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Abstract

The electrical quantities of future power networks are expected to exhibit strong fluc-

tuations caused by dynamic bidirectional energy flows transferred from/to a multitude

of “prosumers”. Such variations have to be accurately measured in real-time either for

efficient power distribution or for safety and protection purposes. This task can be ac-

complished by the Phasor Measurement Units (PMUs), which measure the phasor of

voltage or current waveforms synchronized to the Coordinated Universal Time (UTC).

Accuracy of synchrophasor measurements is one of the many open challenges that need to

be addressed in order to guarantee smart grid reliability and availability. Synchrophasor

measurement has gained an undisputed relevance in the research community working on

power delivery issues for various reasons. Among them, state estimation (SE) of both

transmission and distribution networks is one of the most important. Within this general

context, this dissertation covers two complementary topics.

In the first part, starting from the concept of synchrophasor and from the definition of

the parameters to evaluate PMU performances, useful guidelines to design a filter-based

synchrophasor estimator are provided. Afterwards, an extensive performance comparison

of some state-of-the-art synchrophasor estimation algorithms is reported in most of the

static and dynamic conditions described in the IEEE Standards C37.118.1-2011. Also, a

novel technique able to address both static and dynamic disturbances is presented and

analyzed in depth. In this respect, special attention is devoted to phasor angle estimation

accuracy, which is particularly important for active distribution networks.

The second part of the dissertation is focused on the role and the impact of PMUs

for grid state estimation. After recalling the state estimation problem and the traditional

Weighted Least Square (WLS) technique to solve it, a general uncertainty sensitivity

analysis to different types of measurements is introduced and justified both theoretically

and through simulations. Afterwards, the effect of a growing number of PMUs on WLS-

based state estimation uncertainty is evaluated as a function of instrumental accuracy

and line parameters tolerance. Finally, a Bayesian linear state estimator (BLSE) based

on a linear approximation of power flow equations for distribution networks is presented.

The main advantage of BLSE is that in most cases it is so accurate as the WLS technique,

but it is computationally lighter, faster and more stable from the numerical point of view.

Keywords– Phasor Measurement Unit, synchrophasor estimation, state estimation, power

system measurement, uncertainty.
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Chapter 1

Introduction

1.1 Context of the research

The worldwide growing demand for electrical energy and, at the same time, the compelling

need for reducing carbon dioxide emissions, have recently created new challenges not

only in the traditional area of energy generation from renewable sources, but also in

power flow control and management. In 2008 the yearly electricity production worldwide

was in the order of about 15,000 billion kWh, but a large increment is envisioned in

the near future especially in those countries (most notably India and China) that have

been experiencing an outstanding economic growth for several years [1]. Of course, the

emissions of carbon dioxide related to energy consumption have enormously grown as

well in the same countries (see Fig. 1.1), thus leading to a significant global increment of

greenhouse gas emissions, in spite of the increasingly aggressive policies for their reduction

in Europe and North America. While, till now, more than 50% of the primary energy

consumption per capita has been due to European or North American users (see Fig. 1.2),

this situation is expected to change drastically in the near future as soon as large masses

of people with improved economic conditions will have steady access to electricity. It is

wellknown that an increasing energy demand, greenhouse gas emission can be reduced

only with a massive deployment of generators based on renewable sources. Even if their

penetration has constantly grown in the last 25 years, especially in Asia as shown in

Fig. 1.3, the way towards a fully sustainable energetic scenario is still very long. In this

context, in industrialized countries the forthcoming widespread deployment of distributed

micro-generators and energy storage elements will turn typical consumers into significant

producers of electrical energy, thus substantially changing the present structure of the

power grid [2]. In particular, the old paradigm based on a few large power plants and

on quite different passive networks for transmission and distribution is expected to be

replaced by active networks in which all the actors involved will enable bidirectional power
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Figure 1.1: Total carbon dioxide emissions from the consumption of energy (millions metric tons) [Source:

Energy Information Administration, U.S. Government]

flows supported by suitable infrastructures for both communication and protection. The

introduction of information and communication technologies (ICT) in the power networks

creates the so-called smart power grids. In the near future the smart grid will allow us

to integrate small production plants and new loads devices (e.g. the electric vehicles)

thus giving to prosumers (producers-consumers) an active role in electricity pricing. At

the same time continuous service, adequate amplitude and frequency stability at the

minimum cost, security, and an acceptable impact on the environment will have to be

ensured and possibly improved. The term continuous service refers mainly to reliability

and availability of the network [3]. Indeed, in the recent years much research work has

focused on solutions to increase transmission capacity with a low environmental impact,

to improve system operation after the integration of variable energy resources (VERs)

such as wind-based or photovoltaic plants [4], and to avoid catastrophic black-outs like

those happened in the North-East of U.S. and in Italy in 2003.

Traditionally, grid monitoring relies on Supervisory Control and Data Acquisition

(SCADA) systems that collect information related to breaker status as well as measure-

ment data of meaningful electrical quantities of the network (such as bus voltages or

injected currents) through Remote Terminal Units (RTUs). On the basis of such data,

various countermeasures can be taken in response to a particular event. Unfortunately,

while a SCADA system typically takes several seconds to support decisions, today some

events require much faster response times. For such reasons, new advanced Wide Area

Monitoring/Measurement System (WAMS) are used for monitoring, protection and con-

trol services.
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Figure 1.2: Total primary energy consumption per capita (millions Btu per person) [Source: Energy

Information Administration, U.S. Government]

The WAMS is an infrastructure able to acquire data from strategic points of the grid.

The increasing diffusion of Distributed Generation (DG), i.e. small production plants

based on renewable energy sources, requires novel measurement systems and techniques

characterized by a good trade-off between accuracy and responsiveness [5]. For this reason,

in the last years various advanced measurement instruments have been introduced at

the transmission and distribution level in order to reinforce the existing infrastructure.

Among them, the so-called Phasor Measurement Units (PMUs) play a central role in

WAMS. Generally speaking, a PMU is able to measure the phasors of electrical quantities

(i.e. currents or voltages) over intervals of various length synchronized to the Coordinated

Universal Time (UTC) [6]. The reference time is usually provided by a Global Positioning

System (GPS) receiver. Using multiple PMUs in different points allows us to take a

snapshot of the state of the network at a given time. The main advantages of the PMU-

based measurements compared to the conventional current/voltage measurements are:

higher accuracy in both magnitude and phase, availability of synchronous data and fast

reporting rates (i.e. ranging between about 10 Hz and 100 Hz). Unfortunately, such high

rates (which are expected to grow further in the future) require to store and to manage

huge amounts of data, thus creating serious scalability issues due to the data tsunami that

could affect next-generation active distribution networks [7]. Because of this problem and

of other economic or logistic reasons, at the moment the PMUs are supposed just to

support and to complement other traditional measurement techniques, e.g. those based

on smart meters. However, as soon as the active distribution networks will be available

on a wide scale, cheaper PMUs with enhanced functionalities could be used directly to

support multiple applications possibly using the same infrastructure, thus further boosting
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Figure 1.3: Total renewable electricity net generation (Billions kWh) [Source: Energy Information Ad-

ministration, U.S. Government]

the role of this type of instruments. These applications include (but are not limited to)

fast protection equipment (i.e. with response times in the order of few ms) [8], voltage

stability and oscillation monitoring [9, 10], fault detection and location [11], islanding

maneuvers [12, 13], state estimation [14] and load modeling [15].

1.2 Objectives and contribution of the research work

Next-generation PMUs are required to exhibit superior accuracy and responsiveness at

lower costs. Also, they are supposed to measure not only phasors, but also waveform

frequencies and frequency changes. Even if PMU performances are affected by different

uncertainty sources, the estimation algorithm plays an essential role in instrument per-

formance. Several novel estimation techniques have been developed in the last years in

the attempt of both mitigating the effect of static disturbances (such as harmonics and

inter-harmonics) and tracking fast phasor changes due to intrinsic variations of the net-

work operating conditions. Due to the recent definition of various algorithms based on

the so-called phasor dynamic model, a detailed comparison between their performances

can be hardly found in the literature. So one of the primary goals of this research work

is to fill at least partially this gap by presenting and testing quite famous estimation

algorithms in a common and widely accepted framework: the conditions described in the

IEEE Standards C37.118.1-2011 and its Amendment IEEE C37.118.1a-2014.

In addition, a novel estimator that exhibits high accuracy, good responsiveness and

a reasonable computational complexity is described and analyzed. Special attention will
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be devoted to the problem of phasor angle estimation, which is quite unexplored and is

particularly important at the distribution level, where PMU deployment is expected to

be massive in the near future.

The second part of the thesis covers a complementary aspect, namely the role of PMUs

for grid state estimation, which is considered as one of the most relevant applications of

synchrophasor measurements. Many works related to this topic already exist, but most

of them focus on optimal PMU placement to maximize state estimation accuracy or to

minimize the overall monitoring costs. In this thesis instead the emphasis is mainly on how

the number and the accuracy of synchrophasor measurements influence state estimation

especially at the distribution level. At first, a theoretical analysis of the sensitivity to

measurement uncertainty of the well-known Weighted Least Squares (WLS) estimation

technique is reported (properly supported by meaningful simulations) in order to identify

what types of measurements are most critical for state estimation. Thus this analysis paves

the way to a deeper understanding of the impact of PMUs on state estimation uncertainty

in distribution systems. Then, a novel linear Bayesian state estimation algorithm relying

on both PMU-based phasor measurements and real/reactive power pseudo-measurements

is proposed in order to achieve reasonably accurate state estimates with less numerical

problems and with a lower computation burden than using the WLS approach.

In conclusion, the thesis is structured as follows.

Chapter 2 deals with an overview of synchrophasor measurements and PMUs. At first,

the common structure of PMUs is described, along with how the synchrophasor data

are collected. Then, important definitions as well as some static and dynamic testing

conditions based on the IEEE Standard C37.118.1-2011 are introduced. Such testing

conditions will be also used in Chapter 3 and Chapter 4. Finally, some general guidelines

to design a filter for synchrophasor estimation are reported.

In Chapter 3 three state-of-the-art techniques for synchrophasor estimation are de-

scribed and their performances are extensively analyzed and compared under the steady-

state and dynamic conditions reported in the IEEE Standard C37.118.1-2011.

In Chapter 4 a novel synchrophasor estimator is proposed and validated through simu-

lations in most of the conditions reported in the Standard. In view of using this algorithm

in PMUs for distribution systems (where a superior phase measurement accuracy is re-

quired), the phasor angle measurement accuracy alone is analyzed and compared with

the accuracy of other two state-of-the-art algorithms.

In Chapter 5 the problem of state estimation is introduced and the classic static

WLS state estimator is recalled. A sensitivity analysis to measurement uncertainty is

performed to identify which kinds of measurements are preferable for state estimation to

achieve observability when their number is minimum. In this way, the role of PMU-based
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measurements in state estimation with respect to other traditional measurements is also

partially clarified. This aspect is further analyzed in Chapter 6, which investigates more

in depth how a growing number of PMUs and their accuracy affect grid state estimation

accuracy. This analysis, mainly focused on distribution systems, paves the way to the

definition of a novel Bayesian and Linear State Estimation (BLSE) algorithm, which

proves to be faster and more numerically stable than the traditional WLS-based approach.

Finally, Chapter 7 summarizes the main results of the research work and provides an

overview of ongoing and future activities.



Chapter 2

Synchrophasors and PMUs

As stated in Chapter 1, the PMUs are the key elements of the WAMS, as they measure the

phasors of different waveforms over a wide area at the same time. This chapter presents

at first an overview of a common PMU architecture which the specific function of each

block. Then, the main concepts taken from the current synchrophasor Standard IEEE

C37.118.1-2011 and used in the rest of the thesis are introduced. At last some guidelines

to design suitable filters for synchrophasor measurement are proposed.

2.1 Phasor Measurement Unit

The first prototypes of PMUs were built at the Virginia Tech in the early 1980s. At

present, PMUs by different manufacturers may differ in various important aspects. Nonethe-

less, a quite general PMU architecture is shown in Fig. 2.1 [6]. The input waveform, i.e.

Anti-aliasing 
filter

A/D 
Converter

Phasor
Micro-processor

Phase-locked
oscillator

GPS 
receiver Modem

Analog inputs

Figure 2.1: A common Phasor Measurement Unit architecture. Source: [6].

Part of this chapter was published in

D. Macii, G. Barchi and D. Petri, “Design Guidelines of Digital Filters for Synchrophasor Estimation”, IEEE

International Instrumentation and Measurement Technology Conference (I2MTC), pp.1579-1584, May 2013.
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voltage or current, is acquired by a signal conditioning module (that typically just con-

sists of an anti-aliasing filter), followed by an Analog-to-Digital Converter (ADC). The

sampling clock signal (with a frequency in the order of tens of kilo-samples/second) is

phase-locked with a train of pulses synchronized to the UTC through a GPS receiver or

through wired synchronization protocols such as IRIG-B or the Precision Time Protocol

(PTP) [16]). The digitized electrical waveform is sent to an embedded processing com-

ponent, such as a microprocessor (µP), which calculates the synchronized phasor using a

specific estimation algorithm, frequency and rate of change of frequency (ROCOF). Addi-

tionally, it relies on the synchronization block to time-stamp the measurements. Finally,

the estimated values are transmitted to other PMUs or the Phasor Data Concentrators

(PDCs), which are able to collect data from different PMUs and align their in time. Gen-

erally, four types of files are exchanged between PMUs, i.e. configuration, header and

data files. In addition, command files are used to control the PMUs from a higher level of

the network hierarchy [17]. The PMUs are placed and installed in power system substa-

tions. In order to use PMUs measurement in different applications (e.g. state estimation,

fault detection, stability estimation, control...), they have to be controlled remotely. For

such reasons a hierarchical architecture that involves PMUs, communication systems and

PDC, as shown in Fig. 2.2 has to be realized. The PMUs measurement data can be stored

locally for diagnostic purposes or can be sent to PDCs for high-level filtering and mon-

itoring. Many applications require data from several PMUs. After bad data exclusion,

time-stamps alignment, coherent records are gathered by the PDCs themselves. In order

to extend the PDCs data-gathering capability the Super Data Concentrator or direct (

monitoring system/station) is used at a higher hierarchical level.

PMU

Phasor Data 
Concentrator

Super Data 
Concentrator

PMU PMU PMU

Phasor Data 
Concentrator

Storage Storage

Data storage

Real-time 
application

Figure 2.2: Phasor measurement systems architecture [6].
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2.2 Concept of synchrophasor in the series of standards

IEEE C37.118-2011

The goal of PMU is to perform real-time and accurate measurements of the phasors

synchronized to the UTC, in order to track possible variations, to detect abnormal phe-

nomena and to support control operations in power grid. However, to operate correctly it

is necessary that synchrophasor measurements and data messaging are compliant with the

definition and the performance requirements of suitable Standards. The synchrophasor

definition was standardized for the first time in 1995 in the IEEE Std 1344. This standard

introduces also concepts such time accuracy, synchronization to UTC and requirements

for waveform sampling. Ten years later, more complete and meaningful changes were in-

troduced in the IEEE Std C37.118-2005. This specifies how to evaluate the measurement

performance and the message structure for synchrophasor data. It defines the Total Vec-

tor Error (TVE) as the main accuracy index and its limits in steady-state conditions in

order to fulfill the compliance requirements. However the need to analyze synchrophasor

performance also under dynamic conditions (i.e in presence of amplitude/phase variations

or frequency ramp) led to the current and revised version in late 2011.

The new standard, IEEE Std C37.118-2011, is divided in two parts: the first one, i.e

IEEE Std C37.118.1-2011 in the following simply called ”the Standard” [18], provides

the definitions of synchrophasor, waveform frequency and rate of change of frequency

(ROCOF). Moreover it deals with the compliance boundaries and tests to evaluate the

performance of PMUs under steady-state and dynamic conditions. The second part,

IEEE Std C37.118.2-2011 deals with the synchrophasor data transfer and data formats

[17]. Two performance classes are defined in the Standard IEEE C37.118.1-2011, i.e. P-

class and M-class, in order to meet orthogonal applicative needs. The P-class PMUs are

mainly oriented to those applications requiring a fast measurement response time (e.g.

for safety-critical, protection purposes). Conversely, the M-class PMUs are used when

measurement accuracy is more important than measurement speed. All the compliance

tests under steady-state and dynamic conditions are specified in the Standard. Recently,

an amendment of the Standard, called IEEE C37.118.1a-2014 was published in order

to fix some inconsistencies and to relax some constraints difficult to meet especially re-

lated to frequency and ROCOF estimation (see 2.2.1). In spite of the recent publication

of Amendment IEEE Std C37.118.1a-2014 in the rest of the dissertation the IEEE Std

C37.118.1-2011 will be considered as reference document, except in the few particular

cases.

According to the Standard, the PMU supports a reporting rate at multiple or sub-

multiples of the nominal frequency. The compliant reporting rate values, expressed in
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Frames per second, for 50 Hz and 60 Hz systems are listed in the Tab.2.1. Other reporting

rates(100 frames/s or 120 frames/s or rates lower than 10 frames/s, such as 1 frames/s),

are also encouraged.

Table 2.1: PMU reporting rates[18].

System frequency 50Hz 60 Hz

Reporting rates (Fs - frames per second) 10 25 50 10 12 15 20 30 60

In the following the main concepts introduced in the Standard and used in the rest of

dissertation are presented and explained.

2.2.1 Synchrophasor, frequency and ROCOF definitions

Model signal and synchrophasor

In AC power systems an electrical waveform (i.e. current or voltage) x(t) of nominal

frequency f0 (i.e. 50 Hz or 60 Hz) can be expressed as

x(t) = A cos(2πf0t+ φ) (2.1)

where A is the amplitude and φ is the initial phase. A common representation of (2.1)

through its complex static phasor is defined as

X̄ =
A√
2
ejφ. (2.2)

A synchronized phasor or synchrophasor of an electrical signal in (2.1) is the value X̄

in (2.2) at a known reference time, tr, synchronized to the Coordinated Universal Time

(UTC) [18]. The convention reported in the Standard for synchrophasor representation is

shown in Fig. 2.3. On the left, the synchrophasor angle is 0 degrees when the maximum

of (2.1) occurs at the UTC second rollover, on the right the synchrophasor angle is –90

degrees when the positive zero crossing occurs at the UTC second rollover.

In steady-state conditions the waveform frequency, amplitude and phase parameters

can be considered as constant during the whole observation interval, while in a more

realistic scenario they are affected by both amplitude and phase variations caused by

power oscillations and other disturbances. So, in order to analyze the behavior of a power

system under both steady-state and dynamic conditions, a generalization of the electrical

waveform model in (2.1) is

x(t) = A[1 + εa(t)] · cos[2πf0(1 + δ)t+ εp(t) + φ] + η(t) (2.3)
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Figure 2.3: Convention for synchrophasor representation [18].

where A, f0 and φ have the same meaning as in (2.1), 2πδf0t is the accumulated phase shift

due to the static fractional off-nominal frequency offset δ, εa(t) describes the time-varying

amplitude fluctuations, εp(t) includes possible phase fluctuations and η(t) generally in-

cludes possible narrowband components (e.g. harmonics and additive wideband noise).

Since both amplitude and phase in (2.3) change as a function of time, the synchropha-

sor at the UTC reference time tr is defined as

X̄r = X̄(tr) =
A(tr)√

2
ejϕ(tr) =

A√
2

[1 + εa(tr)] · ej[2πf0(1+δ)tr+εp(tr)+φ] (2.4)

Frequency and rate of change of frequency estimation

A last generation PMU is able to measure not only the synchrophasor, but also the

waveform frequency and the rate of change frequency estimation (ROCOF). Starting

from equation (2.3), if εa(·) and η(·) are negligible, the sinusoidal signal can be rewritten

as

x(t) = A cos[ϕ(t)] (2.5)

where ϕ(t) = 2πf0(1 + δ)t+ εp(t) + φ. Thus frequency of signal x(t) in (2.5) at time tr is

defined by

fr = f(tr) =
1

2π

dϕ(tr)

dt
= f0 + f0δ +

1

2π

dεp(tr)

dt
= f0 + ∆f(tr) (2.6)

where ∆f(tr) is the instantaneous deviation frequency from the nominal value. Finally,

the corresponding ROCOF is defined as follow

ROCOFr = ROCOF (tr) =
df(tr)

dt
=

1

2π

d2ϕ(tr)

dt2
=
d∆f(tr)

dt
(2.7)
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Figure 2.4: Graphical representation of TVE definition.

2.2.2 Measurement evaluation

Total Vector Error

The estimation accuracy of the synchrophasor measured by PMU is in the Standard

typically expressed in terms of Total Vector Error (TVE). Indeed, TVE combines the

effect of magnitude errors, phase errors and synchronization uncertainty. If we denote the

estimated phasor as ˆ̄X and the actual phasor value as X̄, the TVE can be defined as

TV Er =
| ˆ̄Xr − X̄r|
|X̄r|

(2.8)

where the subscript r indicates that both the estimated and the actual value of the phasor

are computed at the reference time tr.

Frequency and ROCOF measurement error

In the last version of the Standard the frequency measurement error and the ROCOF

measurement error are given by the difference between the actual values and the estimated

values. They are defined as

FEr = |fr − f̂r| = |∆fr −∆f̂r| (2.9)

RFEr =

∣∣∣∣dfrdt − df̂r
dt

∣∣∣∣ (2.10)

where the subscript r indicates that both the estimated and the actual value of the phasor

are computed at the reference time tr.
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Figure 2.5: Example of amplitude step change over the time [18].

Response time and delay time

In order to evaluate the performance of an algorithm when sudden amplitude or phase

change occurs, the Standard suggests to evaluate both the response time and the delay

time. Especially the response time will be used in the following. However both definitions

as they are reported in the Standard are recalled.

The measurement response time “is the time to transition between two steady-state mea-

surements before and after a step change is applied to the input. It shall be determined as

the difference between the time that the measurement leaves a specified accuracy limit and

the time it reenters and stays within that limit when a step change is applied to the PMU

input.[...] Accuracy limits are the TVE, FE, and RFE values for the phasor, frequency,

and ROCOF measurements, respectively”[18]. In the case of TVE (that is the only pa-

rameter considered in next sections) the limit specified by the Standard is set equal to

1%. In Fig. 2.5 an example of TVE response time resulting from an amplitude step is

shown.

The delay time is defined as “the time when the stepped parameter achieves a value that

is halfway between the starting and ending steady-state values”[18].

2.3 Reference signal processing models

Since the PMUs can be made by different manufactures there is no indication in the

Standard on the preferred estimation algorithm. Annex C of IEEE Std C37.118.1-2011

describes a reference signal processing model used to verify the Standard requirements.

However the following disclaimer is also reported in the Standard: “It is given for in-

formation purpose only, and does not imply being the only (or recommended) method for

estimation synchrophasor”[18]. Basically, the phasor estimation model relies on frequency
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Figure 2.6: Block diagram of the synchrophasor estimation model suggested in the Standard IEEE

C37.118.1-2011.

down-conversion and digital low-pass filtering of the in-phase and quadrature components

of voltage and current waveforms. Two examples of low-pass filters having quite different

performances in terms of latency and accuracy are also reported in the same annex: one

for protection-oriented applications (P-class reference model) and the other when high

measurement accuracy is required (M-class reference model). Starting from (2.3), if the

phase fluctuations εp(t) are negligible, but δ 6= 0, then phasor (2.4) rotates at a constant

rate δf0. The block diagram of the basic synchrophasor estimation model described in

Annex C of the Standard is shown in Fig. 2.6 [18]. The expression of the estimator is

ˆ̄Xr =


√

2
W (0)
·
∑N−1

2

n=−N−1
2

w[n]x[r + n] · e−j 2πM (r+n) N odd
√

2
W (0)
·
∑N

2

n=−N
2

w[n]x[r + n] · e−j 2πM (r+n) N even
(2.11)

where:

• x[·] is the digitized input waveform sampled at a rate fs by the front-end analog-to-

digital converter (ADC);

• N is the number of impulse response coefficients of the chosen filter;

• M = fs/f0 represents the number of samples in one nominal waveform cycle. Ac-

cordingly, 2π/M is the angular frequency of the two quadrature digital sine-waves

that are mixed with the input signal;

• w[·] is the impulse response of the adopted low-pass Finite Impulse Response filter;

• W (ν) is the frequency response of the filter, ν = f/fs is the normalized digital

frequency and W (0) is the filter DC gain.

Estimator (2.11) returns the synchrophasor value referred to the observation interval

centered at time tr. Such a timestamp coincides with the sampling instant r/fs, when N
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is odd, whereas it lies between two subsequent samples (i.e., at time (r − 1/2)/fs), when

N is even. As a consequence, while W (ν) is generally designed to provide a linear phase

response, in (2.11) no phase delay is introduced by the filter (i.e. its phase response is

zero). Notice that if we refer to C = N/M as the number of nominal waveform cycles

in N samples, (2.11) can be equivalently regarded as the C − th sample of the windowed

Discrete-time Fourier Transform of the sequence x[·] centered at time tr. Therefore, the

estimation approach described in [18] and the windowed DFT-based phasor estimators

basically coincide, since the adopted sliding window simply acts as a filter [19].

2.3.1 P-Class filter model

The Annex C suggests a fixed-length two-cycle triangular FIR filter, with an odd number

of samples, regardless of PMU reporting rates. The filter coefficients w[n] are:

w[n] =

(
1− 2

N + 2
|n|
)

(2.12)

where n = −N/2, .., N/2 and N is the filter order. The P-class filter works well at

the nominal frequency when the observation interval matches exactly the period of the

collected sine-wave. However in presence of off-nominal frequency deviations, a magnitude

correction applied to the final phasor is required [18].

2.3.2 M-Class filter model for phasor

The M-class requires that the filter is able to attenuate significantly the signals above the

Nyquist frequency for a given reporting rate. This filter provides more accurate results

in the presence of noise and interfering signals, but with longer reporting delays. In the

amendment to the Standard the filter mask specifications are shown in Fig. 2.7. The

window coefficients can be computed with

w[n] =
sin
(

2π × 2Ffr
Fsamp

× n
)

2π × 2Ffr
Fsamp

× n
h[n] (2.13)

where n = −N/2, ..., N/2, N is the filter order, Ffr is the low-pass filter reference frequency

(which depend on the reporting rate), Fsamp is the sampling frequency and h(n) is the

Hamming window sequence.
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Figure 2.7: Reference algorithm filter frequency response mask specification for M class [18].

