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Abstract

In order to meet the worldwide limits on greenhouse gases emissions, a shift from a fossil fuels to a renewable energy-
based electric system is required. As this process goes on, both the power generation and consumption profiles are
changing in daily pattern and magnitude, so the power grid needs to become more and more flexible in order to handle
this variability. At the distribution level, photo-voltaic (PV) systems are, by far, the most widespread distributed energy
resource, mostly due to the recent drop in the cost at the residential level. As more and more consumers become also
producers (the so called "prosumers") and the volatile solar energy production increases, a higher number of storage
systems is required to both avoid grid destabilisation and minimise the CO2 emissions. At the same time, since the
transportation sector is responsible for a sizeable part of the total CO2 emissions, electric vehicles (EVs) are bound to
replace traditional internal combustion engine vehicles. However, two main issues may arise when a large number of
vehicles are connected to the existing power grid at the same time. The first issue is that the electricity required to charge
them needs to be renewable, while the second is that, a rapid electrification of the existing vehicles fleet could destabilise
the grid. In this context, this thesis aims at partially addressing these two issues by analysing different ways to reduce
the impact of both PV systems and EVs on low (LV) and medium (MV) voltage grids. After the introduction and a
chapter dealing with the most closely related research work, a novel optimisation algorithm, aimed at obtaining the
optimal storage capacity for each prosumer belonging to a "renewable energy community" is presented. The algorithm
minimises the dependence of the community on the main grid, which is one of the main purposes of this new model,
while minimising the total installed storage capacity. The algorithm is tailored to the specific case study, because it
keeps track of the willingness of the users to install a battery and keeps the voltage levels between regulatory limits in
the optimisation process. In the second part instead, the effects of "uncontrolled" and "smart" EV-charging the electric
vehicles with the aim of reducing the power fluctuations at the MV/LV transformer level are analysed. In particular,
the interaction between PV production and EV charging is investigated, while considering the grid voltage fluctuations,
the distribution line losses and the transformer loading levels at the same time. The broader impact of smart charging is
also analysed by performing a simplified economic and battery wear analysis. Results help in understanding if storage
devices can reduce the dependence of a renewable energy community on the main grid, and to what extent it is possible
and economically viable to do so. Moreover, results quantify a realistic range of EV and PV system penetration in a LV
grid that still allows for a combined minimisation of their impact on the power grid.
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Chapter 1

Introduction

1.1 Research Context

The worldwide regulation on climate change, first introduced in the Kyoto protocol (1994), then confirmed in the Paris
agreement (2016), identified a temperature increase threshold of 1.5°C compared to pre-industrial levels as the target
value to mitigate the effects of global warming and prevent irreversible changes in our ecosystems. The Intergovern-
mental Panel for Climate Change (IPCC) on its 6th Report showed how different Shared Socio-Economic Pathways
(SSPs) produce different levels of emitted CO2 per year, as shown in Figure 1.1 [1]. In turn, the SSPs correlate to
different temperature rise gradients, hence the targets.

The Authors of the report described SSP2-4.5 (expected 2°C increase by 2050) as the "most likely" one, based on the
current worldwide situation. In that scenario, "the world follows a path in which social, economic, and technological
trends do not shift markedly from historical patterns. Global and national institutions work toward but make slow
progress in achieving sustainable development goals. The overall intensity of resources and energy use declines." In
order to shift to SSP1-1.9 or SSP1-2.6 (expected 1.6-1.7 °C increases by 2050), "the consumption needs to be strongly
oriented towards low material usage and lower resource and energy intensity."

Aside from this important message, the IPCC also provided a current greenhouse gases emissions inventory based on
data from 2019. The greenhouse gases emissions at present depend by around 22% on agriculture, forestry and land
use, 33% on energy supply, 15% on transportation, and 24% on industry. A detailed breakdown is shown in figure 1.2.

In order to decrease the 33% of the emissions depending on energy supply, the generation paradigm needs to shift
from a fossil fuels-based model, to a clean energy sources-driven one. This is the reason why, in the recent years, the
electric system has undergone some major changes. Those changes mainly involve shifting from a centralised type of
electricity generation, based on large scale coal/gas, nuclear and hydro power plants to a decentralised one, where the
generation/consumption at the consumers’ side is governed by the so-called Distributed Energy Resources (DERs).
Recently, it was shown that DERs generate more competitive, clean and resilient systems [2]. Thus, the number of
DERs connected to the grid is increasing every year. However, while from a theoretical standpoint the higher the
share of DERs, the lower the greenhouse gases emissions are, there are complex economic and technical limitations that
have slowed down the transition to a cleaner energy system. Those limitations stem from the way the electric grid was
originally designed, i.e. as an Alternating Current (AC) system whose core elements, such as transformers, lines, circuit
breakers, were designed assuming the power transmission and distribution to be unidirectional, from High-Voltage (HV)
through Medium-Voltage (MV), down to Low-Voltage (LV). Instead , the ever-increasing share of DERs connected at the
distribution side can create reverse power flows from LV to MV, generally due to large quantities of power simultaneously
injected into the grid at moments of low consumption. This may occur when photo-voltaic (PV) systems produce large
quantities of power during the central hours of the day. Moreover, the production of electricity by fossil fuels-based
sources is generally fully controllable and able to meet any load demand, whereas DERs are mostly volatile due to their
dependence on natural resources.

Those power injections can destabilise the grid voltage, create congestion over the lines, overload the transformers or endan-
ger the electric equipment designed for a unidirectional power flow, such as circuit breakers [3]. Additionally, DERs
are generally direct current (DC) sources, and require the transformation of the injected currents into AC via non-linear
power electronics that increase the harmonic content of the current and voltage waveforms. Finally, DERs generally do
not provide any inertial response to restore the grid frequency in the case of sudden connections or disconnections of
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FIGURE 1.1: SSPs and related CO2 emissions from the IPCC 6-th Report [1].

FIGURE 1.2: Greenhouse Gases Emissions Breakdown from the IPCC 6-th Report [1].
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large loads or generators. Understanding these issues is essential to accommodate larger shares of DERs in the power
grid without expensive reinforcements.

1.2 Objectives

Over the last years PV systems have become very competitive due to the decrease in their levelised cost of electricity
[4], i.e. the cost to produce electricity that considers the entire lifetime of the panel. Differences persist all over the
world regarding the economic value [5–7], but from the grid side, the main issue is always the simultaneous injection
of electricity during the central hours of the day, when the consumption is often at its lowest. In order to mitigate this
impact, battery energy storage systems (BESSs) need to be properly placed, sized and controlled, so that the payback
time of the combined PV+BESS system is minimised. As such, the first objective of this work is to understand how
BESSs can be properly controlled and sized to increase the hosting capacity of the grid and provide an economic benefit
to the users. For this reason, a novel BESS sizing algorithm with the goal of maximising collective self-sufficiency in
a renewable energy community (REC), while minimising the total BESSs installed capacity, will be presented. RECs
are legal entities, composed by citizens, municipalities or small-enterprises that pool their production, consumption
and storage resources to improve the "collective" self-sufficiency. This is done by enforcing the electricity exchanges
between the REC members themselves. To this end, different BESS control strategies can be used. In this dissertation,
two policies will be analysed.

Recently, the cost of electric vehicles (EVs), more specifically plug-in ones (PEVs) has also decreased [8] and studies
report that PEVs could break-even with an equivalent internal combustion engine vehicle in six years [9]. Hence, a
more sustainable way of transportation could be available to everyone in a very short time. Those EVs however, need
to be charged through the electric grid, and the peak consumption values of EV charging stations generally happen
when people are home. That may overload the electric network, especially if domestic appliances simultaneously
consume electricity. Thus, the second objective of this work is exploring the possibilities of smart PEVs charging and
its interactions with the PV production on a LV grid. Thus, the capabilities of a smart charging algorithm for PEVs to
smooth the active power curve through the LV/MV transformer will be investigated in a variety of realistic scenarios,
including PV production. The desired objective is achieved by either allocating the EVs charging sessions at low-
demand times of the day or during high-PV production periods, in order to maximise the use of renewable energy and
avoid impacting the grid. In the simulations, the actual EV use and willingness of the uses are also considered.

In conclusion, the thesis is structured as follows: Chapter 2 provides an overview of the scientific literature regard-
ing the aforementioned topics, when either BESS or smart EV charging stations with smart charging capabilities and
residential PV systems are simultaneously considered. In Chapter 3 and 4 instead, two alternative solutions to both
problems are validated through real-world simulations and supported by a broader analysis of their grid-related, en-
vironmental and economic impacts. Chapter 5 expands the results of Chapter 4 by presenting the analysis of the EV
uptake impact on a large MV/LV distribution network. Chapter 6 draws the main conclusions of the work and provides
an overview of ongoing and future activities.
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Chapter 2

Background

In this Section, the different parameters affected by the introduction of PV systems and EV stations on the electric
network are presented, along with a number of examples taken from the literature. Then, different techniques to
reduce those impacts are presented, mostly concerning stationary BESS and smart EV charging or vehicle-to-grid (V2G)
algorithms.

2.1 DERs Grid Impact

Following the scheme introduced by Caballero-Pena et al. [3], DERs can impact the electric distribution systems by
altering its most important electric parameters, e.g. the root-mean-square (RMS) amplitude of bus voltages and line
currents, the grid frequency and total harmonic distortion (THD), the power losses over the lines and the power quality
in general (voltage unbalance, flicker, frequency and harmonics).

Numerous studies about the impact of PV systems and EV charging stations on the electric network can be found in
the literature. In the following Section, each specific parameter will be individually analysed and some examples will
be provided.

2.1.1 Voltage Magnitude Changes

In order to demonstrate how a power injection/absorption influences the voltage levels, we can assume, without loss
of generality, to analyse the simple system composed by one fixed power generator, one load, one line and a MV/LV
transformer, such as in Figure 2.1.

The equation (2.1) relating the power injection-absorption to the voltage levels is presented by Ghiani et al. [10]:

∆V = V1 − V2 =
R · (Pl − Pg) + X · (Ql − Qg)

V
· L (2.1)

FIGURE 2.1: Example system to show how voltage is influenced by power injections and absorptions.
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where index 1 refers to the slack bus, whose voltage level is set to the nominal one (V1 = V), Pg and Qg are the
active/reactive power injections at node 2 (both positive), Pl and Ql are the absorptions at the same node, R and X are
the line resistance and reactance per unit length and L is the line length. Even if Equation (2.1) holds for any voltage
level, a LV feeder is going to be considered for this example. This choice stems from two reasons: firstly, LV networks
are much more subject to voltage fluctuations than MV and HV ones are. This happens both because of the intrinsic
characteristics of the LV lines and because a much higher power injection/absorption is required to destabilise a MV
grid. Secondly, the work presented in chapters 3 and 4 is going to be based on the IEEE LV Test Feeder.

In order to show that a power injection from a DER always produces a voltage rise, let us assume that the load is
negligible (Pl = 0 and Ql = 0), which means that Pl − Pg < 0 and Ql − Qg < 0, so that there is a surplus of power
injected at node 2. If we assume that the DERs are PV systems, this situation is likely to happen during the central
hours of the day. In that scenario, we obtain equation (2.2) and by setting ∆V < 0, it is possible to solve for R/X while
remembering that Pg = Sg · cos(αg), Qg = Sg · sin(αg) and PFg = cos(αg). In these equations Sg is the apparent power
injection, αg is the phase angle between the voltage and current signals produced by the PV inverter and PFg is the
associated power factor.

R
X

> −
Qg

Pg
= −

sin(arccos(PFg))

PFg
∆V < 0 (2.2)

On the contrary, when Pg = 0, Qg = 0 and ∆V > 0, which represents the voltage decrease condition at the end of the
line, equation (2.3) is obtained

R
X

> −Ql
Pl

= − sin(arccos(PFl))

PFl
∆V > 0 (2.3)

where PFl is the load power factor.

It is clearly visible that all the positive PFg values satisfy the inequality in (2.2), since R
X is usually positive in LV

networks. Thus an overvoltage always occurs when injecting both active and reactive power into the grid. Dual
conclusions can be drawn from (2.3) for the case of a purely passive consumer connected at bus 2. This means that a
voltage decrease always happens when both the active and reactive absorbed powers are positive.

In order to quantify the magnitude of the voltage fluctuations, and show that they are influenced by the R/X line ratio
and line length L, let us take as an example the R/X ratios for the primary and secondary lines of the IEEE 906 Bus
LV Test Feeder. That ratio ranges from 1.30 to 6.20 for primary lines and from 9.43 to 40.10 for secondary ones. The
magnitude of the fluctuation of the voltage at bus 2 (V2) is directly proportional to the modules of P and Q (either
consumed or generated), the R/X ratio and the line length L. Moreover, under specific circumstances, e.g. high PFl

and PFg and high R/X ratios, it is possible to obtain an approximation of the voltage at bus 2, V̂2, as shown in equation
(2.4).

V̂2 = V1 −
R · (Pl − Pg)

V1
· L (2.4)

Note that in general, the relative approximation error, expressed in % as ∆E = (1−V2/V2) · 100 is small enough. Under
the aforementioned circumstances, it is possible to generalise that for LV lines with a high R/X ratio and both PFg and
PFl close to unity, the impedance and reactive power effects are mild and can be neglected.

Tables 2.1 and 2.2 justify the conclusions drawn by assuming two line lengths L (0.2 km and 1 km) and different R/X
ratios (1.3 and 40). Note how the "modules" of the active and reactive power |P| and |Q| are used in the tables, because
the power can be either absorbed (in that case |P| = Pl , |Q| = Ql) or injected (|P| = Pg, |Q| = Qg). The tables also
show the voltage fluctuations at bus 2 (V2), the associated current variations ∆I normalised by the line ampacity and
the value of the aforementioned approximation error ∆E.

It is thus confirmed that the voltage and current fluctuations are higher in magnitude for highly resistive and long
lines, such as the ones connecting the LV users to the secondary grid substations. As such, the standard for LV systems
EN50160:2010 [11] specifies that the 10-minutes RMS value of the voltage levels should not be over 1.1 p.u. or under
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L=0.2 km Overvoltage Undervoltage Overcurrent
|P| [kW] |Q| [kVAr] V2 [V] V2 [p.u.] ∆E [%] V2 [V] V2[p.u.] ∆E [%] ∆I [%]

0.00 0.00 240.00 1.00 0.00 240.00 1.00 0.00 0.00
2.00 0.41 240.86 1.00 0.05 239.14 1.00 -0.05 3.97
4.00 0.81 241.71 1.01 0.10 238.29 0.99 -0.10 7.94
6.00 1.22 242.57 1.01 0.14 237.43 0.99 -0.15 11.90
8.00 1.62 243.43 1.01 0.19 236.57 0.99 -0.19 15.87

10.00 2.03 244.28 1.02 0.24 235.72 0.98 -0.24 19.84
L=1 km Overvoltage Undervoltage Overcurrent

|P| [kW] |Q| [kVAr] V2 [V] V2 [p.u.] ∆E [%] V2 [V] V2[p.u.] ∆E [%] ∆I [%]
0.0 0.00 240.00 1.00 0.00 240.00 1.00 0.00 0.00
2.0 0.41 240.86 1.00 0.05 239.14 1.00 -0.05 3.97
4.0 0.81 241.71 1.01 0.10 238.29 0.99 -0.10 7.94
6.0 1.22 242.57 1.01 0.14 237.43 0.99 -0.15 11.90
8.0 1.62 243.43 1.01 0.19 236.57 0.99 -0.19 15.87

10.00 2.03 244.28 1.02 0.24 235.72 0.98 -0.24 19.84

TABLE 2.1: Voltage and current fluctuations for a primary line of length 0.2 km or 1 km due to power injections or
absorptions |P| and |Q|: R/X=1.31, Ampacity=210 A.

L=0.2 km Overvoltage Undervoltage Overcurrent
|P| [kW] |Q| [kVAr] V2 [V] V2 [p.u.] ∆E [%] V2 [V] V2[p.u.] ∆E [%] |∆I| [%]

0.00 0.00 240.00 1.00 0.00 240.00 1.00 0.00 0.00
2.00 0.41 246.65 1.03 0.01 233.30 0.97 -0.03 14.88
4.00 0.81 253.30 1.06 0.03 226.61 0.94 -0.07 29.76
6.00 1.22 259.95 1.08 0.04 219.91 0.92 -0.11 44.64
8.00 1.62 266.60 1.11 0.05 213.21 0.89 -0.15 59.52

10.00 2.03 273.25 1.14 0.06 206.52 0.86 -0.19 74.40
L=1 km Overvoltage Undervoltage Overcurrent

|P| [kW] |Q| [kVAr] V2 [V] V2 [p.u.] ∆E [%] V2 [V] V2[p.u.] ∆E [%] |∆I| [%]
0.00 0.00 240.00 1.00 0.00 240.00 1.00 0.00 0.00
2.00 0.41 273.25 1.14 0.06 206.52 0.86 -0.19 14.88
4.00 0.81 306.50 1.28 0.11 173.03 0.72 -0.46 29.76
6.00 1.22 339.75 1.42 0.15 139.55 0.58 -0.86 44.64
8.00 1.62 373.00 1.55 0.18 106.07 0.44 -1.51 59.52

10.00 2.03 406.25 1.69 0.21 72.59 0.30 -2.75 74.40

TABLE 2.2: Voltage and current fluctuations for a secondary line of length 0.2 km or 1 km due to power injections or
absorptions |P| and |Q|: R/X=40, Ampacity=56 A.

0.85 p.u. at any time during the year, and that it should be limited between 0.9 p.u. and 1.1 p.u. for 95% of the time.
Thus, particular care should be devoted to ensure that those limits are not exceeded.

2.1.2 Overloading and Losses

If the system in Figure 2.1 is taken as a reference once more, another consequence of a greater power mismatch at bus 2
is the increase in the power and current flowing through the lines. In order to see that, assuming that R/X is sufficiently
high (so that the reactance effects are negligible) and that both PFg −→ 1 and PFl −→ 1, it is possible to use Ohm’s
Law to calculate the current increase ∆I associated to the voltage fluctuation ∆V, through Equation (2.5)

|∆I| = ∆V
R

=
|P| · L

V1
(2.5)

where |P| is the magnitude of the injected or absorbed power and |∆I| is the magnitude of the additional current
produced by |P|. Overcurrent values, reported in tables 2.2 and 2.1 as a percentage of the lines ampacities (indicated
in the captions to the tables), may range from a few % points to about 20% in the case of primary lines, and up to 74%
for secondary ones. Reminding Joule’s law, linking the power dissipated through a conductor to the current flowing
through it, an increase in the current flowing through the conductor produces a quadratic increase in the system losses,
thus it is important to avoid lines overloading. The Italian regulation [12] for electric systems with a nominal voltage
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lower than 1 kV [12] prescribes that currents should not be higher than 140% of the ampacity of the line. Electric
equipment manufacturers may however indicate even stricter limitations to avoid damage to the cables.

2.1.3 Power Quality

Under the generic term of "power quality", it is possible to find different issues affecting electric systems, which can
also be caused by DERs.

2.1.3.1 Frequency Stability

A first important one is the frequency stability, which depends on the power mismatch between generation and con-
sumption. Dixon [13] proposes equation (2.6) to determine the rate of change of the rotational speed of a synchronous
system dω

dt in the case of a sudden power mismatch:

PGEN
resp + PGEN

non−resp − PLOAD = 2 · Heq · ω · dω

dt
(2.6)

where

• PGEN
resp represents the aggregated power of "responsive" generators, which automatically change their rotational

speed to interact with the power mismatch;

• PGEN
non−resp represents the "non-responsive" generators aggregated power, which do not change their speed auto-

matically to restore the frequency;

• PLOAD is the total electric load connected to the grid;

• Heq is an empirically-derived constant calculated as the total system kinetic energy over the nominal apparent
power system rating, as in Chapter 3 of [13].

Since the rotational speed ω in stationary conditions must be constant, Equation (2.6) also shows how both an in-
crease/decrease of PLOAD or PGEN

non−resp may significantly affect the system frequency, especially in the case of un-
planned connection/disconnection events. DERs, such as PV systems and EV stations, are indeed generators and
loads which inject/absorb AC power through DC/AC power electronics converters, which do not produce any in-
ertial response in case of frequency fluctuations. Thus, their connection/disconnection or a variation in their power
absorption/consumption profiles could pose a threat to system stability. The regulation for synchronous LV networks
connected to the MV/HV grid [11] prescribes that deviation of the 10 s average of the fundamental frequency does not
exceed ± 1% for more than 0.5% of the year, and that it never exceeds +4%/-6%.

2.1.3.2 Voltage Unbalance

An uneven distribution of loads and DERs on the single phases of a network could lead to voltage and currents un-
balance in the three-phase systems, possibly causing different malfunctions. The most common indicator for voltage
unbalance, is the Voltage Unbalance Factor VUF (equation (2.7))

VUF[%] =
VNEG

VPOS · 100 (2.7)

where VNEG and VPOS are the 10 minutes RMS values for the negative and positive sequence components of the three-
phase AC voltage waveform. The regulation [11] prescribes that 90% of the VNEG values should be within ±2% of
VPOS, or similarly that 98% < VUF < 102% for 90% of the time.

2.1.3.3 Harmonics

Since most of the modern DERs are connected to the grid via power converters that represent highly non-linear loads,
the harmonic content of the voltage and current waveforms is steadily growing. The most common indicator for the
harmonic content is the "total harmonic distortion" (THD) coefficient, which is calculated, for example for voltage levels,
as in (2.8)
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THDV [%] =

√√√√ N

∑
n=1

(
Vn

V1

)2
· 100 (2.8)

where Vn is the RMS value of the n-th harmonic voltage, N is the number of harmonics, and V1 is the RMS harmonic
voltage value of fundamental frequency. In power electronic converters, the RMS value of the 3rd, 5th and 7th har-
monics can be very large. Thus, they should be limited and properly filtered via passive or active filters, i.e. series or
parallel circuits designed to prevent harmonic currents from entering the system. Power transformers are mostly af-
fected by harmonics. Thus, particular care should be placed in mitigating this issues. The regulation around harmonics
[11] prescribes that 95% of the 10 min RMS voltage values for the single harmonics Vn

V1
should be lower than specific

thresholds based on the harmonic order n, and that THDV should be less than 8% if n=1,...,40.

2.1.3.4 Flicker

Flicker happens instead due to low voltage magnitude fluctuations with a very short time period, causing variations in
lighting intensity of lamps. The main causes of flickering are industrial loads with a fluctuating consumption such as
welding machines, mills, arc furnaces and compressors. Several studies tried to determine the effects of flickering on
human health, but it was found that it is highly subjective, and a flickering level which causes a headache in one person
is harmless to another. Nonetheless, flickering is quantified by "disturbance" curves that depend on both the voltage
fluctuation magnitude and the number of flickers per minute. As such, it is possible to distinguish between the short
term flicker severity Pst,i, measured over 10 minutes by flickermeters and the long term one Plt, obtained as in (2.9)

Plt =
3

√√√√ 12

∑
i=1

P3
st,i
12

(2.9)

where Pst,i is the short-term flicker intensity over the i-th 2-hours interval of the day and Plt is the daily long-term
flicker intensity. The existing regulation [11] prescribes that the weekly Plt < 1 for 95% of time. A new directive by the
EU [14] tackles instead the issue of flickering in the much more widespread LED lights. In that regulation, the limit of 1
is also set for the short term flickering index at full load. That value means that the probability for the user to perceive
flickering is 50%.

There is a vast literature regarding the impact of DERs on the electric grid, covering all the aspects that were outlined
up to here. In the following, a number of them will be presented and described.

