term. Rewriting the

differential system as an unique evolution equation in some product Banach

space, we obtain a matrix operator that describes the rate of change of the

vector whose components are the internal and boundary state functions of the

problem. Then we have to work with generally unbounded operator matrices

of this form:

A =

(
A B

C D

)
(2.3)

defined on D(A) ⊂ E = E×F , where E and F are Banach spaces. At first we

consider the simple case in which the domain of the operator is diagonal, i.e.

D(A) = D(A)×D(D). The lack of an evaluation operator on the boundary and

the fact that the degree of unboundedness of the matrix operator is given by

the diagonal entries simplifies the characterization of spectral and generation

properties. Afterward, introducing some kind of evaluation on the boundary,

we need to define the so called one-sided coupled operators and then to explain

analogous results for this type of operators. Note that for both cases the

diagonal operators A and D give the degree of unboundedness of the operator

matrices, i.e. D(D) ⊂ D(B) and D(A) ⊂ D(C). If this condition is not

satisfied, we have to verify directly the hypothesis of some generation result

for the whole operator A (e.g. Hille-Yosida, Feller-Miyadera-Phillips, Lumer-

Phillips...).

1.1. Operator matrices with diagonal domain.

spectral properties

At beginning of his paper [68], Nagel examines the simple case when the

operator (2.3) has all bounded entries (and everywhere defined). Under this

assumption he introduces a non-commutative characteristic function yielding

an efficient way of computing the spectrum of A.
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Lemma 2.1 ([68]). Let E,F Banach spaces and A ∈ L(E), D ∈ L(F ),

B ∈ L(F, E), C ∈ L(E,F ) and consider the matrix operator A ∈ L(E × F )

(2.3). If A and D are invertible then the following assertions are equivalent:

(a): A is invertible in L(E × F ).

(b): A−BD−1C, hence Id−BD−1CA−1 is invertible in L(E).

(c): D − CA−1B, hence Id− CA−1BD−1 is invertible in L(F ).

This Lemma indicates that, under suitable assumptions, one could take

either the linear operators A−BD−1C or D−CA−1B as a substitute for the

determinant of A.

In the case of unbounded entries the author needs some assumptions on

the domains of the operators involved.

Assumption 2.2 ([68]). Let E, F be Banach spaces and assume that

(1) the operator A with domain D(A) has non empty resolvent set ρ(A)

in E,

(2) the operator D with domain D(D) has non empty resolvent set ρ(D)

in F ,

(3) the operator B with domain D(B) is relatively D-bounded, i.e.

D(D) ⊂ D(B) and BR(λ, D) ∈ L(F, E) for λ ∈ ρ(D),

(4) the operator C with domain D(C) is relatively A-bounded, i.e.

D(A) ⊂ D(C) and CR(λ, A) ∈ L(E,F ) for λ ∈ ρ(A),

(5) the operator A =

(
A B

C D

)
with domain D(A) = D(A) × D(D) is

closed in E × F .

The conditions (1)− (4) express the fact that the diagonal elements deter-

mine the “degree of unboundedness” of the operator A. Under this assump-

tions it is possible to define an operator theoretical analogue to the character-

istic polynomial of a scalar 2× 2 -matrix.

Definition 2.3 ([68]). Under the Assumption 2.2 and for λ /∈ σ(A)∪σ(D)

we consider the operators

∆E(λ) := λ− A−BR(λ, D)C (2.4)

and

∆F (λ) := λ−D − CR(λ, A)B (2.5)
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with domain D(A) in E, respectively domain D(D) in F . The function λ 5→
∆E(λ), resp. λ 5→ ∆F (λ) will be called the E-characteristic, resp. F -

characteristic operator function of the matrix operator

A =

(
A B

C D

)
.

With these characteristic operator functions we are able to determine those

spectral values of A which are not contained in σ(A) ∪ σ(D).

Theorem 2.4 ([68]). Consider an operator matrix A =

(
A B

C D

)
on E×

F for which the Assumption 2.2 holds. For λ /∈ σ(A) ∪ σ(D) the following

assertions are equivalent:

(a): λ ∈ σ(A),

(b): 0 ∈ σ(∆E),

(c): 0 ∈ σ(∆F )

Moreover, for λ /∈ σ(A) ∪ σ(D) ∪ σ(A) the resolvent of A is given by

R(λ, A) =

(
∆−1

E (λ) ∆−1
E (λ)BR(λ, D)

R(λ, D)C∆−1
E (λ) R(λ, D)(Id + C∆−1

E (λ)BR(λ, D))

)
(2.6)

or the analogous expression using ∆F (λ).

Remark 2.1. If E and F are of different size we clearly compute σ(A)

through the characteristic operator function in the smaller space. In particular

if dim E < ∞ then ∆E(λ) becomes a matrix and 0 ∈ σ(∆E(λ)) becomes the

characteristic equation det(∆E(λ)) = 0.

generation properties

By standard semigroup theory it is well known that systems of linear evolution

equations are well-posed if and only if the corresponding operator matrices are

the generator of a strongly continuous semigroup on the product space. Let

us first deal with operator matrices of the form

A :=

(
A 0

0 D

)

with diagonal domain D(A) = D(A) ×D(D). It is easy to check that A and

D generate a semigroup on E and F , respectively, if and only if the operator
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matrix A generates a semigroup on the product space E × F . By standard

perturbation results one can extend this result to more interesting matrix

operator.

Proposition 2.5 ([68]). Assume that A and D generate strongly contin-

uous semigroups (etA)t≥0 on E and (etD)t≥0 on F . For a D-bounded operator

B : D(D) → E the following assertions are equivalent:

(a): The matrix A =

(
A B

0 D

)
with domain D(A) = D(A) ×D(D) is

a generator on E × F .

(b): The operators

R(t) :=

∫ t

0

e(t−s)ABesD ds (2.7)

are uniformly bounded as t ↓ 0.

In that case, the semigroup generated by A is given by the matrices

T(t) :=

(
etA R(t)

0 etD

)
, t ≥ 0 (2.8)

Corollary 2.6 ([68]). Assume that A and D generate semigroups on E,

resp. on F . If B is bounded from D(D) into D(A) then A =

(
A B

0 D

)
is a

generator on E × F .

Corollary 2.7 ([68]). Assume that A and D generate analytic semi-

groups on E, resp. on F . If B is D-bounded then A =

(
A B

0 D

)
is the

generator of an analytic semigroup.

Using basic properties of the convolution of operator-valued mappings,

Mugnolo in [66] obtains new stability results for semigroups generated by

operator matrices with diagonal domain.

Remark 2.2. We define by [D(A)] the Banach space obtained by endowing

the domain of a closed operator A on a Banach space by its graph norm.

Theorem 2.8 ([66]). Under the Assumptions 2.2 the following assertions

hold for the operator matrix A defined in (2.3) with diagonal domain D(A) =

D(A)×D(D) on the product space E = E × F .
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(1) Let

• B ∈ L([D(D)], [D(A)]), or else B ∈ L(F, E), and moreover

• C ∈ L([D(A)], [D(D)]), or else C ∈ L(E,F ).

Then A and D both generate C0-semigroups (etA)t≥0 on E and (etD)t≥0

on F , respectively, if and only if A generates a C0-semigroup (etA)t≥0

on E.

(2) Let

• C ∈ L([D(A)], F ) and B ∈ L(F, E), or else

• B ∈ L([D(D)], E) and C ∈ L(E,F ).

Then A and D both generate analytic semigroups (etA)t≥0 on E and

(etD)t≥0 on F , respectively, if and only if A generates an analytic

semigroup (etA)t≥0 on E.

(3) Let A and D both generate analytic semigroup (etA)t≥0 on E and

(etD)t≥0 on F , respectively. Let both these semigroup have analyticity

angle δ ∈ (0, π
2 ]. If there exists α ∈ (0, 1) such that

• B ∈ L([D(A)], [D(D), F ]α) and

• C ∈ L([D(D)], [D(A), E]α),

then A generates an analytic semigroup (etA)t≥0 of angle δ ∈ (0, π
2 ] on E.

Conversely, if A generates an analytic semigroup (etA)t≥0 of angle δ ∈ (0, π
2 ]

on E and (
0 B

C 0

)
∈ L([D(A)], [D(A), X]α)

for some α ∈ (0, 1), then also A and D generate semigroups of angle δ on E

and F , respectively.

If the above assertion holds with B = 0, then

R(t) :=

∫ t

0

e(t−s)DCesA ds

is well-defined as a bounded operator from E to F for all t ≥ 0 and there holds

etA =

(
etA 0

R(t) etD

)
, t ≥ 0.

Likewise, if instead C = 0, then the semigroup generated by A has the form

etA =

(
etA S(t)

0 etD

)
, t ≥ 0,
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where

S(t) :=

∫ t

0

e(t−s)ABesD ds ∈ L(F, E), t ≥ 0.

1.2. Operator matrices with non-diagonal domain. Motivated by

initial-boundary value problems we present some results for operator matri-

ces with non diagonal domain, more precisely with coupled domain. Such

operators have been introduced in [30].

Assumption 2.9 ([30]). Let E and F be Banach spaces and assume that

(1) A : D(A) ⊆ E → E and D : D(D) ⊆ F → F are densely defined,

invertible operators.

(2) X and Y are Banach spaces such that [D(A)] ↪→ X ↪→ E and

[D(D)] ↪→ Y ↪→ F .

(3) K ∈ L(Y, X), L ∈ L(X, Y ) are bounded linear operators.

Note that even in this assumptions is required that the degree of unbound-

edness is characterized by the diagonal operators A and D.

Engel in [30] defines an operator matrix A on E := E ×F in the following

way, where X := X × Y .

Definition 2.10 ([30]). If A, D, K, L satisfy Assumption 2.9 we consider

A0 :=

(
A 0

0 D

)
, D(A0) := D(A)×D(D),

K :=

(
0 K

L 0

)
∈ L(X)

and define the operator A on E = E × F by

A := A0(Id + K), D(A) := {X ∈ X : (Id + K)X ∈ D(A0)} (2.9)

=

{(
x

y

)
∈ X × Y :

x + Ky ∈ D(A)

Lx + y ∈ D(D)

}
.

If the matrix A defined by (2.9) satisfies

D(A) =

{(
x

y

)
∈ X ×D(D) : x + Ky ∈ D(A)

}

it is called one-sided K-coupled.
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Let us consider an evolution problem on a product Banach space E = E×F ,

in the form

{
Ẋ(t) = AX(t)

X(0) = X0

where A =

(
A 0

0 D

)
is a linear operator (possibly unbounded) with domain

D(A) = {D(A) × D(D) : Lu = v}. Let us suppose, for simplicity, that

0 ∈ ρ(A0). Then, by the Dirichlet map D0 associated to A and L, we can

decompose the operator A as

(
A 0

0 D

)
=

(
A0 0

0 D

) (
I −D0

0 I

)

where A0 is the operator with homogeneous boundary conditions Lu = 0. So

A = A0(I −D0) and D(A) = {X ×D(D) : x−D0y ∈ D(A0)}. This explains

why the theory of one-sided coupled operators can be used to study problems

with dynamical boundary conditions.

Proposition 2.11 ([30]). Let A be defined by (2.9).

(a): if K : Y ⊆ F → E and L : X ⊆ E → F are closed then A is closed

in E.

(b): if KY ⊆ D(A) or LX ⊆ D(D) then A is densely defined.

Lemma 2.12 ([30]). Let K :=

(
0 K

L 0

)
∈ L(X). Then we have

Id + K =

(
Id 0

L Id

) (
Id 0

0 Id− LK

) (
Id K

0 Id

)

=

(
Id K

0 Id

) (
Id−KL 0

0 Id

) (
Id 0

L Id

)

In particular, Id + K ∈ L(X) is invertible if and only if Id −KL ∈ L(X) is

invertible if and only if Id− LK ∈ L(Y ) is invertible.
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Proposition 2.13 ([30]). For a one-sided K-coupled operator matrix A

on E we have

A =

(
Id 0

DLA−1 Id−DLKD−1

) (
A 0

0 Id

) (
Id KD−1

0 Id

) (
Id 0

0 D

)
(2.10)

Proposition 2.14 ([30]). For a one-sided K-coupled operator matrix A

we have for all λ ∈ ρ(A) ∩ ρ(D)

λ−A = BλUλ (2.11)

Bλ :=

(
Id KD−1

(λ−D)LλR(λ, A) Id− (λ−D)LλKλR(λ, D)

)

Uλ :=

(
λ− A 0

0 Id

) (
Id KλR(λ, D)

0 Id

) (
Id 0

0 λ−D

)

where the operators Kλ ∈ L(Y, X) and Lλ ∈ L(X, Y ) are defined by

Kλ := −AR(λ, A)K

Lλ := −DR(λ, D)L

Next we state the main result of spectral theory for one-sided K coupled

operators, using the notation

∆F (λ−A) := Id− (λ−D)LλKλR(λ, D) ∈ L(F ) for λ ∈ ρ(A) ∩ ρ(D)

Theorem 2.15 ([30]). Every one-sided K-coupled operator matrix A is

densely defined. Moreover, the following assertions hold true.

(a): For λ ∈ ρ(A) ∩ ρ(D) we have

λ ∈ σ(A) ⇔ 0 ∈ σ(∆F (λ−A)),

λ ∈ σp(A) ⇔ 0 ∈ σp(∆F (λ−A)),

λ ∈ σess(A) ⇔ 0 ∈ σess(∆F (λ−A)).

(b): For λ ∈ ρ(A) the resolvent R(λ, A) of A is given by
(

(Id−KλR(λ, D)∆F (λ−A)−1DL)R(λ, A) −KλR(λ, D)∆F (λ−A)−1

R(λ, D)∆F (λ−A)−1DLR(λ, A) R(λ, D)∆F (λ−A)−1

)
.
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(c): The adjoint of A is given by

A′ =

(
Id 0

0 D′

) (
Id 0

(KD−1)′ Id

) (
A′ 0

0 Id

) (
Id (DLA−1)′

0 Id− (DLKD−1)′

)
.

