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Introduction

“
Information is the resolution of uncertainty. ”

Claude Shannon

“
Truth emerges more readily from error than from

confusion. ”
Francis Bacon

1
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Coding Theory deals with the problem of safe communication:

signals sent through a noisy channel can indeed be corrupted and

therefore reach their destination with some errors. In order to protect

the information content, some redundancy is added to the message,

so that the original data can be retrieved from corrupted signals. The

first example of a code is what is commonly known as repetition code.

Each symbol is repeated several times during transmission, in such a

way that the receiver can reconstruct the original message by selecting

the most probable one. A fundamental aspect, that arises from the

example above, is therefore how to achieve the desired correction ca-

pability while keeping the number of redundancy symbols small. This

problem is far from simple. We still do not fully know optimal codes,

and the study of what is possible to achieve is normally carried on by

presenting bounds on code parameters.

Another aspect of communication is privacy. Proofs of security usu-

ally rely on the utilisation of randomly picked keys which are used

to encrypt the data and have to be kept secret. The first step to al-

low secure communication is therefore to produce these random keys.

The most basic example of random number generator is the flip of

a balanced coin. In the ideal case, each of the values associated to

the two sides of the coin can be generated with equal probability.

However, real world generators are not ideal and their outcomes are

not balanced. To improve the quality of the random keys we rely on

entropy extractors, compression functions designed to output random

numbers from unbalanced sequences of bits.

In this work we deal with both safety and security of communica-

tion as introduced above.

Regarding Coding Theory, we start from a thorough analysis of known

bounds on code parameters and a study of the properties of Hadamard

codes. We find of particular interest the Griesmer bound, which is a

strong result known to be true only for linear codes. We try to extend
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it to all codes, and we can determine many parameters for which the

Griesmer bound is true also for nonlinear codes. In case of systematic

codes, a class of codes including linear codes, we can derive stronger

results on the relationship between the Griesmer bound and optimal

codes. For example, we prove that the Griesmer bound holds for all

binary systematic codes whose distance is either a power of 2 or the

difference between two powers of 2. On the other hand, we construct a

family of optimal binary systematic codes contradicting the Griesmer

bound. Finally, we obtain new bounds on the size of optimal codes.

As for the study of random number generation, we analyse linear ex-

tractors and their connection with linear codes. The main result on

this topic is a link between code parameters and the entropy rate ob-

tained by a processed random number generator. More precisely, to

any linear extractor we can associate the generator matrix of a linear

code. Then, we link the total variation distance between the uniform

distribution and the probability mass function of a random number

generator with the weight distribution of the linear code associated to

the linear extractor.

Finally, we present a collection of results derived while pursuing a way

to classify optimal codes, such as a probabilistic algorithm to compute

the weight distribution of linear codes and a new bound on the size

of codes.

This work is organised as follows. Chapters 1 to 4 contain the back-

ground on Coding Theory and Random Number Generation needed

for the research presented in Chapters 5, 6 and 7.

Chapter 1 describes basic results and definitions on Coding Theory,

with focus on nonlinear codes. In Chapter 2 we present an overview of

the most known bounds on code parameters, such as the Sphere pack-

ing bound, the Gilbert bound, the Varshamov bound, the Singleton

bound, the Griesmer bound, the Plotkin bound, the Johnson bound,

the Elias bound, the Zinoviev-Litsyn-Laihonen bound and the Bellini-
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Guerrini-Sala bounds. Then in Chapter 3 we discuss Hadamard ma-

trices and their link with optimal nonlinear codes. In Chapter 4 we

introduce the theory behind Random Number Generation and entropy

extraction, following the definitions proposed by NIST.

Chapters 5 to 7 contain results on optimal codes and on entropy ex-

traction. Chapter 5 deals with optimal nonlinear systematic codes.

In this chapter we study properties on codes useful to understand

the applicability of the Griesmer bound. These properties lead to a

classification of parameters for which we can apply the bound. Some

examples are:

• all codes whose distance is d ≤ 2q,

• all codes for which the dimension k and the distance d satisfy

qk−1|d,

• all binary codes for which the minimum distance is either 2r or

2r − 2s for any choice of positive integers s < r.

In the same chapter we analyse optimal binary codes with small di-

mension. Our main results are a complete classification of optimal

codes of dimension 2 and a collection of properties of codes of dimen-

sion 3. The analysis of optimal codes with respect to the Griesmer

bound is then concluded by presenting a new family of optimal non-

linear systematic binary codes contradicting the bound. This family

is obtained by using similar methods to the Levenshtein’s construc-

tion of optimal codes from Hadamard matrices. For each k > 3 these

codes are
(
2k+1 + 2, 2k, 2k + 2

)
2

systematic codes, while the Gries-

mer bound for codes of dimension k and distance 2k + 2 gives length

n ≥ 2k+1 + k − 1.

Chapter 6 deals with entropy extractors. Previously known results

showed a link between linear extractors and the minimum distance

of the codes generated by the same matrix used for the extraction

(see e.g. [28] and [29]). We show the connection between the Walsh
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spectrum of the output of a binary random number generator and

the bias of individual bits, and use this to explain how previously

known bounds on the performance of linear binary codes as RNG

post-processing functions can be derived as a special case. We then

extend this framework to the case of output in non-binary finite fields

by use of the Fourier transform.

In Chapter 7 we describe a probabilistic algorithm for computing the

weight distribution of linear codes obtained by using methods derived

from our study on entropy extractors. Then we present some results

on polynomials in F2 [X], such as a closed formula to compute the

binary Möbius transform of a Boolean function and an equivalent

formulation of the Hilbert’s Nullstellensatz for the particular case of

ideals containing the field equations.





Part I

Codes and Random

Number Generation





Chapter 1

Introduction to Coding

Theory

“
Frequently the messages have meaning; that is they re-

fer to or are correlated according to some system with

certain physical or conceptual entities. These seman-

tic aspects of communication are irrelevant to the en-

gineering problem. The significant aspect is that the

actual message is one selected from a set of possible

messages. ”
Claude Shannon

9



10 Chapter 1. Introduction to Coding Theory

In this chapter we introduce all concepts and notations we need

to present the main results of this work. Most of the definitions and

statements presented here are well known in literature and form the

basics of Coding Theory.

The theory presented in this work is not a complete introduction to

Coding Theory and we take for granted that readers have a basic

knowledge of linear algebra and finite fields. Therefore we list here

only some relevant properties and definitions, for a thorough under-

standing of the subject see e.g. [32]. Regarding Coding Theory, over

this entire work we refer to classical books, as for example [22], [23],

[33] and [42].

We use as notation q to denote a prime power pm, Fq to denote

the finite field of size q and (Fq)n for the vector space of dimension n

over Fq. Whenever not otherwise specified, all vectors are considered

to be row vectors. This implies for example that linear maps between

vector spaces can be thought as right-multiplications by matrices.

Given two vectors u, v ∈ (Fq)n, we denote with w(u) the Hamming

weight of u and with d(u, v) the Hamming distance between u and v.

We often call them simply weight and distance. Proper definitions of

weight and distance are the following.

Definition 1. Let u ∈ (Fq)n. The Hamming weight w(u) is the

number of non-zero coordinates of u.

Definition 2. Let u and v be in (Fq)n. The Hamming distance d(u, v)

between u and v is the number of coordinates in which they differ.

From Definition 2 it follows that d(u, v) = w(u− v). On the other

hand, w(u) can be seen as the distance between u and the zero vector.

Definition 3. Given a vector u ∈ (Fq)n of weight s, the support of u is

the set of s indices supp(u) = {j1, . . . , js} for which the corresponding

coordinates of u are non-zero.
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The support of a vector u is therefore linked to its weight by the

formula w(u) = |supp(u)|.
Consider now two vectors u ∈ (Fq)n1 and v ∈ (Fq)n2 . We define

the concatenation of u and v as the vector (u|v) ∈ (Fq)n1+n2 whose

first n1 coordinates are the coordinates of u while the last n2 are the

coordinates of v.

Definition 4. A code C is a set of M vectors in the vector space

(Fq)n, where Fq is the finite field with q elements. We refer to each of

these vectors as a codeword c ∈ C, to n or len(C) as the length of C

and to M or |C| as its size.

We denote with d(C) or simply with d the minimum distance of C,

i.e. the minimum among the Hamming distances between any two

distinct codewords in C. A code C with such parameters is denoted

by the four parameters (n,M, d)q, or as an (n,M)q code whenever its

distance is unknown or not relevant.

Given a code, we can define its weight distribution and distance

distribution as follows.

Definition 5. Let C be an (n,M, d)q code. The weight distribution

of C is the sequence of integers {Ai}i=0,...,n, where

Ai = |{c ∈ C : w(c) = i}| .

In the same way, the distance distribution {Bi}i=0,...,n of C is defined

as

Bi = |{(c1, c2) : c1, c2 ∈ C, d(c1, c2) = i}| .

We say that two codes C and C ′ are equivalent if there is a bijection

ϕ : C → C ′ which preserves the distances between any two codewords:

C ∼ C ′ ⇐⇒ d (c1, c2) = d (ϕ (c1) , ϕ (c2)) , ∀ c1, c2 ∈ C.

In particular, translations by fixed vectors, multiplications by permu-

tation matrices and field permutations are maps which preserve the

distance between vectors, as stated in Lemma 6.
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Lemma 6. Let θ be a permutation of Fq and let ϕ : (Fq)n → (Fq)n be

• a translation by a constant vector v ∈ (Fq)n,

• the multiplication by a permutation matrix P or

• the application of θ to the first coordinate of (Fq)n.

Then C ′ = ϕ(C) is a code equivalent to C.

Proof. By applying Definition 2 it is straightforward to prove the first

two items. For the third point, let observe that for any bijection θ we

have α 6= β if and only if θ (α) 6= θ (β).

By combining functions as in Lemma 6 we obtain the following

proposition.

Proposition 7. Let θ1, . . . , θn be permutations of Fq, P an n × n

permutation matrix and v ∈ (Fq)n a chosen vector. Then ϕ : (Fq)n →
(Fq)n defined by

ϕ(c) = (θ1(c1), . . . , θn(cn)) · P + v,

with c = (c1, . . . , cn) ∈ (Fq)n, is a map which preserves the Hamming

distances between vectors.

Let us denote with k the minimum integer allowing the existence

of a map F between (Fq)k and (Fq)n whose image is C itself, and let

us call it the combinatorial dimension of C. Sometimes we also use

dim(C) to denote the combinatorial dimension of the code C. Clearly,

dim(C) is equal to
⌈
logqM

⌉
.

Since F is a vectorial function, we can write

F (X) = (f1(X), . . . , fn(X)) .

Definition 8. We call F a generator function of the code. The maps

f1, . . . , fn are called component functions, or simply components of F .
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In the general case, the number of possible generator functions of

a code is given by {
qk

M

}
·M !,

where

{
a

b

}
is the Stirling number of the second kind

{
a

b

}
=

1

b!

b∑
j=0

(−1)b−j
(
b

j

)
ja.

In the particular case of M = qk, the number of functions reduces to

M !.

Definition 9. C is a linear code if C is a vector subspace of (Fq)n. In

this case, M = qk for a certain positive integer k called the dimension

of the code. Notice that k coincides with the combinatorial dimension

of C.

A linear code is denoted as an [n, k]q code, and with [n, k, d]q code

whenever its distance is known.

The number of generator functions of a linear code is therefore

M ! = qk!, and among these there is at least a map F for which all

f1, . . . , fn are linear maps. In this case F becomes the multiplication

by a k × n matrix G with coefficients in the field, which is known as

the generator matrix of C.

Example 1. Let C be the [3, 2, 2]2 linear code

C = {c0, c1, c2, c3} = {(0, 0, 0) , (1, 1, 0) , (0, 1, 1) , (1, 0, 1)} .

A possible generator function is given by

F (0, 0) = (1, 1, 0), F (1, 0) = (0, 0, 0), F (0, 1) = (0, 1, 1), F (1, 1) = (1, 0, 1),

which is the vectorial Boolean function

F (x1, x2) = (f1(x1, x2), f2(x1, x2), f3(x1, x2))
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where f1, f2 and f3 are therefore defined by

f1(0, 0) = 1 , f2(0, 0) = 1 , f3(0, 0) = 0 ,

f1(1, 0) = 0 , f2(1, 0) = 0 , f3(1, 0) = 0 ,

f1(0, 1) = 0 , f2(0, 1) = 1 , f3(0, 1) = 1 ,

f1(1, 1) = 1 , f2(1, 1) = 0 , f3(1, 1) = 1 ,

and can be explicitly obtained through the binary Moebius transform, as

shown in Section 7.2. We have

F (x1, x2) = ( 1 + x1 + x2, 1 + x1, x2 ) .

Notice now that even though C is linear, F is a not a linear function. How-

ever, given σ a permutation of (F2)
2
, the image of the function F̄ = F ◦ σ

is again a generator function for the same code C, since the image of F̄

coincides with the image of F .

By choosing for example σ(x1, x2) = (x1 + 1, x2) we obtain

F̄ (x1, x2) = ( x1 + x2, x1, x2 ) ,

to which is associated the generator matrix

G =

[
1 1 0

1 0 1

]
.

Notice that in example 1 the map F was an affine function. In

the general case F could be a nonlinear map, even though its image

is a linear code. This however cannot happen with binary codes of

dimension 2 in which the evaluation vectors of the functions f1, . . . , fn

have even weight.

Definition 10. A code which is not equivalent to any linear code is

called a strictly nonlinear code.

Proposition 11. The evaluation vectors of the non-constant compo-

nents of a linear code are balanced, namely each α ∈ Fq appears M
q

times. Moreover M has to be a power of q.

When considering linear codes, there is no need to consider both

the weight distribution and the distance distribution. The first impor-

tant property of the weight distribution is that A0 = 1 for any linear
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code. This follows directly from Definition 9. Moreover, the minimum

distance of a linear code coincides with the minimum of the weight

distribution. The proof relies again on the definition itself of linear

code: if c1 and c2 are two codewords at minimum distance, their dif-

ference is a codeword at minimum distance from the zero codeword,

namely a codeword of minimum weight.

Since a linear code C is a vector subspace of (Fq)n we can consider

its dual, which is the vector subspace of (Fq)n whose elements are

orthogonal to C. The dual code of C coincides with the kernel of any

its generator matrix, hence its dimension is n− dim(C).

Example 2. Let C be the binary linear code generated by the matrix

G =

[
1 1 0

1 0 1

]
,

as in Example 1. The kernel of G is the vector subspace 〈(1, 1, 1)〉, meaning

that the dual of C is the code generated by the matrix

H =
[
1 1 1

]
.

Definition 12. The dual of a linear code C is the linear code whose

codewords are orthogonal to C. The dual of C is denoted as C⊥

and its generator matrix is usually denoted as H. H is called the

parity-check matrix of C,

By using the parity-check matrix, it is possible to prove several

interesting properties of linear codes. Other than the following known

result, we will use parity-check matrices also to show the link between

puncturing and shortening of codes in Section 1.2.

Proposition 13. Let C be an [n, k]q linear code and let H be its

parity-check matrix. Then d(C) = d if and only if the minimum

number of linear dependent columns of H is d.

Proof. If c ∈ C is a codeword of minimum weight d, then H · ct = 0.

This means that there is a linear relation between the columns of H

indexed by supp(c).
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For notation purposes, we will often use the following non standard

definition.

Definition 14. Let C be an (n,M)q code. We call codebook of C

any M × n table whose M rows are the codewords of C. With a

slight abuse of notation, we will often denote a codebook of C with

the symbol C itself.

Codebooks are usually associated to nonlinear codes for encoding

procedures. Indeed, we remark that the choice of a codebook for C is

equivalent to order its codewords. Clearly, permutations of the rows

of a codebook lead to other codebooks of the same code, in the same

manner in which there exist several generator functions for the same

code. Field permutations applied to the columns of C, permutations

of its columns and translations of its rows by a single fixed vector of

(Fq)n lead to equivalent codes.

Once a codebook has been chosen we have a table

C = {ci,j}i=0,...,M−1, j=1,...,n,

so we will denote with ci the i-th codeword of C, which is the i-th

row of its codebook, and with ci,j its j-th coordinate.

In the next section we present systematic codes, a family of codes

containing linear codes.

1.1 Definition of systematic codes

Systematic codes form an important family of nonlinear codes. As

we will show in Chapter 5, in the general case systematic codes can

achieve better error correction capability than any linear code with

the same parameters. On the other hand, due to their particular

structure, systematic codes can achieve faster encoding and decoding

procedures than nonlinear non-systematic codes. Moreover, many

known families of optimal codes are systematic codes (see e.g. [26],

[40]).
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Definition 15. An (n, qk, d)q systematic code C is the image of an in-

jective map F : (Fq)k → (Fq)n, n ≥ k, s.t. a vector X = (x1, . . . , xk) ∈
(Fq)k is mapped to a vector

(x1, . . . , xk, fk+1(X), . . . , fn(X)) ∈ (Fq)n,

where the fi are maps from (Fq)k to Fq. The coordinates from 1 to

k are called systematic, while those from k + 1 to n are called non-

systematic.

A more general statement defines systematic codes as nonlinear

codes equivalent to those described in Definition 15.

Definition 16. Let C be an (n, qk, d)q code, and let F = (f1, . . . , fn)

be a generator function of C. C is a systematic code if there exist k

indices i1, . . . , ik for which the function (fi1 , . . . , fik) is a permutation

of (Fq)k.

According to Definition 15, any linear code is equivalent to a sys-

tematic code. The proof involves permutation of the columns of its

generator matrix and application of the Gauss reduction to its rows.

In this way we can find an equivalent code for which the generator

matrix G is in the form

G =
[
Ik | Rn−k

]
,

where Ik is the identity of order k and Rn−k is a k × (n− k) matrix.

By applying instead Definition 16, each linear code can directly be

called a systematic code.

Proposition 17. Let C be a systematic code as in Definition 15.

Then C is a linear code if and only if the components fk+1, . . . , fn are

linear functions.

Proof. If fk+1, . . . , fn are linear maps and c1, c2 are in C, then both

αc1 and c1 + c2 are in C, hence C is linear.
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On the other hand, if a component fj is not linear, then there exist two

vectors a = (a1, . . . , ak) and b = (b1, . . . , bk) for which fj(a) + fj(b) 6=
fj(a+ b) and this implies that C is not a linear code.

1.2 Puncturing, shortening and extending

The three most simple and common ways of obtaining new codes

starting from known ones are

• puncturing,

• shortening and

• extending.

In this section we briefly describe these methods and we discuss some

of the properties of the obtained code with respect to the parameters

of the known code.

Definition 18. Puncturing a code C in the j-th coordinate means

deleting from all codewords of C the j-th coordinate. We denote

with Ċj1,...,js the code obtained by puncturing C in the coordinates

j1, . . . , js, or simply with Ċ whenever we do not need to specify which

coordinates were punctured.

The following proposition links the generator functions of Ċj to

the generator function of C, and follows directly from Definition 18.

Proposition 19. Let F = (f1, . . . , fj−1, fj , fj+1, . . . , fn) be a gener-

ator function of a code C.

Then Ḟj = (f1, . . . , fj−1, fj+1, . . . , fn) is a generator function for Ċj.

Given two codewords c1, c2 ∈ C and the corresponding codewords

ċ1 and ċ2 in Ċj , we have

d(ċ1, ċ2) = d(c1, c2) if c1,j = c2,j

d(ċ1, ċ2) = d(c1, c2)− 1 if c1,j 6= c2,j
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As a consequence, by puncturing C in a single coordinate, we find Ċ

whose distance is either equal to d(C) or to d(C) − 1. In particular,

d(Ċj) = d(C) if and only if the component fj is a constant function.

Let us consider now two codewords c1 and c2 in C at minimum

distance d, and let supp(c1 − c2) = {j1, . . . , jd}. The puncturing of

C in the coordinates j1, . . . , jd is a code with strictly less than M

codewords. The proof of this is a straightforward consequence of the

fact that both c1 and c2 are equal in all coordinates non indexed by

elements in supp(c1 − c2), namely in Ċj1,...,jd we have ċ1 = ċ2. Let C

be an [n, k, d]q linear code, and c, c̄ ∈ C with c̄ of minimum weight

d. From the linearity of C it holds that c + αc̄ ∈ C for each α ∈ Fq,
and these q codewords become the same after puncturing C in the

coordinates supp(c̄). It follows that, by puncturing a linear code C

in the support of a codeword of minimum weight, we obtain a new

linear code whose dimension is strictly less than dim(C).

Definition 20. Let C be an (n,M, d)q code. Shortening C in the

j-th coordinate means to consider the subset S of C containing all

codewords whose j-th coordinate is equal zero, and then puncturing

S in the j-th coordinate.

We denote with C̈j1,...,js the code obtained by shortening C in the

coordinates j1, . . . , js, or simply with Ċ whenever we do not need to

specify which coordinates were shortened.

Similar to puncturing, shortening a code C produces a new code

whose length is len(C)−1. On the other hand, the definition of short-

ening implies that the distance of C̈ is at least equal to the distance

of C. Any pair of codewords in C̈j correspond to a pair of codewords

in C whose j-th coordinates are equal, hence the shortening cannot

have decreased their mutual distance.

Regarding the size of C̈, things are more complicated than with punc-

turing. First, if the j-th component of C is the constant 0, then

shortening and puncturing C in such coordinate lead to the same
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code. On the other hand, if the j-th coordinate is different from 0 for

all codewords, then C̈j = ∅.
In the general case, we have the following result.

Proposition 21. Let C be an (n,M)q code with distance larger than

1, and let θα be a permutation of Fq which map α to 0.

We consider the set {Cα} of equivalent codes obtained from C by

applying θα to the j-th coordinate of C for each α ∈ Fq. We consider

the set of codes S =
{
C̈α

}
α∈Fq

obtained by shortening the codes {Cα}
in the j-th coordinate. Then

1. the codes in S are disjoint, meaning that a codeword cannot

belong to more than one code in the set.

2. The union of all codes in S is the code Ċj.

3. There is at least an α ∈ Fq such that
∣∣∣C̈α∣∣∣ ≥ M

q .

Proof. Without loss of generality, let us assume that j = n.

1. If a codeword c̈ belongs to more than a single code in S, then

the concatenation (c̈|0) belongs to more than a code in {Cα},
say Cα and Cβ. This means that both (c̈|α) and (c̈|β) are in C,

hence the minimum distance of C is 1.

2. If c̈ is in C̈α, then (c̈|α) ∈ C. Moreover, if (c̈|α) is a codeword of

C, then c̈ ∈ C̈α. This implies that by joining the codes in S we

obtain the set of all codewords in C to which we have removed

the last coordinate, and this is the definition of Ċ.

3. Follows directly from |C| = M and points 1. and 2. of this

proposition.

If we consider linear codes we have a deeper characterisation given

by the following proposition.
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Proposition 22. Let C be an [n, k, d]q linear code and let D = C⊥

the dual of C. Then

1. len(C̈) = n− 1;

2. d(C̈) ≥ d;

3. if the j-th component of C is the constant 0, then C̈j = Ċj. In

particular the dimension of C̈ is k.

4. if the j-th component of C is not constant, then the dimension

of C̈j is k − 1.

5. C̈j =
(
Ḋj

)⊥
.

Proof. 1. It follows directly from the definition of shortening.

2. The codewords in C̈ are obtained by puncturing a subset of

C containing elements whose j-th coordinate is equal 0. Since

this set is contained in C, its codewords are at distance at least

d, hence by deleting a coordinate which is constantly 0 their

pairwise distances cannot decrease.

3. C̈j is by definition the puncturing of the subcode of C consisting

of codewords whose j-th coordinate is 0. If all codewords in C

possess this property, then shortening and puncturing lead to

the same code. Moreover, the size of C̈ is equal to the size of C.

4. Since the j-th component of C is linear, then its evaluation vec-

tor is balanced, namely each α ∈ Fq appears the same amount

of times, i.e. |C|
q = qk−1. This holds in particular for α = 0,

hence |C̈j | = qk−1.

5. D contains all vectors in (Fq)n which are orthogonal to the code-

words in C. Let us consider a codeword c ∈ C whose j-th coor-

dinate is 0 and a codeword c̄ in D. The scalar product c · c̄ = 0
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does not depend on the j-th coordinate of c̄, hence by punctur-

ing both c and c̄ in the j-th coordinate we still obtain a pair of

orthogonal vectors. This imply that by puncturing in the j-th

coordinate both the set of codewords in C whose j-th coordinate

is 0 and D we obtain two orthogonal codes. To prove that these

two codes, namely C̈j and Ḋj , are dual codes we observe that

dim C̈j = dim
(
Ḋj

)⊥
.

Proposition 23. Let C be an (n, qk, d)q systematic code, and C ′ be

the code obtained by shortening C in a systematic coordinate. Then

C ′ is an (n− 1, qk−1, d′)q systematic code with d′ ≥ d.

Proof. To obtain C ′, consider the code

C ′′ =
{
F (X) | X = (0, x2, . . . , xk) ∈ (Fq)k

}
,

i.e. the subcode of C which is the image of the set of messages whose

first coordinate is equal to 0. Then C ′′ is such that dim(C ′′) = k − 1

and d(C ′′) ≥ d. Since, by construction, all codewords have the first

coordinate equal to zero, we obtain the code C ′ by puncturing C ′′ on

the first coordinate, so that{
len(C ′) = n− 1

d′ = d(C ′) = d(C ′′) ≥ d.

Lemma 24. For any (n, qk, d)q systematic code C, there exists an

(n, qk, d̄)q systematic code C̄ for any 1 ≤ d̄ ≤ d.

Proof. Since n > k, we can consider the code C1 obtained by punc-

turing C in a non-systematic coordinate. C1 is an (n − 1, qk, d(1))q

systematic code. Of course, either d(1) = d or d(1) = d− 1.

By puncturing at most n− k non-systematic coordinates, we will find

a code whose distance is 1. Then there must exists an i ≤ n− k such
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that the code Ci, obtained by puncturing C in the last i coordinates,

has distance equal to d̄. Once the (n−i, qk, d̄) code Ci has been found,

we can obtain the claimed code C̄ by padding i zeros to all codewords

in Ci.

The proofs of Proposition 23 and Lemma 24 rely on the systematic

property of C, hence they hold for linear codes as well. For non-

systematic codes we have the following more general statement.

Lemma 25. For any (n,M, d)q code C, there exists an (n,M, d̄)q

code C̄ for any 1 ≤ d̄ ≤ d.

Proof. By proceeding in a similar manner as in the proof of Lemma

24, we puncture C till we reach a code whose distance is d̄. Then C̄ is

obtained by padding the necessary amount of zeros to all codewords

of the punctured code.

We conclude this section with the notion of extension of a code.

The idea is to add a new coordinate to a code C, hopefully increasing

its distance. The definition of the new component is given in terms of

the components of C, so in general it is a map (Fq)n → Fq evaluated

at the components of C. The result is therefore a map (Fq)k → Fq
which is used as the new component.

By the definition above, there are several possible ways to define an

extension of a code - as much as the maps (Fq)k → Fq - however the

new-added component is usually defined by

fn+1 = −
∑
j

fj . (1.1)

In this work we will always refer to this particular type of extension

as the extension of C.