2.4 Proposed guidelines for filter-based

synchrophasor estimation

As shown in paragraph 2.3.1 and 2.3.2, the Standard reports two examples of low-pass

filters with different performances in terms of latency and accuracy. However, no clear

filter design criteria are provided. In [20] and [21] the authors describe and analyze

the performance of two orthogonal filters with time-frequency characteristics that are

particularly suitable for fault location and measurement. In [22] a raised-cosine filter with

a negligible phase distortion is described to halve the phasor estimation delay. In [23] and

[24] two filters for P-class and M-class phasor estimation, respectively, are proposed to

improve the performance of the basic model reported in Annex C of the Standard.

In this section, the same model is used as a starting point to identify optimal filter

design criteria. Some simulation results support the proposed analysis.

2.4.1 Filter design criteria

According to (2.3), an electrical waveform in dynamic conditions can be regarded as an

amplitude and phase modulated signal around a carrier of frequency (1 + δ) · f0. If we

suppose, for the sake of simplicity, that the modulating signals are two sine waves, εa(t)

and εp(t) can be expressed as

εa(t) = ka cos[2πδaf0t+ αa] (2.14)
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and

εp(t) = kp cos[2πδpf0t+ αp] (2.15)

where ka (with ka ≤ kaM ) is the amplitude modulation index, δa = fa/f0 is the corre-

sponding fractional frequency, kp (with kp ≤ kpM ) is the amplitude (expressed in radians)

of the phase modulation signal and δp = fp/f0 is the fractional modulation frequency.

Under this assumption, it can be easily proved that the spectrum of (2.3) consists of an

infinite series of monochromatic terms located at frequencies [h·(1+δ)+m·δp+l·δa]·f0, for

h ≤ 1, and l = –1, 0, 1 [25]. This is due to the fact each tone resulting from phase modu-

lation is in turn modulated also in amplitude, thus generating three spectral components

at frequencies (m · δp + l·δa)·f0. The two side terms (i.e., shifted by ±δa·f0 with respect to

m · δp·f0) are proportional to ka. Moreover, the amplitude of each triple of spectral com-

ponents is proportional to Jm(kp), i.e. the first-kind Bessel function of order m computed

at kp. Since the values of |Jm(kp)|, for a given kp, decrease monotonically as a function

of |m|, the effective bandwidth of (2.3) containing 98% of the signal power around the

carrier is 2 · β · f0, with β = (kp + 1)δp + δa [25]. Notice that, in accordance with (2.4),

εa(t) and εp(t) are intrinsically part of the phasor to be estimated, whereas harmonics

in (2.3) represent a disturbance and, consequently, must be suitably filtered to improve

synchrophasor estimation. By mixing the digitized input sequence with two quadrature

sine-waves of nominal frequency f0 (or equivalently, of normalized frequency 1/M), the

fundamental component as well as the modulating terms of (2.3) are down-converted to

the baseband, around frequency δ · f0. Thus, if the static fractional frequency offset δ

lies in the interval [–δM , δM ] (where δM represents the maximum value of the frequency

measurement uncertainty assured by the considered PMU), the one-sided normalized filter

bandwidth that must be used to preserve both static and dynamic phasor contributions is:

BWp =
(δp + βM) · f0

fs
=
δM + (kpM + 1) · δpM + δaM

M
, (2.16)

where βM , δaM and δpM denote the maximum allowed values of β, δa and δp, respectively.

Such values can be hardly known a priori. However, for filter design purposes, they can

be set in compliance with the requirements of some standard document such as the IEEE

C37.118.1-2011 and the amendment IEEE C37.118.1a-2014. It is worth noticing that

βM/M is the bandwidth increment needed to track fast phasor fluctuations.

Fig. 2.8 provides a qualitative overview of the main features of the low-pass filter to be

used for phasor estimation after signal down-conversion. Parameters r1 and r2 represent

the maximum ripple amplitudes in the filter pass-band. In general, the flatness in-band

requirements can be relaxed in the frequency interval [±δM/M,±(δM + βM)/M ] (i.e.

r2 > r1), because phase and amplitude fluctuations are expected to be quite small (e.g.,

in the order of 0.1 rad and 10% of phasor nominal amplitude, respectively). Observe that
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Figure 2.8: Qualitative representation of the filter design requirements in the frequency domain, including

static and dynamic in-band flatness specifications, second-order and third-order harmonic attenuation and

image tone cancellation.

the transition band of the filter must not exceed (1–2δM)/M . This value corresponds to

the lower end of the frequency interval [(1–2δM)/M, (1+2δM)/M ], where the second-order

signal harmonic lies as a result of signal down-conversion.

In the following, we will refer to r3 as the maximum amplitude of the filter frequency

response in the band [(1–2δM)/M, (1 + 2δM)/M ]. A similar attenuation affects the resid-

ual DC offset of the acquired signal as well, which after down-conversion is located

at normalized frequency –1/M . The frequency band around 2/M deserves some spe-

cial attention, because it includes two different contributions. First of all, the band

[(2–3δM)/M, (2 + 3δM)/M ] contains the down-converted third-order harmonic of the col-

lected signal. In addition, (2 + δ)/M represents the normalized image frequency after

down-conversion. This means that the band [(2−δM–βM)/M,(2+δM+βM)/M ] has exactly

the same spectral content as the band [(–δM–βM)/M, (δM+βM)/M ]. Thus, the magnitude

of the filter frequency response in the band [(2–δM–βM)/M, (2 + δM + βM)/M ] must be

attenuated by a factor r4 � r3, in order to make the joint effect of the image compo-

nent and the third-order harmonic negligible on estimation results. worth noticing that

amplitude of the harmonic is generally at most one order of magnitude smaller than the

fundamental. Therefore, if the filter magnitude for ν ≥ (2 + δM + βM)/M is smaller

than r4, the influence of higher-order harmonics on phasor estimation results becomes

negligible. As known, the main performance parameter describing the accuracy of phasor

measurement is the Total Vector Error (TVE) [18]. In particular, if (2.11) is applied to

(2.3) to estimate the dynamic phasor described by (2.4), the following expression holds,
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i.e.

TV E =

∣∣∣ ˆ̄Xr − X̄r

∣∣∣∣∣X̄r

∣∣ =

∣∣∣ ˆ̄Xb,r + ˆ̄Xi,r +
∑H

h=2
ˆ̄Xh,r − X̄r

∣∣∣∣∣X̄r

∣∣
6

∣∣∣ ˆ̄Xb,r − X̄r

∣∣∣∣∣X̄r

∣∣ +

∣∣∣ ˆ̄Xi,r

∣∣∣∣∣X̄r

∣∣ +
H∑
h=2

∣∣∣ ˆ̄Xh,r

∣∣∣∣∣X̄r

∣∣ , (2.17)

where ˆ̄Xb,r is the baseband waveform component of the estimated phasor (namely the

component of interest of the input signal), ˆ̄Xi,r is the error contribution caused by the

infiltration of the image component and ˆ̄Xh,r, for h = 1, · · · , H are the error terms due to

imperfect harmonics filtering. If the phase modulation index is small enough (namely if

kp � 1, as it is typically expected in practice), then J0(kp) ≈ 1, |J−1(kp)| = |J1(kp)| < 0.1

and |Jm(kp)| ≈ 0, for m > 1. Therefore, after a few algebraic steps it can be shown that

the following inequality holds, i.e.

| ˆ̄Xb,r − X̄r |
| X̄r |

< r1+ | r2 − r1 | ·

[
kaM

2
+

kaM+1

10

]
(1− kaM )

. (2.18)

As far as the image and harmonic contributions are concerned, it is straightforward to

show that ∣∣∣ ˆ̄Xi,r

∣∣∣∣∣X̄r

∣∣ +
H∑
h=2

∣∣∣ ˆ̄Xh,r

∣∣∣∣∣X̄r

∣∣ ∣∣X̄r

∣∣ 6 r4 +
r3X2 +

∑H
h=3 r4Xh

X(1− kaM )
. (2.19)

If TV Emax represents the maximum tolerable TVE value, the following general design

conditions must be fulfilled:

• 1− r1 ≤ |W (ν)| ≤ 1 + r1 with r1 ≤ F1 · TV Emax for ν ∈
[
0, δM

M

]
;

• 1− r2 ≤ |W (ν)| ≤ 1 + r2 with r2 ≤ F2 · TV Emax for ν ∈
[
δM
M
, δM+βM

M

]
;

• |W (ν)| ≤ r3 with r3 ≤ F3 · TV Emax for ν ∈
[

1−2δM
M

, 2−δM−βM
M

]
;

• |W (ν)| ≤ r4 with r4 ≤ F4 · TV Emax for ν ∈
[

2−δM−βM
M

,+∞
]
;

• F1 + |F2 − F1| ·

[
kaM

2
+
kaM+1

10

]
1−ka + F4 +

F3X2+
∑H
h=3 F4Xh

X(1−kaM )
≤ 1; (2.20)
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where F1, F2, F3 and F4 are adimensional factors that can be used to adjust filter pass-

band and stop-band magnitude, so as to assure that TVE values are smaller than or equal

to TV Emax both in static and dynamic conditions. Evidently, no unique criteria exist to

select the values of fractions F1, F2, F3 and F4.

However, a few rules of thumb can be followed in order to make filter design simpler.

For instance, F2 can be up to one order of magnitude larger than F1, since the value of

kaM in the second term of design conditions above is about 0.1 [18]. This helps relaxing

the flatness filter requirements in the pass-band. The impact of harmonic distortion

depends on the relative amplitude of each harmonic with respect to the fundamental

tone. According to the Standard [18], the relative amplitude of each harmonic till the

50th (i.e. Ah = Xh/X for h = 2, · · · , H, with H = 50 [18]) can be so large as 1% or 10% of

the fundamental tone for P-class and M-class, respectively. As known, the second-order

harmonic is the most critical, but it can be hardly removed due to the narrow transition

band requirements of the filter. Thus, relaxing r3 is essential for filter design feasibility

over reasonably short intervals. Therefore, since 1
(1−ka)

≈ 1+kaM the relative contribution

of the second-order harmonic to TVE becomes comparable to F1 if F3 ≈ F1

A2(1+kaM )
.

Similarly, the overall joint TVE contribution due to image infiltration and higher-order

harmonics may become comparable to F1 when F4 ≈ F1

(H−2)(1+kaM ) max
h=1,··· ,H

(Ah)+1
. Notice

that if the P-class specifications are good enough for the intended application, the TVE

is generally dominated by image infiltration. In the case of M-class requirements instead,

harmonic distortion is typically the main source of estimation uncertainty.

2.4.2 Simulation Results

In order to confirm the validity of the design criteria described in Section 2.4.1, two exam-

ples of filters have been proposed. Such filters do not result from any specific optimization

procedure. Indeed, they have been obtained using known filter design techniques itera-

tively, while checking if condition (2.20) is satisfied a posteriori, but the globally compli-

ance with the Standard is not guaranteed. All simulations have been performed assuming

that fs = 6.4 kHz and M = 128.

Example 1: Two-cycle filter

The accuracy of three two-cycle FIR filters have been compared, i.e.

• a 255-order filter with a triangular impulse response similar to the one suggested in

the Annex C of the Standard IEEE C37.118.1-2011 [18];

• a filter minimizing the effect of phasor image infiltration [19];



Proposed guidelines for filter-based
synchrophasor estimation 21

A
m
pl
itu
de
[d
B
]

Normalized frequency (ν)

𝛽𝑀
𝑀

𝛿𝑀 + 𝛽𝑀
𝑀 1 + 2𝛿𝑀

𝑀
2 − 𝛿𝑀 − 𝛽𝑀

𝑀

𝑟4

𝑟31 ± 𝑟1

1 ± 𝑟2

Figure 2.9: Frequency response magnitude of an equiripple FIR filter potentially compliant with the

P-class requirements specified in the Standard IEEE C37.118.1-2011.

• an equiripple filter resulting from the Parks-McClellan algorithm and based on the

general criteria described in Section 2.4.1 with δM = 0.1, βM = 0.21, TV Emax ≈ 1%,

F1 = 0.8, F2 = 8,F3 = 60.7 and F4 = 0.32.

A common feature of all the considered filters is that their impulse response is about

two nominal waveform cycles long. The frequency response magnitude of the designed

FIR filter is shown in Fig. 2.9. The envelopes of the TVE curves resulting from 300

simulation runs (each one corresponding to a different set of random initial phases of

the sine-waves in (2.3) and (2.4)) are shown in Fig. 2.10(a)- 2.10(b) as a function of the

off-nominal frequency offset δ, with |δ| ≤ δM . All parameter values have been set in

accordance with the worst-case P-class static and dynamic testing conditions specified

in the Standard [18]. In Fig. 2.10(a) no fluctuations nor harmonics disturbances are

considered, whereas the curves in Fig. 2.10(b) result from the joint effect of worst-case

amplitude modulation (with ka = 0.1 and δa = 0.1), phase modulation (with kp = 0.1 and

δp = 0.1) and 50 harmonics, each one with a magnitude equal to 1% of the fundamental

tone. However, while according to the Standard, one harmonic at a time should be added

to the signal, in Fig. 2.10(b) all harmonics are added together, which is a worse and more

realistic scenario. For static P-class compliance, TVE cannot exceed 1% for |δ| ≤ 4% even

under the effect of harmonic distortion. This limit is extended to 3% when the effect of

amplitude and phase modulations is taken into account. Notice that even in the presence

of worst-case static and dynamic contributions, the TV Emax constraint is met. Quite

interestingly, the maximum TVE values associated with the designed filter around the
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Figure 2.10: Maximum TVE curves for three different two-cycle filters (i.e., using a triangular impulse

response [18], minimizing the image tone infiltration [19], and using the criteria described in this sec-

tion): (a) off-nominal frequency offset δ only; (b) joint effect of off-nominal frequency offsets, amplitude

modulation, phase modulation and 50 harmonics with amplitude equal to 1% of the fundamental.

nominal frequency (i.e., for δ ≈ 0) are slightly higher than the corresponding values of the

other two solutions, because the DC gain of the proposed filter is slightly larger than 1.

Nevertheless, its global behavior is better, because the chosen filter tends to minimize the

joint effect of different contributions over the whole spectrum. Observe also that the TVE

pattern of the designed filter is asymmetric because its frequency response magnitude in

the band [(1–2δM)/M, (1 + 2δM)/M ] decreases monotonically. As a consequence, the

attenuation of the second-order harmonic between (1–2δM)/M and (1 + 2δM)/M grows
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Figure 2.11: Frequency response magnitude of a least squares FIR filter compliant with the M-class

requirements specified in the Standard IEEE C37.118.1-2011.

accordingly.

Example 2: Four-cycle filter

As explained in Section 2.4.1, M-class filter design requires tighter filtering specifications

due to the presence of possible large harmonics. For this reason, filter impulse responses

must be longer than in the P-class case. In the following, the performance of three

four-cycle long filters are compared through simulations, i.e.

• a 512-order filter resulting from the product between a Hamming window and a

truncated sinc sequence, as described in Annex C of Standard IEEE C37.118.1-2011

for a reporting rate of 50 fps [18];

• the four-cycle raised cosine filter (RCF) proposed in [26];

• a linear-phase FIR filter resulting from least-squares error minimization and based on

the general criteria described in Section 2.4.1 with δM = 0.1, βM = 0.21, TV Emax ≈
0.5%, F1 = 0.4, F2 = 18, F3 = 1.59 and F4 = 0.22.

The frequency response magnitude of the designed filter is shown in Fig. 2.11. The

envelopes of the TVE patterns of all filters under the effect of off-nominal frequency

offsets only, and worst-case amplitude modulation, phase modulation and harmonics are

shown in Fig. 2.12(a) and 2.12(b), respectively. The simulation parameters are the same
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Figure 2.12: Maximum TVE curves of three different four-cycle filters (i.e., using a Hamming-windowed

sinc sequence [18], a raised cosine [26], or the criteria described in this section): (a) off-nominal frequency

offset δ only; (b) joint effect of off-nominal frequency offsets, amplitude modulation, phase modulation

and 50 harmonics with amplitude equal to 10% of the fundamental.

as in the previous case, except for harmonics amplitude, which is now equal to 10% of the

fundamental. Clearly, the performance of the filter based on the approach suggested in

the Standard is quite disappointing, whereas the RCF exhibits superior accuracy around

the nominal frequency (i.e., for δ ≈ 0). This is mainly due to its maximal flatness in the

pass-band. Even if such a filter was not explicitly designed using the criteria described in

Section 2.4.1, as a matter of fact, it meets them almost everywhere, with a small exception

around frequencies ±(δM +βM)/M , where the lower bound 1–r2 is violated. Observe that
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the maximum TVE of the proposed filter instead is approximately constant and below

0.5%, as expected.

2.5 Conclusion

This chapter introduces the synchrophasor estimation problem. Starting from the de-

scription of a general PMU, the main quantities of interest are defined and some practical

guidelines to design filters for synchrophasor estimation based on the architecture of An-

nex C of IEEE Std C37.118.1-2011 are proposed. Such criteria rely on:

i) a detailed analysis of the spectral characteristics of the power waveforms to be mon-

itored in both static and dynamic conditions as they are defined with the Standard

IEEE C37.118.1-2011;

ii) the impact of the main uncertainty contributions on the overall TVE.

In general, the tight transition band requirements make lowpass filter design challenging,

especially when the observation interval is shorter than four waveform cycles. Some

simulation results confirm the correctness of the proposed design methodology. However,

to assure accurate and fast synchrophasor estimation, more sophisticated algorithms and

techniques are needed.
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Chapter 3

Synchrophasor Estimation

Algorithms

In the recent years a multitude of synchrophasor estimators have been proposed in the

literature. Some of them rely from the static phasor model; others rely are on a dynamic

model. In this chapter, starting from a short literature review of the main synchrophasor

measurement methods, an extended comparative analysis of three selected techniques is

presented, while considering the well known one-cycle DFT estimator as a reference bench-

mark. The performance analysis is done under the steady-state and dynamic conditions

specified in the IEEE Standard C37.118.1-2011.

3.1 Literature overview

The traditional synchrophasor measurements algorithms are based on the static phasor

concept. One of the most widely used techniques implemented is the windowed Discrete

Fourier Transform (DFT) shown in (2.11). It is simple, fast and exhibits good performance

applied to data records with a possible different length corresponding to a half, one or

multiple waveform cycles at the nominal frequency of 50 Hz or 60 Hz. The most used is

the one-cycle DFT. However, the DFT returns very inaccurate results in the case of the

significant off-nominal frequency offset. Performance can be greatly improved through

suitable windows as in [19] or using the so-called interpolated-DFT (IpDFT) algorithm,

which compensates the scalloping loss of the window spectrum by interpolating the DFT

Part of this chapter were published in

G. Barchi, D. Macii and D. Petri, “Synchrophasor Estimators Accuracy: A Comparative Analysis,” IEEE Trans.

Instr. and Meas.,vol.62, no.5, pp.963-973, May 2013.

G. Barchi, D. Macii, D. Belega and D. Petri, “Performance of synchrophasor estimators in transient conditions:

A comparative analysis”, IEEE Trans. Instr. and Meas.,vol.62, no.9, pp.2410-2418, Sept. 2013.
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values around the fundamental waveform frequency [27].

Several variants of this basic method have been proposed in the last years. Among

them, the half-cycle DFT-based techniques proved to be particularly effective to track

sudden phasor changes during transients [28],[29], but they are also quite sensitive to

noise, harmonics and out-of-band interferers.

Conversely, the two-cycle DFT solutions assure better accuracy in static conditions,

but at the expense of a lower responsiveness when the waveform parameters change sig-

nificantly within a single period. Alternative solutions based on sample value adjustment

to compensate for the lack of the coherence in the presence of frequency offset have been

proposed [30]. The classic DFT algorithms are fairly inaccurate also under dynamic or

transient conditions [31], [32], [33]. So, in the last years various alternatives based on the

Taylor’s series expansion of the phasor have been proposed.

The temporal evolution of the phasor can be indeed tracked with good accuracy by

estimating its first- and second-order derivative with respect to the time, e.g. through

finite difference equations of two or three non-overlapped subsequent one-cycle DFTs [34].

Alternatively, the dynamic phasor and its derivatives can be estimated through least-

square (LS) [35] or weighted least squares (WLS) optimization [36]. A similar approach

is also used in the so-called Taylor-Fourier Transform (TFT), which in addition provides

one-shot estimates of the derivatives of the complex envelops of the largest harmonics

through a linear transform.

Although the basic performance of different synchrophasor estimators has been ana-

lyzed in the literature [37, 38], an extensive characterization with respect to the require-

ments of the Standard IEEE C37.118.1-2011 is not available yet.

3.2 Analyzed Synchrophasor Estimators

In the previous chapter a generic electrical waveform x(t) is defined in (2.3), where its

related synchrophasor at the UTC reference time tr is expressed by (2.4). Considering

X̄(t) as the phasor at a generic time t = tr + ∆t (with ∆t small enough), the phasor itself

can be described with a good approximation by its Taylor’s series expansion truncated to

the Kth order term, with K arbitrary, i.e.

X̄(t) ∼= X̄r + X̄ ′r∆t+
X̄ ′′r
2!

∆t2 + ...+
X̄K
r

K!
∆tK (3.1)

where X̄K
r , for k = 1, ..., K is the kth-order derivative of (2.4) computed at the reference

time.

Assume that a PMU collects N samples of x(t) in an observation interval synchronized

to the UTC at a sampling rate fs = M ·f0. A basic approach to avoid unnecessary phase
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estimation errors is to center each observation interval at the time in which the phasor

has to be estimated. If an even number of samples N is considered, the interval central

point lies exactly between the two central samples. This equivalently means that each

sampling instant must be shifted by 1/2 sample with respect to the reference timestamp in

order to assure centering. Conversely, if N is an odd number, the center of the observation

interval just coincides with one of the available samples, and no time shift is required. The

data record used to estimate the phasor at time tr can be formalized using the following

expression, i.e.

xr[n]=A

[
1+εar

(
n+r+s

fs

)]
·cos

[
2π

M
(n+r+s)+εpr

(
n+r+s

fs

)
+φ

]
+ η[n] (3.2)

where, n=−(N − 1)/2−s, · · · , (N − 1)/2−s, s= 0 or 1/2 depending on whether N is

an odd or an even number, respectively; and η(n) includes both the harmonics of the

fundamental component and the additive wideband noise. Observe that (3.2) holds for

any value of r, i.e. not only for disjoint observation intervals, but also when they are just

shifted by one sample at a time.

As described in section 3.1, various phasor estimators of (3.2) exist. The most common

one is the basic DFT, here defined as:

ˆ̄XDFT
r =

√
2

N

N−1
2
−s∑

n=−N−1
2
−s

xr[n]e−j
2π
M

(n+s). (3.3)

If the duration of the observation intervals in which synchrophasors are estimated coincides

with a single, nominal waveform cycle, then N = M . It is interesting to observe that

the complexity of (3.3) is O(N), since just one spectral sample (i.e. corresponding to

the fundamental waveform component) must be computed. In particular, N complex

quantities (i.e. 2N real numbers corresponding to the exponential terms in (3.3)) and N

real-valued samples have to be stored into memory at the same time. Therefore, about

2N real-valued products and additions are required to return a single estimate. Observe

that (3.3) can hardly track fast phasor variations, because it implicitly relies on a 0-order

Taylor model, i.e. K = 0 in (3.1).

If we assume K = 1, a possible dynamic phasor estimator is [34]

ˆ̄X4PM
r ≈ ˆ̄XDFT

r − j
ˆ̄XDFT ∗
r − ˆ̄XDFT ∗

r−1

2M sin
(

2π
M

) , (3.4)

where ˆ̄XDFT
r is given by (3.3) for N = M , ˆ̄XDFT ∗

r is the complex conjugate of ˆ̄XDFT
r and

ˆ̄XDFT
r−1 is the DFT of the data record in the one-cycle observation interval centered at time

tr−1. This phasor estimator is sometimes referred to as 4-parameter (4PM) model, as it
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relies on four real-valued parameters (i.e., the real and imaginary parts of the synchropha-

sors estimated in two consecutive and disjoint one-cycle observation intervals). In terms of

memory and computational resources, the requirements of the 4PM phasor estimator are

almost the same as those of the one-cycle DFT estimator, provided that the ˆ̄XDFT
r−1 values

are temporarily buffered. Of course the accuracy of (3.4) depends on how well this esti-

mator is able to track phasor variations. However, in the following just the case of disjoint

intervals will be analyzed, in accordance with the original algorithm definition [34].

If the Taylor’s series expansion of the phasor includes also the second-order derivative

with respect to time (namely the phasor’s acceleration, for K = 2) and, again, N = M

samples are used to compute each DFT values, a more sophisticated phasor estimator is

ˆ̄X6PM
r ≈ ˆ̄XDFT

r − j

(
3
2

ˆ̄XDFT ∗
r − 2 ˆ̄XDFT ∗

r−1 + 1
2

ˆ̄XDFT ∗
r−2

)
2M sin

(
2π
M

)
−

(
1− 1

M

) ( ˆ̄XDFT
r − 2 ˆ̄XDFT

r−1 + ˆ̄XDFT
r−2

)
24

−
cos
(

2π
M

) ( ˆ̄XDFT ∗
r − 2 ˆ̄XDFT ∗

r−1 + ˆ̄XDFT ∗
r−2

)
2M2 · sin2

(
2π
M

) .

(3.5)

This estimator is usually referred to 6-parameter (6PM) model, as it relies on 6 real

values (i.e., the real and imaginary parts of the phasors estimated in three consecutive

and disjoint one-cycle observation intervals). Evidently, also in this case the memory and

computational resources of the 6PM algorithm are roughly the same as those of a one-

cycle DFT phasor estimator, provided that the ˆ̄XDFT
r−1 and ˆ̄XDFT

r−2 values are temporarily

stored. Observe that both in (3.4) and (3.5) the first- and second-order phasor derivatives

are estimated through finite difference expressions.