2.1.4 Literature Review on PV Impact

As of now, the concept of "hosting capacity" (HC) and "penetration" of DER are going to be extensively used in the
following literature review. HC is used in the literature to define the maximum allowable installed capacity of DERs
that does not produce any violation of the specific thresholds prescribed by some regulation. It must be noted, that
the HC for voltage violations could be different from the one for the current loading levels, or voltage unbalance. The
concept of DER "penetration" instead, is generally defined for PV systems, as in Equation (2.10), i.e.

PVpen =
∑M

m=1 PPV
m

∑N
n=1 SLOAD

n
(2.10)

where PPV
m is the nominal installed capacity of the m-th PV generator on the grid and SLOAD

n is the nominal apparent
power of the n-th load on the grid. The definition for EVs is similar, but is less frequently found in the literature. It has to
be noted that, even if the penetration is a very easy-to-understand and useful indicator, there are several shortcomings
in the specific case of DERs, since most of the times neither PV systems nor EVs absorb their nominal power. Thus, the
penetration is not very indicative of the actual production/consumption balance in a system.

A number of examples of how the impacts of PV systems and EV stations on the electric network are analysed and
mitigated in the literature is provided in Table 2.3.
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Parameter PV Systems EV Charging Stations
Voltage Magnitude [15–46] [46–59]

Lines Loading [25, 26, 29, 31, 33–35, 37, 44–46, 58–60] [46, 48, 49, 51, 54, 57, 61–63]
Transformer Loading [32, 33, 45, 46, 53, 60] [46, 50–52, 54, 61]

Losses [29, 36, 40, 44, 64–67] [48–50, 57, 68, 69]
Frequency [70–72] (impact) - [73] (support) [46, 48, 49, 51, 54, 57, 61–63] (support)

Voltage Unbalance [22, 23, 36, 42, 44, 46, 60, 64, 65, 67, 74–76] [46, 57, 63, 69, 77–79]
Harmonics [30, 44, 58, 59, 80–83] [77, 84–87]

Voltage Flicker [25, 39, 88–90] [87, 91–93]

TABLE 2.3: Review of the literature around PV and EV impact on the grid.

Since the analysis is quite different depending on whether MV or LV systems are considered, in the rest of this Section
the related studies will be separately described.

2.1.4.1 PV Impact on MV Feeders

Several Authors analysed and tackled the issue of voltage stability due to the injection of PV power in MV test feed-
ers provided by IEEE. For example, Joshi et al. [40] analysed the IEEE 13-bus feeder, finding that both the voltages
and losses are not impacted by PV, and never trespass the MV limits (±0.1 p.u). The same network was analysed by
Emmanuel et al. [65], who calculated the voltage magnitude variation, unbalance, transformer and lines overload and
electric losses due to PV units. They found out that overvoltages are the main source of HC limitation. Balamurugan
et al. instead [36], focused on the IEEE 34 node MV test feeder and observed that there are specific buses where intro-
ducing three-phase PV systems is particularly risky in terms of voltage unbalance. That happens even though both the
voltage profile and losses benefit from the introduction of PV systems. Other Authors analysed bigger MV networks,
such as Begovic et al. [41], that studied the IEEE 123-bus test feeder and realised that even stochastic PV placement
may provide peak load shaving and CO2 emissions reduction. Liu et al. also studied the same network [29] and tested
a particle swarm optimisation-based (PSO) network reconfiguration methodology. They found that both the losses and
overvoltage issues are eliminated by changing the grid topology, and that the required grid reconfiguration is reduced
by smart capacitors and transformer control. Moreover, Ceylan et al. [24] applied tap changing and reactive power
control to mitigate the impact of PV systems on the 123-bus grid. They found out that distributed PV generation has a
much lower impact on the grid than PV power concentrated on one node only. Finally, Daud et al. [17] analysed several
IEEE MV test feeders and observed that both losses and overvoltage issues are minimised when the PV penetration is
between 60 and 80%. Over that value, the PV production is unmatched by the load, reverse power flow happens and
the aforementioned issues appear.

When real MV grids are instead considered, as Ampofo et al. [35] did, voltage rise is found to be maximum when
the PV systems are far from the transformer and the available load consumption is low. Heilscher et al. instead
[33] realised that, even if the PV systems are evenly distributed along a MV grid in Germany, their impact on the
transformer and lines loading keeps being relevant and severely limits the grid HC. Dhlamini et al. [18] modelled
the transmission/distribution networks in the South African region of North Cape and observed that, due to the high
solar irradiance in the area, voltage stability is greatly affected by the installation of PV systems. Luthander et al. [32]
analysed two feeders in Sweden with increasing levels of PV uptake, up to 100% of the load consumption. Batteries and
power curtailment are used to increase the HC while reducing overvoltage, overcurrent and transformer overloading
events. Other Authors, like Pormousavi et al. [72] analysed voltage and frequency stability on a typical American MV
grid and realised that up to 30% PV penetration can be reached without creating issues. However, the provision of
ancillary services is required to keep the frequency under the allowed limits. Feilat et al. [70] instead, analysed the
entire national grid from Jordan, and found that the maximum PV HC considering current and voltage limitations is
10% of the total load demand. If frequency is considered instead, the installation of PV and wind power plants can
cover 40% of the total demand without any issues. A smaller network composed by 14 buses was analysed by Reno et
al. [28], who investigated the extent to which smart inverters with volt-var control could improve the PV HC, showing
that up to 100% PV penetration is allowed. A very simple MV network was analysed by Shayani et al. [31], who
showed that both overvoltage and overcurrents are a bottleneck to PV HC. The former can moreover be solved by
setting the transformer taps to a lower p.u. value, so that the PV generation can grow up to twice the load capacity.
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Finally, Navarro et al. [21] analysed a 25-bus system at the interface between the LV and MV grid, and found out that
the LV side limits the PV HC, while the MV side is not influenced.

As far as voltage unbalance is concerned, Ding et al. [42] tested capacitor switching on the IEEE 123-bus grid, by
maximising the PV HC with a mixed-integer linear programming approach and monitoring the voltage levels, the
unbalances and current loading. They found out that, even though a positive impact is detected, the system has to be
supported by storage system. On the same topic, Wang et al. [75] analysed the IEEE 13 and 123-bus networks and
solved the BESS siting problem with the objective to maximise the use of PV-produced energy. They compared the
results with normal HC maximisation methods and highlighted the advantages of the proposed solution. Farmer et
al. [51] instead, focused on the lines loading only while analysing a MV grid in Vermont, and observed that both the
cables and transformers could be loaded up to 60% more, although in general the expected average increase is around
15%.

Darussalam et al. [71] investigated how PV influences the system frequency in a MV Indonesian grid, and realised
that 20% PV penetration is the HC. Other Authors focused on the harmonic injection due to PV. Barutcu et al. [80] for
example, analysed how the voltage and current RMS values in three 7, 13 and 25-bus MV systems react to high PV
injections in terms of total and single harmonic distortions. They found that when the irradiance is low, the current
harmonics limit the HC value, whereas when the irradiance is high, voltage harmonics are more severely affected.

2.1.4.2 PV on LV Feeders

Many Authors showed that LV grids typically suffer more than MV ones from the introduction of PV systems due
to larger R/X values and long lines. Aziz et al. [16] for example, showed that if the PV power is concentrated on
one LV bus, a PV penetration of 2.5% is enough to destabilise the grid, whereas if the PVs are spread over the grid,
the HC value may increase up to 110% PV penetration. Dubey et al. [23] found out that both voltage magnitude and
unbalance are affected by the increasing penetration of PV systems, especially when most of the PV capacity is installed
far from the transformer. Additionally, increasing the base-load consumption (e.g. power through the transformer
when no PV is installed) improves the PV hosting capacity. Haghi et al. [26] instead, compared various techniques
to increase the PV hosting capacity of a Californian grid, finding that Volt-VAR is the best technique to avoid PV
curtailment due to overvoltage issues. Mohammadi et al. [25] analysed how the LV network protections are affected
by PV systems and proposed "smart" ones that reduce the overvoltage, overcurrent and flicker events. Smith et al. [38]
instead, observed that the feeder they analysed already suffers from both overvoltage and voltage unbalance issues at
the furthermost buses from the transformer for a 20% PV penetration. Tang et al. [22] showed once more that smart
inverters with volt-VAR capabilities help in reducing the voltage magnitude variations and unbalances, improving the
PV HC from a 140-200 % to a 250-270 % PV penetration. Tevar-Bartolomé et al. [19] analysed the cost of upgrading a
very vast MV/LV network of 80000 customers. Up to 30% PV penetration, no grid upgrading is required, while above
that value, the upgrade costs increase quadratically with the installed PV capacity. Moreover, 30% PV penetration is
the optimal value that minimises the losses and does not involve any economic expenditure for additional operation
and maintenance. Stetz et al. [45] analysed a LV network in Germany where smart inverter capabilities, on-load tap
changers and grid reinforcements are used to mitigate the voltage, line currents and transformer loading issues. They
realised that reactive power support from smart PV inverters is the most profitable and efficient strategy. Torquato et
al. [60] instead, performed a Montecarlo analysis and found that overvoltages and voltage unbalances are the most
restrictive limitations to PV HC, which can be accurately estimated also by selecting a limited amount of feeders. Hu
et al. [64] implemented inverter reactive power consumption and on-load tap changing to improve the PV HC from
40 to 70% in a Danish feeder. Interestingly, both the techniques improve the voltage profile, but could create voltage
unbalance and slightly increase the losses. Finally, Rahman et al. [74] investigated voltage magnitude fluctuations and
unbalance on an Australian network and showed that demand-side management (DSM) and on-load tap changing can
be optimally controlled by using a modified PSO algorithms to minimise the upgrading costs.

Finally, some Authors studied a very common example of European LV Grid, which is going to be considered in
this thesis too: the IEEE 906 Bus LV Test Feeder. Indeed, Gonzalez-Moran et al. [20] used this grid model together
with irradiance data from the north of Spain, finding that coordination between the PV systems is required to avoid
overvoltages and that the installed PV capacity needs to be tailored to the load profile of each user. Kitworawut et al.
[44] instead, studied how voltage magnitude, unbalance, lines and transformer overloads, as well as voltage harmonics
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are impacted by PV production. They found out that voltage rise and lines loading are the limiting factors for HC,
which is around 150% PV penetration. Voltage unbalance, harmonics and transformer loading are not outside of the
regulatory limits, but they increase as the PV penetration does. The electric losses instead, start to increase when the
PV penetration exceeds 50%.

Some other Authors focused their efforts on voltage unbalance issues on LV grids instead, such as Schwanz et al. [67],
who analysed two Swedish and one German LV network, finding that PV redistribution and size reduction is key to
reduce the unbalance. The introduction of 6 kW PV for each phase produces around 1% unbalance. Moreover, Su et
al. [76] analysed how reactive power support from small-scale PV inverters can help reducing the voltage unbalance in
Perth, Australia, and observed that it has a very positive impact.

2.1.4.3 PV and Power Quality

A number of Authors analysed the problem of harmonics injection from PV generators. Deng et al. [83] realised that
a simple LV grid can be impacted by a high PV penetration due to multi-resonance peaks at the point of common
coupling of each PV system. Those peaks can be mitigated by passive damping resistors. Hu et al. [82] instead, studied
how the resonance of LCL filters for PV systems could affect the additional harmonic content in a North American
power system. They found that the harmonic content reduction far outweighs the introduction produced by the filters.
Sakar et al. in both [58] and [59], analysed how introducing PV system impacts the voltage levels, current loading
and single/total voltage and current harmonic distortion levels. They also introduced two new optimised filters that
maximise the PV HC and outperform traditional THD minimising ones. Finally, flickering issues were analysed by
some Authors. For example, Ari et al. [88] showed that a LV grid in Nevada does not experience violations of the
voltage flicker limits due to PV power fluctuations, provided that the adopted time-step is small enough to capture
the irradiance fluctuations. Arshad et al.[90] instead, analysed a number of Finnish LV grids and observed that while
urban areas do not suffer from flicker, even when the PV penetration is high, the rural ones do. They also propose an
active/reactive inverter-based power profile compensation to reduce those issues. Finally, Ferdowsi [89] et al. analysed
a LV grid from Lousiana and realised that flickering issues start arising when 10% of the customers install 7 kW PV
systems, and become severe when a share of 30% is reached.

2.1.5 Literature Review on EV Impact

A vast literature exists regarding the impact of charging plug-in hybrid electric vehicles (PHEVs) and battery electric
vehicles (BEVs) on LV and MV grids. What follows is a review of some significant papers concerning the results of EV
HC on the grids.

2.1.5.1 EVs on MV Feeders

Dulau et al. [48] investigated the IEEE 13-bus MV system, finding that the lines loading, losses and voltage drops
are heavily impacted by the EV penetration, especially in fast EV charging scenarios. Lopes et al. instead [62], found
that both voltage levels and line congestions on a grid in Portugal are greatly impacted by large scale plug-in electric
vehicle (PHEV) integration and that time-of-use tariffs produce a mild effect on the grid HC value. Johansson et al.
[54] extended their analysis to a large-scale EV integration plan for a Swedish LV-MV network and showed that 50%
EV penetration is HC for undervoltages, overcurrents and transformer overloads. If the charging power increases,
the maximum allowed penetration decreases to 25%, with the transformers being the most vulnerable elements in the
system. Masoum et al. [50] instead, analysed a LV/MV distribution feeder with a large number of PHEV charging
stations. They found out that, when 80% PHEV penetration is reached, the transformers are impacted by both slow
and fast charging, whereas at 20% those impacts are almost negligible. Voltages are impacted too, with deviations
up to -0.14 p.u. at 20% and 0.43 p.u at 80 % PEV penetrations respectively. Losses generally increase alongside the
PHEV penetration, and generally occur when the number of charging events is higher. Finally, Schlee et al. [53]
investigated the impact of large scale PHEV penetration on a LV/MV distribution feeder from Idaho, and observed
that the maximum undervoltage magnitude is around -0.14 p.u and that transformer loading increases by up to 8%.
Both issues can be efficiently handled by smart scheduling the charging sessions based on time-of-use tariffs.



Chapter 2. Background 12

2.1.5.2 EVs on LV Feeders

Some Authors analysed the impact of EVs on LV feeders instead. Dubey et al. [55], for example, investigated the impact
of EV charging on the voltage levels of a very large LV grid, and realised that the voltage drop is directly proportional
to the distance from the transformer. They also found that increasing the size of closely connected EV chargers greatly
impacts the voltage drops, and that wires with a higher ampacity (primary feeders) are less affected than the others.
Kelly et al. [52] showed that transformers are the most impacted element in the system, as peak EV charging happens
almost always at the same time of the day in both the urban and rural analysed LV feeders. Leemput et al. [56] analysed
a Flemish LV feeder instead, finding that smart charging strategies, such as voltage droop control, reduce the minimum
voltage levels but do not improve the overall grid performance enough to respect existing regulation. The combination
of peak shaving and voltage droop control instead, provides the best results as it avoids grid reinforcement at all. Islam
et al. [63] analysed coordinated EV charging, finding out that the voltage unbalances are solved, while the current
unbalance issues are greatly improved. The voltage levels issues instead, are only marginally solved. Al Essa et al.
[57] analysed a generic UK LV network and found out that voltage unbalance and magnitude fluctuations are the most
restrictive limitations to HC, whereas lines and transformers are significantly impacted, but without overcoming the
threshold levels. Additionally, losses are increased by EV deployment. Finally, Putrus et al. [77] analysed a typical UK
LV grid and observed that voltage magnitude and current unbalance are impacted above 20% EV penetration, whereas
harmonics are significantly impacted only at much higher penetration levels.

The issue of transformer overloading was analysed by Taylor et al. [61], who presented preliminary results from a
study by EPRI in the US. They realised that the transformer close to the customers are the most influenced by PHEVs,
since they do not benefit from the aggregation of EV profiles, which typically smooths out the power curve. Temporal
and spatial diversity of the PHEVs, in general, reduces the overloads frequency by 2-8%. About the topic of current
and voltage unbalance instead, Islam et al. [69] investigated a MV/LV grid from Queensland, Australia, proposing a
controller to reduce the EV impact on the system by performing coordinated charging. They found that the application
of the controller to the most impacted set of nodes is the most efficient to increase the HC value. Klayklueng et al. [79]
showed that if the EV stations are concentrated on one phase only, the voltage unbalance may increase up to thrice.
Losses are generally increased by EV connection too, as Pieltain-Fernandez et al. show [68]. Indeed, losses at off-peak
consumption moments of the day can increase by 14%-40% due to simultaneous charging from all EV stations.

2.1.5.3 EVs and Power Quality

As far as the system frequency is concerned, Dechanupaprittha et al. [94] analysed micro-grid frequency control when
EVs are connected, and realised that charging scheduling optimisation is required to keep the frequency close to the
nominal level. Banol-Arias instead [95], analysed the possibility of rewarding EV owners for their participation in
frequency regulation, and found that the EVs provide an operational reserve for grid stabilisation. Finally, model
predictive control [96, 97] and adaptive optimal control [98] were used to reduce the EVs load impact on grid frequency
and provide primary frequency regulation with very positive results. Since the expectations of the EV owners need
to be included, as explained in [99, 100], simulations were performed and proved that the optimisation models do not
influence the quality of service for the users. With regards to harmonic content, instead, Gomez et al. [84] studied
how the transformer lifetime is impacted by the current THD in a system with EV chargers, and showed that the
THD should be limited to 25-30% to achieve a reasonable transformer life expectancy. Flickering from EV chargers is
analysed in [93] on the MV 4-bus IEEE test system. The Authors found out that fast charging EV stations from 150 to
350 kW violate the voltage flicker limitations, even though the results depend on the adopted time-step. Basta et al.
[91] analysed the MV IEEE 34 bus system in terms of harmonic distortion and voltage flicker, finding out that the order
of the harmonics heavily depends on the type of charger and manufacturer. Regarding flicker instead, the long-term
effects are more important than the short term ones, which are within an acceptable range. Finally, Blavette et al. [92]
analysed voltage flicker at the connection of EV charging stations, and observed that it is important to avoid saturating
the grid with an EV capacity close to the pre-connection base-load. Also, even though the simultaneous introduction of
PV systems could reduce the congestion levels due to EVs, the higher allowable EV penetration could in-turn increase
voltage flicker issues.
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2.1.6 Review on Combined PV and EV Impact

Recently, various Authors started analysing the combined impact of PV and EV on electric systems. Raouf et al. for
example [46] analysed to which extent BESS deployment can mitigate both the impact of EV charging stations and
PV systems on a LV network from Ireland. Results show that voltage unbalance is much more impacted than voltage
magnitude. Finally, the voltage magnitude, together with cables loading and transformer power, are impacted much
faster by an increase in EV rather than PV capacity. Carollo et al. [37] analysed an extensive real LV feeder with both
EV and PV, and realised that the PV overvoltage issues are just mildly mitigated in very high EV uptake scenarios.
Gabdullin et al. [15] analysed a real LV test feeder from Malta and found that if the PV penetration is under 30%, none
of the analysed feeders show any overvoltage issue. Moreover, uncontrolled EVs charging does not produce any PV
HC increase. Finally, Fachrizal et al. [47] analysed the combined PV-EV HC on the IEEE 906 Bus LV Test Feeder, finding
that smart EV charging and PV curtailment are the most effective ways of minimising the net-load peaks, respectively
leading to a 20% and a 40% increase in the number of users equipped with a PV system or an EV station.

In the following sections, techniques to improve the combined PV/EV HC making use of Energy Storage Systems
(ESSs) and smart vehicle-to-grid (V2G) charging algorithms are going to be showcased.

2.2 PV Systems Impact Mitigation

There are many types of stationary ESSs that can be used to mitigate the impact of DERs in general, and more specif-
ically of PV systems and EV stations. The most important parameters that have to be checked when choosing which
solution to use are the energy and power density, lifetime, response time, round-trip efficiency and cost. A small review
of the most relevant ones is going to be henceforth presented.

2.2.1 Types of ESSs

The stationary ESSs are roughly divided in two categories, as reported by various Authors [101, 102]: the mechanical
and electro-chemical ones.

Among mechanical storage devices, it is possible to find machines that use heat, water or air with compressors, turbines
and similar devices to store the electricity. For example, compressed air systems store the electricity by compressing
air and then releases it by expansion. Pumped hydro instead, stores it by pumping water to a higher altitude, then
releases it by running a turbine while the water flows back to a lower stage. Liquid air storage uses electricity to cool
air until it liquefies, and then brings the liquid back to a gas, which is then used to run a turbine and produce electricity.
Thermal and pumped thermal energy storage instead use a heat pump (HP) to store energy inside a medium like
gravel or water, then gets it back with any heat engine used to run a turbine to produce electricity. Flywheels store
the electricity as kinetic energy and release it by working as a traditional generator Electro-chemical storage devices
instead store electricity in the chemical reactions between the acids in the batteries themselves, and examples of that
are Li-Ion and Redox Flow Batteries. Super capacitors are also included in this category, and store energy through
the electric field created between two metal plates which are separated by a dielectric medium. All of the mechanical
methodologies generally have longer lifetimes (25–50 years), lower energy (< 80 kW m−3) and power (< 2 kW m−3)
densities, and lower round-trip efficiencies (< 80%) than Li-Ion batteries. Thermal energy storage devices are the
exception to that rule, having much higher power and energy density, but rather low minimum efficiencies (45-75%).
Flywheels instead, have a very short response time and high power density (1000-2000 kW m−3), but are still extremely
expensive compared to Li-Ion batteries. Among the electro-chemical ESSs instead, Redox Flow Batteries have much
longer lifetimes than Li-Ion ones, but fall short in terms of energy/power densities and round-trip efficiencies. Super-
capacitors instead have the highest power density of all ESSs, but a much lower energy density than Li-Ion batteries
(same level as Redox-Flow ones). Moreover, they generally are still very expensive.

Since both power and energy densities are required for PV energy storage and due to their recent cost drop, Li-Ion
batteries are the most widespread and mature storage technology. Thus Li-Ion batteries, henceforth dubbed as BESS,
are the only type of ESS which is going to be considered.
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2.2.2 BESS sizing

As introduced in Chapter 1, in order to support DER generation on a LV grid, the BESSs need to be properly sized and
controlled. The analysis of the literature highlights three different, but equally important, aspects for BESS sizing: the
input modelling, the BESS control and the sizing algorithm.

2.2.2.1 Input Profiles Modelling

Since BESSs sizing results are only as good as the modelling of the input profiles is, the choice regarding how the input
data to the sizing algorithms are modelled is vital. Two categories can be defined:

• Deterministic Modelling: the input profiles are obtained through one extensive measurement campaign or field
trials, and no statistic modelling is performed.

• Probabilistic Modelling: stochastic distributions are used to describe the input load and production profiles or
abstract representative profiles from several measurement campaigns.

In deterministic modelling, the input data is not statistically processed to be as representative as possible of the daily
or seasonal behaviour of a system. Thus, it requires no pre-processing, and more faithfully represent the reality of the
specific electric system the measurement campaign considered.

In probabilistic methods instead, the input data should statistically represent the consumption and production profiles
on the analysed grids, thus the sizing results are more easily generalised for similar networks and depend way less on
the specific analysed case study. However, the results of the sizing algorithm for one specific case study may not be as
accurate as in the case where the modelling was deterministic, due to the inevitable degree of randomness in the input
profiles.

Both of these ways to model the input data are used to create load/production profiles, which are then fed into sizing
algorithms to obtain the battery capacity.

2.2.2.2 Sizing Algorithm Classification

Another important aspect is the sizing algorithm, which, as reported in [103, 104], can be classified in two categories:

• Analytic: a set of different power system configurations are evaluated against an ESS capacity change, while all
the other input profiles generally stay the same. The best solution is showed by sorting a performance indicator
or objective function.

• Search-Based: an optimal solution is found with mathematical or heuristic optimisation methodologies, by min-
imising or maximising a specific objective function.

