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Abstract  
This paper presents an innovative microwave imaging technique suitable for NDT/NDE applications. To reduce the 
number of problem unknowns as well a the computational load by improving the convergence rate of the process, the 
available a-priori information is exploited by introducing a computationally-effective procedure for the prediction of the 
electric field based on the updating Sherman-Morrison-Woodbury (SMW) formula. The numerical results as well as 
comparisons with state-of-the-art methods confirm the effectiveness, the feasibility, and the robustness of the proposed 
approach. 
 
Introduction 
Microwave imaging of dielectric objects is an expensive computational process because of the great number of 
unknowns and some negative features of the arising inverse scattering problem. However, testing an object for evaluating 
the presence of a defect allows one to reduce the computational complexity by exploiting the available a-priori 
information on the scenario under test [1]. As far as numerical inverse scattering techniques are concerned, such a 
problem has been faced by parameterizing the crack in order to reduce the dimension of the search space [2]-[4]. 
More recently, to further exploit the amount of available information on the unperturbed geometry, an improved 
approach has been presented in [5]. In this case, the investigation domain has been limited to the area of the unknown 
defect, which belongs to an inhomogeneous space (i.e., the host medium without the defect and the external background). 
However, although the number of unknowns has been decreased since the “investigation domain” was reduced to the 
area of the defect, the approach still requires the electric field prediction. Moreover, the relation between induced electric 
field and features of the crack is neglected (or not fully exploited). To overcome such a deficiency, this paper describes a 
new approach aimed at estimating in a faster and more effective fashion the electric field distribution in the investigation 
domain starting from the geometric features of the defect as retrieved during the iterative reconstruction process. The 
arising reduction of the number of unknowns leads to an increasing of the convergence rate as well as to an enhancement 
of the reconstruction accuracy of the inversion procedure. 
 
Mathematical Formulation 
Let us consider the two-dimensional geometry shown in Fig. 1 where the structure under test belongs to a region called 
investigation domain, invD , the background being a homogeneous external medium. The investigation domain is 

illuminated by V sources, which radiate known incident electric fields , v
incE Vv ,...,1=  at the working frequency . The 

scattered electric field , resulting from the interactions between scatterers and fields, is collected in a set of M 
receivers located at a set of measurement points in an observation domain  external to the investigation domain. 
Concerning the illumination, let us assume a unit plane wave TM-polarized. 
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Figure 1. Problem Geometry 

 
Mathematically, after discretization with the Richmond’s method [7], the electromagnetic problem can be described as 
follows: 
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v
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v
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v
inc EGEE τint−=                      (4) 

 
where  and [ ] are the external and the internal Green's matrix, respectively; [ extG ] intG [ ]τ  is a diagonal matrix whose 
elements are given by ( )nnnsns yx ,τδτ = , snifns ==1δ  and  otherwise, 0=nsδ ( )yx,τ  being the object function describing 
the dielectric properties of the investigation domain. 
By neglecting the a-priori information on the scenario under test, the problem is that of determining the object function 

)  and the electric field  at each pixel (( nn yx ,τ )( nn
v
tot yxE , Nn ,...,1= ) of . However, if it is assumed to approximate the 

defect as a homogeneous “object” of rectangular shape centered at 
invD

( )00 , yx , characterized by a length L, a width W, and 
an orientation θ  (see Fig. 1), then the unknown object function ( )nn yx ,τ  can be expressed as a function of the features of 
the crack { }θψ ,,,, 00 WLyx=  as well as , ( )nn

v
tot yxE , Nn ,...,1= , [through the scattering relations (3) and (4)]. The arising 

problem is then recast as an optimization one by defining a suitable cost function 
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where  is the scattered electric field measured at mv

scattE , ( )mm yx , ,  is the incident field in ; nv
incE , ( )nn yx , ( )ψmv

data
,Θ  and 

( )ψmv
state
,Θ  are the “data term” and the “state term” related to (3) and (4), respectively. Due to the non-linearity of (5) and 

thanks to the reduced number of problem unknowns, the minimization of ( )ψΘ  is carried out by means of a suitable 
version of a Genetic Algorithm (GA) [8][9] according to the implementation described in [2]. 
As far as the computation of the unknown electric field [ ] ( )( )ψℑ=v

TOTE  is concerned, a method based on the SMW formula 
for matrix inversion [10] is taken into account. Let us assume that the perturbed geometry (i.e., the host medium with the 
defect) consists of P ( ) discretization sub-domains different from a known reference configuration (characterized 
by a known distribution , . Moreover, let us introduce the matrices,  and  concerned with 
the perturbed and the reference geometry, and given by  

