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Abstract—Up-to-date canopy height model (CHM) estimates
are of key importance for forest resources monitoring and
disturbance analysis. In this work we present a study on the
potential of Deep Learning (DL) for the regression of forest
height from TanDEM-X bistatic interferometric (InSAR) data.
We propose a novel fully convolutional neural network (CNN)
framework, trained in a supervised manner using reference CHM
measurements derived from the LiDAR LVIS airborne sensor
from NASA. The reference measurements were acquired during
the joint NASA-ESA 2016 AfriSAR campaign over five sites in
Gabon, Africa, characterized by the presence of different kinds of
vegetation, spanning from tropical primary forests to mangroves.
Together with the DL architecture and training strategy, we
present a series of experiments to assess the impact of different
input features on the network estimation accuracy (in particular
of bistatic InSAR-related ones). When tested on all considered
sites, the proposed DL model achieves an overall performance of
1.46m mean error, 4.2m mean absolute error and 15.06% mean
absolute percentage error. Furthermore, we perform a spatial
transfer analysis aimed at deriving preliminary insights on the
generalization capability of the network when trained and tested
on data sets acquired over different locations, combining different
kinds of tropical vegetation. The obtained results are promising
and already in line with state-of-the-art methods based on both
physical-based modelling and data-driven approaches, with the
remarkable advantage of requiring only one single TanDEM-X
acquisition at inference time.

Index Terms—Synthetic Aperture Radar, SAR Interferometry,
Bistatic Coherence, TanDEM-X, Forest Height, Deep Learning,
Convolutional Neural Network.

I. INTRODUCTION

Forests are one of the most relevant ecosystems on the
planet. They cover about 31% of the total Earth surface
[1], impacting a variety of biophysical processes, such as
the carbon and water cycles, as well as weather and local
climate [2]–[4]. During their natural growth process, plants
extract carbon atoms from the atmosphere, in the form of
carbon dioxide, to combine them with water molecules and
create carbohydrates. Some of these synthesized compounds
are stored by plants themselves, resulting in a net build-up
of new biomass [5]. About 30% of total vegetated areas are
primarily used to gather forest products, with an additional
18% assigned for multiple use, including, e.g., the production
of food. Furthermore, roughly 880 million people depend on
forests for fuel production from wood, with an estimated 90%
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of people living in extreme poverty having their livelihoods
crucially depending on forests [1]. Human logging activities
and forest degradation affect an estimated 10 million ha on a
yearly basis [1]. Moreover, natural hazards, such as wildfires
and severe weather events, can also impact forest resources as
they relate to propagation patterns and damage evaluations [6]
[7].

All these aspects highlight the need for forest disturbance
analysis, that is, to monitor changes in forests over time,
to characterize their causes and to quantify their impact. To
properly assess the state of a forest, different parameters, such
as forest cover, canopy height (CH) and above ground biomass
(AGB), are typically used. The most accurate way to retrieve
these properties is to manually perform in-situ measurements
[8], [9]. Especially for remote areas, the process is highly
expensive, time consuming and ultimately unfeasible for large-
scale mapping or recurrent assessments [10].

As a way to overcome these constrains, remote sensing
(RS)-based approaches for forest parameters estimation have
gained wide attention, as an ever-growing variety of Earth
Observation (EO) sensors and techniques has been developed
and made available throughout the years [11] [12] [13] [14].
In this context, Light Detection and Ranging (LiDAR) systems
represent the most straightforward alternative to replace direct
approaches, as the height of the canopies can be directly
inferred from the time-of-flight of the laser signal returns.
Airborne and spaceborne laser scanning systems, such as
NASA’s Land, Vegetation, and Ice Sensor (LVIS) [15] and
the Global Ecosystem Dynamics Investigation (GEDI) mission
[16], are particularly attractive, as the current technology is
capable of achieving high sampling rates for medium-to-high
resolution products.