Definition 26. Let C be a code with length n, let f1, . . . , fn be its

components and let fn+1 be as in equation (1.1). We denote with

E(C) the extension of C defined by the components

(f1, . . . , fn, fn+1) .
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Notice that fn+1 is the composition between a linear function and

the components of C. This lead to the following results.

Proposition 27. E(C) is linear if and only if C is a linear code.

Proof. If E(C) is linear then its components are linear. In particular

f1, . . . , fn are linear functions, so the components of C are all linear

functions. For the other way around, if f1, . . . , fn are linear, then also

fn+1 = −
∑n

j=1 fj is a linear function, making E(C) a linear code.

Proposition 28. The distance of E(C) is either equal to d(C) or

d(C) + 1.

Proof. The distance of C cannot decrease after an extension, and by

adding a single coordinate it cannot increase by more than 1.

Proposition 29. The sum of the coordinates of each codeword in

E(C) is 0.

Proof. It follows directly from the definition of E(C).

Proposition 29 lead to very interesting properties, mainly in the

case of binary codes, as stated by the following results.

Corollary 30. Let C be a binary code. Then E(C) contains only

codewords of even weight.

Proof. It follows from Proposition 29. A binary codeword has even

weight if and only if the sum of its coordinates is 0.

Proposition 31. Let C be an (n,M, d)2 code with odd distance d.

Then E(C) has distance equal to d+ 1.

Proof. By Corollary 30 in E(C) there are only codewords with even

weight, and the distance between two such codeword cannot be odd.

By Proposition 28 the distance of E(C) is either d or d+ 1, hence it

has to be equal to d+ 1 since d is odd.
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In the general case, extending and puncturing do not commute,

i.e. while it is true that by extending and then puncturing a code

C we obtain again C, it is not true that extending a punctured code

will lead to the original code. In the following proposition we assume

without loss of generality that both extending and puncturing are

referred to the last coordinate of the code.

Proposition 32. Let C be a code. Then

1. Ė(C) = C ,

2. E(Ċ) 6= C , and

3. in the linear binary case E(Ċ) = C if and only if C has only

codewords of even weight.

Proof. 1 and 2 directly follow from the definitions, while 3 follows

from Corollary 30.





Chapter 2

Bounds on code

parameters

“
It may seem surprising that we should define a defi-

nite capacity C for a noisy channel since we can never

send certain information in such a case. [...] Na-

ture takes payment by requiring just that much uncer-

tainty, so that we are not actually getting any more

than C through correctly. ”
Claude Shannon

27
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A classical problem in coding theory is to determine the parame-

ters of optimal codes, and this characterisation is usually carried on

by presenting bounds on the minimum distance, on the size, or on the

length of codes. Since two equivalent codes have the same parameters,

we can always assume that the zero codeword belongs to C.

In this chapter we present an overview of the most common bounds

on the size of a code. Most bounds estimate the maximum number

of codewords in a code whose length and distance are known. This

is not the case for the Griesmer bound, whose classical description

gives a lower-bound on the length of a linear code with given size and

minimum distance. We will discuss extensively the Griesmer bound

in Chapter 5.

Definition 33. We denote with

• Aq(n, d) the maximum size of a nonlinear code whose length is

n and whose distance is d.

• Bq(n, d) the maximum size of a linear code whose length is n

and whose distance is d.

• Nq(M,d) the minimum length of a nonlinear code whose size is

M and whose minimum distance is d.

• Sq(k, d) the minimum length of a nonlinear systematic code with

dimension k and minimum distance d.

• Lq(k, d) the minimum length of a linear code with dimension k

and minimum distance d.

Clearly there exist some relations between these values, as ex-

plained by the following proposition.

Proposition 34. Bq(n, d) ≤ Aq(n, d) and Nq(M,d) ≤ Sq(k, d) ≤
Lq(k, d).

Proof. It follows directly from Definition 33.
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Definition 35. We denote with Sr(x) the Hamming sphere centred

at x of radius r, and with Volq(n, r) =
∑r

i=0

(
n
i

)
(q− 1)i the volume of

a sphere in (Fq)n of radius r.

2.1 Sphere packing bound

The sphere packing bound, also known as Hamming bound, is a

first and very important bound on the size of a code and was pro-

posed in 1950 by R. W. Hamming [19]. Codes meeting the sphere

packing bound are called perfect codes. In a perfect code the spheres

of radius t =
⌊
n−1

2

⌋
centred at codewords cover the entire space (Fq)n,

or equivalently for each vector v in the space the sphere or radius t

contains a codeword. This imply that each vector can be successfully

decoded without ambiguity.

Theorem 36 (Sphere packing bound).

Bq(n, d) ≤ Aq(n, d) ≤ qn

Volq(n, t)
,

where t =
⌊
d−1

2

⌋
.

Proof. Given an (n,M, d)q code, the M spheres of radius t centred at

the M codewords are pairwise disjoint.

2.2 Gilbert bound

The following result is a lower bound on the size of a code proposed

in 1952 by E. N. Gilbert [12]. The covering radius ρ(C) of an (n,M, d)q

code is the minimum integer r such that the union of the spheres of

radius r centred at the M codewords is equal to the entire space (Fq)n.

An argument similar to the proof of the Sphere packing bound leads

to the following lower bound for Bq(n, d).
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Theorem 37 (Gilbert bound).

Aq(n, d) ≥ Bq(n, d) ≥ qn

Volq(n, d− 1)

Proof. The covering radius of an [n,Bq(n, d), d]q linear code C is at

most d− 1. The proof of this fact is by contradiction. Suppose there

exists an element of (Fq)n at distance at least d from any codeword

in C. In this case we could construct another linear code C̄ with the

same length and distance as C, and dimension strictly larger than

Bq(n, d), which leads to the claimed contradiction.

Since the spheres of radius d− 1 centred at the codewords of C cover

(Fq)n, it follows that Bq(n, d) is at least equal to the number of such

spheres, and the result follows.

2.3 Varshamov bound

Another lower bound for Bq(n, d) was proposed in 1957 by R. R.

Varshamov [50].

Lemma 38. Let n, k and d be integers such that 2 ≤ d ≤ n and

1 ≤ k ≤ n, and let q be a prime power. If

d−2∑
i=0

(
n− 1

i

)
(q − 1)i < qn−k, (2.1)

then there exists an n− k×n matrix H over Fq such that every d− 1

columns of H are linearly independent.

Proof. We use the following algorithm to find the n columns h1, . . . , hn

of H. Notice that each column is a vector in (Fq)n−k. Choose:

• h1 to be any nonzero vector;

• h2 to be any vector which is not a multiple of h1;

• hj to be any vector which is not a linear combination of d − 2

(or fewer) of the vectors h1, . . . , hj−1, for each j ≤ n.
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If we can carry out this algorithm to completion, then h1, . . . , hn are

the columns of an n− k by n matrix with the wanted property.

Suppose we have found h1, . . . , hj , with 1 ≤ j ≤ n. The number of

linear combinations of d− 2 or fewer of h1, . . . , hj is

d−2∑
i=0

(
j

i

)
(q − 1)i ≤

d−2∑
i=0

(
n− 1

i

)
(q − 1)i.

Hence if equation (2.1) holds, then there is some vector hj+1 which is

not a linear combination of d−2 (or fewer) of h1, . . . , hj . By induction

we conclude.

H can be considered as the parity check matrix of a linear code C

of length n and dimension at least k. Since every d− 1 columns of H

are linear independent, C has distance at least d by Proposition 13.

Corollary 39. Let n, k and d be integers such that 2 ≤ d ≤ n and

1 ≤ k ≤ n. Then there exists an [n, k]q linear code with minimum

distance at least d, provided that

1 +
d−2∑
i=0

(
n− 1

i

)
(q − 1)i ≤ qn−k. (2.2)

Theorem 40 (Varshamov bound).

Bq(n, d) ≥ qn−dlogq(1+
∑d−2
i=0 (n−1

i )(q−1)i)e.

Proof. The largest integer k satisfying equation (2.2) is equal to⌊
n− logq

(
1 +

d−2∑
i=0

(
n− 1

i

)
(q − 1)i

)⌋
,

hence the theorem follows from Corollary 39.

2.4 Singleton bound

One of the most commonly used bounds was presented in 1964 by

R. Singleton [44]. Codes meeting the Singleton bound are known as
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Maximum Distance Separable (MDS) codes, and are of great impor-

tance in both Coding Theory and Cryptography.

Theorem 41 (Singleton bound).

Aq(n, d) ≤ qn−d+1.

Proof. By puncturing an (n,M, d)q code in d − 1 coordinates, we

obtain an (n,M)q code with distance at least 1, hence M is at most

qn−d+1.

By applying the Singleton bound to linear codes we obtain the

following corollary.

Corollary 42 (Singleton bound for linear codes). Let C be an [n, k, d]q

linear code. Then

k ≤ n− d+ 1.

Let consider now an [n, k, d]q code C. If D is any subcode of C, we

define the support supp(D) of D as the set of coordinates where not

all the codewords of D are zero. Equivalently, the support of D is the

set of indices corresponding to the nonzero columns of the generator

matrix of D.

For 1 ≤ r ≤ k, the r-th-generalized Hamming Weight of C is defined

as

dr(C) = dr = min {|supp(D)| | D is an [n, r] subcode of C} .

Notice that

d = d1 < d2 < . . . < dk ≤ n,

and the set {d1, . . . , dk} is called the weight hierarchy of C. The

weight hierarchy is invariant under any monomial map applied to C.

Theorem 43 (Generalized Singleton bound). Let C be an [n, k, d]q

linear code. For 1 ≤ r ≤ k

dr ≤ n− k + r.
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Proof. It follows by induction on k−r, starting with dk ≤ n and using

d1 < . . . < dk.

2.5 Griesmer bound

The Griesmer bound, which can be seen as an extension of the

Singleton bound [23, Section 2.4] in the linear case, was introduced

by Griesmer [14] in the case of binary linear codes and then general-

ized by Solomon and Stiffler [45] in the case of q-ary linear codes. It

is known that the Griesmer bound is not always sharp [34], [35], [49].

Important examples of linear codes meeting the Griesmer bound are

the simplex code [23, Section 1.3] and the [11, 5, 6]3 Golay code [13],

[23, Section 1.12].

Definition 44. Let C be a linear code, and let c ∈ C. We denote

with Res(C, c) the residual code of C with respect to c, namely the

linear code obtained by puncturing C in the nonzero coordinates of c.

Lemma 45. If C is an [n, k, d]q code and c ∈ C has weight d, then

Res(C, c) is an [n− d, k − 1, ḋ]q code where ḋ ≥
⌈
d
q

⌉
.

Proof. By replacing C with an equivalent code, we can assume c =

(1, . . . , 1, 0, . . . , 0), namely, the nonzero coordinates of c are the first

d coordinates.

First, we prove that the dimension of Res(C, c) is k − 1. Assume

that this is not true, which means that the dimension is strictly less

than k − 1. Then there exists a nonzero codeword x ∈ C of the form

x = (x1, . . . , xd, 0, . . . , 0), and x is not a multiple of c. Observe that

x1, . . . , xd are nonzero, otherwise the weight of x would be strictly less

than d. We consider now the codeword x1 · c = (x1, . . . , x1, 0, . . . , 0)

which belongs to C due to the linearity of C. Then d(x, x1 ·c) < d, and

we have a contradiction. Hence the dimension of Res(C, c) is k − 1.

We now provide a lower bound for ḋ. Consider a nonzero codeword v ∈
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Res(C, c), and let u ∈ (Fq)d be such that the concatenation (u|v) ∈ C.

Observe that there exists an α ∈ Fq such that at least d/q coordinates

of u equal α. Then

d ≤ d((u|v), α · c) ≤ d− d

q
+ w(v),

from which it follows that

w(v) ≥ d

q
.

Since this is true for all codewords in Res(C, c), then ḋ ≥ d
q .

Theorem 46 (Griesmer bound). Let k ≥ 1. Then

Lq(k, d) ≥
k−1∑
i=0

⌈
d

qi

⌉
.

Proof. Consider an [n, k, d]q code. The proof is by induction on k. If

k = 1 the conclusion holds. Assume that k > 1 and let c ∈ C be

a codeword of weight d. By Lemma 45 the residual code Res(C, c)

is an [n − d, k − 1, ḋ]q code with ḋ ≥
⌈
d
q

⌉
. Applying the inductive

assumption, we have

n− d ≥
k−2∑
i=0

⌈
d

qi+1

⌉
.

2.6 Plotkin bound

The following is an upper bound due to M. Plotkin, first present

in 1960 [39]. Binary codes meeting the Plotkin bound are of great

importance for several reasons. First, it seems that for each (n, d)

pair there exists a code whose size meets the bound. Furthermore,

optimal codes in the Plotkin range are equidistant codes, i.e. each

pair of codewords is at distance exactly d. Finally, as we will see in

Chapter 3, these codes have deep connections to Hadamard matrices.
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Theorem 47 (Plotkin bound). Let C be an (n,M, d)q code such that

rn < d, with r = 1− q−1. Then

M ≤
⌊

d

d− rn

⌋
Proof. Consider S =

∑
x∈C

∑
y∈C d(x, y). Since d(x, x) = 0, while

d(x, y) ≥ d for each pair x 6= y, it follows that

M(M − 1)d ≤ S. (2.3)

Let A be a codebook for C. For 1 ≤ i ≤ n, let ni,α be the number of

times α ∈ Fq occurs in the i-th column of A. We have

S =
n∑
i=1

∑
α

ni,α (M − ni,α) = nM2 −
n∑
i=1

∑
α

n2
i,α.

Using the Cauchy-Schwartz inequality, we observe that

∑
α

n2
i,α = q−1

(∑
α

n2
i,α

)(∑
α

1

)
≥ q−1

(∑
α

ni,α

)2

,

hence

S ≤ nM2 −
n∑
i=1

q−1

(∑
α

ni,α

)2

.

Since
∑

α ni,α = M , we have

S ≤ nM2 − nq−1M2 = nM2
(
1− q−1

)
= nrM2. (2.4)

Combining equations (2.3) and (2.4) we obtain

M(M − 1)d ≤ nrM2,

from which we have

M(d− rn) ≤ d.

Theorem 48 (Binary Plotkin Bound). For a binary code the Plotkin

bound can be specialised in the following way.
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• If d is even and n < 2d, A2(n, d) ≤ 2
⌊

d
2d−n

⌋
.

• If d is even, A2(2d, d) = 4d.

• if d is odd and n < 2d+ 1, A2(n, d) ≤ 2
⌊

d+1
2d+1−n

⌋
.

• If d is odd, A2(2d+ 1, d) = 4d+ 4.

2.7 Johnson bounds

Another remarkable result is due to S. Johnson [24]. In 1962 he

presented a new upper bound by examining binary constant-weight

codes, namely codes in which all codewords have the same Hamming

weight. Define A2(n, d, w) to be the maximum number of binary code-

words of length n and weight w which are distant at least d apart. In

the following we consider upper bounds on A2(n, d, w) and A2(n, d)

due to Johnson.

Theorem 49. Let C be an (n,M)2 constant-weight binary code with

codewords of weight w. Suppose that every pair of distinct codewords

have at most λ ones in common positions. If w2 > nλ, then

M ≤
⌊
n(w − λ)

w2 − nλ

⌋
.

Proof. Let A = [ci,j ] be the codebook of C. We prove the bound by

estimating the sum

S =

M∑
i=1

M∑
j=1,
j 6=i

n∑
k=1

ci,kcj,k.

By hypothesis,

S ≤M(M − 1)λ. (2.5)

For 1 ≤ k ≤ n, let mk be the number of ones in the k-th column of

A. Then

S =
n∑
k=1

mk(mk − 1)
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and since
∑n

k=1mk = wM , it follows that

S =
n∑
k=1

m2
k − wM.

By Cauchy-Schwartz inequality we have that

n∑
k=1

m2
k ≥ n−1

(
n∑
k=1

mk

)2

,

hence

S ≥ n−1

(
n∑
k=1

mk

)2

− wM = n−1(wM)2 − wM. (2.6)

Equations (2.5) and (2.6) lead to

w2M2 − wMn ≤M2λn−Mλn,

and the theorem follows.

Corollary 50 (Restricted Johnson bound for A2(n, d, w)).

A2(n, 2e− 1, w) = A2(n, 2e, w) ≤
⌊

ne

w2 − nw + ne

⌋
,

provided that w2 − nw + ne > 0.

Proof. The corollary follows from Theorem 49: if C is an (n,M, 2e)2

constant-weight code with codewords of weight w, then every pair

of distinct codewords have at most w − e ones in common positions.

Moreover, since any pair of binary vectors of the same weight are an

even distance apart, A2(n, 2e− 1, w) = A2(n, 2e, w).

Using Theorem 49 with λ = w − e, the claim follows.

The name restricted Johnson bound for A2(n, d, w) comes from

the fact that the hypothesis w2 − nw + ne > 0 is necessary. Another

bound due to Johnson remove this hypothesis.

Theorem 51 (Unrestricted Johnson bound for A2(n, d, w)).
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1. if w < e, then A2(n, 2e− 1, w) = A2(n, 2e, w) = 1 .

2. if w ≥ e, then A2(n, 2e− 1, w) = A2(n, 2e, w)′, and

A2(n, 2e, w) ≤
⌊
n

w

⌊
n− 1

w − 1

⌊
· · ·
⌊
n− w + e

e

⌋
· · ·
⌋⌋⌋

.

Proof. Part 1. comes from the fact that two codewords of weight w

are at most at distance 2w apart.

For part 2. we consider a binary code C of length n and distance at

least 2e having M = A2(n, 2e, w) codewords each of weight w. Simi-

larly to the proof of Theorem 49 we count the number s =
∑n

k=1mk

of ones in the codebook A of C.

Since C is a constant-weight code we obtain

s = wM = wA2(n, 2e, w). (2.7)

On the other hand we observe that each column of A contains at

most A2(n−1, 2e, w−1) ones. In fact, by considering the Ṁ × (n−1)

submatrix of A obtained by removing a column from A and keeping

only the rows in which there is a 1 in the removed column, we find a

table corresponding to a constant-weight code with length n− 1 and

distance 2e, in which every codeword has weight w−1. Together with

equation (2.7) we obtain

wA2(n, 2e, w) = s ≤ n ·A2(n− 1, 2e, w − 1),

which leads us to

A2(n, 2e, w) ≤
⌊ n
w
A2(n− 1, 2e, w − 1)

⌋
.

Part 2. follows by induction with part 1. being used as final step.

Observe that A2(n+ 1, 2e) = A2(n, 2e− 1). Due to this, to obtain

a bound for A2(n, d) it is sufficient to consider the case d odd.
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Theorem 52 (Johnson bound for A2(n, d)). Let d = 2e+ 1. Then

A2(n, d) ≤ 2n∑e
i=0

(
n
k

)
+

( n
e+1)−(de)A2(n,d,d)

b n
e+1c

(2.8)

and

A2(n, d) ≤ 2n∑e
i=0

(
n
k

)
+

(ne)(
n−e
e+1
−bn−ee+1 c)
b n
e+1c

. (2.9)

Proof. The second bound is implied by the first one and by Theorem

51, in fact (
d

e

)
A2(n, d, d) ≤

(
n

e

)⌊
n− e
e+ 1

⌋
.

To prove bound (2.8), let C be an (n,M, d)2 code. Let N = {x ∈
(F2)n | d(C, x) = e + 1}. Since the spheres of radius e centred at

codewords are disjoint,

M

e∑
i=0

(
n

i

)
+ |N | ≤ 2n. (2.10)

To complete the proof we need a lower bound on |N |.
We denote with X the set of codeword-vector pairs at distance e+ 1,

namely

X = {(c, x) ∈ C ×N | d(c, x) = e+ 1}.

In the following we will obtain lower and upper estimates for |X|. To

obtain the lower bound, we fix c ∈ C, and, since we can replace C

with its translate c + C, we assume c = 0. The distance d is equal

to 2e + 1, hence all vectors x ∈ (F2)n of weight e + 1 satisfy either

d(C, x) = e or d(C, x) = e + 1. The vectors x of weight e + 1 which

have distance e from C must be at distance e from a codeword of

weight d = 2e + 1. Because C has at most A2(n, d, d) codewords of

weight d, there are at most
(
d
e

)
A2(n, d, d) such vectors x. Thus, there

are at least
(
n
e+1

)
−
(
d
e

)
A2(n, d, d) vectors x ∈ N such that (0, x) ∈ X.

Therefore

M

((
n

e+ 1

)
−
(
d

e

)
A2(n, d, d)

)
≤ |X|.
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To obtain instead an upper bound on |X|, we fix x ∈ N , and by

replacing C with its translate x + C we assume x = 0. Two distinct

codewords c1 and c2 both at distance e+ 1 from 0 must have disjoint

supports, since d(c1, c2) ≥ 2e + 1. Thus there are at most
⌊

n
e+1

⌋
codewords at distance e+ 1 from 0, and therefore

|X| ≤ |N |
⌊

n

e+ 1

⌋
.

Combining the obtained lower and upper bound on |X| we obtain

M

(
n
e+1

)
−
(
d
e

)
A2(n, d, d)⌊
n
e+1

⌋ ≤ |N |.

By replacing |N | in equation (2.10) with its lower bound, we obtain

(2.8).

2.8 Elias bound

The following bound was first presented by Elias, and nowadays

it is mainly known as Elias-Bassalygo bound [5].

Lemma 53. Let C be an (n,M, d)q code, and let 0 ≤ e ≤ n be a

positive integer. Then there exists a Hamming ball of radius r with at

least
MVolq(n,r)

qn codewords in it.

Proof. Randomly pick an element y of (Fq)n. The expected size of

overlapped region between C and the Hamming ball centred at y

with radius r is

Volq(n, r) ·
M

qn
, (2.11)

since y is randomly selected. Therefore there is at least one y such

that the Hamming ball of radius r centred in y has size at least equal

to (2.11), otherwise the expectation would have been smaller than this

value.
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Lemma 54. Let θ = q−1
q , and let r ≤ θn. Let C be an (n,K, d)q code

such that its minimum weight is at most r. Then

d ≤ Kr

K − 1

(
2− r

θn

)
.

Proof. Let mi,α denote the number of occurrences of the symbol α in

the ith column of the codebook of C. We recall that we denote with

F∗q = Fq r {0} the multiplicative subgroup of Fq. We know that∑
α∈Fq

mi,α = K

and
n∑
i=1

mi,0 = S ≥ K(n− r),

because every row of the codebook has weight at most r. Therefore

∑
α∈F∗q

m2
i,α ≥ (q − 1)−1

∑
α∈F∗q

mi,α

2

= (q − 1)−1(K −mi,0)2

and
n∑
i=1

m2
i,0 ≥ n−1

(
n∑
i=1

mi,0

)2

= n−1S2.

As in the proof of the Plotkin bound, we compute the sum of the

distances of all ordered pairs of rows of the codebook, obtaining that

n∑
i=1

∑
α∈Fq

mi,α(K −mi,α) ≤ nK2 − (q − 1)−1(qn−1S2 + nK2 − 2KS).

In this inequality, we substitute S ≥ K(n− r), where we pick r ≤ θn,

and hence S ≥ q−1nK. We find

n∑
i=1

∑
α∈Fq

mi,α(K −mi,α) ≤ K2r
(

2−
( r

θn

))
.

Since the number of pairs of rows is K(K − 1), we have

K(K − 1)d ≤ K2r
(

2− r

θn

)
,

which concludes the proof.
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Theorem 55 (Elias Bound). Let θ = 1 − q−1, let r be a positive

integer such that r ≤ θn and r2 − 2θnr + θnd > 0. Then

Aq(n, d) ≤ θnd

r2 − 2θnr + θnd
· qn

Volq(n, r)
.

Proof. Given an (n,M, d)q code C ′, consider the (n,K, d)q code C

consisting of all the codewords in C ′ of weight at most r. Applying

Lemma 53 we may assume that

K ≥ Volq(n, r) ·
M

qn
.

We can now apply Lemma 54 to C. This yields

Volq(n, r) ·
M

qn
≤ θnd

r2 − 2θnr + θnd
.

Remark 56. Note that if r = θn and d > θn, we obtain the Plotkin

bound.

2.9 Zinoviev-Litsyn-Laihonen bound

In this section we show a bound first introduced by Zinoviev and

Litsyn in 1984 [53] and then applied by Laihonen and Litsyn in 1998

[30]. The proof of the bound is based on the same ideas behind the

Elias bound, hence we will make use of previous results instead of the

entire original proof, which can be found in [30].

Theorem 57 (Zinoviev-Litsyn-Laihonen bound). Let 1 ≤ d ≤ n,

d− 2r ≤ n− t, 0 ≤ r ≤ t and 0 ≤ r ≤ 1
2d. Then

Aq(n, d) ≤ qt

Vq(t, r)
Aq(n− t, d− 2r).

Proof. Let C be an (n,M, d)q code with M = Aq(n, d). Let us con-

sider the code Ct obtained by puncturing C in t components, and
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keeping only those codewords in which the chosen t components be-

long to a Hamming sphere of radius r. Ct is an (n − t,Mt, dt)q code

in which

Mt ≥
M

qt
Vq(t, r) and dt ≥ d− 2r.

The fact that the length of Ct is n− t comes directly from the punc-

turing of C in t positions, while dt ≥ d − 2r follows from the fact

that the deleted parts of the selected codewords differ at most in 2r

components.

To prove the bound on the number of codewords in Ct, we denote

with y1, . . . , yM the M vectors in (Fq)t corresponding to the punc-

tured coordinates of C.

By Lemma 53, there exists a Hamming sphere St(x) containing at least
M
qt Vq(t, r) vectors among y1, . . . , ym and so the claim follows.

2.10 Bellini-Guerrini-Sala bounds

In this last section we show two bounds by E. Bellini, G. Guer-

rini and M. Sala [7], which are specialized to systematic-emdedding

codes. The first of these two bound is actually an improvement of the

Zinoviev-Litsyn-Laihonen bound.

Definition 58. Let C be an (n,M, d)q code, and let k =
⌊
logq(M)

⌋
.

We say that C is systematic embedding if C contains a systematic

code D with |D| = qk.

We remark that systematic-embedding codes are a generalization

of systematic codes, and every systematic code C is systematic em-

bedding with D = C. Several known families of maximal codes are

either systematic or systematic-embedding codes (see e.g. [1], [26] and

[40]).

Definition 59. We denote with A∗q(n, d) the maximum number of

codewords that an (n,M, d)q systematic embedding code can contain.
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We remark that A∗q(n, d) ≤ Aq(n, d). To our knowledge there are

no explicit counterexamples to A∗q(n, d) = Aq(n, d) prior to this work.

We will discuss systematic codes in Chapter 5 and provide a proof that

there exist values n and d for which A∗q(n, d) < Aq(n, d) by explicit

computation in the case n = 19 and d = 10.

Proposition 60. Let C be an (n,M, d)q code. Let ε ≥ 1 be a positive

integer such that for any c ∈ C we have w(c) ≥ d+ ε. Then

M ≤ Aq(n, d)− Volq(n, ε)

Volq(n, d− 1)
.

Proof. Let C be a code satisfying our hypothesis. C belongs to the set

of all codes with distance d that are contained in (Fq)n r Sd+ε−1(0).