The first type, analytic methods, are generally not very time-efficient if the BESS capacity increase for each scenario
is small, since a lot of possibilities need to be analysed. These algorithms are, essentially performing a "sensitivity
analysis" on a set of parameters which change due to the BESS size increase. The results of the sizing procedure are
evaluated at every iteration and the "best" solution is chosen as the optimal one.

Whenever the computational burden of analysing such a wide array of network configurations is too high, however,
search-based methods are preferred. In those algorithms an optimisation algorithm is used to minimise some objective
function, either by making use of mathematical optimisation algorithms or heuristic ones:

• Mathematical: the search is guided by means of a mathematical optimisation algorithm that minimises/maximises
a particular objective function. Those algorithms rely on mature mathematical optimisation algorithms such as
linear or quadratic programming that converge to optimal solutions. The range of objective functions that can be
represented is however limited to the ones that can be mathematically represented as a function of the decision
variables.

• Heuristic: the search is guided by heuristic algorithms that mimic naturally existing behaviours to find an optimal
path to the objective. An example could be copying how insects fly in a swarm or bees move inside a colony.
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Methodology Pros Cons Examples

Analytic
• Easier to understand • Very dependent on the choice of scenarios [105–108]

[109–113]• Very flexible in all simulation environments • Generally computationally intensive
• Provides clear and stable outputs • May miss global optimum if scenarios are not carefully chosen

Search-Based - Mathematical
• Based on stable mathematical methods • Explicit mathematic representation is required (no hybrid KPIs)

[114–117]• Fast and robust if problem is linear • Computational burden increases with problem complexity
• Usually able to reach global optimum • May require complex linearization techniques to be solved

Search-Based - Heuristic • No complex mathematical representation • Less stable/reliable than mathematical optimisation for linear problems [105, 118–121]• Widely applicable to all sorts of sizing problems • May miss global optimum

Hybrid
• No high computational resources requirement • Complexity increases and easiness of results interpretation decreases [122–124]• Combines strong points of different methods

TABLE 2.4: Pros and cons of different BESS sizing methodologies, along with some examples related to PV.

These methods allow for a very wide range of objective functions to be minimised/maximised and act as "sort-
ing" algorithms that find the optimal search direction. Those algorithms generally reduce the computational
time requirements of the mathematical ones and allow for the minimisation/maximisation of multiple objective
functions at the same time, but are not guaranteed to always reach the global optimum.

Finally, hybrid methods combine the best features of the other methodologies, for example algorithms operating on
different stages that perform a mathematical optimisation of one parameter, then use it as the input to a sensitivity
analysis or a heuristic search-based method.

It has to be noted that the "search-based" sizing algorithms could also not require a BESS control, because they are
also capable of scheduling the BESS to achieve an optimisation objective. The analytic ones instead, usually simulate a
number of scenarios and then evaluate the objective function. Thus, they almost always need a BESS control to optimise
the instantaneous charge/discharge and achieve a global, usually sub-optimal, value of the objective function.

Tables 2.4 details the main pros and cons of each sizing method and gives some specific examples of how they were
used in the literature for PV-related BESS sizing. In the following, those examples are going to be shortly described.

Among the Analytic methods, Nazaripouya et al. [106] minimised the total BESS capacity and solved the siting problem
for a number of BESS placed on the IEEE MV 14-bus test feeder. They regulate the active and reactive power flows by
applying inverter controls to reduce the overvoltage issues. Ru et al. [107] instead, analysed how BESSs influence a
single user yearly saving thanks to the PV-related self-sufficiency. Their approach tries to find a critical BESS capacity
threshold over which the savings due to the installation of storage systems are null, and the results show that between
9.4 and 16 kWh per user is the most appropriate BESS size range. Yang et al. [108] minimised the system costs by
deploying BESS systems on a MV test feeder with high PV penetration. They found out that the BESS costs are still
too high to ensure the payback time is reached before the BESS end-of-life. The same results are obtained by Zheng
et al. [105], who analysed the IEEE 14-bus test feeder instead. Yue et al. [125] performed BESS sizing on a test 68-bus
feeder where 35% of the traditional generation is replaced by PV systems. By deploying a Monte-Carlo approach, they
observed that, in order to address the frequency issues arising from replacing generators with PV systems, a BESS
capacity from 53 MWh to 16 GWh is required. Cervone et al. [123], paired a Markov Chains stochastic approach for
input data creation to a deterministic optimisation to size the BESS for a PV-powered grid. They realised that in this
particular case study, lead-acid BESS achieve a payback period of 8 years while the costs of Li-ion ones are too high
to be considered yet. In Long et al. [126], the Authors propose a centralised BESS control algorithm to maximise the
district-level self sufficiency of a community of 100 grid users spread over a vast LV network. The Authors show that a
reduction in the electricity costs up to 30% is achievable, along with an increase in the self-consumption values by 10-
30% and self-sufficiency by 20%. Moreover, the more users participate in district electricity trading, the more the BESS
size tends to reduce. As a consequence, a self-consumption value of 80% requires each user to install a 3 kWh BESS
instead of a 10 kWh one. Another example is found in Rodrigues et al. [127], where a centralised energy sharing BESS
control algorithm was applied to a university campus system to understand which is the most economically profitable
BESS ownership scenario. When a centralised BESS control is applied, the model where the users purchase the BESSs
has the lowest payback period, provided the initial investment is not too high for them. The scenario where a company
purchases the BESSs instead, is only profitable to attract the users, since it has a longer payback period for the company
but requires no initial user investment. In both these examples, the BESSs are centrally controlled by a company, thus
the charging/discharging can be "coordinated" and provide the highest benefits. As such, the classification splitting the
BESS controls in "decentralised" and "centralised" is very important, so in Section 2.2.2.3, the main differences between
these two categories are going to be presented.
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Some of the search-based methods rely on heuristic algorithms to minimise or maximise some particular objective func-
tion. Shang et al. [121] for example, used a PSO algorithm to simultaneously minimise dispatch costs and lower the
cost of electricity in a LV grid in Singapore. The Authors showed that, as the renewable energy penetration covers more
and more of the total electricity demand, the cost of electricity decreases from 0.26 to 0.18 $/kWh. Ai et al. [118] instead,
make use of a Binary Firefly Algorithm to solve the BESS siting/sizing problem in the IEEE 69-bus MV test feeder, in
order to minimise the overvoltage events due to the installation of a large 3.66 MW PV generator at one bus. They also
report that the overvoltage events are neutralised by the BESSs. Babacan et al. [120] used a genetic algorithm to solve
the BESSs sizing/siting problem on the IEEE 8500-Node test feeder. They observed that the installed BESS capacity
increase with the PV penetration is sub-linear and the higher the installation costs, the lower the installed capacity, as
the nodes least affected by PV will not be supported anymore. Finally, if only one centralised BESS is installed, the
scale-economy allows for a higher total installed BESS capacity. Saboori et al. [119] analysed how the profits of an
electric distribution company managing a MV system can be maximised by optimally sizing and managing BESSs with
a PSO algorithm. It is shown how a 60% annual profit increase can be obtained when PV and BESSs are properly sized
and coordinated, whereas when there is no storage capacity, a 45% increase only is reached. If there is no PV instead,
the increase stops at 37%. Zheng et al [105] tested how a fuzzy-programming based PSO can be used to minimise the
Distribution System Operator (DSO) system costs on the IEEE 15-bus test feeder. They realised that, in this specific case
study, Li-ion batteries are better than lead-acid ones, and that the best solution is to place the BESSs at the PV systems’
location, a solution requiring the installation of a BESS nominal power equal to 30% of the PV capacity only.

Some other search-based methods rely on mathematical optimisation techniques. Fortenbacher et al. [116] proposes an
optimal power flow approach to size the BESSs in a test grid from CIGRE with a high PV penetration. The installed
PV systems in fact, produce up to 100% of the load consumption, and decentralised BESS control results as the most
profitable solution since it prevents PV curtailment.ù Johnson et al. [115] instead, studied a real UK LV test feeder, and
optimised the BESS size by means of Mixed-Integer Linear Programming to control active and reactive BESS exchanges.
In this case study, the authors found that BESSs are not economically as viable as traditional grid reinforcement tech-
niques. Nick et al. [114], investigated how BESSs can perform grid support in terms of voltage, currents and losses in
the IEEE 34-bus MV system. By adopting a mixed-integer cone programming approach, they showed BESSs efficiently
eliminate line congestion and load curtailment, mitigate overvoltages and minimise the electricity cost. Nick et al. [117]
analysed a larger MV system too with a total connected PV capacity of 5 MW and solved the sizing/siting problem by
using an alternating direction method of multipliers algorithm. They found out that compared to the work in [114],
the simulation is much faster. Finally, Dragicevic et al. [124] paired a robust optimisation model for PV uncertainty to
a search-based method based on mixed-integer linear programming to minimise the systems cost, considering battery
degradation as well. They observed that traditional lead-acid batteries are not economically as viable as Li-ion ones
due to their higher replacement frequency.

2.2.2.3 Centralised vs. Decentralised BESS Controls

ESSs in general, but more specifically BESSs try to mitigate the lack of contemporaneity between the PV production
and the load consumption. As such, a control algorithm is usually required to regulate the power exchanged with the
battery. A typical situation is shown in Figure 2.2, where the PV production (PPV) is mostly available from 08:00 to
17:00, whereas the consumption (PLOAD) is concentrated in the 06:00-08:00 and 18:00-21:00 intervals.

This active power mismatch is visible in the profile of the power exchanged with the grid PNET = PLOAD − PPV , which
is negative during overproduction hours and positive for underproduction. This issues can be smoothed by charging
or discharging the battery (PBESS), in order to smooth the PNET curve to PNET + PBESS, Simultaneously, the battery
state-of-charge (SOCBESS) profile will reflect the injected/absorbed power. Summing up, the batteries are charged
when there is a surplus of PV generation EPV and discharged when the PV production is not enough to cover the load
demand ELOAD, in order to minimise the amount of energy exchanged with the grid ENET . Even if both Decentralised
and Centralised charging algorithms follow the same generic BESS principle, they generally select grid-level or single-
user level objective functions to optimise.

For example, centralised controls require a "coordinator", an entity that receives information about the state of the
storage devices and instructs them on how to efficiently use their capacity to achieve a global optimal value of some
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FIGURE 2.2: Working principle of a stationary storage system to increase the exploitation of the PV-produced energy.

objective function. As such, in Figure 2.3 the effects of centralised battery charging strategies on the aggregated net
power of an LV/MV transformer, are compared to the effects of decentralised charging.

Since this Figure considers a "grid-level" objective function, i.e. the batteries are used to minimise the dependence of
the entire network on the main grid, it can be easily seen that the centralised algorithm outperforms the decentralised
one. In fact, the latter makes a less efficient use of the available installed capacity by only optimising user-level self
sufficiency. The results are confirmed by the net-power PNET curve in figure 2.3b, which is only smoothed when the
batteries are centrally coordinated (PNET + PBESS).

If instead, the disaggregated net-power is plotted, which means considering the net load PNET of any of the single users
instead of the MV/LV transformer, the situation showed in Figure 2.3 changes to the one displayed in Figure 2.4.

It is clearly visible that now, the PNET curve is smoothed only in Figure 2.4a since the centralised coordination shown in
Figure 2.4b charges and discharges the battery following a control policy that considers the entire network. However,
this is clearly not beneficial to optimise the single-user self sufficiency.

Summing the whole BESS sizing process up, Figure 2.5 shows how these elements relate to each other.

2.3 EV Stations Impact Mitigation

Among the different solutions to reduce the impacts of EV charging on the grid, the most promising one is the V2G
control policy, which can either be applied as unidirectional (also called G2V) or bidirectional (also dubbed V2G). The
latter is harder to implement, as it requires modern power converters to charge and discharge the EV battery based on
the supply-demand requirements (check Figure 2.6).

The possibility of not only "smart charging" the EV, but also "smart discharging" based on the grid requirements, allows
the bi-directional V2G to provide an additional range of grid services, as shown in Table 2.5.

The V2G algorithms can be classified based on the methodology they adopt, and in the following a review of the
literature is presented.
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(A) Decentralised

(B) Centralised

FIGURE 2.3: Net power flow PNET across a LV/MV transformer with and without BESS controls for the same
total installed storage capacity on the grid.

Unidirectional Bidirectional
Name G2V G2V+V2G
Complexity Lower Higher
Social Barrier Lower Higher
Battery Degradation Lower Higher

Required • Communication Infrastructure • Communication Infrastructure
• Bidirectional Inverter

Services

• Frequency regulation • Frequency regulation
• Spinning Reserve • Spinning Reserve
• Voltage Regulation • Voltage Regulation
• Load Shifting • Demand Response

• Peak Shaving
• RES Integration
• Harmonic Filtering

TABLE 2.5: Comparison between uni and bi-directional EV charging.
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(A) Decentralised

(B) Centralised

FIGURE 2.4: Net power flow PNET of a single user with and without centralised or decentralised BESS controls
for the same total installed storage capacity on the grid.
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FIGURE 2.5: Analytic vs. Search-Based BESS sizing as most commonly find in the literature.

RLC Filter AC/DC Converter Buck-Boost ConverterMain Grid EV Charging Station

Unidirectional Charging

Bidirectional Charging

FIGURE 2.6: EV connection schemes for uni and bi-directional V2G.
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2.3.1 Review on V2G Methodologies

V2G charging algorithms can be roughly classified in three categories: analytic, heuristic and model predictive controls.

• Analytic methods are guaranteed to converge to a global optimum of some selected objective function. They
are based on mature optimisation techniques, but are generally tied to the representation of the optimisation
problem in mathematical terms.

• Heuristic methods reduce the number of solutions to analyse and generally do not require complex mathematical
formulations. They allow for an arbitrary number of objective functions but could get stuck in locally optimal
minima/maxima.

• Model predictive techniques rely on controls based on the production vs. consumption mismatch forecasting. Gen-
erally paired to traditional analytical techniques, they do not assume a perfect forecast of the network conditions
in the future.

Some examples are presented in Table 2.6, and will hereafter be shortly described.

Among the analytic methods, linear programming ones are generally deployed to minimise objective functions that are
a linear combination of the decision variables. For example, some Authors minimise the EV charging costs [128–130]
or maximise the normalised PV utilisation [131]. Another type of optimisation algorithm that is usually deployed to
speed up the simulations is mixed-integer linear programming, which constrain some decision variables to be integers
and applied linear programming. Papers that use that methodology usually minimise the charging costs [132] or the
overall system costs [133, 134]. Other aspects may involve maximising PV utilisation, as in [135], and minimising
frequency deviation, as performed by Kaur et al. [136]. Whenever the objective algorithm is not a linear combination
of the decision variables, non-linear programming methods have to be used. An example of that is the reduction
of the net-load profile variance at the secondary substation transformer, as performed by Ioakimidis et al [137], or the
minimisation of battery ageing, as in [138, 139]. A particular type of non-linear optimisation is quadratic programming,
which can be, for instance, aimed at minimising the net-load variance of a power profile, as in [140–143]. Sometimes,
quadratic programming is used because it allows for the inclusion of a linear term too, as performed by Palmiotto
et al. [144] who also include the minimisation of system costs in the problem. Again, whenever speed is essential,
mixed-integer quadratic programming algorithms are used, for example to maximise PV utilisation [145]. Sometimes,
optimisation problems can be represented as sub-problems which are easier to analyse and solve. Since a relation
between the solutions of the sub-problems and the main problem persists, it is possible to break the big problem down,
as Dynamic Programming approaches do. Some examples of that are shown in [146–148].

Among the variety of heuristic approaches, oftentimes mimicking natural behaviours to sort and select the solutions
of an optimisation problem, one of the most common is Particle Swarm Optimisation. For example, some authors
[149–156] use it for V2G optimisation in a number of situations, ranging from the classic maximisation of the use of PV-
produced energy to the minimisation of system costs and net-load variance at the same time. Artificial Bee, Ant Colony
optimisations and Genetic Algorithms are also used to minimise charging costs [157], minimise users’ waiting time
at the charging station [158, 159] and minimise the net-load profile variance [160]. An additional benefit of heuristic
optimisation algorithms is that the number of optimised objective functions is arbitrary, even if some limitations persist
due to computational requirements.

Model predictive controls provide a more realistic view of the algorithms performance than deterministic or heuristic
methods, especially if they need to be implemented on real devices. Among the typical optimisation objectives based
on model-predictive control, it is possible to find the minimisation of both the total system costs [161, 162] and the
charging costs [163–165], the maximisation of the benefit for the users’ aggregator [166], the minimisation of the peak
net-load demand [167, 168] and the maximisation of the PV utilisation [169].

Finally, it has to be noted that all of these algorithms can be found either in a "centralised" or "decentralised" form,
which is an additional layer of classification in the V2G algorithms. Table 2.6 details this particular aspect for each of
the reviewed papers. The main methodological differences will be detailed in the following Section.
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FIGURE 2.7: Centralised and Decentralised charging, a comparison.

2.3.2 Decentralised and Centralised V2G

EV charging techniques are classified in the literature as coordinated or uncoordinated. While in the latter the EVs con-
nect to the stations and absorb the nominal power until the max SOC is reached, coordinated or "smart" charging shifts
the charging sessions to avoid overloading the grid. The latter type is further split into centralised and decentralised
EV charging. This classification is displayed in Figure 2.7, while some examples are provided in Table 2.6.

In centralised charging, the aggregator first gathers information regarding the EVs SOC, connection state and charging
requirements. Then, based on the grid production-consumption mismatch and other grid parameters, elaborates a
bidding strategy that is submitted to the market. If the bidding is successful, the optimal charging solution is obtained
and the control signals sent to the EVs. In decentralised charging instead, the aggregator elaborates a bidding strategy
based on historical or forecasted EV demand profiles, then sends the bidding results to the single EVs, which can decide
whether to charge or not in that time slot. The results are then sent to the aggregator, which can then decide whether
to modify the bidding or not. When the final solution is reached, the scheduling profile is obtained. While centralised
charging charging only requires a one-way communication between the EVs and the aggregator, has an overall low
computational burden for the single EVs and allows for grid stabilisation, the EVs need to entirely demand the charging
process to the aggregator, which also experiences a higher computational burden. Decentralised charging instead, shifts
the computational burden from the aggregator to the single users, and generally requires more than one iteration to
find the optimal solution that satisfies both the single EVs and the market. The communication infrastructure needs
to be bidirectional, and thus becomes more expensive, but the single EV can decide whether to charge or not based on
their own payback plan.

As mentioned before, a centralised V2G control can include grid-level objectives in the smart scheduling process and
more efficiently exploit all the EVs connected to the grid. An example can be seen in Figure 2.8, where two scenarios
(low and high EV penetration) are compared. In those figures, the objective is smoothing the net active power curve
through a MV/LV transformer.

Two different aspects should be underlined by looking at figures 2.8a and 2.8b. Firstly, the centralised algorithm is able
to smooth the PNET curve efficiently in both cases, though major differences can be spotted between the high and low
EV penetration scenarios. Secondly, the high number of EVs in the high penetration scenario reduces the use of each
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Classification Method Objective(s) Type Examples

Analytic

Non-Linear Programming

NLVR Decentralised [137]
Minimize Battery Ageing Cost Decentralised [138]
Maximize Profit and Battery Life Decentralised [139]

Linear Programming Maximising PV Utilisation Centralised [131]
Minimize User Costs Decentralised [128–130]

Mixed-Integer Linear Programming

Minimising System Costs Centralised [133, 134]
Minimising Charging Costs Decentralised [132]
Maximising PV Utilisation and Profit Centralised [135]
Minimise Frequency Deviation Decentralised [136]

Quadratic Programming
NLVR Decentralised [47, 140–143]
NLVR+Minimize System Costs Centralised [144]
NLVR Centralised [140, 141]

Dynamic Programming Minimise EV Management Costs Decentralised [146–148]
Mixed-Integer Quadratic Programming Maximise PV Utilisation Centralised [145]

Heuristic

Hierarchical Control Architecture Minimise Charging Costs Centralised [170]

Particle Swarm Optimisation

Maximise PV Utilisation Centralised [171]
Peak Shaving Centralised [149–152]
Minimise Charging Costs Centralised [153–155]
Minimise System Costs + NLVR Centralised [156]

Artificial Bee Colony Minimise Charging Costs Centralised [157]
Ant Colony Optimisation Minimise Users’ Waiting Time Centralised [158, 159]

Genetic Agorithm NLVR Centralised [160]

Model Predictive Control

Minimise Total Costs Centralised [161, 162]
Minimise Charging Costs Decentralised [163–165]
Maximise Aggregator’s Benefits Centralised [166]
Minimise Peak Demand Centralised [167, 168]
Maximise PV Utilisation Decentralised [169]

TABLE 2.6: Overview of bidirectional V2G optimisation techniques and objectives.

(A) Low EV Penetration (B) High EV Penetration

FIGURE 2.8: Net power flow PNET across a LV/MV transformer with and without centralised V2G charging
for high and low EV penetration scenarios.

vehicle, since the "cumulative" SOC curve of the EV fleet never decreases under 65%. The latter consideration supports
the idea that the more EV stations are involved in the coordinated charging, the less the system needs to rely on the
individual users.

If the disaggregated net power flows in Figure 2.9 at each user are considered instead and then both centralised and
decentralised V2G charging are compared, it is possible to confirm that the single user PNET is smoother in the "decen-
tralised" V2G scenario only.

This happens because users may be forced to discharge their EVs when their installed PV system is overproducing,
in order to supply another user which is instead underproducing. The inability to optimise charging based on, for
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(A) Decentralised

(B) Centralised

FIGURE 2.9: Net power flow PNET for a single grid connected user with and without centralised or decen-
tralised V2G charging.

example, time-of-use tariffs, is generally positive for the system but detrimental to the single users.

Summing up, the choice between a decentralised or centralised V2G policy influences both the grid support capabilities
and the users’ revenue, thus becoming as important as the optimisation method itself.

2.4 Conclusions

The problem of mitigating the multi-faceted impact of the increasing penetration of both PV systems and EV stations
on the electric network can be addressed in a variety of ways.

The literature review in Section 2.1.4 made it clear that, at the LV side, RMS voltage and current variations are the most
important issues to consider. Thus, in the papers presented in chapters 3 and 4, the results of power flow simulations
will be used to analyse possible voltage levels fluctuations. Additionally, in Chapter 4, the transformer and lines loading
level are going to be considered.

As presented in Section 2.2, heuristic techniques are often deployed for BESS sizing, due to their ability to handle any
optimisation objective and speed up the convergence process. For this reason, in Chapter 3 the results of an innovative
BESS sizing algorithm based on the Non-Sorted Genetic Algorithm II (NSGA-II) will be described and applied to the
context of Renewable Energy Communities (RECs). In particular, two different controls are compared, and their effect
on the battery sizing results is presented, together with a wider analysis of their impact on the network. The first
one is a centralised peer-to-peer control, that specifically favours exchanges between the users, while the second is a
decentralised peer-to-grid one, which is considered as the business-as-usual control strategy for BESSs.

Moreover, as presented in Section 2.3, smart charging is a very promising technique to both reduce the EV impact on
the grid and maximise the use of PV-produced energy. In Chapter 4, the results of a centralised EV smart charging al-
gorithm, aimed at reducing the production/consumption mismatch at the transformer level, are going to be presented.
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Chapter 3

Optimal BESS Sizing for PV Impact Mitigation on the

Distribution Grid

In this Chapter 1, a novel algorithm to optimise the size of the BESSs within a REC is presented. According to the
European Renewable Energy Directive 2018/2001 [172] a REC is a legal entity, aggregating prosumers and consumers
who share their energy generation resources and storage capabilities to decrease the prices of electricity and increase
the district-level self-sufficiency. Even if, in the future, REC members could participate to the electricity market, the
first step should be pooling their own storage resources to increase the district-level self consumption and lower the
electricity prices. Thus, sizing the storage systems needs to keep track of new requirements that were usually not
included in the classic methodologies presented in 2.2.2.2.