Differently, modern spaceborne optical and synthetic aper-
ture radar (SAR) imaging systems offer global, continuous
coverage and revisit times in the order of a few days [17]
[18], overcoming the coverage limitations of LiDAR sys-
tems. An effective exploitation of these products poses its
own challenges, since forest parameters cannot be directly
estimated from the observed quantities. Instead, they require
physical model-based or data-driven approaches to model the
relationship between the imagery and the on-ground forest
properties [11], [19].

Particularly, allometric equations are an extensively used
approach for the indirect estimation of forest parameters from
RS data [20]. The result is the generation of theoretical
models which are normally tuned to the specific conditions and
geographic locations that have been chosen for their calibration
[13].

More sophisticated approaches to parameters regression
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consist in physically modelling the interaction of the received
signal with the illuminated vegetation. For example, regarding
radar sensors, the propagation of the electromagnetic signal
through the canopy structure can be theoretically modelled,
and the resulting interaction expressed in terms of differ-
ent properties of the forest, such as its density, height and
composition. The extraction of these specific parameters is
thus performed through the inversion of such models, to be
estimated using a sufficient number of observations.

A well known example of physical-based model based on
SAR data is the Random Volume over Ground (RVoG), first
proposed to estimate forest height from single baseline fully
polarimetric (full-pol) InSAR (PolInSAR) observations [21],
[22]. Despite the relative simplicity of the model, it can
achieve a good prediction accuracy using few observations or
a-priori information, establishing the RVoG as one of the main
references in the literature. It has been demonstrated that the
limited availability of full-pol PolInSAR acquisitions for the
inversion of the RVoG model could be overcome by utilizing
a larger stack of dual-pol or single-pol InSAR acquisitions
instead. For example, when estimating tree heights using X-
band SAR (and in particular TanDEM-X, which is the focus
of the present study) the authors in [19] found good agreement
between their predictions and the reference canopy height
measurements over boreal (they reported a r2 = 0.86, where
r represents the Pearson correlation coefficient) and temperate
(r2 = 0.77) forests. On the other hand, over a tropical site,
the denser vegetation was found to significantly reduce the
overall performance (r2 ≃ 0.50), mostly due to the limited
penetration of radar waves at X band into dense vegetation. In
[11], the authors applied an interferometric water cloud model
(IWCM) to a TanDEM-X bistatic time-series of 18 InSAR
acquisitions for the estimation of AGB. Their findings showed
that a considerable estimation accuracy could be achieved
(root mean square error (RMSE) of 16% with coefficient of
determination R2 = 0.93 for forest stands larger than 1 ha),
but required an ancillary LiDAR-based digital terrain model
(DTM) to improve the absolute calibration of the procedure.
Furthermore, the authors acknowledged that the use of a-priori
information about the study-site poses a limit to the application
of the technique over unmanaged or remote forests. In [23], the
authors proposed to reduce the TanDEM-X PolInSAR require-
ments for RVoG model inversion to one single polarization,
by leveraging the availability of sparse full-waveform LiDAR
measurements to approximate the vertical radar reflectivity
function. A canopy height estimation accuracy was evalu-
ated over the tropical forest area of the Lopé National Park
(Gabon), resulting in a peak performance of 8.62m RMSE
(r2 = 0.40). In [24], the authors presented a similar scheme
for mapping forest height from TanDEM-X single-polarization
data by combining interferometric coherence maps and GEDI
waveform measurements over Tasmania. They validated the
technique against airborne LiDAR reference data, achieving a
RMSE of 7.3m (r = 0.66).

Recently, machine learning (ML) approaches have con-
stantly been gaining attention, as a further valid alterna-
tive to allometric and physical-based models. The increasing
availability of frequently updated, global and high-resolution