Let D be any code of the largest size in this set, then |C| ≤ |D|.
Clearly, any codeword c of D has weight w(c) ≥ d+ ε. Consider also

D̄, the largest code in (Fq)n of distance d and such that D ⊆ D̄. By

definition, the only codewords of D̄ of weight greater than d + ε − 1

are those of D, while all other codewords of D̄ are confined to the ball

Sd+ε−1(0). Thus:

M ≤ |D| ≤ |D̄| ≤ Aq(n, d)

and

D̄ rD ⊆ Sd+ε−1(0).

Let ρ = d−1 and r = d+ε−1, so that r−ρ = ε, and let N = D̄∩Sr(0).

We have that D = D̄rN and |D| = |D̄| − |N |. By providing a lower

bound on N we obtain an upper bound on |D|.
We start by proving Sr−ρ(0) ⊆

⋃
x∈N Sρ(x). Indeed, assume there

exists a vector y not contained in the latter. Such vector is at distance

at least ρ + 1 = d from any codeword in N . Moreover, since y ∈
Sr−ρ(0), its distance from D̄rN is at least d. We can therefore obtain

a new code D̄ ∪ {y} containing D and with distance d, contradicting

the maximality of D̄.
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As a consequence, we have that

|N | ·Volq(d, ρ) ≥ Volq(n, r − ρ),

which gives

|N | ≥ Volq(n, ε)

Volq(n, d− 1)
.

Using previous observations, we obtain

M ≤ |D| = |D̄| − |N | ≤ Aq(n, d)− Volq(n, ε)

Volq(n, d− 1)
.

Theorem 61 (Bellini-Guerrini-Sala upper bound). Let 2 ≤ d ≤ n,

let t be a positive integer such that t ≤ min(n − d, k) with k =⌈
logq(A

∗
q(n, d))

⌉
, let r ∈ N be such that 0 ≤ r ≤ min(t, d2), and let

ρ = qt

Volq(t,r)
. Then

A∗q(n, d) ≤ ρ ·
(
Aq(n− t, d− 2r)− Volq(n− t, r)

Volq(n− r, d− 2r − 1)
+ 1

)
.

Proof. We consider an (n,M, d)q systematic-embedding code C such

that M = A∗q(n, d). We number all words in C in any order:

C = {ci | 1 ≤ i ≤M}.

We indicate the i-th codeword with ci = (ci,1, . . . , ci,n). We puncture

C in a similar way as in proof of the Zinoviev-Litsyn-Laihonen bound:

(i) we choose any t columns among the k columns of the systematic

part of C, 1 ≤ j1, . . . , jt ≤ n; since any two codes are equivalent

w.r.t. column permutations we can suppose j1 = 1, . . . , jt = t.

Let us split each codeword ci in two parts, ci = (c̃i, c̄i), where c̃i

correspond to the first t components, c̄i to the remaining n− t.

(ii) We choose a z ∈ (Fq)t.

(iii) We collect in I all i’s such that d(z, c̃i) ≤ r.
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(iv) We delete the first t components of {ci | i ∈ I}.

In this way the obtained C̄z consists of the puncturing of the code-

words whose distance in the first t components from a chosen z is at

most r:

C̄z = {c̄i | 1 ≤ i ≤ A∗q(n, d), d(z, c̃i) ≤ r}.

We claim that we can choose z in such a way that C̃z is equivalent to

a code with the following properties:

1. n̄ = n− t

2. d̄ ≥ d− 2r

3. |C̄z| ≥ M
qt Volq(t, r)

4. w(c̄i) ≥ d− r for all c̄i 6= 0.

Properties 1. − 3. comes from the proof of the Zinoviev-Litsyn-

Laihonen bound. We claim that 4. holds if 0 ∈ C and z = 0. In fact

w(c) = d(0, c) ≥ d for each nonzero codeword c, and z = 0 implies

that

y ∈ Sr(z) ⇐⇒ w(y) ≤ r.

As a consequence, any nonzero codeword ci = (c̃i, c̄i) of weight at

most r in c̃i has weight at least d− r in the other n− t components.

If 0 /∈ C or z 6= 0, we can translate C and we obtain an equivalent

code in which 0 ∈ C and z = 0, and 4. follows.

We denote with X the largest (n̄, |X|, d−2r) code containing the zero

codeword and such that w(x̄) ≥ d− r = (d− 2r) + r, ∀x̄ ∈ X. Since

X satisfies the properties 1. − 4., |X| ≥ |C̄z|. Then we can apply

Proposition 60 to X r {0} and ε = r, and obtain the following chain

of inequalities:

|C|
qt

Volq(t, r) ≤ |C̄z| ≤ |X| ≤ Aq(n̄, d− 2r)− Volq(n̄, r)

Volq(n̄, d− 2r − 1)
+ 1,

and since |C| = A∗q(n, d) we conclude the proof.
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Theorem 62 (Bellini-Guerrini-Sala lower bound). Let k ≥ 1, d ≥ 2

and 0 ≤ r ≤ d
2 . Let n be such that there exists an (n, qk, d) systematic

code. Then

Aq(n− k, d− 2r) ≥ Volq(k, r) +
Volq(n− k, r)

Volq(n− k, d− 2r − 1)
− 1.

Proof. If we restrict ourselves to systematic codes, we can replace

A∗q(n, d) in the Bellini-Guerrini-Sala upper bound with qk for a certain

k, and by choosing t = k we conclude the proof.





Chapter 3

Hadamard Matrices and

Codes

“
However, to find these, it has been necessary to con-

struct the very numerous possible combinations, among

which the useful ones are to be found. ”
Jacques Hadamard

49
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In this chapter we briefly overview an important class of nonlinear

codes. In the previous chapter we listed some known bounds on the

size of codes, however these bounds are not always attained. In Chap-

ter 5 we will show how the Griesmer bound can be applied to some

nonlinear codes (Theorem 96, Corollary 98, Proposition 101 and The-

orem 107), and this will lead to new bounds outperforming known

bounds (e.g. see Proposition 112). On the other hand the Plotkin

bound is known to be attained in most of the cases, and in this sec-

tion we discuss a class of these optimal codes.

To build these codes we will introduce Hadamard matrices in Section

3.1 and we will define Hadamard codes in Section 3.2. Most of the

definitions and results presented in this chapter can be found in [31],

[33, Ch. 2,§3] and [36].

3.1 Hadamard matrices

Definition 63. A Hadamard matrix of order n is a real n×n matrix

whose entries are either 1 or −1 such that H ·Ht = Ht ·H = n · In,

where In is the identity of order n.

From the definition it follows that both H and Ht are Hadamard

matrices and they share the same properties. A first and fundamental

property of a Hadamard matrix is that its rows form an orthogonal

basis of the space.

Proposition 64. Let H be a Hadamard matrix. Then the inner prod-

uct between any two rows is zero, while the inner product between any

row with itself is n.

Two Hadamard matrices are said to be equivalent if one is obtained

from the other by swapping rows, transpositions and multiplications

of rows and columns by −1. Using the latter, Hadamard matrices can

be brought to a so-called normal form.
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Definition 65. A Hadamard matrix is in normal form if the coordi-

nates of its first row and column are all equal to 1.

Theorem 66. Let H be a Hadamard matrix of order n. Then n is 1,

2 or a multiple of 4.

Proof. The matrices

H1 =
[
1
]
, H2 =

[
1 1

1 −1

]
are respectively Hadamard matrices of order 1 and 2. For the case

n > 2 we assume without loss of generality that the first three rows

of H are in the form

+ + · · ·+
+ + · · ·+
+ + · · ·+︸ ︷︷ ︸

i1

+ + · · ·+
+ + · · ·+
−− · · ·−︸ ︷︷ ︸

i2

+ + · · ·+
−− · · ·−
+ + · · ·+︸ ︷︷ ︸

i3

+ + · · ·+
−− · · ·−
− − · · ·−︸ ︷︷ ︸

i4

.

Since these three rows are orthogonal we obtain the system
i1 + i2 − i3 − i4 = 0

i1 − i2 + i3 − i4 = 0

i1 − i2 − i3 + i4 = 0

,

which lead us to i1 = i2 = i3 = i4, hence n = 4i1 is a multiple of

4.

It was conjectured that Hadamard matrices of order n exist when-

ever n is a multiple of 4. This conjecture, known as Hadamard Con-

jecture, has not been proven yet, even though several constructions

for Hadamard matrices are known.

Theorem 67 (Sylvester construction). Let Hn be a Hadamard ma-

trix. Then

H2n =

[
Hn Hn

Hn −Hn

]
(3.1)

is a Hadamard matrix of order 2n.
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Proof. We consider two rows hi and hj of H2n. We denote them with

hi = (h′i|h′′i ) and hj = (h′j |h′′j ), where h′ is the vector containing the

first n coordinates of the row h. We have

hi · hj = h′i · h′j + h′′i · h′′j ,

and we have 4 cases:

1. i = j implies that the product is

hi · hi = h′i · h′i + h′′i · h′′i = n+ n = 2n;

2. i = j + n mod 2n, which lead to the product

h′i · h′i − h′′i · h′′i = n− n = 0;

3. i < j ≤ n or n < i < j. We have

hi · hj =

{
h′i · h′j + h′′i · h′′j = 0 + 0, if i < j ≤ n
h′i · h′j + (−h′′i ) · (−h′′j ) = 0 + 0, if n < i < j

.

4. In the remaining case we have i ≤ n < j. The vectors h′i and

h′j are distinct rows of Hn, hence h′i · h′j = 0. Regarding h′′i and

h′′j , we observe that −h′′j is a row of Hn, so h′′i · (−h′′j ) = 0 which

implies h′′i · h′′j = 0.

Using equation (3.1) iteratively starting from H1 =
[
1
]

produces

Hadamard matrices for all orders equal to powers of 2. These partic-

ular matrices are also known as Sylvester matrices.

Before presenting the Paley construction we need the following

definitions.

Definition 68. Let Fq = {0, α1, . . . , αq−1} be a field with odd char-

acteristic. The elements α2
1, . . . , α

2
q−1 are called the quadratic residues
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of Fq.
The function χ : Fq → Z defined by

χ(α) =


0, if α = 0

+1, if α is a quadratic residue

−1, otherwise

(3.2)

is called Legendre symbol.

Definition 69. Let Fq = {α0, α1, . . . , αq−1} be a field of odd char-

acteristic. We define Q = (qi,j) as the matrix whose entries are

χ(αi − αj), where χ is the Legendre symbol. The matrix Q is called

Jacobsthal matrix of order q.

Theorem 70 (Paley construction). Let q = pm be a prime power

such that q = 3 mod 4, let 1 = (1, . . . , 1) be the vector of length q

whose coordinates are all equal to 1 and let Q be a Jacobsthal matrix

of order q. H =

[
1 1

1t Q− Iq

]
is a Hadamard matrix of order q + 1

The proof of Theorem 70 can be found in [33, Ch. 2,§3] for the

case of prime fields, and can be directly generalised to the case of non-

prime fields. We remark that there exists also another construction

due to Paley, which is a modification of Theorem 70 and produces

matrices of order 2q + 2 for each q = 1 mod 4.

3.2 Hadamard codes

Hadamard matrices can be used to obtain optimal binary codes.

Given a Hadamard matrix Hn we obtain a binary matrix Hb
n by using

the replacement 1→ 0 and −1→ 1. Hb
n is known as binary Hadamard

matrix. If Hn is a normalised matrix, then Hb
n can be seen as a

codebook whose first row is the zero codeword and the first coordinate

of each codeword is equal to 0. There exist three types of Hadamard

codes.
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Theorem 71. Let Hn be a normalised Hadamard matrix and let Hb
n

the corresponding binary matrix. The code An obtained by puncturing

Hb
n in the first coordinate is an (n− 1, n, n2 )2 code.

Proof. Since any two rows of Hn are orthogonal, any two rows of Hb
n

differ in exactly n
2 coordinates.

Theorem 72. Let 1 + An be the table whose entries are the com-

plement of the entries of An . Let Bn the code whose codebook is[
An

1 +An

]
. B is an (n− 1, 2n, n2 − 1)2 code.

Proof. Let c1, c2 ∈ An. d(c1, 1 + c2) = d(1, c1 + c2) = (n − 1) −
d(c1, c2) = n

2 −1, while the distance between c1 and 1+c1 is n−1.

Theorem 73. The code Cn whose codebook is

[
Hb
n

1 +Hb
n

]
is an

(n, 2n, n2 )2 code.

Proof. Let c1 and c2 be rows of Hb
n. d(c1, 1 + c2) = d(1, c1 + c2) =

n− d(c1, c2) = n
2 , while d(c1, 1 + c1) = n.

The codes An, Bn and Cn are known as Hadamard codes. We

introduce now another family of codes, Simplex codes.

Definition 74. Let Sk be the binary linear code generated by the

matrix Gk whose 2k− 1 columns are all the non-zero vectors of (F2)k.

Sk is an [2k − 1, k, 2k−1]2 linear code.

There exist several proofs of the fact that d(Sk) = 2k−1, here we

show it by induction on k.

For k = 1 we have G1 =
[
1
]
, the only column of G1 is the only non-

zero vector of (F2)1 and the parameters of S1 are trivially n = k =

d = 1. Let 0k be the zero vector of (F2)k and 12k−1 = (1, . . . , 1) ∈
(F2)2k−1. Starting from the generator matrix Gk of Sk we construct
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the matrix Gk+1 by the formula

Gk+1 =

[
Gk 0tk Gk

0 · · · 0 1 1 · · · 1

]
.

Gk+1 has rank k + 1 since its 2k+1 − 1 columns are all the non-zero

vectors of (F2)k+1, hence Gk generate Sk+1, which is an [2k+1− 1, k+

1]2 linear code. Regarding the distance of this code, let us consider

the codewords generated by the first k rows of Gk+1. By definition,

each of these codewords c is in the form c = (c′, 0, c′), where c′ ∈ Sk,
hence the distance between any pair c1 = (c′1, 0, c

′
1) and c2 = (c′2, 0, c

′
2)

are at distance 2 · d(c′1, c
′
2) ≥ 2 · d(Sk) = 2k.

It remains to prove that the distance between the last row gk+1 of

Gk+1 and any of the codewords c = (c′, 0, c′) as above are at distance

at least 2k. We know that the weight of c′ is w ≥ 2k, and d(1 · · · 1, c′) =

2k − 1− w, hence d(gk+1, c) = w + 1 + 2k − 1− w = 2k.

This concludes the proof of d(Sk) = 2k−1. Moreover, from this we

directly obtain the following theorem.

Theorem 75. Sk is an equidistant code, namely each pair c1, c2 of

codewords are at distance d = 2k−1. In particular all non-zero code-

words have weight equal to the minimum distance 2k−1.

Simplex codes and Hadamard codes are deeply connected. If we

add the bit 0 at the beginning of each codeword of Sk we obtain an

[2k, k, 2k−1]2 code. Its codebook is a square 2k × 2k table, and each

pair of its rows are at distance 2k−1, namely its codebook is a binary

Hadamard matrix Hn
2k

. This also implies that Sk is a Hadamard code

A2k obtained using Theorem 71.

We recall now the binary Plotkin bound in Theorem 48. Each

binary code with even distance and with n < 2d has size at most

A2(n, d) ≤ 2

⌊
d

2d− n

⌋
.
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In the case of n = 2k − 1 and d = 2k−1 as for Simplex codes, we have

A2

(
2k − 1, 2k−1

)
≤ 2

⌊
2k−1

2 · 2k−1 − 2k + 1

⌋
= 2k.

This shows that Simplex codes are optimal codes. In general we have

the following result.

Proposition 76. Hadamard codes An are optimal.

Proof. It has already been proved above for Simplex codes, which are

Hadamard A2k codes. For Hadamard codes An we observe that

A2

(
n− 1,

n

2

)
≤ 2

⌊ n
2

2 · n2 − n+ 1

⌋
= n.

Hadamard codes and Simplex codes are therefore of paramount

importance since they allow us to understand the parameters and

properties of optimal codes, at least in the Plotkin range. In par-

ticular the existence of Simplex codes implies the existence of linear

codes attaining the Plotkin bound, even though in the general case

nonlinear codes could achieve better error correction capability than

linear codes, as we will see in Chapter 5.

Proposition 77. For each pair of positive integers k and h, there

exists an
[
h
(
2k − 1

)
, k, h2k−1

]
2

optimal code.

Proof. Let Gk be the generator matrix of the Simplex code Sk. The

claimed code is generated by

G =

[
Gk · · · Gk︸ ︷︷ ︸

h times

]
(3.3)

We observe in particular that these codes attain the Plotkin bound,

in fact we have the following lemma.
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Lemma 78. Let n, d and h be positive integers and let (n, d) = 1.

Let C be an (n,M, d)q code attaining the Plotkin bound in Theorem

47. The code whose codebook is[
C · · · C︸ ︷︷ ︸

h times

]

attains itself the Plotkin bound and is therefore optimal.

Proof. It follows directly from the Plotkin bound.

Regarding
[
h
(
2k − 1

)
, k, h2k−1

]
2

linear codes, namely codes with

parameters equal to that of sequences of Simplex codes, there exists

another important result due to Bonisoli [8].

Theorem 79. Any linear code with length h
(
2k − 1

)
, dimension k

and distance h2k−1 is equivalent to a code as in Equation (3.3).

This implies that, up to equivalence, the only optimal linear codes

with parameters as in Proposition 77 are Simplex codes.

We conclude this chapter with a remarkable result on optimal

codes, proven in [31] by Levenshtein.

Theorem 80. Provided enough Hadamard matrices exist, the binary

Plotkin bound is attained with equality.

Before providing the proof, we need a few lemmas.

Lemma 81. Let Än be a Hadamard code as in Theorem 71. The code

Än obtained by shortening An in the first coordinate is an
(
n− 2, n2 ,

n
2

)
2

code.

Proof. Any column of a Hadamard matrix contains half zeros and half

ones.

Lemma 82. Let h1 and h2 be two positive integers and let C1, C2 be

respectively an (n1,M1, d1)2 and an (n2,M2, d2)2 code.
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Let h1C1||h2C2 be the code whose codebook is given by[
C1 · · · C1︸ ︷︷ ︸

h1 times

C2 · · · C2︸ ︷︷ ︸
h2 times

]
,

where if M1 6= M2 we consider only a subcode of the code with the

larger size, so that h1C1||h2C2 has size M = min(M1,M2).

The obtained code is an (h1n1 + h2n2,M, d)2 code, where d ≥ h1d1 +

h2d2.

We can give now the proof of Theorem 80.

Proof. First, we recall that we can restrict ourselves to the case of d

even, since the case d odd follows from the the codes of distance d+ 1

by puncturing.

Let n < 2d, and let k =
⌊

d
2d−n

⌋
. Let us define

h1 = d (2k + 1)− n (k + 1) , h2 = kn− d (2k − 1) .

We observe that both h1 and h2 are non-negative integers. If n is even

so are h1 and h2, while if n is odd and if k is odd then h1 is even,

otherwise h2 is even. Moreover,

n = (2k − 1)h1 + (2k + 1)h2, d = kh1 + (k + 1)h2.

If n is even, then

C =
h1

2
Ä4k||

h2

2
Ä4k+4.

If instead n is odd, we have the following two codes depending on the

parity of k.

If k is odd, then

C =
h1

2
Ä4k||h2A2k+2,

while if k is even

C = h1A2k||
h2

2
Ä4k+4.

Either way, C is an optimal code attaining the Plotkin bound with

equality.



Chapter 4

Introduction to Random

Number Generation

“
There are a number of difficult epistemological ques-

tions connected with the theory of secrecy, or in fact

with any theory which involves questions of probabil-

ity. ”
Claude Shannon

59
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Random Numbers are of great importance in many fields of appli-

cation, among which we list gaming, simulation of physical phenomena

for research purposes, and security protocols for safe communications.

Devices able to provide these random numbers are called Random

Number Generators (RNGs) and are classically distinguished between

pseudo-RNGs and True-RNGs. Other classifications take into account

whether they are algorithms or physical devices, or whether they make

use of chaotic or quantum physical phenomena to generate data. In

this work we refer to [2], [3], [4] and [6] to have precise definitions,

however we also give the following intuitive definition.

Definition 83. A random bit is the unpredictable result of an exper-

iment with two possible outcomes.

A Random Number Generator is a physical device able to output

sequences of random bits.

To be more precise, RNGs are made by several components:

• A noise source,

• A digitisation process,

• An optional entropy extractor.

Definition 84. A noise source is a discrete-time discrete-space stochas-

tic process Xt. In this work we consider only IID noise sources, and

we denote with µX the probability mass function (pmf) of Xt.

We denote with Uq the uniform distribution on a discrete set with q

elements.

Assume Xt ∈ F2, namely we are dealing with a binary noise

source. In this case µX(1) = p and µX(0) = 1 − p. If p = 1
2 then

µX = U2 and Xt is uniformly distributed, or unbiased.

If Xt is not unbiased, we need a way to measure its distance from the

uniform distribution.
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Sheet1

Page 1

Noise Source

Description ENTROPY

SOURCE

Health Testing Digitisation

(optional)

Conditioning

output

Figure 4.1: Structure of a RNG: Barker, Elaine, and John Kelsey.

NIST DRAFT SP800-90B, Recommendation for the entropy sources

used for random bit generation (2012).

Definition 85. The bias of a binary random variable X is defined as

εX
2

=
1

2
|P(X = 1)− P(X = 0)| = 1

2
|µX(1)− µX(0)| .

Since µX(0) = 1− µX(1) and E(X) = µX(1), we also have

εX
2

=
1

2
|2E[X]− 1| .

Assume now w.l.o.g. that µX(1) > µX(0). Then

|µX(1)− µX(0)| =
∣∣µX(1)− 1

2 + 1
2 − µX(0)

∣∣
=

∣∣µX(1)− 1
2

∣∣+
∣∣1

2 − µX(0)
∣∣

= ‖µX − U2‖1
Definition 86. The Total Variation distance (TVD) of a random

variable X ∈ ΩX , with |ΩX | = q, is defined as

δX
2

=
1

2
‖µX − Uq‖1 .

From this definition we have that the bias is a particular case of the

TVD. Another measure of the distance from the uniform distribution

is the entropy of a random variable.
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Definition 87. Given X ∈ ΩX and its probability mass function

µX , the entropy of X is defined as

H(X) = −E[logq(µX)]

Proposition 88. • H(X) ∈ [0, 1] .

• H(X) = 0 if and only if X is deterministic.

• H(X) = 1 if and only if X is uniformly distributed, µX = Uq.

These imply that H(X) = 1 if and only if δX
2 = 0.

Consider again a noise source Xt. If δX
2 6= 0 then Xt is not uni-

formly distributed. In this case the output of Xt should not be used

for security-related applications: suppose we are using Xt to produce

keys for a symmetric cipher. Since Xt is not uniformly distributed so

are the generated keys, hence an attacker could exploit this weakness

to obtain informations on the communication. To solve this problem,

raw sequences produced by the noise source Xt have to be processed,

in order to obtain an output whose probability distribution is (as close

as possible to) Uq. Deterministic functions designed to address this

task are known as conditioning functions, post-processing or entropy

extractors.

4.1 Entropy extractors

Definition 89. An entropy extractor is a function ϕ : ΩX → ΩY .

Given a random variable X ∈ ΩX , we denote with Y = ϕ(X) the

output of ϕ.

The aim of an entropy extractor is to output a random variable Y

whose entropy is greater than the entropy of X.

Proposition 90. if |ΩY | ≥ |ΩX |, then H(Y ) ≤ H(X).

Due to Proposition 90, ϕ has to be a compression function, i.e.

|ΩY | < |ΩX |.
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4.1.1 Von Neumann procedure

The Von Neumann procedure is an entropy extractor for binary

random number generators. Suppose an IID RNG produces binary

output. Then given a pair (xt, xt+1), it holds

P((xt, xt+1) = (0, 1)) = P((xt, xt+1) = (1, 0)).

Von Neumann extractor groups together non-overlapping pairs of con-

secutive bits, then for each pair it outputs a single bit, according to

the rule:

• If the two bits in the pair have different values, output the first

bit.

• If the two bits are equal, discard the pair

Further works have extended the idea of this extractor to reiterated

procedures, in which the same extractor is applied to the sequences

of discarded pairs.

Algorithm 1 is a pseudo-code for the Von Neumann procedure.

4.1.2 Binary linear extractors

Binary linear extractors are a well known class of extractors deeply

investigated in literature in case of an entropy source assumed to

produce biased independent bits (see e.g. [28] and [29]) and accepted

by NIST in the revised version of [2], which is under review and will

substitute the current version of the recommendation.

Let X be a binary noise source able to produce independent bits and

let G be a k × n binary matrix. We remark that in this section, as

we will do in Chapter 6, vectors are considered as column vectors to

simplify the notation.
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ALGORITHM 1:

Data: XT ∈ F2, T ∈ [1, N0]

Result: Ys, Zq

Initialization:

N1 =
⌊
N0
2

⌋
;

Build the process (X2t−1, X2t)t∈[1,N1];

t = 1;

s = 1;

q = 1;

while t ≤ N1 do

if (X2t−1 == X2t) then

Zq = X2t−1;

q = q + 1;

else

if X2t−1 == 0 then

Ys = 0;

else

Ys = 1;

end

s=s+1

end

t = t+ 1;

end

Algorithm 1: A pseudo-code for the Von Neumann procedure. The

output of this code are the extracted sequence Ys and a sequence Zq

which contains a representative of each discarded bit pair X2t−1 ==

X2t. By using this algorithm itself on Zq we can obtain the reiterated

version of the procedure.
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Definition 91. Let X̄ be a binary random vector of length n obtained

by collecting random bits from the noise source X. A binary linear

extractor is a map (F2)n → (F2)k defined by

X̄ 7→ Ȳ = G · X̄.

The resulting binary vector Ȳ = (Y1, . . . , Yn)T is not a vector

whose coordinates are independent random bits, however it is a ran-

dom binary vector whose probability mass function depends on both

the bias of X and the properties of the matrix G. To be effective, this

extractor has to be a compression function, hence k < n.

Complete proofs of the following theorems can be found in [28].

Theorem 92 (Lacharme). The bias of any non-zero linear combina-

tion of Y1, . . . , Yk is bounded by
εdX
2 , where

• εX is the bias of Xi

• d is the minimum distance of the code generated by G.

Proof. We provide here a sketch of the proof.

Any non-zero linear combination of Y1, . . . , Yk can be seen as the sum

of at least d elements among X1, . . . , Xn. Let P(Xi = 1) = p = 1+εX
2 .

The probability of the sum of two terms is given by

P(Xi1 +Xi2 = 1) = P(Xi1 6= Xi2)

= 2p(1− p)
= 2

(
1+εX

2

) (
1−εX

2

)
=

1−ε2X
2

The bias of the sum is given by

1
2 |2P(Xi1 +Xi2 = 1)− 1| = 1

2

∣∣∣21−ε2X
2 − 1

∣∣∣
=

ε2X
2 ,

hence we can conclude by induction.
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We conclude this section with another result on linear extractors

due to Lacharme. The proof of the following theorem can be found in

[28]. Let
δȲ
2 be the TVD from the uniform distribution of Ȳ = GX̄.

Theorem 93 (Lacharme, 2008).