Let us consider triangular operator matrices, i.e., matrices A defined by

(2.9) for L = 0. In view of previous Proposition the operator A is given by

A :=

(
A 0

0 Id

) (
Id Q

0 Id

) (
Id 0

0 D

)
(2.12)

D(A) :=

{(
x

y

)
∈ E ×D(D) : x + QDy ∈ D(A)

}
,

i.e.,

A

(
x

y

)
=

(
A(x + QDy)

Dy

)
,

where for simplicity we set Q := KD−1 ∈ L(F, E).

Analogously to the diagonal domain case we study the problem when an

operator matrix A as defined in (2.9) is a generator.

Theorem 2.16 ([30]). Let A be defined by (2.12). If there exists w ∈ R
such that (w,∞) ⊂ ρ(A) ∩ ρ(D) then the following assertions are equivalent.

(a): A generates a strongly continuous semigroup (T(t))t≥0 on E.

(b): (i): A and D are generators of strongly continuous semigroups

(T (t))t≥0 on E and (S(t))t≥0 on F , respectively.

(ii): For all t ≥ 0 the operators R̃(t) : D(D2) ⊆ F → E are

bounded and satisfy lim supt↓0 |R̃(t)| < ∞.

In case these conditions hold true, the semigroup (T(t))t≥0 is given by

T(t) =

(
T (t) R(t)

0 S(t)

)

where R(t) ∈ L(E,F ) is the unique bounded extension of R̃(t).

Corollary 2.17 ([30]). Let A satisfy the assumptions of the previous

theorem. If one of the following conditions (a) − (c) is satisfied then A is a

generator on E if and only if A and D are generators on E and F , respectively.

(a): A2Q ∈ L(F, E).
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(b): QD : D(D) → E has a bounded extension Q̄D ∈ L(F, E) and

AQ̄D ∈ L(F, E).

(c): QD2 : D(D2) → E has a bounded extension in L(F, E).

Corollary 2.18 ([30]). Let A =

(
A 0

0 D

) (
Id K

L Id

)
be an one-sided

K-coupled operator matrix with D ∈ L(F ). Then the following assertions are

equivalent

(a): A is a generator on E.

(b): (A + KDL, D(A)) is a generator on E.

Corollary 2.19 ([30]). Let A =

(
A 0

0 D

) (
Id K

L Id

)
be an one-sided K-

coupled operator matrix with D ∈ L(F ). If A generates an analytic semigroup

and KDL ∈ L([D(A), E]) is compact, then A generates an analytic semigroup.

Remark 2.3 ([30]). In case dim(F ) < ∞ every operator matrix A on E

given by definition 2.9 is one-sided K-coupled and every linear operator D on

F is bounded. Moreover, KDL is an operator of finite rank and therefore com-

pact. Hence, A is the generator of an analytic semigroup provided A generates

an analytic semigroup on E.

1.3. Other cases. In this section we want to exhibit an example where

the previous results on generation of semigroup by matrix operator can not be

applied.

As in [38] let us consider a bounded domain O ⊂ RN taken by an isotropic,

rigid and homogeneous heat conductor with linear memory (viscoelastic). On

this we want to examine a heat flux equation in presence of a source term

given in the form





ut(t, x) =
∫∞

0 µ(s)∆η(s, t, x)ds + f(t, x) on R+ × O

∂tη(s, t, x) = u(t, x)− ∂sη(s, t, x) on R+ × R+ × O

η(s, t, x) = 0 on R+ × R+ × ∂O

u(0, x) = u0(x) x ∈ O

η(s, 0) = η0(s) x, s ∈ O× R+

(2.13)

where u is the temperature variation function, η is the summed past history

of u and µ denotes the heat flux memory kernel. So we are in the situation
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described before: a system of two evolution equations, that can be studied

in abstract manner defining opportunely a product Banach space and some

operators.

Now we introduce the product Hilbert space

H = L2(O)× L2
µ(R+; H1

0 (O))

endowed with the inner product

〈·, ·〉H := 〈·, ·〉L2 +

∫ ∞

0

〈·, ·〉H1
0
µ(s) ds.

Let us introduce the matrix operator A defined as

A =

(
0

∫∞
0 µ(s)∆ · ds

I − ∂
∂s

)

with domain

D(A) =

{
X ∈ H : u ∈ H1

0 (O),
∂η

∂s
∈ L2

µ(R+; H1
0 (O)),

∫ ∞

0

µ(s)∆η(s) ds ∈ L2(O), η(0) = 0

}

= H1
0 (O)×

{
L2

µ(R+; H1
0 (O) ∩H2(O)) ∩H1

µ(R+; H1
0 (O)) :

η(0) = 0} .

Setting X(t) = (u(t), η(t, s))T ∈ H, system (2.13) can be written as an evolu-

tion equation in H: {
Ẋ(t) = AX(t) + F(t)

X(0) = X0

In this case the degree of unboundedness of the matrix operator A in not

characterized by the diagonal entries, because the element B and C are not

bounded, not even on D(D) and D(A) respectively. We can return to a similar

framework before, restricting the domain of A and D as:

D(A) = H1
0 (O), D(D) = {H1

µ(R+; H1
0 (O) ∩H2(O)) : η(0) = 0}

and then we obtain the diagonal domain

D(A) = D(A)×D(D).

But the operators A and D generate no more strongly continuous semigroups

on their new domains. We can prove to modify the Hilbert spaces to verify one
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of the two conditions imposed in theorem (2.8), for example, for the operator

C:

(1) Suppose C ∈ L(D(A), D(D)). But u is constant with respect to the

variable s, so Cu = u ∈ D(A) can not verify η(0) = 0 unless u ≡ 0.

(2) Suppose C ∈ L(E,L2
µ(R+; F )), for some Banach spaces E,F . Then

the spaces E and F must have the same space regularity. But in

this case the operator B verifies neither B /∈ L(Y, X) because of the

presence of Laplacian nor B /∈ L(D(D), D(A)) for the same reason.

If we restrict the domain of D, it could not generate a strongly continuous

semigroup. So we can not apply the results contained in [30, 66, 68].

It is rather easy, instead, prove that the whole matrix operator A on H is

the infinitesimal generator of a C0-semigroup of contractions, verifying the

maximal dissipativity of the operator (see [38]) and applying the Lumer-

Phillips theorem.

2. Stochastic Integration

In chapters 3 and 4 we shall study existence, uniqueness and longtime

behaviour of mild and weak solutions for stochastic nonlinear equations with

additive Lévy noise on some Hilbert space H. In general, this class of problems

can be written in the form
{

dX(t) = [AX(t) + F (X(t))] dt + B(t) dM(t) t ∈ [0, T ]

X(0) = ξ
(2.14)

where ξ is an H-valued random variable F0-measurable, A : D(A) ⊂ H → H

is the infinitesimal generator of a strongly continuous semigroup (etA)t∈R+ ,

F : D(F ) ⊂ H → H is a mapping, B(·) : [0, T ] → L(U,H) is a linear operators

valued process and M(·) is a locally square integrable càdlàg martingale taking

values in a Hilbert space U .

Comparing with [23], where the Wiener case is treated, we recall the defi-

nition of weak and mild solution of problem (2.14).

Definition 2.20. An H-valued predictable process X(t), t ∈ [0, T ], is said

to be a weak solution to (2.14) if P-a.s. for all t ∈ [0, T ] and for all
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ζ ∈ D(A∗)

〈X(t), ζ〉 = 〈ξ, ζ〉+

∫ t

0

〈X(s), A∗ζ〉 ds +

+

∫ t

0

〈F (X(s)), ζ〉 ds +

∫ t

0

〈ζ, B(s) dM(s)〉. (2.15)

Definition 2.21. An H-valued predictable process X(t), t ∈ [0, T ], is said

to be a mild solution to (2.14) if P-a.s. for all t ∈ [0, T ]

X(t) = ξ +

∫ t

0

e(t−s)AF (X(s)) ds +

∫ t

0

e(t−s)AB(s) dM(s). (2.16)

These objects are well defined if and only if the integrals that appear in

(2.15) and (2.16) are well defined. While those with respect to Lebesgue

measure can be defined in a pathwise sense as Bochner integrals, this is not

possible in the martingale case. Then we make a short digression on concept

of stochastic integrals ∫ t

0

X(s) dM(s),

when X is an operator valued process from U into another Hilbert space H

and M is an U -valued square integrable martingale.

We state some results taken from [79] on stochastic integration and from

[63] for the corresponding Itô formula. For a complete treatment of stochastic

integration with respect to semimartingales we refer to [63] and [23] in the

case of infinite dimensional Wiener process. An Itô formula for Banach valued

functions acting on stochastic processes with jumps, the martingale part given

by stochastic integrals of time dependent Banach valued random functions

w.r.t. the compensated Poisson random measure is proved in [72]. At first

we illustrate the theory developed for square integrable martingales, then we

apply these results for the case of Lévy martingale. In the whole next section

we consider implicitly a stochastic basis (Ω, F , (Ft)t∈T , P) which is assumed

to fulfill the usual hypotheses (right continuity and completeness).

2.1. Square integrable martingale. If we consider as integrator an

Hilbert-valued Wiener process with covariance operator Q, the stochastic in-

tegral is defined by an isometry given by

E
∣∣∣∣
∫ t

0

X(s) dW (s)

∣∣∣∣
2

= E
∫ t

0

|X(s)Q1/2|2HS ds. (2.17)
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In this section we show this isometric formula in the general case, when the

integrator is a square integrable martingale.

Definition 2.22. Let U be a Hilbert space. We say that a martingale

(Mt)t∈T with values in U is square integrable if E|Mt|2 < ∞ for all

t ∈ [0, T ]. We call M 2(U) the vector space of right continuous U-valued

square integrable martingale.

Now we introduce a classical decomposition theorem for submartingale that

permits to characterize a fundamental process in stochastic integration.

Theorem 2.23 (Doob-Meyer decomposition). For arbitrary càdlàg real

valued submartingale X there exists a unique predictable and right continuous

increasing process A(t), t ∈ [0, T ] such that A(0) = 0 and

M(t) = X(t)− A(t), t ∈ [0, T ]

is a martingale.

If M ∈ M 2(U), then |M |2U is a real càdlàg valued submartingale. The

corresponding predictable process, denoted by 〈M〉t, is called the Meyer or

bracket process associated to M . In the case of Lévy martingales one has

an explicit expression for the Meyer process.

Proposition 2.24. Assume that M(t), t ∈ [0, T ] is a square integrable,

right continuous process, having independent, time homogeneous increments

and starting from 0. Then

〈M〉t = t T r Q (2.18)

where Q is a trace class, non negative operator on U such that

〈Qa, b〉U = E[〈M(1), a〉U〈M(1), b〉U ] a, b ∈ U

For a generalization of the isometric formula (2.17) we need to study the

evolution in time of the covariance operator. Then we introduce the operator

valued angle bracket process 〈〈M〉〉t.

Example 2.4. Let M(t) = W (t), t ≥ 0 be an U-valued Q-Wiener process.

Then

〈W 〉t = t T r Q and 〈〈W 〉〉t = t Q
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Denote by L1(U) the space of all nuclear operators on U and by L+
1 (U)

the subspace of L1(U) consisting of all self-adjoint, non-negative, nuclear op-

erators; for all a, b ∈ U we denote by a ⊗ b the operator on U given by

a ⊗ b(u) = a〈b, u〉U for all u ∈ U . If M(t), t ∈ [0, T ] is a right continuous,

square integrable process then the process

M(t)⊗M(t) t ∈ [0, T ]

is an L1(U) valued, right continuous process.

Theorem 2.25. There exists a unique right continuous, L+
1 (U) valued,

increasing, predictable process 〈〈M〉〉t, t ∈ [0, T ], 〈〈M〉〉0 = 0 such that the

process

M(t)⊗M(t)− 〈〈M〉〉t, t ∈ [0, T ]

is an L1(U) martingale. Moreover there exists a predictable L+
1 (U) valued

process Qt, t ∈ [0, T ] such that

〈〈M〉〉t =

∫ t

0

Qs d〈M〉s

Defining the angle bracket process 〈〈M〉〉t we have completed the basic tool

to extend the identity (2.17). The isometric formula in the general case was

discovered by Métivier and Pistone and is given in the form

E
∣∣∣∣
∫ t

0

X(s) dM(s)

∣∣∣∣
2

= E
∫ t

0

|X(s)Q1/2
s |2HS d〈M〉s. (2.19)

Then an adapted process X is stochastically integrable with respect to a square

integrable martingale M if

E
∫ t

0

|X(s)Q1/2
s |2HS d〈M〉s < ∞.

By a localization procedure the concept of the stochastic integral can be ex-

tended to all adapted processes X for which

P
(∫ t

0

|X(s)Q1/2
s |2HS d〈M〉s < ∞

)
= 1.

Now we treat the particular case when M(t) = L(t) is a Lévy martingale.
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2.2. Lévy Processes. Let X be a Lévy process taking values in U , so

that X has stationary and independent increments, is stochastically continuous

and satisfies X(0) = 0 (a.s.). We have the Lévy-Khinchine formula which

yields for all t ≥ 0, ψ ∈ U ,

E(ei〈ψ,X(t)〉U ) = eta(ψ),

where

a(ψ) = i〈ς, ψ〉U −
1

2
〈ψ, Qψ〉U +

∫

U\{0}
(ei〈u,ψ〉U − 1− i〈u, ψ〉U1{|u|<1})ν( du),

(2.20)

where ς ∈ U , Q is a positive, self-adjoint trace class operator on U and ν is

a Lévy measure on U \ {0}, i.e.
∫

U\{0}(|x|
2 ∧ 1)ν( dx) < ∞. We call the

triple (ς, Q, ν) the characteristics of the process X and the mapping a, the

characteristic exponent of X. From now on we will always assume that Lévy

processes have strongly càdlàg paths. We also strengthen the independent

increments requirement on X by assuming that X(t) − X(s) is independent

of Fs for all 0 ≤ s < t < ∞. If X is a Lévy process, we write ∆X(t) =

X(t) − X(t−), for all t > 0. We obtain a Poisson random measure N on

R+ × (U \ {0}) by the prescription:

N(t, E) = #{0 ≤ s ≤ t : ∆X(s) ∈ E},

for each t ≥ 0, E ∈ B(U \ {0}). The associated compensated Poisson random

measure Ñ is defined by

Ñ( dt, dx) = N( dt, dx)− dt ν( dx).