Alternatively, the phasor and its derivatives can be obtained from a least squares

minimization of the error between (3.1) and the values resulting from a linear transform of

the data sequence acquired in the rth observation interval. In particular, if xr is theN -long

column vector containing the samples of (3.2) and X̄rK =
[
X̄∗rK , X̄

∗
rK−1

, ..., X̄∗r0 , X̄r0 , ...,

X̄rK−1
, XrK

]T
is the column vector composed by coefficients X̄rK = X̄K

r

k!fks
and their complex

counterparts X̄∗rK , for k = 0, ..., K, the phasor estimates and the corresponding derivatives

result from [39][36]

ˆ̄XrK = 2
(
BH
KW

HWBK

)−1
BH
KW

HWxr, (3.6)
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where

W =


w1 0 · · · 0

0 w2 · · · 0
...

...
. . .

...

0 0 · · · wN

 (3.7)

is a diagonal matrix containing the coefficients of the window mitigating the spectral effect

of rectangular windowing and

BK =

BK,1 BK,3

BK,2 BK,4

 (3.8)

is a Nx2(K+1) complex matrix. The elements of the individual sub-matrices BK,1, BK,2,

BK,3 and BK,4 are defined as follows [36]:

(bk,1)lq =

(
l − N − 1

2

)K−q
ej(

N−1
2
−l) 2π

M

l = 0, · · · , N − 1

2
− s and q = 0, · · · , K

(bk,2)lq = (l − s)K−qe−j(l−s)
2π
M

l = 1, · · · , N − 1

2
+ s and q = 0, · · · , K

(bk,3)lq =

(
l − N − 1

2

)q
e−j(

N−1
2
−l) 2π

M

l = 0, · · · , N − 1

2
− s and q = 0, · · · , K

(bk,4)lq = (l − s)qe−j(l−s)
2π
M

l = 1, · · · , N − 1

2
+ s and q = 0, · · · , K.

(3.9)

It is worth noticing that even if all K + 1 terms of model (3.1) are computed in one

shot from (3.6), the phasor estimated in the center of the considered observation interval

corresponds just to the zero-order element of the output vector, i.e. ˆ̄XTWLS
r = ˆ̄Xr0 ,

where the acronym TWLS stands for Taylor Weighted Least Squares. The computational

requirements of the TWLS phasor estimator strongly depend on how it is implemented.

If we assume that the elements in (3.6) (which consists of constant complex numbers for

given values of K, N , M and W ) are pre-computed and statically stored into memory

as a look-up table, (3.6) requires 4N × (K + 1) +N real values at a time, and about

4N × (K + 1) real products and additions to return a single estimate. In addition, if

just the phasor estimate ˆ̄Xr0 is required, the number of real-valued sums and products



32 Synchrophasor Estimation Algorithms

is given by a single row-column product, which requires 2N operations. In conclusion,

the computational complexity burden of the TWLS algorithm, if properly optimized, is

similar to the complexity of a plain DFT phasor estimator.

3.3 Accuracy performance analysis

In this section several simulations results are reported to compare the performance of

DFT, 4PM, 6PM and TWLS estimators under the effect of various steady-state and

dynamic tests. Specifically, the following cases are considered:

A. effect of static off-nominal frequency offsets;

B. effect of amplitude and phase modulation;

C. effect of harmonics;

D. effect of wideband noise.

Generally, the accuracy of phasor estimators is expressed in terms of TVE, which is

defined in (2.8). Since the TVE depends on both the chosen estimators and the actual

phasor value at reference time tr it will be expressed in the following as, TVEm
r where the

superscript m ∈={DFT, 4PM, 6PM, TWLS} refers to the specific estimator considered.

3.3.1 Effect of static off-nominal frequency-offset

Assume that the rth data record (3.2) is affected by a static fractional frequency offset

δ 6= 0, so that the actual waveform fundamental frequency is f = (1 + δ) · f0, and no

significant amplitude or phase variations occur in the same observation interval. In terms

of notation this equivalently means that in (3.2) η[n] = 0, εar = 0 and

εpr [n] =
2πδ

M
(n+ r ·N) − N − 1

2
≤n≤N − 1

2
(3.10)

for r ∈ Z. When a one-cycle DFT is used as a synchrophasor estimator, the maximum

TVE values can be expressed by the following function of δ [19]:

TVEDFT
max (δ) ∼=

π2δ2

6
+

∣∣∣∣ δ

2 + δ

∣∣∣∣ . (3.11)

Similarly, it is possible to show that the maximum TVE associated with (3.4) is approxi-

mately given by

TVE4PM
max (δ) ∼=

(
π2

6
− 1

4
+

1

4

√
1 + 4π2

)
δ2 ∼= 3.0 · δ2. (3.12)
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Proof of expression (3.12).

If (3.3) is used to estimate the phasor, the corresponding estimator can be equivalently

expressed as [19]:

ˆ̄XDFT
r = X̄r ·DN(−δ)

[
1 + e−j2ϕr

DN(2 + δ)

DN(−δ)

]
(3.13)

where

DN(δ) =
1

N
· sin(πδ)

sin(πδ
N

)
(3.14)

is the normalized Dirichlet kernel. Moreover, for δ close to zero we have that

DN(δ) ∼=
(

1− π2δ2

6

)
, |δ| ≤ 10% (3.15)

and

DP ·M(2 + δ)

DP ·M(−δ)
=

sin(πδ
N

)

sin
(
π(2+δ)
N

) ∼= δ

2 + δ
∼=
δ

2

(
1− δ

2

)
, |δ| ≤ 10% (3.16)

which results from the Taylor’s series expansions of (3.14) around δ = 0, truncated to the

first-order term. Accordingly, (3.13) can be approximately expressed as

ˆ̄XDFT
r

∼= X̄r ·
[
1− π2δ2

6
+ e−j2ϕr

δ

2

(
1− δ

2

)
·
(

1− π2δ2

6

)]
∼= X̄r ·

[
1− π2δ2

6
+ e−j2ϕr

δ

2

(
1− δ

2

)]
(3.17)

If a one cycle observation interval is used the difference between the rth and the (r−1)th

reference timestamps is equal to 1/f0 and the corresponding phase difference is ϕr−ϕr−1 =

2π · (1 + δ). Therefore, the difference between subsequent non-overlapped DFT-based

phasor estimates is given by

ˆ̄XDFT
r − ˆ̄XDFT

r−1 = X̄r ·
[
DN(−δ)(1−e−j2πδ) + e−j2ϕrDN(2 + δ)(1− ej2πδ)

]
∼= X̄r ·

[(
1−π

2δ2

6

)
(j2πδ+2π2δ2)+e−j2ϕr

δ

2

(
1− δ

2

)
(−j2πδ + 2π2δ2)

]
∼= X̄r · j2πδ

[
1−jπδ+e−j2ϕr

δ

2

(
1− δ

2

)
(−1−jπδ)

]
∼= X̄r · j2πδ

[
1− jπδ − e−j2ϕr δ

2

]
(3.18)

where in (3.18) the polynomial terms in δ of order higher than one can be neglected. By

replacing (3.17) and (3.18) into (3.4) (since we can assume that M � 2δ), it follows that
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the 4PM estimator can be expressed as

ˆ̄X4PM
r = ˆ̄XDFT

r − j

(
ˆ̄XDFT ∗
r − ˆ̄XDFT ∗

r−1

)
2M · sin

(
2π
M

)
∼= ˆ̄XDFT

r − j

(
ˆ̄XDFT ∗
r − ˆ̄XDFT ∗

r−1

)
4π

∼= X̄r ·
[
1−

(
π2

6
− 1

4

)
δ2 − e−j2ϕr δ

2

2

(
1

2
+ jπ

)]
. (3.19)

Thus, by applying (2.8) the corresponding TVE is

TVE4PM
r =

∣∣∣∣(π2

6
− 1

4

)
+ e−j2ϕr

1

2

(
1

2
+ jπ

)∣∣∣∣δ2 (3.20)

and (3.12) results simply from the maximum of (3.20).

A polynomial approximation of the TVE expression of the 6PM estimator also holds

and it is given by

TVE6PM
max (δ) ∼= 82 · δ4 + 1.6 · δ3 + 0.7 · δ2 + 0.007 · δ. (3.21)

Expression (3.21) results from a polynomial fitting of the worst-case values obtained

by changing randomly the initial phase φ of waveform in the range [0, 2π], for a fixed

fractional off-nominal frequency offset (i.e. δ = 0%, ±2%, ±4%, ±6%, ±8%, ±10%).

Similar considerations hold for the TWLS estimator, whose maximum TVE curves are

hard to find analytically, because they depend on the number of considered K derivative

terms in the model and on the elements of the matrix W used in (3.6). Assuming that

K = 3 and that a Kaiser window with β = 8 is used [36], the maximum TVE curve

associated with ˆ̄XTWLS
r for N = 4M + 1 (i.e. when four-cycle long observation intervals

are considered), is given by

TVE6PM
max (δ) ∼= 9.1 · δ4 + 0.0004 · δ3 + 0.001 · δ2 − 0.000001 · δ. (3.22)

In Fig. 3.1 the TVE curves based on (3.11)–(3.22) are plotted as a function of δ in the

range [–10%, 10%], as specified in the Standard IEEE C37.118.1. This interval corresponds

to the broadest frequency variation range over which the TVE must be kept below 1%

to assure M-class compliance at the maximum reporting rate [18]. Multiple Monte Carlo

simulations consisting of 2000 runs each and obtained with different seeds for N ≥ 64 and

different values of in φr in [0, 2π] and δ in[–10%, 10%] confirm that expressions (3.11)-

(3.22) are very accurate. Indeed, the maximum absolute value of the differences between

(3.11)-(3.22) and the respective simulation results range between 1.0 · 10−6 for TWLS to
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Figure 3.1: Maximum TVE values for different phasor estimators in steady-steate conditions as a function

of the fractional frequency offset.

2.0 · 10−4 for 6PM. Observe that in Fig. 3.1 the accuracy of all the considered estimators

degrades as the frequency offset increases.

However, the sensitivity of the one-cycle DFT, 4PM, 6PM and TWLS techniques to

growing frequency offsets is clearly smaller and smaller, till becoming almost negligible

(i.e. close to 0.1%) in the TWLS case. All curves (except the TVE pattern associated

with the one-cycle DFT) are below 1% as long as |δ| is smaller than 4%. Thus, 4PM,

6PM and TWLS are potentially compliant with the steady state P-class requirements of

the Standard IEEE C37.118.1-2011 (i.e.,TVEm
max ≤ 1% in the range ±2 Hz). However,

only the TWLS technique is potentially M-class compliant, since it does not exceed the

1% boundary for δ = ±10%. Evidently, the considered estimators (as they are commonly

proposed in the literature) rely on a different number of collected waveform cycles to

return a single phasor estimate, i.e. one cycle for DFT, two cycles for 4PM, three cycles

for 6PM and four-cycles (plus 1 sample) for TWLS.

3.3.2 Effect of amplitude and phase modulation

Assume that the electrical waveform (3.2) exhibits significant sinusoidal oscillations in

amplitude or in phase. In such cases, according to the Standard IEEE C37.118.1-2011,

the TVE must be below 3% when:

i) the modulation depth factors are up to 0.1;

ii) the modulating signal frequencies lie between 0.1 Hz and 2 Hz for P-class compliance,
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and between 0.1 Hz and 5 Hz for M-class compliance, respectively. If noise, harmonics

and phase oscillations in (3.2) are negligible, then we have that η[n] = 0,

εar [n] = ka cos

[
2π

M
δ (n+ r ·N) + αa

]
−N−1

2
≤n≤N−1

2
(3.23)

and εpr [n] is the same as (3.10), for a given r ∈ Z. In (3.23) ka represents the amplitude

modulation (AM) depth factor, δa is the ratio between the modulating frequency fa and

f0, and αa is the initial phase of the modulating signal.

Dually, if noise, harmonics and amplitude oscillations are negligible, but a significant phase

modulation (PM) affects the electrical waveform, it follows that η[n] = 0, εar [n] = 0 and

εpr [n]=
2πδ

M
(n+ r·N) + kp cos

[
2π

M
δp(n+r·N)+αp

]
−N−1

2
≤n≤N−1

2
(3.24)

for r ∈ Z. In this case, kp represents the phase modulation depth factor in radians, δp is

the ratio between the modulating signal frequency fp and f0, and αp is the initial phase

of the modulating signal. Finally, if both modulations are assumed to be significant, both

(3.23) and (3.24) must be included in (3.2).

Fig. 3.2 shows the maximum TVE curves as a function of δ for all the considered

estimators when the worst-case values of the modulation parameters recommended in

[18] are used, i.e. AM only with ka = 0.1 and δa = 0.1 (a), PM only with kp = 0.1 rad

and δp = 0.1 (b) and both AM and PM with the same parameters listed above (c). All

TVE curves are obtained by computing the maxima of (2.8) for M = 64 over 2000 runs

for each estimator m ∈{DFT, 4PM, 6PM, TWLS} and for 101 equally spaced fractional

off-nominal frequency offsets in the range [−10%, 10%].

In each run the initial phases αa, αp of the modulating signals (3.23) and (3.24) as

well as the initial phase φ of (3.2) change randomly in the interval [0, 2π]. Additional

Monte Carlo simulations have been performed using different seeds, a larger number of

runs and different values of N ≥ 64, but no significant differences have been observed. A

quick visual comparison between the curves in Fig. 3.2 and the respective curves in Fig. 3.1

points out that the effect of either amplitude or phase fluctuations is generally less relevant

than the influence of large off-nominal frequency offsets, despite the modulation factors

are quite high. It is worth noticing that the 4PM, 6PM and TWLS techniques accurately

track amplitude and phase oscillations when |δ| is close to zero, whereas they become

slightly less effective when |δ| grows. Also, the TVE values associated with estimators

4PM, 6PM and TWLS are always below 3% as long as the frequency offset is less than 2

Hz (i.e., for |δ| ≤ 4%). Such behavior confirms the potential P-class compliance of such

estimators under dynamic conditions. However, only the 6PM and TWLS techniques

meet the 3% TVE boundary for |δ| ≤ 10%, as it is required for M-class compliance. If
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Figure 3.2: Worst-case TVE patterns associated with different phasor estimators under the influence of

static off-nominal frequency offsets and sinusoidal amplitude modulation with ka = 0.1 and δa = 0.1

(a), off-nominal frequency offsets and sinusoidal phase modulation with kp = 0.1 rad and δp = 0.1 (b) or

both (c).
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Table 3.1: Maximum additional contribution to the TVE associated with different synchrophasor esti-

mators due to AM or/and PM. All modulation parameters are set equal to the worst-case conditions

recommended in the Standard IEEE C37.118.1-2011.

∆m
d DFT 4PM 6PM TWLS

AM 0.5% 0.3% 0.4% 0.08%

PM 0.8% 0.6% 0.6% 0.08%

AM+PM 0.9% 0.9% 0.9% 0.1%

we refer to ∆m
d , for d ∈ {AM, PM, AM+PM}, as the largest TVE increments due to

AM, PM or both, an upper-bound to the TVE in the presence of amplitude and/or phase

modulation is given by:

TVEm
UBd

(δ) = TVEm
max(δ) + ∆m

d (3.25)

where the superscript m ∈{DFT, 4PM, 6PM, TWLS} refers to the chosen estimation

technique and TVEm
max results from (3.11)-(3.22), respectively. The values of ∆m

d are

summarized in Tab. 3.1 and are generally smaller than the TVE caused by the off-nominal

frequency offsets alone, provided that |δ| is large enough. The only exceptions refer to

the case of TWLS estimator, whose ∆m
d values become comparable to the maximum TVE

contributions due to the off-nominal frequency offsets alone, especially when both AM

and PM occur. In any case the sensitivity of all algorithms to PM oscillations is always

slightly larger than to AM fluctuations. The sensitivity of the four considered estimators

to the various modulation parameters has been analyzed by changing both the modulation

depth factor and the modulating frequency.

Fig. 3.3 shows the additional contributions to the maximum TVE values due to

PM, after compensating the influence of the off-nominal frequency offsets. The lines

in Fig. 3.3(a)-3.3(b) refer to different estimators and are plotted as a function of the

modulation factor kp, for δ = 0% and δ = 10%, respectively, after setting δp = 0.1 in

both cases.

Fig. 3.3(c)-3.3(d) shows the TVE increments due to PM as a function of δp, for δ = 0%

and δ = 10%, respectively, after setting kp= 0.1 rad. It is worth noticing that in most cases

the maximum TVE values grow roughly linearly with the modulation parameters. As

stated above, the 4PM and 6PM techniques effectively track the phasor variations around

the nominal frequency with increasingly better performance. However, their sensitivity to

PM degrades and become comparable to the DFT technique when |δ| grows. Therefore,

when δ is close to one of the extreme values recommended in the Standard (i.e. |δ| =
10%), the 4PM and 6PM techniques outperform the DFT estimator mostly because of

their capability to mitigate the TVE growth caused by the off-nominal frequency offsets,
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Figure 3.3: Worst-case TVE increments as a function of different PM parameters for δ = 0% (a)-(c) and

δ = 10% (b)-(d). In (a) and (b) δp = 0.1, while in (c) and (d) kp = 0.1.

regardless of the amount of amplitude or phase modulations.

On the contrary, the TWLS estimator is more insensitive than the others to PM, while

the influence of static frequency offsets and PM on the TVE are comparable. The results

of the TVE sensitivity analysis to the AM parameters are shown in Fig. 3.4. The meaning

of the curves and the values of the dual modulation parameters δa and ka is the same

as those in Fig. 3.3. The trend of the various patterns and the related considerations

are also quite similar. Even if the curves in Fig. 3.4(d) do not exhibit a linear behavior

any longer, the DFT, 4PM, 6PM and TWLS estimators (in this order) have increasingly

better performance in tracking possible AM fluctuations.

In addition, the AM sensitivity variations of each method are less affected by static off-

nominal offsets than in the PM case.
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Figure 3.4: Worst-case TVE increments as a function of different AM parameters for δ = 0% (a)-(c) and

δ = 10% (b)-(d). In (a) and (b) δa = 0.1, while in (c) and (d) ka = 0.1.

3.3.3 Effect of harmonics

In the previous section the effect of harmonics or wideband noise was assumed to be

negligible. In the following the influence of either disturbance is evaluated separately. In

terms of notation, the effect of harmonics in (3.2) can be modeled as

η[n]=
H∑
h=2

Xh ·cos

[
2π

M
h(1 + δ)

(
n+r ·+1

2

)
+αh

]
− N − 1

2
≤n≤ N − 1

2
(3.26)

for r ∈ Z. In (3.26) Ah and αh are the amplitude and the initial phase of the hth

harmonic for h = 1, . . . , H and H is the number of harmonics with a significant amplitude.

According to the Standard IEEE C37.118.1-2011, the first 50 harmonics should be taken

into account individually. In particular, a necessary condition for P-class or M-class

compliance is to assure that TV E ≤ 1% when the amplitude of each harmonic up to the

50th is either 1% or 10% of the fundamental component, respectively. In order to assess

the impact of harmonic distortion, several Monte Carlo simulations have been performed
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Figure 3.5: Worst-case TVE patterns associated with different phasor estimators under the influence

of harmonics, static frequency offsets and sinusoidal amplitude and phase modulations with ka = 0.1,

δa = 0.1, kp = 0.1 rad and δp = 0.1. In (a) just the second-order harmonic is included, while in (b) all

harmonics till the 50th are considered. In both cases the amplitude of all harmonics is set equal to 1%

of the fundamental tone.

including AM and PM modulation, different static off-nominal frequency offsets in the

range [−10%, 10%] and one or multiple harmonics of relative amplitude equal to 1% of the

fundamental component. Each simulation consists of 2000 runs. Also M=128 samples per

cycle was used to avoid aliasing problems. In each run the initial phases of the modulating

signals, the fundamental tone and the harmonics change randomly in the interval [0, 2π].
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Fig. 3.5 shows the worst-case TVE patterns for every analyzed estimator when just only

the second harmonic or all harmonics till the 50th are considered, respectively. In all cases

the fundamental component is modulated both in amplitude and in phase with parameter

values equal to the maxima specified in the Standard C37.118.1-2011 (i.e. ka=0.1, δa=0.1,

kp=0.1 rad and δp=0.1). The corresponding upper bound to the TVE can be expressed

as

TVEm
UBH,d

(δ) ∼= TVEm
max(δ) + ∆m

d +
H∑
h=1

∆m
hd
, (3.27)

where m ∈{DFT, 4PM, 6PM, TWLS}, d ∈{AM, PM, AM+PM}, TVEm
max(δ) results

from (3.11)-(3.22), the ∆m
d values are those described in 3.1, and the sum

∑H
h=1 ∆m

hd

represents the cumulative worst-case TVE increment due to the superimposition of H

harmonics. The individual contributions associated with the second-order and the third-

order harmonic (namely for h = 2, h = 3) when their relative amplitude is equal to

1% of the fundamental component are reported in Tab.3.2. As expected, the second-

order harmonic has the largest influence due to its minimal spectral distance from the

fundamental frequency. Observe that the TVE increments for h = 3 become negligible

when the 6PM or the TWLS techniques are used. No precise ∆m
3d

values are reported in

this case because they are so small as to be comparable with the uncertainty due to the

finite number of simulation runs. Similarly, the values of ∆m
hd

for h > 3 are not reported in

Tab.3.2, because they are negligible in all cases. In fact, when the off-nominal frequency

offset δ changes between [−10%, 10%], the harmonic frequencies do not fall any longer on

the zero-crossings of the discrete-time window Fourier transform (e.g. rectangular in all

cases except the TWLS) that multiplies the input data. As a result, the worst-case TVE

influence of the second- and third-order harmonics depends on how the magnitude of the

window spectrum side-lobes affect the considered estimator.

Fig. 3.5 shows also that the 6PM and TWLS techniques assure a maximum TVE value

lower than 1% under the joint effect of AM, PM and harmonics when |δ| ≥ 4%. However,

when harmonics with a relative amplitude up to 10% are considered (as it is required for

M-class compliance) the values of ∆m
hd

(not reported here for the sake of brevity) become

about 1 order of magnitude larger than those in Tab. 3.2. Accordingly, the overall 1%

TVE limit specified in the Standard IEEE C37.118.1-2011 is exceeded and the M-class

compliance cannot be achieved by anyone of the considered estimators.

3.3.4 Effect of wideband noise

In order to analyze the impact of wideband noise on phasor estimator accuracy, further

Monte Carlo simulations have been performed assuming that η[n] is a white, Gaussian

noise sequence with a zero mean and a variable standard deviation. No harmonics and
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off-nominal offsets have been included in this new set of simulations. Again, the AM and

PM modulation parameters are equal to the maxima specified in the Standard C37.118.1-

2011 (i.e., ka = 0.1, δa = 0.1, kp = 0.1 rad and δp = 0.1) and M=128 samples per cycle

are acquired. However, the values of φ, αa and αp in (3.2), (3.23) and (3.24), respectively,

in this case do not change randomly. In fact, they are chosen in such a way that the

TVE values associated to the various estimators reach their respective maxima. Hence,

during simulations, the TVE contribution due to amplitude and phase modulations is

constant and equal to the maximum value reported in Fig. 3.2(c) for a certain value of

δ. In every simulation run, 1000 noise sequences of given variance have been added to a

waveform of known power. This procedure has been repeated for different signal-to-noise

ratio (SNR) values.

The TVE mean values and standard deviations related to the DFT, 4PM, 6PM and

TWLS techniques are plotted as a function of SNR for δ = 0% in Fig. 3.6, respectively.

Observe that when the SNR exceeds 40 dB, the effect of wideband noise is negligible. In

fact, the mean value patterns converge to the same results reported in Fig. 3.2 when δ =

0%. In addition, the TVE standard deviations for SNR ≥ 40 dB are in the order of 0.1%

or below. Quite interestingly, the standard deviation curves are almost independent of

the chosen estimation technique. Additional simulation results confirm that they are also

quite independent of the off-nominal frequency offset. It is worth noticing that the mean

values are significantly influenced by noise, only when the “native” TVE contribution

caused by off-nominal offsets and/or modulations is smaller than the TVE fluctuations

introduced by noise. Indeed, when the SNR is below a certain threshold, the additive

noise affecting the numerator of (2.8) may change the sign of the quantity ˆ̄Xm
r − X̄r. In

such cases, the TVE values are biased by the modulus operator in (2.8). When instead

the magnitude of the noise-related TVE fluctuations is not large enough to change the

sign of ˆ̄Xm
r − X̄r , the TVE bias due to noise is negligible.

In Fig. 3.6(a) this behavior is particularly evident for the DFT estimator. Indeed, the

Table 3.2: Maximum TVE increments of different synchrophasor estimators due to the second-order and

the third-order harmonics alone. The amplitude of both harmonics is set equal to 1% of the fundamental

component.

∆m
hh

h=2 h=3

DFT 4PM 6PM TWLS DFT 4PM 6PM TWLS

AM 0.30% 0.20% 0.30% 0.20% 0.20% 0.10% < 0.1% < 0.1%

PM 0.30% 0.30% 0.30% 0.20% 0.20% 0.20% < 0.1% < 0.1%

AM+PM 0.30% 0.30% 0.30% 0.20% 0.20% 0.20% < 0.1% < 0.1%
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Figure 3.6: Mean (a) and standard deviation (b) values of the TVE associated with different phasor

estimators as a function of the SNR for δ = 0% and under the influence of sinusoidal amplitude and

phase modulations with ka = 0.1, δa = 0.1, kp = 0.1 rad and δp = 0.1. In all cases the initial phases of

both the fundamental component and the modulating signals are set so as to maximize the TVE.

TVE mean value curve tends to increase suddenly when the SNR is below 25 dB. The TVE

mean value curves associated with the others estimators instead start growing for larger

SNR values since their “native” TVE contribution due to modulations and/or off-nominal

frequency offsets is smaller. Notice that the growth rate of the TVE mean value curves is

larger than the growth rate of the respective standard deviation curves. Furthermore, if
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we just focus our attention on the increment in TVE as a function of the noise power (or

equivalently for decreasing SNR values) after removing the “native” TVE component, it

can be observed that the noise sensitivity of the DFT estimator is slightly lower than the

sensitivity of the 4PM, 6PM and TWLS techniques.