δȲ ≤ (2k − 1)εdX .

These two results show an interesting connection between binary

linear extractors and linear codes. We will investigate more deeply

this fact in Chapter 6.2.



Part II

Main Results





Chapter 5

On optimal systematic

codes

“
All results of the profoundest mathematical investiga-

tion must ultimately be expressible in the simple form

of properties of the integers. ”
Leopold Kronecker

69
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In Section 2.5 we introduced the Griesmer bound, a well known

result on linear codes bounding the length of optimal codes. We will

often refer to it with the notation gq(k, d), namely

gq(k, d) :=
k−1∑
i=0

⌈
d

qi

⌉
.

Many papers, such as [18], [20], [27], [35], [46], and have characterized

classes of linear codes meeting the Griesmer bound. In particular, fi-

nite projective geometries play an important role in the study of these

codes. For example in [17], [21] and [47] minihypers and maxhypers

are used to characterize linear codes meeting the Griesmer bound.

Research has been done also to characterize the codewords of linear

codes meeting the Griesmer bound [51].

Many known bounds on the size of codes, for example the Johnson

bound [23], [24], [25], the Elias-Bassalygo bound [5], [23], the Ham-

ming (Sphere Packing) bound, the Singleton bound [38], the Zinoviev-

Litsyn-Laihonen bound [30], [53], the Bellini-Guerrini-Sala bound [7],

and the Linear Programming bound [11], are true for both linear and

(systematic) nonlinear codes.

On the other hand, the proof of the Griesmer bound heavily relies on

the linearity of the code and it cannot be applied to all codes.

Most of the results presented here can also be found in [16]. In

this chapter we present our results on systematic codes and their rela-

tions to (possible extensions of) the Griesmer bound. We will start by

proving that, once q and d have been chosen, if all nonlinear (n, qk, d)q

systematic codes with k < 1+logq d respect the Griesmer bound, then

the Griesmer bound holds for all systematic codes with the same q

and d. Therefore, for any q and d only a finite set of (k, n) pairs has

to be analysed in order to prove the bound for all k and n. In Section

5.1 we identify several families of parameters for which the Griesmer

bound holds in the systematic (nonlinear) case. In Section 5.2 we



71

provide some versions of the Griesmer bound holding for systematic

codes.

In the next sections we study optimal binary codes with small size,

namely M = 4 and M = 8. In Section 5.3 we show that all optimal

binary codes with 4 codewords are necessarily (equivalent to) linear

codes. In Section 5.4 we show that for any possible distance, there ex-

ist binary linear codes with 8 codewords achieving the Plotkin bound,

and this implies that N2(8, d) = S2(3, d) = L2(3, d). Finally, in Sec-

tion 5.5, we show explicit counterexamples of binary systematic codes

for which the Griesmer bound does not hold, by constructing a family

of optimal binary systematic codes. In the final section we draw our

conclusions and hint at a future work and open problems.

In this work we consider the following definition of an optimal

code.

Definition 94. Let k and d be two positive integers. An (n,M, d)q

code C is optimal if all codes with the same distance and size have

length at least n.

An (n, qk, d)q systematic code C is optimal if all systematic codes with

the same distance and dimension have length at least n.

Theorem 95. For fixed q and d, if

Sq(k, d) ≥ gq(k, d) (5.1)

for all k such that 1 ≤ k < 1 + logq d, then (5.1) holds for any k,

i.e. the Griesmer bound is true for all systematic codes over Fq with

minimum distance d.

Before proving it, we remark that an equivalent formulation for

Theorem 95 could be: If there exists an (n, qk, d)q systematic code

which does not satisfy the Griesmer bound, then there exists an

(n′, qk
′
, d)q systematic code with k′ < 1 + logq d which does not satisfy

the Griesmer bound.
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Proof. For each fixed d and q, suppose there exists an (n, qk, d)q sys-

tematic code not satisfying the Griesmer bound, i.e., there exists k

such that Sq(k, d) < gq(k, d). Let us call Λq,d = {k ≥ 1 | Sq(k, d) <

gq(k, d)}.
If Λq,d is empty then the Griesmer bound is true for such parameters

q, d.

Otherwise, there exists a minimum k′ ∈ Λq,d such that Sq(k
′, d) <

gq(k
′, d).

In this case we can consider an (n, qk
′
, d)q systematic code C not ver-

ifying the Griesmer bound, n = Sq(k
′, d).

We obtain an (n − 1, qk
′−1, d′) systematic code C ′ whose distance is

d′ ≥ d by applying Proposition 23 to C, then we apply Lemma 24 to

C ′, hence we obtain an (n− 1, qk
′−1, d)q systematic code C̄.

Since k′ was the minimum among all the values in Λq,d, then the

Griesmer bound holds for C̄, and so

n− 1 ≥ gq(k′ − 1, d) =
k′−2∑
i=0

⌈
d

qi

⌉
. (5.2)

We observe that, if qk
′−1 ≥ d, then

⌈
d

qk′−1

⌉
= 1, so we can rewrite

(5.2) as

n ≥
k′−2∑
i=0

⌈
d

qi

⌉
+ 1 ≥

k′−2∑
i=0

⌈
d

qi

⌉
+

⌈
d

qk′−1

⌉
=

k′−1∑
i=0

⌈
d

qi

⌉
= gq(k

′, d)

Since we supposed n < gq(k
′, d), we have reached a contradiction with

the assumption qk
′−1 ≥ d. Hence for such d, the minimum k in Λq,d

must satisfy qk−1 < d, which is equivalent to our claimed expression

k < 1 + logq d.

5.1 The Griesmer bound and systematic codes

In this section we identify several sets of parameters (q, d) for

which the Griesmer bound holds for systematic codes. Subsections
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5.1.1 and 5.1.2 deal with q-ary codes, while in Subsection 5.1.3 we

consider the special case of binary codes.

5.1.1 The case d ≤ 2q

Theorem 96. If d ≤ 2q then Sq(k, d) ≥ gq(k, d).

Proof. First, consider the case d ≤ q. By Theorem 95 it is sufficient to

show that, fixing q and d, for any n there is no (n, qk, d)q systematic

code with 1 ≤ k < 1 + logq d and n < gq(k, d). If 1 ≤ k < 1 + logq d

then logq d ≤ logq q = 1, and so k may only be 1. Since gq(1, d) = d

and n ≥ d, we clearly have that n ≥ gq(1, d).

Now consider the case q < d ≤ 2q. If 1 ≤ k < 1 + logq d then

logq d ≤ logq 2q = 1 + logq 2, and so k can only be 1 or 2. We have

already seen that if k = 1 then n ≥ gq(k, d) for any n, so suppose

k = 2. If an (n, q2, d)q systematic code C exists with n <
∑1

i=0

⌈
d
qi

⌉
=

d + 2, then by the Singleton bound we can only have n = d + 1.

Therefore C must have parameters (d+ 1, q2, d). In [22, Ch. 10] it is

proved that a q-ary (n, q2, n− 1)q code is equivalent to a set of n− 2

mutually orthogonal Latin squares (MOLS) of order q, and that there

are at most q − 1 Latin squares in any set of MOLS of order q [22,

Theorem 10.18]. In our case n = d+1 > q+1, therefore n−2 > q−1.

The existence of C would imply the existence of a set of more than

q − 1 MOLS, which is impossible.

5.1.2 The case qk−1 | d

The following proposition is a simple consequence of the Plotkin

bound that implies some results on values for the distance and dimen-

sion for which the Griesmer bound holds in the nonlinear case. We

will also make use of this result to obtain a version of the Griesmer

bound which can be applied to all systematic codes.

Proposition 97. If qk−1 | d, then the Griesmer bound coincides with

the Plotkin bound.
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Proof. If qk−1 | d, then gq(k, d) =
∑k−1

i=0
d
qi

= d
∑k−1

i=0
1
qi

= d
1− 1

qk

1− 1
q

.

Corollary 98. Let r ≥ 1, then Nq(q
k, qk−1r) ≥ gq(k, qk−1r).

Proof. Follows directly from Proposition 97.

Note that Corollary 98 is not restricted to systematic codes, and

holds for any code with at least qk codewords, so we can obtain directly

the next corollary.

Corollary 99. Let M ≥ qk and r ≥ 1, then

Nq(M, qk−1r) ≥ gq(k, qk−1r).

The following lemma holds for any nonlinear code.

Lemma 100. Let 1 ≤ r < q, l ≥ 0, d = qlr and let qk−1 ≤ d. Then

Nq(q
k, d) ≥ gq(k, d).

Proof. Since 1 ≤ r < q, the hypothesis qk−1 ≤ d is equivalent to

k − 1 ≤ l, hence qk−1 | d and we can apply Proposition 97.

Proposition 101. Let 1 ≤ r < q and l ≥ 0. Then Sq(k, q
lr) ≥

gq(k, q
lr).

Proof. Due to Theorem 95 we only need to prove that the Griesmer

bound is true for all choices of k such that qk−1 ≤ d. Then we can use

Lemma 100, which ensures that all such codes respect the Griesmer

bound.

Corollary 102. Let q = 2 and l ≥ 0. Then S2(k, 2l) ≥ g2(k, 2l).

Proof. It follows directly from Proposition 101, with r = 1.
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5.1.3 The case q = 2, d = 2r − 2s

In this section we prove that the Griesmer bound holds for all

binary systematic codes whose distance is the difference of two powers

of 2. We need the following lemmas.

Lemma 103. Let r ≥ 0 and let k ≤ r + 1. Then

g2(k, 2r+1) = 2g2(k, 2r).

Proof. The hypothesis k ≤ r + 1 implies that for any i ≤ k − 1, both⌈
2r+1

2i

⌉
= 2r+1

2i
and

⌈
2r

2i

⌉
= 2r

2i
. Therefore

g2(k, 2r+1) =

k−1∑
i=0

⌈
2r+1

2i

⌉
=

k−1∑
i=0

2r+1

2i
= 2

k−1∑
i=0

2r

2i
= 2

k−1∑
i=0

⌈
2r

2i

⌉
= 2g2(k, 2r)

Lemma 104. Let l ≥ 0 be the maximum integer such that 2l divides

d. Then

g2(k, d+ 1) = g2(k, d) + min(k, l + 1), (5.3)

Proof. Clearly d = 2lr, where r is odd, and the Griesmer bound

becomes

g2(k, d+ 1) =

k−1∑
i=0

⌈
2lr + 1

2i

⌉
. (5.4)

We consider first the case k ≤ l + 1, and we observe that for each

i we have ⌈
2lr + 1

2i

⌉
=

2lr

2i
+

⌈
1

2i

⌉
=

2lr

2i
+ 1 =

⌈
2lr

2i

⌉
+ 1.

Therefore

g2(k, d+ 1) =

k−1∑
i=0

(⌈
2lr

2i

⌉
+ 1

)
= g2(k, d) + k. (5.5)
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If k > l + 1 we can split the sum (5.4) in the two following sums:

g2(k, d+ 1) =

(
l∑

i=0

⌈
2lr + 1

2i

⌉)
+

(
k−1∑
i=l+1

⌈
2lr + 1

2i

⌉)
. (5.6)

For the first sum we make use of the same argument as above, while

for the second sum we observe that i > l, which implies⌈
2lr + 1

2i

⌉
=

⌈
2lr

2i

⌉
.

Putting together the two sums, equation (5.6) becomes

g2(k, d+ 1) =
(∑l

i=0

⌈
2lr
2i

⌉
+ l + 1

)
+
(∑k−1

i=l+1

⌈
2lr
2i

⌉)
=
∑k−1

i=0

⌈
2lr
2i

⌉
+ l + 1,

and the term on the right-hand side is g2(k, d) + l+ 1. Together with

(5.5) this concludes the proof.

Lemma 105. Let k, r and s be integers such that r > s and k > s+1.

Then

g2(k, 2r)− g2(k, 2r − 2s) = 2s+1 − 1.

Proof. For any d′ in the range 2r− 2s ≤ d′ < 2r we can apply Lemma

104, observing that d′ = 2lρ where ρ - d′ and l ≤ s, which implies

k > l+1. In particular we observe that d′ = 2r−δ for a certain δ ≤ 2s,

and since 2l has to divide both 2r and δ it follows that l depends only

on the latter. For a fixed δ we denote with lδ the corresponding

exponent.

From Lemma 104 we obtain

g2(k, 2r − δ + 1) = g2(k, 2r − δ) + lδ + 1.

Applying it for all distances from 2r − 2s to 2r we obtain

g2(k, 2r)− g2(k, 2r − 2s) =
2s∑
δ=1

(lδ + 1) =
2s∑
δ=1

lδ + 2s. (5.7)
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For each value of s, we call Ls = (l1, . . . , l2s) the sequence of integers

{lδ} that appear in equation (5.7), and with Ts the sum itself, so that

we can write equation (5.7) as

g2(k, 2r)− g2(k, 2r − 2s) = Ts + 2s.

In the following we will prove that Ts = 2s − 1. First, we show that

Ls = (l1, . . . , l2s) is equal to

(l1, . . . , l2s−1 , l1, . . . , l2s−1−1, l2s−1 + 1),

namely the first 2s−1 terms are exactly the sequence Ls−1, while the

second half of the sequence is itself equal to Ls−1 with the exception

of the last term, which is incremented by 1.

The fact that the first 2s−1 elements of Ls are the elements of Ls−1

follows directly from the definition of Ls, since lδ is the largest integer

such that 2lδ | δ. For the same reason, l2s = l2s−1 + 1. We take now

an element in the second half of Ls, which can be written as l2s−1+δ̄,

for a certain 1 ≤ δ̄ ≤ 2s−1. Using the same argument as before, the

integer l2s−1+δ̄ depends only on δ̄ and is equal to lδ̄. Some examples

of Ls are listed in Table 5.1.

s Ls

1 (0,1)

2 (0,1,0,2)

3 (0,1,0,2,0,1,0,3)

4 (0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4)

Table 5.1: The sequences Ls for s = 1, 2, 3, 4.

From the properties of Ls it follows that Ts = 2Ts−1 + 1. Using

induction on s, with first step T1 = 21 − 1, we now prove our claim

Ts = 2s − 1: if Ts−1 = 2s−1 − 1, then

Ts = 2Ts−1 + 1 = 2
(
2s−1 − 1

)
+ 1 = 2s − 1. (5.8)
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Putting together equations (5.7) and (5.8) we obtain

g2(k, 2r)− g2(k, 2r − 2s) = 2s − 1 + 2s = 2s+1 − 1.

Lemma 106. If k ≤ r, then g2(k, 2r) < 2r+1.

Proof. Due to k ≤ r, for i < k it holds
⌈

2r

2i

⌉
= 2r

2i
. We can write the

Griesmer bound as

g2(k, 2r) =
k−1∑
i=0

2r

2i
= 2r

k−1∑
i=0

1

2i
< 2r · 2.

Theorem 107. Let r and s be integers such that r > s ≥ 1 and let

d = 2r − 2s. Then S2(k, d) ≥ g2(k, d).

Proof. If r = s + 1, then 2r − 2s = 2s, hence we can apply Corollary

102 and our claim holds. Therefore we can assume r ≥ s + 2 in the

rest of the proof.

Our proof is by contradiction, by supposing that S2(k, 2r − 2s) <

g2(k, 2r−2s), i.e. the Griesmer bound does not hold for some (n, 2k, d)2

systematic code C, with d = 2r − 2s and n = S2(k, d). Due to Theo-

rem 95, we can assume that k < 1 + log2 d and so k ≤ r.
We call m the ratio n/d, which in the case of C is

m =
S2(k, 2r − 2s)

2r − 2s
≤ g2(k, 2r − 2s)− 1

2r − 2s
(5.9)

We claim that

m <
g2(k, 2r)

2r
. (5.10)

First we observe that since k ≤ r, then

g2(k, 2r)

2r
=

k−1∑
i=0

1

2i
= 2

(
1− 1

2k

)
.



5.1. The Griesmer bound and systematic codes 79

We consider now the ratio m:

m ≤ g2(k, 2r − 2s)− 1

2r − 2s
=

1

2r − 2s

k−1∑
i=0

⌈
2r − 2s

2i

⌉
− 1

2r − 2s
(5.11)

We consider first the case k ≤ s+ 1, and we can write (5.11) as

m <
1

2r − 2s

k−1∑
i=0

2r − 2s

2i
=

k−1∑
i=0

1

2i
= 2

(
1− 1

2k

)
,

so in this case m < g2(k,2r)
2r , which is exactly claim (5.10).

We consider now the case k ≥ s + 2. To prove (5.10), we prove

that the term on the right-hand side of inequality (5.9) is itself less

than g2(k,2r)
2r , and we write this claim in the following equivalent way:

2r(g2(k, 2r − 2s)− 1) < (2r − 2s)g2(k, 2r).

Rearranging the terms we obtain

2sg2(k, 2r) < 2r(g2(k, 2r)− g2(k, 2r − 2s) + 1) = 2r · 2s+1, (5.12)

where the equality on the right hand side is obtained from Lemma

105. Hence

g2(k, 2r) < 2r+1,

and this is always true provided k ≤ r, as shown in Lemma 106. This

concludes the proof of claim (5.10).

We now consider the (tn, 2k, td)2 systematic code Ct obtained by

repeating t times the code C. We remark that the value m can be

thought of as the slope of the line d(Ct) 7→ len(Ct), and we proved that

m < g2(k,2r)
2r . Since k ≤ r we can apply Lemma 103, which ensures

that g2(k, 2r+b) = 2bg2(k, 2r), namely the Griesmer bound computed

on the powers of 2 is itself a line, and its slope is strictly greater than

m. Due to this, we can find a pair (t, b) such that the code Ct is an

(tn, 2k, td)2 systematic code where

1. td > 2b,
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2. tn < g2(k, 2b).

We can now apply Lemma 24 to Ct, and find a systematic code with

length tn and distance equal to 2b, which means we have an (tn, k, 2b)2

systematic code for which the length is tn < g2(k, 2b). This however

contradicts Corollary 102, hence for each k ≤ r we have

S2(k, 2r − 2s) ≥ g2(k, 2r − 2s).

Corollary 108. Let r and s be integers such that r > s ≥ 1, and let

d be either 2s − 1 or 2r − 2s − 1. Then S2(k, d) ≥ g2(k, d).

Proof. We prove it for d = 2r−2s−1, and the same argument can be

applied to d = 2s − 1 by applying Corollary 102 instead of Theorem

107.

Suppose by contradiction S2(k, d) < g2(k, d), i..e. there exists an

(n, k, d)2 systematic code for which

n < g2(k, d). (5.13)

We can extend such a code to an (n+ 1, k, d+ 1)2 systematic code C

by adding a parity-check component to each codeword. Then C has

distance d(C) = d+ 1 = 2r − 2s, so we can apply Theorem 107 to it,

finding

n+ 1 ≥ g2(k, d+ 1).

Observe that d is odd, so applying Lemma 104 we obtain

n+ 1 ≥ g2(k, d+ 1) = g2(k, d) + 1 =⇒ n ≥ g2(k, d),

which contradicts (5.13).
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5.2 Versions of the Griesmer bound holding

for nonlinear codes

In this section we collect some minor results which can be seen

as bounds on the length of systematic codes, useful for a better un-

derstanding of the structure of such codes. An example of codes

meeting these bounds are Simplex codes, while Preparata codes and

Kerdock codes are close to these bounds. We will discuss some prop-

erties of Simplex codes in Section 5.5. We recall that Preparata

codes are
(

22m, 222m−4m, 6
)

2
systematic codes while Kerdock codes

are
(
22m, 24m, 22m−1 − 2m−1

)
2

systematic codes, both with m ≥ 2.

For m = 2 the two codes are both equivalent to the Nordstrom-

Robinson code, which is a (16, 28, 6)2 systematic binary code meeting

the bound in Corollary 112.

In Table 5.2 there is a (not exhaustive) list of parameters n, d for

which the binary bound in Equation (5.18) outperforms some known

bounds, such as the Singleton Bound, the Elias bound, the Hamming

Bound and the Johnson Bound.

5.2.1 Bound A

For systematic binary codes we can improve the Singleton bound

as follows.

Proposition 109 (Bound A).

S2(k, d) ≥ k +

⌈
3

2
d

⌉
− 2.

Proof. We will proceed in a similar manner as in the proof of the

Griesmer bound.

We consider a binary (n = S2(k, d), 2k, d)2 systematic code C. We

consider the set S of all codewords whose weight in their systematic

part is 1. Let c be a codeword in this set with minimum weight:

w(c) = min
x∈S
{w(x)}. (5.14)
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Since we can always assume without loss of generality that the zero

codeword belongs to C, the weight of c is at least d, and we denote it

with d + ∆, ∆ ≥ 0. We also assume that the nonzero coordinates of

c are the first d+ ∆, and that the first coordinate is the only nonzero

systematic coordinate of c.

We construct a code C ′ by shortening C in the first coordinate and

by puncturing it in the remaining d + ∆ − 1 first coordinates. Since

the shortening involves a systematic coordinate and the puncturing

does not affect the systematic part of C, C ′ is an (n−d−∆, 2k−1, d′)2

systematic code.

We consider now a codeword u in C ′, such that u has weight 1 in its

systematic part. Then there exists a vector v ∈ (F2)d+∆ such that

the concatenation (v | u) belongs to C. We remark that even though

there may be many vectors satisfying this property, we can choose v

such that its first component is 0, and this choice is unique. Therefore

(v | u) ∈ S, and due to equation (5.14)

w(v | u) = w(v) + w(u) ≥ d+ ∆. (5.15)

Moreover, we can also bound the distance of (v | u) from c as follows:

d(c, v | u) = d+ ∆− w(v) + w(u) ≥ d (5.16)

Summing together the inequalities (5.15) and (5.16) we have

d+ ∆ + 2w(u) ≥ 2d+ ∆,

from which it follows that

w(u) ≥ d

2
.

Since u has weight 1 in its systematic part, it means that its weight

in the non-systematic part is at least d
2 −1. So u has k−1 systematic

coordinates and at least d
2 − 1 non-systematic coordinates:

len(C ′) ≥ (k − 1) +

(
d

2
− 1

)
.
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Since the length of C ′ is n− d−∆ we have

n− d−∆ ≥ k +
d

2
− 2,

or equivalently

n ≥ k +
3d

2
− 2 + ∆

which implies the bound.

5.2.2 Bound B

We derive from Proposition 101 a version of the Griesmer bound

holding for any systematic code.

Remark 110. For any d, there exist 1 ≤ r < q and l ≥ 0 such that

qlr ≤ d < ql(r + 1) ≤ ql+1 (5.17)

Thus l has to be equal to
⌊
logq d

⌋
, and from inequality (5.17) we

obtain d/ql − 1 < r ≤ d/ql, namely r =
⌊
d/ql

⌋
.

Corollary 111 (Bound B). Let l =
⌊
logq d

⌋
and r =

⌊
d/ql

⌋
. Then

Sq(k, d) ≥ d+
k−1∑
i=1

⌈
qlr

qi

⌉
.

Proof. We denote s = d−qlr. We remark that s ≤ n−k, and so there

are at least s non-systematic coordinates. With this notation, let C

be an (n, qk, qlr + s)q systematic code. We build a new systematic

code Cs by puncturing C in s non-systematic coordinates. Cs has

parameters (n− s, qk, ds)q, for a certain qlr ≤ ds ≤ qlr + s.

If qlr 6= ds, we can apply Lemma 24, in order to obtain another code

C̄, so that we have an (n−s, qk, qlr)q systematic code. Due to Remark

110, it holds 1 ≤ r < q, so we can apply Proposition 101 to C̄. We

find n−s ≥
∑k−1

i=0

⌈
qlr
qi

⌉
, hence n ≥

∑k−1
i=0

⌈
qlr
qi

⌉
+s. We finally remark

that for i = 0 we have
⌈
qlr
qi

⌉
= qlr, and by adding s we obtain exactly

d. So n ≥ d+
∑k−1

i=1

⌈
qlr
qi

⌉
.
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n 26 28 28 30 32 33

d 12 12 14 14 16 16

Elias bound 8 10 6 8 7 8

Bound B 7 9 5 7 6 7

Table 5.2: Bound B

We also derive a similar bound for binary codes, whose proof relies

on Theorem 107 instead of Proposition 101.

Corollary 112 (Bound B, binary version). Let C be an (n, 2k, d)2

systematic code with d even. Let r and s be the smallest integers such

that 2r−2s ≤ d < 2r, namely r = dlog2(d+1)e and s = dlog2(2r−d)e.
Then

n ≥ d+

k−1∑
i=1

⌈
2r − 2s

2i

⌉
. (5.18)

Proof. It follows directly from Theorem 107.

In Table 5.2 we list some values n and d for which Bound B in

Proposition 112 outperforms known bounds. The first two rows are

respectively n and d. In the third row, we have the maximum com-

binatorial dimension allowed by the Elias Bound (EB). The last row

is the bound obtained using Equation (5.18). We did not list other

bounds in the table since for these values n and d the combinatorial

dimensions obtained from the Hamming bound, the Singleton bound

and the Johnson bound are at least equal to the one obtained from

the Elias bound, while the Plotkin bound cannot be applied. More

detailed tables for binary codes are in Appendix A.1.

5.2.3 Bound C

The following two bounds can be applied to nonlinear codes.
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Proposition 113 (Bound C). Let l be the maximum integer such that

ql divides d, and let h = min (k − 1, l). Then

Sq(k, d) ≥ Nq(q
k, d) ≥

h∑
i=0

⌈
d

qi

⌉
.

Proof. First, notice that d = qlr, q - r. If (k − 1) | l, we apply

Lemma 100. Otherwise h = l, and d is not divisible for higher powers

of q, and the last term of the sum is d
ql

.

We remark that, if there exists an (n,M, d)q code, then there exists

also an (n, qk, d)q code, with qk ≤M . By Proposition 113 we have

Nq(M,d) ≥
h∑
i=0

⌈
d

qi

⌉
.

5.3 Classification of optimal binary codes with

4 codewords

In the previous sections we have focused our attention on the dis-

tance, proving that for particular choices of d the length of optimal

systematic codes is at least the Griesmer bound, for each possible di-

mension. In the next sections we deal with the task of characterize

optimal systematic codes depending on their dimension. In particular

in this section we prove that all optimal binary codes with 4 code-

words are linear codes, and so they are systematic codes. We recall

our convention 0 ∈ C. A first version of this proof appeared in [15].

Lemma 114. N2(4, d) = S2(2, d) = L2(2, d).

Proof. Since Nq(q
k, d) ≤ Lq(k, d) for each choice of parameters, we

are going to show that N2(4, d) ≥ L2(2, d) and this will conclude the

proof.

Let C = {c0, c1, c2, c3} be an optimal (n, 4, d)2 code, i.e. n =

N2(4, d), and we assume without loss of generality that c0 is the zero
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codeword. The weights of c1 and c2 are at least d, and their distance

is d(c1, c2) = w(c1 + c2) ≥ d. Therefore the linear code generated by

c1 and c2 have the same minimum distance as C, and it follows that

n ≥ L2(2, d).

A consequence of Lemma 114 is that the Griesmer bound holds

for all binary (nonlinear) codes with 4 codewords. Furthermore, using

the argument of the proof of Lemma 114 we can build (binary opti-

mal) linear codes starting from nonlinear ones. This construction is

however not necessary, as explained in the following theorem.