EO dataset collections has made data-driven techniques par-
ticularly attractive. In the context of RS applications, ML
techniques have already become a staple in the solution of
binary or multi-class classification problems [25]. However,
for regression tasks, like forest parameter estimation, their
usage is still limited. In particular, deep neural networks
(DNN) have gathered much of the attention when solving EO-
related problems. Here, the information is iteratively processed
and extracted to generate feature maps of higher levels of
abstraction and descriptive power than those of both input
data or hand-crafted features. In this context, convolutional
neural networks (CNN) have found widespread adoption and
success when dealing with imagery type products, given their
capability to extract information from two-dimensional spatial
patterns [26]. Deep learning (DL) techniques have already
been applied with great success to the solution of regression
problems in the field of computer vision [27]. However, they
have been less commonly used in the regression of bio-
physical parameters from RS data, as the demand for large
quantities of reliable labeled reference data has slowed down
their adoption. In [28], the authors used a deep CNN model
to estimate CHM at a ground sampling distance (GSD) of
10m from Sentinel-2 multi-spectral data over Gabon and
Switzerland, demonstrating that spatial contextual information
is crucial to obtain accurate estimates. When considering only
the prediction from the acquisitions with the lowest cloud cov-
erage probability, the authors achieved a mean absolute error
(MAE) of about 2m in Switzerland and of 4.9m in Gabon,
with a RMSE of 3.9m and 6.5m, respectively. Aggregating
the estimates using the median over all available acquisition
dates within a year, reduced the MAE to 1.7m and 4.3m, and
the RMSE to 3.4m and 5.6m, respectively. The authors in
[29] proposed a Bayesian deep learning approach to estimate
forest parameters at a GSD of 10m, using SAR Sentinel-
1 and multi-spectral Sentinel-2 data across Norway. Their
approach allows for the estimation of forest structure variables
together with their uncertainty estimates, providing intrinsic
assessments on the trustworthiness of their predictions. The
estimation of the canopy height, here quantified as the height
corresponding to the 95th percentile of the returned reference
LiDAR energy, resulted in a MAE of 1.65m and a RMSE of
2.30m. Their analyses showed that among the two considered
sensors, Sentinel-2 was the more informative source, achieving
a MAE of 1.81m, compared to the 3.05m of Sentinel-1.

In this context, the application of DL models to SAR, and
in particular to interferometric (InSAR) data, still remains
at its early stages and needs to be further investigated and
understood. Moreover, to the best of our knowledge, no
specific work on the use of bistatic InSAR in combination
with deep learning for the retrieval of biophysical parameters
has appeared in the literature yet and a deeper understanding
of its potential represents a crucial aspect not only for a better
exploitation of on-going missions, such as TanDEM-X, but
also in view of future bistatic or multistatic SAR missions,
such as the ESA Harmony Earth Explorer 10 mission proposal
[30].

In this study, we propose a novel DL framework for the
prediction of forest heights from TanDEM-X bistatic InSAR
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data. We present an original architecture based on convolu-
tional neural networks, together with its training strategy and
performance evaluation approach. Initially, we consider a best-
case scenario, where all possible informative features are used
as input to the network, to explore the potential of DL to
model highly non-linear relationships for achieving the best
possible performance with respect to state-of-the-art methods.
Our goal is to understand if DL is able to properly model the
relationship linking SAR-/InSAR-/geometry-related features to
biophysical parameters (canopy height), mitigating the well-
known saturation effects caused by the limited penetration
capabilities of X band into the canopy. We train and validate
our DL framework over the challenging scenario provided by
tropical forests in Gabon, West Africa, characterized by the
presence of dense vegetation. Afterwards, we concentrate on
a feature importance analysis, aiming at understanding the role
that different features play in achieving the final performance.
We mainly focus on bistatic InSAR features, which represent
the added-value of TanDEM-X with respect to all other on-
going spaceborne SAR missions. In this context, we also aim
at verifying the capability of the proposed DL framework to
automatically manage the use of different bistatic acquisition
geometries, which directly impact the bistatic InSAR features
(as explained later in Section II). This would be an important
property, making it possible to obtain updated predictions at
each TanDEM-X revisit, thus enabling the effective monitoring
of forest disturbances. In addition, we present a high-level
comparison with the RVoG physical model under the same data
set constraints. Finally, we take advantage of the data-driven
nature of our approach to perform a preliminary analysis on
the generalization capability of the proposed DL framework
in the spatial domain, aiming at deriving first insights for a
future extension to large-scale processing.