3.4 Transient performance analysis

In this section several simulations results are reported to compare the performance of

DFT, 4PM, 6PM and TWLS phasor estimators under the effect of various transient

disturbances. Specifically, the following cases are considered:

A. amplitude step changes both in nominal and off-nominal frequency conditions;

B. phase step changes both in nominal and off-nominal frequency conditions;

C. frequency linear ramps.

The values of all parameters modeling the transient phenomena described above are varied

within the boundaries specified in the Standard, while M=64 in all cases. For the sake of

clarity, different types of disturbances will be analyzed in different subsections. Generally,

the accuracy of phasor estimators is expressed in terms of TVE, which is defined as (2.8).

However, in some applications (e.g., when the maximum tolerable timing-related phase

error must be evaluated a priori [38]), the individual values of magnitude and phase

estimation errors can be more useful. In particular, such quantities are defined as:

ea =
| ˆ̄Xm

r | − | X̄r |
| X̄r |

eb = ∠ ˆ̄Xm
r − ∠X̄r (3.28)

In the case of step variations the main performance parameters of interest are: the peak

values of TVE and (3.28), and the response time defined in section 2.2.2. In the Standard

the threshold to compute the response time is set equal to 1%. However, given that 1%

represents a cumulative upper bound for the whole PMU, a smaller threshold (e.g., 0.3%)

is advisable when just the estimation algorithm is considered. Thus, in the following,

the response time values related to both TVEm
r = 1% and TVEm

r = 0.3% are reported.

Further simulations performed to estimate the delay time show that the values are always

in the order of 1-2 ms for all the considered estimators, i.e. negligible compared to the

latencies introduced by the input transducers and the front-end PMU circuitry. In the

case of linear frequency variations, the estimator performance is assessed in terms of

TVE as a function of the frequency rate of change of the collected waveform. Again,

the rate of change and the maximum frequency offset values are chosen in accordance

with the Standard.
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Figure 3.7: Maximum and minimum envelopes of the phase estimation errors as a function of the relative

magnitude errors for 200 values of the waveform initial phase in [0, 2π]. In all cases, δ = 0% and ka = 10%.

3.4.1 Amplitude Step Change

If both an amplitude step and a possible static frequency offset affect (3.2), the functions

εa(t) and εp(t) are defined, respectively, as

εa(t) = kau(t− td) εp = 2πf0δt (3.29)

where ka is the relative size of the step with respect to amplitude A, u(t) is the unit step

function, td represents the time at which the step occurs and δ is the relative off-nominal

frequency offset. It is quite clear that, for a given value of ka, the effect of a step on the

estimated synchrophasor depends on when it occurs within a waveform cycle.

The curves in Fig. 3.7 show the maximum and the minimum envelopes of ep(·) (expressed

in crad) as a function of ea(·) (expressed in %) in nominal frequency conditions (i.e. for

δ = 0) and for ka = 10%. Such envelopes have been computed assuming that the step

occurs always at the same time, with the waveform initial phase changing linearly by

π/100 in [0, 2π]. Different line colors refer to different estimators, i.e. DFT (black line),

4PM (blue line), 6PM (green line) and TWLS (red line). Since the TVE is almost equal

to the quadrature sum of phase and magnitude errors [38], it is evident that in this case

the TVE values are dominated by the magnitude errors. Further simulation results (not

reported here for the sake of brevity) confirm that the magnitude error increment due to

an amplitude step of given size ka is approximately the same regardless of the value of δ.

The curves in Fig. 3.8 show the worst-case TVE values returned by the four considered

estimators as a function of ka in the range [−10%, 10%] and for δ = 0%, as suggested in

[18]. Observe that two curves are plotted for each estimator. In fact, they refer to the
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Figure 3.8: Maximum and minimum worst-case TVE patterns as a function of the relative step magnitude

ka. All patterns are obtained by changing the waveform initial phase values and the moment when the

step occurs in a cycle.

minimum and maximum worst-case TVE values obtained by changing both td and φ .

Note also that the TVE grows almost linearly with |ka| and that the behavior of the four

estimators is very similar. Since the upper-bound to the TVE in the presence of both

off-nominal frequency offsets and amplitude modulation is approximately given by the

sum of both contributions [40], a similar behavior holds even when an amplitude step is

considered. Indeed, by extrapolating the results of Fig. 3.8, it can be easily shown that

TVEm
apeak

(ka, δ) ≈

ba1ka + TVEm
offδ ka ≥ 0

ba2ka + TVEm
offδ ka < 0

(3.30)

where m ∈{DFT, 4PM, 6PM,TWLS} and TVEm
off (δ) is the maximum TVE contribution

caused by the off-nominal frequency offset δ [40].

Coefficients ba1 = 0.51 ± 0.06 and ba2 = −0.58 ± 0.07 represent the TVE growth rates

caused by the step in nominal frequency conditions (i.e., when δ = 0). Consider that the

uncertainty associated with both coefficients is due to both the chosen estimator and the

phase of the signal when the step occurs.

Fig. 3.9 displays the worst-case response time values expressed in nominal waveform

cycles, as a function of ka in the range [−10%, 10%] for δ = 0% and δ = 4% and for

two different TVE thresholds, i.e. 1% and 0.3%, respectively. All curves have been

obtained by changing the time at which the step occurs within a full waveform cycle and

by computing the maximum response times for the same value of ka. The evident curve

asymmetry visible in Fig. 3.9(b) and 3.9(d) is due to the positive off-nominal frequency
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Figure 3.9: Worst-case response time values expressed in nominal waveform cycles as a function of the

amplitude step size ka for TVE=1% and δ = 0% (a), TVE=1% and δ = 4% (b), TVE=0.3% and δ = 0%

(c), TVE=0.3% and δ = 4% (d). Curves are missing when the response time of the related estimator is

undefined. This happens in (b) and (d) when the static off-nominal TVE is larger than the 1% or 0.3%

threshold.

offset. The discontinuous behavior observable in some of the curves is due to the fact that

the TVE patterns associated with some phasor estimators exhibit multiple and irregular

ripples of decreasing amplitude in the time domain, as shown in Fig. 3.10. The reported

TVE patterns have been obtained using a step of relative size ka = 5% for δ = 0% in

(a) and δ = 4% in (b), respectively. In both cases φ = 0. Of course, when the step

size increases, the ripple amplitude grows accordingly. As a consequence, the 1% or 0.3%

TVE thresholds are suddenly and progressively crossed by multiple ripples, especially if

the 6PM technique is used. An analytical expression describing the TVE pattern as a

function of time when a one-cycle DFT phasor estimator is applied to a waveform of

nominal frequency (i.e. with δ = 0%) is reported in the following.

Proof of expression of amplitude or phase steps effect on DFT estimators. Let us assume
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Figure 3.10: TVE patterns as a function of time for δ = 0% (a) and δ = 4% (b), assuming that a step of

relative size ka = 5% occurs after 0.1 s the time reference.

that an ideal electric sine wave of nominal frequency f0 (i.e. with δ=0%) is affected by an

amplitude or a phase step described by (3.29) or (3.35), respectively, at time td = d/fs.

Since steps do not change waveform frequency, when t ≥ td x(t) can be easily rearranged

as a sum of two sine waves of frequency f0, i.e.

x(t) = X1cos[2πf0t+ φ] +X2 cos[2πf0t+ γ] (3.31)

where X1 = A, X2 = ka · A, and γ = φ if an amplitude step occurs, or X1 = A · cos kp,

X2 = A · sin kp, and γ = φ+ π
2

when a phase step is applied. As a result, the phasor at a
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generic reference time tr = r/fs with r ∈ Z is given by

X̄r =

 A√
2
· ejϕr r < d

X1√
2
· ejϕr + X2√

2
· ejγr r > d

(3.32)

where ϕr is defined as in (2.4), while γr = ϕr or γr = ϕr + π
2

depending on whether an

amplitude or a phase step occurs. Suppose that the samples of (3.31) are collected by a

PMU in ideal conditions (without considering noise or disturbances) and that (3.3), with

N = M , is used to estimate (3.32). Since waveform sampling and acquisition is perfectly

coherent (i.e., f0 = M · fs), if the DFT observation interval does not include the step, no

magnitude or phase errors affect the estimation result. On the contrary, when the step

occurs within an observation interval, the estimation errors depend on how many samples

are collected before d and r. From these simple considerations, it can be easily shown that

TVEDFT
r =



0 r < d− M−1
2

+ s
| ˆ̄XDFT
r − A√

2
·ejϕr |

| A√
2
·ejϕr | d− M−1

2
+ s 6 r < d

| ˆ̄XDFT
r −X1√

2
·ejϕr−X2√

2
·ejγr |

|X1√
2
·ejϕr X2√

2
·ejγr |

d ≤ r 6 d+ M−1
2
− s

0 r ≥ d+ M−1
2
− s

(3.33)

where s=0 or 1/2 depending on whether M is an odd or an even number, respectively,

and ˆ̄XDFT
r is the phasor estimated by (3.3). In particular after several algebraic steps, it

can be proved that

ˆ̄XDFT
r =

1

M
√

2
(A · Er +X1 · Fr +X2 ·Gr) (3.34)

where

Er = (d− r + M−1
2

)ejϕr +
sin[ 2πM (d−r+M−1

2 )]
sin( 2π

M )
e−j[

2π
M (M+1

2
−d−)φ]

Fr = (r + M−1
2
− d)ejϕr +

sin[ 2πM (r+M−1
2
−d)]

sin( 2π
M )

e−j[
2π
M (M+1

2
+d)+φ]

Gr = (r + M−1
2
− d)ejγr +

sin[ 2πM (r+M−1
2
−d)]

sin( 2π
M )

e−j[
2π
M (M+1

2
+d)+γ].

Observe that, in accordance with (3.32), the leftmost terms of Er, Fr and Gr in (3.4.1) are

responsible for the almost triangular TVE pattern behavior visible in Fig. 3.10(a). The

rightmost terms in (3.4.1) instead cause TVE oscillations and ripples whose size depends

on the relationship between φ and d. In the case of the DFT phasor estimator, such

terms are very small, so they do not affect the response times significantly. However, in

the other estimators (e.g. 6PM), they can be much larger.
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Figure 3.11: Maximum and minimum worst-case TVE patterns as a function of the relative step magni-

tude kp. All patterns are obtained by changing the waveform initial phase values and the moment when

the step occurs in a cycle.

The agreement between this expression and corresponding simulation results reported

in Fig. 3.10(a) is excellent. Similar expressions could be also derived for the other analyzed

estimators. Observe that some response time curves (namely those associated with the

DFT phasor estimator in off-nominal conditions and the 4PM estimator for δ = 4% and

TVE= 0.3%) are missing. In such cases the TVE patterns are never steadily below the

target threshold. Therefore, the response times are undefined. In all the other cases, the

response time values are below the boundaries reported in [18] (i.e., 1.7/f0 = 0.034 s for

P-class and M-class PMUs at the maximum reporting rate) when the TVE threshold is

set to 1%. When the threshold is lowered to 0.3%, the response times generally tend to

grow and become more sensitive to possible off-nominal frequency offsets. However, the

TWLS technique is quite robust. Observe that, in all cases, when |ka| is small enough,

the response times are zero, because the maximum TVE values are always smaller than

the given threshold.

3.4.2 Phase Step Change

If a step affects the phase of waveform (3.2), but no significant amplitude variations occur,

the functions εa(t) and εp(t) can be expressed as

εa(t) = 0 and εp(t) = 2πf0δt+ kpu(t− td). (3.35)

The worst-case TVE curves related to the four considered estimators as a function of kp
in the range [−10◦, 10◦] are shown in Fig. 3.11 for δ = 0%. Similarly to what is reported
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in Fig. 3.8 all TVE patterns exhibit similar values and grow linearly with |kp|. Therefore,

also in this case the maximum TVE values caused by possible out-of-range phase steps

can be easily extrapolated by means of the following expression

TVEm
ppeak

= (kp, δ) ≈ bp|kp|+ TVEm
off (δ), (3.36)

where m ∈ {DFT, 4PM, 6PM, TWLS}, bp = 0.93± 0.09 is the TVE growth rate caused

by the phase step when δ=0%, and the meaning of TVEm
off (δ) is the same as in Section

3.3.1.Consider that if kp is expressed in crad rather than in degrees, then bp = 0.53±0.05.

Therefore, the TVE sensitivity of all estimators to amplitude and phase steps is quite

similar. Observe also that the uncertainty associated to the TVE growth rate depends

on the phase of the waveform when the step occurs, as well as on the properties of the

considered estimator. Nonetheless, the step-related TVE increments are quite similar for

all techniques, regardless of the value of δ. Moreover, they are almost symmetric with

respect to kp and they are dominated by the phase error contribution. In Fig. 3.12 the

worst-case response time curves are plotted as a function of kp in the range [−10◦, 10◦], for

δ = 0% and δ = 4% and for two different TVE thresholds, i.e. 1% and 0.3%, respectively.

Response time values have been obtained by changing linearly the time at which the step

occurs within a full waveform cycle and are expressed in waveform cycles at the nominal

frequency. Different line color refer to different estimators, in accordance with the notation

already used. The considerations about the curves in Fig. 3.12 are the same as those in

Fig. 3.9. However, in this case the maximum response time of the 6PM technique exceeds

the 1.7/f0 limit reported in [18] when |kp| > 8◦. Again some DFT and 4PM curves

are missing in Fig. 3.12(b)- 3.12(d) because the TVE is never steadily below the chosen

threshold. Quite interestingly, the TWLS method exhibits excellent performance (smaller

than 1 cycle) when the TVE threshold is set to 1%, even if the observation interval is

about four cycles long. However, when the TVE threshold is set to 0.3%, the response

time may become much longer. It is also worth noticing that the responsiveness of the

TWLS method is very insensitive to δ. This is due to the very good performance of this

estimator in tackling possible static frequency offsets.

3.4.3 Linear Frequency Ramp

If the frequency of the electrical waveform (3.2) is subjected to a linear variation and no

amplitude changes occur, then εa and εp can be expressed as

εa(t) = 0 and εp = πRf t
2 (3.37)

where Rf represents the frequency rate expressed in Hz/s.
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Figure 3.12: Worst-case response time values expressed in nominal cycles as a function of the phase step

size kp for TVE=1% and δ=0% (a), TVE=1% and δ=4% (b), TVE= 0.3% and δ=0% (c), TVE= 0.3%

and δ= 4% (d). Curves are missing when the response time is undefined. This happens when the TVE

is larger (or smaller) than 1% or 0.3%, for any value of kp.

In Fig. 3.13 the upper TVE envelopes associated with the one-cycle DFT, the 4PM,

the 6PM and the TWLS estimators, are plotted as a function of time over an interval of 5

s. In all cases the frequency rate is set equal to the upper bound specified in the Standard,

namely 1 Hz/s [18]. Clearly, the TVE grows with time, as expected. However, while the

TVE increment related to the TWLS estimator is basically negligible, one-cycle DFT,

4PM and 6PM violate the 1%. Clearly, the TVE grows with time, as expected. However,

while the TVE increment related to the TWLS estimator is basically negligible, one-cycle

DFT, 4PM and 6PM violate the 1% constraint recommended in the Standard after about

1 s, 3 s and 4 s, respectively. It is worth noticing that the relative frequency increment

during a single waveform cycle is very small. In fact, the relative off-nominal frequency

offset accumulated in a single waveform cycle when Rf = 1 Hz/s is just 4·10−4. Therefore,

the frequency changes can be regarded as quasi-static and the ramp can be reasonably
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Figure 3.13: Maximum TVE envelopes in the presence of a linear frequency ramp growing with a rate of

1 Hz/s.

approximated by a staircase function built by accumulating small, frequency steps in

successive observation intervals. This interpretation explains why the TVE envelopes

shown in Fig. 3.13 are very close to the worst-case TVE curves reported as a function

of δ in [40] and why the TWLS technique exhibits the best performance. Indeed, this

estimator is excellent in static off-nominal conditions.

3.5 Conclusion

In this chapter after a presentation of state-of-art estimators, the performances of three

selected synchrophasor estimators are analyzed and compared with the classic one-cycle

DFT. The proposed analysis is divided in two parts.

In Section 3.3 the effect of static off-nominal frequency offsets, amplitude and phase

oscillations, harmonics and noise is evaluated. We purposely took into account such phe-

nomena in order to assess their impact on the estimator accuracy even in complex sce-

narios, i.e. when the electrical waveforms are affected by both quasi-stationary changes

and fast fluctuations. The reported simulation results and the corresponding analytical or

numerical upper bound expressions show that the 4PM and the 6PM techniques (which

track the time-varying synchrophasor behavior by estimating its first- and second-order

derivatives over subsequent non-overlapped observation intervals) have a moderate com-

plexity and can be compliant with the P-class accuracy requirements of the Standard

IEEE C37.118.1-2011, both under steady-steady and dynamic conditions, provided that

the SNR is large enough. However, neither one can assure M-class accuracy compliance
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at a reporting rate equal to or larger than 50 sample/s, since the TVE boundaries are

violated in static conditions when the off-nominal frequency offset is about ±10%. The

Taylor Weighted Least Squares (TWLS) phasor estimators generally assure better accu-

racy in all conditions, especially if a window is used to weigh the samples of the collected

data records. However, also in this case the M-class accuracy compliance can be hardly

achieved when four waveform cycles are used. Further analysis to evaluate the accuracy

of these synchrophasor estimators in presence of out-of-band interferers show that all of

them are sensitive and not compliant with the Standard limits.

In Section 3.4 the performances of the same estimators have been analyzed in some

meaningful transient conditions described in the Standard IEEE C37.118.1-2011. The

classic one-cycle DFT technique has been also included as a reference. The reported

simulation results show that the TWLS approach is preferable in almost all conditions,

in spite of a longer observation interval. In the presence of amplitude or phase steps,

its response time is very insensitive to off-nominal frequency offsets and it is shorter

than one nominal waveform cycle, when the TVE threshold is set to 1%. The peak

TVE values of all estimators during step transients are generally comparable and can

be so high as a few percent. Therefore, no significant differences exist between such

techniques in terms of estimation accuracy. In the case of linear frequency ramps based

on the parameters reported in the Standard, all estimators work in quasi-static conditions.

Therefore, responsiveness is not an issue and accuracy is the same as under the effect of

static frequency offsets. Again, the TWLS estimator outperforms the other techniques.

Indeed, it is the only one to meet the 1% TVE limit during the transient in worst-

case conditions.
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Chapter 4

A Dynamic DFT-based

Synchrophasor Estimator

In this chapter, a novel algorithm for synchrophasor, frequency and ROCOF estimation

is defined and analyzed in depth. The proposed algorithm has been preliminary pre-

sented in [41]. At first the theoretical analysis underlying the new algorithm is presented.

Afterwards, the estimation accuracy and the algorithm performances are thoroughly an-

alyzed through simulations under different steady-state and transient testing conditions

described in the Standard IEEE C37.118.1-2011. The simulation results are a subset of

those reported in [41], since only the phasor estimation accuracy is considered in this

dissertation. Moreover, the performances of the same algorithm for phasor angle estima-

tion only are analyzed in depth. This could be particularly useful at the distribution level

where angle measurement accuracy ha to be much higher than at the transmission level.

4.1 Interpolated Dynamic DFT IpD2FT estimator

Let xr[n] be the real part of the electrical waveform acquired by a PMU as presented in

(2.3),i.e.

xr[n] = Re{A[1 + εa(tr + nTs)] · ej[2πfx(tr+nTs)+φ]}
= Re{

√
2pr[n]ej

2π
M

(1+δ)n} (4.1)

where the operator Re{·} extracts the real part of its argument, A is the waveform

amplitude, Ts = 1/fs is the nominal sampling period, φ is the waveform initial phase

Part of this chapter was published in

G. Barchi, D. Fontanelli, D. Macii and D. Petri, “On the Accuracy of Phasor Angle Measurements in Power

Networks”, on IEEE Trans. Instr. and Meas.,vol.64, no., pp., 2015.
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and εa(·) and εp(·) are the intrinsic amplitude and phase fluctuations, respectively. Note

that in (4.1), the expression pr[n] denotes the waveform phasor referred to frequency

fx = f0(1 + δ) at a generic sampling time tr +n · Ts already introduced in (2.4). This can

be rewritten as:

pr[n] =
A√
2

[1 + εa(tr + nTs)] e
j[2πf0(1+δ)tr+εp(tr+nTs)+φ]

=
A√
2

[1 + εar [n]] · ej[2πf0(1+δ)+εpr [n]+φ] (4.2)

As explained in Chapter 3, when a waveform phasor changes rapidly within the same

observation interval, the static phasor model is no longer adequate for estimation purposes.

In this situation, the waveform synchrophasor p′r[n] can be better described by its Taylor’s

series expansion around time tr truncated to the kth order term. As a result, (4.1) can

be rewritten as

xr[n] ∼=
√

2

2

K∑
k=0

(
nkpr,ke

j 2π
M

(1+δ)n + nkp∗r,ke
−j 2π

M
(1+δ)n

)
(4.3)

where pr,k = 1
K!
p

(k)
r (tr) · T ks , and p

(k)
r (tr) is the kth order derivative of (4.2) computed at

time tr and the superscript ” ∗ ” denote the conjugate operator. It is worth noticing that

a digitized waveform processed by a PMU includes various disturbances. Therefore, it is

not expressed by (4.1), but rather by

sr[n] = xr[n] + εhr [n] + εnr [n] (4.4)

where εhr [·] includes all unwanted narrowband components (e.g. the first H harmonics

along with other possible out-of-band interferers), and εnr [·] is the additive wideband

noise. Assuming that in (4.4) both narrowband and wideband disturbances are negligible

(i.e. εhr [·] ≈ εnr [·] ≈ 0), if the windowed discrete-time Fourier transform is applied to

(4.3), it follows that [42], [19]:

Swr(λ) ∼= Xwr(λ) ∼=
√

2

N

N−1
2∑

n=−N−1
2

xr[n]w[n]e−j
2π
N
λn

∼=
K∑
k=0

pr,kWk(λ− ν) + p∗r,kWk(λ+ ν) (4.5)

where the real variable λ denotes the frequency expressed in bins, ν=fx·N·Ts= (1+δ)·N/M
is the fundamental frequency of (4.1) also expressed in bins,

W0(λ) =
1

N

N−1
2∑

n=−N−1
2

w[n]e−j
2π
N
λn (4.6)
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is the normalized discrete-time Fourier transform of the adopted window w[·] and

Wk(λ) =
1

N

N−1
2∑

n=−N−1
2

nkw[n]e−j
2π
N
λn =

(
j
N

2π

k) dkW (λ)

dλk
(4.7)

(with k > 0) is a continuous function proportional to its derivative of order k. Consider

that in (4.5) ν can be also more conveniently expressed as C + ξ, where C = [N/M ]

represent the nominal (integer) number of observed cycles,

ξ =

 C · δ if C ·M is odd

C · δ + 1+δ
M

if C ·M is even
(4.8)

Indeed, if C ·M is an even number, an additional sample is required in order to process

records consisting of an odd number of samples. If the phasor Taylor’s series is truncated

to the second order (i.e., K = 2) and the chosen window exhibits an even symmetry with

respect to its central sample, the values of (4.5) for λ = C + h, h = 1, 0,−1, can be

rearranged as follows [41]

Swr
∼= WP (ξ) · Pr +WI(ξ) · P ∗r (4.9)

where

Swr =


Swr(C − 1)

Swr(C)

Swr(C + 1)

 Pr =


pr0

pr1

pr2

 P ∗r =


p∗r0

p∗r1

p∗r2

 (4.10)

and matrices

WP (ξ) =


W0(−1− ξ) W1(−1− ξ) W2(−1− ξ)
W0(−ξ) W1(−ξ) W2(−ξ)
W0(1− ξ) W1(1− ξ) W2(1− ξ)

 (4.11)

WI(ξ) =


W0(2C − 1 + ξ) W1(2C − 1 + ξ) W2(2C − 1 + ξ)

W0(2C + ξ) W1(2C + ξ) W2(2C + ξ)

W0(2C + 1 + ξ) W1(2C + 1 + ξ) W2(2C + 1 + ξ)

 (4.12)

consist just of real elements. If ξ is known, the real and the imaginary parts of vector Pr
are given by

Re{Pr} = [WP (ξ) +WI(ξ)]
−1 ·Re{Swr}

Im{Pr} = [WP (ξ)−WI(ξ)]
−1 · Im{Swr}

(4.13)
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In particular, by denoting the solution of (4.13) with P̂r = [p̂r0 , p̂r1 , p̂r2 ]
T the synchrophasor

estimate at the reference time tr is simply p̂r0 . If ξ is unknown instead (which is the most

common case), the values of P̂r can be obtained iteratively as follows. At first, ξ in (4.11)

and (4.12) is assumed to be equal to 0. Then, (4.13) is computed and the value of ξ is

obtained from (4.8), once the fractional frequency deviation δ is estimated from

δ̂(tr) =
M

2π

Im{p̂r1 p̂∗r0}
|p̂r0|2

(4.14)

The new value of ξ is then replaced into (4.13) and the same procedure is repeated till

when the results of (4.14) do not change significantly. The algorithm flow chart is shown

in Fig. 4.1. Indeed the convergence of the algorithm, which relies on a gradient-based

approach (similarly to the classic Newton-Raphson method) is always guaranteed. In

the following, the algorithm expressed by (4.5)-(4.14) will be referred to as Interpolated

Dynamic DFT-based (IpD2FT) synchrophasor estimator [41].

Compute 

Estimated frequency deviation

Initialize

Compute 
Does result change 

significantly?

NO

Estimated
Synchrophasor

YES

Figure 4.1: Flow chart of the Interpolated Dynamic Discrete Fourier Transform (IpD2FT) algorithm.
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4.2 Computational Complexity

As known, the evaluation of one DFT sample requires N complex products and N -1

complex additions. Therefore, complexity is O(N), i.e. proportional to the number of

collected samples. The complexity of the IpD2FT algorithm is still linear with N , but it

is larger than both DFT and TWLS estimators for various reasons, i.e.

• at least K+1 DFT samples of the transform of the acquired waveform have to be

computed;

• 2(K + 1)2 samples of the window spectrum have to be evaluated to build matrices

(4.11) and (4.12) ;

• such matrices have to be inverted;

• the algorithm is repeated L times;

• finally at the end of each iteration a new value of ξ has to be estimated using (4.14)

and (4.8).