Theorem 115. Let C be an optimal (n, 4, d)2 code. Then C is a

linear code.

Proof. As in the proof of Lemma 114, we assume that c0 is the zero

codeword. If C is not linear, then there exists at least a position i for

which the i-th coordinate of c3 is different from the i-th coordinate

of c1 + c2. Looking at the i-th components of the four codewords

as a vector v in (F2)4 we claim to have only two possibilities: either

w(v) = 1 or w(v) = 3. In fact, w(v) = 0 implies that C is not optimal,

w(v) = 4 contradicts the fact that c0 ∈ C and w(v) = 2 contradicts

the choice of i. Without loss of generality we can assume that we are

in one of the following two cases:

v = (0, 0, 0, 1) or v = (0, 1, 1, 1)

We start from the first case, namely w(v) = 1, and we consider the

[n, 2, d]2 linear code C̄ generated by c1 and c2. Clearly, all codewords

in C̄ have the i-th component equal to zero. Then we can puncture

C̄, obtaining a [n− 1, 2, d]2 linear code, contradicting the fact that C

is optimal.

We consider the second case, namely w(v) = 3. We consider the

code C̃ obtained by adding c3 to each codeword in C. C̃ is an optimal

code with the same parameters as C, and the zero codeword still
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belongs to the code. However what we obtain looking at the i-th

coordinate is a vector of weight 1, and we can use the same argument

as in the first case.

Corollary 116. The Griesmer bound holds for binary codes with 4

codewords. Furthermore

N2(4, d) = S2(4, d) = L2(2, d) =

{
3
2d, if d is even
3
2(d+ 1)− 1, if d is odd

Proof. The fact that the Griesmer bound holds for all codes of size 4

follows directly from Lemma 114 or Theorem 115. This implies that

N2(4, d) ≥ d+

⌈
d

2

⌉
We consider d even, so that the previous equation is N2(4, d) = 3

2d.

It is straightforward to exhibit a
[

3
2d, 2, d

]
2

linear code C, and this

concludes the proof in the case of d even. On the other hand, by

puncturing C we obtain a
[

3
2d− 1, 2, d− 1

]
2

linear code, which proves

the case of odd distance.

5.4 On the structure of optimal binary codes

with 8 codewords

We consider in this section optimal codes with 8 codewords. First

we prove that for these codes the Plotkin bound and the Griesmer

bound coincide, implying that the Griesmer bound actually holds also

for them.

Proposition 117. For any d, N2(8, d) ≥ g2(3, d), namely

N2(8, d) ≥


7h, if d = 4h

7h+ 3, if d = 4h+ 1

7h+ 4, if d = 4h+ 2

7h+ 6, if d = 4h+ 3

. (5.19)
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Proof. Let us consider an (N2(8, d), 8, d)2 code C. Let h =
⌊
d
4

⌋
. There

are four cases for d:

d = 4h, d = 4h+ 1, d = 4h+ 2, d = 4h+ 3.

We start with the case d = 4h (so h ≥ 1), for which

g2(3, 4h) =

2∑
i=0

⌈
4h

2i

⌉
= 7h.

On the other hand, by the Plotkin bound we have

N2(8, d) ≥ min

{
n ∈ N | 8 ≤ 2

⌊
4h

8h− n

⌋}
.

Assuming n < 7h, we have 8h− n > h. This implies that

4 >
4h

8h− n
,

which contradicts our hypothesis and shows that the Griesmer bound

and the Plotkin bound coincide.

In the case of d = 4h+ 2,

g2(3, 4h+ 2) =
2∑
i=0

⌈
4h+ 2

2i

⌉
= (4h+ 2) + (2h+ 1) + (h+ 1) = 7h+ 4.

By the Plotkin bound

4h+ 2

8h+ 4−N2(8, d)

which is equivalent to N2(8, d) ≥ 7h+ 4.

In the case of d = 4h+ 1,

8 ≤ 2

⌊
4h+ 2

8h+ 3−N2(8, d)

⌋
,

hence N2(8, d) ≥ 7h+ 3.

Finally, in the case of d = 4h + 3, by the same computation as

above we obtain that N2(8, d) ≥ 7h+ 6.
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Theorem 118. For any d, L2(3, d) = g2(3, d).

Proof. We consider the following three binary matrices:

I3 =


1 0 0

0 1 0

0 0 1

 , 13 =


1

1

1

 , N3 =


0 1 1

1 0 1

1 1 0

 .
We remark that the code generated by I3 (resp. [ I3 | 13 ] and [ I3 | N3 ])

is a [3, 3, 1]2 (resp. a [4, 3, 2]2 and a [6, 3, 3]2) linear code. These

codes meet the Griesmer bound. We denote with G3 the matrix

[ I3 | N3 | 13 ], i.e.

G3 =


1 0 0 0 1 1 1

0 1 0 1 0 1 1

0 0 1 1 1 0 1

 .
The code generated by G3 is a [7, 3, 4]2 linear code, which again attains

the Griesmer bound. Thus, L2(3, d) = g2(3, d) for 1 ≤ d ≤ 4.

Let d = 4h. We denote with G3,h the 3 × 7h matrix obtained by

repeating h times the matrix G3. The code generated by G3,h is a

[7h, 3, 4h]2 linear code, which attains the Griesmer bound.

For the other three cases, we consider the matrices

[ G3,h | I3 ]

[ G3,h | I3 | 13 ]

[ G3,h | I3 | N3 ] ,

that generate, respectively, a [7h+ 3, 3, 4h+ 1]2, a [7h+ 4, 3, 4h+ 2]2

and a [7h + 6, 3, 4h + 3]2 linear code, each attaining the Griesmer

bound.

Propositions 117 and Theorem 118 imply the following corollary.
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Corollary 119. For any d, N2(8, d) = S2(3, d) = L2(3, d), and

N2(8, d) =


7h, if d = 4h

7h+ 3, if d = 4h+ 1

7h+ 4, if d = 4h+ 2

7h+ 6, if d = 4h+ 3

(5.20)

5.5 A family of optimal systematic codes

In previous sections we identified several sets of parameters for

which the Griesmer bound holds in the systematic case. In this sec-

tion we focus our attention on binary systematic (nonlinear) code for

which the Griesmer bound does not hold. It is known that there exist

pairs (k, d) for which N2(2k, d) < g2(k, d), but it has not been clear

whether the same is true for systematic codes. In this section we con-

struct a family of optimal systematic nonlinear codes contradicting

the Griesmer bound. In Chapter 3 we have shown how Levenshtein

proposed a method to construct optimal binary codes meeting the

Plotkin bound, provided the existence of enough Hadamard matrices.

In particular, given a Hadamard matrix of order 2k + 4, it is possible

to construct a (2k + 3, 2k, 2k−1 + 2)2 code Dk. We recall that binary

codes attaining the Plotkin bound are equidistant codes.

Definition 120. A code C is called an equidistant code if any two

codewords have the same distance d.

We consider now the family of binary simplex codes Sk, which

can be defined as the codes generated by the k ×
(
2k − 1

)
matrices

whose columns are all the nonzero vectors of (F2)k. Simplex codes are

[2k − 1, k, 2k−1]2 equidistant codes. The following proposition follows

directly from the application of the Plotkin bound to codes with size

2k and distance a multiple of 2k−1.

Proposition 121. Let h ≥ 1 be a positive integer. Then

N2(2k, 2k−1h) ≥
(

2k − 1
)
h.
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We recall that all [(2k − 1)h, k, (2k−1)h]2 codes are equivalent to a

sequence of Simplex codes [8]. This fact lead to the following corollary.

Corollary 122. Let h ≥ 1, then N2

(
2k, 2k−1h

)
= S2

(
k, 2k−1h

)
=

L2

(
k, 2k−1h

)
=
(
2k − 1

)
h.

We now make use of Dk and Sk to construct our claimed family

Ck of optimal systematic codes.

We consider Ck the (2k+1 + 2, 2k, d)2 code, with the following proper-

ties:

• puncturing Ck in the last 2k + 3 coordinates we obtain Sk;

• puncturing Ck in the first 2k − 1 coordinates we obtain Dk.

Note that such a code is completely defined. Since Sk is a linear

code and both Dk and Sk are equidistant codes, Ck is an equidistant

systematic code with distance d = 2k + 2.

Applying the Plotkin bound to these parameters, we can see that Ck
is not an optimal code since it has only 2k codewords instead of 2k+2.

However, if k ≥ 2, it is optimal as a systematic code, since we can

add to it at most two codewords and therefore we cannot increase its

dimension while keeping the same distance. On the other hand, by

the Griesmer bound we obtain

g2(k, 2k + 2) =

k−1∑
i=0

⌈
2k + 2

2i

⌉
=

k−1∑
i=0

2k−i +

k−1∑
i=0

⌈
2

2i

⌉
.

By direct computation g2(k, 2k + 2) = 2k+1 + k − 1. Since len(Ck) =

2k+1 + 2, if k > 3 then Ck contradicts the Griesmer bound.

Proposition 123. The family Ck is a family of optimal systematic

equidistant binary codes.

While in Sections 5.3 and 5.4 we have shown that codes of di-

mension 2 or 3 cannot contradict the Griesmer bound, by using the
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family Ck we can obtain for each possible k > 3 an optimal systematic

code whose length is smaller than the length of any possible linear

code with the same dimension and distance, as stated in the following

theorem.

Theorem 124. Let k > 3. If there exists a Hadamard matrix of order

2k + 4, then there exists at least a distance d for which S2(k, d) <

L2(k, d).

On the other hand, the family of optimal systematic codes pre-

sented in this section have distance 2k + 2. By puncturing them in

a non-systematic component, for each k > 3, it is possible to con-

struct (2k+1 + 1, 2k, 2k + 1)2 optimal systematic codes contradicting

the Griesmer bound. Theorem 107 and Corollary 108 imply that for

k < 3 optimal systematic codes have to satisfy the Griesmer bound.

Putting all together we can state the following theorem.

Theorem 125. Let r be a positive integer, and let d = 2r + 1 or

d = 2r + 2. Then

1. if r < 3 then all optimal systematic binary codes with dimension

k and distance d have length at least equal to g2(k, d);

2. if r > 3, assuming there exists a Hadamard matrix of order

2k + 4, then S2(k, d) < L2(k, d).

This leaves as open problem the case r = 3, namely the case of a

code whose distance is either 9 or 10.

Another open problem regarding systematic codes was presented by

Bellini, Guerrini and Sala in [7]. In Section 2.10 we recalled the bound

they proposed for A∗q(n, d), and we remarked that they pointed out

how all known families of optimal codes were systematic or systematic

embedding (Definition 58). In Chapter 3 we introduced Hadamard

codes. We consider here in particular the Hadamard code obtained

from H20, which is a (19, 20, 10)2 optimal code. Up to equivalence,
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there exist three Hadamard codes with the same parameters. We de-

note them with A(1)
20 , A(2)

20 and A(3)
20 and we show here their codebooks.

It is possible to check that these three codes, as all codes which are

equivalent to them, are not systematic embedding. Since these codes

are obtained from the only three Hadamard matrices of order 20, it

follows that A∗2(19, 10) < A2(19, 10).

A(1)
20 =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 0 0 1 1 1 1 0 1 0 1 0 0 0 0 1 1 0

0 0 1 0 0 1 1 1 1 0 1 0 1 0 0 0 0 1 1

1 0 0 1 0 0 1 1 1 1 0 1 0 1 0 0 0 0 1

1 1 0 0 1 0 0 1 1 1 1 0 1 0 1 0 0 0 0

0 1 1 0 0 1 0 0 1 1 1 1 0 1 0 1 0 0 0

0 0 1 1 0 0 1 0 0 1 1 1 1 0 1 0 1 0 0

0 0 0 1 1 0 0 1 0 0 1 1 1 1 0 1 0 1 0

0 0 0 0 1 1 0 0 1 0 0 1 1 1 1 0 1 0 1

1 0 0 0 0 1 1 0 0 1 0 0 1 1 1 1 0 1 0

0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 1 1 0 1

1 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 1 1 0

0 1 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 1 1

1 0 1 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 1

1 1 0 1 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1

1 1 1 0 1 0 1 0 0 0 0 1 1 0 0 1 0 0 1

1 1 1 1 0 1 0 1 0 0 0 0 1 1 0 0 1 0 0

0 1 1 1 1 0 1 0 1 0 0 0 0 1 1 0 0 1 0

0 0 1 1 1 1 0 1 0 1 0 0 0 0 1 1 0 0 1

1 0 0 1 1 1 1 0 1 0 1 0 0 0 0 1 1 0 0
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A(2)
20 =



1 1 1 1 0 1 1 1 1 0 0 1 1 0 0 1 0 0 1

1 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 1 1

0 1 0 0 0 0 1 0 0 0 1 1 1 0 1 0 1 0 1

0 0 1 0 0 0 0 1 0 0 0 1 1 1 1 1 0 1 0

0 0 0 1 0 0 0 0 1 1 0 0 1 1 0 1 1 0 1

1 1 1 1 1 0 0 0 0 0 1 0 0 1 1 1 0 0 1

1 0 0 0 1 0 1 1 1 0 1 0 1 1 0 0 0 1 1

0 1 0 0 1 1 0 1 1 1 0 1 0 1 1 0 0 0 1

0 0 1 0 1 1 1 0 1 1 1 0 1 0 1 1 0 0 0

0 0 0 1 1 1 1 1 0 0 1 1 0 1 0 1 1 0 0

0 1 1 0 1 0 1 1 0 1 0 0 0 0 0 1 1 1 1

0 0 1 1 0 1 0 1 1 0 1 0 0 0 1 0 1 1 1

1 1 1 0 0 1 0 1 0 1 1 0 1 1 0 0 1 0 0

0 1 1 1 0 0 1 0 1 1 1 1 0 1 0 0 0 1 0

1 1 0 0 0 1 1 0 1 0 0 0 0 1 1 1 1 1 0

1 0 0 1 0 0 1 1 0 1 0 0 0 0 1 0 0 0 0

1 0 1 1 1 1 1 0 0 1 0 1 1 1 1 0 1 1 1

1 0 1 0 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0

0 1 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0

1 1 0 1 1 0 0 1 1 1 1 1 1 0 1 1 1 1 0



A(3)
20 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1

0 0 0 1 0 1 1 1 1 0 1 1 1 1 0 0 0 0 1

0 0 1 1 1 0 0 1 1 1 0 0 1 1 0 0 1 1 0

0 1 0 1 1 0 0 1 1 1 1 1 0 0 1 1 0 0 0

0 1 1 0 0 1 1 0 1 1 0 1 0 1 0 1 0 1 0

0 1 1 0 0 1 1 1 0 1 1 0 1 0 1 0 1 0 0

0 1 1 1 1 0 1 0 0 0 0 1 1 0 1 0 0 1 1

0 1 1 1 1 1 0 0 0 0 1 0 0 1 0 1 1 0 1

1 0 0 1 1 1 1 0 0 1 0 1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 0 0 0

1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 0 0 0 1

1 0 1 1 0 0 1 1 0 1 1 0 0 0 0 1 0 1 1

1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 0 1 1 0

1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0

1 1 0 0 1 1 0 0 1 1 1 0 1 0 0 0 0 1 1

1 1 0 1 0 0 1 0 1 1 0 0 0 1 1 0 1 0 1

1 1 0 1 0 1 0 1 0 0 0 0 1 1 1 1 0 1 0

1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 1





Chapter 6

Entropy extractors and

Codes

“
If numbers aren’t beautiful, I don’t know what is. ”

Paul Erdös
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In this chapter we discuss entropy extractors, with a focus on lin-

ear compression functions. In Chapter 4 we introduced the notion

of entropy extraction and we defined two well known post-processing

functions, the Von Neumann procedure and binary linear extractors.

In Section 6.1 we formalise the notion of non-binary Von Neumann

procedure and discuss some properties of this extractor, while in Sec-

tion 6.2 we analyse linear extractors over finite fields. Several RNGs

already use digitisation procedures or post-processing functions sim-

ilar to the ideas in this chapter. The intent of this work is not to

propose new entropy extractors, our aim is to formally describe these

techniques and the effects of their applications. Previous works on

linear extractors mainly consider the binary case and provide bounds

on the resulting entropy relying only on the minimum distance of the

code generated by the matrix associated to the extractor. We obtain

new bounds showing how the TVD from the uniform distribution of

the output vectors is related not only to the minimum distance, but

on the entire weight distribution of the code.

6.1 A generalisation of the Von Neumann pro-

cedure

Let Xt be an IID Random number generator, whose output is in

a finite set Ω. Then the probability of Xt to output a certain element

ω is independent on time, namely

P(Xt = ω) = µx(ω) ∀ω ∈ Ω

The RNG Xt provides a certain entropy

H(X) = −
∑
ω∈Ω

µx(ω) log|Ω|(µx(ω)).

For cryptographic purposes we need bit sequences with maximum

entropy, so we want an IID binary generator Ys with

H(Y ) = 1.
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This is achieved when Ωy = F2 = {0, 1}, and

P(Ys = 0) = P(Ys = 1) =
1

2
∀s

Given a certain IID RNG (Xt,Ω, µx) we want to build Ys satisfying

the properties described above.

We consider non-overlapping output pairs from Xt, i.e. we consider

the process

(X1, X2), (X3, X4), . . . , (X2t−1, X2t), . . .

so that we have a process (X2t−1, X2t)t>1, whose output is in the

space Ω × Ω. We remark that Xt is assumed to be IID, hence this

new process is also IID. We also observe that each finite set Ω can be

represented as the set Zn, with n = |Ω|.
We consider Algorithm 2. The output sequence Ys is the desired bi-

nary sequence, while Zq is a sequence which contains a representative

of each pair (X2t−1, X2t) with X2t−1 = X2t.

Example 3. N0 = 6, Xt ∈ Z4 with output (0, 2, 3, 3, 3, 2).

First of all, we consider disjoint pairs from the input sequence, namely

((0, 2), (3, 3), (3, 2)), and we set t = s = q = 1.

t = 1 we consider the first pair (0, 2). We observe that 0 < 2, hence Y1 = 0,

and we increment s and t.

t = 2 we check the second pair (3, 3). They are equal, so Zq = Z1 = 3 and

we increment both t and q.

t = 3 we look at the last pair (3, 2). 3 6= 2, so Y2 = 1, and we increment

both t and s.

t = 4 t > N , so we stop.

The output of the algorithm are the two sequences (Ys)s∈{1,2} = (0, 1) and

(Zq)q∈{1} = (3).

Theorem 126. If Xt is IID then Ys is IID and

P(Ys = 0) = P(Ys = 1) =
1

2
∀s.



98 Chapter 6. Entropy extractors and Codes

ALGORITHM 2:

Data: XT ∈ Zn, T ∈ [1, N0]

Result: Ys, Zq

Initialization:

N1 =
⌊
N0
2

⌋
;

Build the process (X2t−1, X2t)t∈[1,N1];

t = 1;

s = 1;

q = 1;

while t ≤ N1 do

if (X2t−1 == X2t) then

Zq = X2t−1;

q = q + 1;

else

if X2t−1 < X2t then

Ys = 0;

else

Ys = 1;

end

s=s+1

end

t = t+ 1;

end

Algorithm 2: A generalisation of the Neumann procedure to non-

binary random variables.
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Proof. P(Ys = 0) = P(X2t−1 < X2t), but Xt is an IID process, hence

P(X2t−1 < X2t) = P(X2t−1 > X2t).

Corollary 127. If Xt is IID then H(Y ) = 1

Proof. Follows from the previous Theorem and the definition of en-

tropy.

Theorem 128. The expected length of the sequence Ys is given by⌊
N0
2

⌋ (
1− ‖µx‖22

)
, where N0 is the length of the input sequence, and

µx is the probability mass function of XT .

Proof. Given a pair (X2t−1, X2t), the probability of not outputting

anything is equal to the probability of X2t−1 to be equal to X2t. It

holds

P(X2t−1 = X2t) =
∑
α

P(X2t−1 = α|X2t = α)P(X2t = α),

but Xt is IID, hence

P(X2t−1 = X2t) =
∑
α

µx(α)2 = ‖µx‖22. (6.1)

The probability to output a bit from a given pair is therefore 1 −
‖µx‖22.

Remark 129. The expected length of Ys is maximized when ‖µx‖22
is minimized, i.e. when µx is uniform. It follows that the expected

length of Ys is always at most n−1
n

⌊
N0
2

⌋
.

Proposition 130. The expected length of the sequence Zq is given by⌊
N0
2

⌋
‖µx‖22.

We can say something more on the process Zq. First of all, due to

the hypothesis of independence for Xt, also Zq is IID. Furthermore,

we can obtain its probability mass function, as shown in Proposition

131.
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Proposition 131. The probability mass function of Zq is given by

µz(α) =
µx(α)2

‖µx‖22
. (6.2)

Proof. P(Zq = α) = P(X2t−1 = X2t = α), so

P(Zq = α) =
P(X2t−1 = X2t|X2t−1 = α)P(X2t−1 = α)

P(X2t−1 = X2t)
.

Xt is an IID process, hence

P(X2t−1 = X2t|X2t−1 = α) = P(X2t = α) = P(X2t−1 = α) = µx(α).

We obtain

P(Zq = α) =
µx(α)2

P(X2t−1 = X2t)
, (6.3)

and using (6.1) we conclude.

If we now reiterate the procedure using as input the sequence Zq,

the algorithm will give us as output two new sequences Y ′s and Z ′q .

Being Zq IID, we can apply previous theorems, obtaining

• Y ′s is IID and H(Y ′s ) = 1. The expected length of Y ′s is⌊
M

2

⌋ (
1− ‖µz‖22

)
,

with M the length of Zq and µz as in (6.2).

• Z ′q is IID, and its pmf is given by (6.2), using µz instead of µx.

Then, given Xt and applying the extractor two times, first on Xt and

then to Zq, we obtain a sequence of bits with no bias, and an expected

length of ⌊
N0

2

⌋ (
1− ‖µx‖22

)
+

⌊
M

2

⌋ (
1− ‖µz‖22

)
. (6.4)

The expected length of Zq was M =
⌊
N0
2

⌋
‖µx‖22, while µz is as in

(6.2). Using these informations, (6.4) becomes⌊
N0

2

⌋ (
1− ‖µx‖22

)
+

⌊⌊
N0
2

⌋
‖µx‖22
2

⌋(
1−

∥∥∥∥ µ2
x

‖µx‖22

∥∥∥∥2

2

)
.
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Suppose now we want to keep on reiterating the algorithm using as

input the sequence Z. We consider as first input a sequence of length

N0 and pmf µ0. We iterate the algorithm J times, and we indicate

with j = 1, . . . , J the iteration step.

For each j we have two output sequences, Yj and Zj , and we call Nj

the expected length of Zj , µj its pmf, and Lj the expected length

of Yj . Using Theorem 128, Proposition 130 and Proposition 131, we

obtain: 
Nj = 1

2Nj−1 ‖µj−1‖22
µj =

µ2
j−1

‖µj−1‖22
Lj = 1

2Nj−1

(
1− ‖µj−1‖22

)
.

(6.5)

Lemma 132. The probability mass functions µj is such that

‖µj‖22 =

(
‖µ0‖2j+1

‖µ0‖2j

)2j+1

.

Proof. We use induction, using equation (6.5) with initial step given

by Proposition 131.

Lemma 133. The expected length Nj is given by

Nj =
N0

2j
·
‖µ0‖2

j+1

2j∏j
i=0 ‖µ0‖2

i

2i

.

Proof. From equation (6.5) we can use induction, with initial step

given by Proposition 130. We remark that, for i = 0, at the denomi-

nator we obtain the term ‖µ0‖11 = 1, and that for i = j we get instead

‖µ0‖2
j

2j
, which can be simplified together with the numerator.

Theorem 134. Padding together all the output sequences Yj, we ob-

tain a binary sequence with no bias, whose expected length L̄J is given

by

L̄J = N0 ·

 J∑
j=0

1

2j+1

1∏j
i=0 ‖µ0‖2

i

2i

(
‖µ0‖2

j+1

2j − ‖µ0‖2
j+1

2j+1

) =: N0 ·RJ

(6.6)
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Proof. L̄J is the sum of all Lj ’s, for j = 0, . . . , J . From equation

(6.5) we see that Lj depends on Nj−1 and on µj−1, so we can use

Lemmas 132 and 133 to substitute the values. A few computational

steps conclude the proof.

Theorem 135. The output/input bitrate ratio RJ converges for J →
+∞.

Proof. Suppose the term

Aj :=
1∏j

i=0 ‖µ0‖2
i

2i

(
‖µ0‖2

j+1

2j − ‖µ0‖2
j+1

2j+1

)
is less than 1 for each j. Then RJ =

∑J
j=0

1
2j+1 ·Aj is convergent for

j → +∞. We observe that we can rewrite Aj as

Aj =
‖µ0‖2

j+1

2j∏j
i=0 ‖µ0‖2

i

2i

·

(
1−
‖µ0‖2

j+1

2j+1

‖µ0‖2
j+1

2j

)
=: Bj · Cj

Remark 136. Given p > r, ‖ · ‖p ≤ ‖ · ‖r. Hence using p = 2j+1 and

r = 2j , we can prove that Cj < 1.

If we prove that also Bj < 1 we can conclude. First of all, we have

Bj < 1 ⇐⇒ ‖µ0‖2
j+1

2j <

j∏
i=0

‖µ0‖2
i

2i

Taking the logarithm on both sides of the inequality, we obtain the

claim

2j+1 log ‖µ0‖2j <
j∑
i=0

2i log ‖µ0‖2i

We observe that for the term on the right-hand side holds

j∑
i=0

2i log ‖µ0‖2i >
j∑
i=0

log ‖µ0‖2j = (j + 1) log ‖µ0‖2j

and we obtain

2j+1 log ‖µ0‖2j < (j + 1) log ‖µ0‖2j .
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Due to ‖µ0‖2j < 1, this last inequality is true if

2j+1 > j + 1,

hence we can conclude that Bj < 1, and therefore Rj converges.

Corollary 137. The ratio R = limJ→+∞Rj is less than 1
2 .

Proof. Follows from proof of Theorem 135.

Using the same argument as in Remark 129, R is maximized if µ0

is uniform.

Corollary 138. The ratio R is bounded by n−1
2n−1

Proof. It follows from Theorem 134 by using the uniform distribution

instead of µ0.

6.2 New bounds for linear extractors

We show the connection between the Walsh spectrum of the out-

put of a binary random number generator (RNG) and the bias of

individual bits, and use this to show how previously known bounds

on the performance of linear binary codes as entropy extractors can

be derived by considering generator matrices as a selector of a subset

of that spectrum. We explicitly show the connection with the code’s

weight distribution, then extend this framework to the case of non-

binary finite fields by the Fourier transform. The results presented in

this section can also be found in [48].

Our objective is to obtain sharp bounds for a finite number of

iterations of a conditioning procedure applied to the output of an

entropy source, rather than results relying on an asymptotic conver-

gence or ones based on randomly choosing a conditioning function

from among a large class, e.g. universal hash functions. We follow

the recommendations set out by NIST [2] for the precise meaning to
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be given to these terms. This is closely related to the subject of ran-

domness extractors, as summarised for instance in [43]. We consider

linear transformations applied to entropy sources producing indepen-

dent output; bounds on the distance from the uniform distribution

of such sequences have been shown in [28], [29] and [52], where the

entropy source was assumed to produce biased independent bits, and

the conditioning function was the generator matrix of a binary linear

code.