The paper is structured in seven sections: in section II we
introduce the TanDEM-X mission as well as the theoretical
background for bistatic InSAR products. In section III, we
describe the utilized datasets and the pre-processing steps
that we applied for our experiments. Section IV introduces
the concept of convolutional neural network, explains the
proposed architecture and training strategies, as well as the
performance evaluation metrics. In Section V we present a
series of experiments designed to assess the impact of each
input feature on the overall prediction performance. Section
VI introduces a cross-validation scenario, exploring the geo-
graphical generalization capabilities of our framework. Finally,
in section VII and VIII we discuss our results and provide the
conclusions and outlook related to our work.

II. TANDEM-X AND THE BISTATIC COHERENCE

The German TanDEM-X mission is currently the only
spaceborne SAR mission comprising two separate twin space-
crafts, namely TerraSAR-X (TSX) and TanDEM-X (TDX),
which fly in a synchronized close-orbit formation. It opera-
tionally provides single-pass InSAR acquisitions at X band
with variable acquisition geometries and polarizations [31].
The main objective of the mission has been the generation
of a global digital elevation model (DEM), which was suc-
cessfully completed in 2016 [32]. Aimed at generating an

updated version of the TanDEM-X Global DEM product, an
additional global dataset of bistatic InSAR data has been
recently acquired and a new DEM product is scheduled to
be released in the near future [33]. Moreover several specific
mission phases have provided the scientific community with
an unprecedented variety of test cases for the development of
novel algorithms and applications [34].

Throughout the entire mission duration, the bistatic inter-
ferometric coherence has represented the key parameter for
monitoring the global interferometric performance, as shown
in [32], [35], [36]. The coherence γ

tot
is defined as the normal-

ized cross-correlation coefficient between the interferometric
image pair, composed by a master (u1) and slave (u2) images:

γTot =
|E[u1 · u∗

2]|√
E[|u1|2] · E[|u2|2]

, (1)

where E[·] represents the statistical expectation, ∗ the complex
conjugate operator and | · | the absolute value. High values of
γ

tot
are associated to low levels of noise in the interferogram

and vice versa. γ
tot

is commonly estimated from InSAR
data by applying the maximum likelihood estimator originally
introduced in [37], which requires the application of a moving
boxcar window. More recently, advanced algorithms have been
proposed, based on the nonlocal paradigm, which allows for
a significant denoising of the InSAR signal while preserving
a high spatial resolution [38], [39].

Following the factorization presented in [40] and [31], one
can express γ

tot
as:

γtot = γrg · γamb · γaz · γquant · γSNR · γtemp · γvol, (2)

where the terms on the right-hand side are hereby called
decorrelation factors and account for different error contribu-
tions. The first five terms are related to the system properties
and quantify the decorrelation caused by coregistration errors
in range and baseline estimation (γrg), SAR ambiguities
(γamb), misregistration in azimuth and relative shift of the
Doppler spectra (γaz), quantization (γquant) and thermal noise
(γSNR). γtemp quantifies the decorrelation caused by changes
on ground occurring between the acquisition of the master
and slave images. The uniqueness of TanDEM-X data resides
in the bistatic nature of the system, which allows for the
simultaneous acquisition of single-pass InSAR data unaffected
by temporal decorrelation, which leads to γtemp = 1.

The last term γvol is called volume decorrelation factor and
it can be derived from the interferometric coherence by invert-
ing equation (2) and compensating for all other decorrelation
sources, as presented in [41] for nominal TanDEM-X bistatic
acquisitions. It quantifies the amount of decorrelation caused
by scattering from a volumetric target. This effect occurs, e.g.,
when radar waves penetrate into forest canopies or ice and
snow-covered regions. It depends on several factors, such as
the radar frequency, the acquisition geometry and the intrinsic
properties of the illuminated target. In particular, the lower
the operational sensor frequency, the deeper radar waves can
penetrate into volumetric targets. The volume decorrelation
factor can thus be modelled as [21], [42]:

This article has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2023.3310209

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 4

γvol =

∫ hv

0
F (z) · exp

(
j

2π

hamb
z

)
· dz∫ hv

0
F (z) · dz

, (3)

where hv denotes the vegetation height and F (z) represents
the vertical backscattering profile, typically modelled as an
exponential decay factor that depends on the so-called one-
way extinction coefficient (i.e. the coefficient of attenuation),
the vegetation height and the incidence angle.