3.1 Review and Motivation

Many Authors simultaneously solve the issue of optimal sizing and siting, but in this case study, the BESS are deployed
at the users’ premises, thus the problem is a pure sizing one. Since none of the papers presented in Section 2.2.2.2
analysed RECs as a case study, their Authors never considered that some grid nodes could be "unavailable" for storage
placement. On the contrary, in this work, it is assumed that a percentage of users does not want or cannot purchase
a BESS, thus requiring to be excluded from the optimisation problem. To the best of the Authors’ knowledge, only
Rodrigues et al. [127] optimally sized the batteries based on a prosumer-driven peer-to-peer sharing control which
makes that case study comparable to a REC. The Authors, however, only considered six buildings, and did not include
a grid impact analysis, which is usually a DSO’s responsibility. Moreover, even though several Authors considered the
grid impact in their BESS sizing algorithms (as explained in Section 2.4), none of them considered energy sharing in a
REC as a case scenario at the same time.

In the following, a multi-objective optimisation strategy is presented. The objectives are to minimise the energy ab-
sorbed by the REC from the grid (as recommended by the EU in the REC definition) and minimise the total installed
BESS capacity (to avoid the related installation costs). Such objectives are concurrent and thus, the best trade-off solu-
tions are obtained by a custom NSGA-II. Based on the classification presented in Section 2.2.2.2, the algorithm hereafter
described is classified as search-based and heuristic, because the Pareto front search is performed through a genetic algo-
rithm.

Two different control strategies are considered: a traditional decentralised peer-to-grid (P2G) one (each user manages
its own battery) and a REC-oriented centralised peer-to-peer (P2P) one (the batteries are controlled based on the re-
quirements of the entire REC).

3.2 Problem Formulation

If x = [x1, . . . , xN ]T , i.e. the BESS capacities for each prosumer, the problem can be formulated as follows:

1Part of this chapter was published in M.Secchi, G. Barchi, D.Macii, D.Moser and D. Petri, "Multi-objective battery sizing optimisation for
renewable energy communities with distribution-level constraints: A prosumer-driven perspective", Applied Energy, Vol.29, September 2021,
https://doi.org/10.1016/j.apenergy.2021.117171
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min
x

(CT(x), GA(t0, T, x)) (3.1)

subject to:

Cmin ≤ xn ≤ Cmax n = 1, . . . , N (1a)

Pr
{

VL ≤ Vp
b (t0, T, x) ≤ VU

}
≥qα

b = 1, . . . , B
p = 1, 2, 3

(1b)

Ux = 0 (1c)

where CT represents the total capacity of all BESSs deployed in the REC:

CT(x) =
N

∑
n=1

xn (3.2)

and GA is the grid absorption coefficient

GA(t0, T, x) =
EG(t0, T, x)

EL(t0, T, x) + ∑N
n=1 EDn (t0, T)

· 100 (3.3)

representing the share of energy the REC users need to purchase from the grid EG(t0, T, x) in the analysed time interval
[t0, t0 + T], to cover their requirements. In equation 3.3, the GA value is expressed as a percentage of the total energy
demand EL(t0, T, x) + ∑N

n=1 EDn (t0, T), which is the sum of the load demand and the electricity losses (due to both line
and battery charging). All the parameters are evaluated for a generic n-th REC member out of the total N ones. The
simplest scenario is the one where all of the users are passive, a.k.a. they do not produce their electricity via PV. In that
case, GA(t0, T, x) is 100%, whereas its value decreases as the installed PV and BESS capacity grows.

Three constraints are considered in the optimisation problem:

• Constraint (1a) ensures the installed BESS capacity does not exceed the smallest Cmin or largest Cmax domestic
BESS sizes due to technology or regulatory requirements.

• Constraint (1b) makes sure the joint over and undervoltage probability for the RMS voltages Vp
b (t0, T, x) of the

B three-phase buses the REC members are connected to, does not overcome 1 − qα, with reference to the upper
(VL) and lower (VU) limits set by the national and international regulation (EN50160 [11]). Generically, B ≥ N
due to the presence of zero-injection buses, frequently found at the distribution level.

• The linear equality constraint (1c) assigns a BESS only to the users that are willing to install it. In fact, the non-zero
diagonal elements of U identify the REC members to be excluded from optimal BESS sizing.

Since both the objective function (3.3) and the constraint (1b) are not only strongly nonlinear, but they can also hardly
be formulated in an explicit analytical form, both the grid absorption coefficient and the probability of voltage violation
have to be estimated through numerical simulations. Moreover, the results are influenced by the actual PV generation,
the load power profiles and the energy sharing policy adopted by the REC members. Hence, the choice of a heuristic
optimisation technique, guiding the search for the optimal combination of GA and CT .

3.2.1 Problem solution

The BESS optimisation problem (3.1) was solved by means of a custom implementation of the NSGA-II algorithm. The
BESS capacity values of the N REC members (namely the decision variables of problem (3.1)) are regarded as the genes
of an N−sized chromosome. The NSGA-II algorithm requires an initial 2M−sized population of chromosomes, M of
which change at every iteration as a result of the evolutionary process. Of course, the value of M as well as the genetic
variety of the initial population must be large enough to ensure a thorough exploration of the solution space.

A simplified flowchart of the developed implementation is shown in Fig. 3.1. The genetic algorithm is applied to a
multi-parametric REC model, whose behaviour depends on a variety of inputs, such as
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a) the load consumption profiles, which depend on the profile temporal resolution, the type of load (e.g., residential
or commercial), the buildings occupancy [173], the users’ behaviour and habits, the grid geographical location
and the season of the year;

b) the grid model, which includes the network topology, the line parameter values, the transformer features and the
nominal load values;

c) the PV generation profiles, which depend on both the maximum power of the PV generators deployed at REC
members’ locations and on the daily solar irradiance and temperature patterns in different seasons of the year.

d) the BESSs capacity values could potentially take any real value within [Cmin, Cmax], but in practice are quantized.
This is due to the fact that the capacity of a single cell cannot be arbitrarily small, but depends on the battery
technology. Therefore, even if the optimal BESS sizing problem formally is continuous, in practice it becomes
discrete (i.e., combinatorial), thus justifying the use of a genetic algorithm to solve (3.1). Note that if there are
sites where BESSs cannot be installed due to constraint (1c), the corresponding genes are steadily set to 0 in all
chromosomes and for all generations.

FIGURE 3.1: Simplified flowchart of the algorithm
implemented to solve the BESS sizing optimisation

problem.

A quasi steady-state power flow analysis is repeatedly performed
in OpenDSS 2 for each chromosomes of the population in the time
interval [t0, t0 + T], with a predefined time step. This iterative power
flow analysis returns accurate time series of the power flows within
the REC, the corresponding losses (used to compute (3.3)) and the
bus voltage values. The probability of exceeding the ends of interval
[VL, VU ] has to be checked to meet constraint (1b).

It is important to emphasise again that such grid-level simulation re-
sults also depend on the energy sharing policy chosen by the REC
members, as briefly introduced at the beginning of this chapter. In
the present study, two alternative BESS control policies are imple-
mented, i.e. the classic P2G approach and a custom P2P policy (firstly
introduced in [126] and then improved in [174]). In the P2G approach
each REC member manages its own BESS, regardless of the state of
the others and the neighbours’ needs. In this case, power flows be-
tween the REC peers are possible but not implemented through a
specific BESS control. Conversely, the P2P policy specifically pro-
motes the exchange of energy between prosumers depending on
their actual supply and demand as well as the SOC of all the BESSs at
a given time. Further details on P2G and P2P BESS control rules are
summarised in the Section 3.3.2. The losses due to BESS charging and
discharging are also taken into account in the simulations since they
may significantly affect the outcome of this study, as it will be shown
in Section 3.5. Once the results of the OpenDSS quasi steady-state
power flow simulations are completed for all the chromosomes of the
available population, the objective functions (3.2)-(3.3) are computed
and the constraint conditions (1a)-(1c) are checked. The feasible solu-
tions are kept and ranked on the basis of the so-called non-dominated
sorting criterion [175]. With reference to cost functions (3.2) and (3.3),
a solution xi dominates a solution xj if

GA(T, xi) < GA(T, xj)

CT(xi) ≤ CT(xj)
∨

GA(T, xi) ≤ GA(T, xj)

CT(xi) < CT(xj)
(3.4)

2OpenDSS: Open Distribution System Simulator v9.0.0, R.Dugan, D.Montenegro, A.Ballanti, https://www.epri.com/pages/sa/opendss



Chapter 3. Optimal BESS Sizing for PV Impact Mitigation on the Distribution Grid 28

By repeatedly applying condition (3.4), the 2M chromosomes of a given generation are partitioned into subsets (called
"fronts") in such a way that the objective function values associated with all the members of the f−th front are dominated
by the solutions of the ( f − 1)−th front only. The first front, which contains the solutions that are not dominated by
any other, is the "Pareto front" of the considered population. In addition, the so-called crowding distance associated
to each solution of a given front is computed, as explained in [175]. Given that just M of the existing solutions have
to be selected to create a new generation, if the chromosomes of the non-dominated front are more than M, only
those with the largest crowding distance are retained. Conversely, if the Pareto front elements are less than M, the
missing ones are taken from the following ordered dominated fronts, always starting from the chromosomes with the
largest crowding distance values. The algorithm returns a population of M chromosomes, whose genes are combined
through binary tournament, crossover and mutation, as customary in genetic algorithms, to obtain M new solutions
that are added to the parent ones. The results of this last step are fed back into the REC model and the algorithm runs
until the chromosomes of the Pareto front no longer significantly change. The number of generations needed to reach
convergence depends on the features of the considered case study.

3.2.2 Problem implementation

The algorithm shown in Figure 3.1 is implemented in Matlab and interfaced with the open-source software OpenDSS,
which is used to run power flow simulations within the optimisation loop. The NSGA-II algorithm required a custom
implementation in Matlab, since it needed to be interfaced with OpenDSS, which is used to run power flow simulations
within the optimisation loop to calculate the objective function values from Equation (3.3).

Since the power flow simulations are very time consuming, the NSGA-II algorithm was chosen because the crossover,
mutation and sorting sections of the algorithm can be parallelised into multiple parallel threads implemented by mak-
ing use of the Matlab Parallel Computing Toolbox. This greatly speeds up the process and allows for the simulations
to conclude within a reasonable time. On top of the parallelisation of the genetic algorithm, the OpenDSS parallel
machine features were further exploited to speed-up the grid solving process. The simulations were split up into 30
threads, running on 15 cores and supported by two 3600 MHz DDR4 32 GB RAM banks. The objective function is
computed by a single thread that saves the results in Matlab structures that are finally merged and sent to the non-
dominated sorting section of the NSGA-II algorithm. The processor frequency, which is nominally 3.6 GHz in single
core but here limited to 2.2 GHz due to multi-threading. This does not allow for a 1:1 relationship between the number
of cores and the speedup, but the parallelised solution still runs 12 times faster than the baseline one, in accordance to
what reported in [176].

3.3 Case Study

The grid model used to test the BESS optimisation strategy is the IEEE Low Voltage Test Feeder. That feeder was
chosen because 1) it is a well-known and studied test case in the scientific literature, 2) the grid parameters are publicly
available on the IEEE PES website 3, 3) it is representative of a LV European test feeder, whose extension and electric
features are suitable to describe the connection between REC members. The structure of the grid is shown in Fig. 3.2.

The proposed study requires the REC members to be connected to the grid buses highlighted with red dots in Figure 3.2.
Since for the IEEE LV Test Feeder the nominal load values are provided only, we replaced them with time-dependent
profiles generated with Load Profile Generator (LPG) 4, a bottom-up generator mimicking the user consumption be-
haviours for different age groups and occupations. We aimed at representing the typical house composition of a REC in
the city of Bolzano in the Italian Südtirol-Alto Adige autonomous province, and selected the number of households for
multi and single-apartment buildings and the related occupancy profiles accordingly. Those parameters were obtained
through a preliminary urban and demographic analysis based on the main database from ASTAT [177] and then used
as an input to the load profiles generation process in LPG.

Moreover, since the future electric grid will feature both loads for standard appliances and heating devices, we decided
to include one scenario in which HPs are included in the electric consumption. Thus, two different scenarios will be
analysed:

3IEEE Test Feeders Database: https://site.ieee.org/pes-testfeeders/
4LPG: A Bottom-Up Customizable Load Generator, Noah Pflugradt, https://www.loadprofilegenerator.de

https://www.loadprofilegenerator.de
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TR - 11kV/416V - 800 kVA

FIGURE 3.2: Structure of the IEEE 906-bus LV Test distribution system.

• Present scenario: the impact of heating and cooling on the total electrical energy consumption is assumed to be
negligible;

• Future scenario: heating and cooling are provided by highly efficient electrical HPs, which increase the overall
load.

In order to give the reader a more realistic view, the increase in total yearly energy demand for scenarios including HPs
is around 40%, which is very close to the values presented in [178].

In this study, since all the REC members are assumed to be equipped with a PV generation unit connected to the same
buses we highlighted in Figure 3.2, PV production profiles are required to estimate the impact of distributed generation
on the REC. This assumption is the worst-case scenario concerning grid stability studies, since it was proven that PV
systems greatly affect the voltage stability of the electric system by simultaneously injecting power in the central hours
of the day, as explained in Section 2.1.1. The PV production was computed by making use of OpenDSS’s built-in tool
for PV production, PVsyst 5. The irradiance and temperature data profiles were measured at the Bolzano-Dolomiti
airport (Bolzano, Italy) in 2017 (further details are reported in [179]). Specifically, the performance ratio of the PV
modules never goes below 77%, and its median is around 91%, meaning that for 50% of the simulated time instants,
the loss due to the temperature and inverter-driven losses is around 9%. As far as the PV capacity installed by each
REC member is concerned, a rule of thumb was followed, specifically prescribing that the target for self-sufficiency
should be around 30% without considering any storage systems [180, 181]. Furthermore, there exists a limitation to
the installed PV power on the grid related to the voltage constraint from (1b), which for this study is around 45% PV
penetration, without considering storage. Table 3.1 summarises the main load and production features, from a power
perspective.

As explained in Section 3.2, one of the features of the proposed algorithm is the possibility to exclude from the BESS
sizing optimisation any user, in case there is no willingness to purchase a storage system. In this work, three scenarios

5PVsyst Element Model, OpenDSS by EPRI, http://svn.code.sf.net/p/electricdss/code/trunk/Distrib/Doc/OpenDSS%20PVSystem%20Model.
pdf

http://svn.code.sf.net/p/electricdss/code/trunk/Distrib/Doc/OpenDSS%20PVSystem%20Model.pdf
http://svn.code.sf.net/p/electricdss/code/trunk/Distrib/Doc/OpenDSS%20PVSystem%20Model.pdf
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Scenarios Present (no heat pumps) Future (with heat pumps)
min. [kW] max. [kW] min. [kW] max. [kW]

Loads Winter 39.1 363.6 72.9 422.8
Summer 25.6 377.4 25.8 623.2

Peak PV Winter 18.8 373.6 22.7 449.8
Summer 245.4 410.2 295.5 493.9

TABLE 3.1: Minimum and maximum values of the load consumption profiles synthesised with LPG and of the actual
daily PV power generation peaks used to simulate present and future load scenarios (i.e., without and with widespread
electrical heat pumps, respectively) in winter and summer and with either energy energy sharing policy (i.e., P2G or

P2P).

Parameters Values
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Number of REC members N 90
Number of buses B 906

Initial time t0 Jan. 1 or Aug. 1
Time interval duration T 31 days (2976 15-min. time steps)
Min. BESS capacity Cmin 1 kW h
Max. BESS capacity Cmax 60 kW h

Lower acceptable voltage VL 0.9 p.u.
Upper acceptable voltage VU 1.1 p.u.

Prob. of not exceeding voltage limits qα 95% (per week)
Matrix U of REC members’ sites Diagonal matrix with N/2 elements ̸= 0 (P50 − F50)
excluded from BESSs installation All-zero matrix (P100 − F100)

N
SG

A
-I

I

Min. BESS capacity increment 1 kW h
Number of chromosomes M 100

Crossover probability 50%
Mutation probability Decreasing linearly from 25% to 10%

Number of generations 50

TABLE 3.2: Problem-specific and NSGA–II parameter settings for optimal BESS sizing in the six scenarios
P25 − P75, F25 − F75 described in Section 3.3

were identified, and will hereby be referred to as conservative (25% of users with a BESS), neutral (50%) and aggressive
(75%), based on the growing number of users purchasing a BESS. The users deciding to install a BESS are assumed
to be uniformly spread over the grid, and each battery is considered to be a modern lithium-ion one. The round-trip
efficiency of the batteries is considered to be around 90% and the SOC is constrained between 10% and 90% to avoid
excessive battery wear, as in [182, 183].

Six joint-scenarios emerge from the combination of the aforementioned choice of parameters, and they will be hence-
forth denoted as P25, P50, P75, F25, F50 and F75, where P and F stand for "present" and "future" scenarios, based
on the presence of HPs, whereas 25, 50 and 75 refer to the percentage of REC members equipped with a BESS. For
each of these scenarios, four different configurations are considered, stemming from the combination of the seasonality
choice (winter/summer) and the energy sharing policy/battery control. The former distinction is needed to consider
the worst and best scenarios for PV production, which greatly influence GA and grid voltage stability issues. The latter,
instead, is needed to analyse how a centralised BESS control (P2P) modifies the battery sizing results, compared to the
business-as-usual control (P2G).

3.3.1 Simulation and optimisation settings

Two groups of parameters (whose values are reported in Table 3.2) have to be set to run the genetic algorithm.

The first group is problem-specific and it is used to compute objective functions (3.2) - (3.3) and/or constraints (1a) -
(1c) for each scenario of interest. The meaning of these parameters has been already defined in Section 3.2.1, but some
of the values reported in Table 3.2 deserve some further explanation. In particular, the minimum BESS capacity Cmin

that can be assigned to every REC member is 1 kW h. This is the size of a very small battery [184], which can be used to
extend the results of this analysis close to the case in which no BESSs are used. The maximum capacity Cmax per REC
member is instead 60 kWh. This is the maximum BESS capacity that can be regarded as acceptable in terms of size at
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a residential level, considering that its volume is about 1 m3 based on the technical specifications of several manufac-
turers. The values of parameters VL, VU and qα in (1b) ensure that the bus RMS voltage levels lie within ±0.1p.u. of the
nominal value with 95% probability, in compliance with the requirements of the EN Standard 50160:2009 [11]. A fur-
ther parameter, not explicitly defined in Section 3.2.1, but essential to run the optimisation algorithm, is the time step of
grid-level simulations. As highlighted in Section 3.1, the time step is set to 15 minutes because it provides a reasonable
trade-off between computational burden and temporal resolution of the power flow analysis. In addition, 15 minutes is
also the sampling period duration of the experimental irradiance and temperature patterns used for PV power profile
generation and the reporting period length of second-generation smart meters currently deployed in Italy [185].

The second group of parameters in Table 3.2 refers specifically to NSGA-II settings. The first parameter in this group is
the minimum BESS capacity increment. This is set equal to Cmin and affects the quantization of the possible solutions
space, as well as the minimum variations of the values that can assigned to each gene. The value of M was tuned
heuristically and it corresponds to the lowest possible number of chromosomes that ensure a trustworthy convergence
of the Pareto fronts in all scenarios. Finally, the crossover and mutation probabilities are set as recommended in [175]
to minimise the risk that the algorithm gets stuck in local minima.

The following subsection describes more in detail the BESS control algorithms, in order to provide an easier under-
standing of the optimisation results.

3.3.2 P2G and P2P energy sharing policies

The P2G sharing approach relies on the following basic rules:

1. The instantaneous local PV generation and load consumption values are compared to determine if the battery
has to be charged (overproduction) or discharged (underproduction).

2. In the former case, the available PV power is charged into the BESS till reaching the maximum SOC. Once
reached, the surplus power is injected into the grid and handled directly by the DSO.

3. In the case of PV power local underproduction, the missing power is first taken from the BESSs till reaching the
minimum SOC level. Once the stored energy is over, the power missing at a given time is drawn from the main
distribution grid.

The P2G sharing policy is quite simple to implement as it does not require a dedicated monitoring and communication
infrastructure, and can be regarded as the "business as usual" one. The main rules underlying the P2P sharing policy
are instead summarised below, and a flowchart is presented in Figure 3.3 to clarify the main steps.

1. The instantaneous PV production and load consumption values are aggregated to compute the difference be-
tween power supply and demand for the whole REC.

2. The available BESSs try to cover the residual power demand/production at a given time on the basis of their
SOC.

• In the case of a local overproduction of PV power, the surplus is charged into multiple BESSs proportionally
to their instantaneous depth-of-discharge (DOD). This way, the BESSs with the highest DOD values are
charged more than the others.

• In the case of a PV power local underproduction, the missing power is taken from multiple BESSs, propor-
tionally to their SOC. Hence, the BESSs with the highest SOC values are discharged more than the others.

The P2P sharing policy is more difficult and expensive to implement, as it requires a more complex communication
infrastructure and an aggregator with full knowledge of the power supply, demand situation and BESSs SOC for all
REC members.

3.4 Optimisation Results

Fig. 3.4(a)-(f) shows the obtained Pareto fronts of optimal solutions obtained for scenarios P25 − F25, P50 − F50 and
P75 − F75, respectively.
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FIGURE 3.3: Flowchart of the P2P control algorithm.

The Pareto fronts confirm the expectations, since an increase in the installed BESS capacity (CT) within the REC level
produces a reduction in the dependence from the main grid (GA). However, this reduction is sizeable only when the
percentage of users equipped with a BESS increases by more than 25%. Furthermore, GA in winter is always greater
than summer, due to the lower availability of the solar resource.

The most relevant general remarks are henceforth summarised:

• The definition of GA in (3.3) implies that, when the installed BESS capacity is small, the amount of energy pur-
chased by the REC from the main grid depends on seasonal factors only. This is clearly visible from the fact
that when CT tends to 0, all winter or summer Pareto fronts start approximately from the same GA level. The
maximum GA values are obviously lower in summer (around 50%) than in winter (70% to 75% depending on
the presence of HPs). A minor difference exists between the GA values at CT = 0 in scenarios P25, P50, P75 and
those in scenarios F25, F50, F75. This happens because even if in the "future" scenarios the loads are 40% higher,
their impact on GA is mitigated by the PV systems that are sized as a function of the nominal load, as explained
in Section 3.3.

• There exists a CT threshold over which the installed storage capacity is not exploited, due to a number of possible
reasons depending on the daily load-production mismatch. Indeed, if the balance is heavily tilted towards one
of the two sides, the available storage capacity or stored energy will gradually decrease and the system will be
less able to flexibly handle the mismatch. When this CT threshold value is surpassed, an asymptotic GA value
is reached which tends to decrease as the BESS penetration grows. This happens because a high number of
batteries is less likely full when they need to be charged or empty when power absorption is needed. Table 3.3
summarises the threshold CT values for scenarios P25 − F25, P50 − F50 and P75 − F75 when either the P2G or
P2P energy sharing policies are used. It can be noticed that the CT threshold values are quite independent of the
load conditions subsumed by the presence of HPs. Thus, a single common threshold CT value is shown for each
pair of "present" and "future" scenarios. As the BESS penetration grows, so do the threshold CT values and the
gaps between the values obtained in P2G and P2P. The former consideration stems from the fact that a higher
number of batteries ensures that the threshold CT BESS capacity previously described is reached at a higher total
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Scenario P25 Scenario F25

(a) (b)
Scenario P50 Scenario F50

(c) (d)
Scenario P75 Scenario F75

(e) (f)

FIGURE 3.4: Pareto fronts resulting from BESS sizing optimisation in scenarios P25 (a), F25 (b), P50 (c), F50 (d), P75 (e) and F75 (f).
For each of them, four operating conditions are analysed, i.e. in winter or summer and by using a P2G or a P2P energy sharing policy

within the REC.

installed BESS capacity. The second instead, depends on how the P2P algorithm works. Since in P2P all the users
pool their storage resources to respond to a power mismatch in the system, generally a more efficient exploitation
of the available BESS capacity is ensured. As a consequence, the P2P GA profile keeps decreasing after the P2G
CT threshold is surpassed.