We are especially interested in random variables that, in addition

to satisfying said constraints, are discrete - in the sense that the num-

ber of possible outcomes is finite and the variables admit a discrete

probability mass function µX(j) = P(X = xj); moreover, we begin

by considering these variables to take values in a finite field Fp or a

vector space (Fp)k, with particular regard to the special case of binary

variables, p = 2.

In Section 6.2.1 we show the connection between the Walsh spec-

trum of the output of a binary random number generator (RNG) and

the bias of individual bits, and use this in Section 6.2.2 to show how

previously known bounds on the performance of linear binary codes

as RNG post-processing functions can be derived as a special case

by considering generator matrices as a selector of a subset of that

spectrum, explicitly showing the connection with the code’s weight

distribution. We then extend this framework to the case of output

in non-binary finite fields by use of the Fourier transform in Section

6.2.4.

6.2.1 Total variation distance and the Walsh-Hadamard

transform

We show in the following one way in which the Walsh-Hadamard

transform may be used to bound the total variation distance of binary

random variables with a known probability mass function. This may
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seem an unnecessary exercise since the TVD can simply be computed

exactly from this knowledge, but aside from revealing some interesting

structure to the calculation it will become more explicitly useful in the

following section.

Consider a random vector Y ∈ (F2)k with probability mass func-

tion µY (a) = P(Y = a), where in writing a and a we use the binary

representation of integers a ∈ Z2k as vectors a ∈ (F2)n.

a =

aj
∣∣∣∣∣∣ a =

k−1∑
j=0

aj2
j

 ∈ (F2)k .

The j-th order Walsh function evaluated at a is

hj(a) = (−1)j·a (6.7)

with · the dot product on (F2)k. The jth Walsh characteristic function

of Y as defined in [37] is

χj(Y ) =

2k−1∑
a=0

hj(a)µY (a) (6.8)

= E[hj(Y )] (6.9)

Note that the dot product of two binary vectors b·v is the bitwise sum,

i.e. the linear combination, of those elements v(i) that correspond to

the nonzero entries of b; therefore, the random variable

hb(Y ) = (−1)b·Y

will take value −1 if the linear combination of the selected elements of

Y is equal to one, and 1 otherwise. The sum of the selected elements is

itself a random variable, B = b·Y following the Bernoulli distribution

with probability µB(1) of being equal to 1; it follows that

hb(Y ) = 1− 2B,
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and hence we can conclude that

χb(Y ) = E[hb(Y )]

= 1− 2µB(1).

We recall that the bias of a Bernoulli random variable B ∈ F2 is

commonly defined as

εB
2

=
1

2
|P(B = 1)− P(B = 0)|

=
1

2
|2P(B = 1)− 1|

=
1

2
|2E[B]− 1| ,

and we observe that the Walsh characteristic of b ·Y leads to the bias

of the bth linear combination of the elements of Y via the relation

|χb(Y )| = εb·Y . (6.10)

In particular, the combinations corresponding to exact powers of two,

b = 2j , lead to the bias of each individual element of Y ; and the zeroth

Walsh characteristic, corresponding to b = 0, will be equal to 1 in all

entries, in all cases.

The set {hi } is known to correspond to the rows of a Hadamard

matrix H of size 2k; the set of all Walsh characteristics of Y can thus

be written compactly in matrix notation as

χ(Y ) = HµY . (6.11)

As a matter of notation, for a uniformly distributed random variable

U ∈ (F2)k we have

µU =
1

2k

χ(U) = I2k(·, 1),

with 1 a column vector of ones and I2k(·, 1) the first column of the

identity matrix of size 2k. We may use this to estimate the total

variation distance of Y from uniform as follows.
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Theorem 139. The total variation distance of a random vector Y ∈
(F2)k from uniform U ,

TVD(Y,U) =
1

2
‖µY − µU‖1

=
1

2
δY

is bounded by the sum of the bias of all non-trivial linear combinations

of the output bits,

δY ≤
∑

b∈(F2)k\0

εb·Y .

Proof.

‖µY − µU‖2 =

∥∥∥∥HTH

2k
(µY − µU )

∥∥∥∥
2

(6.12)

=
1

2k/2

∥∥∥∥HT

2k/2
(χ(Y )− χ(U))

∥∥∥∥
2

(6.13)

≤ ‖χ(Y )− χ(U)‖1 (6.14)

=
∑

b∈(F2)k\0

εb·Y . (6.15)

Here HT is the transpose of the Hadamard matrix H. Equation (6.12)

follows from HT /
√

2k being the unitary inverse Hadamard transform;

Equation (6.13) uses the definition of χ(Y ) in Equation (6.11); and

lastly, the bound in Equation (6.14) stems from the `1 bound on q-

dimensional vector spaces, ‖ · ‖1 ≤ q1/2‖ · ‖2.

Corollary 140. If the bits Y (j) ∈ F2 are i.i.d. with known bias εy,

then

δY ≤
k∑
l=1

Alε
l
y

=
k∑
l=1

(
k

l

)
εly

where Al is the number of b ∈ (F2)k with Hamming weight w(b) = l.
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6.2.2 W-H bound on binary generator matrices as ex-

tractors

We now consider the previous bound as applied to random vari-

ables Y = GX, with X ∈ (F2)n a sequence of n Bernoulli random

variables with known probability mass P(X = b) = µX(b) and iden-

tical bias εX = |1 − 2P(X(i) = 1)| for each bit, and G the generator

matrix of an [n, k, d]2 linear code C with weight distribution {Al }.
We recall that in the following sections all vectors are column vectors.

The definition of Walsh characteristic functions as expected values

in Equation (6.9) directly leads to

χb(GX) = E[hb(GX)]

=
2n−1∑
x=0

(−1)b·GxµX(x)

We note here that the dot product in the Walsh function can equiva-

lently be expressed using the transpose bT as

b ·Gx = bTGx ,

and in particular the product

cT = bTG

is a linear combination of the rows of G: since G is the generator

matrix of a linear code C the rows of G form a basis of C, and hence

any linear combination of them is again a word c ∈ C. Consequently,

just as the Walsh characteristic led to a measure of bias in Equation

(6.10), we can conclude that

|χb(Y )| = εc·X . (6.16)

In other words, the bias of the bth element of Y is equal to the bias of

a linear combination of w(c) bits of X (compare to Equation (6.10)).

This leads directly to the following bound.
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Theorem 141. Let Y = GX, with X ∈ (F2)n a sequence of n inde-

pendent but not necessarily identically distributed Bernoulli random

variables, and G the generator matrix of an [n, k, d]2 linear code C.

The total variation distance of the random variable Y ∈ (F2)k from

uniform,

TVD(Y,U) =
δY
2

is bounded by the sum of the bias of all linear combinations of the bits

in X defined by the codewords of C, in the following measure:

δY ≤
∑

b∈(F2)k\0

εbTG·X

=
∑

c∈C\0

εc·X

Corollary 142. If the bits X(j) ∈ F2 are i.i.d. with known bias εx,

then

δY ≤
n∑
l=d

Alε
l
x .

with {Al } the weight distribution of C.

Note that Corollary 140 is closely related to Corollary 142 if we

consider that in this context the {Al } in the former correspond pre-

cisely to the weight distribution of the trivial code given by the mes-

sage space itself, (F2)k. A particular case of Corollary 142 for strictly

binomial {Al } was proved in [52], Theorem 6. We can thus recover

the following known bound, already presented in Theorem 93 and

whose original proof is in [28], Theorem 1.

Corollary 143. Considering only the minimum distance d rather

than the full weight distribution,

δY ≤ (2k − 1)εdx .
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6.2.3 Total variation distance and the Fourier trans-

form

The Hadamard transform is a special case of the Fourier transform

constructed with primitive 2-nd root of unity ωp = −1. Employing the

Fourier transform is natural in this setting and closely follows well-

established techniques for the sum of continuous random variables,

which have their own convolution theorem and proofs of convergence

to a limiting distribution.

Given an integer a ∈ Zpk , we denote its p-ary representation by

a =

aj
∣∣∣∣∣∣ a =

k−1∑
j=0

ajp
j

 ∈ (Fp)k .

We shall use this notation interchangeably in the following as a natural

indexing of the elements of (Fp)k.
Consider a random variable Z ∈ Fp with probability mass function

µZ(j) = P(Z = j) .

Note that this implicitly assumes an ordering of the mass function µZ

corresponding to the representation of elements βj ∈ Fp as integers.

The discrete Fourier transform of µZ may then be written in matrix

form as

FpµZ = λZ ,

where λ is the set of eigenvalues of the circulant matrix generated by

µZ . Indeed, the above can be restated in terms of the unitary DFT,

F̂p =
Fp√
p

F̂ ∗p =
F ∗p√
p

with F ∗p the conjugate transpose of Fp, diagonalising the circulant

matrix CZ generated by µZ :

CZ = circ(µZ)

F̂pCZ F̂
∗
p = ΛZ
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with ΛZ the p × p diagonal matrix containing all eigenvalues of CZ .

Note that for a uniformly distributed random variable U ∈ Fp, we

have

µU =
1

p

λU = FpµU = Ip(·, 1)

where 1 is a vector of ones of length p, and the only nonzero eigenvalue

is the zeroth one, so the full set λU corresponds to the first column of

the identity matrix of size p.

Lemma 144. The mass function µZ of a random variable Z ∈ Fp
satisfies

‖µZ − µU‖2 =
1
√
p
‖λZ − λU‖2

where λZ = FpµZ is the discrete Fourier transform of Z.

Proof.

‖µZ − µU‖2 =

∥∥∥∥∥ F̂ ∗√p (λZ − λU )

∥∥∥∥∥
2

(6.17)

=
1
√
p
‖λZ − λU‖2 (6.18)

=
1
√
p

p−1∑
j=1

(λZ(j))2

1/2

(6.19)

Equation (6.18) follows from the unitary Fourier transform preserving

`2 distance.

We can obtain a first, crude bound on the TVD by considering the

largest non-trivial eigenvalue, defined as follows for future reference.

Definition 145. Given a random variable Z ∈ Fp with mass func-

tion µZ and eigenvalues FpµZ = λZ , denote the greatest non-trivial

eigenvalue by

λZ∗ = max
1≤j≤p−1

|λZ(j)|.
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Theorem 146. The total variation distance of a random variable

Z ∈ Fp from uniform,

TVD(Z,U) =
δZ
2

is bounded by

δZ ≤ (p− 1)1/2 λZ∗

with λZ∗ as in Definition 145.

Proof. This follows from considering the worst-case scenario in which

all eigenvalues λZ in Lemma 144, except the zeroth eigenvalue λZ(0) =

1, are equal to the greatest non-trivial eigenvalue λZ∗ by applying the

bound on p-dimensional vector spaces ‖x‖1 ≤ p1/2‖x‖2.

We can now consider how this affects the distribution of a sum of

two variables, S2 = X0 + X1 ∈ Fp, which is the discrete convolution

of the two probability masses,

P(S2 = r) =
∑
j∈Fp

P(Z0 = j)P(Z1 = r − j)

=

p−1∑
j=0

µZ1(r − j)µZ0(j).

The distribution of S2 may then be expressed in matrix notation as

µS2 = CZ1µZ0 , (6.20)

where CZ1 is the circulant matrix uniquely defined by µZ1 . In other

words, the entry r, j of CZ1 contains the measure under Z1 of the

element βr − βj ∈ Fp , which we denote in matrix form by

CZ1 = µZ1(B) ,

B(r, j) = βr − βj .
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Considering the particular case of summing two identical variables

Z with probability mass function µZ , the distribution of S2 = Z + Z

may be written as

S2 ∼ CZµZ ,

where CZ is the circulant matrix defined uniquely by µZ itself. By

induction,

Sn ∼ Cn−1
Z µZ

∼

n−1∏
j=1

F ∗p
p

ΛZFp

µZ

∼
F̂ ∗p√
p

Λn−1
Z FpµZ

∼ 1
√
p
F̂ ∗p λ

n
Z . (6.21)

As well as being conceptually equivalent to using the convolution the-

orem, this may also be seen as considering Sn as a Markov chain

S0 = Z

Sj = Sj−1 + Z

with transition matrix CZ .

Lemma 144 may be extended as follows.

Lemma 147. The probability mass function µSn of a random variable

Sn =
∑n

j=1 Z, Z ∈ Fp satisfies

‖µSn − µU‖2 =

(
p− 1

p

)1/2

‖ (λSn − λU )n ‖2 .

Proof. The proof is substantially the same as that of Lemma 144,

using Equation (6.21).



114 Chapter 6. Entropy extractors and Codes

Lemma 148. The total variation distance of Sn =
∑n

j=1 Z, Z ∈ Fp
from uniform may be bounded by

δSn ≤ (p− 1)1/2 λnZ∗ (6.22)

with λZ∗ as in Definition 145.

Proof. The proof follows by applying Lemma 147 in the same way as

Lemma 144 was applied to Theorem 146, i.e. assuming each of the

p− 1 eigenvalues in Lemma 147 that are of magnitude less than 1 to

be bounded by λn∗ , using Equation (6.21).

Lemma 148 is a slight improvement on a known bound on the

convergence rates of Markov chains on Abelian groups; see e.g. [41]

Fact 7.

We have so far assumed an ordering of the mass function µX of

a random variable X ∈ Fp according to the representation of the

elements of Fp as integers. Similarly for vector spaces X ∈ (Fp)k we

may assume an ordering of µX by least significant digit. Generalising

to the distribution of the sum S2 of two random variables X0, X1 ∈
(Fp)k, this may still be expressed in a form such as Equation (6.20),

but the matrix CX1 is a level k block circulant with circulant base

blocks of size (p× p). Concretely, while considering all coefficients of

B as elements of (Fp)k, we may write

Bp = circ([0,1, . . .p− 1])

B◦2p = circ(Bp,p +Bp, . . . (p− 1)p +Bp)

B◦kp = circ(B◦k−1
p ,pk−1 +B◦k−1

p , . . . (p− 1)pk−1 +B◦k−1
p )

with the circ function defined column-wise following [10], and B◦kp

used as short-hand to indicate a matrix therein defined as belonging

to the class BCCB(p, p, . . . p), k times.

As shown in [10], matrices with this structure are diagonalised by

F⊗kp . This naturally extends the known structure for binary random
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variables, since as discussed in Section 6.2.1 the convolution matrix

for variables in (F2)k is diagonalised by the Hadamard matrix H2k ,

which by construction is equal to H⊗k2 .

The Fourier matrix of size p can be written as a Vandermonde

matrix of a primitive p-th root of unity as

Fp =


ω0·0
p ω0·1

p . . . ω
0·(p−1)
p

ω1·0
p ω1·1

p
. . . ω0·0

p
...

. . .
. . .

...

ω
(p−1)·0
p ω

(p−1)·1
p . . . ω

(p−1)2

p


In other words, the entry in row r, column s is

Fp(r, s) = ωrsp , r, s ∈ Zp .

By definition of the Kronecker product of two (p× p) matrices,

K = M1 ⊗M2

K(u, v) = M1(r1, s1)M2(r2, s2) u, v, ri, si ∈ Zp

u ≡ r1p+ r2 (6.23)

v ≡ s1p+ s2 (6.24)

(Fp ⊗ Fp)(u, v) = ωr1s1p ωr2s2p

which extends to the k-fold Kronecker product by induction using the

p-ary representation of integers

F⊗kp (u, v) = ωr·s
p

for the specific r, s satisfying a polynomial in p such as (6.23) and

(6.24) of degree k − 1. In general, keeping either the row or column

index fixed and iterating over the other means iterating over every

element of (Fp)k; concretely, when evaluating the eigenvalues of a
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probability mass µ ∈ Rpk , the b-th eigenvalue corresponds to

λ(b) = F⊗kp (b, ·)µ

=

pk−1∑
j=0

F⊗kp (b, j)µ(j)

=

pk−1∑
j=0

ωb·j
p µ(j) . (6.25)

Generalising from the case of the Walsh transform, this suggests the

definition of the a-th order Fourier function evaluated at b as

fa(b) = ωb·a
p

(compare to Equation (6.7)), so that if Y ∈ (Fp)k is the random

variable with mass function µ, the eigenvalues may be written as

λY (b) = E [fb(Y )] . (6.26)

(compare to Equation (6.9)).

Lemma 149. The probability mass function µY of a random variable

Y ∈ (Fp)k satisfies

‖µY − µU‖2 =
1

pk/2
‖λY − λU‖2 .

Proof.

‖µY − µU‖2 =

∥∥∥∥∥F⊗kppk/2 (µY − µU )

∥∥∥∥∥
2

(6.27)

=
1

pk/2
‖λY − λU‖2 (6.28)

Corollary 150. If the elements Y (j) ∈ Fp are independent but not

necessarily identically distributed,

‖µY − µU‖2 =
1

pk/2

∥∥∥∥∥∥
k−1⊗
j=0

λY (j) − λU

∥∥∥∥∥∥
2
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Proof. Since the X(j) are independent, the probability mass function

of Y ∈ (Fp)k is

µY = µY (0) ⊗ µY (1) ⊗ . . . µY (k−1)

=
k−1⊗
j=0

µY (j) ,

and the eigenvalues will be

λY = F⊗np µY

=

k−1⊗
j=0

FpµY (j)

=

k−1⊗
j=0

λY (j)

where the second step follows by the mixed-product property of the

Kronecker product.

We can now extend Theorem 139 as follows.

Theorem 151. The total variation distance of a random vector Y ∈
(Fp)k from uniform,

TVD(Y,U) =
1

2
‖µY − µU‖1

=
1

2
δY

is bounded by

δY ≤
∑

b∈(Fp)k\0

∣∣∣∣∣
k−1∏
u=0

λY (b(u))

∣∣∣∣∣ . (6.29)

Proof. Each eigenvalue may be written as

λY (b) =
k−1∏
u=0

λY (b(u)) .
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The result follows directly from Lemma 149 and the known bound

on vector spaces.

We can also extend Corollary 140 to establish a connection with

the number of vectors of a specific Hamming weight, but in the non-

binary case we can also go into more detail if the full composition of

each vector in the space is known, as in the following definition.

Definition 152. Let s(b) be the composition of b ∈ (Fp)k such that

sj(b) is the number of components of b equal to j.

s(b) = (s0, s1, . . . sp−1)

sj = |{ i | b(i) = j }|

Let W(Fp)k(t) be the enumerator of the elements b having composition

equal to t, with t being a p-tuple summing to k:

W(Fp)k(t) = | {b ∈ (Fp)k | s(b) = t } |

t ∈ T ⊂ Np∑
j

tj = k ;

then the number of b with Hamming weight equal to l is

Al =
∑
t

W (t) t ∈ { t0 = k − l } .

In particular, if instead of b ∈ (Fp)k we consider a set of codewords

c ∈ C, the enumerator WC is the complete weight enumerator of C,

and Al its weight distribution, as defined in [33] ch. 5§6.

Corollary 153. If each Y (j) is i.i.d., the total variation distance of

a random vector Y ∈ (Fp)k from uniform is bounded by

δY ≤
∑
t

W (t)

p−1∏
u=0

(
λY (j)(u)

)tu t ∈ { t0 < k } (6.30)
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Without knowledge of the full spectrum of Y (j) one may obtain a

coarser bound using the second largest eigenvalue is λY ∗, as in Defi-

nition 145:

δY ≤
k∑
l=1

Alλ
l
Y ∗ , (6.31)

where Al is the number of b ∈ (Fp)k with Hamming weight w(b) = l.

Proof. Each eigenvalue may further be written as

λY (b) =
k−1∏
u=0

λY (b(u))

=
k−1∏
u=0

p−1∑
v=0

ωb(u)·v
p µY (u)(v) ,

so all the b with identical composition t will correspond to equal eigen-

values, leading directly to Equation (6.30). If the Hamming weight

w(b(u)) = 0, then the u-th term of the product will be equal to

1; Equation (6.31) follows by considering the worst case λY (j) =

λY ∗ ∀j > 0.

6.2.4 Fourier bound on entropy extractors

In order to arrive at a bound involving the distribution of weights,

we begin by showing there is an unique association between code

words and eigenvalues, just as there was with the bias of individual

bits in the binary case (see Theorem 141).

If Y = GX, with X a random vector in (Fp)n, G a generator

matrix of an (n, k, d) code over Fp, we can establish a direct link



120 Chapter 6. Entropy extractors and Codes

between eigenvalues of Y and codewords of G using Equation (6.26):

λY (b) = E [fb(GX)]

=

pn−1∑
j=0

ωbTGj
p µX(j)

=

pn−1∑
j=0

ωc·j
p µX(j) (6.32)

with c = bTG a particular word of the code. Note that choosing a

particular (k × n) matrix G is equivalent to selecting the specific pk

rows specified by all the k codewords c that forms a subset of the pn

rows of F⊗np by which to multiply µX .

Having noted this fundamental link in principle in the same man-

ner as for the binary case (see Equation (6.16)), and having devel-

oped the required tools in Section 6.2.3, we can immediately state

some more specific results for particular cases of practical interest,

beginning with an extension of Theorem 151.

Theorem 154. Let Y = GX, where X ∈ (Fp)n is a random vector

of length n, with each entry being an independent but not necessarily

identically distributed variable X(j) ∈ Fp with mass function µX(j) ∈
Rp, and G is the generator matrix of an (n, k, d) linear code over Fp.
Then the b-th eigenvalue of the distribution of Y is

λY (b) =

n−1∏
j=0

λX(j)(c(j)) (6.33)

where c(j) ∈ Fp is the j-th symbol in the codeword cT = bTG.

Proof. The specific combination corresponding to a word c is from



6.2. New bounds for linear extractors 121

Equation (6.32):

λY (b) =

pn−1∑
j=0

ωc·j
p µX(j)

=
n−1∏
u=0

p−1∑
v=0

ωc(u)·v
p µX(u)(v) .

Corollary 155. If all X(j) are also i.i.d., the total variation distance

of a random vector Y ∈ (Fp)k from uniform is bounded by

δY ≤
∑
t

WC(t)

p−1∏
u=0

(
λX(j)(u)

)tu t ∈ { t0 < n } (6.34)

Without knowledge of the full spectrum of X(j) one may obtain a

coarser bound using the second largest eigenvalue is λX∗, as in Defi-

nition 145:

δY ≤
n∑
l=d

Alλ
l
X∗ , (6.35)

Here WC and Al are the complete weight enumerator and weight dis-

tribution of C, respectively, as in Definition 152.

Proof. The proof follows in the same manner as for Corollary 153.

The above can be viewed as a statement regarding the sum of n

random variables, each in Fp: if only w(c) symbols are nonzero, this

corresponds to a sum of w(c) terms.

Corollary 156. Using the minimum distance d, one may obtain the

bound

δY ≤ (pk − 1)λdX∗ .
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Note that all the results in this section extend to random vectors

X ∈ (Fpm)n, that is to sequences of random vectors taking values in

Fpm by using the right matrix to diagonalise the convolution matrix

of the sum of two such variables in order to compute the eigenvalues,

and assuming the symbols of the generator matrix are taken in the

same field, i.e. the code is chosen over Fpm . Following Section 6.2.3,

this may be done using the Kronecker product F⊗mnp .

Comparing Corollaries 143 and 156, it appears that a bound based

solely on the minimum distance quickly risks becoming far from sharp

as the dimension of the underlying random variable X(j) increases.

6.2.5 Non-linear codes

As shown in [28], it is possible to construct ad-hoc non-linear maps

with better properties than linear ones for specific cases; it was also

noted that for a given compression ratio k/n of the output, there

may exist non-linear codes with a greater minimum distance than any

linear code. Since non-linear codes do not have a generator matrix

G they are not straightforward to cover using the tools developed

thus far, but we may use some of them to frame the fundamental

issue with non-linear maps, as we see it, in terms of examining the

distribution of the product of random variables. Consider the special

case X1, X0 ∈ F2, and let their product be P2; its mass function may

be written as follows:

P2 = X1X0

µP2 =

[
1 µX1(0)

0 µX1(1)

][
µX0(0)

µX0(1)

]

As long as neither X0 or X1 follow the categorical distribution with

P(1) = 1, the probability of their product being zero is strictly greater
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than either of the initial probabilities. By induction,

lim
j→∞

µPj =

[
1

0

]
.

We may conclude that, while increasing the number of linear opera-

tions will lead to the uniform distribution in expectation, increasing

the number of non-linear operations will in general lead to a worsen-

ing of the output distribution, except in very specific cases. By way

of example, consider the two Bernoulli variables

B+ ∼ B(2−1/2), B− ∼ B(1− 2−1/2)

µB+ =

[
1− 2−1/2

2−1/2

]
µB− =

[
2−1/2

1− 2−1/2

]
.

Note that the bias of these two random variables is identical; however,

the distributions of their products are quite different:

µB+B+ =

[
2−1

2−1

]
µB−B− =

[
21/2 − 1

2
3
2 − 21/2

]
.

While it is possible to find non-linear maps that are optimal in some

specific cases, we observe that not only does repeated processing by

non-linear maps in general lead to a worsening of the output, but

it is also necessary to know or assume a specific distribution of the

sequence to be processed to even attempt to find such a processing;

even under the assumption of i.i.d. binary variables, knowledge of the

bias of each bit is not sufficient.





Chapter 7

Other results

“
All truths are easy to understand once they are dis-

covered; the point is to discover them. ”
Galileo Galilei

125
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7.1 An improvement of known bounds on code

parameters

Let C be an (n,M, d)q optimal code, namely there is no code with

same distance and size as C whose length is strictly less than n. As

seen in Chapter 2, many known bounds returns upper bounds on the

size of codes once n and d are decided. Implicitly they refer to a

code as an optimal one if it has the maximum number of codewords

allowed to a code with chosen length and distance. We show how in

some cases it is possible to improve many bounds by using our first

definition of optimality.

Definition 157. Let k and d be positive integers. We denote with

nq(k, d) a lower bound on the length Nq(k, d) of an optimal code with

combinatorial dimension k and minimum distance d.

Lemma 158. Nq(k, d) ≥ Nq(k − 1, d) + 1.

Proof. By contradiction, let Nq(k, d) = Nq(k − 1, d) and let C̄ be

an optimal (Nq(k, d),M, d)q code with combinatorial dimension k.

We consider its subcodes C̄α of C̄, with alpha ranging among all

the elements of Fq, consisting respectively of the codewords whose

last coordinate is equal to α. One of the q subcodes has combinato-

rial dimension at least equal to k − 1. This subcode is an (Nq(k +

1, d),M ′, d)q code, qk−2 < M ′, in which all codewords assume the

same value in the last coordinate and can therefore be punctured.

The result is an (Nq(k+ 1, d)−1,M ′)q code whose distance is at least

d. By Lemma 24 we can decrease its distance till we reach d and

obtain an (Nq(k+ 1, d)− 1,M ′, d)2 which contradicts the assumption

N2(k + 1, d) = N2(k, d).