Regarding the dependency on the bistatic InSAR acquisition
geometry, γvol is closely related to the height of ambiguity
hamb [42], which is defined as the topographic height corre-
sponding to a complete 2π cycle in the interferogram and, for
the single-pass case, can be expressed as

hamb =
λ · r · sin θ

B⊥
, (4)

being B⊥ the orthogonal baseline, λ the wavelength, r the
slant range and θ the incidence angle. Finally, γvol is also
linked to the intrinsic properties of the illuminated target. For
example, when considering vegetated areas, the amount of
volume decorrelation is impacted by vegetation characteristics,
such as tree height and density, presence of gaps and tree
species.

Many scientific works in the field of biosphere-related
applications have been developed exploiting the availability of
the TanDEM-X bistatic coherence information. For example,
it is widely used for model-based tree height [23], [43]–[49]
and above-ground biomass estimation [50]–[54]. It represents
a useful input feature for the retrieval of vegetation height in
agricultural areas [55], [56] as well as for crop type mapping
[57]. Moreover, the added value of the bistatic coherence has
also been demonstrated for land-cover classification and forest
mapping purposes [58]–[61].

III. DATA SET DESCRIPTION AND PRE-PROCESSING

A. The AfriSAR campaign and the reference LiDAR data

To train our model in a supervised fashion, we use ground-
truth labels from the AfriSAR campaign [62]. The AfriSAR
campaign was a joint NASA-ESA campaign, which took place
in 2016 and aimed at collecting a combination of field and
airborne LiDAR and radar measurements of tropical forests
located in the West African country of Gabon [15]. Related
to our work, the mission included a series of full-waveform
LiDAR measurements acquired by NASA’s airborne-mounted
LVIS instrument [63]. This particular acquisition campaign
was performed between February and March 2016 and covered
the five study sites of Mabouniè, Mondah, Lope, Pongara, and
Rabi, which can be seen in Fig. 1.

During the acquisition phase, each area was sampled by a
sequence of regularly spaced laser beams, each one resulting
in a nominal footprint diameter of 18m, given the acquisition
flight path. It is thus possible to use the signal statistics of
each individual full-waveform LiDAR return to derive forest
parameters such as the canopy cover, the plant area index, the
foliage height diversity, the AGB density and, of particular
interest for our case, the canopy height model (CHM). For

Fig. 1: The study-areas in Gabon (Africa) and their subdivision
into three subsets for training, validation and testing of the
proposed DL architecture. The TanDEM-X footprints are
identified in white.

our study, we choose to use the available gridded products,
which contain completely pre-processed CHM estimates, ag-
gregated and sampled at a GSD of 25m [62]. As reference
metric, we use the canopy height value corresponding to the
99th percentile of the total backpropagated laser energy. This
statistic takes the name of relative height (RH) and is selected
in order to improve robustness against noise and outliers.

B. TanDEM-X bistatic products and derived features

Between 2015 and 2016 a series of dedicated TanDEM-X
bistatic acquisitions were commanded over Gabon, in order
to cover the same test sites of the AfriSAR campaign. The
illuminated footprints mainly overlap with four of the five
AfriSAR test-sites, as depicted in Fig. 1. Thus, the test site
of Lope is not considered for this investigation.

All acquisitions were commanded in StripMap, single polar-
ization mode (HH channel), extending by about 30km in range
and with different incidence angles and bistatic geometries.

In the present work, we consider as TanDEM-X input data
the CoSSC products, corresponding to co-registered single-
look complex bistatic SAR data products at full resolution.
Focusing and co-registration are performed by the operational
TanDEM-X processor (ITP) [64]. The complete list of the
utilized TanDEM-X products and their main acquisition pa-
rameters is presented in Tab. IV in the Appendix.