• It is important to highlight that the main benefit of the P2P energy sharing policy is the ability to achieve the
same GA level with a lower installed capacity CT . Indeed, even if only 25% of the REC members owns a BESS,
the others can still benefit from the installed storage capacity. In the case of P2G instead, since the batteries are
singularly managed, each user can only self-consume their production (if possible). Therefore, an evident gap
can be highlighted between P2G and P2P, and its value tends to increase while the percentage of users equipped
with a BESS does. Interestingly enough, this only happens until the P50 scenario. After that, the gap decreases,
and if all the users were equipped with a BESS, the gap would disappear. The latter consideration is explained
by the fact that all the users become independent not only from the main grid, but also from their neighbours,
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P25 − F25 P50 − F50 P75 − F75

P2G Winter 500 1100 1800
Summer 500 1300 2100

P2P Winter 800 1400 1800
Summer 800 1800 2300

TABLE 3.3: Winter and summer threshold CT BESS capacity values (expressed in kWh) in
scenarios P25− F25, P50− F50 and P75− F75 when either the P2G or the P2P energy sharing

policy are used.

FIGURE 3.5: Box-and-whiskers plot of the normalised voltage levels at all buses of the dis-
tribution grid under test over 1 year of simulations in scenarios P25 − F25, P50 − F50 and
P75− F75 both without and with BESSs. In the latter case, either a P2P or P2G energy sharing
policy are used. The BESS capacity values assigned to REC members in each scenario corre-
spond to the CT critical thresholds of the P2P and P2G summer Pareto fronts beyond which

no significant reduction of GA is observed.

thus eroding the margin that the P2P policy has over P2G at low BESS penetration levels.

• Comparing the "present" scenarios with the respective "future" ones, it is clear that both for P2G and P2P the GA

values are higher (from a few % points, up to 10%) due to the higher share of the daily energy demand that is not
covered by BESS or directly provided by PV systems.

Quantitatively, the maximum reduction of the REC dependence from the main grid due to the installation of PV and
BESS is around 50% in winter and 80% in summer

3.5 Impact Analysis

What follows is an analysis of the broader impacts of the installation of optimal BESS on voltage levels, losses, CO2
emissions and the economic return-on-investment for the users. Since it is not possible to provide all the results for all
the points, we selected the CT threshold values as the most representative ones for each scenario among those of the
Pareto fronts provided by the algorithm. This assumption is valid because it combines the highest REC independence
levels (lowest GA values) with the best exploitation of BESSs, since increasing CT further does not produce any sizeable
effect on GA. In addition, only the BESS sizing solutions obtained in the summer scenarios are presented, since sizing
the batteries should be done for the period with the highest solar resource availability.

3.5.1 Voltage Levels

Figure 3.5 uses the box-plot representation to represent the voltage levels in the 906 buses of the grid at the critical
threshold CT levels.
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It is noticeable how the voltage levels are all under the 1.1 p.u threshold, while some values are under the 0.9 p.u.
threshold in the F scenarios. The violation frequencies however, are very low (1% maximum), and way below the
maximum allowed value of 5% [11], as imposed by constraint (1b). Moreover, the probability of voltage violation
decreases as CT grows due to the voltage stabilisation effect of the batteries, in accordance with other studies on the
same topic (check 2.2). Interestingly enough, the voltage fluctuations are independent from the battery penetration
level, meaning that if only a small percentage of the users have a battery, the algorithm will oversize their storage
capacity to reach the same flexibility that a higher BESS share allows for. P2P sharing is preferable to P2G in almost
all the scenarios, since both the interquartile and the maximum voltage ranges are reduced. If we consider "present"
scenarios only instead, the two energy sharing policies have a comparable impact on voltage fluctuations. Finally, in
future scenarios (F25, F50 and F75), the probability of violation is slightly higher than present ones. This increment
is mainly in the "lower" threshold of 0.9 p.u., since the inclusion of larger loads decreases the RMS voltage at certain
moments of the day.

3.5.2 Relative energy losses

The energy losses are estimated as the ratio between the total energy dissipated in the network lines or in the BESS
charging/discharging over the total gross energy required by the REC users in a [t0, t0 + T] time interval. Equation
(3.5) quantifies the relative losses as follows

REL(t0, T, x)=
EL(t0, T, x)

EL(t0, T, x) + ∑N
n=1 EDn (t0, T)

(3.5)

where EL(t0, T, x) and EDn (t0, T) are the total energy losses and the electrical energy consumption of the n−th REC
member, as defined in Section 3.2.

Fig. 3.6 shows the results of this analysis for one-year long power flow simulations. The REL values are presented
as a percentage of the total yearly energy demand for both the P2G and P2P sharing policies, and compared to the
"no-storage" scenario, in which the PV generators are used without the BESS support. The hatched bars represent the
line losses due to the resistance in the conductors, whereas the other bars represent the losses for charging/discharging
the batteries. It is immediately visible that using the batteries reduces the total energy losses by 20 to 40%, and only
minor differences can be observed between the total relative losses with the P2G and P2P policies, if the same scenarios
are considered. Breaking up the total losses into components, the line losses are higher in P2G, since the amount of
electricity circulating in the system is higher due to the lower single-user self-consumption values. The charging and
discharging losses instead, grow when the P2P is considered, and this is due to the higher exploitation of the storage
resources by the centralised coordinated charging algorithm. If the battery penetration is low, a higher number of
power exchanges between users is likely, thus the line losses are higher. As the number of deployed BESSs increases,
the line losses decrease, while the battery ones increase. In order to provide the reader with a quantitative idea, in
scenarios P75 − F75, the amount of electrical energy exchanged between REC members using the P2P policy is 1.75
times more than the P2G case, while in P25 − F25 this ratio is close to 1.

3.5.3 CO2 emissions

In the following subsection, the results of the BESS sizing algorithm on the related CO2 emissions following the ap-
proach presented in [186] is shown, i.e. without a full life-cycle assessment of the environmental impacts of PV genera-
tors and BESSs. In equation (3.6), only the emissions related to the residual net energy demand in the REC EG(t0, T, x)
are considered, i.e.

EMCO2 (t0, T, x) = kCO2
· EG(t0, T, x) (3.6)

where kCO2
is the equivalent CO2 emission factor for the Italian electricity mix, around 0.344 t/MWh [186].

Using P2P instead of P2G reduces the emissions by 25% to 50% in P scenarios, whereas this reduction is lower (10% −
30%) if the heating sector is electrified with HPs. The P2G policy is less efficient than P2P but still improves the situation
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FIGURE 3.6: Yearly relative energy losses (due to both electricity distribution and BESS charg-
ing/discharging) either with or without BESSs, and by choosing P2P or P2G as the sharing

policies.

over the base "no BESS" scenario, providing a 25% reduction in scenario P75 and a reduction by 5% in scenario F25.
Thus, widespread deployment of BESSs is beneficial in terms of CO2 emissions reduction for all scenarios.

3.5.4 Simplified Investment Analysis

Two complementary performance indicators are considered to provide the reader with an idea of how the BESS sizing
algorithm impacts the return-on-investment of the user: the Internal Rate of Return (IRR) and the Payback Period (PP).
Both indicators require the estimation of the so-called Net Present Value (NPV) [187]. Let DR be the average discount
rate and Y is the number of years after the initial investment. The IRR and the PP associated with the n−th REC
member are defined as in equation (3.7)

IRR(xn, Y) =
{

DR | NPV = CAPEXn + ∑Y
y=1

MS(y,xn)
(1+DR)y = 0

}
PP(xn, DR) =

{
Y | NPV = CAPEXn + ∑Y

y=1
MS(y,xn)
(1+DR)y = 0

} (3.7)

where

• CAPEXn is the CApital EXpenditure (CAPEX) of the n−th REC member for the installation of a PV generator
with a BESS of capacity xn;

• MS(y, xn) represents the annual savings achieved in the y−th year resulting from the difference between the
energy bill reduced by the self-consumption or the valorisation of the grid-injected energy, and the bill in the
purely passive consumer scenario (i.e., without PV generator and BESS). The OPerative EXpenses (OPEX) are
included too, and may reduce the value of MS(y, xn)

The energy sold to the grid is remunerated at the wholesale market price psell , while the electricity absorbed from the
main grid is bought at the retail price pbuy, where normally psell < pbuy. If the P2G energy sharing policy is used,
the difference between psell and pbuy depends just on external factors driving the market. In the P2P case instead,
the economic value is computed on the basis of the so-called supply-to-demand ratio (SDR) method [188], [126].
Following this approach, the electricity buying and selling prices between REC members (labelled as pbuy,REC and
psell,REC, respectively) change dynamically within the REC as a function of the actual power demand and supply at a
given time. In the following, an explanation of the SDR methodology is offered.
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FIGURE 3.7: Yearly total CO2 emissions either with or without BESSs, and by choosing P2P or
P2G as the sharing policies.

3.5.4.1 SDR method for dynamic energy price computation

As already introduced in Sections 3.5 and 3.3.2, the adopted P2P energy sharing policy relies on the assumption that a
single aggregator for the whole REC trades the energy with an electricity retailer.

Let SDR(t) = ∆ES(t)
∆EB(t)

be the supply-to-demand ratio within the REC at time t [126, 188], namely the ratio between the
total energy sold and bought by all REC members (denoted with symbols ∆ES(t) and ∆EB(t), respectively) within a
given time slot (e.g., 15 minutes in the case study at hand). Starting from the basic economic principle that the selling
price of any good is inversely proportional to its availability on the market, the electricity selling price within the REC
is given by

psell,REC(t) =
1

a · SDR(t) + b
(3.8)

where, in the case at hand, parameters a and b can be determined under two specific conditions, i.e. when SDR(t) = 0
and when SDR(t) = 1. In the former case, all of the energy required by the REC must be bought from the main grid at
a price pbuy through the aggregator. Therefore, the buying price within the REC pbuy,REC is equal to pbuy and must be
in turn equal to the internal selling price, since the aggregator should not generate net incomes. Hence, for SDR(t) = 0,
b = 1

pbuy
.

If SDR(t) ≥ 1, the energy balance of the REC is positive and the surplus of energy can be injected into the grid at a
price psell . Thus, the internal selling and buying prices between REC members can also be set to the same minimum
allowed value, i.e. psell . In particular, if SDR(t) = 1, it follows from (3.8) that b = 1

psell
and a =

pbuy−psell
pbuy ·psell

. Thus, the
electricity selling price within the REC is given by

psell,REC(t) =


psell ·pbuy

(pbuy−psell)·SDR(t)+psell
0 ≤ SDR(t) < 1

psell SDR(t) ≥ 1
(3.9)

The buying price within the REC is based instead on a simple economic balance for 0 ≤ SDR(t) < 1, which is described
by the following equation, i.e.

[∆EB(t)−∆ES(t)] · pbuy =∆EB(t) · pbuy,REC(t)− ∆ES(t) · psell,REC(t) (3.10)
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P25 P50 P75 F25 F50 F75

IRR [%] P2G 8 7 5 8 9 11
P2P 9 7 6 7 9 10

PP [yrs] P2G 8 10 12 9 9 7
P2P 8 10 12 9 8 7

TABLE 3.4: IRR and PP values for an aggregator purchasing PV generators and BESSs for all REC members
in scenarios P25, P50, P75, F25, F50 and F75 if either the P2G or the P2P energy sharing policy are used.

Therefore, by replacing the definition of SDR(t) into (3.10) and recalling that if SDR(t) ≥ 1 the buying price must be
equal to psell for the aforementioned reasons, the result is that

pbuy,REC(t)=

psell,REC(t)SDR(t)+pbuy(1−SDR(t)) 0≤SDR(t)<1

psell SDR(t)≥1
(3.11)

Equations (3.9) and (3.11) are finally used to determine the monetary savings needed to compute (3.7).

3.5.4.2 Investment Analysis Results

The power exchanges between REC members are managed by a single legal entity (shortly referred to as "aggregator"
in the following), which collects information about the BESSs state, PV systems and loads at every time instant. In the
analysis we assessed the IRR and PP both when the aggregator purchases the batteries and when the REC members
pay the upfront cost.

Since a lot of parameters need to be considered to perform the analysis and univocal results can hardly obtained due
to the multiple uncertainty sources affecting the NPV computation, the following assumptions were made:

• The CAPEX costs for PV are proportional to the installed PV generation (1200AC/kWp) and BESS (600AC/kW h)
capacities [189]. The OPEX costs instead, are about 2.1% and 1.5% of their CAPEX values per year, as in [189].

• No incentives are in place for the installation of PV units or BESS, which qualifies this analysis as the worst-case
scenario.

• A simplified model for PV efficiency decrease is implemented. As a result, the amount of generated PV energy
is supposed to decrease linearly by 0.5% per year due to degradation [190].

• In the P2G case, the average values of psell and pbuy are 0.052AC/kWh and 0.21AC/kWh respectively, in accordance
with the Italian market data for 2019 [191].

• When the P2P policy is considered instead, psell,REC and pbuy,REC change as a function of time (as explained in
Section 3.3.2), but their values are constrained within the interval [psell , pbuy], in order to increase the economic
value of energy exchanges between REC members, as prescribed by the EU commission [192].

• For IRR calculation, the time horizon Y is 20 years, which is the typical lifetime of modern PV systems. When
calculating PP instead, the discount rate DR is assumed to be 0%, since we suppose that the user purchases the
PV systems without comparing its profitability to other investments.

• The battery systems are replaced after 10 years of use, which is in line with the results of several papers estimating
the lifetime expectancy of Lithium-ion stationary home storage systems [193, 194].

• Since it is difficult to estimate the yearly increase in the retail prices for buying electricity in the next years [195],
we assumed them to be constant. Again, this represents a worst-case scenario, since the economic benefits of
installing a PV system with a BESS increase as the gap between the electricity buying and selling prices grows.

If the analysis is performed from the perspective of the aggregator purchasing the BESSs (see Table 3.4), the "future"
scenarios are more profitable than the "present" ones. Indeed, electrifying the heating system with a HP increases the
base-load consumption and the savings due to a higher exploitation of a PV+BESS system. Choosing P2P policy over
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(a)

(b)

FIGURE 3.8: Box-and-whiskers plots of the IRR (a) and PP (b) values of individual REC members purchasing a PV
generator with a BESS in different scenarios by using either the P2G or the P2P energy sharing policy. In practice, only

the results related to the REC members with PP ≤ 20 and IRR ≥ 0% are represented here, i.e. the vast majority.
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P2G one instead, has little impact only on the IRR and PP values. This is explained by the fact that the main economic
driver for the installation of the PV+BESS systems is the PV unit, whose generation capabilities do not depend on
the sharing policy. If the impact of an increased number of deployed BESSs is analysed instead, we realised that it is
positive in "future" scenarios only, when the electricity demand is supposed to be higher. This highlights once more the
importance of growing the installed BESS capacity along with the energy demand.

Figure 3.8 shows instead a box-plot representation of the IRR and PP values of the users whose PP ≤ 20 and IRR ≥ 0%,
i.e. the majority. The results are consistent with those presented in Table 3.4, though some minor differences can be
noted. For example, in "future" load scenarios, the IRR median values for the same energy sharing policy tend to
grow by about 1.5-2% on average, while the PP values decrease by 1-2 years. Moreover, the BESS penetration does not
strongly affect the median values, but has contrasting effects on the variability of IRR and PP. Interestingly enough,
the IRR and PP interquartile ranges in the P2P case are narrower than in the P2G case in almost all scenarios. This
means the PV+BESS benefits are more equally spread among REC members than in the P2G case. In this scenario, REC
members are supposed to trade power directly between themselves rather than relying on the distribution grid, which
tends to equalise the disparities between users.

3.6 Conclusions

In this Chapter, the BESS sizing problem applied to the case of RECs was analysed by adapting a well-known genetic
algorithm to the particular features of this problem. The joint minimisation of both the share of electricity purchased
from the grid GA and the total installed BESS capacity CT stems from the main purpose of RECs, which is to reduce
the dependence of users from the main grid. Since the participation of users to a REC is voluntary, the optimisation
strategy automatically excludes the members that do not want or cannot purchase a BESS, while still considering them
in the simulations as prosumers. The DSO perspective is also considered, since the algorithm discards the solutions
that violate the voltage levels regulatory limits. Finally, two different BESS control strategies are considered: a business-
as-usual P2G one and a REC-oriented P2P one.

From a quantitative standpoint, GA decreases by 5%-80%, compared to the no-storage scenario. Such a reduction
depends on the season of the year, the energy sharing policy, the number of prosumers installing a BESS (with a
total installed capacity of CT) and the load conditions. The REC-oriented P2P algorithm is able to exploit the storage
capacity more efficiently than the P2G one, especially when the BESS penetration is low (many users do not install a
BESS) and when the electric demand grows (e.g. due to the deployment of HPs). A simplified economic analysis was
also presented, and the P2P benefit is further confirmed by a more equal distribution of the PV+BESS benefits. From a
broader system-view perspective, the proposed BESS sizing algorithm may significantly reduce both the energy losses
(by 20-40 % in the considered case studies) and the CO2 emissions (by 10%-50%).

The results show that, for each scenario, a "critical" installed BESS capacity value is reached, beyond which the instal-
lation of additional storage capacity is useless for reducing GA. In order to understand why this happens, we need to
highlight that, in order to maximise the usage of the storage systems, the mismatch between power production and
demand has to be limited.

For example, Figure 3.9 shows what happens when the mismatch is leaning towards the "production" side, i.e. when
an excessive amount of PV power is generated. In this case, two scenarios consisting of two different P2P-controlled
BESS capacities CT,A and CT,B installed on the REC are considered. Note that these results are presented for the P50
scenario, so half of the REC members are equipped with a BESS and there are no HPs.

As shown in Figure 3.9(a) for a three-day time horizon, the cumulative SOC increases when the REC’s net-power at
the transformer is positive (overproduction), whereas the cumulative SOC decreases in the opposite scenario. Below
the threshold PV penetration level, if the battery size is increased from CT,A to CT,B, the SOC grows more slowly and,
by the end of the third day the maximum SOC is still not reached. In this case, the amount of PV-produced energy
does not saturate the BESS capacity, thus increasing the battery capacity from CT,A to CT,B significantly reduces GA.
Conversely, if the installed PV power is over the maximum PV penetration level (around 45% in the current case study,
as previously mentioned), both the battery capacities CT,A and CT,B are saturated by the end of the third day. In that
scenario, the total GA just slightly improves when the larger total CT,B capacity is used, as shown in Figure 3.9(b).
Therefore, in this case, further increasing the total BESS capacity of a REC is unnecessarily expensive.
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(a)

(b)

FIGURE 3.9: Effect of a CT,A to CT,B total storage capacity increase on the district-level SOC when PV penetration is
under (a) or over (b) the maximum penetration level for the case study.
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Since the economic compensation for selling electricity is generally much lower than the electricity buying price (check
the price difference between psell and pbuy in 3.5), this study reveals that a careful and balanced sizing of BESSs with
respect to the actual power generation and demand is essential to avoid a waste of both energy and hardware resources.
Also, some help in this direction may come from the use of flexible loads able to reduce the mismatch between power
supply and demand throughout the day. An example of this strategy, albeit based on EV smart charging instead of
BESSs control, is going to be presented in Chapter 4.
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Chapter 4

EV charging impact mitigation

In this Chapter1, a centralised coordinated smart charging algorithm for EVs is presented. The objective of the algo-
rithm is to perform active power support, i.e. peak-shaving and valley-filling the active power profile of a LV/MV
transformer. The analysis considers different penetration levels of PV and EV stations, and analyses the impact of
smart charging not only on the transformer, but also on the voltage levels of a test LV grid, the energy independence of
the district from the main electric grid and the battery wear caused by the higher cycling the battery undergoes.

4.1 Introduction

The European Union’s (EU) target for 2050 greenhouse gases emissions reduction is 55%, compared to the levels
recorded in 1990 [196]. For this purpose, it is essential to reduce the environmental impact of the mobility sector,
which, per se, accounts for around 20% of the total worldwide carbon dioxide emissions in the atmosphere [197]. The
conversion of a sizeable number of internal combustion engine vehicles (ICEVs) into fully electric vehicles (EVs) would
definitely contribute to solve to this problem [198, 199], provided the electricity mix used to charge their batteries is
mainly based on renewable energy sources. However, in order to meet the aforementioned goals, both the number of
EVs and generation units (typically PV systems) has to considerably grow in the next years. A large-scale deployment
of EVs [200] and PVs [201] may pose a variety of business and technical challenges, especially at the distribution level,
where large daily fluctuations of power demand and supply may jeopardize grid stability but also require new grid
state estimation techniques [202]. From a Distribution System Operator (DSO) perspective, the technical challenges
are the most important ones, but their solution cannot be detrimental to the quality of service and the profitability
expected by EV owners. Several studies found that one of the parameters highly affected by an increasing EV pene-
tration is the Medium-Voltage/Low-Voltage (MV/LV) transformer loading at the secondary substations (SS) [46, 54].
Moreover, it is well-known that EVs simultaneously charging may cause voltage fluctuations [46–48], lines overload-
ing [46, 48, 54] and/or power quality problems, such as frequency deviations [46, 48, 54], voltage imbalances [46, 69,
78], harmonics [85, 87] and flicker [91, 93]. As a consequence, it is difficult to comply with the requirements of local,
national or international regulations, such as the ones specified in the EN Standard for LV electricity distribution EN
50160:2010 [11]. The additional power demand peaks due to EVs could be mitigated through smart charging. This can
be achieved by using a variety of scheduling algorithms conceived not only to change the absorbed power depending
on the actual urgency of battery charging, but also, whenever possible, to exploit possible bidirectional vehicle-to-grid
(V2G) control schemes. Indeed, modern power electronics converters allow EVs to either absorb or inject electrical
power in the grid if suitable control techniques are implemented. As a result, the EV batteries can be regarded not
only as loads, but also as additional, dynamic storage elements supporting the peaks of electrical power demand, thus
maximising the utilisation of the distributed energy resources (DERs) capacity [144, 145, 203]. In this context, the dis-
tinction between a “centralised" V2G algorithm (where the charging is entirely demanded to a central control unit, the
so called “aggregator") and a “decentralised" V2G scheme (where EV owners can decide whether to charge the battery
or not in a pre-defined time-slot) is crucial. Usually, the active power support to shave the power demand peaks at the
transformer is more effective if all the EV charging stations are able to cooperate. Therefore, in this case, a centralised
V2G scheme (in which EV charging or discharging is entirely managed by the aggregator) is preferable, especially if the
power fluctuations are further increased by the power absorption of a large EV fleet. The problem of centralised V2G
control becomes even more important if not only the EV load profiles, but also the power generation ones change as a
function of time, e.g., as a result of the increasing photovoltatic (PV) penetration. In this paper, an automated strategy

1Part of this chapter was submitted for publication on Sustainable Energy Grids and Networks
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Objective Methodology Type Examples

Maximising PV Utilisation

PSO+Real-Time Centralised [171]
PSO+Model-Predictive Control Decentralised [169]
Linear Programming or Real-Time Centralised [131]
Mixed-Integer Linear Programming Centralised [135]
Non-Linear Programming Decentralised [137]
Mixed-Integer Quadratic Programming Centralised [145]

Minimising NLV

Model-Predictive Control Centralised [167, 168]
Real-Time Control Centralised [204–207]
Fuzzy Control+Weighted Sum Decentralised [208]
Particle Swarm Optimisation Centralised [150–152]
Genetic Agorithm Centralised [160]
Quadratic Programming Decentralised [47, 141–143]
Quadratic Programming Centralised [140, 141, 144]

TABLE 4.1: Relevant literature overview on smart EV charging techniques.

for EV charging with V2G capability is proposed and analysed in-depth, considering the EV-PV interaction as well.
The proposed approach aims at minimising the net load variance at the substration transformer.