Lemma 158 is a simple yet useful result, allowing improvements

of known bounds.
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Corollary 159. For any d, Nq(k+∆, d) ≥ Nq(k, d)+∆. Therefore a

lower bound contradicting nq(k+∆, d) ≥ nq(k, d)+∆ can be improved.

We will make use of this corollary to obtain new results on the

length of optimal codes by applying it to the following version of the

Plotkin bound.

Theorem 160 (Plotkin Bound).

n ≥
⌈
qd

q − 1

(
1− 1

M

)⌉
.

If a code has combinatorial dimension k, it has size at least equal to

qk−1 + 1, hence

n ≥
⌈
qd

q − 1

(
1− 1

qk−1 + 1

)⌉
.

The Plotkin bound, in its original formulation, can only be applied

to codes whose lengths are smaller than qd
q−1 . As a consequence of this

requirement, the bound in Theorem 160 becomes useless whenever
qd
q−1 < qk−1 + 1, i.e. whenever k > logq d + 1. In this case Theorem

160 always return the value qd
q−1 . This however contradicts Lemma

158 and leads us to the following result.

Theorem 161 (Bound D). Let ω = q
q−1 , let k > logq d + 1 and let

r =
⌊
logq d

⌋
+ 1. Then

n ≥ ωd+ k − r − 1.

Proof. It follows by applying Lemma 158 to the Plotkin bound in

Theorem 160.

Notice that the same arguments can be applied to codes whose

combinatorial dimension is k, even though M < qk. We obtain the

following corollary.
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Corollary 162. Let n ≥ ωd. Then

Aq(n, d) ≤ qn−ωd+r+2 − 1,

where Aq(n, d) is the maximum number of codewords of a code with

length n and minimum distance d, while r =
⌊
logq d

⌋
+ 1.

Proof. Let C be an optimal (n,Aq(n, d), d)q code, with n ≥ ωd, and let

k be the combinatorial dimension of C. If qk > ωd then k > logq d+1,

the bound follows from Theorem 161. Otherwise we have qk ≤ ωd,

and we observe that

ωd < qr+1 − 1 ≤ qn−ωd+r+2 − 1,

implying that k ≤ n− ωd+ r + 1.

In Table 7.1 we list several values of n and d for which the bound

for A2(n, d) in Corollary 162 outperforms some known bounds in the

case of binary codes. The comparison is made between the Elias

bound, the Johnson bound and the Hamming bound. The list of

parameters is not exhaustive, as the list of bounds for which the com-

parison can be done. From the brief experimental analysis, Corollary

162 provides stronger upper bounds for A2(n, d) than other bounds in

a small range of lengths close to twice the minimum distance d. More

detailed tables can be found in Appendix A.

7.2 The binary Möbius transform

Let f : (F2)k → F2 be a Boolean function. It is known that f

can be represented in an unique way as a square-free polynomial in

F2[x1, . . . , xk], and so it is uniquely determined by a set of 2k binary

coefficients.

Let us consider now the module R = F2[A], where A is a set

of variables ae whose indices are elements e ∈ (F2)k, and let f be a

function (F2)k → R. As above, f is uniquely identified as a square-free
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n d EB JB HB Cor. 162

21 10 158 162 277 127

22 10 299 257 460 255

25 12 198 293 490 127

26 12 344 460 801 255

29 14 229 523 863 127

30 14 425 818 1397 255

37 18 320 1642 2656 255

38 18 551 2550 4237 511

41 20 349 2890 4641 255

42 20 633 4476 7365 511

45 22 385 5069 8094 255

46 22 719 7832 12786 511

49 24 428 8865 14087 255

50 24 770 13672 22169 511

Table 7.1: Some values of (d, n) for which Corollary 162 outperforms

some known bounds for binary codes. EB stands for Elias bound, JB

for Johnson bound and HB for Hamming bound.
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polynomial in R[x1, . . . , xk], and we are interested in the coefficients

of f .

Let us denote with X = (x1, . . . , xk), e = (e1, . . . , ek) ∈ (F2)k and

Xe = xe11 · · ·x
ek
k . We can therefore describe f as the polinomial

f(X) =
∑

e∈(F2)k

aeX
e, (7.1)

where ae ∈ R.

We are interested in the map

(F2)k 3 e 7→ ae ∈ R.

This map can itself be described as a square-free polynomial function

af : (F2)k → R.

Definition 163. Let f ∈ R[X] be a square-free polynomial. We

denote with af ∈ R[e] the square-free polynomial associated to the

function (F2)k → R that send each e ∈ (F2)k to the coefficient ae

corresponding to the monomial aeX
e in f . The function af is called

the binary Möbius transform of f .

The classical description of the binary Möbius transform arises

from observing Equation 7.1. The value that f assumes on a given

point b ∈ (F2)n can be computed as

f (b) =
∑
e4b

ae,

where e 4 b if supp(e) ⊆ supp(b). This follows directly from the fact

that the evaluation at b of a given monomial Xe in f is non-zero if

and only if all variables in Xe are non-zero at b, hence if and only

if supp(e) 4 supp(b). Interesting enough, the converse is also true,

namely

ae =
∑
b4e

f(b).
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The proof of this fact can found e.g. in [9], alongside a divide-and-

conquer butterfly algorithm to compute the binary Möbius function

of a given f . We remark that the algorithm is described as a way to

compute the Absolute Normal Form of a Boolean function from its

truth table.

We present here a closed formula to obtain the absolute normal

form of the binary Möbius transform of a function. To our knowledge

this formula does not appear in previous published works.

Theorem 164. The binary Möbius transform is a map from R[X] to

itself, which can be defined by the following map:

a : F2[X] → F2[X]

f 7→ af = (1 +X) · f
(

X
1+X

) (7.2)

Proof. Using the notation in Equation 7.1, af (e) = ae, where ae is the

coefficient in f of the monomial Xe. By Formula (7.2) the monomial

Xe is mapped to the polynomial Xe(1 + X)1+e, which is the only

polynomial equal to 1 on e ∈ (F2)n only.

Example 4. We consider the Boolean function (F2)
2 → (F2)

1
defined by

f(x1, x2) = 1 + x1 + x1x2. From af we expect af (0, 0) = 1, af (1, 0) = 1,

af (0, 1) = 0 and af (1, 1) = 1. By Formula 7.2 we obtain

af = (1 + x1) (1 + x2) f
(

x1

1+x1
, x2

1+x2

)
= (1 + x1) (1 + x2)

(
1 + x1

1+x1
+ x1x2

(1+x1)(1+x2)

)
= (1 + x1) (1 + x2) + x1 (1 + x2) + x1x2

= 1 + x2 + x1x2.

The truth table of the obtained function is as expected.

Using the definition of af , the function f can be written as

f(X) =
∑

e∈(F2)k

af (e)Xe.

Proposition 165. a is an involution.
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Proof. By Theorem 164 we have

af (x1. . . . , xk) = (1 + x1) · · · (1 + xk) · f
(

x1

1 + x1
, . . . ,

xk
1 + xk

)
,

then,

a(af ) =
k∏
j=1

(1+xj) ·
k∏

h=1

(
1 +

xh
1 + xh

)
·f

(
x1

1+x1

1 + x1
1+x1

, . . . ,

xk
1+xk

1 + xk
1+xk

)
.

Since 1 + x
1+x = 1

1+x , by computation we obtain

a(af)(x1, . . . , xk) = f(x1, . . . , xk).

Suppose now to know the evaluation vector v of a map

f : (F2)k → F2 .

Due to Proposition 165, we known that v is the set of the coefficients

of the binary Möbius transform of f , so

af =
∑

e∈(F2)k

veX
e.

By applying the binary Möbius transform to af we can retrieve f .

Example 5. Let f be a polynomial map from (F2)3 to F2, defined

by the following relationships:

f(0, 0, 0) = 1

f(0, 0, 1) = 0

f(0, 1, 0) = 1

f(0, 1, 1) = 0

f(1, 0, 0) = 0

f(1, 0, 1) = 1

f(1, 1, 0) = 0

f(1, 1, 1) = 0
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Denoting with X = (x1, x2, x3), the binary Möbius transform of f is

therefore

af = X(0,0,0) +X(0,1,0) +X(1,0,1) = 1 + x2 + x1x3.

We apply the transform to 1 + x2 + x1x3, namely

f = (1 + x1)(1 + x2)(1 + x3)

(
1 +

x2

1 + x2
+

x1x3

(1 + x2)(1 + x3)

)
,

hence

f = 1 + x1 + x3 + x1x2x3.

We consider now the following two problems:

Problem 1:

Let L = {f1, . . . , fm} be polynomials in F2[X], with X = (x1, . . . , xn).

We consider the ideal I generated by L and we want to prove that

the variety of I contains points in (F2)n. This is equivalent to show

that the variety of the ideal J = 〈L,E〉 is not empty, where E =

{x2
1 + x1, . . . , x

2
n + xn} is the set of the field equations.

Problem 2:

Let F = (f1(X), . . . , fm(X)) be a vectorial Boolean map (F2)n →
(F2)m. We want to show that the zero vector belongs to the image of

F .

Proposition 166. Problem 1 and Problem 2 are equivalent.

Proof. Let P be a point of the variety of J . Since E ⊂ J , P belongs

to (F2)n and since L ⊂ J then fi(P ) = 0 for each i = 1, . . . ,m. This

implies that the Boolean function F = (f1, . . . , fm) evaluated at P is

the zero vector.

On the other hand, each point Q sent to zero by F are elements of

(F2)n for which fi(Q) = 0 for all i = 1, . . . ,m. This implies that they

belong to the variety of J .

Lemma 167. Let g and h be two Boolean functions and let vg and

vh be their evaluation vectors. The evaluation vector vφ of the map

φ = 1 + (1 + g) (1 + h) is given by the OR between vg and vh.
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Proof. φ(P ) = 0 if and only if both f and g are zero at P . This

is equivalent to say that both vg and vh have a zero in the same

coordinate j if and only if vφ is zero in the coordinate j.

Theorem 168. Let F = (f1, . . . , fm) be a vectorial Boolean function.

Then 0 ∈ Im(F ) if and only if the Boolean function

ϕ̄ = 1 + (1 + f1) · · · (1 + fm)

is not the constant map 1.

Proof. 0 ∈ Im(F ) if and only if the evaluation vectors v1, . . . , vm of

the Boolean functions f1, . . . , fm have at least a zero in a common

position. By Lemma 167 this can happen if and only if the evaluation

vector of ϕ̄ have at least a zero, and the only map without zeros in

its evaluation vector is the constant map 1.

Corollary 169. Let L = {f1, . . . , fm} be polynomials in F2[X], let

E = {x2
1 +x1, . . . , x

2
n+xn} be the set of the field equations and let J =

〈L,E〉. Then J = 〈1〉 if and only the map ϕ = (1 + f1) · · · (1 + fm) is

equal to 0.

Proof. It follows directly from Proposition 166 and Theorem 168.

We remark that Corollary 169 provides a method for testing whether

the variety of an ideal J in F2[X] containing the field equations is

empty or not, hence it is equivalent to Hilbert’s Nullstellensatz.

7.3 A probabilistic algorithm for the weight

distribution

We considered in Chapter 6.2 the use of linear code generator

matrices as whitening functions for the output of a random number

generator, and showed therein that the weight distribution of the code

uniquely determines the distribution of the resulting random variable.
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It is unfortunate that weight distributions are not readily available for

many codes; we therefore turn the problem on its head and use ran-

dom output of a specified quality to estimate the weight distribution.

We note from the outset that this is a highly inefficient solution to

the problem of computing weight distributions, costing a few orders

of magnitude more than simply enumerating every single weight; we

describe it purely for the sake of curiosity, and in the hope that im-

provements may be found. Furthermore, although the framework can

be extended to non-binary codes, the inefficiency of the algorithm

prompts us to consider the binary case only for the moment.

We begin by recalling how we can tie the distribution of the input

random bit stream X to that of the processed output Y = GX, with

G the generator matrix of a linear binary [n, k, d]2 code used as a

compression function on n bits of X. The characteristic function of a

random variable with mass function µ is its inverse Fourier transform,

which in the binary case is the Hadamard or Walsh transform:

χY = HµY

Let the balance of a random bit be defined as β = 1 − 2E[B]. This

definition is not usual in the sense that it is not symmetric, choosing

the opposite order of bits will change the sign; the more usual quantity

to measure is the bias ε/2 = |β|/2, but we here require β as above.

We can summarise our main reasoning as follows:

1. the b-th row of HµY corresponds to the c-th row of HµX , se-

lected by the codeword cT = bTG;

2. if the individual bits of X are i.i.d. with balance β, the c-th row

of HµX equals the characteristic function of a linear combina-

tion of w(c) bits, with w(c) the Hamming weight of c; hence,

the b-th row of HµY is equal to βw(c).

3. If we don’t know the full weight distribution {Al}l of the cor-

responding code C but we do know the generator matrix G, we
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can apply the compression function to a stream of independent

bits of specified balance and estimate A from the characteristic

function of the compressed stream Y .

Item 1 can be seen as follows. The b-th row of the transform can

be written as an expected value in terms of the b-th Walsh function

χY (b) = E[hb(Y )]

= E[(−1)b·Y ]

= E[(−1)b·GX ]

=

2n−1∑
x=0

(−1)b·GxµX(x)

=

2n−1∑
x=0

(−1)c·xµX(x)

= E[hc(X)]

Item 2 relies on the assumption of independence. The Hadamard

matrix of size 2k can always be decomposed using the Kronecker prod-

uct; the same is true for the mass function µX only if each Xj is

independent of the others:

H2k = H⊗k2

µX = µ⊗kXj

H2kµX =

n⊗
j=0

H2µXj

If each Xj is also identically distributed, then each H2µXj = (1, β)T .

By the ordering induced by the Kronecker product, considering row

c of the result, the value 1 will be selected in the j-th term of the

product whenever the j-th bit of the binary representation of c is

equal to 0, whence we deduce that χX(c) = βw(c).

Note that the zeroth word will always lead to a value of 1, which

we can safely ignore by considering the variable χ = χY − χU , and
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the uniform distribution over whatever space Y is defined will always

have a bias of 0. Assuming no special ordering of the words can be

found, we can treat χ as a random variable to be sampled.

The resulting algorithm is as follows:

1. generate N strings x of n independent random bits each with a

fixed balance β;

2. compute y = Gx for each string;

3. estimate the mass function of Y using the N resulting samples;

4. compute l̂ = logε |H⊗k2 µY | to recover the exponents estimating

the weights;

5. round l̂ to the nearest integer.

The above is of course specific to binary codes, for instance in the use

of β and the absolute value.

This algorithm clearly compares unfavourably to the determinis-

tic, brute-force solution: given G, one can simply compute every single

word of the code by cycling through all 2k possible messages y and

performing a matrix multiplication yTG for each of them. This yields

the full list of codewords, from which A may be immediately deduced.

By contrast, as described above we need to estimate the probability

of each y occurring by repeated sampling, which will likely take 100

samples per message, depending on the required accuracy, meaning

100 · 2k multiplications Gx. We can see an example of this in Fig-

ures 7.1 and 7.2, showing χY after applying the generator matrix of a

BCH(7,4,3) code as a compression function on bitstreams with a range

of β and two separate values of N . For reference, the weight distribu-

tion of this code is A = [1, 0, 0, 7, 7, 0, 0, 1]. To provide a more realistic

example we also considered the generator matrix of the BCH(33, 13,

5) code with increasing sample size; results are exemplified in Figures

7.3 and 7.4. The estimated distribution does not appear to be close
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Figure 7.1: Row values of the characteristic function of the processed

bit stream, as a function of the P(1) of each of the i.i.d. bits of the

stream, compared with powers of χj . These results are obtained using

2000 samples.
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Figure 7.2: Row values of the characteristic function of the processed

bit stream, as a function of the P(1) of each of the i.i.d. bits of the

stream, compared with powers of χj . These results are obtained using

2k = 16 samples.
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Figure 7.3: Application of the weight estimation algorithm by pro-

cessing of a bit stream with P(1) = 0.1 by the generator matrix of the

BCH(33, 13, 5) code.

to the known values even with 2k+2 samples (recall that 2k operations

would be the brute-force deterministic method cost). The overesti-

mate of high weights does not appear to be related to a high P(1), i.e.

a higher likelihood of sampling high-weight codewords. We also note

that even with 2k samples the algorithm fails to correctly estimate

the minimum distance, returning a non-zero estimate of words of a

smaller weight.
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Figure 7.4: Application of the weight estimation algorithm by pro-

cessing of a bit stream with P(1) = 0.9 by the generator matrix of the

BCH(33, 13, 5) code.





Appendix A

Tables of bounds

In this chapter we list some values obtained from some bounds

presented in this work. We use the following notations:

EB Elias bound.

JB Johnson bound.

SB Singleton bound.

HB Hamming bound.

PB Plotkin bound.

bA bound A, as in Proposition 109.

bB bound B. We use Corollary 112 for the binary case in Section A.1, and

Corollary 111 in the other sections.

bC bound C, as in Proposition 113.

bD bound D, as in Theorem 161.

Each section deals with codes respectively over F2, F3, F4, F5, F7

and F8. Each table contains lower bounds for a fixed distance and

several combinatorial dimensions.

To ease the comparison, each bound is converted to a lower bound

on Nq(q
k, d), and in each table, for each dimension k, we highlight in

bold the stronger lower bounds on n. Notice that bound A and bound
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B are bounds for Sq(k, d).

We remark that most of the distance-dimension pairs used in the

following sections are outside the Plotkin range, and in such cases the

Plotkin bound is constant.
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A.1 Bounds for codes in F2

q = 2, d = 4

k EB JB SB HB PB bA bB bC bD

3 7 7 6 6 7 7 7 3 -

4 8 8 7 7 8 8 8 3 8

5 9 10 8 9 8 9 9 3 9

6 10 11 9 10 8 10 10 3 10

7 11 12 10 11 8 11 11 3 11

8 12 13 11 12 8 12 12 3 12

9 13 14 12 13 8 13 13 3 13

10 14 15 13 14 8 14 14 3 14

11 16 16 14 15 8 15 15 3 15

12 17 18 15 17 8 16 16 3 16

13 18 19 16 18 8 17 17 3 17

14 19 20 17 19 8 18 18 3 18

15 20 21 18 20 8 19 19 3 19

16 21 22 19 21 8 20 20 7 20

17 22 23 20 22 8 21 21 7 21

18 23 24 21 23 8 22 22 7 22

19 24 25 22 24 8 23 23 7 23

20 25 26 23 25 8 24 24 7 24

21 26 27 24 26 8 25 25 7 25

22 27 28 25 27 8 26 26 7 26

23 28 29 26 28 8 27 27 7 27

24 29 30 27 29 8 28 28 7 28

25 30 31 28 30 8 29 29 7 29

26 32 32 29 31 8 30 30 7 30

27 33 34 30 33 8 31 31 7 31

28 34 35 31 34 8 32 32 7 32

Table A.1: Bounds for codes with q = 2, d = 4, 3 ≤ k ≤ 28.
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q = 2, d = 6

k EB JB SB HB PB bA bB bC bD

3 10 10 8 9 11 10 11 3 -

4 11 12 9 10 12 11 12 3 12

5 12 13 10 12 12 12 13 3 13

6 13 14 11 13 12 13 14 3 14

7 14 15 12 14 12 14 15 3 15

8 15 16 13 15 12 15 16 3 16

9 17 18 14 17 12 16 17 3 17

10 18 19 15 18 12 17 18 3 18

11 19 20 16 19 12 18 19 3 19

12 20 21 17 20 12 19 20 3 20

13 21 22 18 21 12 20 21 3 21

14 22 24 19 22 12 21 22 3 22

15 24 25 20 24 12 22 23 3 23

16 25 26 21 25 12 23 24 9 24

17 26 27 22 26 12 24 25 9 25

18 27 28 23 27 12 25 26 9 26

19 28 29 24 28 12 26 27 9 27

20 29 30 25 29 12 27 28 9 28

21 30 31 26 30 12 28 29 9 29

22 31 33 27 31 12 29 30 9 30

23 33 34 28 33 12 30 31 9 31

24 34 35 29 34 12 31 32 9 32

25 35 36 30 35 12 32 33 9 33

26 36 37 31 36 12 33 34 9 34

27 37 38 32 37 12 34 35 9 35

28 38 39 33 38 12 35 36 9 36

29 39 40 34 39 12 36 37 9 37

30 40 41 35 40 12 37 38 9 38

Table A.2: Bounds for codes with q = 2, d = 6, 3 ≤ k ≤ 30.
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q = 2, d = 8

k EB JB SB HB PB bA bB bC bD

3 13 12 10 11 14 13 14 6 -

4 15 14 11 13 15 14 15 7 -

5 16 16 12 14 16 15 16 7 16

6 16 17 13 16 16 16 17 7 17

7 18 18 14 17 16 17 18 7 18

8 19 20 15 18 16 18 19 7 19

9 20 21 16 20 16 19 20 7 20

10 21 22 17 21 16 20 21 7 21

11 22 23 18 22 16 21 22 7 22

12 23 24 19 23 16 22 23 7 23

13 25 26 20 25 16 23 24 7 24

14 26 27 21 26 16 24 25 7 25

15 27 28 22 27 16 25 26 7 26

16 28 29 23 28 16 26 27 15 27

17 29 31 24 29 16 27 28 15 28

18 31 32 25 31 16 28 29 15 29

19 32 33 26 32 16 29 30 15 30

20 33 34 27 33 16 30 31 15 31

21 34 35 28 34 16 31 32 15 32

22 35 36 29 35 16 32 33 15 33

23 36 37 30 36 16 33 34 15 34

24 37 39 31 38 16 34 35 15 35

25 39 40 32 39 16 35 36 15 36

26 40 41 33 40 16 36 37 15 37

27 41 42 34 41 16 37 38 15 38

28 42 43 35 42 16 38 39 15 39

29 43 44 36 43 16 39 40 15 40

30 44 45 37 44 16 40 41 15 41

Table A.3: Bounds for codes with q = 2, d = 8, 3 ≤ k ≤ 30.
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q = 2, d = 10

k EB JB SB HB PB bA bB bC bD

3 16 15 12 14 18 16 16 5 -

4 18 16 13 15 19 17 17 5 -

5 19 18 14 17 20 18 18 5 20

6 20 20 15 18 20 19 19 5 21

7 21 21 16 20 20 20 20 5 22

8 22 22 17 21 20 21 21 5 23

9 24 24 18 23 20 22 22 5 24

10 25 25 19 24 20 23 23 5 25

11 26 26 20 25 20 24 24 5 26

12 27 28 21 27 20 25 25 5 27

13 28 29 22 28 20 26 26 5 28

14 29 30 23 29 20 27 27 5 29

15 30 32 24 30 20 28 28 5 30

16 32 33 25 32 20 29 29 15 31

17 33 34 26 33 20 30 30 15 32

18 34 35 27 34 20 31 31 15 33

19 35 36 28 35 20 32 32 15 34

20 36 38 29 37 20 33 33 15 35

21 38 39 30 38 20 34 34 15 36

22 39 40 31 39 20 35 35 15 37

23 40 41 32 40 20 36 36 15 38

24 41 42 33 41 20 37 37 15 39

25 42 44 34 42 20 38 38 15 40

26 43 45 35 44 20 39 39 15 41

27 45 46 36 45 20 40 40 15 42

28 46 47 37 46 20 41 41 15 43

29 47 48 38 47 20 42 42 15 44

30 48 49 39 48 20 43 43 15 45

Table A.4: Bounds for codes with q = 2, d = 10, 3 ≤ k ≤ 30.
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q = 2, d = 12

k EB JB SB HB PB bA bB bC bD

3 19 18 14 16 21 19 21 9 -

4 22 19 15 18 23 20 23 9 -

5 23 21 16 20 24 21 24 9 24

6 24 22 17 21 24 22 25 9 25

7 25 24 18 23 24 23 26 9 26

8 26 25 19 24 24 24 27 9 27

9 27 27 20 26 24 25 28 9 28

10 28 28 21 27 24 26 29 9 29

11 29 30 22 28 24 27 30 9 30

12 31 31 23 30 24 28 31 9 31

13 32 32 24 31 24 29 32 9 32

14 33 34 25 32 24 30 33 9 33

15 34 35 26 34 24 31 34 9 34

16 36 36 27 35 24 32 35 21 35

17 37 37 28 36 24 33 36 21 36

18 38 39 29 37 24 34 37 21 37

19 39 40 30 39 24 35 38 21 38

20 40 41 31 40 24 36 39 21 39

21 41 42 32 41 24 37 40 21 40

22 42 43 33 42 24 38 41 21 41

23 43 45 34 44 24 39 42 21 42

24 45 46 35 45 24 40 43 21 43

25 46 47 36 46 24 41 44 21 44

26 47 48 37 47 24 42 45 21 45

27 48 49 38 48 24 43 46 21 46

28 49 51 39 50 24 44 47 21 47

29 51 52 40 51 24 45 48 21 48

30 52 53 41 52 24 46 49 21 49

Table A.5: Bounds for codes with q = 2, d = 12, 3 ≤ k ≤ 30.
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q = 2, d = 14

k EB JB SB HB PB bA bB bC bD

3 23 20 16 18 25 22 25 7 -

4 25 21 17 20 27 23 27 7 -

5 27 23 18 22 28 24 28 7 28

6 28 25 19 24 28 25 29 7 29

7 29 27 20 25 28 26 30 7 30

8 30 28 21 27 28 27 31 7 31

9 31 29 22 28 28 28 32 7 32

10 32 31 23 30 28 29 33 7 33

11 33 32 24 31 28 30 34 7 34

12 35 34 25 33 28 31 35 7 35

13 36 35 26 34 28 32 36 7 36

14 37 36 27 35 28 33 37 7 37

15 38 38 28 37 28 34 38 7 38

16 39 39 29 38 28 35 39 21 39

17 41 41 30 39 28 36 40 21 40

18 42 42 31 41 28 37 41 21 41

19 43 43 32 42 28 38 42 21 42

20 44 44 33 43 28 39 43 21 43

21 45 46 34 44 28 40 44 21 44

22 47 47 35 46 28 41 45 21 45

23 48 48 36 47 28 42 46 21 46

24 49 49 37 48 28 43 47 21 47

25 50 50 38 49 28 44 48 21 48

26 51 52 39 51 28 45 49 21 49

27 52 53 40 52 28 46 50 21 50

28 53 54 41 53 28 47 51 21 51

29 54 55 42 54 28 48 52 21 52

30 56 56 43 55 28 49 53 21 53

Table A.6: Bounds for codes with q = 2, d = 14, 3 ≤ k ≤ 30.
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q = 2, d = 16