Evidently, the computational cost of the last operations for obtaining ξ is negligible

compared with the rest of the algorithm. Therefore, assuming that the number of it-

erations L is fixed, the order of complexity of the IpD2FT estimator is approximately

O((K+ 1)·N) + 2L·[O((K+ 1)2·N) +O((K+ 1)3)], where the cubic rightmost term refers

to the complexity of inverting a (K+1)×(K+1) matrix, using the Gauss–Jordan elimina-

tion technique. Even if the overall complexity of the IpD2FT looks quite larger than the

other solutions, in practice the values of both K and L are small (e.g. K=2 and L=3).

Thus, the overall processing time to return a single phasor estimate is still dominated by

the number of samples N , and it is just slightly higher than using a basic DFT estimator.

4.3 Simulation results

In order to analyze the performance of the proposed algorithm, multiple Monte Carlo

simulations have been performed, considering fs=6.45 kHz (i.e. M = 129) and different

observation intervals, i.e. C=2, C=3, C=4 and C=6. The classic B-term cosine-class

window functions given by [43]:

w[n] =
B−1∑
b=0

ab cos

(
2π

N
bn

)
n = −(N − 1)

2
, · · · , (N − 1)

2
(4.15)

have been used. Of course the coefficients ab, with b=0,...,B-1, depend on the specific

window chosen since their spectra exhibit complementary performances. In particular

two types of windows are considered in the following: the Minimum Side-Lobe Level

(MSL) and the Maximum Side-Lobe level Decay (MSD) windows.
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Figure 4.2: Maximum TVE values as a function of the off-nominal frequency deviations and joint effect

of amplitude and phase modulations with C=3, K=2 and different windows, i.e. 2- and 3-term MSD, 2-

and 3-term MSL [41].

4.3.1 Accuracy performance analysis

The accuracy performance of the IpD2FT estimator has been evaluated in different sce-

narios recommended by the Standard.

Fig. 4.2 shows the maximum values of TVE obtained after three iterations using 2-

term and 3-term MSL and MSD windows, respectively over a 3-cycle observation interval

(namely with C= 3 and N = 387). The worst-case TVE values are plotted as a function

of δ in the range [−0.1, 0.1] under the effects of amplitude modulation (AM) and phase

modulation (PM), but without any other disturbances (i.e. εhr [·] and εnr [·]). Amplitude

and phase of the modulating sine waves εa(t) and εp(t) are fixed and equal to the worst-

case values reported in the Standard, i.e. 0.1·A and 0.1·f0 in the case of AM, and 0.1 rad

and 0.1·f0 for PM, respectively. The initial phases of both the fundamental component

and the modulated signals are chosen randomly in [0, 2π] and the maxima result from 300

runs.

Table 4.1 reports the maximum normalized values of TVE for four different observation

interval length (i.e. C=2, C=3 , C=4 and C=6 ) and for different types of windows. In

order to better highlight the potential compliance with the requirements of the Standard,

the values reported in the Table are normalized by the respective threshold values TVEth.

Such thresholds refer to the case of M-class PMUs with a reporting rate RR/20 fps. The

values that exceed the Standard requirements are shadowed, in this way they are easily
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identified in the Table.

In all cases the synchrophasor Taylor’s series is truncated to the second-order term

(i.e. K = 2). Some simulation have been performed assuming K = 3 and changing

(4.10)–(4.13) accordingly. However even if the robustness of the algorithm increases in

present of fluctuations, it becomes more sensitive to other disturbances (i.e. harmonics

and wide-band noise). So K=2 guarantees globally better performance. The considered

test conditions summarized below:

a) influence of a static relative frequency deviation δ alone, changing linearly in the

range |δ|≤ 0.1, in compliance with the worts-case requirements of the Standard

IEEE C37.118.1-2011;

b) sine-wave with static frequency deviation δ, like in case a, affected by zero-mean

additive wideband Gaussian noise with variance corresponding to a Signal-to-Noise

Ratio (SNR) of 60 dB. Since this case is not considered in the Standard, the threshold

is the same as in case a;

c) sine-wave affected by a static relative frequency deviation in the range |δ|≤ 0.1 and

by a second-order harmonic with magnitude equal to 10% of the fundamental tone;

d) similar to case c, but considering just the third-order harmonic with magnitude

equal to 10% of the fundamental tone;

e) AM waveform with a carrier fundamental frequency affected by an off-nominal rel-

ative deviation |δ|≤ 0.1 and with amplitude and frequency of the modulating signal

equal to 0.1·A and 0.1·f0, respectively;

f) AM+PM waveform with the carrier fundamental frequency affected by an off-nominal

relative deviation |δ|≤ 0.1 and with AM and PM modulating frequencies and am-

plitude equal to 0.1 · f0 and 0.1 · A (for AM) and 0.1 rad (for PM), respectively;

g) sine-wave at nominal frequency perturbed by an out-of-band sinusoidal interferer

with magnitude equal to 10% of the fundamental, phase chosen randomly in [0, 2π)

and frequency no smaller than 10 Hz, no larger than 2f0 and lying outside the

interval (f0–RR/2, f0 +RR/2) when RR = 50 fps.

The results reported in Tab. 4.1 lead to the following conclusions.

In case a, the estimation error, due mainly to the spectral leakage of the waveform

image component and by the Taylor’s series approximation error, is negligible compared

with the threshold specified in the Standard.

In case b the combined effect of frequency deviation and wide-band Gaussian noise

does not affect the TVE index.

In case c, the presence of 2nd-order harmonic when C=2 and C=3 may cause large

TVE values, i.e. the well beyond compliance thresholds. Indeed, the discrete-time Fourier
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transform of a multi-frequency signal results from the superposition of the window spec-

trum replicas centered at different tones. If B is equal to or greater than C-1 (as it

happens in Tab. 4.1), the vector Xwr is heavily affected by the contribution of the sec-

ond harmonic, which interferes through the window spectrum main-lobe, thus heavily

perturbing the estimation result. Moreover, the amount of interference grows when B

increases, because the window spectrum main-lobe becomes wider. On the other hand,

when B is smaller than C-1, the interference caused by the harmonics is due to the spec-

trum side-lobes of the chosen window. Thus, as the difference between C and B grows,

the estimation accuracy improves.

Similar considerations hold in case d, even though the third-order harmonics are less

critical than the second-order ones, because the corresponding spectrum main-lobes are

farther apart from the fundamental. Higher-order harmonics are not considered because

they are filtered by the adopted windows.

The effect of amplitude and phase fluctuations, in case e and f is more relevant over

longer observation intervals, regardless of the chosen window. This behavior, which is

opposite to what happens in presence of off-nominal frequency deviations and harmonics,

suggests that a trade-off is necessary in order to fulfill all the Standard requirements.

Finally, in case g the values in Tab.4.1 show that out-of-band interfering tones inter-

harmonics generally cause large errors.. However, this effect can be mitigated by using

windows with a smaller number of terms (e.g. 2) and/or by prolonging the observation

interval length. Unfortunately, full M-class compliance in the presence of worst-case out-

of-band interferers cannot be achieved using observation intervals up to six cycles.

A comparison analysis between the IpD2FT-based algorithm and other techniques

presented in the literature could provide some useful information. For example, consid-

ering the TWLS-based method analyzed in Chapter 3 (which is the best among those in

Section 3.3 - 3.4) interesting considerations can be drawn. Obviously, due to the many

parameters involved and to the dependence of TWLS algorithm on the window a full

detailed one-to-one comparison is not feasible at this time. However, with reference to

the results published [36] and reported in Chapter 3 when the TWLS estimator relies on

a Kaiser window with β = 8 over four-cycle observation intervals, we can find that the

values of TVE/TVEth in conditions very similar to those of cases a, b, c, d, of Tab. 4.1,

are approximately in the range [0.1, 0.3], i.e. well below the boundaries of the Standard,

but larger than those of IpD2FT . This is mainly due to the iterative frequency estimation

approach, which is more effective than TWLS minimization Instead under the effect of

modulations, (cases e, f ) the accuracy of TWLS-based approach is about one order of

magnitude better than IpD2FT, because dynamic change tracking is more effective. How-

ever, both techniques largely meet the requirements of the Standard in the most cases.
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Figure 4.3: Envelopes of TVE patterns as a function of time when a 10% amplitude step occurs and

the IpD2FT algorithm is applied over 6-cycle observation intervals (C = 6) using 2-term or 4-term MSD

windows. The dotted horizontal lines refer to the limits for response time estimation reported in the

Standard IEEE C37.118.1-2011 [41].

Conversely in the presence of narrowband out-of-band interferers, (case g) the results

over one and two cycles reported in [44] and in Tab.4.1 show that both synchrophasor

estimators are not compliant.

4.3.2 Transient performance analysis

The behavior of the IpD2FT-based estimation algorithm with K=2 in transient conditions

has been analyzed through further simulations under the effect of amplitude or phase step

changes and frequency linear variations. In both cases, it is assumed that δ=0, εhr [·] = 0

and εnr [·] = 0. Amplitude steps and phase steps of different size (i.e. εa(t) ≤ ±0.1A and

εp(t) ≤ ±10◦, respectively) are applied independently. The performances are evaluated

in terms of response times.

Fig. 4.3 shows the worst-case envelopes of TVE as a function of time, when a 10%

amplitude step occurs at time t = 0 and the IpD2FT-based estimation algorithm is applied

over six-cycle observation intervals (i.e. C=6) using 2-term or 4-term MSD windows. The

envelopes are computed over multiple curves with the initial phase of the fundamental

tone changing linearly in [0, 2π]. The Standard recommends a TVE limit equal to 1% for

response time estimation. That limit is indicated in the plot with a dotted horizontal line.

Observe that, in the worst-case, the estimation errors exhibit some ripples. In particular,
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Figure 4.4: Maximum TVE response time values as a function of the amplitude step size for two different

limits, i.e. 1% and 0.3% (b). Different line styles refer to observation intervals of a different duration

(i.e. C=2 and C=6) using alternative windows (i.e. 2- and 4-term MSL windows, 2- and 4-term MSD

windows, respectively)[41].

for a given observation interval length, the maximum absolute value of the errors during

transients is larger when windows with a higher number of B terms are used. On the
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contrary, the response times are shorter since the window function in the time domain

decreases more quickly to zero when the number of terms grows [43]. This behavior is

confirmed also in Fig. 4.4, which displays the maximum TVE response time values as a

function of the amplitude step size for two different limits, i.e. 1% (a) (as recommended

in [18] for the whole PMU) and 0.3% (b) (assuming that the estimation accuracy due

to the algorithm only exceeds no more than 1/3 of the total PMU target accuracy). In

the figure, different line styles refer to four different estimators, i.e. 2- and 4-term MSL

windows over two-cycle observation intervals and 2- and 4-term MSD windows over six-

cycle observation intervals respectively. As expected, the response times are lower when

the observation intervals are shorter, but they grow when the limit decreases. In fact, the

TVE patterns need more time to settle below a lower limit. The discontinuous behavior

of the curves in Fig. 4.4(b) is due to the TVE ripples (like those shown in Fig. 4.4(a)),

which cross the 0.3% limit not just once (like in the 1% case), but multiple times before

lying steadily below 0.3%. The worst-case TVE response time curves resulting from phase

steps in the range [−10◦, 10◦] are quite similar to those shown in Fig. 4.4 and exhibit a

similar dependence on both observation interval length and number of window terms (the

corresponding curves are not reported for the sake of brevity). However, the maximum

response time values due to phase steps are slightly larger than those due to amplitude

steps. This behavior is confirmed in Tables 4.2 - 4.3, which reports a more compact

and exhaustive comparison between the maximum TVE response times associated with

different IpD2FT-based estimators, when either ±10% amplitude steps or ±10◦ phase

steps occur. All numbers are expressed in terms of nominal waveform cycles. Again, the

results in the Table refer to four iterations of the IpD2FT algorithm with the Taylor’s

series truncated to order K=2 and in three different pairs of configurations, i.e.

• using a 2- or a 4-term MSL windows over two-cycle observation intervals (C=2);

• using a 2- or a 4-term MSL windows over four-cycle observation intervals (C=4);

• using a 2- or a 4-term MSD windows over six-cycle observation intervals (C=6).

Two sets of limits are considered in each case, i.e. those reported in the Standard [18]

for the whole PMU and three smaller thresholds chosen arbitrarily under the assumption

that the maximum estimation errors due to the algorithm only is at most a fraction

of the total PMU accuracy limits reported in the Standard i.e. TV Elim = 0.3%. The

values shadowed in Tables 4.2-4.3 refer to those conditions that do not meet the P-Class

compliance boundaries, namely 1.7 nominal waveform cycles for TVE. Consider that

the M-class response time boundaries in the Standard depend on the reporting rate, but

in any case they are larger than the corresponding P-class values. Therefore, results

in Tables 4.2-4.3 that are compliant with P-class requirements are also compliant with
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Table 4.2: Maximum TVE response time of the IpD2FT-based estimator with the Taylor’s series truncated

to order K=2, as a result of amplitude step changes. All values (expressed in nominal waveform cycles)

are computed in nominal frequency conditions from the instant when TVE exceeds the respective limits

(TVElim) to the time after which they permanently stay below such limits. The red values refer to the

conditions that violate the P Class boundaries reporte in the Standard [41].

Test type Amplitude step (±10%)

Window length C=2 C=4 C=6

Window type MSL MSL MSD

B=2 B=4 B=2 B=4 B=2 B=4

TVElim [%] 1 0.6 0.5 1.2 0.9 1.6 1.1

0.3 1.6 1.3 3.0 2.2 4 2.9

Table 4.3: Maximum TVE response time of the IpD2FT-based estimator with the Taylor’s series truncated

to order K=2, as a result of phase step changes. All values (expressed in nominal waveform cycles) are

computed in nominal frequency conditions from the instant when TVE exceeds the respective limits

(TVElim) to the time after which they permanently stay below such limits. The red values refer to the

conditions that violate the P Class boundaries reporte in the Standard [41].

Test type Phase step ( ±10◦)

Window length C=2 C=4 C=6

Window type MSL MSL MSD

B=2 B=4 B=2 B=4 B=2 B=4

TVElim [%] 1 0.9 0.8 1.3 1.0 1.8 1.3

0.3 1.8 1.4 3.4 2.6 4.5 3.3

M-class. In general, four-cycle observation intervals assure a good trade-off between

accuracy and responsiveness. However, by increasing the observation interval length,

responsiveness degrades. It is quite interesting to observe that when TVElim = 1% the

maximum TVE response times over C=4 cycles are comparable with those obtained with

a four-cycle TWLS estimator based on a Kaiser window with β=8 (i.e. about 1 cycle) as

shown in Chapter 3. On the contrary, when TVElim = 0.3% the TWLS responsiveness is

considerably better (i.e. slightly longer than 1 cycle against 2 to 3 cycles in the case of the

proposed algorithm). Probably this is due to the smaller size of the TVE ripples resulting

from the application of both the TWLS estimator and the adopted window [39]. The

transient behavior of the IpD2FT-based algorithm during ramps of system frequency has

been also analyzed in the worst-case conditions described in [18], i.e. by choosing different

random initial phases in [0, 2π] and by changing linearly the fundamental frequency from

f0− 5 Hz to f0+5 Hz at a rate of 1 Hz/s. Again, the algorithm relies on the second order

(K=2) and the same observation interval lengths and window types described previously,
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i.e. 2- and 4-term MSL windows over C=2 cycles, 2- and 4-term MSL windows over C=4

cycles and 2- and 4-term MSD windows over C=6 cycles. The corresponding maximum

values of TVE normalized by the respective worst-case thresholds reported in the Standard

(i.e. TVEramp = 1% for M-class compliance) are reported in Table 4.4.

Table 4.4: Maximum TVE values obtained using the IpD2FT-based estimator with the Taylor’s series

truncated to order K=2 for linear frequency ramp changes in [f0−5,f0 +5] Hz. All values are normalized

by the worst-case threshold reported in the Standard [18], i.e. TVEramp=1%.

Test type Frequency ramp

Window length C=2 C=4 C=6

Window type MSL MSL MSD

B=2 B=4 B=2 B=4 B=2 B=4

TVElim[%] 1 0 0.09 0.01 0 0.01 0

4.4 The problem of Phasor Angle Estimation

Various recent research works have emphasized the importance of measuring current or

voltage phasor angle with high accuracy at the distribution level. Indeed, the phase offsets

of the waveforms in different points of distribution networks are normally quite small, but,

at the same time, they may vary considerably (both in terms of amplitude and speed),

as a result of significant changes in generation or load profiles. In fact, active distribu-

tion networks are characterized by reduced line lengths, limited power flows and higher

distortion levels than those of transmission networks [45]. Such features suggest that

the PMU accuracy requirements at the distribution level are expected to be higher than

those specified in the Standard C37.118.1-2011, although no phase measurement uncer-

tainty limits are explicitly reported in [18] and [46]. In addition, at the distribution level

the PMUs could be used to monitor electromechanical transients, which generally lead to

non-negligible deviations from the nominal frequency. As a result, synchrophasors angles

could be poorly estimated if waveform frequency changes within the chosen observation

intervals are too relevant to be accurately measured. Moreover, both voltage magnitudes

and phases greatly depend on the levels of demand and distributed generation at a given

time [47]. Therefore, a PMU for distribution systems should not only track waveform

phasors, frequency and ROCOF in real-time under dynamic conditions [34],[39], but it

should be also able to measure phasor angles with uncertainty in the order a few mrad or

less [48], as it is confirmed by the specifications of some novel instruments currently under

development [49]. Generally, the phase errors result from three main contributions, i.e.

unwanted phase shifts introduced by instrument transformers (which are in the order of a



The problem of Phasor Angle Estimation 71

few crad) [50], offsets caused by the estimation algorithm itself and deviations due to the

limited time synchronization accuracy [51] or, sometimes, to the need to reconstruct the

phasor values at times different from tr [52]. The contribution of instrument transformers

is not related to the PMU, so it is out the scope of this section. The uncertainty contribu-

tions due to the synchrophasor estimation algorithm is probably the most interesting, as

it depends also on the features of the signals to be monitored. Since this issue is seldom

considered in the literature, in this section the angle measurement accuracy of three al-

gorithms, namely the classic DFT (3.3), the TWLS (3.6) and the IpD2FT (4.5)–(4.14), is

extensively analyzed. In all cases, the worst-case phasor angle measurement uncertainty

of the three considered estimators has been evaluated, simply computing Arg{p̂r}.

4.4.1 Simulation and results

The accuracy of the considered phasor angle estimators has been evaluated through exten-

sive Monte Carlo simulations in various conditions based on the Standards C37.118.1-2011

and EN 50160-2010 [18],[53]. In fact, the latter document is specifically focused on power

quality requirements at the distribution level and it “specifies the main characteristics of

the voltage at a network user’s supply terminals in low, medium and high voltage AC elec-

tricity networks under normal operative conditions” [53]. Moreover, in order to test the

accuracy of the phasor angle estimators in transient conditions closer to those of distribu-

tion networks, some additional simulations under the influence of decaying DC offsets are

reported at the end of the tests. The choice of using two sets of testing conditions (and in

some case their combination) is due to the fact that the Standard C37.118.1-2011 (along

with its Amendment C37.118.1a-2014 [46]) deals with PMU performance regardless of how

or where these instruments are used. On the contrary, the Standard EN 50160-2010 is

specifically focused on the features of the voltage waveforms at the distribution level. All

simulations rely on the same general assumption used in Section 4.3. The absolute values

of the maximum phase errors associated with the DFT, IpD2FT and TWLS estimation

algorithms are shown in Tables 4.5, 4.6 and 4.7, respectively. All data are expressed in

mrad. The tests taken into consideration comprise the same conditions already used to

build Tab. 4.1, i.e. (case a – g), but includes a few additional ones, which are likely to

better represent the operating conditions of active distribution networks, i.e.

h) the fundamental frequency is assumed to be nominal, but the collected waveform is

affected by an amplitude step of magnitude equal to ±10% of the nominal value;

i) the fundamental frequency is assumed to be nominal, but the collected waveform

is affected by a phase step of ±10◦ (i.e. ±π/18), according with the worst-case

conditions reported in [18];



72 A Dynamic DFT-based Synchrophasor Estimator

j) the waveform exhibits a fundamental frequency deviation δ in the range [−0.1, 0.1]

and it is perturbed by all harmonics till the 25th. Each harmonic amplitude is

compliant with the worst-case specified in the Standard EN 50160-2010 [53];

k) finally, we consider the superposition of the harmonic disturbances described in case

j with the AM and PM modulations described case f.

The results reported in Tables 4.5, 4.6 and 4.7 show the following considerations. In

the case of static off-nominal frequency deviations only (case a) the IpD2FT method is

slightly better than the TWLS approach and both techniques outperform the DFT-based

estimator. However, the maximum phase errors associated with any algorithm can be

made negligible by increasing the observation interval length. Such results are basically

the same as those obtained by changing linearly δ at a rate of 1 Hz/s, as described in the

case of ramp testing in [18] and [46], since this rate of change of frequency causes very

small frequency changes when considering short observation intervals.

In the presence of noise, case b, the DFT-based estimator provides the best accuracy,

while the dynamic estimators exhibit similar performances. Also, the standard deviations

of the estimation is reduced by using longer observation intervals.

The classic DFT-based approach is generally also less sensitive to harmonics than the

IpD2FT estimator, which in turn performs better than the TWLS algorithm in cases c),

d) and j). The higher sensitivity of the dynamic approaches to harmonics is mainly due

to the use of phasor derivatives. Again, in all cases considered the maximum phase errors

can be reduced by increasing the observation interval length.

Under the effect of amplitude and/or phase modulation, in cases e) and f), both the

TWLS technique and the IpD2FT algorithm outperform the classic DFT-based estimator,

as expected, since they take advantage of the dynamic phasor model. However, unlike

the previous cases, the accuracy of all techniques degrades when C grows. This is quite

intuitive because phasor changes are smoothed by longer intervals.

The considerations above suggest that, in the presence of both steady-state harmonic

distortion and modulations (case k), for a given type of window, the best accuracy results

from the trade-off between opposite trends. This is not clearly visible from Tables 4.5 -

4.7, since, with the chosen values of C, the effect of harmonics prevails over modulations.

As a consequence, the maximum phase errors for a given number of window terms B,

apparently decrease monotonically. However, further simulations confirm that, the phase

error values exhibit a growing trend as soon as, by increasing C, the effect of modulations

prevails over harmonic distortion.

When a large out-of-band interferer is close to the fundamental tone (case g) the phase

errors associated with all estimators become quite large. However, the DFT estimator is

much less sensitive to the out-of-band interferers than the IpD2FT algorithm. In turn,
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this is less sensitive than the TWLS estimator. Also, accuracy improves as the observation

interval length increases since the frequency distance between the fundamental component

and the interfering tone increases.

The maximum phase errors associated with the three estimators in transient condi-

tions, i.e. under the effect of amplitude steps (case h) or phase steps (case i), respectively

are also reported in the Tables. The DFT estimator is less sensitive to transients than

the IpD2FT algorithm. This, however, performs clearly better than the TWLS. As ex-

pected, the maximum error due to a phase step is much larger than the maximum error

related to a magnitude step, as the former impacts directly on the phase of the waveform.

Observe that in all the considered cases the errors tend to decrease, even if slowly, as

the observation interval length grows. When the IpD2FT algorithm is considered, the

number of terms of the Taylor’s series deserves a special attention. Indeed, if K increases

(e.g. K=3), the observation interval length has to increase as well to avoid significant

spectral interferences due to other spectral components such as harmonics or the image

tone. As a result, the IpD2FT algorithm responsiveness degrades, but accuracy tends to

slightly improve by using K=3 rather than K=2. However, by increasing K the algorithm

becomes more sensitive to wideband noise (i.e. in case b). Ultimately, K=2 provides a

good trade-off between overall accuracy and responsiveness.

In Fig. 4.5 the maximum absolute values of the phase estimation errors associated with

the DFT-based technique (a), the IpD2FT algorithm (b), and the TWLS estimator (c),

respectively, are compared in the testing conditions related to case j. The error curves

are plotted as a function of δ for C = B+ 2 cycles when a B− term MSD window is used

(with B = 2, 3 or 4). The plots confirm that the DFT-based solution is slightly more

robust to harmonics than the others. However, the TWLS estimator can be significantly

affected by harmonics when δ is negative.

Fig. 4.6 shows the maximum absolute values of the phase estimation errors associated

with the DFT-based technique (a), the IpD2FT algorithm (b), and the TWLS estimator

(c), under the testing conditions related to the (case f ). The adopted windows and the

observation interval lengths are the same as those used in Fig. 4.5. However, in this

case the IpD2FT algorithm and the TWLS estimator clearly outperform the classic DFT–

based approach.

Fig 4.7(a)-(b) provides an example of the transient behavior of all the analyzed es-

timators under the testing conditions related to the cases h) and i), respectively. In

Fig. 4.7(a)-(b) the maximum phase error envelopes associated with the three estimators

are plotted as a function of time expressed in nominal waveform cycles, when the ob-

servation interval is about C = 4 cycles long and a 2-term MSD window is used. The

curves confirm that when an amplitude step occurs the maximum error introduced by the
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Figure 4.5: Maximum absolute values of the phase estimation errors associated with the classic DFT-

based technique (a), the IpD2FT algorithm (b), and the TWLS estimator (c), as a function of the static

off-nominal frequency deviation δ and under the effect of a worst-case total harmonic distortion compliant

with the Standard EN 50160:2010.
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Figure 4.6: Maximum absolute values of the phase estimation errors associated with the DFT-based

technique (a), the IpD2FT algorithm (b), and the TWLS estimator (c), under the joint effect of: static

off-nominal frequency deviations δ 6= 0, amplitude modulation (AM) and phase modulation (PM). The

modulating signals are two sine-waves of amplitude equal to 10% of the fundamental and 0.1 rad for AM

and PM, respectively, and frequencies equal to 0.1 · f0.
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Figure 4.7: Phase errors envelopes as a function of time (expressed in nominal waveform cycles) when

either a 10% magnitude step (a) or a 10◦ phase step occurs (b). Different line color refer to the DFT-

based technique, the IpD2FT algorithm and the TWLS estimator, when a 2-term MSD window is used

over a four-cycle observation interval. The small diamonds highlight when the step occurs.
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DFT-based estimator is generally smaller than the maximum error associated with the

IpD2FT algorithm or by the TWLS technique. Conversely, in the presence of phase steps,

errors are much larger and quite similar. Quite interestingly, the duration of transients

is almost the same for all estimators in both case h) and case i). Additional simulation

results, not reported for the sake of brevity, show that the error peaks during transients

are almost proportional to the step size, both in magnitude or in phase.