NP <
( )( )nnref yx ,τ Nn ,...,1= [ ]Ω [ ]Υ

 
[ ] [ ] [ ][ ]{ τintGI −=Ω }                        (6) 

 
[ ] [ ] [ ][ ]{ }refGI τint−=Υ .                      (7) 

 
It should be pointed out that the unknown electric field distribution in invD  can be directly computed by using a 
computationally expensive matrix inversion as [ ] [ ] [ ]v

inc
v
tot EE 1−Ω= . While, the computational cost strongly reduces, if [ ] 1−Υ  

is available and when the SMW updating formula 
 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]{ } [ ] [ ] 111111 −−−−−− ΥΥ−Υ+Υ=Ω TT FEFIE    (8) 
 
is used. Within such a framework, two different strategies can be adopted for the iterative estimation of [ ]v

totE . The main 
difference lies in the choice of the reference configuration for the dielectric profile in the investigation domain.  
 
A. SMW Unperturbed Configuration (SMWU) 
In this case, the unperturbed geometry is assumed as the reference model, then 
 

( ) ( ) ( ) ( )nnUnnref yxyx ,, ττ =       Nn ,...,1=             (9) 



Thus, the reference matrix [  can be computed off-line and only once during the initialization phase of the iterative 
minimization ( , k being the iteration index). 

]Υ
1=k

 
B. SMW Best Individual (SMWB) 
Since a multiple-agents GA-based method is used to minimize (5), the reference model is chosen at each iteration as 
follows 
 

( )[ ] [ ] 1, −= koptref ττ                            (10) 
 
where  is a function of [ ] 1, −koptτ { }( )[ ]

1,1,
minarg

−−
Θ=

koptqkopt
ψψ  according to the mapping between crack features and the profile 

of the object function in . indD
 
Numerical Validation 
In this section, the  SMW-based approach will be assessed by considering a selected set of numerical simulations. Both 
the proposed versions of the approach will be analyzed and the achieved results will be compared with those of previous 
implementations, (denoted by FGA [2] and IGA [5]) in terms of “location error” cδ , the “dimensioning error” aδ  (as 
defined in [2]). 
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Figure 2. Behavior of cδ  versus the dimension of the defect and the  when (a) the SMWU, (b) the SMWB, (c) the FGA, and (d) 
the IGA are used. 
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Concerning the problem geometry, a square homogeneous cylinder of side  has been illuminated by a set of 

 plane-waves and the scattering data have been collected in 
08.0 λ=l

4=V 50=M  measurement points equally-spaced on a 
circle  in radius. Moreover, 064.0 λ=r invD  has been discretized into 256=N  square sub-domains -sided. 005.0 λ=celll



Moreover, to simulate realistic environmental conditions, a noise of Gaussian-type and characterized by a fixed signal-to-
noise ratio (SNR) has been added to the scattering data. 
The first example is aimed at evaluating the performance of the proposed approach for different SNRs and crack 
dimensions. To this end, the dimension of the defect have been varied from  up to  and 
the values of SNR in the range between and .  
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Figure 2 shows the contour-level representation of the localization error cδ  when the SMWU [Figure 2(a)] and the SMWB 
[Figure 2(b)] are used. For completeness, the results obtained with the FGA [Figure 2(c)] and the IGA [Figure 2(d)] are 
reported, as well. From such plots, it can be argued that the SMW-based approaches generally outperform the FGA 
procedure when  and the IGA technique when . The localization accuracy of the SMW-
based techniques is further confirmed on average since 
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76.2=
USMWcδ  and 62.3=

BSMWcδ  versus 82.3=
FGAcδ  and 

84.3=
IGAcδ . Moreover, by comparing Figure 2(a) and Fig. 2(b), it turns out that SMWB is more sensitive to the noise 

level than SMWU, especially for lowest values of . cA
As far as the dimensioning of the defect is concerned, the SMWU slightly outperforms the SMWB and the IGA 
approaches ( 94.13=

USMWaδ  and 37.15=
BSMWaδ , 69.14=

IGAaδ ). Such a behavior is more evident for low noise 

powers [Figs. 3(a)-(b)]. On the other hand, a larger improvement is achieved with respect to the FGA technique 
00.33=

FGAaδ . 
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Figure 3. Behavior of aδ  versus the dimension of the defect and the  when (a) the SMWU, (b) the SMWB, (c) the FGA, and (d) 
the IGA are used. 
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