k EB JB SB HB PB bA bB bC bD

3 25 22 18 21 28 25 28 12 -

4 29 24 19 23 30 26 30 14 -

5 31 26 20 25 31 27 31 15 -

6 32 28 21 26 32 28 32 15 32

7 32 29 22 28 32 29 33 15 33

8 33 31 23 30 32 30 34 15 34

9 35 32 24 31 32 31 35 15 35

10 36 34 25 33 32 32 36 15 36

11 37 35 26 34 32 33 37 15 37

12 38 37 27 36 32 34 38 15 38

13 39 38 28 37 32 35 39 15 39

14 41 40 29 38 32 36 40 15 40

15 42 41 30 40 32 37 41 15 41

16 43 42 31 41 32 38 42 31 42

17 44 44 32 42 32 39 43 31 43

18 45 45 33 44 32 40 44 31 44

19 47 46 34 45 32 41 45 31 45

20 48 48 35 46 32 42 46 31 46

21 49 49 36 48 32 43 47 31 47

22 50 50 37 49 32 44 48 31 48

23 52 51 38 50 32 45 49 31 49

24 53 53 39 52 32 46 50 31 50

25 54 54 40 53 32 47 51 31 51

26 55 55 41 54 32 48 52 31 52

27 56 56 42 55 32 49 53 31 53

28 58 58 43 57 32 50 54 31 54

29 59 59 44 58 32 51 55 31 55

30 60 60 45 59 32 52 56 31 56

Table A.7: Bounds for codes with q = 2, d = 16, 3 ≤ k ≤ 30.
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q = 2, d = 18

k EB JB SB HB PB bA bB bC bD

3 29 24 20 23 32 28 30 9 -

4 33 27 21 25 34 29 32 9 -

5 35 28 22 27 35 30 33 9 -

6 35 30 23 29 36 31 34 9 36

7 36 32 24 31 36 32 35 9 37

8 37 34 25 32 36 33 36 9 38

9 38 35 26 34 36 34 37 9 39

10 40 36 27 35 36 35 38 9 40

11 41 38 28 37 36 36 39 9 41

12 42 40 29 38 36 37 40 9 42

13 43 41 30 40 36 38 41 9 43

14 44 43 31 41 36 39 42 9 44

15 46 44 32 43 36 40 43 9 45

16 47 45 33 44 36 41 44 27 46

17 48 47 34 46 36 42 45 27 47

18 49 48 35 47 36 43 46 27 48

19 51 49 36 48 36 44 47 27 49

20 52 51 37 50 36 45 48 27 50

21 53 52 38 51 36 46 49 27 51

22 54 53 39 52 36 47 50 27 52

23 55 54 40 53 36 48 51 27 53

24 56 56 41 55 36 49 52 27 54

25 58 57 42 56 36 50 53 27 55

26 59 58 43 57 36 51 54 27 56

27 60 60 44 59 36 52 55 27 57

28 61 61 45 60 36 53 56 27 58

29 63 62 46 61 36 54 57 27 59

30 64 63 47 62 36 55 58 27 60

Table A.8: Bounds for codes with q = 2, d = 18, 3 ≤ k ≤ 30.
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q = 2, d = 20

k EB JB SB HB PB bA bB bC bD

3 31 27 22 25 35 31 32 15 -

4 36 29 23 27 38 32 34 15 -

5 38 30 24 29 39 33 35 15 -

6 39 32 25 31 40 34 36 15 40

7 40 34 26 33 40 35 37 15 41

8 41 36 27 35 40 36 38 15 42

9 42 38 28 37 40 37 39 15 43

10 43 40 29 38 40 38 40 15 44

11 45 41 30 40 40 39 41 15 45

12 46 42 31 41 40 40 42 15 46

13 47 44 32 43 40 41 43 15 47

14 48 45 33 44 40 42 44 15 48

15 50 47 34 46 40 43 45 15 49

16 51 48 35 47 40 44 46 35 50

17 52 50 36 48 40 45 47 35 51

18 53 51 37 50 40 46 48 35 52

19 54 52 38 51 40 47 49 35 53

20 56 54 39 53 40 48 50 35 54

21 57 55 40 54 40 49 51 35 55

22 58 56 41 55 40 50 52 35 56

23 59 58 42 57 40 51 53 35 57

24 61 59 43 58 40 52 54 35 58

25 62 60 44 59 40 53 55 35 59

26 63 62 45 61 40 54 56 35 60

27 64 63 46 62 40 55 57 35 61

28 65 64 47 63 40 56 58 35 62

29 66 66 48 64 40 57 59 35 63

30 67 67 49 66 40 58 60 35 64

Table A.9: Bounds for codes with q = 2, d = 20, 3 ≤ k ≤ 30.
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q = 2, d = 22

k EB JB SB HB PB bA bB bC bD

3 35 29 24 27 39 34 34 11 -

4 39 31 25 30 42 35 36 11 -

5 42 33 26 32 43 36 37 11 -

6 43 35 27 34 44 37 38 11 44

7 44 37 28 36 44 38 39 11 45

8 45 39 29 37 44 39 40 11 46

9 46 40 30 39 44 40 41 11 47

10 47 42 31 41 44 41 42 11 48

11 48 44 32 42 44 42 43 11 49

12 50 45 33 44 44 43 44 11 50

13 51 47 34 46 44 44 45 11 51

14 52 48 35 47 44 45 46 11 52

15 53 50 36 49 44 46 47 11 53

16 55 51 37 50 44 47 48 33 54

17 56 53 38 51 44 48 49 33 55

18 57 54 39 53 44 49 50 33 56

19 58 55 40 54 44 50 51 33 57

20 60 57 41 56 44 51 52 33 58

21 61 58 42 57 44 52 53 33 59

22 62 60 43 58 44 53 54 33 60

23 63 61 44 60 44 54 55 33 61

24 64 62 45 61 44 55 56 33 62

25 66 64 46 62 44 56 57 33 63

26 67 65 47 64 44 57 58 33 64

27 68 66 48 65 44 58 59 33 65

28 69 67 49 66 44 59 60 33 66

29 71 69 50 68 44 60 61 33 67

30 72 70 51 69 44 61 62 33 68

Table A.10: Bounds for codes with q = 2, d = 22, 3 ≤ k ≤ 30.
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A.2 Bounds for codes in F3

q = 3, d = 6

k EB SB HB PB bB bC bD

3 9 8 8 9 9 8 9

4 10 9 9 9 10 8 10

5 11 10 10 9 11 8 11

6 12 11 11 9 12 8 12

7 13 12 13 9 13 8 13

8 14 13 14 9 14 8 14

9 15 14 15 9 15 8 15

10 16 15 16 9 16 8 16

11 18 16 17 9 17 8 17

Table A.11: Bounds for codes with q = 3, d = 6, 3 ≤ k ≤ 11.

q = 3, d = 7

k EB SB HB PB bB bC bD

3 10 9 10 11 10 7 11

4 11 10 11 11 11 7 12

5 12 11 12 11 12 7 13

6 13 12 14 11 13 7 14

7 14 13 15 11 14 7 15

8 16 14 16 11 15 7 16

9 17 15 17 11 16 7 17

10 18 16 19 11 17 7 18

11 19 17 20 11 18 7 19

Table A.12: Bounds for codes with q = 3, d = 7, 3 ≤ k ≤ 11.
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q = 3, d = 8

k EB SB HB PB bB bC bD

3 12 10 10 12 11 8 12

4 12 11 11 12 12 8 13

5 13 12 12 12 13 8 14

6 15 13 14 12 14 8 15

7 16 14 15 12 15 8 16

8 17 15 16 12 16 8 17

9 18 16 17 12 17 8 18

10 19 17 19 12 18 8 19

11 20 18 20 12 19 8 20

12 21 19 21 12 20 8 21

Table A.13: Bounds for codes with q = 3, d = 8, 3 ≤ k ≤ 12.

q = 3, d = 9

k EB SB HB PB bB bC bD

3 13 11 12 13 13 13 -

4 14 12 13 14 14 13 14

5 15 13 14 14 15 13 15

6 16 14 16 14 16 13 16

7 17 15 17 14 17 13 17

8 18 16 18 14 18 13 18

9 19 17 20 14 19 13 19

10 20 18 21 14 20 13 20

11 22 19 22 14 21 13 21

12 23 20 23 14 22 13 22

Table A.14: Bounds for codes with q = 3, d = 9, 3 ≤ k ≤ 12.
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q = 3, d = 10

k EB SB HB PB bB bC bD

3 14 12 12 15 14 10 -

4 15 13 13 15 15 10 15

5 16 14 14 15 16 10 16

6 17 15 16 15 17 10 17

7 18 16 17 15 18 10 18

8 20 17 18 15 19 10 19

9 21 18 20 15 20 10 20

10 22 19 21 15 21 10 21

11 23 20 22 15 22 10 22

12 24 21 23 15 23 10 23

Table A.15: Bounds for codes with q = 3, d = 10, 3 ≤ k ≤ 12.

q = 3, d = 11

k EB SB HB PB bB bC bD

3 16 13 13 16 15 11 -

4 17 14 15 17 16 11 17

5 18 15 16 17 17 11 18

6 19 16 18 17 18 11 19

7 20 17 19 17 19 11 20

8 21 18 21 17 20 11 21

9 22 19 22 17 21 11 22

10 23 20 23 17 22 11 23

11 24 21 24 17 23 11 24

12 25 22 26 17 24 11 25

Table A.16: Bounds for codes with q = 3, d = 11, 3 ≤ k ≤ 12.
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q = 3, d = 12

k EB SB HB PB bB bC bD

3 17 14 13 18 16 16 -

4 18 15 15 18 17 16 18

5 19 16 16 18 18 16 19

6 20 17 18 18 19 16 20

7 21 18 19 18 20 16 21

8 22 19 21 18 21 16 22

9 23 20 22 18 22 16 23

10 25 21 23 18 23 16 24

11 26 22 24 18 24 16 25

12 27 23 26 18 25 16 26

Table A.17: Bounds for codes with q = 3, d = 12, 3 ≤ k ≤ 12.

q = 3, d = 13

k EB SB HB PB bB bC bD

3 19 15 15 19 17 13 -

4 20 16 17 20 18 13 20

5 20 17 18 20 19 13 21

6 21 18 20 20 20 13 22

7 23 19 21 20 21 13 23

8 24 20 23 20 22 13 24

9 25 21 24 20 23 13 25

10 26 22 25 20 24 13 26

11 27 23 27 20 25 13 27

12 28 24 28 20 26 13 28

Table A.18: Bounds for codes with q = 3, d = 13, 3 ≤ k ≤ 12.
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A.3 Bounds for codes in F4

q = 4, d = 9

k EB SB HB PB bB bC bD

3 12 11 11 12 12 9 12

4 13 12 12 12 13 9 13

5 14 13 14 12 14 9 14

6 15 14 15 12 15 9 15

7 16 15 16 12 16 9 16

8 17 16 17 12 17 9 17

9 18 17 19 12 18 9 18

10 20 18 20 12 19 9 19

11 21 19 21 12 20 9 20

Table A.19: Bounds for codes with q = 4, d = 9, 3 ≤ k ≤ 11.

q = 4, d = 10

k EB SB HB PB bB bC bD

3 13 12 11 14 13 10 14

4 14 13 12 14 14 10 15

5 15 14 14 14 15 10 16

6 16 15 15 14 16 10 17

7 17 16 16 14 17 10 18

8 19 17 17 14 18 10 19

9 20 18 19 14 19 10 20

10 21 19 20 14 20 10 21

11 22 20 21 14 21 10 22

Table A.20: Bounds for codes with q = 4, d = 10, 3 ≤ k ≤ 11.

160



q = 4, d = 11

k EB SB HB PB bB bC bD

3 15 13 12 15 14 11 15

4 15 14 14 15 15 11 16

5 16 15 15 15 16 11 17

6 17 16 17 15 17 11 18

7 19 17 18 15 18 11 19

8 20 18 19 15 19 11 20

9 21 19 20 15 20 11 21

10 22 20 22 15 21 11 22

11 23 21 23 15 22 11 23

12 24 22 24 15 23 11 24

Table A.21: Bounds for codes with q = 4, d = 11, 3 ≤ k ≤ 12.

q = 4, d = 12

k EB SB HB PB bB bC bD

3 16 14 12 16 16 15 16

4 17 15 14 16 17 15 17

5 18 16 15 16 18 15 18

6 19 17 17 16 19 15 19

7 20 18 18 16 20 15 20

8 21 19 19 16 21 15 21

9 22 20 20 16 22 15 22

10 23 21 22 16 23 15 23

11 24 22 23 16 24 15 24

12 25 23 24 16 25 15 25

Table A.22: Bounds for codes with q = 4, d = 12, 3 ≤ k ≤ 12.
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q = 4, d = 13

k EB SB HB PB bB bC bD

3 17 15 14 18 17 13 18

4 18 16 16 18 18 13 19

5 19 17 17 18 19 13 20

6 20 18 18 18 20 13 21

7 21 19 20 18 21 13 22

8 22 20 21 18 22 13 23

9 23 21 22 18 23 13 24

10 24 22 24 18 24 13 25

11 25 23 25 18 25 13 26

12 26 24 26 18 26 13 27

Table A.23: Bounds for codes with q = 4, d = 13, 3 ≤ k ≤ 12.

q = 4, d = 14

k EB SB HB PB bB bC bD

3 19 16 14 19 18 14 19

4 19 17 16 19 19 14 20

5 20 18 17 19 20 14 21

6 21 19 18 19 21 14 22

7 22 20 20 19 22 14 23

8 23 21 21 19 23 14 24

9 25 22 22 19 24 14 25

10 26 23 24 19 25 14 26

11 27 24 25 19 26 14 27

12 28 25 26 19 27 14 28

Table A.24: Bounds for codes with q = 4, d = 14, 3 ≤ k ≤ 12.
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q = 4, d = 15

k EB SB HB PB bB bC bD

3 20 17 16 20 19 15 20

4 21 18 17 20 20 15 21

5 21 19 19 20 21 15 22

6 22 20 20 20 22 15 23

7 24 21 22 20 23 15 24

8 25 22 23 20 24 15 25

9 26 23 24 20 25 15 26

10 27 24 26 20 26 15 27

11 28 25 27 20 27 15 28

12 29 26 28 20 28 15 29

Table A.25: Bounds for codes with q = 4, d = 15, 3 ≤ k ≤ 12.

q = 4, d = 16

k EB SB HB PB bB bC bD

3 21 18 16 21 21 21 -

4 22 19 17 22 22 21 22

5 23 20 19 22 23 21 23

6 24 21 20 22 24 21 24

7 25 22 22 22 25 21 25

8 26 23 23 22 26 21 26

9 27 24 24 22 27 21 27

10 28 25 26 22 28 21 28

11 29 26 27 22 29 21 29

12 30 27 28 22 30 21 30

Table A.26: Bounds for codes with q = 4, d = 16, 3 ≤ k ≤ 12.
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A.4 Bounds for codes in F5

q = 5, d = 11

k EB SB HB PB bB bC bD

3 14 13 12 14 14 11 14

4 15 14 13 14 15 11 15

5 16 15 15 14 16 11 16

6 17 16 16 14 17 11 17

7 18 17 17 14 18 11 18

8 19 18 18 14 19 11 19

9 20 19 20 14 20 11 20

10 21 20 21 14 21 11 21

11 22 21 22 14 22 11 22

Table A.27: Bounds for codes with q = 5, d = 11, 3 ≤ k ≤ 11.

q = 5, d = 12

k EB SB HB PB bB bC bD

3 15 14 12 15 15 12 15

4 16 15 13 15 16 12 16

5 17 16 15 15 17 12 17

6 18 17 16 15 18 12 18

7 19 18 17 15 19 12 19

8 20 19 18 15 20 12 20

9 21 20 20 15 21 12 21

10 22 21 21 15 22 12 22

11 24 22 22 15 23 12 23

Table A.28: Bounds for codes with q = 5, d = 12, 3 ≤ k ≤ 11.
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q = 5, d = 13

k EB SB HB PB bB bC bD

3 16 15 13 17 16 13 17

4 17 16 15 17 17 13 18

5 18 17 16 17 18 13 19

6 19 18 18 17 19 13 20

7 20 19 19 17 20 13 21

8 21 20 20 17 21 13 22

9 22 21 22 17 22 13 23

10 24 22 23 17 23 13 24

11 25 23 24 17 24 13 25

12 26 24 25 17 25 13 26

Table A.29: Bounds for codes with q = 5, d = 13, 3 ≤ k ≤ 12.

q = 5, d = 14

k EB SB HB PB bB bC bD

3 18 16 14 18 17 14 18

4 18 17 15 18 18 14 19

5 19 18 16 18 19 14 20

6 20 19 18 18 20 14 21

7 21 20 19 18 21 14 22

8 23 21 20 18 22 14 23

9 24 22 22 18 23 14 24

10 25 23 23 18 24 14 25

11 26 24 24 18 25 14 26

12 27 25 25 18 26 14 27

Table A.30: Bounds for codes with q = 5, d = 14, 3 ≤ k ≤ 12.
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q = 5, d = 15

k EB SB HB PB bB bC bD

3 19 17 15 19 19 18 19

4 20 18 16 19 20 18 20

5 21 19 18 19 21 18 21

6 21 20 19 19 22 18 22

7 23 21 21 19 23 18 23

8 24 22 22 19 24 18 24

9 25 23 23 19 25 18 25

10 26 24 25 19 26 18 26

11 27 25 26 19 27 18 27

12 28 26 27 19 28 18 28

Table A.31: Bounds for codes with q = 5, d = 15, 3 ≤ k ≤ 12.

q = 5, d = 16

k EB SB HB PB bB bC bD

3 20 18 16 20 20 16 20

4 21 19 16 20 21 16 21

5 22 20 18 20 22 16 22

6 23 21 19 20 23 16 23

7 24 22 21 20 24 16 24

8 25 23 22 20 25 16 25

9 26 24 23 20 26 16 26

10 27 25 25 20 27 16 27

11 28 26 26 20 28 16 28

12 29 27 27 20 29 16 29

Table A.32: Bounds for codes with q = 5, d = 16, 3 ≤ k ≤ 12.
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q = 5, d = 17

k EB SB HB PB bB bC bD

3 21 19 17 22 21 17 22

4 22 20 18 22 22 17 23

5 23 21 19 22 23 17 24

6 24 22 21 22 24 17 25

7 25 23 22 22 25 17 26

8 26 24 24 22 26 17 27

9 27 25 25 22 27 17 28

10 28 26 26 22 28 17 29

11 29 27 28 22 29 17 30

12 30 28 29 22 30 17 31

Table A.33: Bounds for codes with q = 5, d = 17, 3 ≤ k ≤ 12.

q = 5, d = 18

k EB SB HB PB bB bC bD

3 23 20 18 23 22 18 23

4 23 21 18 23 23 18 24

5 24 22 19 23 24 18 25

6 25 23 21 23 25 18 26

7 26 24 22 23 26 18 27

8 27 25 24 23 27 18 28

9 28 26 25 23 28 18 29

10 29 27 26 23 29 18 30

11 30 28 28 23 30 18 31

12 32 29 29 23 31 18 32

Table A.34: Bounds for codes with q = 5, d = 18, 3 ≤ k ≤ 12.
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A.5 Bounds for codes in F7

q = 7, d = 15

k EB SB HB PB bB bC bD

3 18 17 15 18 18 15 18

4 19 18 16 18 19 15 19

5 20 19 17 18 20 15 20

6 21 20 18 18 21 15 21

7 22 21 20 18 22 15 22

8 23 22 21 18 23 15 23

9 23 23 22 18 24 15 24

10 25 24 23 18 25 15 25

11 26 25 25 18 26 15 26

Table A.35: Bounds for codes with q = 7, d = 15, 3 ≤ k ≤ 11.

q = 7, d = 16

k EB SB HB PB bB bC bD

3 19 18 16 19 19 16 19

4 20 19 16 19 20 16 20

5 21 20 17 19 21 16 21

6 22 21 18 19 22 16 22

7 23 22 20 19 23 16 23

8 24 23 21 19 24 16 24

9 25 24 22 19 25 16 25

10 26 25 23 19 26 16 26

11 27 26 25 19 27 16 27

Table A.36: Bounds for codes with q = 7, d = 16, 3 ≤ k ≤ 11.

168



q = 7, d = 17

k EB SB HB PB bB bC bD

3 20 19 17 20 20 17 20

4 21 20 17 20 21 17 21

5 22 21 18 20 22 17 22

6 23 22 20 20 23 17 23

7 24 23 21 20 24 17 24

8 25 24 22 20 25 17 25

9 26 25 24 20 26 17 26

10 27 26 25 20 27 17 27

11 28 27 26 20 28 17 28

12 29 28 27 20 29 17 29

Table A.37: Bounds for codes with q = 7, d = 17, 3 ≤ k ≤ 12.

q = 7, d = 18

k EB SB HB PB bB bC bD

3 21 20 18 21 21 18 21

4 22 21 18 21 22 18 22

5 23 22 18 21 23 18 23

6 24 23 20 21 24 18 24

7 25 24 21 21 25 18 25

8 26 25 22 21 26 18 26

9 27 26 24 21 27 18 27

10 28 27 25 21 28 18 28

11 29 28 26 21 29 18 29

12 30 29 27 21 30 18 30

Table A.38: Bounds for codes with q = 7, d = 18, 3 ≤ k ≤ 12.
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q = 7, d = 19

k EB SB HB PB bB bC bD

3 23 21 19 23 22 19 23

4 23 22 19 23 23 19 24

5 24 23 20 23 24 19 25

6 25 24 21 23 25 19 26

7 26 25 23 23 26 19 27

8 27 26 24 23 27 19 28

9 28 27 25 23 28 19 29

10 29 28 27 23 29 19 30

11 30 29 28 23 30 19 31

12 31 30 29 23 31 19 32

Table A.39: Bounds for codes with q = 7, d = 19, 3 ≤ k ≤ 12.

q = 7, d = 20

k EB SB HB PB bB bC bD

3 24 22 20 24 23 20 24

4 24 23 20 24 24 20 25

5 25 24 20 24 25 20 26

6 26 25 21 24 26 20 27

7 27 26 23 24 27 20 28

8 28 27 24 24 28 20 29

9 29 28 25 24 29 20 30

10 30 29 27 24 30 20 31

11 31 30 28 24 31 20 32

12 32 31 29 24 32 20 33

Table A.40: Bounds for codes with q = 7, d = 20, 3 ≤ k ≤ 12.
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q = 7, d = 21

k EB SB HB PB bB bC bD

3 25 23 21 25 25 24 25

4 26 24 21 25 26 24 26

5 26 25 21 25 27 24 27

6 27 26 23 25 28 24 28

7 28 27 24 25 29 24 29

8 29 28 25 25 30 24 30

9 30 29 27 25 31 24 31

10 31 30 28 25 32 24 32

11 32 31 29 25 33 24 33

12 33 32 31 25 34 24 34

Table A.41: Bounds for codes with q = 7, d = 21, 3 ≤ k ≤ 12.

q = 7, d = 22

k EB SB HB PB bB bC bD

3 26 24 22 26 26 22 26

4 27 25 22 26 27 22 27

5 28 26 22 26 28 22 28

6 28 27 23 26 29 22 29

7 29 28 24 26 30 22 30

8 30 29 25 26 31 22 31

9 31 30 27 26 32 22 32

10 32 31 28 26 33 22 33

11 33 32 29 26 34 22 34

12 35 33 31 26 35 22 35

Table A.42: Bounds for codes with q = 7, d = 22, 3 ≤ k ≤ 12.
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A.6 Bounds for codes in F8

q = 8, d = 17

k EB SB HB PB bB bC bD

3 20 19 17 20 20 17 20

4 21 20 17 20 21 17 21

5 22 21 18 20 22 17 22

6 23 22 19 20 23 17 23

7 23 23 21 20 24 17 24

8 24 24 22 20 25 17 25

9 26 25 23 20 26 17 26

10 27 26 25 20 27 17 27

11 27 27 26 20 28 17 28

Table A.43: Bounds for codes with q = 8, d = 17, 3 ≤ k ≤ 11.

q = 8, d = 18

k EB SB HB PB bB bC bD

3 21 20 18 21 21 18 21

4 22 21 18 21 22 18 22

5 23 22 18 21 23 18 23

6 24 23 19 21 24 18 24

7 24 24 21 21 25 18 25

8 26 25 22 21 26 18 26

9 27 26 23 21 27 18 27

10 27 27 25 21 28 18 28

11 29 28 26 21 29 18 29

Table A.44: Bounds for codes with q = 8, d = 18, 3 ≤ k ≤ 11.
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q = 8, d = 19

k EB SB HB PB bB bC bD

3 22 21 19 22 22 19 22

4 23 22 19 22 23 19 23

5 24 23 19 22 24 19 24

6 25 24 21 22 25 19 25

7 26 25 22 22 26 19 26

8 27 26 24 22 27 19 27

9 27 27 25 22 28 19 28

10 29 28 26 22 29 19 29

11 30 29 27 22 30 19 30

12 31 30 29 22 31 19 31

Table A.45: Bounds for codes with q = 8, d = 19, 3 ≤ k ≤ 12.

q = 8, d = 20

k EB SB HB PB bB bC bD

3 23 22 20 23 23 20 23

4 24 23 20 23 24 20 24

5 25 24 20 23 25 20 25

6 26 25 21 23 26 20 26

7 27 26 22 23 27 20 27

8 28 27 24 23 28 20 28

9 29 28 25 23 29 20 29

10 30 29 26 23 30 20 30

11 31 30 27 23 31 20 31

12 32 31 29 23 32 20 32

Table A.46: Bounds for codes with q = 8, d = 20, 3 ≤ k ≤ 12.
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q = 8, d = 21

k EB SB HB PB bB bC bD

3 24 23 21 24 24 21 24

4 25 24 21 24 25 21 25

5 26 25 21 24 26 21 26

6 27 26 22 24 27 21 27

7 28 27 24 24 28 21 28

8 29 28 25 24 29 21 29

9 30 29 26 24 30 21 30

10 31 30 28 24 31 21 31

11 32 31 29 24 32 21 32

12 33 32 30 24 33 21 33

Table A.47: Bounds for codes with q = 8, d = 21, 3 ≤ k ≤ 12.

q = 8, d = 22

k EB SB HB PB bB bC bD

3 26 24 22 26 25 22 26

4 26 25 22 26 26 22 27

5 27 26 22 26 27 22 28

6 28 27 22 26 28 22 29

7 29 28 24 26 29 22 30

8 30 29 25 26 30 22 31

9 31 30 26 26 31 22 32

10 32 31 28 26 32 22 33

11 33 32 29 26 33 22 34

12 34 33 30 26 34 22 35

Table A.48: Bounds for codes with q = 8, d = 22, 3 ≤ k ≤ 12.
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q = 8, d = 23

k EB SB HB PB bB bC bD

3 27 25 23 27 26 23 27

4 27 26 23 27 27 23 28

5 28 27 23 27 28 23 29

6 29 28 24 27 29 23 30

7 30 29 25 27 30 23 31

8 31 30 26 27 31 23 32

9 32 31 28 27 32 23 33

10 33 32 29 27 33 23 34

11 34 33 30 27 34 23 35

12 35 34 32 27 35 23 36

Table A.49: Bounds for codes with q = 8, d = 23, 3 ≤ k ≤ 12.

q = 8, d = 24

k EB SB HB PB bB bC bD

3 28 26 24 28 28 27 28

4 29 27 24 28 29 27 29

5 29 28 24 28 30 27 30

6 30 29 24 28 31 27 31

7 31 30 25 28 32 27 32

8 32 31 26 28 33 27 33

9 33 32 28 28 34 27 34

10 34 33 29 28 35 27 35

11 35 34 30 28 36 27 36

12 36 35 32 28 37 27 37

Table A.50: Bounds for codes with q = 8, d = 24, 3 ≤ k ≤ 12.
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