Let A ∈ B(U \ {0}) with 0 /∈ Ā. If f : A → U is measurable, we may define
∫

A

f(x)N(t, dx) =
∑

0≤s≤t

f(∆X(s))1A(∆X(s))

as a random finite sum. Let νA denote the restriction of the measure ν to A,

so that νA is finite. If f ∈ L2(A, νA; U), we define
∫

A

f(x)Ñ(t, dx) =

∫

A

f(x)N(t, dx)− t

∫

A

f(x)ν( dx),
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then by standard arguments we see that (
∫

A f(x)Ñ(t, dx), t ≥ 0) is a centered

square-integrable martingale with

E
(∣∣∣∣

∫

A

f(x)Ñ(t, dx)

∣∣∣∣
2

U

)
= t

∫

A

|f(x)|2Uν( dx), (2.21)

for each t ≥ 0.

Theorem 2.26 (Lévy-Itô decomposition). If U is a separable Hilbert space

and X = (X(t), t ≥ 0) is a càdlàg U-valued Lévy process with characteristic

exponent given by (2.20), then for each t ≥ 0,

X(t) = tς + WQ(t) +

∫

|x|<1

xÑ(t, dx) +

∫

|x|≥1

xN(t, dx), (2.22)

where WQ is a Q-Wiener process which is independent of N .

In (2.22), ∫

|x|<1

xÑ(t, dx) = lim
n→∞

∫

1
n <|x|<1

xÑ(t, dx),

where the limit is taken in the L2-sense, and it is a square-integrable martin-

gale.

A symmetric Lévy martingale Lt can be represented as

L(t) = WQ(t) +

∫ t

0

∫

|x|<1

xÑ( dt, dx).

L is a square integrable, right continuous martingale, having independent, time

homogeneous increments and starting from 0. Then by (2.18) 〈L〉t = t T r QL

where QL is uniquely defined by the relation

〈QLa, b〉U = E[〈L(1), a〉U〈L(1), b〉U ] a, b ∈ U.

So

E
[〈

WQ(1) +

∫ t

0

∫

|x|<1

x dÑ , a

〉 〈
WQ(1) +

∫ t

0

∫

|x|<1

x dÑ , b

〉]
=

= E
[
〈WQ(1), a〉 〈WQ(1), b〉+

〈∫ t

0

∫

|x|<1

x dÑ , a

〉 〈∫ t

0

∫

|x|<1

x dÑ , b

〉]

= 〈Qa, b〉+

∫

|x|<1

〈x, a〉〈x, b〉ν( dx).



2. STOCHASTIC INTEGRATION 43

Then

QL = Q +

∫

|x|<1

〈·, x〉 x ν( dx).

and

〈L〉t = t · Tr QL = t

(
Tr Q +

∫

|x|<1

|x|2ν( dx)

)
(2.23)

Let us look for an isometric formula for Lévy martingales. By (2.17), (2.21)

and the independence of WQ and Ñ we obtain for an adapted process X

E
∣∣∣∣
∫ t

0

X(s) dL(s)

∣∣∣∣
2

= E
∫ t

0

|X(s)Q1/2|2HS ds

+E
∫ t

0

|X(s)|2
∫

|x|<1

|x|2ν( dx) ds

Then

〈〈L〉〉t =
t · QL

TrQL
(2.24)

Then an adapted process X is stochastically integrable with respect to a Lévy

martingale L if

E
∫ t

0

|X(s)Q1/2
L |2HS d〈L〉s = E

∫ t

0

|X(s)Q1/2|2HS ds

+E
∫ t

0

|X(s)|2
∫

|x|<1

|x|2ν( dx) ds < ∞.

By a localization procedure the concept of the stochastic integral can be ex-

tended to all adapted processes X for which

P
(∫ t

0

|X(s)Q1/2|2HS ds < ∞
)

= 1 and

P
(∫ t

0

|X(s)|2
∫

|x|<1

|x|2ν( dx) ds < ∞
)

= 1.

2.3. Itô formula.

Theorem 2.27. Let M ∈ M 2. There exists an increasing càdlàg pro-

cess which is uniquely defined up to P-equality denoted by [M ] and called the

quadratic variation of M with the following properties:
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(1): For every increasing sequence (Πn) of increasing subsequences of

R+: Πn := {0 < t0 < t1 < ... < tn < ...} such that limk↑∞ tk = +∞
and limn→∞ δ(Πn) = 0, where δ(Πn) is the mesh of Πn defined by

δ(Πn) := supti∈Πn
(ti+1 − ti), one has

[M ]t = lim
n

(L1)
∑

ti∈Πn

(Mti+1∧t −Mti∧t)
2.

(2): |M |2 − [M ] is a martingale.

(3): If M is continuous [M ] = 〈M〉.
(4): E

∫ t

0 X(s) d[M ]s = E
∫ t

0 X(s) d〈M〉s.

If M is a real square integrable martingale this definition coincide with

[M ]t := M2
t −M2

0 − 2

∫ t

0

Ms− dMs

Theorem 2.28 (Itô formula). Let M be a real square integrable martingale

and ϕ a twice continuously differentiable function on R. Then the process

(ϕ(Mt))t∈R is a semimartingale which is P-equal to the process Tϕ(M) defined

by

Tϕ(M)t := ϕ(M0) +

∫ t

0

ϕ′(Ms−) dMs +
1

2

∫ t

0

ϕ′′(Ms−) d[M ]s

+
∑

s≤t

[ϕ(Ms)− ϕ(Ms−)−∆Msϕ
′(Ms−)− 1

2
|∆Ms|2ϕ′′(Ms−)]

where the family

[ϕ(Ms(ω))− ϕ(Ms−(ω))−∆Ms(ω)ϕ′(Ms−(ω))− 1

2
|∆Ms(ω)|2ϕ′′(Ms−(ω))]s≤t

of real numbers occurring in the latter expression is summable for all t, P-a.s..



CHAPTER 3

SPDEs driven by Lévy noise

This chapter is mainly taken from the paper [10].

The electrical behaviour of neuronal membranes and the role of ion currents

have been studied and understood since the landmark 1952 papers by Hodgkin

and Huxley [45] for the diffusion of the transmembrane electrical potential in

a neuronal cell. This model consists of a system of four equations describ-

ing the diffusion of the electrical potential and the behaviour of various ion

channels. Since then, there was a dramatic increase in experimental progress;

contemporary to this, there has been a certain success in the efforts to develop

mathematical models capable of reflecting and predicting neuronal activity. It

is the goal of our research to provide one such model, in order to illuminate

the connection between the complex physical structure of the dendritic tree

in a neuron, or the tree-like structure of a neural network, and the overall

behaviour.

Successive simplifications of the model, trying to capture the key phe-

nomena of the Hodgkin-Huxley model, lead to the reduced FitzHugh-Nagumo

equation, which is a scalar equation with three stable states (see e.g. [71]).

Among other papers dealing with the case of a whole neuronal network (usu-

ally modelled as a graph with m edges and n nodes), which is intended to

be a simplified model for a large region of the brain, let us mention a series

of recent papers [53, 67], where the well-posedness of the isolated system is

studied.

Note that, for a diffusion on a network, other conditions must be imposed

in order to define the behaviour at the nodes. We impose a continuity con-

dition, that is, given any node in the network, the electrical potentials of all

its incident edges are equal. Each node represents an active soma, and in this

part of the cell the potential evolves following a generalized Kirchhoff condition

45
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that we model with stochastic dynamical boundary conditions for the internal

dynamics.

Since the classical work of Walsh [77], stochastic partial differential equa-

tions have been an important modelling tools in neurophysiology, where a

random forcing is introduced to model several external perturbations acting

on the system. In our neural network, we model the electrical activity of back-

ground neurons with a stochastic input with an impulsive component, to take

into account the stream of excitatory and inhibitory action potentials com-

ing from the neighbours of the network. The need to use models based on

impulsive noise was already pointed out in several papers by Kallianpur and

co-authors – see e.g. [47, 48].

Models designed to reflect the interesting behaviour of neurons

must be stochastic, infinite-dimensional and highly non-linear

(G. Kallianpur)

Why Lévy noise? Stochastic disturbances to a quiescent neuron arise

from several different sources, each with different characteristics. Starting

from a slow time scale and going toward a faster one, we can list

• action potentials in the neighbours (arrivals of vesicles - each contains

some of chemicals called neurotransmitters) are unpredictable and

chaotic,

• arrivals of neurotransmitters: arrival sites and times are unpredictable,

since they depend on the composition of the vescicle and the state of

the neuron,

• opening of ionic channels: it occurs several times a second, in an ap-

parently random manner; each time a gate opens, a tiny current flows

in a direction and at a rate depending on the state of the neuron, and

this current gives its contribution to the membrane voltage potential,

• finally, the passage of single ions causes extremely rapid current im-

pulses.

Motivated by our interest in the Hodgkin-Huxley model, we are interested

both in the second and also in the third source of randomness listed above. If

we scale time in a suitable way, then
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• the passage of individual ions will seem to proceed at such a furious

rate that random fluctuations are not apparent. Only the smooth

mean behaviour, predicted by the central limit theorem, would be

observable. It gives rise to a gaussian component.

• On such a time scale action potential will occur so infrequently that

we can safely focus on the behaviour of the neuron in absence of

arriving action potentials.

• The remaining two random sources give rise to a generalized Pois-

son impulse process.

Hence we can assume that the stochastic perturbation is a Lévy process with

decomposition

L(t) = mt + QW (t) +

∫

|x|<1

x[N(t, dx)− tν(dx)] + t

∫

|x|≥1

xN(t, dx).

Following the approach of [11], we use the abstract setting of stochastic

PDEs by semigroup techniques (see e.g. [22, 23]) to prove existence and

uniqueness of solutions to the system of stochastic equations on a network. In

particular, the specific stochastic dynamics is rewritten in terms of a stochastic

evolution equation driven by an additive Lévy noise on a certain class of Hilbert

spaces. Even though there is a growing interest in stochastic PDEs driven by

jump noise (let us just mention [42, 52, 56]), it seems like the case we are

interested in, i.e. with a power-type nonlinearity, is not covered by existing

results.

The rest of the chapter is organized as follows: in section 1 we first in-

troduce the problem and we motivate our assumptions in connection with the

applications to neuronal networks. Then in section 2, we provide a suitable ab-

stract setting and we prove, following [67], that the linear operator appearing

as leading drift term in the stochastic PDE generates an analytic semigroup

of contractions. Section 3 contains our main results. First we prove existence

and uniqueness of mild solution for the problem under Lipschitz conditions on

the nonlinear term (theorem 3.8). This result (essentially already known) is

used to obtain existence and uniqueness in the mild sense for the SPDE with

a locally Lipschitz continuous dissipative drift of FitzHugh-Nagumo type by

techniques of monotone operators.
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1. Setting of the problem

The physical structure of a neuron is well known; the following description

is taken from [51]. A typical neuron consists of three parts: the dendrites,

the cell body (also called soma), and the axon. Dendrites are the input stage

of a neuron: they receive synaptic input from other neurons and carry the

informations to the soma. The soma elaborates these inputs and the axon is

the output stage. However, in a first stage we shall not introduce the axon:

the main reason for this choice is that the active impulse propagation, which

is the correct model for its behaviour, requires a different construction, and

this will be carried on in the second part. The dendritic network is identified

with the underlying graph G, described by a set of n vertices v1, . . . , vn and

m oriented edges e1, . . . , em which we assume to be normalized, i.e., ej = [0, 1]

for j = 1, ...,m. The soma is assumed to be isopotential and can therefore

be identified with a point. The graph is described by the incidence matrix

Φ = Φ+ − Φ−, where Φ+ = (φ+
ij)n×m and Φ− = (φ−ij)n×m are given by

φ−ij =





1, vi = ej(1)

0, otherwise
φ+

ij =





1, vi = ej(0)

0, otherwise.

The degree of a vertex is the number of edges entering or leaving the node.

We denote

Γ(vi) = {j ∈ {1, . . . ,m} : ej(0) = vi or ej(1) = vi}

hence the degree of the vertex vi is the cardinality |Γ(vi)|. The electrical volt-

age will be a function both of the position x along the network and of time

t. We will measure the voltage as a deviation from the quiescent potential;

we shall assume that the extracellular fluid is large enough to have a negli-

gible resistance and to be virtually isopotential. The electrical potential in

the network shall be denoted by ū(t, x) where ū ∈ (L2(0, 1))m is the vector

(u1(t, x), . . . , um(t, x)) and uj(t, ·) is the electrical potential on the edge ej.

Diffusion’s model. We impose a general diffusion equation on every edge

∂

∂t
uj(t, x) =

∂

∂x

(
cj(x)

∂

∂x
uj(t, x)

)
+ fj(uj(t, x)), (3.1)
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for all (t, x) ∈ R+ × (0, 1) and all j = 1, ...,m. The generality of the above

diffusion is motivated by the discussion in the biological literature, see for

example [51], who remark, in discussing some concrete biological models, that

the basic cable properties are not constant throughout the dendritic tree. The

above equation shall be endowed with suitable boundary and initial conditions.