Since the effect of transients is particularly interesting in the case of distribution net-

works, some additional results under the influence of decaying DC offsets are reported

in Fig. 4.8. The three curves displayed on Fig.4.8 with different line styles represent the

maximum phase errors associated with the three considered estimators, when the observa-

tion interval is C=5 cycles and a 3-term MSD window is used. In all cases, exponentially

decreasing DC offsets with initial amplitude equal to 70% of the fundamental and time

constant τ in the range between 0.1 and 10 s are added to a sinusoidal voltage waveform

of frequency f0 [54]. Each point of the curves is the maximum phase error resulting from

200 initial phase values chosen at random in [0, 2π). The decaying DC offset always start

at the beginning of the observation intervals. The reported results show that the DFT

approach is the least sensitive to the influence of such disturbances. Accuracy is about one

order of magnitude worse for the IpD2FT algorithm and at least two orders of magnitude
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Figure 4.8: Maximum phase errors as a function of the time constant of an additive decaying DC offset

of initial amplitude equal to 70% of the nominal waveform amplitude. Different line color refer to the

DFT-based technique, the IpD2FT algorithm and the TWLS estimator, respectively, when a 3-term MSD

window is used over a five-cycle-long observation interval.
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worse than the TWLS estimator. By changing the observation interval length or the type

of window, similar patterns are obtained. Observe that the phase errors associated with

the DFT and IpD2FT estimators exhibit a monotonically decreasing trend. This is due to

the fact that when τ grows, the spectral content of the decaying DC offsets is increasingly

concentrated around zero, i.e. faraway from the spectral samples used by the algorithms.

On the contrary, the sensitivity of the TWLS estimator to decaying DC offsets is not only

larger, but it is also almost independent of the values of τ . This is due to the fact that

the TWLS estimator relies on the weighted least square fitting in the time domain of a

dynamic (i.e. oscillating) phasor model, which does not include any decaying DC offset.

Therefore, such terms cannot be tracked with good accuracy regardless of the value of τ .

4.5 Jitter and time alignment uncertainty

The analysis performed in the previous sections was focused on the effect of phasor es-

timation algorithms only. However, as stated in the Section 4.4, additional uncertainty

contributions arise from: sampling jitter, limited synchronization accuracy, and the need

to estimate the phase of a waveform at times different from the center of the considered

observation interval. The sampling jitter depends on the fact that even if the sampling

clock is disciplined by a GPS receiver or by some other synchronization technique (e.g.

the IEEE 1588 Precision Time Protocol [55]), the input waveform within the rth obser-

vation interval is actually sampled at times which slightly differ from tr + nTs. If we

denote with δT the random time fluctuations of the sampling period Ts, the equivalent

effect of this term on phasor estimation algorithms is to inject an additional phase modu-

lation term in the signal model. This means that εpr [n] in (4.1) should be rather replaced

by ε′pr [n] = εpr [n] + 2π
∑n

i=0 δTs [i]. In addition, because of the limited synchronization

accuracy, even if the delays due to the acquisition stage are properly estimated and com-

pensated, the phase in the center of the considered observation interval is affected by

some uncertainty. In particular, if tj models the synchronization uncertainty, then the

corresponding phase uncertainty at reference time tr can be approximated by a first-order

Taylor series expansion as follows:

∆ϕjr ≈
(

2πf0(1 + δ) +
dεp
dt
|t=tr

)
tj. (4.16)

In practice, the values of tj usually range from some hundreds of ns to a few µs. For

instance, if the worst-case synchronization uncertainty is 1 µs, the absolute value of the

maximum phase error ∆ϕjmax is about 0.4 mrad, i.e. smaller than (or at most comparable

to) the algorithm-related phasor estimation errors in most of the conditions considered.
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A further uncertainty contribution affecting phasor angle measurements arises from

the need to reconstruct the phasor data at times different from the reported ones. In fact,

the PMU reporting rate depends on various factors, such as the performance class of the

instrument (i.e. P-class or M-class [18]), the specific features of the PMU employed and

the chosen instrument settings. When multiple streams of data are collected by (PDC)

at different rates, all measurements results need to be aligned in time. In such cases, the

phasor angle ϕ′r at a generic time t′r = tr + ∆t results approximately from [52]

ϕ′r
∼= ϕr + 2π

[
(fr − f0)∆t+

∆t2

2
ROCOFr

]
, (4.17)

where ϕr, fr and ROCOFr are the phase, the frequency and the ROCOF values at time

tr. In practice, both fr and ROCOFr are affected by some uncertainty that propagates

to the phase estimate. If we denote with FEr and RFEr as the frequency and ROCOF

measurement errors in the rth observation interval, it results immediately from (4.17)

that the phase error due to time alignment is:

∆ϕar = 2π

(
FEr ·∆t+

∆2t

2
·RFEr

)
. (4.18)

In [52] it is noticed that the maximum FE and RFE values in the steady-state conditions

reported in the Standard IEEE C37.118.1-2011 are too strict for P-class instruments and

too loose for M-class PMUs. In fact, new and more sensible limits have been recently pub-

lished in an Amendment to the same Standard [46]. In steady-state conditions (namely

in the presence of off-nominal frequency deviations, harmonics and/or out-of-band inter-

ferers) the new FE and RFE upper bounds for P-class PMUs are 0.005 Hz and 0.4 Hz/s,

respectively. In the case of M-class instruments instead, the scenario is more complex as

the maximum FE values are 0.0025 Hz, 0.005 Hz, or 0.01 Hz depending on the consid-

ered testing condition, while the RFE limit is specified only in the off-nominal case (0.1

Hz/s). In dynamic conditions (particularly, when significant amplitude or phase modu-

lations occur), depending on the PMU reporting rate, the FE and RFE limits lie in the

following intervals: [0.03, 0.06] Hz and [0.6, 2.3] Hz/s, respectively, for a P-class PMU and

[0.12, 0.30] Hz and [2.3, 14] Hz/s for an M-class PMU. By replacing the maximum values

reported above in to (4.18) and noticing that the time misalignment ∆t could be up to 70

ms for a P-class PMU, or up to 300 ms for an M-class PMU [52], it follows immediately

that the worst-case phase errors ϕamax are:

• up to about 8 mrad in steady-state conditions and up to about 62 mrad in dynamic

conditions when considering P-class PMUs;

• up to about 47 mrad in steady-state conditions and between about 350 mrad (fast

reporting rates) to about 876 mrad (slow reporting rates) under the effect of modu-

lations for P-class PMUs.
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Thus, the time alignment uncertainty may quickly become the main contributor to the

overall phase error.

4.6 Conclusion

In this chapter, a novel synchrophasor estimation algorithm based on a dynamic model is

presented and analyzed in various steady-state and transient conditions. Several simula-

tion results suggest that using a proper MSL window most of the M-class requirements of

the Standard IEEE C37.118.1-2011 can be met using four-cycle observation intervals. The

main uncertainty contribution affecting synchrophasor estimation accuracy are harmon-

ics, wideband noise and out-of-band interferers. By increasing the observation interval

duration, their impact decrease. However, the responsiveness in presence of amplitude or

phase step changes and the estimation accuracy under the effect of amplitude or phase

fluctuations degrade.

The second part of this chapter is focused on the phasor angle estimation accuracy

of three different algorithms (i.e. the classic DFT-based algorithm, the Interpolated Dy-

namic DFT algorithm (IpD2FT) and Taylor Weighted Least Square (TWLS)), with a

special attention to the disturbances at the distribution level. Using a common set of

window functions and observation intervals, it turns out that the classic DFT-based es-

timator is less sensitive to harmonics, out-of-band interferers, amplitude or phase steps.

The IpD2FT and TWLS estimators instead are particularly accurate in the presence of

waveform amplitude and/or phase fluctuations. While the TWLS technique is globally

slightly better in dynamic conditions, the IpD2FT algorithm exhibits a lower sensitivity

to steady-state disturbances, step-like changes and decaying DC offsets. Apparently, no

estimator is able to provide best results in all situations. In addition, the accuracy of all

the considered methods can be strongly affected by quick frequency or phase variations,

as it may happen during transients. Finally, it is worth emphasizing that even though

sampling and synchronization jitter have usually a minor impact on the overall phase

error, possible time misalignments between the results returned by different PMUs (e.g.

due to frequency and ROCOF limited measurement accuracy) could lead to intolerably

large phase errors.
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Chapter 5

State Estimation and Measurement

Uncertainty Sensitivity

As known, electrical quantities, such as voltages, currents as well as active and reactive

powers, have to be continuously monitored by system operators in order to use them for

grid state estimation (SE). Currently, the SE requirements in terms of accuracy and re-

sponsiveness are changing as a result of smart grid evolution. In this context, the accurate

measurement data coming from PMUs can substantially enhance SE and the correspond-

ing applications. The purpose of this chapter is to review the definition, the properties and

the sensitivity to measurement uncertainty of one of the most commonly used algorithms

for SE, i.e. the Weighted Least Squares (WLS) technique. Even though the SE problem

has been traditionally focused on transmission networks, currently and, even more in the

future, distribution system state estimation (DSSE) is envisioned to become of primary

importance for correct grid operation. In fact, the traditional sharp distinction between

transmission and distribution networks (whose features were clearly different in the past)

is expected to blur in grids where widespread micro-generation and dynamic load changes

will bring about significant and time-varying bidirectional power flows [56]. Since the

definition and the properties of WLS-based SE are basically the same in both contexts, a

proper and general mathematical analysis of the sensitivity of this technique to different

kinds of measurements is important to minimize their number, regardless of technology-

or budget-related constraints. This problem is not totally new as it was already investi-

gated some years ago [57]. For instance, [58] includes various analytical expressions that

can be used to evaluate how measurement schemes, transmission line modeling, and other

Part of this chapter was published in

D. Macii, G. Barchi, D. Petri, “Uncertainty sensitivity analysis of WLS-based grid state estimators,” IEEE

International Workshop on Applied Measurements for Power Systems Proceedings (AMPS), 2014,vol., no., pp.1,6,

24-26 Sept.2014.
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network parameters affect the goodness of a state estimate. However, this chapter will

be specifically focused on the sensitivity analysis to measurement uncertainty, assuming

that just a minimum amount of measurements is used to assure full state observability.

5.1 Introduction on SE

In the field of power systems, state estimation (SE) refers to the set of algorithms and

techniques that combine measurement results, network topology, and network parameter

values to determine the state of a grid at a given time [59]. Many management tasks like

voltage regulation, stability monitoring, contingency analysis and dispatching, depend on

knowledge of the state of the network. In the past, SE was mainly used at the transmission

level, where the measurement data are collected through the network and provided by the

SCADA system at a certain time. A typical SCADA system relies on quasi-steady state

operative condition and it is unable to monitor fast transient phenomena. In the presence

of dynamic events, such as load variations or topology changes, the measurements provided

by SCADA can be affected by time skew due to the lack of synchronization, which can

lead inaccurate estimates of the system state [7].

Various SE techniques exist and they can be roughly classified as static or dynamic [7].

The main difference between them is that in the dynamic case, the evolution of state

variables over time is described by a dynamic system model based on a set of differential

or finite difference equations. In particular, the definition of an internal model relaxes

the need for measuring all the outputs of the system. In fact, a dynamic estimator, such

as a Kalman Filter, relies partially on the internal system model to achieve observability

and to track possible changes over time [60]. If no internal model are available, then just

a static estimator can be used. In this case, the state of the networks can be observed

only through at least so many independent measurements as the number of state variables.

The main drawback of dynamic estimators is that they are more difficult to apply because

they require good knowledge of the underlying model parameters. Moreover, the model

has to be robust enough to be usable in a variety of conditions.

In this chapter and in the following only static state estimators will be considered.

The most common used algorithm for SE is based on the Weighted Least Square (WLS)

method. Various formulation of the WLS-based SE approach exist. In the most classic

case the state variables are the magnitude and the angles of the nodal voltages; with the

network being described by a single-phase model. The three-phase formulation of the

same estimator is described in [61]. A dual SE approach where the state variables are

the branch currents expressed in Cartesian coordinates is instead formalized in [62]. Two

alternative formulations based on the same idea are reported in [63] and [64], respectively.
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5.2 Measurement model and observability condition

Let us consider a network composed by N buses and B lines. Generally, the state of the

network is modeled by x = [θT ,V T ]T where θT = [θ2, θ3, ..., θN ]T is the vector of the

voltage phasor angles at buses 2, ..., N (the phase of bus number 1 is usually taken as

a reference, i.e. θ1 = 0) and V T = [V1, V2, ..., VN ]T is the vector of the N bus voltage

magnitudes. In general, the state of the network can be observed through the well-known

measurement model [59], i.e.

z̃ = h(x) + εz =



P flow(x)

P inj(x)

Qflow(x)

Qinj(x)

V (x)

θ(x)

I(x)

β(x)


+ εz (5.1)

where:

• h(x) is a nonlinear vector function of the state variables;

• P flow = [Pflow1
,Pflow2

,. . .,PflowB ]T and Qflow = [Qflow1
, Qflow2

, . . . , QflowB ]T are the

vectors of real and reactive power, respectively, flowing through network lines;

• P inj = [Pinj1 ,Pinj2 ,. . ., PinjN ]T and Qinj = [Qinj1 ,Qinj2 ,. . .,QinjN ]T are the vectors of

real and reactive power injected at bus n = 1, . . . , N ;

• V = [V1,V2,. . .,VN ]T and θ = [θ2,θ3,. . .,θN ]T are identity functions of the state, i.e.

V (x) = V and θ(x) = θ;

• I=[I1,I2,. . ., IB]T and β=[β1,β2,. . . ,βB]T are the magnitudes and the phases of the

line currents;

Note that εz is a column vector including all measurement uncertainty contributions. In

the following, we will refer to σ2
i as the variance associated with the ith measurement. It

is worth emphasizing that x is a function of time, although the time variable is generally

omitted to keep notation simpler.

The explicit expression of P flow(x), P inj(x),Qflow(x),Qinj(x), I(x), β(x) are widely

available in the literature, e.g. in [59]. If we assume that each network branch is described



88 State Estimation and Measurement Uncertainty Sensitivity
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gsk+jbsk gsm+jbsm

Figure 5.1: Two-port π-model of a network branch [59].

by the two-port π model shown in Fig. 5.1 and that Ykm = Gkm + Bkm is the element

(k,m) of the network bus admittance matrix, the following expressions hold [59]:

• the real and reactive power injection at bus k are

Pinjk = Vk
∑
m∈Nk

Vm(Gkm cos θkm +Bkm sin θkm) (5.2)

Qinjk = Vk
∑
m∈Nk

Vm(Gkm sin θkm −Bkm cos θkm); (5.3)

• the real and reactive power flow from bus k to bus m are given by

Pflowkm =V 2
km(gsk + gkm)−VkVm(gkm cos θkm + bkm sin θkm) (5.4)

Qflowkm =−V 2
km(bsk + bkm)−VkVm(gkm sin θkm − bkm cos θkm); (5.5)

• the real and imaginary part of the line current flow magnitude from bus k to bus m

are defined as

IREkm = Vk(gsk + gkm) cos θk− Vk(bsk+bkm) sin θk

− V (m)gkm cos θm+Vmbkm sin θm; (5.6)

IIMkm
= Vk(bsk + bkm) cos θk + Vk(gsk + gkm) sin θk

− Vmbkm cos θm − Vmgkm sin θm; (5.7)

Thus the magnitude and the angle of the corresponding branch current is simply

given by:

Ikm =
√
I2
REkm

+ I2
IMkm

(5.8)

βkm = arctan

(
IIMkm

IREkm

)
; (5.9)

In expression (5.2)-(5.9)

− Vk, θk are the voltage magnitude and phase angle at bus k, respectively;
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− θkm = θk − θm;

− gkm+jbkm is the admittance of the series branch connecting buses k and m;

− gsk + jbsk is the admittance of the shunt branch connected at bus k;

− Nk is the set of bus numbers that are directly connected to bus k.

Note that (5.1) may consists of up to M = 4N + 4B − 1 equations, but in practice just

a subset M ′ ≤M of them is typically used to estimate the 2N − 1 state variables. If the

network internal dynamic is generally supposed to be negligible (i.e. the linearized system

state matrix is a 2N−1×2N−1 identity matrix), then it can be easily proved from basic

systems theory that the state of the network is observable if and only if the observability

matrix associated with the linearized system around its state x̄ = x(t̄) at a given time t̄

has a full column rank. This is indeed possible if and only if rank{H(x̄)} = 2N −1 where

H(x) =



∂P flow
∂θ

∂P flow
∂V

∂P inj
∂θ

∂P inj
∂V

∂Qflow
∂θ

∂Qflow
∂V

∂Qinj
∂θ

∂Qinj
∂V

∂V
∂θ

∂V
∂V

∂θ
∂θ

∂θ
∂V

∂I
∂θ

∂I
∂V

∂β
∂θ

∂β
∂V



(5.10)

is the Jacobian of h(x). Therefore, at least M ′=2N−1 measurement equations of (5.1)

with linearly independent coefficients in H(x̄) are needed to estimate x̄.

5.3 The WLS state estimator

The well-known WLS state estimator relies on the minimization of the cost function

J(x) = [z̃ − h(x)]TR−1[z̃ − h(x)], (5.11)

where R is the covariance matrix associated with the selected measurements. Usually, such

contributions are assumed to be uncorrelated (i.e. E{εziεzj} = 0, ∀i 6= j = 1, . . . ,M ′,

where E{·} denotes the expectation operator). Therefore, R = diag(σ2
1, . . . , σ

2
M ′). By

computing the gradient of J(x) and its Taylor series truncated to the first order around

xk for k ≥ 0, the state at iteration k+1 can be obtained using the Gauss-Newton method,

i.e. [59]

xk+1 =xk+[HT (xk)R
−1H(xk)]

−1HT (xk)R
−1(z̃−h(xk)). (5.12)
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Observe that (5.12) converges to a solution if and only if [HT (xk)R
−1H(xk)]

−1 is nonsin-

gular, or, equivalently, if and only if rank{H(xk)} = 2N − 1 ∀k, in accordance with the

observability condition expressed in Section 5.2. Since, normally, at time t the iterative

Gauss-Newton method is supposed to converge to the actual state x, the WLS returns

meaningful results if and only if H(x) exhibits full column rank in a reasonably large

neighborhood of x. The flow chart of WLS algorithm is shown in Fig.5.2. However, it

is well known that WLS method suffers from possible of convergence problems due to

numerical instabilities, which may occur when R−1 is ill-conditioned or when virtual mea-

surements (e.g. zero-power injection) exist. In such cases, the standard WLS methods

can be modified by using the QR Chorlesky decomposition or the Lagrange multiplier

techniques.
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k
)
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x

k
=H(x

k
)TR-1(z-h(x

k
))

Start

Decompose G(x
k
) 

and solve for Δx
k
 

Initialize state vector x
k

max |Δx
k
|≤      ?

End

YES

NO
δ
max

Figure 5.2: Flow chart of weighted least square method.
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5.4 Uncertainty Sensitivity Analysis

If εz is the vector of uncertainty contributions related to the available M ′ ≥ 2N − 1

measurements, it follows immediately from (5.12) that the vector εx of the estimation

errors associated to a generic state x results from

εx=F (x)εz (5.13)

where F (x) = [HT (x)R−1H(x)]−1HT (x)R−1 can be referred to as sensitivity matrix, as it

provides information about the effect of different measurements on the estimates of each

state variable. The covariance matrix of the state estimates is simply given by:

Φx=E{εx ·εTx }=F (x)E{εz ·εTz }F T(x)=F (x)RF T(x). (5.14)

Observe that if just a minimum set of measurements M ′ = 2N − 1 is used and if

rank{H(x)} = 2N − 1, then F (x) = H−1(x), which is independent of R. Since R is

a diagonal matrix comprising the absolute variances of the individual measured quanti-

ties, this can be rewritten as

R = ZRr, (5.15)

where:

• Z = diag(z2
1 , z

2
2 , . . . , z

2
M ′) is a diagonal matrix including the squared values of the

electrical quantities that should be ideally observed if measurement uncertainty were

negligible (i.e. when εz ≈ 0);

• Rr = diag(σ2
r1
, σ2

r2
, . . . , σ2

rM′
) is the diagonal matrix built using the respective relative

measurement uncertainties (except in the case of phase measurement, where the

absolute uncertainty values are considered).

Thus, if M ′ = 2N − 1, expression (5.14) can be also rewritten as

Φx=H−1(x)ZWiH
−1T (x)σ2

ri
= UFiσ

2
ri

(5.16)

where the weights of matrix Wi = diag(
σ2
r1

σ2
ri

, . . . , 1, . . . ,
σ2
rM′
σ2
ri

) are the relative measurement

uncertainties with respect to the ith one chosen as a reference. In essence, (5.16) highlights

how the estimation uncertainty of each state variable depends on the uncertainty of the

ith measurement.

If no a-priori information about measurement uncertainty is available, a reasonable

approach to perform a global sensitivity analysis is to assume that σr1=. . .=σr2N−1
=σr. In

this case, Wi is a (2N−1)× (2N−1) identity matrix and UFi = UF contains the increment

rates of the elements of the covariance matrix Φx with respect to σ2
r . Even if assuming
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that all measurements are affected by the same uncertainty is not realistic in practice,

this approach provides a fair indication of the sensitivity of state estimation to different

kinds of measurements. As a result, some measurements could be included (or excluded)

a priori in (from) a possible experimental setup.

Unfortunately, UF consists of (2N −1)×(2N −1) values. Thus, even if it can be useful

to analyze the uncertainty sensitivity of individual state variables, it does not provide a

global overview of the sensitivity of the whole WLS state estimator to a generic set of

2N − 1 measurements. To this purpose, a scalar function combining all state estimation

errors should be defined.

The individual estimator errors can be potentially expressed in terms of vectorial

error, to take into account the joint effect of magnitude and phase estimation errors.

With reference to bus i = 1, . . . , N , the vector error associated to the ith bus voltage

phasor is defined as

εVEi
= |(Vi + εVi)e

j(θi+εθi ) − Viejθi |

=
√
ε2
Vi

+ 2 (Vi + εViVi) (1− cos εθi), (5.17)

where εθi and εVi are the phase and magnitude estimation errors. If the mean values of

the estimation errors εθ = [εθ1 , . . . , εθN ]T and εV = [εV1 , . . . , εVN ]T are negligible, from

a first-order Taylor series approximation of the square of (5.17) it can be easily shown

that

E{ε2
VEi
} ≈ E{ε2

Vi
}+ ViE{ε2

θi
} i = 1, . . . , N. (5.18)

If the sensitivity matrix F (x) is split into two N ×M ′ matrices [F T
θ (x), F T

V (x)]T related

to vectors θ and V , respectively, (with an all-zeros row added on top of Fθ(x) to take

into account the state variable θ1 = 0) and if σr1=. . .=σr2N−1
=σr, it follows from (5.14)

that

E{εθ ·εTθ } = Fθ(x)ZF T
θ (x)σ2

r =Gθθ(x)σ2
r

E{εV ·εTV } = FV (x)ZF T
V (x)σ2

r =GV V (x)σ2
r. (5.19)

Thus, we can define the following two global scalar performance parameters based on (5.18),

i.e. the root average mean square error

RAMSE =

√√√√ 1

N

N∑
i=1

E{ε2
VEi
} = SAσr, (5.20)

and the root maximum mean square error

RMMS =
√

max
i=1,...,N

E{ε2
VEi
} = SMσr. (5.21)
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If GV Vii(x) and Gθθii(x) are the ith elements of the main diagonal of GV V (x) and Gθθ(x),

respectively, it follows from (5.19) that

SA =

√√√√ 1

N

N∑
i=1

(GV Vii(x) + V 2
i Gθθii(x)) (5.22)

and

SM =
√

max
i=1,...,N

(GV Vii(x) + V 2
i Gθθii(x)). (5.23)

Expressions (5.22) and (5.23) provide the average and maximum measurement uncertainty

sensitivity of the WLS state estimator to a given set of 2N − 1 measurements. In the

following, we will refer to a measurement configuration or simply a configuration as any

set of M ′ = 2N − 1 measurements extracted from (5.1).

5.5 Uncertainty Sensitivity Optimization

In theory, the configuration characterized by i) a minimum amount of measurement points,

ii) full state observability and iii) minimum worst-case sensitivity to measurement uncer-

tainty, can be found by solving a constrained, nonlinear and combinatorial optimiza-

tion problem. Let ξ = [ξ1, ξ2, . . . , ξM ]T be a binary vector, whose ith element is set equal

to 1 if the ith measurement is used for state estimation or 0 otherwise. As it is explained

in Section 5.4, if M ′ = 2N − 1 measurements are considered, then F (x) = H−1(x). This

condition can be equivalently expressed by defining the expanded matrix

Fe(ξ,x) = [HT
e (x)ΞHe(x)]−1HT

e (x)Ξ (5.24)

where He(x) is the maximum-size Jacobian of (5.1), when all measurement equations are

considered (i.e. when M ′ = M), and Ξ = diag(ξ) with 1Tξ = 2N − 1. Notice that, as a

result of the constraint 1Tξ = 2N − 1, Fe(ξ,x) consists just of 2N − 1 nonzero columns.

By splitting Fe(ξ,x) into Feθ(ξ,x) and FeV (ξ,x), and by replacing such matrices and Ze
(i.e. Z for M ′ = M) into (5.19), then also (5.22) and (5.23) depend on ξ and can be

regarded as possible cost functions that could be minimized to find the minimum average

or maximum sensitivity to measurement uncertainty. Assuming for instance, that SA
chosen as a cost function (since it is continuous and generally differentiable), the general
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optimization problem described above can be formalized as follows:

minξ SA(ξ)

(a) ξi = {0, 1} i = 1, . . . ,M

(b) rank(He(x)Ξ) = 2N − 1

(c) 1Tξ = 2N − 1

(d) Aξ ≤ 0

(e) Dξ = 0

(5.25)

where A is an N ×M sparse matrix, whose element (n, j) is defined as follows:

Anj =



−1 (j=n+2B+2N+1 for 1 ≤n ≤N−1) ∨
(j = n+2B+3N for N ≤n ≤N+B − 1)

1 (j = n+2B+3N for 1 ≤n ≤N−1) ∨
(j = n+3B+3N for N ≤n ≤N+B − 1)

0 otherwise

(5.26)

0 is an all-zero vector, and D is a sparse (2B + N) ×M matrix whose element (n, j) is

defined as follows

Dnj =


1 j=n

−1 j= n+B+N

0 otherwise.