The main elements of novelty presented in this work are summarised below:

• Even if initially we assume perfect knowledge of both load profiles and EV availability for active power support,
the effect of possible deviation between the expected scenario and the real one in subsequent days is evaluated,
showcasing the good robustness of the proposed approach in realistic scenarios.

• The interaction between EVs and PV systems is analysed in a broad set of operating conditions, ranging from
current (in which the PV and EV penetration levels are low) to future ones, when PV and EV penetrations are
instead supposed to be much higher.

• A repeated power low analysis with a 15-minute time step is performed to assess to what extent the proposed
centralised V2G-based optimisation strategy is beneficial in terms of voltage stability.

• Finally, a preliminary study on battery wear (one of the most debated aspects of V2G-based charging schemes)
is presented.

The rest of the paper is structured as follows. In Section 4.2, the specific contribution of this paper in the context of
the related work is briefly presented. In Section 4.3, the optimisation problem and the underlying methodology are
formalised. Section 4.4 describes the key features of the case study considered for testing along with the main simu-
lation settings. Section 4.5 reports a quantitative performance evaluation of the proposed optimal smart EV charging
approach. Finally, Section 4.6 provides an overview of the broader impact of the proposed technique on: users’ energy
requirements for self-sufficiency, grid voltage stability and EV battery wear. Finally, Section 4.7 concludes the paper.

4.2 Related Work

Some of the most significant methodologies proposed in the literature to perform smart EV battery charging (possibly
empowered by V2G) are listed in Table 4.1. Due to the broad variety of possible objective functions and considering the
scope of this work, we will mainly focus on two classes of problems, i.e. those aimed at maximizing the exploitation of
PV resources (usually to reduce the investment payback period or the overall CO2 emissions) and those reducing the
aggregated Net-Load Variance (NLV) at the transformer substation.

In the first group, Liu et al. in [171] use a centralised Particle Swarm Optimisation (PSO) algorithm combined to a real-
time EV charging control to maximise PV utilisation, whereas El-Naggar et al. combined PSO and model-predictive
control [169] for the same purpose. Some other Authors used linear [131] or mixed-integer linear programming [135]
to maximise the PV utilisation and, in [135] to maximise the economic revenues as well. Alternatively, Ioakimidis et
al. [137] and Cortes-Borray et al. [145] relied on non-linear and quadratic programming respectively, to minimise the
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share of energy produced by PV and injected into the grid. Most of these solutions (with the exception of those in [137,
169]) rely on a centralised approach, so the energy exchanges between the users are encouraged.

The inherent difference between the smart EV charging techniques listed above and the methodology adopted in this
paper is that the former ones tend to minimise the amount of PV energy sold to the grid by maximising its local
exploitation for EV charging. In this paper instead, the smart EV charging is applied both when the PV generators are
not producing and when they overproduce. This is indeed essential for NLV minimisation, especially when many EVs
and PV systems are actively connected to the grid at the same time.

The meaning of NLV and the related optimisation policy, however, considerably depend on the problem definition.
For instance, if the goal is to perform real-time smart EV charging, the NLV can only be minimised over the timestep
duration, using centralised optimal control algorithms. For example, Jian et al. [205, 206] minimised the NLV by using
a centralised algorithm that also discharges the EV batteries when the electricity demand grows. This approach was
also adopted in [204], by including the charging costs in the optimisation algorithm. Hashim et al. [207] minimised
the NLV of a high-voltage/medium-voltage (HV/MV) transformer, so the V2G-based mitigation capability of the EV
charging stations increase due to the higher number of connected EVs. These controls, although very effective in
practice and powerful when paired to forecasting techniques, cannot, per se, be used to investigate the potential benefits
of centralised V2G-based policies over a time horizon of several hours or days, since they only optimise the NLV at
a given timestep. Conversely, the charging scheduling solutions based on NLV minimisation over long time intervals
can hardly be implemented in the real world because forecasting the activities of many users’ is very difficult and may
lead to EV charging schedules considerably different from the reality.

The methodology presented in this paper lies in between these two extreme visions outlined above. It does not address
a real-time optimal scheduling problem, but at the same time it provides an a-posteriori solution that, with a reasonable
lag, can be used to define a temptatively realistic EV charging schedule. In fact, the information collected over a full
day can be used to find the globally optimal EV charging schedule minimising the NLV. Such a global solution can be
found by solving a quadratic programming (QP) problem. Even if the actual performance in terms of NLV reduction
will be lower than in ideal conditions, due to the differences in load, PV generation profiles and EV usage, the results
are still rather good, as it will be clearly shown in Section 4.5. Such a performance evaluation in realistic conditions, as
well as the study of the impact of the proposed smart EV charging policy on the LV distribution grid and battery are
the key elements of novelty of this paper, compared to other similar centralised strategies, such as [140, 141, 144]. In
fact, only a few Authors perform a proper power-flow analysis to assess the combined impact of PV and EV systems
on grid voltage stability [152, 208]. However, no analyses on battery wear are however usually reported. A variety
of other solutions for NLV minimisation based on a decentralised approach exist [47, 141–143, 208]. In those studies,
there is no need to share any information between the EV charging stations but it is very unlikely that the global NLV
is minimised, since the smart EV charging algorithm just relies on local information.

4.3 Problem formulation

Given an LV distribution system consisting of a set U of M users, let UPV and UEV be the subsets of U including the
K ≤ M and the N ≤ M users equipped with a PV system or an EV charging station, respectively. Also, let PVshare =

K
M

and EVshare = N
M be the corresponding shares of users. Assuming, for the sake of simplicity, but without loss of

generality, that

• each user owns at most one EV;

• no energy storage systems different from the EV batteries are deployed in the grid;

• the users consumption and the EV battery charging process are completely monitored and controlled by an
aggregator, as customary in centralised smart EV charging schemes [144, 145];

• each EV is connected to its own proprietary charging station;

the average net power absorbed from or injected into the grid by the i−th user within the t−th metering time slot of
duration ∆t is
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pNet
i,t = pLoad

i,t +pEV
i,t −pPV

i,t , i ∈ U t=1, . . . , T (4.1)

where T is the number of data collected in a given time interval (e.g., one day), pLoad
i,t is the user’s average load con-

sumption due to seasonal factors, building occupancy and users’ activities within the t−th time slot, and pEV
i,t ̸= 0,

pPV
i,t ̸= 0 are the additional average EV power consumption and the generated average PV power in the same time

slot t, if i ∈ UEV or i ∈ UPV , respectively. Of course, if the i−th user does not own either a PV system or an EV, both
terms pPV

i,t and pEV
i,t in (4.1) are null. Quite importantly, when a PV system is available, the sequence of pPV

i,t values
(similarly to those of pLoad

i,t ) can be regarded as inputs to the proposed optimisation problem, as they depend on the
actual irradiance as well as on the PV capacity installed by each user. On the contrary, all terms pEV

i,t can be regarded as
the decision variables of the optimisation problem, as they can be actually modified by the adopted smart EV charging
policy (if any). As a consequence, the values of pEV

i,t are positive when the EV is connected to the charging station and
the battery is under charge, while they become negative if a V2G policy for active power support is applied.

If the pNet
i,t values of all users in the same time slot t are summed up, it follows from (4.1) that the aggregate net load is

PNet
i,t = ∑

i∈U
pNet

i,t = PBase
t + ∑

j∈UEV

pEV
j,t , t=1, . . . , T (4.2)

where the sequence of values PBase
t = ∑i∈U pLoad

i,t + ∑k∈UPV
pPV

k,t for 1, . . . , T is the baseline net load for the considered
optimisation problem when no EVs are considered.

If we denote with i1, . . . , iN the indexes of the users in the subset UEV ⊆ U , by rearranging the terms of the rightmost
side of (4.2) for every t = 1, . . . , T into a single T · (N + 1)−long column vector

P = [PBase
1 , PEV

i1,1 , ..., pEV
iN ,1, ...,

PBase
T , pEV

i1,T , ..., pEV
iN ,T ]

T (4.3)

through a few basic algebraic steps it can be shown that the maximum likelihood estimator of the daily aggregated
NLV can be rearranged into a matrix form as follows, i.e.,

σ2
P(P) =

1
T
·

T

∑
t=1

(
PNet

t − 1
T

T

∑
t=1

PNet
t

)2

=
1
2

PTHP (4.4)

where

H=
2

T2


(T − 1)UN+1 −UN+1 ... −UN+1

...
...

. . .
...

−UN+1 −UN+1 ... (T − 1)UN+1




T
bl

oc
ks

is a square matrix composed by T × T blocks including the (N + 1) × (N + 1) all-ones matrix UN+1, multiplied by
either T − 1 or -1.

If (4.3) is the vector of the decision variables used to schedule the battery charging of all EVs over the considered time
interval and (4.4) is the chosen objective function, the corresponding optimisation problem can be easily formalized as
follows, i.e.,

min
P

σ2
P(P). (4.5)

Expression (4.4) confirms that the chosen objective function is inherently quadratic. Therefore, a solution to (4.5) can be
found with standard QP solving tools.
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Nevertheless, in order to find a correct and realistic EV charging schedule, a number of further constraints must be
included. Such constraints are explained and formalised below.

1. Constraints due to the actual net-load conditions. The elements PBase
t of (4.3) have to be excluded from the

optimisation process, since, as explained above, the aggregate base net-load values are in fact an input to the
optimisation problem. Thus, the following equality constraints have to be applied, i.e.,

PBase
t = P∗

t , t = 1, . . . , T (4.6)

where P∗
t for t = 1, . . . , T is the overall net power demand profile (excluding the EVs) measured in each time slot.

2. Constraints on EV battery charging. In every metering time slot t, each EV can be either connected to or dis-
connected from its own charging station, depending on actual users’ needs. Assuming that Sj (for j = 1, . . . , N)
is the number of the daily charging sessions of the j−th EV, and denoting with Tsj ⊆ T (where T = {1, . . . , T})
the subset of time slots of the s−th charging session of vehicle j (i.e., for s = 1, ... . . . , Sj), the following equality
constraints on EVs’ battery state-of-charge (SOC) must be met to prevent the EV battery charge to deplete during
the following scheduled trip, i.e.

∑
t∈Tsj

ηj

Cj
pEV

j,t ∆t = (SOCend
sj

−SOCinit
sj

) s = 1, . . . , Sn, j ∈ UEV (4.7)

In (4.7) constants ηj and Cj represent the battery charging efficiency and the battery capacity of the j-th EV,
while SOCinit

sj
and SOCend

sj
are the battery SOC values at the beginning and at the end of the s−th charging

session, respectively. It is important to emphasize that both SOCinit
sj

and SOCend
sj

are just inputs to the optimisation
problem, as they depend on the actual use of each EV. The SOCinit

sj
values can be measured as soon as the EV is

connected to the charging station, while the SOCend
sj

values at the end of each charging session are usually close
to the maximum attainable SOC.

Besides (4.7), a further set of inequality constraints must be applied during each EV charging session to prevent
excessive battery charging or discharging (in V2G mode) i.e.,

SOCMIN ≤ SOCinit
sj

+ ∑
τ

ηj

Cj
pEV

j,t ∆t ≤ SOCMAX ∀τ ∈ Tsj , s = 1, . . . , Sj, j ∈ UEV . (4.8)

This is needed to prevent a faster battery wear, as highlighted in [209, 210]. Note that, even if the lower and
upper threshold valus SOCMIN and SOCMAX actually depend on battery type, size and manufacturer, for the
sake of simplicity, in the rest of this paper these limits will be assumed to be the same for all vehicles. In fact,
they usually do not differ significantly.

3. Constraints due to EVs unavailability. When an EV is not connected to the charging station, of course its battery
can neither be charged, nor it can be used for V2G-based active power support. Therefore, the following equality
constraints have to be applied, i.e.,

pEV
j,t = 0 t ∈ Tdj

, j ∈ UEV (4.9)

where Tdj
= T \(⋃s∈Sj

Tsj ) includes all time slots in which the j−th EV is not connected to the charging station.

4. Constraints on maximum EV charging and discharging power. Finally, it is important to recall that, due to
contractual restrictions, technology limitations and/or safety reasons, the EV charging and discharging power
cannot exceed a given limit ±PLIM

j . Therefore, a further set of inequality constraints to apply when solving the
optimisation problem is given by

|pEV
j,t | ≤ PLIM

j t = 1, ...T, j ∈ UEV . (4.10)
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It can be observed that constraints (4.6)-(4.10) are all linear and can be easily formalised in a matrix form by using sparse
matrices. Therefore, they are simple to implement and the memory requirements are reasonable. As a consequence,
the QP optimisation problem based on (4.5) and subject to constraints (4.6)-(4.10) converges to a solution within a
reasonable time. As a consequence, the scalability of the optimisation problem is also acceptable.

4.4 Case Study Description

This Section describes the features of the LV distribution grid used as a case study, the baseline load profiles, the way
in which both the EV usage profiles and the PV generation patterns are generated. A summary of the general simula-
tion settings and scenarios that were considered to evaluate the performance of the proposed optimisation strategy is
presented as well.

4.4.1 Grid Model

The distribution system used as a case study is the IEEE 906-bus LV Test Feeder2, which is an example of a typical
240 V European LV grid, with a 800 kV A transformer and conductors’ ampacities ranging between 200 and 500 A for
the main lines and between 50 and 80 A for the secondary ones [211].

4.4.2 Baseline Load Profiles

The daily power consumption profiles of 297 households were synthesized through LPG3, a bottom-up software ap-
plication that mimics the domestic electricity demand of different kinds of users depending on their daily activities.
The power consumption profiles of different users, taken from the database created for [212], were aggregated into 90
load profiles associated to as many buildings, in order to replace the 90 non-zero-injection buses of the original IEEE
906-bus LV Test Feeder. Such baseline power demand profiles keep into consideration the building stock composition
and the age distribution of the city of Bolzano/Bozen, Italy, based on ASTAT4 data. As a result, the building stock
consists of single-family (i.e., detached) houses and buildings with four or six flats. The contractual power demand of
each household is assumed to be 4.5 kW, rather than 3 kW (although this is currently the most common case in Italy for
residential users) in order to safely accommodate the additional load due to EV charging (see Section 4.4.3). The power
factors values are randomly chosen between 0.95 and 1.

4.4.3 Baseline EV Usage Profiles

The baseline EV consumption and charging patterns based on their supposed usage were generated with the RAMP-
mobility5 software tool [213], by setting the shares of plug-in hybrid EVs (PHEVs), battery EVs (BEV) and their battery
capacity. The shares of PHEV and BEVs are assumed to be 60% and 40%, respectively6, while the battery capacity is
around 8-10 kW h for PHEVs and between 30 and 100 kW h for BEVs7. The maximum EV charging and discharging
power PLIM

j was set to 3.7 kW for nj ∈ UEV , as assumed in other research works [47, 214], while the EV charging-
discharging efficiency ηEV is around 0.9 as in [47, 215]. The resulting average yearly EV energy consumption per
charging station is around 1.1 MW h, in good agreement with the Eurostat data on vehicular mobility in Italy, where
each vehicle travels 11.4 km per day on average8, and the EV consumption is assumed to be around 0.23 kWh/km [216].
In the rest of this paper the simulations are based on the generated EV profiles, assuming that each EV drains the max-
imum allowed power when it is connected to the charging station, till the target SOC (usually maximum) is reached.

4.4.4 PV Generation Profiles

Due to the limited geographical area of the considered LV distribution grid, for the sake of simplicity, all users are
assumed to share the same irradiation and panel temperature patterns. In the considered case study, such data are

2IEEE LV Test Feeder: https://site.ieee.org/pes-testfeeders/
3LPG: A Bottom-Up Customizable Load Generator, Noah Pflugradt, https://www.loadprofilegenerator.de
4ASTAT: Statistics Institute for the Autonomous Province of South-Tyrol
5RAMP-mobility: a RAMP application for generating bottom-up stochastic electric vehicles load profile https://github.com/RAMP-project/

RAMP-mobility
6Motus-E Market Analysis for Italy, https://www.motus-e.org/analisi-di-mercato/gennaio-2022-i-primi-segnali-dellassenza-di-incentivi
7EV Database Org, https://ev-database.org/cheatsheet/useable-battery-capacity-electric-car
8EUROSTAT: "Passenger Mobility Statistics 2021", https://ec.europa.eu/eurostat/statistics-explained/index.php?title=File:Average_

distance_per_person_per_day_(kilometres)_v3.png

https://www.loadprofilegenerator.de
https://github.com/RAMP-project/RAMP-mobility
https://github.com/RAMP-project/RAMP-mobility
https://www.motus-e.org/analisi-di-mercato/gennaio-2022-i-primi-segnali-dellassenza-di-incentivi
https://ev-database.org/cheatsheet/useable-battery-capacity-electric-car
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=File:Average_distance_per_person_per_day_(kilometres)_v3.png
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=File:Average_distance_per_person_per_day_(kilometres)_v3.png
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experimental, as they were collected at the Airport Bolzano Dolomity, Bozen (Italy) every 15 minutes in 2019. Of
course, the installed PV capacity (if any) differs from user to user. In particular, the PV systems are sized in such a way
that the amount of energy produced in the average day of each season and the corresponding energy consumption
approximately coincide [217]. As a consequence, the resulting installed PV capacities per household generally range
between 1.5 and 4 kW, in steps of 250 W, which is the size of a typical PV module [217].

4.4.5 Simulated Scenarios

The main used settings are briefly summarized below:

• The profiles of M = 297 users are aggregated to be connected to the 90 non-zero-injection buses of the LV test
distribution system;

• The simulation time step is set to 15 minutes, which provides a good tradeoff between computational complexity
and simulation accuracy [218]. As a result, T = 96. This is a realistic choice also because the last-generation smart
meters (including those recently deployed in Italy) can measure and trasmit the power/energy consumption
values every 15 minutes.

• To explore the joint impact of different levels of EV and PV penetration, the values of parameters EVshare and
PVshare are increased from 10% to 90% and from 0% to 90%, respectively. In all cases, the users equipped with a
PV system and/or with an EV charging station are selected randomly so that the results are comparable (i.e. a
user equipped with a PV system retains it in higher PV penetration scenarios).

To keep the overall computation time within reasonable limits, the optimal EV charging schedules for each pair of
EVshare and PVshare values were computed day-by-day over an average week in summer and winter, respectively,
namely when the solar irradiation is close to its maximum and its minimum, respectively.

4.5 Optimisation Results

The proposed optimisation algorithm for EV smart charging was implemented in Matlab. The weekly scenarios were
simulated using the High Performance Cluster (HPC) of the University of Trento. Each optimal daily EV charging
schedule is computed using one of the available cores the cluster, belonging to a 2.8-3.4 GHz Intel Xeon Gold/E5 CPU
(up to 30 cores are used in parallel). The parallelisation of the optimisation problem allows for a rapid estimate of all
the EV charging schedules, even the ones where the EV penetration is very aggressive, so that the simulation times are
always under one day. This result allows for the application of our methodology in a "day-ahead" context, optimising
the EV charging for one day, and then applying the obtained profiles to the following one.

The overall weekly net-load profiles at the substation transformer computed without including the EVs and with the
additional EV loads assuming a significant EVshare value (i.e., 60%) both without (lines with circles) and with the pro-
posed V2G-based smart charging policy (dashed lines) are shown in Fig. 4.1a-4.1b. The figures are presented for both
the summer and winter scenarios respectively, assuming that either no PV systems at all are installed (plots on the left)
or about 30% of users are equipped with PV generation units (plots on the right).

In all cases, the effect of smart EV charging is twofold, i.e., power consumption peak shaving and reverse power flow
prevention. This is especially visible when the PV penetration is higher and in the summer season, and confirms the
correct operation of the smart EV charging optimisation algorithm. Interestingly, the reverse power flows are much
less efficiently managed by the smart EV charging policy (the negative net-load peaks are shaved much less than the
positive ones), due to the limited storage capability of EV batteries in the case of large PV overproduction. As it will be
shown in Section 4.6, this issue will affect the voltage fluctuations as well.

The efficiency of the proposed V2G-based smart EV charging policy is assessed in terms of relative NLV reduction
(NLVR) with respect to the no smart EV charging scenario.

Figs. 4.2b and 4.2a show the contour lines of the NLVR surfaces as a function of both PVshare and EVshare in the summer
and winter scenarios, respectively. These diagrams quantify the joint effect of EV and PV penetration in ideal conditions
(i.e., when a perfect schedule is possible), thus highlighting the operating conditions for which a maximum NLVR
can be achieved. The analysis reveals that NLVR values exceeding 60% can be potentially reached in both summer
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(A) Summer scenario

(B) Winter scenario

FIGURE 4.1: Active net-load power profiles at the substation transformer without EVs and with 60% of users
provided with EVs both without and with adopting the proposed V2G-based smart charging policy. The
plots in (a) and (b) refer to the summer and winter scenarios, respectively, assuming that the shares of users

equipped with PV systems are 0% (left) or 30% (right).

and winter scenarios although the best conditions for the joint use of PV production for EV charging depend on the
total amount of available solar energy. The curves in the winter scenario look like a zoomed view of the contour
lines on the left side of the summer case. This is simply due to the fact that in winter a much larger number of PV
generators is needed to reach the same total amount of PV energy which can be achieved in summer with PVshare ≤
20%. Quite interestingly, if no PV generators at all are deployed, the maximum NLVR (between 50% and 55% in
the case at hand) is reached realistically if EVshare ranges between 35% and 45%. While these numbers depend on
the specific case study considered, this result is very important because it confirms that the optimal V2G-based EV
charging scheme is potentially very effective, regardless of whether the distributed generators are installed or not. The
effect of PV generators is twofold. To a certain extent (e.g., with PVshare up to 30%), the deployment of PV generators
and the resulting solar energy, support the net-load variance reduction achieved through the V2G-based charging even
if the share of users with an EV grows. This results is simply due to the fact that the PV units contribute to meet
the increasing power demand due to EVs, thus reducing the supply-demand mismatch. However, if PVshare increases
excessively (especially if the number of EVs stays the same) the summer NLVR sharply decreases, since the net-load at
the substation transformer is so heavily affected by the reverse power flows that the EVs are no longer able to consume
enough energy.

Figs. 4.3a and 4.3b show the NLVR contour lines computed when the optimal V2G-based EV charging schedule com-
puted a posteriori using the data of a full day is applied to the following day. These curves are qualitatively similar to
those in Figs. 4.2b and 4.2a, but they refer to a much more realistic situation, since in this case, the load, PV generation
and EV usage conditions differ from the expected ones. As a consequence, the daily-ahead EV charging profiles will
be locally overridden by the new day constraints (e.g., due to EV unavailability) and the obtained results are of course
suboptimal. It is worth noticing that the peak reduction is about 15%-18% lower than in the ideal case in both summer
and winter. Indeed, the NLVR value never exceeds 50%, which is however a remarkable improvement, especially be-
cause it can be achieved over a broad range of PVshare and EVshare values. The presented analysis clearly shows that, in
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(A) Summer (B) Winter

FIGURE 4.2: Ideal contour curves of the NLVR surfaces as a function of increasing shares of users equipped
with PV systems and/or EVs in summer (a) and winter (b), respectively. Results are computed in ideal con-

ditions, i.e. assuming that the user behaviour’s and profile is exactly the same as expected.