Initial conditions are given for simplicity at time t = 0 of the form

uj(0, x) = uj0(x) ∈ C([0, 1]), j = 1, ...,m. (3.2)

Since we are dealing with a diffusion in a network, we require first a continuity

assumption on every node

pi(t) := uj(t, vi) = uk(t, vi), t > 0, j, k ∈ Γ(vi), i = 1, ..., n (3.3)

and a stochastic generalized Kirchhoff law in the nodes

∂

∂t
pi(t) = −bipi(t) +

∑

j∈Γ(vi)

φijµjcj(vi)
∂

∂x
uj(t, vi) + σi

∂

∂t
L(t, vi), (3.4)

for all t > 0 and i = 1, . . . , n. Observe that the positive sign of the Kirchhoff

term in the above condition is consistent with a model of purely excitatory

node conditions, i.e. a model of a neuronal tissue where all synapses depolarize

the postsynaptic cell. Postsynaptic potentials can have graded amplitudes

modelled by the constants µj > 0 for all j = 1, ...,m.

Finally, L(t, vi), i = 1, ..., n, represent the stochastic perturbation acting

on each node, due to the external surrounding, and ∂
∂tL(t, vi) is the formal

time derivative of the process L, which takes a meaning only in integral sense.

As seen in the introduction of this chapter, biological motivations lead us

to model this term by a Lévy-type process. In fact, the evolution of the

electrical potential on the molecular membrane can be perturbed by different

types of random terms, each modelling the influence, at different time scale, of

the surrounding medium. On a fast time scale, vesicles of neurotransmitters

released by external neurons cause electrical impulses which arrive randomly

at the soma causing a sudden change in the membrane voltage potential of

an amount, either positive or negative, depending on the composition of the

vesicle and possibly even on the state of the neuron. We model this behaviour

perturbing the equation by an additive term driven by a n-dimensional Lèvy
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noise of the form

L(t) = mt + QW (t) +

∫

Rn

xÑ(t, dx), (3.5)

see Hypothesis 3.2 below for a complete description of the process. See also

[48] for a related model.

Although many of the above reasonings remain true also when considering

the diffusion process on the fibers, we shall not pursue such generality and

assume that the random perturbation acts only on the boundary of the system,

i.e. on the nodes of the network.

Let us state the main assumptions on the data of the problem.

Hypothesis 3.1.

(1) In (3.1), we assume that cj(·) belongs to C1([0, 1]), for j = 1, . . . ,m

and cj(x) > 0 for every x ∈ [0, 1].

(2) There exists constants η ∈ R, c > 0 and s ≥ 1 such that, for

j = 1, . . . ,m, the functions fj(u) satisfy fj(u) + ηu is continuous

and decreasing, and |fj(u)| ≤ c(1 + |u|s).
(3) In (3.4), we assume that bi ≥ 0 for every i = 1, . . . , n and at least one

of the coefficients bi is strictly positive.

(4) {µj}j=1,...,m and {σi}i=1,...,n are real positive numbers.

Stochastic setting. Given a filtered probability space (Ω, F , (Ft)t≥0, P)

satisfying the usual hypotheses

(i) F0 contains all the P-null set of F ,

(ii) (Ft)t≥0 is right continuous,

and a Hilbert space H, let us define the space L2
F (Ω × [0, T ]; H) of adapted

processes Y : [0, T ] → H endowed with the natural norm

|Y |L2
F

=

(
E

∫ T

0

|Y (t)|2H dt

)1/2

.

We shall consider a Lévy process {L(t), t ≥ 0} on (Ω, F , (Ft)t≥0, P) with

values in (Rn, B(Rn)), i.e., a stochastically continuous, adapted process start-

ing almost surely from 0, with stationary and independent increments and

càdlàg trajectories, hence with discontinuities of jump type. By the classical
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Lévy-Itô decomposition theorem, the n-dimensional Lévy process L(t) has a

decomposition

L(t) = mt + QW (t) +

∫

|x|≤1

x[N(t, dx)− tν(dx)] +

∫

|x|>1

xN(t, dx), t ≥ 0

(3.6)

where m ∈ Rn, Q ∈ Mn×n(R) is a symmetric, positive defined matrix, {Wt, t ≥
0} is an n-dimensional centered Brownian motion, for any set Λ ∈ B(Rn) such

that 0 /∈ Λ̄, NΛ
t =

∫
Λ N(t, dx) is a Poisson process independent of W and the

Lévy measure ν( dx) is σ-finite on Rn \{0} and such that
∫

min(1, x2)ν( dx) <

∞. We denote by Ñ( dt, dx) := N( dt, dx)− dtν( dx) the compensated Pois-

son measure.

Hypothesis 3.2. We suppose that the measure ν has finite second order

moment, i.e. ∫

Rn

|x|2ν(dx) < ∞. (3.7)

Condition (3.7) implies that the generalized compound Poisson process∫
|x|>1 x N(t, dx) has finite moments of first and second order. Then, with no

loss of generality, we assume that
∫

|x|>1

xν(dx) = 0. (3.8)

Remark 3.1. In view of assumptions (3.7) and (3.8) the Lévy process (3.6)

can be represented as

L(t) = mt + QW (t) +

∫

Rn

xÑ(t, dx), t ≥ 0.

2. Well-posedness of the linear deterministic problem

We consider the product space H = (L2(0, 1))m. A general vector ū ∈ H
is a collection of functions {uj(x), x ∈ [0, 1], j = 1, . . . ,m} which represents

the electrical potential inside the network.

Remark 3.2. For any real number s ≥ 0 we define the Sobolev spaces

Hs = (Hs(0, 1))m,
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where Hs(0, 1) is the fractional Sobolev space defined for instance in [59]. In

particular we have that H1 ⊂ (C[0, 1])m. Hence we are allowed to define the

boundary evaluation operator Π : H1 → Rn defined by

Πū =




p1
...

pn



 , where pi = ū(vi) = uk(vi) for k ∈ Γ(vi), i = 1, ..., n.

On the space H we introduce the linear operator (A, D(A)) defined by

D(A) = {ū ∈ H2 | ∃ p ∈ Rn such that Πū = p}

Aū =

(
∂

∂x

(
cj(x)

∂

∂x
uj(t, x)

))

j=1,...,m

As discussed in [67], the diffusion operator A on a network, endowed with

active nodes, fits the abstract mathematical theory of parabolic equations

with dynamic boundary conditions and in particular it can be discussed in an

efficient way by means of sesquilinear forms. Here, we shall follow the same

approach.

First, notice that no other condition except continuity on the nodes is

imposed on the elements of D(A). This is often stated by saying that the

domain is maximal.

The so called feedback operator, denoted by C, is a linear operator from

D(A) to Rn defined as

Cū =




∑

j∈Γ(vi)

φijµjcj(vi)
∂

∂x
uj(t, vi)





i=1,...,n

.

On the vectorial space Rn we define also the diagonal matrix

B =




−b1

. . .

−bn



 .

With the above notation, problem (3.1)–(3.4) can be written as an abstract

Cauchy problem on the product space H = H×Rn endowed with the natural

inner product

〈X, Y 〉H = 〈ū, v̄〉H + 〈p, q〉Rn , where X, Y ∈ H and X =

(
ū

p

)
, Y =

(
v̄

q

)
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We introduce the matrix operator A on the space H, given in the form

A =

(
A 0

C B

)

with domain

D(A) = {X = (ū, p) ∈ H : ū ∈ D(A), uj(vi) = pi for every j ∈ Γ(vi)}.

Then the linear deterministic part of problem (3.1)–(3.4) becomes

d

dt
X(t) = AX(t)

X(0) = x0

(3.9)

where x0 = (uj(0, x))j=1,...,m ∈ C([0, 1])m is the m-vector of initial conditions.

This problem is well posed, as the following result shows.

Proposition 3.3. Under Hypothesis 3.1.1 and 3.1.2 the operator

(A, D(A)) is self-adjoint, dissipative and has compact resolvent. In particular,

it generates a C0 analytic semigroup of contractions.

Proof. For the sake of completeness, we provide a sketch of the proof

following [67]. The idea is simply to associate the operator (A, D(A)) with a

suitable form a(X, Y ) having dense domain V ⊂ H.

The space V is defined as

V =

{
X =

(
ū

p

)
| ū ∈ (H1(0, 1))m, uk(vi) = pi for i = 1, . . . , n, k ∈ Γ(vi)

}

and the form a is defined as

a(X, Y ) =
m∑

j=1

∫ 1

0

µjcj(x)u′j(x)v′j(x) dx+
n∑

l=1

blplql, X =

(
ū

p

)
, Y =

(
v̄

q

)
.

The form a is clearly positive and symmetric; furthermore it is closed and

continuous. Then a little computation shows that the operator associated

with the form a is (A, D(A)) defined above. Classical results in Dirichlet

forms theory, see for instance [70], lead to the desired result. !
The assumption that bl > 0 for some l ∈ {1, ..., n} is a dissipativity condi-

tion on A. In particular it implies the following result (for a proof see [67]).



54 3. SPDES DRIVEN BY LÉVY NOISE

Proposition 3.4. Under Hypothesis 3.1.1 and 3.1.3, the operator A is

invertible and the semigroup {T(t), t ≥ 0} generated by A is exponentially

bounded, with growth bound given by the strictly negative spectral bound of the

operator A.

3. The stochastic Cauchy problem

We can now solve the system of stochastic differential equations (3.1)–

(3.4). The functions fj(u) which appear in (3.1) are assumed to have a poly-

nomial growth.

Remark 3.3. We remark that the classical FitzHugh-Nagumo problem re-

quires a nonlinearity term of the form

fj(u) = u(u− 1)(aj − u) j = 1, ...,m

for some aj ∈ (0, 1). Hence they satisfy Hypothesis 3.1.2 with

η ≤ −max
j

(a3
j + 1)

3(aj + 1)
and s = 3.

We set

F (ū) =
(
fj(uj)

)

j=1,...,m
and F(X) =

(
−F (ū)

0

)
for X =

(
ū

p

)

(3.10)

and we write our problem in abstract form as a nonlinear stochastic differential

equation on the infinite dimensional product space H

dX(t) = [AX(t)− F(X(t))] dt + Σ dL(t)

X(0) = x0

(3.11)

where Σ is the matrix defined by

Σ =

(
0 0

0 σ

)
=

(
0 0

0 diag(σ1, . . . ,σn)

)
,

and L(t) is the natural embedding in H of the n-dimensional Lévy process

L(t), i.e.

L(t) =

(
0

L(t)

)
.



3. THE STOCHASTIC CAUCHY PROBLEM 55

Remark 3.4. Note that in general the nonlinearity F can be defined only

on its domain D(F), (possibly) strictly smaller than H.

The aim of this section is to prove existence, uniqueness and regularity for

mild solution of (3.11). Let us recall the definition of mild solution for the

stochastic Cauchy problem (3.11).

Definition 3.5. An H-valued predictable process X(t), t ∈ [0, T ], is said

to be a mild solution of (3.11) if

P
(∫ T

0

|F(X(s))| ds < +∞
)

= 1 (3.12)

and

X(t) = T(t)x0 −
∫ t

0

T(t− s)F(X(s)) ds +

∫ t

0

T(t− s)Σ dL(s) (3.13)

P-a.s. for all t ∈ [0, T ], where T(t) is the semigroup generated by A.

Condition (3.12) implies that the first integral in (3.13) is well defined.

The second integral, which we shall refer to as stochastic convolution, is well

defined as will be shown in the following subsection.

3.1. The stochastic convolution process. In our case the stochastic

convolution Z(t) :=
∫ t

0 T(t− s)Σ dL(s) can be written as

Z(t) =

∫ t

0

T(t− s)

(
0

σm

)
ds +

∫ t

0

T(t− s)ΣQ dW (s)

+

∫ t

0

∫

Rn

T(t− s)

(
0

σx

)
Ñ(ds, dx).

The first integral is well defined because |T(s)Σm|H is bounded on [0, T ] and

then T(s)Σm is a Bochner integrable function (see e.g. [78]) with respect to

the Lebesgue measure ds on [0, T ], it follows
∫ T

0

∣∣∣∣∣T(t− s)

(
0

σm

)∣∣∣∣∣
H

ds < ∞.

The second one is a stochastic integral of a deterministic, bounded function

with respect to a finite dimensional Wiener process. Hence
∫ T

0

‖T(s)ΣQ1/2‖2
HSds < ∞
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where ‖ · ‖HS stands for the Hilbert-Schmidt norm on L2(H). A such con-

dition is sufficient to define the Wiener stochastic integral by an isometric

transformation (see e.g. [23]). The third term involves as integrator a com-

pensated Poisson process. The definition of stochastic integral with respect to

a compensated Poisson measure has been discussed by many authors, see for

instance [1, 4, 5, 17, 35, 44]. Here we limit ourselves to briefly recall some

conditions for the existence of such integrals. In particular, in this chapter

we only integrate deterministic functions, such as T(·)Σ, taking values in (a

subspace of) L(H), the space of linear operators from H to H. We follow

the approach by martingale-valued measures developed in [5] to investigate

weak and strong integration w.r.t. a such class of measures. A martingale-

valued measure is a set function M : R+×B(Rn)×Ω → H which satisfies

the following:

1. M(0, A) = M(t, ∅) = 0 (a.s.), for all A ∈ B(Rn), t ≥ 0.

2. M(t, A ∪ B) = M(t, A) + M(t, B) (a.s.), for all t ≥ 0 and all disjoint

A, B ∈ B(Rn).

3. (M(t, A), t ≥ 0) is a square-integrable martingale for each A ∈ B(Rn)

and is orthogonal to (M(t, B), t ≥ 0),whenever A, B ∈ B(Rn) are

disjoint.

4. sup{E(|M(t, A)|2), A ∈ B(Rn); 0 /∈ Ā} < ∞, for all, t > 0.

M is also called σ-finite L2-valued orthogonal martingale measure.