(5.27)

The rationale of the constraints (a)-(e) is shortly explained below. Constraint (a) is binary

because we can just include (1) or not include (0) the ith measurement for i = 1, . . . ,M .

However, we are interested in a minimum number of measurements assuring observability,

i.e. 2N−1. This leads to constraint (b). Unfortunately, not all combinations of 2N − 1

measurement equations may assure a full-rank Jacobian H(x̄). Thus, constraint (c) is

needed to avoid incurring singular matrices when (5.18) is computed. The inequality

linear constraint (d) is due to the fact that, when bus voltages or branch currents are

considered, generally either just magnitude or both magnitude and phase (i.e. voltage

or current phasors) are measured. Finally, the linear equality constraint (e) implies that

the real and reactive power injected at a generic bus (or dually the real and reactive

power flows in a branch) are always taken in pairs, since, in practice, these quantities are

typically measured together by the same instrument.

It is worth emphasizing that a solution to (5.25) certainly exists because the number of
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possible combinations is finite, but in general this solution could not be unique. Moreover,

(5.25) is a NP-hard problem, because it is somehow related to the problem of finding the

set of all 2N−1 linearly independent rows of He(x), whose cardinality is certainly smaller

than
(

M
2N−1

)
, but, nonetheless, it grows exponentially with N .

In this involved scenario, a suboptimal solution to (5.25) can be found in a stochastic

sense by applying the following algorithm, i.e.

• the constraint (a) can be initially relaxed (i.e. ξi ∈ [0, 1] for i = (1, . . . ,M) to

exploit the continuity and general differentiability of (5.22). Also, using fractional

values of ξi has the equivalent effect of perturbing the elements of He(x) around x,

which is beneficial to evaluate the numerical robustness of the ongoing optimization

result. In fact, since the WLS estimation algorithm is iterative and relies on Jacobian

values that generally fluctuate as the estimated state converges, by slightly changing

the values of (5.24), possible configurations that could make HT
e (·)ΞHe(·) singular

are more likely to be detected and removed from the optimization procedure.

• As a consequence of the relaxation of constraint (a), constraints (b) and (c) change

as follows:

(b’) rank(He(x)[Ξ]) = 2N − 1

(c’) 1T [ξ] = 2N − 1
(5.28)

where in (5.28) [·] denotes the rounding operator.

• Optimization is performed by combining a random search (RS) and a pattern search

(PS) heuristic approaches. Both RS and PS can be used even when the gradient

of the problem to be optimized is not available or when the cost function is not

differentiable. Unfortunately, the PS approach may also easily lead to local opti-

mal results [65], while pure RS solutions could suffer from long convergence times.

Therefore, the PS is repeated each time starting from different randomly chosen

feasible solutions (i.e. binary configurations meeting the given constrains). To im-

prove the space exploration at every iteration l ≤ L of the PS based algorithm, the

initial configuration is randomly chosen external to the hyperspheres that have been

potentially explored during previous PS iterations. Such hyperspheres are centered

in one of the previously used initial points and have a radius equal to the euclidean

distance between such center points and the respective PS solution vector ξl.

• After L iterations all optimal candidate solutions are compared and the best one is

selected.

The values of L can be chosen with a trial-and-error approach so as to ensure a reasonable

trade-off between level of confidence and convergence time.
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5.6 Simulation results

The theoretical analysis Section 5.4 has been validated through simulations and has been

used to investigate the uncertainty sensitivity of the WLS-based state estimator in a

variety of conditions. All simulations have been performed in Matlab. The small grid

chosen as a case study is the rural distribution network described in [66] and further

analyzed in [67]. Fig. 5.3 shows the network that consists of 15 buses, 14 branches and a

11-kV feeder (node 1).
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Figure 5.3: Small 15-node rural network [66].

The single-line network data and the nominal values of real and reactive power are

summarized in Appendix A (Tab. A.1 and Tab. A.2 respectively). All loads are supposed

to be affected by zero-mean random changes up to about ±50% of the nominal value, in

accordance with the assumption reported in [67]. The power flow analysis of the network

has been performed using the Matpower toolbox [68]. In particular, 500 values of bus

voltage magnitude and phases (with respect to node 1) have been computed for real

and reactive loads changing randomly as a function of time. In nominal load conditions

such values simply coincide with those reported in [67]. More in general, every set of bus

voltage magnitudes and angles resulting from the power flow analysis can be regarded as a

snapshot of the actual state of the network at different time. In the case study considered,

the maximum number M of measurement equations is 115, but just M ′=2N − 1=29 of

them are needed in principle for state estimation.

In the first set of tests, the measurement configurations have been generated ran-

domly, but with the same constraints described in Section 5.5, have been imposed to

avoid situations that are manifestly meaningless.
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For the sake of clarity these constraints are shortly recalled below:

1. real and reactive power injection measurements on a given bus are always included

in pairs. In other words, if Pinji belongs to a configuration, then Qinji must be also

included in the same configuration, and vice versa;

2. real and reactive power flow measurements related to the same line are always in-

cluded in pairs;

3. no voltage or current phase measurements alone can be included in a configuration.

If a phase measurement belongs to a configuration, also the corresponding magnitude

measurement is included in the same configuration (this is the case when PMUs are

supposed to be used);

4. the chosen set of measurements must assure full state observability. This means that

the rank of H(x) in the neighborhood of the actual state x̄ at time t̄ must be equal

to 2N − 1, as explained in Section 5.2.

Using the constraints described above, 150 random configurations have been generated

to estimate the state of the network. To assess the overall uncertainty sensitivity, in

each simulation run the uncertainty of all measurements is constant and has been chosen

between 0.1% and 10% for true measurements and between 10% and 50% for pseudo

measurements. It is worth emphasizing that the purpose of these Monte Carlo simulations

is just to validate the theoretical analysis described in Section 5.4 in multiple conditions.

Once the differences between the state values resulting from the power flow analysis

and the state estimates associated with each configuration are computed, at first the

RAMSE and RMMSE values are calculated as a function of σr. Then, the average slope

coefficients of such functions (namely the simulated values of SA and SM) are compared

with the theoretical results based on (5.22) and (5.23). Fig.5.4(a)-(b) shows the simulated

(solid lines) and theoretical (dotted lines) values of SA and SM , respectively. To improve

visualization, data are sorted in ascending order and a few outliers (whose sensitivity

was particularly large) have been removed. Clearly, in both plots the theoretical and

simulated sensitivity coefficients are very close, regardless of the configuration considered.

This confirms the correctness of the proposed analysis. The practical usefulness of (5.20)-

(5.23) is threefold.

First of all,(5.20) and (5.21) can be used to predict the overall state estimation

uncertainty, once the nominal values of loads, network parameters and σr are given.

If the individual measurement uncertainties σri for i = 1, . . . , 2N − 1 differ signifi-

cantly from one another, then RAMSE and RMMSE can be estimated numerically

from (5.18), provided that the elements of Wi in (5.16) are known. If such coefficients

are not available, the worst-case RAMSE or RMMSE values can be obtained by setting
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Figure 5.4: Comparison between simulated (solid lines) and theoretical (dotted lines) average (a) and

maximum (b) global sensitivity coefficients for 150 random configurations consisting of 2N − 1 measure-

ments assuring full state observability. To improve readability the sensitivity coefficients have been sorted

in ascending order.

σr = maxi=1,...,2N−1{σri}. Another potential use of (5.22) and (5.23) is related to the pos-

sibility to infer quickly (i.e. without running long simulations) the values of σr that can

assure given estimation accuracy requirements. An example of this type of application

is reported in Fig. 5.5, which shows the values of RMMSE of three different configu-

rations as a function of σr. Configuration A (solid line) refers to the case of real and
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Figure 5.5: Theoretical root maximum mean square error values as a function of σr in 3 cases, i.e. using 14

real and reactive power injection measurements plus one voltage magnitude measurement (Configuration

A - solid line); using voltage phasor measurements only (Configuration B - dashed line) and, finally,

using 5 real and reactive power flow measurements, 1 voltage magnitude, 2 voltage phasors and 6 current

phasor measurements (Configuration C - dash-dotted line). Cross-, circle- and plus-shaped markers refer

to the respective results of classic WLS-based estimation.

reactive power injection measurements at buses i = 2, . . . , 15, plus an additional voltage

magnitude measurement at bus 1. Configuration B (dashed line) is obtained assuming

to measure nodal voltage phasors only. Configuration C (dash-dotted line) consists of

a variety of measurements, i.e. real and reactive power flows over lines 2, 4, 8, 10, 11,

voltage magnitude at bus 7, phasors of voltages at nodes 13 and 14 and, finally, phasors

of currents over lines 5, 6, 7, 9, 13 and 14. In all cases, the theoretical lines approximate

(and extrapolate) very well the values of RMMSE obtained numerically with the WLS

estimator (highlighted by cross-, circle- and plus-shaped markers for configuration A, B

and C, respectively). Observe that if, for instance, the worst-case error boundary is set

equal to 0.02 p.u. (dotted horizontal line), the relative uncertainty of different groups of

measurements should not exceed 1.8% for configuration A, 2% for configuration B and

0.65% for configuration C. Obviously, when sensitivity is higher, relative measurement un-

certainty has to be decreased accordingly to keep the estimation error within the wanted

boundaries.

Finally, either (5.22) or (5.23) can be used as cost functions of the constrained and

nonlinear optimization problem formalized in Section 5.5. The stems in Fig. 5.6 represent

the frequencies of occurrence of the various types of measurements over L = 200 solutions
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Figure 5.6: Frequency of occurrence of different kinds of measurements over L = 200 results of the random

search algorithm minimizing SA in the considered case study.

of the PS-based heuristic optimization algorithm described in Section 5.5 when it is applied

to the network in Fig. 5.3. Observe that different kinds of measurements are grouped into

homogeneous categories highlighted by different colors. Within each group the ith stem

refers either to the ith bus (with i = 1, ..., 15 of nodal measurements) or to the ith line

(with i = 1, ..., 14 for line measurements). Notice that in the specific case under analysis,

there are some measurements that have never been included in any potential solution (e.g.

P inj and Qinj). Clearly, this means that such measurements are unlikely to minimize SA.

On the contrary in the current example the measurements with the highest probabilities

to minimize SA refer to: the real and reactive power flows over lines 1−12 in Tab.A1. By

adding also the voltage magnitude measurement at bus 13 and the current phasors (i.e.

magnitude and phase) of lines 13 and 14, the best configurations is finally determined.

This is characterized by SA = 0.94. It is worth noticing that many other configurations

with comparable uncertainty sensitivity (i.e. with SA ranging between 0.9 and 1.2) exist.

So we cannot ensure that the solutions obtained with the proposed algorithm is the

global optimum. However, it is certainly slightly suboptimal with a level of confidence

that increases as the number of iterations L grows.

5.7 Conclusion

State estimation is a well-known problem that is particularly and increasingly critical for

future energy grids. Besides the traditional issues concerning with accuracy and numerical

robustness, fine-grained network observability and scalability are difficult to address as
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the number of measurements and the amount of data to be processed grows.

In this chapter, the classic Weighted Least Square (WLS) state estimator has been re-

viewed to point out to what extent results are affected by measurement uncertainty when a

minimum number of measurements able to assure full observability is used. The proposed

theoretical analysis provides a straightforward criterion to predict the overall worst-case

state estimation accuracy or, dually, to establish the maximum measurement uncertainty

able to keep the average or worst-case estimation accuracy within given boundaries. The

sensitivity coefficients could be also used as cost functions of an optimization problem to

determine what types of measurements are most likely to minimize the overall average or

maximum growth rate of the mean square estimation errors.

The results of the optimization procedure in a simple case study show quite inter-

estingly, that the use of PMUs, even if generally recommended to improve accuracy and

observability does not necessarily minimize the sensitivity to measurement uncertainty.

Indeed, if measurement uncertainty values are comparable, a suitable mixture of PMU-

based and other measurements can further improve estimation accuracy. Some additional

research efforts are currently ongoing to analyze the uncertainty sensitivity when measure-

ments with different levels of accuracy and precision (e.g. true and pseudo-measurements)

are combined together.
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Chapter 6

Role of PMU in Distribution System

State Estimation

The purpose of this chapter is to analyze the role and the impact of PMUs in Distribu-

tion System State Estimation (DSSE) under the assumption that network observability

is guaranteed. At first the classic Weighted Least Square (WLS) algorithm is considered

and a simple algorithm based on a greedy approach is used to evaluate the impact of a

growing number of PMUs on state estimation accuracy. Afterwards, a Bayesian linear

state estimator (BLSE) based on a fully linear approximation of the power flow equa-

tions is proposed and its performances are analyzed and compared with those of WLS

estimator. In both cases the simulation results show that deploying few, but accurate,

PMUs generally provide better performance than using a larger number of less accurate

instruments, thus shedding some light on possible trade-offs between number, accuracy

and cost of PMUs.

6.1 PMUs and State Estimation: an overview

As shown in Chapter 5, SE generally relies on the solution of a non-linear optimization

problem that has multiple local minima, is computationally expensive and may suffer from

numeral problems. Although there is a well-established tradition and an extensive litera-

ture on SE for transmission networks, only recently the SE problem has been taken into

Parts of this Chapter were published in

D. Macii, G. Barchi, L. Schenato, ”On the Role of Phasor Measurement Units for Distribution System State

Estimation,”IEEE Workshop on Environmental Energy and Structural Monitoring Systems (EESMS) 2014 , vol.,

no., pp.1,6, 17-18 Sept. 2014.

L. Schenato, G. Barchi, D. Macii, R. Arghandeh, K. Poolla, A. Von Meier; ”Bayesian Linear State Estimation

using Smart Meters and PMUs Measurements in Distribution Grids” Proceeding of IEEE International Conference

on Smart Grid Communications (SmartGirdComm14) Nov. 2014.



104 Role of PMU in Distribution System State Estimation

consideration at the distribution level [61]. Primarily, this is because measurement data

in distribution networks tend to be very scarce and often nonexistent beyond the substa-

tions. Moreover, transmission and distribution networks generally have different features.

The former ones transfer large amounts of power and are characterized by mesh topolo-

gies, high line reactance-resistance (X/R) ratios and a quite limited number of lines and

buses. On the contrary, distribution systems typically transfer limited amounts of power,

exhibit a radial topology consisting of many nodes with low X/R values and unbalanced

loads. These circumstances have changed in recent years, due to the increasing pene-

tration of distributed energy resources, which may introduce variability, uncertainty and

even instabilities. Consequently, there is a growing interest in Distribution System State

Estimation methods based on the joint use of pseudo-measurements and measurements

from PMUs possibly using cheaper instrument than those available nowadays [49, 73].

Currently, one of the main state estimation methods also for DSSE is the same WLS-

based algorithm, described in Chapter 5. However, to correctly capture the dynamic

phenomena that characterize the distribution level some SE solutions rely explicitly on

three-phase branch currents [74, 63], linearized models for pseudo-measurements [75], or

unsynchronised phasor measurements [76]. The introduction of PMUs has increased the

accuracy of SE algorithms, by measuring not only magnitudes, but also phase angle dif-

ferences between voltages phasors at different nodes [69]. As explained in Chapter 5, a

system is observable if at least so many independent measurements as the number of state

variables are used. This suggests that a PMU should be used in each node of the network.

Unfortunately, for economic and technical constraints, this is not feasible. Thus, the best

solution is to combine traditional and PMU measurements. The inclusion of PMUs in

state estimation creates two critical problems [7]:

• how to combine traditional and PMU measurements;

• how to place the PMUs in the network in order to maximize observability and

performances.

The first issue can be tackled in two possible ways, as discussed in [70]. In the first one,

the PMU data can be combined with those resulting from traditional measurements in a

single stage (it is also the method used in current and in the previous chapter). Alter-

natively, a two-stage scheme can be used to improve the state estimated from traditional

measurement equipment, e.g. by applying a post-processing step based on PMU phasor

data. Both approaches can reach the same accuracy, and the best practice depends on

the particular scenario.

The optimal PMU Placement (OPP) problem is a constrained optimization problem

that aims at minimizing the number of devices while ensuring observability and given

uncertainty boundaries. Alternatively, we can maximize the estimation accuracy when
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a maximum number of PMUs is available. The literature proposes several algorithms

to solve this problem and a comprehensive review is presented in [71].This problem can

been tackled in several different ways, e.g. using genetic algorithms, particle swarm

optimization (PSO), integer programming or binary search. For instance, in [72] a genetic

algorithm for joint PMUs and smart meters optimal placement is described in the specific

context of distribution networks.

6.2 Impact of PMUs on WLS-based State Estimators

In the specific context of distribution networks, the most commonly used instruments are:

smart meters and PMUs [72]. Assuming that only active and reactive power injection

data are available and that the PMUs are used to measure either nodal voltage phasors

or branch current phasors, it follows that the general measurement model described by

equation (5.1) can be simplified as follows:

z̃ = h(x) =


P (x)

Q(x)

V (x)

θ(x)

+ εz or z̃ = h(x) =


P (x)

Q(x)

I(x)

β(x)

+ εz (6.1)

where the meaning of the various quantities is the same as described in Section 5.2.

Consider that, for the sake of simplicity, in (6.1) P (x) and Q(x) refer just to P inj(x)

and Qinj(x) respectively, since no power flow measurements will be considered in the

following. Again, a necessary condition to leave full system observability is that the total

number of available measurements is larger than 2N − 1.

6.2.1 A PMU placement strategy

If P PMUs are available for state estimation, a relevant problem is where to place them

to achieve best accuracy. If the cost function is the RAMSE defined in (5.20), then the

placement problem can be formalized as follows:

Mop(P ) := arg min
M

RAMSE(M) (6.2)

s.t. |M| = K

RAMSEop(P ) := RAMSE(Mop(P )) (6.3)

where RAMSEop(P ) is the minimum value of (5.20), which is achieved when the opti-

mal set Mop(P ) of P PMUs is used. Obviously, RAMSEop(P ) is a monotonically non-

increasing function of the number of PMUs, i.e. RAMSEop(P ) ≥ RAMSEop(P + 1).
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Observe that (6.2) is a combinatorial problem; so its solution is NP-hard and maybe

unfeasible when large grids are considered. This is the reason why heuristic approaches

based on genetic algorithms or PSO are frequently used for placement [77].

However, in this chapter our main purpose is just to analyze the impact of a growing

number of PMUs on state estimation accuracy. Therefore, a simple greedy PMU place-

ment procedure, based on the addition of one PMU at a time, is sufficient to evaluate

the best local performance improvement. The algorithm (formally described in the fol-

lowing inset) is computationally more tractable than the original problem, as it requires

at most N(N−1)
2

iterations to find a set of PMU positions. However, if we denote with

Mgr(P ) as the set of K locations resulting from the application of the greedy algorithm,

the optimality of this solution is guaranteed only when P = 0, 1 or N , whereas in general

RAMSEgr(P ) = RAMSE(Mgr(P )) ≥ RAMSEop(P ), ∀P = 2, . . . , N−1.

Algorithm 1 The greedy PMU placement algorithm

Require: Φx

1: Mgr(0) := ∅,M(0) := {2, . . . , N}
2: for τ = 1 to N do

3: k(τ)=arg mink∈M(τ−1)RAMSE(Mgr(τ−1) ∪ k)

4: Mgr(τ) =Mgr(τ − 1) ∪ k(τ)

5: M(τ) =M(τ − 1) \ k(τ)

6: RAMSEgr(τ) = RAMSE(Mgr(τ))

7: end for

6.2.2 Simulation Results

The impact of PMUs on state estimation has been analyzed in a simple case study based

on the IEEE 33-bus distribution radial network [78].

The feeder of the network is at bus 1. This is also the reference node for phasor angle

estimation (i.e. θ1 = 0). The topology of the network is shown in Fig. 6.1. The line

parameters and its nominal load values, expressed in terms of active and reactive powers

are reported in Tab. A.3 and Tab. A.4 respectively.

In real scenarios, the actual load profiles may change significantly over time. To a first

approximation, the statistical distribution of such profiles over reasonably long time in-

tervals is generally regarded as normal. However, recent studies showed that a Gaussian

mixture model (GMM) better fits experimental data [79]. In the developed simulator,

the load profiles can be generated randomly as a function of time on the basis of differ-

ent stochastic models (i.e. uniform, Gaussian or GMM with different variance and mean

values on each node). For any given power profile, at first the active and reactive power
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produced by the generator(s) is computed. Then, a full power flow analysis is performed

using the Matpower toolbox [68]. In this way, the actual phasors of nodal voltages and

branch currents at a given time are obtained. The magnitude and the phase of such

nodal voltages are then compared with the results of the WLS algorithm based on dif-

ferent sets of measurements to evaluate estimation accuracy in various conditions. Two

inputs common to all simulations are:

• the nominal values of all active and reactive loads (i.e. pseudo-measurements with

uncertainty in the order of 30%-50%), which provide the full grid observability,

• the magnitude of bus 1 voltage measured with 0.3% standard relative uncertainty.

The PMU accuracy, expressed in terms of TVE, is assumed to lie in the interval [0.1%, 1%].

The lower end of this interval is compatible with the specifications of several high-

performance instruments available on the market (e.g., the 1133A PMU by Arbiter Sys-

tems). The upper end instead is the worst-case limit in most of the operating conditions

reported in the Standard C37.118.1-2011 [18].

Fig. 6.2 shows the RAMSE values as a function of the number of deployed PMUs.

Such values result from 300 state estimates for each set of measurements. The load

profiles are generated using GMM distributions resulting from the superimposition of up

to 4 Gaussian curves. The mean values of each active or reactive load are within ±10%

of the nominal data reported in Appendix A Tab. A.4. The corresponding standard

deviations are equal to 33% of the nominal values. The respective variances are used as

Figure 6.1: IEEE 33 node distribution network
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Figure 6.2: RAMSE values as a function of the number of PMU measurements. The solid lines refer to

the results achieved when both nodal voltage magnitudes and phases are measured, the dashed lines are

obtained assuming that only the respective voltage magnitudes are available. The worst-case PMU TVE

is assumed to be either 0.1% (cross markers) or 1% (circle markers).

weights of the pseudo-measurements in (5.11).

In Fig. 6.2, the PMUs are supposed to measure voltage magnitudes and phases directly

with two different accuracies, i.e. 0.1% (solid lines with cross markers) and 1% (solid lines

with circle markers). The PMUs are placed sequentially (one by one) in the order provided

by the greedy algorithm described in Section 6.2.1. Generally, this order may change as

a function of measurement uncertainty. The results of PMU-based state estimation are

also compared with those obtained using voltage magnitudes only (dotted lines with cross

and circle markers for 0.1% and 1% markers, respectively).

The curves in Fig. 6.3 represent the RAMSE values as a function of the number of PMUs

when they measure the currents of branch phasors instead of the state variables directly

(solid lines). Load profiles, instrumental accuracy and placement strategy are the same as

those used to plot Fig.6.2. Again, the results of PMU-based state estimation are compared

with those obtained using current magnitudes only (dotted lines). The results shown

in Figs. 6.2 and 6.3 (as well as other similar results based on other distribution networks

and not reported here for the sake of brevity) suggest the following interesting remarks.

1. As expected, measuring voltage or current phasors can considerably improve state

estimation accuracy compared to the case when magnitudes only are measured. This

emphasizes the importance of phase data, especially at the distribution level [48],
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Figure 6.3: RAMSE values as a function of the number of PMU measurements.The solid lines refer to

the results achieved when both branch current magnitudes and phases are measured, the dashed lines

are obtained assuming that only the respective current magnitudes are available. The worst-case PMU

TVE is assumed to be 0.1% either (cross markers) or 1% (circle markers).

even when angle differences are very small.

2. The impact of PMU uncertainty on estimation accuracy is relevant when the state

variables (i.e. voltage magnitudes and angles) are measured directly. However,

when they are derived indirectly from current phasors, the influence of instrumental

uncertainty is less noticeable. This is maybe due to the approximation errors in

linearizing functions I(x) and β(x) in (6.1). In fact, linearization errors can be

comparable or even larger than measurement uncertainty.

3. While a few PMUs can considerably improve estimation accuracy, the law of dimin-

ishing returns clearly holds in the considered scenarios. As a rule of thumb, installing

PMUs with the same accuracy in more than about 1/3 of nodes or branches is unnec-

essarily expensive, as no significant performance improvements are achieved. This

behavior is independent of the PMU placement sequence, although the RAMSE

values change as a function of the placement strategy.

4. Further simulations confirm that the qualitative behavior described above is inde-

pendent of both the load profile stochastic model and the variance of loads, although

numerical results and placement sequence generally change from case to case.

Fig. 6.4 shows more clearly the relationship between root average mean square estima-

tion error and PMU accuracy (also expressed in terms of maximum TVE) when voltage
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Figure 6.4: RAMSE values as a function of PMU accuracy (also expressed in terms of TVE), when 1,

2, 3, 4 or 5 PMUs are used to measure voltage phasors.

phasors are measured. Every RAMSE value results from 500 estimates. Observe that

the overall estimation accuracy depends almost linearly on PMU worst-case instrumen-

tal uncertainty, but the growth rate is quite independent of the number of PMUs. It is

worth emphasizing that a given target estimation accuracy could be reached using either

a few high-performance PMUs or a larger number of less accurate instruments. Thus,

the best solution essentially depends on the relationship between cost and accuracy of

different classes of PMUs. In the present example, the slowly growing trend intuitively

suggests that using a minimal number of high-performance instruments is probably the

best choice. However, further analyses and a proper cost quantification are needed to draw

ultimate conclusions. The robustness of state estimation to possible changes of loads and

line parameters as a function of the number of PMUs has been also evaluated. Similar

analyses, but in different conditions and with different performance metrics, are already

available in the literature, e.g. in [80]. In our case, several Monte Carlo simulations have

been performed assuming that line resistances and reactances are affected by uniformly

distributed tolerances within ±5%, ±10%, ±15% and ±20% of the respective nominal

values shown in Tab. A.3. In particular, 100 realizations of network parameters have

been generated in each case. For every realization two different power flow analyses have

been performed: the first one in nominal conditions (i.e. assuming that loads are constant

and equal to those reported in Tab. A.4) and the second one using the same GMM load

profiles adopted in previous simulations. In each scenario the state of the network has
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been estimated using pseudo-measurements and PMUs with 1% max TVE. No more than

15 PMUs have been used because, as explained above, results do not change significantly

when the number of PMUs grows further.