(A) Summer (B) Winter

FIGURE 4.3: Day-ahead contour curves of the NLVR surfaces as a function of increasing shares of users
equipped with PV systems and/or EVs in summer (a) and winter (b), respectively. In this case the EVs V2G
charging profile computed with the data over a given day is applied to the following day, but the constraints

due to actual EVs unavailability override the expected EV charging schedule.

all cases, a good mitigation of the net-load variance can be obtained if at least 20% of users own an EV and that such the
net-load variance is dominated by the PV reverse power flows when PVshare exceeds about 50%, and EVshare is instead
lower than 50%.

4.6 Impact Analysis

Since the implications of smart EV battery charging are wider than active power support, this Section will present the
results of multiple analyes on: district-level energy independence, grid voltage stability and transformer loading, and
EVs’ battery wear.

4.6.1 Energy Independence Analysis

Several Authors found that smart EV charging is useful to increase the self-consumption (SC) and self-production (SP)
of the district [140, 141]. SC expresses how efficient a system is in consuming the self-generated energy whereas SP
represents how much of the total consumption is covered by the users own production. The ideal scenario would
see them both at their maximum, in accordance with the concept of net-zero energy districts [219]. The total relative
increments in SC and SP at the district level caused by the proposed smart EV charging policy are shown in Fig. 4.4(a)-
(b) in the summer scenario. The results in winter are qualitatively similar, but milder. Therefore, they are omitted for
the sake of brevity.

Not surprisingly, the highest SC and SP increments are obtained for (PVshare, EVshare) values significantly different
from those of the maxima in Figs. 4.3a and 4.3b, i.e. about (40%,70%) in 4.4(a) and (50%,80%) in 4.4(b). In fact, there
is no reason why an algorithm aimed at minimising the overall load variance should also maximise the exploitation
of the available solar energy. Nevertheless, the benefits of jointly and properly increasing PV and EV penetration to a
certain extent are evident.
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Interestingly enough, if PVshare ≈ 45% and EVshare ≈ 75%, then SC = 42% and SP = 50%. This means that about half
of the PV energy is consumed or stored into the EVs’s batteries, while half of the total energy demand is covered by the
PV generation.

FIGURE 4.4: Increments of the district-level self-consumption (SC) (a) and self-production (SP) values (b) due
to the proposed EV smart charging policy in the summer scenario.

4.6.2 Grid Voltage Stability

The correct and stable operation of the IEEE 906-bus LV distribution system under test for increasing values of PVshare

and EVshare with and without running the smart EV charging algorithm was verified through repeated power flow
analyses (with a 15 minutes time step) based on the well-known software tool EPRI OpenDSS (v9.0.0). The bar diagrams
in Fig. 4.5 show the weekly bus voltage variations range with 99% probability in the summer scenario (i.e., in the
worst case) in the baseline case (i.e., without considering the EVs) and with the additional EV load, with and without
the proposed V2G-based smart charging algorithm. The groups of bars are plotted for different EVshare values and
assuming an increasing share of users equipped with PV generators.

As it can be easily seen, the bus voltage levels without smart EV charging exceed the upper bound boundary of 1.1
p.u. reported in [11] only if PVshare = 90%. However, this is due mainly to the reverse power flows caused by the
surplus of PV-based power and not by the EVs. In any case, the V2G-based smart EV charging tend to better exploit the
available distributed PV-power, with an evident benefit in terms of voltage fluctuations reduction. This benefit is more
and more evident as the EVshare and PVshare values grow. The additional load due to the EVs has a strong impact on the
undervoltages and, even in the case of EVshare = 30% may significantly exceed the 0.9 p.u. reported in [11]. However,
also in this case the smart EV charging algorithm clearly reduces the risk and the amount of such events.

The simulated transformer loading (not shown for the sake of brevity) exhibits of course an increasing stress due to the
higher EV and PV penetration. However, the EV smart charging policy of course greatly mitigates such fluctuations,
as expected. In any case, the saturation of the transformer is far from being reached, because its 800 kVA capacity is
more than enough for 297 households. The peak lines loading and the related losses were evaluated too, but there is no
significant improvement on those parameters, since centralised V2G incentivizes the energy exchanges between users.

4.6.3 Battery Wear Analysis

One of the strongest criticisms to V2G-based smart EV charging schemes is the actual stress for EVs’ batteries, whose
lifetime could be reduced due to a higher number of charging and discharging cycles. For this reason, an estimate
of the battery lifetime reduction is provided in this Section. The total relative reduction of the battery capacity of the

j−th EV after y years of use can be estimated by following the procedure in [194, 220] as ∆Cj
Cj

(y, TK) =
∆CCAL

j +∆CCYC
J

Cj
,

where
∆CCAL

j
Cj

and
∆CCYC

j
Cj

are the capacity reductions due to the pure calendar-time aging and to the charging-discharging
cycling effect, respectively. Both contributions can be estimated by using the following empyrical expressions [220]:
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FIGURE 4.5: Range of weekly bus voltage fluctuations with 99% probability over the whole LV distribution
system under testing in the summer scenario.

(A) PHEVs (B) BEVs

FIGURE 4.6: Distribution of the relative lifetime reduction of PHEVs (a) and BEVs (b) batteries due to the
application of the proposed V2G-based smart EV charging algorithm.

∆CCAL
j

Cj
= αCAL · eβCAL ·TK · (y · 12)0.5 (4.11)

∆CCYC
j

Cj
= αCYC · eβCYC ·TK · (NCEQ

j )0.5 · y (4.12)

where

• the coefficients αCAL = 1.985 ∗ 10−7, βCAL = 0.0510, αCYC = 4.42 ∗ 10−5 and βCYC = 0.02676 were derived from
tests on EV Li-ion batteries [194].

• Cj is the nominal battery capacity of the j−th EV;

• TK is the battery pack temperature in Kelvin degrees (set to 40°C as in [194]);

• NCEQ
j is the number of equivalent "full" charging and discharging cycles, estimated by using the Palmgren-Miner

rule as in [194];

The battery lifetime is estimated from (4.6.3) by computing the y value for which ∆Cj
Cj

= 20%, which is a conservative,
but realistic assumption [194]. Fig. 4.6(a)-(b) shows the box-and-whiskers plots of the relative EV battery lifetime reduc-
tion produced by the V2G-based smart charging policy. Since the number of full charging and discharging cycles highly
depends on the battery capacity, the results for PHEVs (8-10 kW h) and BEVs (30-80 kW h) are separately presented in
Fig. 4.6(a) and (b). Both box-and-whiskers plots are reported for increasing values of EVshare and PVshare, assuming that
the parameter NCEQ

j is set to the typical value estimated in the summer season, which, based on the available simu-
lated data set, is the highest one. Therefore, it is likely that the mean values of the battery lifetime reductions shown in
Fig. 4.6(a)-(b) are higher than the real ones.
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A first noticeable difference between PHEVs and BEVs is that, for the same values of EVshare and PVshare, the battery
lifetime reduction of the majority of PHEVs is much higher than in the BEVs case, with the median values being roughly
twice as large. This is due to the much smaller size of PHEVs’ batteries, which causes a larger number of full charging-
discharging cycles NCEQ

j , when the V2G-based smart EV charging policy is applied. Interestingly enough, the battery
lifetime reduction variability range is quite larger in the BEVs case, because of the broader range of simulated Cj values,
that produces a lower NCEQ

j count.

It is also easy to see from both the box-and-whiskers plots in Fig. 4.6(a)-(b), that there are two contrasting trends
when EVshare and PVshare increase. In the former case, a larger EV fleet allows the optimiser to use each vehicle less
to perform V2G-based smart EV charging. Therefore, the battery wear is milder. In the latter case instead, when the
PV production grows, a slightly higher battery wear effect is noticeable, and this happens because a higher availability
of PV production pushes the algorithm to exploit the EV flexibility more and more, thus producing a higher count of
equivalent full cycles NCEQ

j . Hence, the higher battery wear. In absolute values, the peak battery capacity reductions
are quite high, around 35-40%, meaning that the EV battery lifetime is about 1/3 shorter than in the case when no active
power support is performed.

4.7 Conclusions

In this work, the efficiency of a V2G-based centralised smart charging algorithm aimed at reducing the net-load vari-
ance at the transformer level was assessed, under an increasing number of users with EV stations and PV systems.
The problem was solved with a quadratic programming approach, to fully explore the capabilities of bidirectional cen-
tralised V2G for active power support (e.g. minimising NLV). The optimisation results show there are sizeable benefits
in simultaneously increasing both the number of EV owners and PV systems, since the NLVR values peak at around
60% and follow an optimal trajectory if an increase in PV systems is supported by more EV charging stations. The
analysis in a more realistic day-ahead operation shows that losses in NLVR of up to 15% could happen: increasing
the PV penetration reduces the day-ahead estimation error, while increasing the EV penetration produces the opposite
effect. Due to the presence of smart charging, 27% increases in district self consumption and 17% in self production
are attainable. In those scenarios, the district produces around 50% of its demand and consumes around 50% of its PV
production. Smart charging also impacts the the grid-level simulations, since a sizeable reduction of both the over and
under-voltage frequencies are noticeable. Results of a simplified economic analysis show that, even if centralised smart
charging is an economic loss for the user, a small compensation for the extra purchased electricity greatly reduces the
economic losses, and may even produce a net annual gain in some cases. Finally, the battery wear analysis shows that
a reduction in the battery lifetime could happen due to smart charging, ranging from 5 to 35% for PHEVs and from 1.5
to 35% for BEVs, with the BEVs suffering much less than PHEVs due to the larger battery size. A reduction this large
has to be considered one of the main results of this analysis, and further work should include the battery lifetime in the
objective function to minimise. Note that, in this work, the battery wear was not included because the equations in 4.12
are empirical, and can hardly be included in a quadratic programming formulation. We suggest that a more specific
analysis should be performed regarding the battery wear issues, since they seem to be the most limiting factor for the
widespread diffusion of smart V2G-based charging on the grid. In perspective, future research should combine the best
of perfect-foresight and real control algorithms, including forecasting techniques. That would allow to optimise the EV
behaviour considering a daily time horizon, while still allowing for an easy implementation of the control algorithm in
modern power controllers. This solution could also allow for the consideration of the interaction between stationary
storage systems (outside of the scope of this work) and EVs, since a priority system could easily prioritise the EVs for
active power support, and use the batteries as a backup to further increase the independence of the district from the
grid. Eventually, this solution could reduce the required BESS capacity to install, providing economic incentives to the
users.
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Chapter 5

EV Impact Scenarios on a Real Distribution Grid

The last Motus-E report on the state of the EV charging infrastructure in Italy1 states that at present there are 26000
charging stations spread over 10000 locations in the country, 57% of which is found in the northern regions. The steep
increase in the number of stations per year, i.e. 6700 in 2021 (+37% of the total stations) indicates that the government
and the companies are investing a lot of money in the development of the charging infrastructure. The vast majority,
around 94% of the total, is in AC, while the remaining 6% are fast-charging DC stations. Around 17% of the AC stations
are slow chargers (<7 kW), while 77% are fast ones (between 7 and 50 kW). Among that 6% DC charging stations, 3.6%
is up to 50 kW, 1.4% up to 150 kW and 1% over 150 kW. Both the government energy and climate plan (PNIEC) and the
charging infrastructure plan (PNIRE) for 2030 suggest that, even if nowadays the owners tend to drive in the city only
thus home EV charging is preferred, in the future, as the battery technology will allow for longer travelled distances,
a widespread enough network of public charging stations will be vital. In highways, for example, it is possible to find
1.2 charging points every 100 km. The Motus-E report concludes that the state of the charging infrastructure is good,
since other countries with a higher share of EVs have a lower penetration of charging stations. All things considered,
supplying the electricity required by the charging stations and safeguarding the network from possible disruptions are
still very important aspects. In that regard, as mentioned in Chapter 2, the simultaneous charging of a high number of
EVs poses multiple threats to the stability of distribution systems. Hence, since the number of installed EV stations will
increase in the next years, addressing the grid-related issues will be more important then ever.

In the framework of the Stardust H2020 project2, we quantified the future impact of EV charging on the distribution grid
of Trento, Italy. The main objective of this work was understanding when EV charging will start to significantly impact
the analysed distribution grid, and to quantify its magnitude by considering future EV uptake scenarios. Moreover, the
analysis of the V2G-based smart charging mitigation capabilities was performed.

5.1 Methodology

In order to clarify the approach adopted for the Stardust project, the performed steps are shown in Figure 5.1. Firstly,
the power system was modelled in OpenDSS and validated by considering the available measured net-load profiles.
Secondly, the EV penetration scenarios in the municipality were analysed, and a charging profiles generator for EVs
was used to create a realistic database of charging profiles. Thirdly, those stations were then distributed on the grid as loads
and the EV impact analysis was performed. Finally, the possibility of smart EV-charging was also analysed.

In the following sections, each of these stages will be described in detail, and the main conclusions will be drawn.

5.1.1 Power Grid Model

For the creation of a power system model in OpenDSS3, the topology of the distribution network of Trento was provided
by the local DSO. We considered the location and electric parameters of the aerial and underground cables, secondary
(SSs) and primary substations (PSs), LV/MV and MV/HV transformers. Moreover, the main electric properties of the
power conversion elements (loads/generators) were also considered, along with their type (domestic/commercial/lighting).

1"Le infrastrutture di ricarica pubbliche in Italia: III edizione", Motus-E, https://www.motus-e.org/wp-content/uploads/2022/01/
Le-infrastrutture-di-ricarica-pubbliche-in-Italia-1.pdf

2Part of this chapter is featured in the final report for the WP4 "Smart Community Trento" of the H2020 Stardust project, under the Grant Agreement
774094, https://stardustproject.eu/

3OpenDSS: Open Distribution System Simulator v9.0.0, R.Dugan, D.Montenegro, A.Ballanti, https://www.epri.com/pages/sa/opendss

https://www.motus-e.org/wp-content/uploads/2022/01/Le-infrastrutture-di-ricarica-pubbliche-in-Italia-1.pdf
https://www.motus-e.org/wp-content/uploads/2022/01/Le-infrastrutture-di-ricarica-pubbliche-in-Italia-1.pdf
https://stardustproject.eu/
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FIGURE 5.1: Flowchart of the adopted analysis approach.

NFEEDERS STR NSS NUSERS
LV NUSERS

MV
PS1 12 80 MVA 274 19955 83
PS2 16 80 MVA 285 32473 92
PS3 12 103 MVA 248 31383 58

TABLE 5.1: Main characteristics of the analysed distribution grid.

Firstly, the grid was divided into three sub-networks, each one referring to an HV/MV transformer located at a PS,
and hereafter dubbed as PS1, PS2 and PS3. The reason behind this choice is that the voltage levels and transformer
set-points for the different PSs are slightly different. Secondly, each bar was subdivided into a variable number of
feeders, each serving a number of secondary substations (SSs), hereafter referred to as SS1, . . . , SS807. Figure 5.2 gives
an overview of the grid topology by highlighting the extension of the feeders and the placement of the SSs.

A summary of the main features of each PS is presented in Table 5.1 instead, where NFEEDERS is the number of feeders,
STR is the HV/MV transformer apparent power rating (MVA), NSS is the number of secondary substations, NUSERS

LV is
the number of LV-connected loads, and NUSERS

MV is the number of MV-connected ones.

5.1.2 Model Validation

The RMS values of the line to neutral voltage VLN and phase current IPH averaged over 10 minutes were available for
a period of three years, from 2016 to 2018. The profiles were measured at each of the 40 feeders, in close proximity
to the PS connection point. Since the PF was unknown, the apparent power consumption profiles at each feeder were
estimated based on the voltage and current profiles and redistributed on the different SSs. Since no information was
available on the simultaneity factors for the different SSs (i.e. the maximum concurrent absorbed power at each SS),
a simplified approach was chosen. As such, the apparent load consumption profiles of the m-th feeder at time t, was
split based on the nominal power of the loads on each SS, to obtain the apparent power flow at the i-th SS.

A power factor (PF) is then assumed for each type of load, based on values found in the scientific literature: PF ≃ 0.95
and PF ≃ 0.9 are typical values for domestic and commercial loads respectively [221], whereas PF ≃ 0.85 is appropriate
for neon-lights used in public lighting 4. The apparent power flow at the i-th SS at time "t" is thus the sum of three
components, each with a different PF.

As reported in the international regulation EN50160:2010 for LV electricity distribution systems [11], all the loads with
nominal power over 6 kW have to be considered as three phase, whereas the others as one-phase. The latter group

4ABB, "Guida all’illuminazione", 2020, https://library.e.abb.com/public/a5bc26ccdd713781c1257db00058f331/2CSC004070B0901.pdf

https://library.e.abb.com/public/a5bc26ccdd713781c1257db00058f331/2CSC004070B0901.pdf
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FIGURE 5.2: GIS representation of the 807 SSs and of the three PSs.
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FIGURE 5.3: RMSE values for the grid validation on the different PSs bars.

Max./Min. Violation Magnitude Max. Violation Duration Violation Frequency
MV/HV Transformer Overload 105% 1 h 40 min 2%
LV/MV Transformer Overload 110% 3 h 4-5 %
MV Bus Undervoltage 0.89 p.u. 2 h 30 min <0.225 %
MV Bus Overvoltage N.A. N.A. 0%
MV Lines Overcurrent N.A. N.A. 0%

TABLE 5.2: Baseline scenario results, negligible EV impact on the grid.

of loads was equally distributed on the grid phases to attenuate voltage unbalance. The MV loads are instead all
three-phase ones, since their nominal power is always higher than 6 kW.

Once the grid model was assembled, we checked how different the measured values were from the time-dependent
profiles of the same electric same parameters but obtained through the OpenDSS simulation. Those parameters were
the voltage magnitude VLN , phase current magnitude IPH and apparent power STR profiles a each feeder’s end (i.e.
close to the PS they are connected to). The relative root-mean square error (RMSE) was used to estimate the validation
error for the x-th PS (5.1):

RMSEVLN [%] =

√
∑T

t=1
(VPSx (t)−V̂PSx (t))2

T

VPSx
· 100 (5.1)

where V̂PSx (t) is the L-N voltage profile resulting from the OpenDSS simulation, VPSx (t) is the corresponding mea-
sured value at time t, T is the number of considered time instants, and VPSx is the mean voltage profile at PSx:
VPSx = ∑T

t=1 VPSx (t)
T . An Equation similar to (5.1) can be used to calculate the RMSE values of IPH and STR. Figure

5.3 shows the results of the validation performed at the HV/MV transformer bar level.

It is possible to conclude that the model is accurate enough to perform an EV impact analysis.

5.1.3 Baseline Impact Analysis

Once the grid model was validated, power flow simulations were performed on the analysed grid for the baseline
scenario (no EVs), and the main results of the violations analysis are presented in Table 5.2.
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Type 2020 2030 2040 2050
Residential 16 33 39 40

REFWorkplace 4 9 10 10
Public 4 9 10 10

Residential 56 1567 3724 4626
CPIWorkplace 14 392 931 1157

Public 14 392 931 1157
Residential 78 4959 17125 26933

TECHWorkplace 20 1240 4282 6734
Public 20 1240 4282 6734

Residential 100 8886 22333 28103
RAPIDWorkplace 25 2222 5584 7026

Public 25 2222 5584 7026

TABLE 5.3: Number of EV charging stations of different types for the multiple
considered time horizons.

The considered threshold values were obtained from the available international regulation EN50160:2010 [11] for the
voltage levels (0.9 p.u. lower limit, 1.1 p.u. upper limit), while the Italian CEI64-8:2021 [12] was adopted for over-
currents (max 145% overcurrent). Since the violation frequency for transformers is usually provided by the manu-
facturer, we adopted a maximum transformer loading equal to 100% which represents a very restrictive value, since
oil-immersed transformers are allowed to overload by 10-50% of the total simulation time, considering the average
previous loading level and the peak magnitude of the overload event 5, and the selected threshold is quite restrictive.
These results are however coherent with the local DSO reports, which confirmed that the grid has no significant issue
at present.

After the baseline was calculated, the EV penetrations scenarios were analysed, as explained in the following section.

5.2 EV Modelling

Once the grid model was finalised, the EV modelling task was performed based on a three-steps methodology. First, the
EV penetration scenarios from a local report were considered. Then, a charging profiles generator was used to generate
a database of EV charging profiles for the quasi-steady state simulations. Finally each EV station was associated to a
charging profile and then placed on the grid based on different rules for domestic and public charging.

5.2.1 EV Penetration Scenarios

In the framework of the Stardust project, different EV uptake speeds were considered for the different time horizons span-
ning the 2020-2050 period. The following case scenarios, elaborated starting from the Fuelling Italy’s Future report6,
were analysed:

• REF ("Reference"): the EVs share on the circulating car fleet will not change in the future, thus e-mobility will
not be an important part of future mobility scenarios.

• CPI ("Current Policy Initiatives"): a modest increase in sales of PHEVs/BEVs is recorded, in agreement with the
European targets for global CO2 emissions reduction by 2030.

• TECH: a smooth transition to PHEVs/BEVs happens until 2030, then a lower adoption of EVs is predicted, in
favour of fuel-cell EVs.

• RAPID: a faster transition to PHEVs/BEVs and fuel cell EVs than the one in TECH scenario is envisioned. By
2030, the market will be dominated by electric mobility.

From the combination of the four presented EV uptake speeds and time horizons, 16 scenarios are obtained. The
predicted number of EV charging stations in Trento is shown in Table 5.3, along with their assigned use.

5"What is the permissible overload percent for oil-immersed transformers?", Schneider Electric, https://www.se.com/eg/en/faqs/FA335947/
6"Fuelling Italy’s Future: How the transition to low carbon mobility strengthens the economy", European Climate Foundation, 2018, https://

europeanclimate.org/content/uploads/2019/12/fuelling-italys-future-how-the-transition-to-low-carbon-mobility-strengthens-the-economy-summary-report-en.
pdf

https://www.se.com/eg/en/faqs/FA335947/
https://europeanclimate.org/content/uploads/2019/12/fuelling-italys-future-how-the-transition-to-low-carbon-mobility-strengthens-the-economy-summary-report-en.pdf
https://europeanclimate.org/content/uploads/2019/12/fuelling-italys-future-how-the-transition-to-low-carbon-mobility-strengthens-the-economy-summary-report-en.pdf
https://europeanclimate.org/content/uploads/2019/12/fuelling-italys-future-how-the-transition-to-low-carbon-mobility-strengthens-the-economy-summary-report-en.pdf
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PHEV BEV
2020-2050 2020 2030 2040 2050

Small 6 35 45 60 70
Medium 8 50 60 75 85

Large 10 80 90 100 115

TABLE 5.4: EV battery sizes [kWh] in the EV pools created for the different time-
horizon scenarios.

Table 5.3 shows that the low number of EVs until 2030 will probably produce a mild impact for all uptake speeds,
especially because, as it will be shown later in this chapter, simultaneous charging of all the stations is a very rare
occurrence, i.e. the simultaneity factor decreases as the number of considered EVs increase (check Figure 5.9). After
that, the impact should increase more and more, due to the higher number of installed charging stations. It is generally
possible to distinguish between the number of "domestic" and "public" stations for each combined scenario. For the
purpose of this study, "workplace" stations are merged with the "residential" ones. In fact, both those types are not
publicly available and their charging power is in the range 3.7-22 kW. Moreover, the typical charging session lasts up
to 7-8 hours for a full charge, which is acceptable for users that can charge their EVs while working or staying at home,
and thus also allow for V2G-based smart charging. "Public" stations instead, are the ones available in parking lots,
and whose nominal charging power is much higher (50-350 kW). Moreover, they typically do not work in V2G-mode,
because their users generally just want to charge their EVs in the shortest amount of time and then leave the station.