Whenever 0 ≤ s ≤ t < ∞, M((s, t], ·) := M(t, ·)−M(s, ·). M is said to have

independent increments if M((s, t], A) is independent of F for all A ∈ B(Rn),

0 ≤ s ≤ t < ∞. In order to define the stochastic integral of this class of

processes with respect to the Lévy martingale-valued measure

M(t, B) =

∫

B

x Ñ(t, dx), (3.14)

one requires that the mapping T(·)Σ : [0, T ]×Rn ; (t, x) 5→ T(t)(0, σx) belongs

to the space L2((0, T )×B; 〈M(dt, dx)〉) for every B ∈ B(Rn), i.e. that




∫ T

0

∫

B

∣∣∣∣∣T(s)

(
0

σx

)∣∣∣∣∣

2

H

ν(dx) ds




1/2

< ∞. (3.15)
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Thanks to (3.7), one has

∫ T

0

∫

B

∣∣∣∣∣T(s)

(
0

σx

)∣∣∣∣∣

2

H

ν(dx) ds

≤ |σ|2
(∫ T

0

|T(s)|2L(H) ds

) (∫

B

|x|2 ν(dx)

)
< ∞,

thus the stochastic convolution Z(t) is well defined for all t ∈ [0, T ].

Space regularity. We shall now prove a regularity property (in space)

of the stochastic convolution. In theorem 3.8 below we will also prove a time

regularity result, i.e. we show that the stochastic convolution has càdlàg paths.

Let us define the product spaces E := (C[0, 1])m×Rn and CF ([0, T ]; L2(Ω; E)),

the space of E-valued, adapted mean square continuous processes Y on the time

interval [0, T ] such that

|Y |2CF
:= sup

t∈[0,T ]
E|Y (t)|2E < ∞.

Lemma 3.6. For all t ∈ [0, T ], the stochastic convolution {Z(t), t ∈ [0, T ]}
belongs to the space CF ([0, T ]; L2(Ω; E)). In particular, Z(t) is predictable.

Proof. Let us recall that the unbounded matrix operator A on H is sim-

ilar to this one, still denoted by A and defined by

A =

(
∂2

x 0

−∂ν B

)
,

with domain

D(A) = {X = (ū, p) ∈ H : ū ∈ D(A), ul(vi) = pi for every l ∈ Γ(vi)}

and, by proposition 3.3, it generates a C0-analytic semigroup of contractions

on H.

Let us introduce the interpolation spaces Hθ = (H, D(A))θ,2 for θ ∈ (0, 1).

By classical interpolation theory (see e.g. [60]) it results that, for θ < 1/4,

Hθ = H2θ × Rn while for θ > 1/4 the definition of Hθ involves boundary

conditions, that is

Hθ =

{(
ū

p

)
∈ H2θ × Rn : Πū = p

}
.

Therefore, one has
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• (0, σx), (0, σm) ∈ Hθ for all θ < 1/4 and

• ΣQW (s) ∈ Hθ P-a.s. for all θ < 1/4, s ∈ [0, T ].

Furthermore, for θ > 1/2, one also has Hθ ⊂ H1 × Rn ⊂ (C[0, 1])m × Rn by

Sobolev embedding theorem. Moreover, for all x ∈ Hθ and θ + γ ∈ (0, 1), it

holds

|T(t)x|θ+γ ≤ t−γ|x|θeωAt, (3.16)

where ωA is the spectral bound of the operator A.

Let θ, γ be real numbers such that θ ∈ (0, 1/4), γ ∈ (0, 1/2) and θ + γ ∈
(1/2, 1). Then for all t ∈ [0, T ]

|Z(t)|θ+γ ≤
∫ t

0

∣∣∣∣∣T(t− s)

(
0

σm

)∣∣∣∣∣
θ+γ

ds +

∣∣∣∣
∫ t

0

T(t− s)Σ dW (s)

∣∣∣∣
θ+γ

+

∫ t

0

∫

Rn

∣∣∣∣∣T(t− s)

(
0

σx

)∣∣∣∣∣
θ+γ

Ñ( dx, ds) P-a.s.

The right hand side of the above inequality is well defined if and only if the

following integrals are finite

•
∫ T

0 s−γ|Σm|θ ds,

• E
∣∣∣
∫ T

0 T(s)ΣQ dW (s)
∣∣∣
2

θ+γ
=

∫ T

0

∥∥T(s)ΣQ1/2
∥∥2

HS
ds,

• E
∣∣∣
∫ T

0

∫
Rn |T(s)Σx|θ+γ Ñ( dx, ds)

∣∣∣
2

=
∫ T

0

∫
Rn |T(s)Σx|2θ+γ ν( dx) ds,

where the last two identities follow by the classical isometries for Wiener and

Poisson integrals. The first condition is obviously verified for 0 < γ < 1. On

the other hand, one has by (3.16)
∫ T

0

∥∥T(s)ΣQ1/2
∥∥2

HS
ds =

∫ T

0

Tr[T(s)ΣQΣ∗T∗(s)] ds

≤
∫ T

0

s−2γTr[ΣQΣ∗] ds < ∞

and
∫ T

0

∫

Rn

∣∣∣∣∣T(s)

(
0

σx

)∣∣∣∣∣

2

θ+γ

ν( dx) ds ≤
∫ T

0

∫

Rn

s−2γ

∣∣∣∣∣

(
0

σx

)∣∣∣∣∣

2

θ

e2ωAsν( dx) ds

≤ |σ|2
∫ T

0

s−2γe2ωAs ds

∫

Rn

|x|2ν( dx) < ∞
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using γ ∈ (0, 1/2) and assumption (3.7). So Z(t) ∈ Hθ+γ for θ + γ > 1/2 and

then Z(t) ∈ (C[0, 1])m×Rn = E. It remains to prove that Z(t) is mean square

continuous as E-valued process. For 0 ≤ s < t ≤ T we can write

E|Z(t)− Z(s)|2E = E
∣∣∣∣
∫ t

0

T(t− r)Σ dL(r)−
∫ s

0

T(s− r)Σ dL(r)

∣∣∣∣
2

E

≤ 2E
∣∣∣∣
∫ s

0

∫

Rn

[T(t− r)− T(s− r)]Σ dL(r)

∣∣∣∣
2

E

+2E
∣∣∣∣
∫ t

s

∫

Rn

T(t− r)Σ dL(r)

∣∣∣∣
2

E

≤ 8

∫ s

0

∣∣∣∣∣[T(t− r)− T(s− r)]

(
0

σm

)∣∣∣∣∣

2

E

dr

+8

∫ s

0

‖[T(t− r)− T(s− r)]ΣQ1/2‖2
HS dr

+8

∫ s

0

∫

Rn

∣∣∣∣∣[T(t− r)− T(s− r)]

(
0

σx

)∣∣∣∣∣

2

E

ν( dx) dr

+8

∫ t

s

∣∣∣∣∣T(t− r)

(
0

σm

)∣∣∣∣∣

2

E

dr

+8

∫ t

s

‖T(t− r)ΣQ1/2‖2
HS dr

+8

∫ t

s

∫

Rn

∣∣∣∣∣T(t− r)

(
0

σx

)∣∣∣∣∣

2

E

ν( dx) dr −→ 0

for the strong continuity of the semigroup T(t).

Since the stochastic convolution Z(t) is adapted and mean square contin-

uous, it is predictable. !

4. Existence and uniqueness in the Lipschitz case

We consider as a preliminary step the case of Lipschitz continuous nonlinear

term and we prove existence and uniqueness of solutions in the space CF of

adapted mean square continuous processes taking values in the product space

H. We would like to mention that this result is included only for the sake

of completeness and for the simplicity of its proof (which is essentially based
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only on the isometry defining the stochastic integral). In fact, a much more

general existence and uniqueness result was proved by Kotelenez in [52].

Theorem 3.7. Assume Hypothesis 3.2 and let x0 be an F0-measurable H-

valued random variable such that E|x0|2 < ∞. Let G : H → H be a function

satisfying Lipschitz and linear growth conditions:

|G(x)| ≤ c0(1 + |x|), |G(x)−G(y)| ≤ c0|x− y|, x, y ∈ H. (3.17)

for some constant c0 > 0. Then there exists a unique mild solution X : [0, T ] →
L2(Ω, H) to equation (3.11) with −F replaced by G, which is continuous as

L2(Ω, H)-valued function. Moreover, the solution map x0 5→ X(t) is Lipschitz

continuous.

Proof. We follow the semigroup approach of [23, Theorem 7.4] where the

case of Wiener noise is treated. We emphasize only the main differences in the

proof.

The uniqueness of solutions reduces to a simple application of Gronwall’s

inequality. To prove existence we use the classical Banach’s fixed point theorem

in the space CF ([0, T ]; L2(Ω; H)). Let K be the mapping

K(Y )(t) = T(t)x0 +

∫ t

0

T(t− s)G(Y (s)) ds + Z(t)

where Y ∈ CF ([0, T ]; L2(Ω; H)) and Z(t) is the stochastic convolution. Z(·)
and T(·)x0 belong to CF ([0, T ]; L2(Ω; H)) respectively in view of Lemma 3.6

and initial assumption. Moreover, setting

K1(Y )(t) =

∫ t

0

T(t− s)G(Y (s)) ds,

it is sufficient to note that

|K1(Y )|2CF
≤ (Tc0)

2(1 + |Y |2CF
)

by the linear growth of G and the contractivity of T(t). Then we obtain

that K maps the space CF ([0, T ]; L2(Ω; H)) to itself. Further, using the Lip-

schitz continuity of G, it follows that for arbitrary processes Y1 and Y2 in

CF ([0, T ]; L2(Ω; H)) we have

|K(Y1)−K(Y2)|2CF
= |K1(Y1)−K1(Y2)|2CF

≤ (c0T )2|Y1 − Y2|2CF
.
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If we choose an interval [0, T̃ ] such that T̃ < c−1
0 , it follows that the mapping K

has a unique fixed point X ∈ CF ([0, T̃ ]; L2(Ω; H)). The extension to arbitrary

interval [0, T ] follows by patching together the solutions in successive time

intervals of length T̃ .

The Lipschitz continuity of the solution map x0 5→ X is again a conse-

quence of Banach’s fixed point theorem, and the proof is exactly as in the case

of Wiener noise.

It remains to prove the mean square continuity of X. Observe that T(·)x0

is a deterministic continuous function and it follows, again from Lemma 3.6,

that the stochastic convolution Z(t) is mean square continuous. Hence it is

sufficient to note that the same holds for the term
∫ t

0 T(t− s)G(X(s)) ds, that

is P-a.s. a continuous Bochner integral and then continuous as the composition

of continuous functions on [0, T ]. !

Remark 3.5. By standard stopping time arguments one actually shows

that existence and uniqueness of a mild solution holds assuming only that x0

is F0-measurable.

In order to prove that the solution constructed above has càdlàg paths, un-

fortunately one cannot adapt the factorization technique developed for Wiener

integrals (see e.g. [23]). However, the càdlàg property of the solution was

proved by Kotelenez [52], under the assumption that A is dissipative. There-

fore, thanks to proposition 3.3, the solution constructed above has càdlàg

paths. One could also obtain this property proving the following a priori esti-

mate, which might be interesting in its own right.

Theorem 3.8. Under the assumptions of theorem 3.7 the unique mild so-

lution of problem (3.11) verifies

E sup
t∈[0,T ]

|X(t)|2H < ∞.

Proof. Let us consider the Itô formula for the function | · |2H, applied

to the process X. Although our computations are only formal, they can be

justified using a classical approximation argument. We obtain

d|X(t)|2H = 2〈X(t−), dX(t)〉H + d[X](t).
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By the dissipativity of the operator A and the Lipschitz continuity of G, we

obtain

〈X(t−), dX(t)〉H =〈AX(t), X(t)〉H dt + 〈G(X(t)), X(t)〉H dt

+ 〈X(t−), Σ dL(t)〉H
≤ c0|X(t)|2H + 〈X(t−), Σ dL(t)〉H.

Therefore

|X(t)|2H ≤ |x0|2H+2c0

∫ t

0

|X(s)|2H ds+2

∫ t

0

〈X(s−), Σ dL(s)〉H+

∫ t

0

|Σ|2 d[L](s)

and

E sup
t≤T

|X(t)|2H ≤E|x0|2H + 2c0TE sup
t≤T

|X(t)|2H

+ 2E sup
t≤T

∣∣∣
∫ t

0

〈X(s−), Σ dL(s)〉H
∣∣∣ + T

∫

Rn

|Σ|2|x|2 ν(dx),

(3.18)

where we have used the relation

E sup
t≤T

[X](t) ≤ E
∫ T

0

|Σ|2 d[L](t) = E
∫ T

0

|Σ|2 d〈L〉(t)

=

∫
T

∫

Rn

∣∣∣∣∣Σ
(

0

x

)∣∣∣∣∣

2

ν(dx).

By the Burkholder-Davis-Gundy inequality applied to the martingale

Mt =
∫ t

0 〈X(s−), Σ dL(s)〉H, for p = 1, there exists a constant c1 such that

E sup
t≤T

∣∣∣
∫ t

0

〈X(s−), Σ dL(s)〉H
∣∣∣ ≤ c1E

([∫ ·

0

〈X(s−), Σ dL(s)〉H
]

(T )

)1/2

≤ c1E
(

sup
t≤T

|X(t)|2H
∫ T

0

|Σ|2 d[L](s)

)1/2

≤ c1

(
εE sup

t≤T
|X(t)|2H +

1

4ε
E

∫ T

0

|Σ|2 d[L](s)

)

= c1εE sup
t≤T

|X(t)|2H

+
c1T

4ε

∫

Rn

|Σ|2|x|2ν( dx), (3.19)
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where we have used Young’s inequality. Then, by (3.18) and (3.19)

E sup
t≤T

|X(t)|2H ≤ E|x0|2H + 2c0TE sup
t≤T

|X(t)|2H + 2c1εE sup
t≤T

|X(t)|2H

+
( c1

2ε
+ 1

)
T

∫

Rn

|Σ|2|x|2 ν(dx),

hence

E sup
t≤T

|X(t)|2H ≤ N
[
E|x0|2H + T

(
1 +

c1

2ε

)]
< +∞,

where

N = N(c0, c1, T, ε) =
1

1− 2c0T − 2c1ε
.