Fig. 6.5(a)-(b) shows the box-and-whisker plots of the RAMSE values as a function

of the number of PMUs when the tolerance of the line parameters is 20% (the values

obtained with tolerances of 5%, 10%, 15% exhibit slightly smaller variances; so they

are not reported because they are not particularly meaningful). Fig. 6.5(a) refers to the

nominal load case. Fig. 6.5(b) reports the results of the GMM load model. The plots show

that the effect of different load profiles is noticeable only when no PMUs are used. In all

the other cases, the estimation results when the GMM load model is used are just slightly

worse than those in nominal load conditions. Observe that the impact of line parameters

variations on state estimation is not particularly relevant and it is approximately the same

in both Fig. 6.5(a) and 6.5(b). In fact, the maximum dispersion of the RAMSE values

is always smaller than ±0.1% and it tends to decrease further when the number of PMUs

grows. Therefore, if enough PMUs are deployed, the impact of line parameter tolerances

is negligible regardless of the load profile.

6.3 An alternative approach for power flow analysis and state

estimation

The contribution of the rest of this chapter is twofold. First, a Bayesian linear state

estimator (BLSE) based on a fully linear approximation of the power flow equations is

presented. Secondly an evaluation of the performances of this estimator with respect

to the classic WLS techniques are presented. In particular, it is shown, via numerical

Monte Carlo simulations on the same IEEE 33-node distribution grid that, under some

assumption, the BLSE offers the same performance as the WLS state estimator, but with

the benefit of being numerically faster and more robust.

6.3.1 Grid model description

Starting from the notation used in [81, 82], a grid can be modelled as a graph G = {V , E}
where V = {1, . . . , N} is the set of nodes or buses and E = {1, 2, . . . , B} is the ordered set

of the lines of the grid. Each edge ` is represented by the `-th row of the incidence matrix

A ∈ {−1, 0, 1}B×N where all elements are zeros except for one entry set to −1 (source

node) and another entry set to 1 (terminal node). The impedance matrix Z ∈ CB×B

is a diagonal complex matrix given by Z = diag{z1, . . . , zB}, where z` is the impedance

of the `-th line. Without loss of generality we will assume that the node 1 correspond
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Figure 6.5: Box-and-whisker plots of the root average mean square error (RAMSE) as a function of

the number PMUs, in (a) nominal load conditions and (b) in the case of GMM loads with a standard

deviation equal to 33% of the nominal value. In all cases the worst-case PMU accuracy is 1%.
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to the substation or point where the distribution network under analysis is connected to

the main grid. Let v1, v2, . . . , vN ∈ C and i1, . . . , iN ∈ C be the vectors representing the

phasors of bus voltages and of the injected current, respectively. The symbol ik represents

the phasor of the current injected into the k-th node. We also denote with c1, . . . , cB ∈ C
the phasors of the currents flowing across the `-th line from the source node to the sink

node defined by the `-th row of the incidence matrix A. Let us define the complex column

vectors v+ = [v1 . . . vN ]T ∈ CN , i+ = [i . . . iN ]T ∈ CN , and c = [c1 . . . cB]T ∈ CB. The

Kirchhoff’s laws at all nodes and lines of the grid can be compactly written as:

AT c+ i+ = 0 (KCL), (6.4)

Av+ + Zc = 0 (KV L) (6.5)

Since Z is invertible we can combine the previous two equations into a single matrix

expression that relates voltage and current phasors at each node of the grid:

L+v+ = i+, L+ := ATZ−1A (6.6)

where L+ ∈ CN×N is referred to as the admittance matrix of the grid. We assume that

the node representing the feeder acts as an ideal voltage source generator, i.e.

v1 = V1 (6.7)

where V1 ∈ R is the nominal voltage at the PCC. The previous expression implies that

|v1| = V1 and ∠v1 = θ1 = 0. We also assume that all the power loads (also referred to as

PQ loads) are constant i.e.

Sk = vki
∗
k = Pk + jQk, k = 1, . . . , N (6.8)

where Sk ∈ C is the (complex) power. Note that when Pk > 0 then the active power

is injected into the node according to the current direction defined above. If no load is

attached to a specific node k, as, for example, in the case of nodes connecting a lateral

line with the main line, we can simply assume Sk = 0, which indirectly implies ik = 0

since under normal grid operating conditions vk 6= 0.

6.3.2 Linear power flow computation

The previous section defines the set of equations that voltage and current phasors need

to satisfy in each node of the network. Let us define the complex column vectors

v = [v2 . . . vN ]T ∈ CN−1, i = [i2 . . . iN ]T ∈ CN−1. Under assumption (6.7), then the
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constraints given by Eqn. (6.6) can be equivalently rewritten as: L11 L12

L21 L


︸ ︷︷ ︸

L+

 v1

v


︸ ︷︷ ︸

v+

=

 i1

i


︸ ︷︷ ︸

i+

⇔
L21V1 + Lv = i

i1 = −
∑N

k=2 ik

If the grid is connected, then L ∈ C is invertible, therefore we have v = L−1(i − L21V1).

Since L1N = 1N and v1 = V1, then L−1L21 = −1N , therefore the previous equation can

be written as

v = V11N + L−1i (6.9)

If we define the complex column vector S = [S2 . . . SN ]T ∈ CN−1, then equations (6.7),

(6.8) and (6.9) can be equivalently written as:

v1 = V1 (6.10)

v ◦ i∗ = S (6.11)

v − L−1i = V11N (6.12)

i1 +
N∑
k=2

ik = 0 (6.13)

where the symbol ”◦” denotes the component-wise product and i∗ is the component-wise

complex conjugate of the current vector i. If the PCC voltage V1 and the load vector S are

known, then the previous equations represent a set of 2N (complex) nonlinear equations

in 2N (complex) unknown variables v1, . . . , vN , i1, . . . , iN . The previous set of nonlinear

equations may have no solutions or multiple solutions. Under the assumption that at

least one feasible solution exists, the solution of the previous set of equations reduces to

the problem of solving Eqn. (6.12) and Eqn. (6.11). One possible numerical procedure

to compute a feasible solution (which is also the most efficient in terms of power loss

over the lines) is expressed by Algorithm 2. This algorithm coincides with the forward-

backward sweep method used to solve power flow equations [83] when the grid is radial,

but it is somewhat more general since it can also be used for mesh networks. Alternative

approaches for power flow analysis are the well-known Gauss-Seidel and Newton-Raphson

methods. In the following, we adopted the proposed algorithm, since it also provides a

link with the linear model approximation described below.

The power flow equations (6.10)-(6.13) are highly non-linear and this makes the prob-

lem of state estimation in the presence of noisy measurements and uncertainty very dif-

ficult and numerically intensive. Recently, a linear approximation has been proposed

for modeling the power flow equations [81, 82]. This approximation can be obtained by
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Algorithm 2 Power Flow computation

Require: S ∈ CN , V1 ∈ R, r ∈ (0, 1), T ∈ N
v[0] = V11N

2: τ = 0

repeat

4: τ = τ + 1

i[τ ] = S∗

v[τ−1] . Component-wise division

6: v[τ ] = V11N + L−1i[τ ]

S[τ ] = v[τ ] ◦ i∗[τ ]

8: until ‖S[τ ]− S‖ < r‖s‖ or τ > T

if τ > T then

10: No solution found

end if

stopping the power flow computation in Algorithm 2 after the first iteration, i.e.

i[1] =
1

V1

S∗, v[1] = V11N +
1

V1

L−1S∗. (6.14)

The previous two equations show that the current and the voltage phasors are approx-

imately linear in the power loads S. Obviously, the linearization error is not zero, i.e.

e[1] := v − v[1] 6= 0, v being the actual voltage vector of the grid nodes. However, it has

been shown that if the term ‖L−1‖‖S‖
V 2
1

is sufficiently smaller than unity, then the lineariza-

tion error is small. This assumption is acceptable whenever the voltage magnitude drop

and the phase angle difference between the PCC and any node in the network are smaller

that 5 − 10% and 2 − 5o, respectively [84]. This approximation shares some similarities

with the DC power flow model approximation [85]. However, the main difference is that

in the DC power flow model, the resistance of the lines is assumed to be negligible, while

in the linear model above the matrix L includes the resistive terms. While neglecting the

resistive component in high-voltage transmission networks is a fair first order assumption,

in low-voltage distribution networks this is not the case. Therefore, the linear model

presented here may be more suitable for the distribution setting.

6.3.3 The Bayesian linear state estimator (BLSE)

In this section, the linear approximation of the power flow equations described in (6.14)

is used to derive the best estimator in a Bayesian framework. More specifically, the pre-

diction of active and reactive loads can be used to derive a-priori information about the

statistical distributions of voltage phasors. Such distributions can be computed off-line

and, once PMU measurements are available, they can be used to improve the estimates
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of the true voltage phasors and to reduce the uncertainty given by the a-posteriori sta-

tistical distributions of the state estimation errors. By using a notation similar to that

introduced in previous sections, we can denote with symbol ∼ the quantities that are

actually measured to estimate the state. For instance, S̃k = P̃k + jQ̃k, with P̃k = Pk + εpk
and Q̃k = Qk + εqk are the complex power injection measured at bus k. In the following,

we will refer to σL as the relative standard deviation of load variations (that can be re-

garded also as standard uncertainty for the pseudo-measurements P̃k and Q̃k ). On the

basis of the a-priori information about loads we obtain that:

v0 := E[v] = V11N +
1

V1

L−1S∗ (6.15)

Σ0 : = E[(v−v0)(v−v0)H ] = σ2
L

1

V 2
1

L−1Σs(L
−1)∗ (6.16)

Σs = diag{|S̃1|2, . . . , |S̃N |2} (6.17)

where the symbol ()H indicates the transpose and conjugate (i.e. Hermitian) operator.

The previous estimator is the optimal estimator among all possible linear estimators based

on pseudo-measurements. The vector v0 corresponds to the nominal voltage phasors

according to the load prediction and Σ0 is the corresponding error covariance matrix.

Note that, because pseudo-measurements are assumed to be available at all nodes, then

the state of the grid is observable even without any PMU measurement. Adding PMU

measurements will simply improve estimation performance. If a PMU measurement is

available at node k, we define the complex measurement voltage phasor as

ṽk = (Vk + εvk)e
j(θk+εθk ) = vk + εrlk + εimk (6.18)

where εrl and εim are approximately independent and zero-mean uncertainty contribu-

tions. If, for the sake of simplicity, the uncertainties contributions of the real and the

imaginary part of phasor measurement are supposed to be the same, we have that

E[(εrlk )2] = E[(εimk )2] = σ2
PMUV

2
1 (6.19)

and

E[ṽk] = vk,E[|ṽk − v2
k|] = 2V 2

1 σ
2
PMU (6.20)

where σPMU is the standard relative uncertainty deviation. Thus, the PMU measurement

provides an unbiased estimate of the true voltage phasor with variance twice as large as

V 2
1 σ

2
PMU . If we finally define ṽM := [ṽm1 · · · ṽmP ] ∈ CP , where P is the number of PMU,

then we can write

ṽM = CMv + V1ε
rl
M + jV1ε

im
M, (6.21)

E[εrlM(εrlM)H ] = σ2
PMUIP (6.22)
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where εrlM and εimM are the measurement uncertainty terms associated with the PMUs

belonging to set M, IP is the P×P identity matrix, and CM ∈ RP×N is a matrix whose

`-th row has all zeros except for the p`-th entry which is set to one. In practice CM
is a selection matrix that associates the PMU measurement ṽm` with the corresponding

voltage vm` . In the context of Bayesian estimation, the optimal voltage estimate based

on ṽM and on the prior distribution v0, is given by

v̂ := E[v | ṽM] = v0 +G(ṽM − CMv0) (6.23)

ΣM =Σ0−Σ0C
T
M(CMΣ0C

T
M+2V 2

1 σ
2
PMUIK)−1︸ ︷︷ ︸

G

CMΣ0 (6.24)

where Σ0 = E[(v − v̂)(v − v̂)H ]. Note that the matrices G and ΣM can be computed off-

line, i.e. they do not depend on the actual PMU measurement vector ṽM. Therefore, the

computation of (6.23) can be performed very rapidly on-line even for very large networks.

6.3.4 Simulation Results

In this section the proposed BLSE state estimator is compared with the classic WLS-

based approach, whose behavior has been extensively analyzed before. The IEEE 33-node

distribution network is the same as in the previous section, always shown in Fig. 6.1. The

performance of BLSE and WLS estimators has been analyzed in Matlab by computing

the parameter RAMSE(M) defined in (A.2) over MC = 1000 Monte Carlo runs.

In the first test case the accuracy of BLSE and WLS is evaluated as a function of the

relative uncertainty σL of the pseudo-measurements of active and reactive injected power,

assuming that no PMUs are used. Fig. 6.6 reports the RAMSE for both BLSE and WLS

methods. At the beginning, the BSLE estimation accuracy is worse than WLS. However,

the difference between the results of such techniques tends to decrease as σL increase. The

figure also reports the theoretical RAMSE curve of the BSLE estimator as it results from

RAMSEth =
√

1
N
trace(Σ0). This looks slightly optimistic compared to the Monte-Carlo

performance, probably because of the linearization error. The second test case, reported

in Fig. 6.7, compares the accuracy of theoretical RAMSEth and the simulation results of

BSLE and WLS using active and reactive power measurements with σL = 0.5 (50%) and

an increasing number of PMUs with TVE=0.1 % placed using Algorithm 1. In all cases

the σPMU values are computed starting from the maximum TVE ones, assuming that the

uncertainty contributions on the real and imaginary parts are the same. The figure shows

that the theoretical performance of RMSE matches almost exactly the simulation results

of both BSLE and WLS. The final test case, reported in Fig. 6.8, compares the accuracy

of BSLE and WLS using active and reactive power measurements with σL = 0.5 (50%)
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Figure 6.6: RAMSE voltage curves corresponding to different values of load standard deviation, σL, for

theoretical RAMSE (red dashed line), BLSE (black solid line with markers) WLS (black solid line).
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Figure 6.7: RAMSE curves as a function of number of PMUs. The relative uncertainty of pseudo-

measurements is σL = 0.5%. The curves are theoretical RAMSE (red dashed line), BLSE (black solid

line with markers) WLS (black solid line) for PMU accuracy 0.001 %. The instruments are positioned

sequentially according to the greedy placement algorithm.

and TVE equal to 1%, 0.1% and 0.05% with an increasing number of PMUs placed using

Algorithm 1.
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Figure 6.8: RAMSE curves as a function of number of PMUs. The relative uncertainty of pseudo-

measurements is σL =0.5%. Simulation-based results associated with the BLSE(solid line with markers)

and WLS (solid line) estimator for PMU with 1% (blue color), 0.1% (green color) or 0.01% (magenta color)

accuracy. The instruments are positioned sequentially according to the greedy placement algorithm.

6.4 Conclusion

This chapter presents the impact of PMUs on distribution system state estimation based

on the WLS algorithm and on a novel Bayesian linear approach. Once the system ob-

servability problem is solved, the benefit of using PMUs in state estimation is maximum

when such instruments measure the state variables directly. In this case, the asymptotic

estimation uncertainty strongly depends on instrumental accuracy. However, installing

PMUs in more than about 1/3 of the network nodes is unnecessary, as this would not

change performance noticeably regardless of the tolerance affecting line parameters.

In the second part of the chapter it is demonstrated that the proposed Bayesian linear

state estimator (BLSE) provides the same performance as the standard WLS estimator

but with a reduced computational burden. The main novelty of this approach is that

its performances can be computed off-line and can be used to address several problems

such as optimal PMU placement or trade-offs between number of PMUs versus their

accuracy, without running extensive Monte-Carlo simulations. Moreover, because the

estimation error in distribution systems tends to be dominated by uncertainty in loads

and scarcity of instrumented nodes, the linearized method along with the use of high

precision PMUs may be a suitable way to facilitate on-line state estimation where it was

previously impractical. Future research direction include the extension of the proposed



120 Role of PMU in Distribution System State Estimation

strategy to unbalanced three-phase networks, large scale networks, possibly using dynamic

state estimation techniques such as Kalman filters.



Chapter 7

Conclusions

In modern power systems frequency, amplitude and phase of electrical waveforms are

subjected to quick and significant changes as well as to heavy disturbances due to the

increasing presence of distributed generators, storage systems and large nonlinear loads,

e.g. electric vehicles. As the penetration of these technologies grows, further and more

critical dynamic conditions are expected in the grid, particularly at the distribution level.

As a result, distribution networks will shift from the traditional purely passive, unidirec-

tional and consumer-oriented structure towards a bidirectional power flow paradigm, thus

becoming more similar to transmission networks.

In this context, the PMUs will play a relevant role in enhancing the next-generation

wide-area measurement systems (WAMS). The synchrophasor measurement data provided

by PMUs are usually affected by different uncertainty sources, such as instrument trans-

former contributions, magnitude and phase distortion due to the front-end acquisition

stage, quantization noise, ADC nonlinear distortion, synchronization jitter, and errors

due to the specific estimation algorithm employed. In order to meet the high accuracy

requirements of next-generation active distribution networks, minimizing the uncertainty

contributions due to the signal processing algorithm both under static and dynamic condi-

tions is essential. In addition, responsiveness under the effect of transients (e.g. step-like

changes) and computational complexity are extremely important for real-time monitoring.

The first part of this thesis is completely focused on the issues above. Starting from an

introduction about the definition and the meaning of synchrophasor, in Chapter 2 useful

guidelines to design the filter for the general PMU architecture suggested in the IEEE

Standard C37.118.1 are proposed. Such criteria are used to meet some of the accuracy

requirements described in the Standard in static and dynamic conditions for protection

and measurement applications respectively. In Chapter 3 an exhaustive analysis of four

selected state-of-art phasor estimators is performed. The simulation results in several

testing conditions (i.e. static off-nominal frequency offset only, amplitude and phase
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modulation, wide-band noise, harmonics, amplitude or phase step, frequency ramp) show

that the dynamic phasor model (i.e. modeling also the phasor variations by considering

the first 2 or 3 terms of the phasor Taylor’s series expansion around the reference time)

generally returns much better results, especially in the presence of amplitude or phase

modulations. Among the considered dynamic estimators, the so-called Taylor Weighted

Least Squares (TWLS) method ensures high accuracy, is optimal under the influence of

noise and exhibits suitable response times after step changes in amplitude or in phase.

However, it is still quite sensitive to harmonics (especially the second-order one), inter-

harmonics and does not compensate perfectly the effect of static off-nominal frequency

deviations. These problems are partially addressed by the synchrophasor estimation algo-

rithm called IpD2FT and presented in Chapter 4, which is still based on the same Taylor

phasor dynamic model used for TWLS, but relies on three frequency samples around the

fundamental and is able to estimate and to compensate iteratively the effect of off-nominal

frequency offsets. After an analytical description of the algorithm, this technique has been

evaluated under the same testing conditions considered in Chapter 3. The results show

that its performances in dynamic conditions are slightly worse than those of the TWLS

estimator, especially when the observation interval length grows. However, the IpD2FT

behaves generally better when just off-nominal frequency offsets and harmonics are con-

sidered, as expected. In general, the TVE accuracy requirements reported in the Standard

are met in most conditions just using observation intervals of a few nominal cycles, with

the only exception of the out-of-band inter-harmonics disturbances that require longer

intervals to be removed. Moreover, the IpD2FT estimator exhibits good responsiveness

in transient conditions and a higher, but still reasonable, computational complexity, since

three iterations are usually enough for convergence. Due to the relevance that phase

measurements have recently gained at the distribution level, the phasor angle estima-

tion accuracy of the IpD2FT algorithm has been also analyzed and compared with the

accuracy of other techniques. Again, the simulation results show that the IpD2FT algo-

rithm performs slightly better than the TWLS estimator in static conditions and slightly

worse in dynamic conditions. Nonetheless, it could be a good candidate for phasor angle

measurement in distribution networks.

In the second part of the thesis a complementary problem is studied, i.e. the role

and the impact of PMUs on grid state estimation. After shortly recalling the problem

of state estimation based on the classic Weighted Least Squares (WLS) approach, in

Chapter 5 the sensitivity of the WLS-based state estimator to the uncertainty of different

types of measurements is analyzed theoretically. The proposed analysis, even if with some

limitations (due mainly to the fact that all measurements are assumed to be affected by the

same relative standard uncertainty) provides a useful criterion to choose a minimum set
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of measurements able to minimize the mean or maximum growth rate of state estimation

uncertainty. The results of a heuristic optimization procedure in a simple case study show,

quite interestingly, that the use of PMUs does not necessarily minimize the sensitivity

to measurement uncertainty. Indeed, if the uncertainty values are comparable, a suitable

mixture of PMU-based and other measurements can further improve state estimation

accuracy. In Chapter 6 the impact of PMUs on distribution system state estimation based

on the WLS method is investigated more in detail. Moreover, a novel linear Bayesian

state estimator is proposed. The main results related to this topic can be summarized

as follows: (i) the number of deployed PMUs is less important than their accuracy, i.e.

a lower number of more accurate PMUs ensures generally better state estimation results

than many and less accurate PMUs; (ii) if we assume that network observability is ensured

by pseudo-measurements, installing PMUs and that each PMU measures just one voltage

or one current only, in more than about 1/3 of the network nodes is unnecessary, as the

state estimation uncertainty does not improve noticeably if additional PMUs are deployed,

even when the tolerances of line parameters are significant; (iii) the linear Bayesian state

estimator, despite the linearization error which can influence estimation results in almost

nominal load conditions, is generally so accurate as the WLS estimator, but it has the

advantage to be faster; a feature that could be relevant for active distribution networks.

At the moment various research activities are ongoing. In the area of synchrophasor al-

gorithms for PMUs, the main idea is to use both the least-squares approach of the TWLS

and the iterative frequency estimation and compensation scheme of the IpD2FT technique

in order to exploit the benefits of both solutions. This could improve performances in

both static and dynamic conditions. It is worth emphasizing that the testing conditions

described in the IEEE Standard C37.118.1 were mainly defined for transmission systems.

The level of disturbances and the amount of amplitude, frequency and phase fluctuations

in the case of distribution networks are still unclear and they are a subject of active re-

search in the scientific community. Investigating this topic is of paramount importance

to understand in which conditions the existing PMU technologies are acceptable or to

what extent algorithms and instruments have to be improved further. For instance, DC

decaying offsets are expected to be large and likely in distribution networks. For this

reason, recently some attempts have been done to include this additional type of distur-

bances in the measurement model. As far as the use of PMUs for state estimation is

concerned, the proposed uncertainty sensitivity analysis has to be extended to the case of

an arbitrary number of measurement points, with no restrictions on the uncertainty level.

An analysis of this kind could provide an interesting and deeper insight on the impact of

PMUs on state estimation accuracy, thus extending the results and conclusions reported

in Chapter 6.
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Appendix A

Grid Network parameters

A.1 Network 15-bus

Table A.1: Branch data of the 15-bus distribution network described in [66].

Branch no. From bus To bus r [Ω] x [Ω]

1 1 2 1.3531 1.3235

2 2 3 1.1702 1.1446

3 3 4 0.8411 0.8227

4 4 5 1.5235 1.0276

5 2 9 2.0132 1.3579

6 9 10 1.6867 1.1377

7 2 6 2.5573 1.7249

8 6 7 1.0882 0.7340

9 6 8 1.2514 0.8441

10 3 11 1.7955 1.2111

11 11 12 2.4485 1.6515

12 12 13 2.0132 1.3579

13 4 14 2.2308 1.5047

14 4 15 1.1970 0.8074
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Table A.2: Nominal real and reactive loads [66].

Bus no. PL [kW] QL[kvar]

1 (feeder) 0.0 0.0

2 44.1 44.7

3 70.0 71.0

4 140.0 142.0

5 44.1 44.7

6 140.0 142.0

7 140.0 142.0

8 70.0 71.0

9 70.0 71.0

10 44.1 44.7

11 140.0 142.0

12 70.0 71.0

13 44.1 44.7

14 70.0 71.0

15 140.0 142.0
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A.2 IEEE 33-bus

Table A.3: Bus connections and line resistance/reactance values of the IEEE 33-bus radial distribution

network.

Branch no. From bus To bus r [Ω] x [Ω]

1 1 2 0.0922 0.047

2 2 3 0.493 0.2511

3 3 4 0.366 0.1864

4 4 5 0.3811 0.1941

5 5 6 0.819 0.707

6 6 7 0.1872 0.6188

7 7 8 0.7114 0.2351

8 8 9 1.03 0.74

9 9 10 1.044 0.74

10 10 11 0.1966 0.065

11 11 12 0.3744 0.1298

12 12 13 1.468 1.155

13 13 14 0.5416 0.7129

14 14 15 0.591 0.526

15 15 16 0.7463 0.545

16 16 17 1.289 1.721

17 17 18 0.732 0.574

18 2 19 0.164 0.1565

19 19 20 1.5042 1.3554

20 20 21 0.4095 0.4784

21 21 22 0.7089 0.9373

22 3 23 0.4512 0.3083

23 23 24 0.898 0.7091

24 24 25 0.896 0.7011

25 6 26 0.203 0.1034

26 26 27 0.2842 0.1447

27 27 28 1.059 0.9337

28 28 29 0.8042 0.7006

29 29 30 0.5075 0.2585

30 30 31 0.9744 0.963

31 31 32 0.3105 0.3619

32 32 33 0.341 0.5302



Table A.4: Real and reactive nominal power loads of the IEEE 33-bus radial distribution network.

Bus no. PL [kW] QL [kvar]

1 0 0

2 100 60

3 90 40

4 120 80

5 60 30

6 60 20

7 200 100

8 200 100

9 60 20

10 60 20

11 45 30

12 60 35

13 60 35

14 120 80

15 60 10

16 60 20

17 60 20

18 90 40

19 90 40

20 90 40

21 90 40

22 90 40

23 90 50

24 420 200

25 420 200

26 60 25

27 60 25

28 60 20

29 120 70

30 200 600

31 150 70

32 210 100

33 60 40
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