5.2.2 EV Profiles Generation

The software RAMP-mobility, which was already introduced in Section 4.4, was used again to create one realistic pool
of EV charging profiles for every scenario combining an EV uptake speed and a time horizon. The database was created
following some assumptions, listed below:

• EV Battery Size: classified as small/medium/large; each group covers a share of the total EV fleet. For the purpose
of this work, these values were kept constant at the present level for Italy, i.e. 24%, 68% and 7%, as suggested
in [213]. Moreover, since the battery capacity has increased in the past few years together with the EV driving
range, different battery sizes were adopted for the the time horizons after 2020, as in Table 5.4.

Since no data was available about future trends after 2030, the PHEVs batteries size were assumed to not increase
after 2020, since the plug-in hybrid technology is considered as a "transition" between internal combustion en-
gines and BEVs. For this last category instead, the size of the battery in the future can be estimated through a
linear extrapolation of the battery increase in the last 10 years, as available in the literature [222] and online 7.

• Charging Power Frequency: since EV charging at a domestic stations is less expensive than charging at a public one,
it is reasonable to assume each EV will have a domestic charging station, where most of the charging sessions will
happen (we assumed around 75% in line with the Motus-E report for the EV charging habits in Italy in 20308). As
seen in Figure 5.4a, representing the frequency for each EV to charge at a certain nominal power level, the vast
majority of the sessions currently happens at 3.7 kW domestic stations. However, by 2040 and 2050, the newly
installed domestic charging points will gradually switch from 3.7 kW to 7 kW or more, so in Figure 5.4b the 7 kW
charging sessions are prevalent, at the domestic level.

The remaining 25% of the sessions will be split between the available public charging stations. In order to es-
timate the probability of charging at a specific nominal power level, the OpenCharge Map9 database for public
EV stations and Motus-E mobility report 202010 were analysed and cross-checked to derive the distribution of
public charging stations in Italy for 2020 and 2030. An example of the current situation can be seen in figure 5.5
for the provinces of Trento and Bolzano.

7Electric Vehicles Database, https://ev-database.org/cheatsheet/useable-battery-capacity-electric-car
8"Il futuro della mobilità elettrica: l’infrastruttura di ricarica in Italia nel 2030", Motus-E, https://www.motus-e.org/wp-content/uploads/2020/

10/Il-futuro-della-mobilit%C3%A0-elettrica-linfrastruttura-di-ricarica-in-Italia-2030-2.pdf
9OCM (OpenCharge Map) Database https://openchargemap.org/site/

10Motus-E EV Charging Infrastructure Report (December 2020) https://www.motus-e.org/wp-content/uploads/2021/01/Report-IdR_Dicembre_
2020-2.pdf

https://ev-database.org/cheatsheet/useable-battery-capacity-electric-car
https://www.motus-e.org/wp-content/uploads/2020/10/Il-futuro-della-mobilit%C3%A0-elettrica-linfrastruttura-di-ricarica-in-Italia-2030-2.pdf
https://www.motus-e.org/wp-content/uploads/2020/10/Il-futuro-della-mobilit%C3%A0-elettrica-linfrastruttura-di-ricarica-in-Italia-2030-2.pdf
https://openchargemap.org/site/
https://www.motus-e.org/wp-content/uploads/2021/01/Report-IdR_Dicembre_2020-2.pdf
https://www.motus-e.org/wp-content/uploads/2021/01/Report-IdR_Dicembre_2020-2.pdf
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(A) RAPID 2020 Scenario

(B) RAPID 2050 Scenario

FIGURE 5.4: Nominal charging power frequency for two EV profiles pools for the RAPID 2020 and RAPID
2050 scenarios.
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FIGURE 5.5: Public charging points positioning for the province of Trento, Italy.

After 2030, we assumed that the domestic charging will happen at 7 kW instead of 3.7, and that the public
charging will switch from 22 kW to a mix of 50-350 kW. No information was found regarding the charging levels
in the future, but these assumptions seem to be in agreement with the Motus-E report for Italy.

• Type of EV: each pool of EV profiles features either PHEVs (6-10 kWh) or BEVs (35-115 kWh), thus the data from
the aforementioned Fuelling Italy’s Future Report was used to derive the share of either category in each different
combined scenarios. These percentages are the last input parameter required to run RAMP-mobility.

Once the 16 pools of EV charging profiles (one per combined speed+horizon scenario) were generated, we had to
understand how many stations are required for each pool. The number domestic EV stations NST

DOM was obtained by
assuming it equal to the number of EVs in the pool. This assumption holds because the home charging stations are
nowadays cheaper and more widespread than public ones, so it is reasonable to assume that every EV has its own
home charging wallbox. The number of public stations NST

PUB charging at a specific power level was instead obtained by

• cumulating the sessions with the same nominal charging power PST
NOM

• estimating the minimum required number of stations to feed that maximum power

• sorting the sessions of the cumulative profile on the NST
PUB public stations, so that only one EV is charged at a

time

The total energy absorbed per year and the number of charging sessions for each station were checked to make sure
the profiles are realistic, the aggregated power required for the RAPID scenario is reported in figure 5.6, as an example.

Finally, a random extraction of the number of EV charging profiles required by each scenario (from Table 5.3) was
performed. Those profiles were then placed on the 807 SSs of the grid following the logic explained in the following
section.

5.2.3 EV Stations Placement

The total number of stations assigned to the i-th SS, i.e. NST
i = NST

i,DOM + NST
i,PUB requires the knowledge of the number

of domestic NST
i,DOM and public NST

i,PUB charging stations assigned to the i-th SS. For that reason, two weights were
estimated for the domestic Wi,DOM and public Wi,PUB charging stations, so that:
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FIGURE 5.6: Daily average EV charging pattern profiles over the entire grid for the RAPID EV uptake speed.

Wi,DOM =
NST

i,DOM

NST
DOM

∑NSS
i=1 Wi,DOM = 1

Wi,PUB =
NST

i,PUB

NST
PUB

∑NSS
i=1 Wi,PUB = 1

(5.2)

Since the placement of "domestic" and "public" charging points follows a different rationale, two separate methodolo-
gies were used to obtain Wi,DOM and Wi,PUB.

For the domestic stations, Wi,DOM depends on the number of domestic users NUSERS
i,DOM each SS serves, as in Equation (5.3):

Wi,DOM =
NUSERS

i,DOM

∑
NTOT

SS
i=1 NUSERS

i,DOM

(5.3)

where NTOT
SS is the total number of SSs of the grid. Following this approach, the highest number of EV charging stations

is assigned to the SSs serving highly populated areas.

For the public stations instead, a spatial multi-criteria assessment of civic, commercial, cultural, and parking points of
interest was performed. The chosen methodology, based on an analytic hierarchy process (AHP) produces a score for
each pixel of the map (check an example in Figure 5.7).

The higher the score, the higher the number of "points of interest" available at that location. Thus, the weight Wi,PUB

was calculated so that the EV charging stations are more likely to be placed where the score is high, as in Equation (5.4):

Wi,PUB =
ωi

∑
NTOT

SS
i=1 ωi

(5.4)

where ωi is the score value associated to the i-th SS.

Once this step is performed, a specific charging profile needs to be assigned to each station. Thus, a random extraction
is performed from the EV consumption profile pools generated as in Section 5.2.2.
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FIGURE 5.7: Example of the results of the AHP Analysis: each SS is included in one pixel of the map, whose
score represents the classification obtained by analysing the points of interest of the city.

FIGURE 5.8: Variability of nominal EV station installed power along the 807 SSs of the grid fot the RAPID-
2050 scenario. The median of the 1000 Monte-Carlo runs is highlighted with a blue line, while the shaded

area covers the distance between the 25-th and 75-th percentiles of the distributions.

The random extraction validity was tested by repeating it 1000 times for every SS, and an example of the results is
reported in Figure 5.8 for the highest EV penetration scenario (RAPID):

As shown by Figure 5.8, the variability of the aggregated nominal charging power is very limited, which means that
a different random placement of the charging stations will probably not strongly affect the grid. The validity of this
hypothesis is additionally confirmed by the simultaneity factor values for the different feeders, shown in Figure 5.9
and representing the ratio between the maximum power absorbed by all the EV stations connected to the feeder and
the installed one.

It is easy to check that in 2050, the feeders simultaneously absorb around 25-30% of the nominal power, which means
that the numbers from Figure 5.8 need to be scaled down approximately by a 4.5 times.

5.3 EV Impact Analysis: Simulation Results

The impact of the different combinations of time horizons and EV uptake speeds on the grid are far more significant
than in the baseline scenario, as reported in Table 5.5.
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FIGURE 5.9: Simultaneity factors for the RAPID EV speed scenario in 2020-2050.

Horizon EV Speed Undervoltage Overcurrent LV/MV TR Overload MV/HV TR Overload

2030 TECH 0.28% 0.00% 5.20% 0.10%
RAPID 0.28% 0.20% 5.20% 0.20%

2040 TECH 0.30% 0.12% 13.00% 1.25%
RAPID 0.35% 0.55% 22.50% 2.00%

2050 TECH 0.38% 1.00% 23.00% 3.50%
RAPID 0.38% 0.90% 27.50% 2.50%

TABLE 5.5: Violation frequencies for the main electric parameters of the grid.
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FIGURE 5.10: Overload analysis for MV/HV transformers in the TECH 2050 (left) and RAPID 2050 (right) scenarios.

Note that the REF ("Reference") and CPI ("Current Policy Initiatives") scenarios are not included in the results because
their impact on the electric parameters is almost equivalent to the baseline one, given the low number of EV charging
stations. Also note that the overvoltage infractions (i.e. when the voltage level exceeds the upper 1.1 p.u. threshold)
never happen, due to the low penetration of PV systems. The most impacted parameters are, once again, the LV/MV
and MV/HV transformer loading levels, especially in the TECH and RAPID scenarios for 2050. Thus, only the analysis
of the transformer overloads for those two scenarios will be expanded.

Figure 5.10 show the results of the analysis of the MV/HV transformer overloads for each of the three PSs

It is possible to see that the overloads are present for PS2 only, with average overload magnitudes of up to 140%, lasting
for up to 10 consecutive hours. The overloading frequency is, however, very low, peaking at around 5%. The overloads
are concentrated on PS2 only because the PSs serving highly populated areas, such as the city centre in this case, usually
display the highest overloading frequency due to the high number of domestic users and points of interest (i.e. because
Wi,DOM and Wi,PUB are at their highest). PS1 and PS3 instead, are located outside of the city centre, in the northern
and southern parts of the city respectively. It can also be noted that PS2 has the same frequency, average duration,
and average violation magnitude in both the TECH and RAPID scenarios. This allows us to conclude that, those two
scenarios have almost the same effect in terms of MV/HV transformers overload.

Figures 5.11 and 5.12 instead, show the overloading frequencies for the LV/MV transformers at the each of the SSs,
grouped by feeder.

Feeders 1-16 (belonging to PS2, the "urban" PS), and feeders 17-28, show the highest overload frequencies. The most
impacted feeders are number 13, 17, 23 and 25, where the overloading frequency goes up to 11% of the entire simulation
time. Deepening the analysis about feeder 13 and 25, which are the most impacted ones, Figures 5.13 and 5.14 show
the results of the analysis for SSs of the RAPID 2050 scenario only.

Since transformers on SS8 for feeder 13 and SS1 for feeder 25 have the lowest rated capacities, their overloading values
are higher both in magnitude and duration. This happens because, as shown in Section 5.2.3, the placement of the EV
stations did not consider the technical limitations of the grid, but rather the population density (for domestic stations)
and the urban points of interest (for public stations). The duration of the overload events is generally lower than
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FIGURE 5.11: Feeder overload analysis for LV/MV transformers in the TECH 2050 scenario.

FIGURE 5.12: Feeder overload analysis for LV/MV transformers in the RAPID 2050 scenario.
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FIGURE 5.13: Secondary substation overload analysis for LV/MV transformers of feeder 13 in the RAPID 2050 scenario.

FIGURE 5.14: Secondary substation overload analysis for LV/MV transformers of feeder 25 in the RAPID 2050 scenario.
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SS FEEDER PNOM
EV,LV [kW] STR [kVA] fOL [%] fOL,V2G [%] FEEDER PNOM

EV,LV [kW] STR [kVA] fOL [%] fOL,V2G [%]
1 688.3 160 3.5 0.5 1058.3 160 9 1
2 991.5 400 0 0 862 400 0 0
3 1017.8 400 0 0 1066.3 400 0 0
4 738.1 160 7.5 1.7 1414.3 250 11 1.7
5 752.1 160 5 1 1368.1 250 7.5 1.5
6 566.7 250 0 0 695.9 400 0 0
7 807.1 250 0 0 826 250 2 0.5
8 786.6 160 9 1.5 1083.4 400 1.5 0
9 534.4 160 0 0 836.1 400 1.25 0

10 1037.3 250 2.5 0.4 516.2 250 0 0
11 658.5 250 0 0 50.4 250 0 0
12 796.7 400 0 0 1242.3 250 2 0
13 402.5 160 0 0 1533.9 400 4.5 0.2
14 374.7 400 0 0 0 250 0 0
15 544.6 250 0 0 801.8 250 0 0
16 304.8 400 0 0 143.8 250 0 0
17 270.6 250 0 0

25

142.8 400 0 0
18

13

852 630 0 0

TABLE 5.6: V2G LV/MV transformer overloads mitigation with V2G.

1h 40 minutes, but some outlier events last almost thrice (300 min = 5 h). The violation frequencies for these smaller
transformers are higher than for the MV/HV ones, up to 7.5-10% max., and the average overload magnitude is sizeable
as well. Ultimately, we can conclude that the transformer overloading violation events are both high in magnitude and
persistent in time.

5.4 Smart EV Charging Mitigation

Since the most impacted parameter is the loading level of the LV/MV transformers, the V2G-based smart EV charging
technique described in Section 4.3 is perfect to mitigate the effect of the increasing penetration of EVs.

The aforementioned centralised coordinated EV smart charging algorithm was applied to feeders 13 (140 domestic EV
stations) and 25 (93 domestic EV stations) of the RAPID 2050 scenario, and the results are presented in Table 5.6.

When V2G is applied, the overload frequency ( fOL,V2G) is always much lower than in the case without mitigation ( fOL).
Indeed, it is often seen that no violations occur.

5.5 Conclusions

Since the analysed grid was designed decades ago based on different requirements, even today some light transformer
overloading events may occur.

The network is sufficiently oversized to tolerate EV penetration levels up to 25-30%, in line with the CPI scenario in
2050. The most impacted parameter is, by far, the loading level of the transformers both at the primary and secondary
substations. In that regard, the strongest EV charging impact is expected to happen between 2030 and 2040. The
violation frequency for LV/MV transformers could increase by 7-17% in both the TECH and RAPID scenarios. The
violations are concentrated in urban MV/HV transformers, due to the higher EV charging stations density.

Undervoltage issues at the LV-side of the SS transformers are noteworthy, since the voltage drops down to 0.88 p.u.,
yet with a very low probability. Nevertheless, it must be highlighted that additional undervoltage violations, alongside
with line overloading cases, may occur at the LV side. These issues have not been quantified since the LV grid has
not been modelled in the current analysis due to the lack of measured data at the secondary substations and at the
electricity points of distribution. Therefore, the simulation results must be regarded as optimistic and this limitation
should be considered when performing future grid studies, since most grid issues are expected to arise on the LV grid
may anticipate in time the MV grid ones (see Section 2.1.5).

The observability of the distribution grid should be increased by means of additional real-time measurement devices,
which currently are limited to the primary substations. By increasing the number of real-time, high-frequency mea-
surement, it could be possible to obtain more representative and trustful data. An additional source of uncertainty in
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the model is associated with the EV charging profile generation, since the impact analysis strongly depends on syn-
thetic profiles generation. If real measurement were available, clustering techniques could be used to define a "typical"
charging profile for every power level, thus increasing the statistical significance of the results.

Finally, the EV penetration scenarios should be updated frequently, since they are not only dependent on market con-
ditions, but also on incentives and policy makers decisions, which are nowadays rapidly changing.

Centralised V2G-based smart charging can relieve the stress on the SSs transformers, especially when many EVs are
idling at domestic charging stations for long hours. However, an important aspect to consider is the willingness of
the users to let an external agent, such as an aggregator, determine the charging schedule of their EVs. Since the
transition to electric mobility is not only a technical one, but also requires a change in how people make use of their
vehicles, studies on social acceptance of this technology are more important than ever and should be incentivised at
the European level.
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Chapter 6

Conclusions

As mentioned in Chapter 1, a key strategy to meet the requirements of the main climate change mitigation agreements
is being able to accommodate larger and larger quantities of distributed energy resources in the power grid. Those
resources can either be renewable-based generation units, such as photo-voltaic systems, or consumption ones, such as
electric vehicles. A large increase in the number of installed PV systems and EV charging stations poses some threats
to the electric distribution system, which needs to be flexible enough to sustain rapid variations of power supply and
demand without producing reliability and safety issues for the users. In this context, this thesis firstly analyses the
impact of photovoltaic generation (one of the most common sources of clean energy production at the LV side) and
proposes possible mitigation strategies based on the use of BESS or smart EV charging strategies.

In Chapter 3, an analysis of the specific case of PV and BESS deployment in renewable energy communities is per-
formed. The latter concept, firstly introduced by the European Commission in 2018, acts as an incentive for the domes-
tic users to purchase a PV+BESS system by compensating them for the amount of energy produced and consumed in
the community. In order to make the community as independent from the main grid as possible, BESSs are required,
and usually purchased by either the users themselves or an aggregator. In both cases, it is required to minimise the
total installed capacity and check that the investment is economically viable for the single users. A multi-objective
optimisation genetic algorithm minimising both the dependence of the community on the grid and the total installed
battery capacity is thus presented. The main novelty elements include the analysis of the grid impact, in order to make
sure that the increase in PV production does not destabilise the voltage levels and produce high electric losses, and the
consideration of user willingness to install a BESS. This aspect was considered in the formalisation of the optimisation
problem, because the participation to a community is on a voluntary basis, and the users may not want to or have the
possibility to also purchase an expensive storage system. Additionally, two different algorithms were tested: a classic
peer-to-grid (P2G) one, where each user manages its own battery, and a centralised peer-to-peer (P2P) one, where the
batteries are centrally controlled by the aggregator. Results show that, the centralised algorithm performs generally
better in terms of energy independence from the grid, since it makes a more efficient use of the available storage ca-
pacity. Both losses and CO2 emissions are reduced by the use of storage systems, with P2P showing a slight edge over
P2G. Economically wise, the payback period of the investment for each user could be an issue, since not all of them
reach payback in 20 years. It has to be noted, however, that in this work no incentives for the participation to an energy
community were considered, since the regulation for Italy was still unclear at the time.

A more realistic economic analysis could be performed in this case, since a recent regulatory development in Italy
allows for the compensation of the energy shared between the community members. This would provide an additional
income source to further reduce the investment payback period for the users. With the current economic incentives for
energy communities, the payback problem could be solved if the members shared the cost of the battery, thus benefiting
from the scale economy CAPEX reduction. Moreover, the inclusion of flexible demand in the case study, for example
to charge electric vehicles or house appliances, could further improve the energy situation.

The impact of electric mobility on a test LV grid is instead analysed in Chapter 4, and a possible smart-charging miti-
gation strategy with V2G capabilities is proposed. The deployed smart EV charging strategy tries to mitigate the active
power fluctuations at the MV/LV transformer level by charging and discharging the EV fleet in a centralised fashion.
While the optimisation problem is formulated as a quadratic programming one (a very well known methodology in
the literature), there are several novelty aspects that are not so commonly considered in the literature. Firstly, since the
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charging algorithm relies on a perfect production-demand mismatch forecast, we analysed to which extent this solu-
tions is robust enough to be applied in real-world conditions (i.e. when the load, generation and EV usage profiles are
not the expected ones). Results of the application of the EV charging profiles optimised for one day to the following
one show that the solution could be realistic in a day-ahead scheduling scenario, when there is no perfect forecast of the
load and demand mismatch of the day. Secondly, the combined impact of the EV charging stations and PV systems on
the grid is also analysed, and the results show that smart charging not only decreases the impact that underproduction
has on the grid, but also helps mitigating PV-related overproduction, which is usually far more complicated to manage.
Thirdly a detailed power flow analysis of the voltage, lines loading and transformer loading levels is performed. Re-
sults show that, even if the algorithm is centralised, all the parameters are improved by the EV smart charging strategy.
Moreover, the impact of smart charging on the capacity loss for the EV batteries is particularly relevant for PHEVs,
which have the smallest batteries.

Even though this first analysis was enough to show the good performance of the smart EV charging algorithm, there
are some shortcomings that need to be addressed to complete the work. Firstly, the analysis should be expanded to
consider the payback period for purchasing the EV. Secondly, a complete analysis of the CO2 emissions reduction due
to smart charging should be performed, not only including the lower electricity consumption term, but also including
a life-cycle assessment of the EV with and without smart charging. Moreover, a real-time version of the algorithm
should be implemented, so that the active power mismatch is optimised at each time instant but still considering
load and production forecasts to fully exploit the capabilities of smart charging on a longer time horizon (daily). The
implementation as a real-time algorithm would allow for the provision of other grid stabilisation services, such as
reactive power support, voltage stabilisation and losses minimisation. This solution could also allow for the inclusion
of stationary storage systems, which could be prioritised over EVs whenever V2G is not possible, and vice-versa.
Finally, the inclusion of battery wear as one of the limitations to smart EV charging will need to be considered, as a
reduction of 30% of the battery lifetime could dissuade some users to participate in V2G schemes.

In Chapter 5 instead, the impact of slow and fast EV deployment on a real distribution system located in the northern
Italian city of Trento is analysed for the 2020-2050 period. The task included the creation and validation of the feeders
model, the generation of a database of realistic EV charging profiles for the different time horizons, and the placement of
the stations on the grid. The impact analysis shows that the grid will start suffering mostly from transformer overloads
and undervoltage events between 2030 and 2040. This happens whenever the EV uptake speed is considered as "rapid"
and "very rapid", i.e. when around 50% of the users have an EV charging station. Even though the analysis was
performed only at the MV level, and no measurements were available at the secondary substations to validate the grid
model, the EV charging impact can be effectively reduced by applying the same smart charging technique proposed
in Chapter 4. Results show that the smart charging technique is very efficient in reducing the transformer overloads
and stabilising the grid, allowing for a higher EVs penetration. Some suggestions should be made regarding the main
technical and practical challenges which frequently surface when performing this kind of study. Firstly, the lack of
measurements at the low-voltage level, which makes it really difficult to validate the results of the simulations. In
this particular case, one of the shortcomings of the study lies in the lack of measurements at the secondary substations,
which does not allow for a validation of the power flow at the LV level. Secondly, the uncertainty in the determination of
the number of EVs circulating in a particular area in the following years, mainly due to the large EV market fluctuations.
Thirdly, finding a reliable dataset of EV demand profiles is usually very hard, given the high variability of the users
charging behaviour, even inside the same country. Around this last topic, it must be remarked that the transition
towards electric mobility is not only a technical and economical change of paradigm, but also requires a change in
society, and in the way people use their vehicles. Studies on this topic are, today more than ever, fundamental also
from the technical standpoint.

Possible improvements here should include the LV network modelling, which could be used to assess more realistically
the impact of both uncontrolled and smart EV charging on the grid, and the creation of additional scenarios with an
increasing amount of PV generation or even faster EV uptake speeds.
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