Choosing ε > 0 and T > 0 such that N < 1, one obtains the claim for a small

time interval. The extension to arbitrary time interval follows by classical

extension arguments. !

5. FitzHugh-Nagumo type nonlinearity

Let us now consider the general case of a nonlinear drift term F which is

a dissipative mapping with domain D(F) strictly contained in H. A method

to solve equations such as (3.11) driven by Wiener noise is given in [25]: in

that approach it is necessary to find a (reflexive Banach) space V, continuously

embedded in H, which is large enough to contain the paths of the stochastic

convolution, and, on the other hand, not too large so that it is contained in the

domain of the nonlinearity F. As discussed in section 3.1, in our setting the

natural candidates for this space are V = (H1(0, 1))m×Rn and E = (C[0, 1])m×
Rn. Unfortunately, it is not possible to give a direct application of the results

in [25, Section 5.5], as we do not have continuity in time of the stochastic

convolution, but only a càdlàg property. Hence, we need a different approach

to the problem, based on regularizations and weak convergence techniques.

Theorem 3.9. Let us consider the equation

dX(t) = [AX(t)− F(X(t))] dt + Σ dL(t)

X(0) = x0 (3.20)

where F is a polynomial nonlinearity only defined on its domain D(F), which

is strictly smaller than H. Then (3.20) admits a unique mild solution, denoted
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by X(t, x0), which satisfies the estimate

E|X(t, x)−X(t, y)|2 ≤ E|x− y|2.

for all initial data x, y ∈ H.

Proof. As observed in section 3 above, there exists η > 0 such that F +ηI

is m-dissipative. By a standard argument one can reduce to the case of η = 0

(see e.g. [7]), which we shall assume from now on, without loss of generality.

Let us set, for λ > 0, Fλ(u) = F ((1 + λF )−1(u)) (Yosida regularization). Fλ

is then defined in the obvious way.

Let Gy = −Ay + F(y). Then G is maximal monotone on H. In fact, since

A is self-adjoint, setting

ϕ(u) =





|A1/2u|2, u ∈ D(A1/2)

+∞, otherwise,

one has that ϕ is convex and A = ∂ϕ.

Let us also set F = ∂g, where g : Rm → R is a convex function, the con-

struction of which is straightforward. Well-known results on convex integrals

(see e.g. [7, sec. 2.2]) imply that F on H is equivalently defined as F = ∂Ig,

where

Ig(u) =






∫

[0,1]m
g(u(x)) dx, if g(u) ∈ L1([0, 1]m),

+∞, otherwise.

Let us recall that

F =

(
−F

0

)
.

Since D(F)∩D(A) is not empty, G is maximal monotone if ϕ((I+λF)−1(u)) ≤
ϕ(u) (see e.g. [13, Thm. 9]), which is verified by a direct (but tedious)

calculation using the explicit form of A, since (I + λfj)−1 is a contraction on

R for each j = 1, . . . ,m.

Let us consider the regularized equation

dXλ(t) + GλXλ(t) dt = Σ dL(t)

Xλ(0) = x0.
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where Gλ := −A + Fλ. Appealing to Itô’s formula for the square of the norm

one obtains

|Xλ(t)|2 +2

∫ t

0

〈GλXλ(s), Xλ(s)〉 ds = |x0|2 +2

∫ t

0

〈Xλ(s−), Σ dL(s)〉+[Xλ](t)

for all t ∈ [0, T ]. Taking expectation on both sides yields

E|Xλ(t)|2 + 2E
∫ t

0

〈GλXλ(s), Xλ(s)〉 ds = E|x0|2 +

∫ t

0

‖ΣQ1/2‖2
HS ds

+t

∫

Rn

|Σ|2 |z|2 ν( dz), (3.21)

where we have used the identity

[Xλ](t) =
[ ∫ ·

0

Σ dL(s)
]
(t) =

∫ t

0

‖ΣQ1/2‖2
HS ds + t

∫

Rn

|Σ|2 |z|2 ν( dz).

Let us define the space Lp as the set of H valued random variables with finite p-

th moment. Therefore, since by (3.21) we have that {Xλ} is a bounded subset

of L∞([0, T ], L2), and L2 is separable, Banach-Alaoglu’s theorem implies that

Xλ
∗
⇀ X in L∞([0, T ], L2),

on a subsequence still denoted by λ. Thanks to the assumptions on fj, one

can easily prove that 〈F (u), u〉 ≤ c|u|p+1 for some c > 0 and p ≥ 1, hence

(3.21) also gives

E
∫ T

0

|Xλ(s)|p+1
p+1 ds < C,

which implies that

Xλ ⇀ X in Lp+1(Ω× [0, T ]×D, P× dt× dξ), (3.22)

where D = [0, 1]m × Rn. Furthermore, (3.21) and (3.22) also imply

Gλ(Xλ) ⇀ η in L
p+1

p (Ω× [0, T ]×D, P× dt× dξ).

The above convergences immediately imply that X and η are predictable, then

in order to complete the proof of existence, we have to show that η(ω, t, ξ) =

G(X(ω, t, ξ)), P× dt× dξ-a.e.. For this it is enough to show that

lim sup
λ→0

E
∫ T

0

〈GλXλ(s), Xλ(s)〉 ds ≤ E
∫ T

0

〈η(s), X(s)〉 ds.
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Using again Itô’s formula we get

E|X(T )|2 + 2E
∫ T

0

〈η(s), X(s)〉 ds = E|x0|2 + T

∫

Rn

|Σ|2 |z|2 ν( dz). (3.23)

However, (3.22) implies that

lim inf
λ→0

E|Xλ(T )|2 ≥ E|X(T )|2

(see e.g. [14, Prop. 3.5]), from which the claim follows comparing (3.21) and

(3.23).

The Lipschitz dependence on the initial datum as well as (as a consequence)

uniqueness of the solution is proved by observing that X(t, x)−X(t, y) satisfies

P-a.s. the deterministic equation

d

dt
(X(t, x)−X(t, y)) = A(X(t, x)−X(t, y))− F(X(t, x)) + F(X(t, y)),

hence
1

2

d

dt
|X(t, x)−X(t, y)|2 =

〈
A(X(t, x)−X(t, y)), X(t, x)−X(t, y)

〉

−
〈
F(X(t, x)− F(X(t, y)), X(t, x)−X(t, y)

〉

≤ η|X(t, x)−X(t, y)|2,

where X(·, x) stands for the mild solution with initial datum x. By the Gron-

wall lemma

E|X(t, x)−X(t, y)|2 ≤ e2ηtE|x− y|2

which concludes the proof of the theorem. !

Remark 3.6. By arguments similar to those used in the proof of theorem

3.8 one can also obtain that

E sup
t≤T

|Xλ(t)|2 < C,

i.e. that {Xλ} is bounded in L2(Ω; L∞([0, T ]; H)). By means of Banach-

Alaoglu’s theorem, one can only conclude that Xλ
∗
⇀ X in L2(Ω; L1([0, T ]; H))′,

which is larger than L2(Ω; L∞([0, T ]; H)). In fact, from [29, Thm. 8.20.3], be-

ing L1([0, T ]; H) a separable Banach space, one can only prove that if F is a

continuous linear form on L2(Ω; L1([0, T ]; H)), then there exists a function f

mapping Ω into L∞([0, T ]; H) that is weakly measurable and such that

F (g) = E〈f, g〉
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for each g ∈ L2(Ω; L1([0, T ]; H)).





CHAPTER 4

Longtime behaviour for SPDEs with R.D.B.C.

This chapter is mainly taken from the paper [12].

The purpose of this chapter is to investigate existence, uniqueness and as-

ymptotic behaviour in time of solutions to a stochastic linear problem of heat

conduction in the interior of materials and dynamical conditions on the bound-

ary. In particular we prove the existence of an invariant measure for the weak

solution (see e.g. [23]). Consider a rigid, isotropic, homogeneous heat con-

ductor which occupies a bounded domain O ⊂ R3, for t ≥ 0, in presence of a

random source of heat supply acting on the boundary. In this model we sup-

pose that the boundary has a certain thickness and a sufficiently large thermal

conductivity, so that to permit heat exchange between internal and boundary

material and to consider on this one a different diffusion process of its own.

We will show how the resulting system of stochastic differential equations

can be treated in the framework of using techniques arising in the theory

of matrix operators on Hilbert spaces and of stochastic equations in infinite

dimensions. In particular we shall determine under which conditions the de-

terministic system becomes exponentially stable.

Let O ⊂ R3 be a bounded set with smooth boundary ∂O of class C2. We

assume that O is the region occupied by a rigid heat conductor, such as a

metallic body, embedded in a moving fluid.

A pure diffusion mechanism acts for the temperature u(t, x) inside O ac-

cording to Fourier’s law

∂tu(t, x) = ∆u(t, x), t > s, x ∈ O. (4.1)

for some initial time s ∈ R.

In the traditional approach, equation (4.1) is endowed with boundary con-

ditions either in the form of Dirichlet boundary conditions (when the tempera-

ture is given at the boundary) or of Neumann boundary conditions (when the

heat flow is given at the boundary). However, neither of these conditions is

69
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suitable in order to model the case of a heat source located on the boundary,

since the amount of heat in the region O shall take into account the action of

the heat source on the boundary. For instance, we are taking into account the

case when the outer surface of the region is covered with a conducting ma-

terial which contains sensors and heat sources. According to [39], depending

on the physical assumptions given on the system, all kind of standard, as well

as dynamical boundary conditions arise naturally in the formulation of the

problem. Let us denote φ(t, ξ, u, ∆u) the heat source acting on the boundary:

then an application of Fourier’s law implies that the identity

∂tu(ξ, t) = φ(t, ξ, u, ∂νu) t > s, ξ ∈ ∂O

represents the boundary condition associated to (4.1).

Further, we assume that heat flow can occur across the boundary together

with a dissipative condition and a heat source. Denote by ∂ν the outward

normal derivative on the boundary; the heat source thus takes the form

φ(t, ξ, u, ∂νu) = ∂νu(t, ξ)− µu(t, ξ)− g(u(t, ξ)) + F (t, ξ)

for a rapidly varying heat source F (t, ξ) that we model by setting F (t, ·) =

Q1/2 dW (t)

dt
, where {W (t), t ≥ 0} is a cylindrical Wiener process on L2(∂O)

and Q is a linear, bounded, symmetric, trace class operator on L2(∂O).

Hypothesis 4.1. In our model, we assume that there exists a finite number

of heat sources, located at points {ξk, k = 1, . . . , N} on ∂O, such that

F (ξ, t) =
N∑

k=1

d(ξ, ξk)β̇k(t)

for given functions dk(ξ) = d(ξ, ξk) in L2(∂O) ∩ L∞(∂O), and the random

processes {βk, k = 1, . . . , N} are independent, two-sided real-valued Brownian

motions on a probability space (Ω, F , (Ft)t∈R, P).

Hypothesis 4.2. We assume that µ is a strictly positive constant while

the nonlinear part of the heat supply g : R → R is a continuously differentiable

function satisfying

(1) |g(u)| ≤ k1(1 + |u|2p−1),

(2) u · g(u + v) ≥ −k2|v|2p + k3|u|2p,



4. LONGTIME BEHAVIOUR FOR SPDES WITH R.D.B.C. 71

(3) g′(u) ≥ −k4

for some p ∈ N, kj ≥ 0, j = 1, 2, 3, 4 and k4 < µ.

Remark 4.1. As a particular case of nonlinearity satisfying Hypothesis 4.2

we mention the case that g is a polynomial of odd degree with positive leading

coefficient

g(v) =
2p−1∑

k=1

gkv
k, g2p−1 > 0, p ∈ N. (4.2)

The initial-boundary value problem that we take into account connects

the internal and the boundary dynamics, as well as the random heat source

acting on the system. Setting for simplicity v(t, ξ) = u(t, ξ) the value of the

temperature on the boundary, we get:

∂tu(t, x) = ∆u(t, x)

∂tv(t, ξ) = ∂νu(t, ξ)− µv(t, ξ)− g(v(t, ξ)) + F (t, ξ)

u(s, x) = us(x), v(s, ξ) = vs(ξ).

on O× [s, +∞)

on ∂O× [s,∞)

(4.3)

Our concern is to convert system (4.3) in an abstract Cauchy problem in a

suitable product space H and prove that the linear part of the system is well

posed (i.e., prove generation properties for the associated matrix operator).

Then, our main result Theorem 4.9 will provide the existence of a unique

solution {w(t) = (u(t), v(t)), t ≥ s} for problem (4.3) as a continuous and

adapted process in H.

The structure of problem (4.3) allows the introduction on the Hilbert space

H of a family of mappings S(t, s,ω) : H → H, s ≤ t, ω ∈ Ω, which defines

the random dynamical system for the problem (see e.g. [6]), in the sense that

S(t, s,ω)z̄ is the unique solution of (4.3) with initial condition z̄ at time s ∈ R.

We obtain that the family S satisfies P-a.s. the following properties:

(1) S(t, r, ω)S(r, s, ω)z̄ = S(t, s,ω)z̄, for all s < r < t and z̄ ∈ H,

(2) t 5→ S(t, s,ω)z̄ is continuous in H for all t > s.

The basic definition of attracting set arise naturally in the theory of random

attractors, as introduced in [20, 21]. For given t ∈ R and ω ∈ Ω, we say that

K(t, ω) is an attracting set if, for all bounded subsets B ⊂ H,

‖K(t, ω), S(t, s,ω)B‖H → 0 as s → −∞. (4.4)
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Moreover, a generalized invariance property is required:

S(t, s,ω)K(s, ω) = K(t, ω). (4.5)

Relation (4.4) is called the pull-back convergence to K(t, ω). Unfortu-

nately, a random absorbing set in the sense of (4.4) does not have a straight-

forward physical interpretation as in the deterministic case. We shall remark

that classical theory of random attractors requires a compactness assumption

for K(t, ω) which is not achieved here.

If there exists a random set A(ω) which is a compact measurable forward

invariant set for the random dynamical system S(t, s,ω), then there exist in-

variant measures for ϕ which are supported by A. The compactness of the

set is needed to apply a fixed point result (Markov-Kakutani) on the family

of measures supported by the random set.

So universally or globally attracting sets, that are compact and invariant,

can be considered the natural link between the theory of random attractors

and invariant measures. These sets attract P-a.s. every bounded deterministic

set and are the support of some invariant measure.

In our problem we prove existence of an invariant random set absorbing

every bounded deterministic set, but unfortunately it is not compact in the

topology of H. So we are not in presence of a globally attracting set and the

lack of compactness compels us to show existence of an invariant measure in

another way.

Longtime behaviour of the solutions of stochastic partial differential equa-

tions has been widely investigated using procedures arising from the general

theory of semigroups applied to stochastic systems. In our case, such approach

leads to prove the existence of a unique invariant measure ν for Eq. (4.3) in

the space H = L2(O) × L2(∂O) which is strongly mixing, i.e., the Markov

transition semigroup Pt associated with the solution w(t) of Eq. (4.3), defined

by

Ptφ(x) = E[φ(w(t; s, x))],

converges weakly in L2(H, ν) to the space average of φ:

lim
t→∞

Ptφ =

∫

H

φ dν, φ ∈ L2(H, ν).
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1. Setting of the problem

For the reader’s convenience, we briefly recall some results on Sobolev

spaces of functions on O and ∂O.

For O ⊂ R3 being a bounded domain with smooth boundary ∂O, we fix

as reference space L2(O), the set of square integrable functions acting on O

and similarly L2(∂O) is the space of square integrable functions acting on

the boundary ∂O. Recall that for every s > 1/2, the function u 5→ u|∂O

from C(Ō) to C(∂O) has a unique extension to a linear bounded operator

L : Hs(O) → Hs−1/2(O). Also, for every s > 3/2, the function u 5→ ∂νu

from C1(Ō) to C(∂O) has a unique extension to a linear bounded operator

N : Hs(O) → Hs−3/2(∂O).

Next result connects the norm in the interior and the trace on the boundary.

As a general reference, we quote [76].

Proposition 4.3 (Friedrichs). Let O be a nonempty, open and bounded

subset in Rn with smooth boundary ∂O of class C1. Then there exists k ≥ 1

such that

1

k
‖u‖2

H1(O) ≤ ‖∇u‖2
L2(O) + ‖u|∂O‖2

L2(∂O) ≤ k‖u‖2
H1(O)

for each u ∈ H1(O).

We shall also use the following result, compare [[58], pg.135]. Define for all

φ ∈ H1/2(∂O) the function D0φ = ψ ∈ H1(O) as the solution of the boundary

problem

∆ψ = 0 inside O,

ψ|∂O = φ.

Then it is possible to define ∂νψ ∈ H−1/2(∂O) and the following holds.

Lemma 4.4. For every λ > 0 there exists α > 0 such that the following

estimate holds for every φ ∈ H1/2(∂O):

〈∂νD0φ, φ〉L2(∂O) + λ‖φ‖2
L2(∂O) ≥ α‖φ‖2

H1/2(∂O). (4.6)

1.1. A generation result. On the space H = L2(O)× L2(∂O), the sys-

tem of internal and boundary dynamics defines a linear operator A : D(A) ⊂
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H → H,

A =

(
∆ 0

−∂ν −µI

)
(4.7)

with domain

D(A) = {(u, v) ∈ H3/2(O)×H1(∂O) : ∆u ∈ L2(O), ∂νu ∈ L2(∂O), u|∂O = v}.
(4.8)

For the sake of completeness we recall the regularity properties for the

evolution equation ∂tu = Au.

Proposition 4.5. The matrix operator (A, D(A)) defined in (4.7)–(4.8)

is the infinitesimal generator of a compact and analytic C0-semigroup of con-

traction.

Remark 4.2. We sketch the proof given in Vrabie [76], see also [8]. Other

approaches are given in the literature, see for instance the papers [32], [75]

and [66].

We begin with a simple lemma, whose proof is based on Lax-Milgram

theorem, see [76, Lemma 7.4.1].

Lemma 4.6. For any γ ≥ 0, λ > 0, consider the elliptic problem for

f ∈ L2(O), g ∈ L2(∂O)

γu−∆u = f,

λv + ∂νu = g,

u|∂O = v.

(4.9)

Then there exists a unique solution u ∈ H3/2(O), v ∈ H1(∂O), ∆u ∈ L2(O)

and ∂νu ∈ L2(∂O).

Proof of Proposition 4.5. We first notice that D(A) is dense in H =

L2(O)× L2(∂O).

For every λ > 0, (f, g) ∈ H, the equation

(λI − A)

(
u

v

)
=

(
f

g

)
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has a unique solution, by Lemma 4.6; taking the scalar product in both lines

of (4.9), respectively with u and v, implies that

λ‖u‖2
L2(O) + ‖∇u‖2

L2(O) − 〈∂νu, u〉L2(∂O) ≤ 〈f, u〉L2(O)

λ‖v‖2
L2(∂O) + 〈∂νu, u〉L2(∂O) ≤ 〈g, u〉L2(∂O)

which leads to

‖(λI − A)−1‖L(H) ≤
1

λ
for every λ > 0, and also implies that (0, +∞) ⊂ ρ(A). An application of

Hille-Yosida theorem implies that A is the generator of a C0-semigroup of

contractions {S(t), t ≥ 0}.
Further, a simple computation shows that A is symmetric and, since it is

(I − A)−1 ∈ L(H), it follows also that A is self-adjoint, hence the semigroup

S(t) is analytic. Finally, it is easily seen that D(A), endowed with the graph

norm, is compactly embedded in H, hence the semigroup S(t) is compact. !

2. The stochastic problem

Let Ω = {ω ∈ C(R, RN) | ω(0) = 0} be the Wiener space and P is the

product measure of two Wiener measures on the negative and the positive

parts of Ω. On Ω we define the time-shift θ setting

θsω(t) = ω(t + s)− ω(s), t, s ∈ R.

{θt, t ∈ R} is a family of ergodic transformations.

We now rewrite system (4.3) as a stochastic differential equation in H =

L2(O)× L2(∂O) for the unknown z = (u, v):

dz = [Az(t) + G(z(t))] dt +
N∑

k=1

Dkdβk(t), t ≥ s

z(s) = z̄.

(4.10)

The mapping G is defined as G(u, v) = (0,−g(v)) and we assume that Dk =

(0, dk), for k = 1, . . . , N , belongs to D(Am), where Am is the matrix operator

Am =

(
∆ 0

−∂ν −µI

)

with maximal domain

D(Am) = {(u, v) ∈ H3/2(O)×H1(∂O) : ∆u ∈ L2(O), ∂νu ∈ L2(∂O)}.



76 4. LONGTIME BEHAVIOUR FOR SPDES WITH R.D.B.C.

We introduce the stationary Ornstein-Uhlenbeck process ζ = {ζ(t), t ∈ T}
in L2(∂O) setting

ζ(t) =
N∑

k=1

dkζk(s) =
N∑

k=1

dk

∫ t

−∞
e−µ(t−s) dβk(s), t ∈ R, (4.11)

where {dk, k = 1, . . . , N} are given functions in L2(∂O). When no confusion

can arise, we write ζ also the process in H = L2(O) × L2(∂O) defined by the

vector (0, ζ). Notice also that Amζ = −µζ. For further reference, we state the

following result on the pathwise behaviour of the process ζ(t).

Lemma 4.7. Assume that {dk, k = 1, . . . , N} is a bounded sequence in

L2(∂O) ∩ L∞(∂O). For every T > 0 and p ∈ N it holds
∫ T

0

‖ζ(s)‖2p
L2p(∂O) ds < ∞ P-a.s.

Proof. It is a standard computation to show that

‖ζ(s)‖2p
L2p(∂O) ≤ c1

N∑

k=1

|ζk(s)|2p

for a constant c1 depending on meas(∂O), N , n and the sup-norm of the family

{dk}. Then it follows

E
∫ T

0

‖ζ(s)‖2p
L2p(∂O) ds < c2T

with c2 = c1(2p− 1)!, which implies that P-a.s. the random variable is finite,

as required. !
In order to study equation (4.10) we apply a random change of variables,

setting w = z−ζ: the unknown w satisfies a differential equation with random

coefficients
dw

dt
= Aw(t) + G(w(t) + ζ(t)) (4.12)

and initial condition (given at time s = 0 for simplicity)

w(0) = z̄ − ζ(0), P-a.s.

Theorem 4.8. For s = 0 and z̄ ∈ H, P-a.s., there exists a unique weak

solution w(t) = w(t, 0, ω), t ∈ [0, T ], for equation (4.12) such that:

(i) w(t) = (u(t), v(t)) belongs to L2(0, T ; H), and
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(ii) for every vector (σ, ξ) ∈ D(A) it holds

〈w(t), (σ, ξ)〉H = 〈w(0), (σ, ξ)〉H +

∫ t

0

〈w(s), A(σ, ξ)〉H ds

+

∫ t

0

〈(σ, ξ), G(w(s) + ζ(s))〉H ds.

Proof. Existence. We follow a standard Faedo-Galerkin scheme. Let

{0 = x0, xj, j ≥ 1} be an orthonormal basis of L2(O) where the vectors

xj, j ≥ 1 are eigenvalues of the Dirichlet Laplacian operator on O, hence

〈∆xj, xj〉 = −νj < 0 and 〈∆xj, xk〉 = 0 whenever k <= j. Let further {0 =

y0, yj, j ≥ 1} be an orthonormal basis of L2(∂O).

For every given n ∈ N we denote by Pn and Qn the projections on the

subspaces

Span{x1, . . . , xn} ⊂ L2(O) and Span{y1, . . . , yn} ⊂ L2(∂O).

Then we search for a function wn = (un, vn) ∈ H having the form

un(t) =
n∑

k=1

αk(t)xk, vn(t) =
n∑

k=1

βk(t)yk

that solves the system

〈 d
dtwn(t), (σ, ξ)〉H = 〈wn(t), A(σ, ξ)〉H + 〈G(wn(t) + ζ(t)), (σ, ξ)〉H

wn(0) = (Pn(z̄ − ζ(0)), Qn(z̄ − ζ(0)))
(4.13)

for every (σ, ξ) ∈ D(A). Choosing repeatedly (xk, 0) and (D0yk, yk) in (4.13),

for k = 1, . . . , n, we obtain the system of equations

d
dtαk(t) = −νkαk(t)

d
dtβk(t) = −µβk(t)−

n∑

j=1

βj(t)〈yj, ∂νD0yk〉L2(∂O)

− 〈g(vn(t) + ζ(t)), yk〉L2(∂O)

(4.14)

with initial conditions

αk(0) = 〈z̄ − ζ(0), xk〉, βk(0) = 〈z̄ − ζ(0), yk〉. (4.15)

According to standard theory for ordinary differential equations there exists a

unique continuous solution for the system (4.14) in some interval [0, Tn].
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Next step is to give a priori estimates for the solutions of (4.14). We

multiply both sides of first equality in (4.14) by αk(t) and second equality by

βk(t); taking the sum in both equations as k = 1, . . . , n we obtain

1

2
d
dt‖un(t)‖2 ≤ −ν1‖un(t)‖2

1

2
d
dt‖vn(t)‖2 = −〈vn(t), ∂νD0vn(t)〉L2(∂O) − µ‖vn(t)‖2

− 〈g(vn(t) + ζ(t)), vn(t)〉L2(∂O).

(4.16)

where −ν1 is the first eigenvalue of the Laplacian with Dirichlet boundary

conditions. Recall from Hypothesis 4.2 that g(vn(t)+ζ(t))vn(t) ≥ −k2|ζ(t)|2p+

k3|vn(t)|2p for all p ∈ N; Poincaré inequality implies that for some λ0 > 0 it

holds

‖xk‖L2(O) ≤ λ0‖∇xk‖2
L2(O)

and choosing suitable λ1, λ = min{1
2ν1,

1
2µ− 2λ1}, α from estimate (4.6),

1

2

d‖wn(t)‖2

dt
+ λ‖wn(t)‖2 +

ν1

2λ0
‖∇un(t)‖2 + α‖vn(t)‖2

H1/2(∂O)

+ k3‖vn(t)‖2p
L2p(∂O) ≤ ‖ζ(t)‖2p

L2p(∂O). (4.17)

Application of Gronwall’s lemma leads to the estimates

‖wn(t)‖2
H ≤ e−λt‖wn(0)‖2

H +

∫ t

0

e−λ(t−s)‖ζ(s)‖2p
L2p(∂O) ds

as well as

ν1

2λ0

∫ t

0

‖∇un(s)‖2
L2(O) ds + α

∫ t

0

‖vn(s)‖2
H1/2(∂O) ds + k3

∫ t

0

‖vn(s)‖2p
L2p(O) ds

≤ ‖wn(0)‖2
H +

∫ t

0

‖ζ(s)‖2p
L2p(∂O) ds.

In particular we see that

{wn, n ∈ N}

{un, n ∈ N}

{vn, n ∈ N}

is bounded in

is bounded in

is bounded in

L∞(0, T ; H)

L2(0, T ; H1(O))

L2(0, T ; H1/2(∂O)) ∩ L2p(0, T ; L2p(∂O)).
(4.18)

Upon passing to a subsequence there exists a function w = (u, v) such that

(un, vn)
∗
⇀ (u, v) in L∞(0, T ; H).
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In order to apply a compactness argument for vn it is necessary to find an

estimate for the time derivative v′n. From Eq. (4.13) we obtain

〈v′n, y〉 = 〈−∂νD0vn, y〉 − µ〈vn, y〉 − 〈g(vn + ζ), y〉

and taking y in the subdifferential of |v′n| we deduce that

|v′n|L2(0,T ;H−1/2(∂O)) ≤ c1 |∂νD0vn|L2(0,T ;H−1/2(∂O))

+ |vn|L2(0,T ;L2(∂O)) + c2|g(vn + ζ)|L2q(0,T ;L2q(∂O))

where 2q is the conjugate exponent of 2p, 2q = 2p/(2p − 1). Notice that

|g(x)|2q ≤ c(1 + |x|2p) by Hypothesis 4.2(1.), hence

|g(vn + ζ)|L2q(0,T ;L2q(∂O)) ≤ c(1 + |vn|2p
L2p(0,T ;L2p(∂O)) + |ζ|2p

L2p(0,T ;L2p(∂O)))

which is bounded, uniformly in n, thanks to Lemma 4.7 and (4.18). Fur-

ther, the operator ∂νD0 is a linear bounded operator between H1/2(∂O) and

H−1/2(∂O) hence, again by (4.18), we have that

{vn, n ∈ N} is bounded in L2(0, T ; H−1/2(∂O)).

Now choose s ≥ 1
2 such that Hs(∂O) ⊂ L2p(∂O) and notice that the injections

H−1/2(∂O) → H−s(∂O) and L2q(∂O) → H−s(∂O) are bounded. We use then

the compactness theorem of Lions [58, Théorème I.5.1], see also [58, Théorème

I.11.1], to get the existence of a subsequence (again denoted by {vn}) that con-

verges strongly in L2(0, T ; L2(∂O)) and almost everywhere. Further, directly

from (4.18), since the injection H1(O) → L2(O) is compact, we get that there

exists a subsequence {un} that converges strongly in L2(0, T ; L2(O)). All told,

this means that (upon passing to a subsequence) the sequence {wn = (un, vn)}
converges strongly to w = (u, v) in L2(0, T ; H).

Finally, the thesis follows by a standard passage to the limit. Choose a

smooth function (σ, ξ) ∈ L2(0, T ; D(A)) and substitute (σ, ξ) to (xk, yj) in

(4.13) to get

〈dwn(t)

dt
, (σ(t), ξ(t))〉H = 〈Awn(t), (σ(t), ξ(t))〉H+G(wn(t)+ζ(t)), (σ(t), ξ(t))〉H
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Integrating over (0, T ), using the symmetry of A, we have

〈wn(t), (σ, ξ)〉H = 〈wn(0), (σ, ξ)〉H +

∫ t

0

〈wn(s), A(σ, ξ)〉H ds

+

∫ t

0

〈(σ, ξ), G(wn(s) + ζ(s))〉H ds

and passing to the limit as n →∞, in force of (4.18) we get

〈w(t), (σ, ξ)〉H = 〈w(0), (σ, ξ)〉H +

∫ t

0

〈w(s), A(σ, ξ)〉H ds

− lim
n→∞

∫ t

0

〈ξ, g(vn(s) + ζ(s))〉L2(∂O) ds. (4.19)

We finally claim that

lim
n→∞

∫ t

0

〈ξ, g(vn(s) + ζ(s))〉L2(∂O) ds =

∫ t

0

〈ξ, g(v(s) + ζ(s))〉L2(∂O) ds (4.20)

which in view of (4.19) implies the existence of a weak solution for (4.12).

The claim follows from an application of the dominated convergence the-

orem, using the above proved convergence of vn → v in L2(0, T ; L2(∂O)) and

almost everywhere, as well as the uniform bound for the norm of |vn|2p in

(4.18).

Uniqueness. Assume that w1 and w2 are two solutions of (4.12) with initial

conditions z1
0−ζ(0) and z2

0−ζ(0) respectively. Set w̄ = w1−w2 and w̄0 = z1
0−z2

0

its initial condition. Then proceeding formally as above, using dissipativity of

the operator A, we obtain

1

2

d‖w(t)‖2

dt
≤ −〈g(v1(t) + ζ(t))− g(v2(t) + ζ(t)), v1(t)− v2(t)〉L2(∂O). (4.21)

Our assumptions on g imply that (a− b)[g(a)− g(b)] ≥ −k4|a− b|2 hence

1

2

d‖w(t)‖2

dt
≤ k4‖w(t)‖2

and Gronwall’s lemma yields

‖w(t)‖2 ≤ e2k4t‖z1
0 − z2

0‖2

which implies uniqueness and continuous dependence on initial data. !



3. LONGTIME BEHAVIOUR 81

3. Longtime behaviour

We introduce the stochastic dynamical system {S(t, s,ω), t ≥ s, ω ∈ Ω}
associated to problem (4.10) by setting

S(t, s,ω)z̄ = w(t, ω) + ζ(t, ω), z̄ ∈ H,

where w(t, ω) is the solution of equation (4.12) with initial condition w(s, ω) =

z̄−ζ(s, ω). It is possible to check that S(t, s,ω) actually is a stochastic dynam-

ical system. The proof follows easily by translating the assertions of Theorem

4.8 in terms of S.

Corollary 4.9. Setting z(t, s, z̄)(ω) = S(t, s,ω)z̄ then z is a mild solution

of equation (4.10) in the sense of [25] and it verifies

(1) S(t, r, ω)S(r, s, ω)z̄ = S(t, s,ω)z̄, for all s < r < t and z̄ ∈ H,

(2) t 5→ S(t, s,ω)z̄ is continuous in H for t > s,

(3) for all t ∈ R, z̄ ∈ H, the mapping

(s, ω) 5→ S(t, s,ω)z̄

((−∞, t]× Ω, B((−∞, t])×F ) −→ (H, B(H))

is measurable.

3.1. Invariant Measure. In this section we discuss the presence of an

invariant measure for the stochastic problem (4.10).

Theorem 4.10. The transition semigroup {Pt} associated to the solution

of (4.10) admits a unique invariant measure in H that is strongly mixing.

Proof. We know from Theorem 4.8 that there exists a unique solution

z(t, s, z̄)(ω) = S(t, s,ω)z̄ of equation (4.10).

We now show that there exists c1 > 0 such that

E|z(t, s, z̄)| ≤ c1(1 + |z̄|)

for all t > s, z̄ ∈ H, (see [25, Theorem 6.3.3]). Notice that it holds

d
dt |w(t)| ≤ −ωA|w(t)| + |g(ζ(t))| (4.22)

(compare with the analog situation in the proof of Theorem 4.9), but notice

that here we take a pointwise estimate in time whereas there it was in the
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space of square integrable mappings). Then from the estimate (4.22) we have

|w(t)| ≤ e−ωA(t−s)|x| +
∫ t

s

e−ωA(t−σ)|g(ζ(σ))| dσ, t ≥ s

and taking the mean in both sides, using Hölder inequality and the bound

4.2(1.), one gets

E|w(t)| ≤ e−ωA(t−s)|x| + 1

ωA
E

[
sup
t≥s

N∑

k=1

|ζk(t)|2p−1

]

and the last quantity is bounded, using the assumptions on the coefficients

{dk} and Burkholder-Davis-Gundy inequality.

In a similar manner we prove that there exists c2 > 0 such that

E|z(t, s, z̄)− z(t, σ, z̄)| ≤ c2e
ω(s+σ)(1 + |z̄|).

Therefore there exists a random variable η, the same for all z̄ ∈ H, such that

lim
s→−∞

E|z(t, s, z̄)− η| = 0.

Then a standard argument implies that the law µ = L(η) is the unique invari-

ant measure for Pt. !

4. Existence of an attracting set

The aim of this section is prove the existence of an attracting set K(ω) at

time t = 0.

Let B ⊂ H be a bounded subset of H and, for any s ∈ R and z̄ ∈ B, let

w(t, s, z̄) be the solution of problem (4.12) with initial condition z̄ − ζ(s). We

take the scalar product, in H, of (4.12) with w(t) and we obtain

1

2

d

dt
‖w(t)‖2

H = 〈Aw(t), w(t)〉H + 〈G(w(t) + ζ(t)), w(t)〉H + 〈Aζ(t), w(t)〉H

which is equal, by our assumptions, to

1

2

d

dt
‖w(t)‖2

H = −‖∇u‖2
L2(O) − µ‖v‖2

L2(∂O)

− 〈g(v(t) + ζ(t)), v(t)〉L2(∂O) − µ〈ζ(t), v(t)〉L2(∂O)
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Recall from Hypothesis 4.2 that µ > k4; since then ḡ(v) = −g(v) − k4v is a

decreasing mapping, it is dissipative and we estimate

−〈g(v(t) + ζ(t)), v(t)〉L2(∂O)

= 〈−g(v(t) + ζ(t))− k4(v(t) + ζ(t)), v(t)〉L2(∂O) + k4〈v(t) + ζ(t), v(t)〉L2(∂O)

= 〈ḡ(v + ζ)− ḡ(ζ), v〉︸ ︷︷ ︸
≤0

+〈−g(ζ)− k4ζ, v〉+ k4〈v(t) + ζ(t), v(t)〉

≤ k4‖v(t)‖L2(∂O) − 〈g(ζ(t)), v(t)〉L2(∂O)

hence we get

1

2

d

dt
‖w(t)‖2

H ≤ −‖∇u(t)‖2
L2(O) − (µ− k4)‖v(t)‖2

L2(∂O)

− 〈g(ζ(t)), v(t)〉L2(∂O) + (α− µ)〈ζ(t), v(t)〉L2(∂O).

For λ large enough, using Cauchy-Schwartz inequality, Hypothesis 4.2 and

setting kλ = k1 + λ|α− µ|, µλ = µ− k4 − |α−µ|+1
4λ > 0, we have

1

2

d

dt
‖w(t)‖2

H + ‖∇u(t)‖2
L2(O) + µλ‖v(t)‖2

L2(∂O) ≤ kλ(1 + ‖ζ(t)‖2n−1).

According to Friedrichs’ theorem Proposition 4.3 we obtain that there exist

constants 0 < c1 < 1, 0 < c2 < min(1, µλ) such that

1

2

d

dt
‖w(t)‖2

H + c1‖∇u(t)‖2
L2(O) + c2‖w(t)‖2

H ≤ kλ(1 + ‖ζ(t)‖2n−1). (4.23)

By Gronwall’s lemma, for s < −1 and t ∈ [−1, 0] we get

‖w(t)‖2
H ≤ ‖w(s)‖2

He−2c2(t−s) + 2kλ

∫ t

s

e−2c2(t−σ)(1 + ‖ζ(σ)‖2n−1) dσ

≤ e2c2‖w(s)‖2
He2c2s + 2kλe

2c2

∫ 0

−∞
e2c2σ(1 + ‖ζ(σ)‖2n−1) dσ

and recalling the initial condition w(s) = z̄ + ζ(s), it is clear that there exists

s1 = s1(B) such that for all s < s1(B):

‖w(t, s, z̄)‖2
H ≤ 1 + 2e2c2 sup

s∈(−∞,1]

{
‖ζ(s)‖2e2c2s

}
+

∫ 0

−∞
e2c2σ(1 + ‖ζ(σ)‖2n−1) dσ

The right hand side of the above inequality is an almost surely finite random

variable r1(ω), independent from s and t.





Conclusions

In this thesis we study different equations arising in the field of stochastic

boundary value problems with non homogeneous boundary conditions in one

(network models) and more dimensions. Similar problems were studied in the

last years using other techniques; the abstract approach by matrix operators

allows a unified treatment of these problems. Notice that we introduce a new

boundary variable and we read the problem as a system of (coupled) stochastic

evolution equations, which is then written in an abstract form. Similarly to

the case of standard boundary conditions, the theory of semigroup generation

by matrix operators, and their spectral properties, can be used to characterize

well posedness and longtime behaviour for such systems. Also, our approach

is suitable to study other problems which are not present in the thesis. We

mention among them:

1. in [24, 25] the case of evolution equations with white noise bound-

ary conditions is treated by using the Dirichlet or Neumann map to convert

the stochastic problem into a pathwise deterministic evolution equation with

homogeneous conditions on the boundary. The approach adopted in [62] is

similar to the previous one and it is applied to stochastic semilinear equa-

tions with boundary noise. Note that in these models the behaviour on the

boundary not involves an influence from the internal dynamics,

2. a typical problem which presents a connection between internal and

external dynamics, is the stochastic Cahn-Hilliard equation with stochastic

dynamic boundary conditions treated in [28]. The authors reduce the sto-

chastic system to a pathwise deterministic system which is known to possess

a unique solution,

3. motivating by [36, 37, 38], it seems natural to extend the results in

Chapter 4 to solve stochastically perturbed problems of heat conduction in
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materials with memory effects in the interior and dynamical conditions on the

boundary. In particular the aim shall be to prove the existence of an invariant

measure for the weak solution of the problem,

4. in the framework of biological applications, studied in Chapter 3, in

the case of neuronal networks, it can be interesting to consider a more precise

model for the electrical potential diffusion through neuronal cells. In particular

• we can introduce a recovery variable having a linear dynamics, that

provides a slower negative feedback such that both depolarisation and

repolarisation can be modelled,

• we can consider a passive behaviour on a subset of the nodes, e.g. a

conservative law for the electrical flux:
∑

j∈Γ(vi)
φijµjcj(vi)

∂
∂xuj(t, vi) =

0,

• we can also consider a passive behaviour on the edges (e.g. the term

f is linear) which models the dendritic spines.

Remark 4.3. In the light of a talk of Schmalfuss, which took place in the

8th International Meeting on Stochastic Partial Differential Equations and

Applications (January 2008) and which referred to the recent paper [19] in

collaboration with Chueshov, we can state the existence of a random (pullback)

attractor for the stochastic problem in Chapter 4. On the other hand, it seems

hard to extend this result to the case of diffusion in materials with memory,

where lack of compactness for absorbing sets not permits to define a random

attractor (see [37]).
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