For each acquisition, we compute the backscattering coef-
ficient σ0 from the monostatic channel only, as recorded by
the transmitting satellite. σ0 is derived from the absolutely
calibrated intensity β0 (i.e. the radar brightness) and the local
incidence angle θinc as:

σ0 = β0 sin(θinc), (5)

where θinc is computed by considering the satellite orbit
position an the underlying global TanDEM-X edited DEM
product (see section III-C). For the estimation of the total
interferometric coherence γtot, we apply Φ-Net [65], a novel
residual deep-learning architecture for the joint estimation of
the InSAR phase and coherence, which has been shown to
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achieve state-of-the-art denoising performance by preserving
the spatial resolution. Moreover, from the coherence we also
derive the volume decorrelation factor γvol by following
the estimation procedure presented in [41]. Finally, a two-
dimensional map of the height of ambiguity hamb is generated
by considering the annotated information on the satellites
position and by applying equation (4).

C. Ancillary data

As additional ancillary data we make use of the following
two products:

• The global TanDEM-X edited DEM: this is an edited
version of the original global TanDEM-X DEM product,
processed at a lower resolution of 30m by DLR. The
applied editing algorithm is a fully automatic procedure,
which takes care of filling voids and flattening water
surfaces [66]. No artificial correction was applied over
forested areas. Therefore, in presence of vegetation, the
TanDEM-X DEM height does not correspond to the
height of the top of the canopy but, given the radar
penetration effects explained in Section II, it is located
close to or below the canopy surface, depending on the
characteristics of the vegetation [42], [67], [68].

• The ESA 2021 WorldCover map: this is a 10m resolution,
global land-cover product that refers to 2021. It was
generated using both ESA’s Sentinel-1 and Sentinel-2
constellation and it is freely accessible. The WorldCover
map categorizes different land cover types among 11
classes. The product was independently validated with an
overall global accuracy of 76.7% [69]. We take advantage
of the information it provides to coarsely mask out non-
forested areas from our dataset.

D. Common-grid interpolation

At the end of the pre-processing steps, all available ref-
erence datasets and input feature maps are projected onto a
common pixel grid. Firstly, all products are re-projected to
the target coordinate reference system (CRS) by means of
bilinear interpolation. Secondly, the products are re-sampled
to match the reference extent and ground-sampling distance
(GSD). Operationally, we align all features onto the grid used
by the AfriSAR reference data. For continuous features, this
is achieved by means of averaging when downscaling, and
of bilinear interpolation otherwise. For features with discrete
value ranges, the mode of the samples is used instead. After
this processing step, all features are aligned at pixel-level.

IV. PROPOSED DEEP LEARNING FRAMEWORK

We propose the use of a DL framework based on a con-
volutional neural network (CNN) for the estimation of the
canopy height model (CHM). At its core, a CNN consists
in the computation of the cross-correlations between a stack
of input features with a set of kernel functions. A non-linear
activation function is then applied to the results to generate
a new stack of output features. By stacking multiple of these
sequences of operations the complexity of the network can be

increased, with each subsequent layer yielding a higher level of
representation, which results in progressively more expressive
features with respect to the task the network has to deal
with. The kernel functions are empirically determined during
the training phase of the network, consisting in a forward
pass in which the network is used to generate a prediction
from a certain input, followed by a backpropagation phase in
which the weights of the model are updated according to their
impact on the prediction’s error. By repeating the process over
multiple heterogeneous examples, the network will iteratively
converge towards a set of kernel filters well suited for the
downstream task.

A. CNN architecture
The DL model that we conceived for this work consists

in a fully convolutional neural network. This choice was
made considering the strong capabilities of such architectures
to handle two-dimensional data, such as SAR images and
related features [70]. We converged to the final architecture by
means of hyperparameter tuning of different layer typologies,
regularization techniques and model dimensions. This was
implemented by evaluating and comparing the potential impact
of these choices using the validation set detailed in Sec.
V-A. Notably, we empirically verified that our model was not
benefiting from the introduction of skip connections between
the blocks. We suppose that, due to its relatively shallow depth,
our model is likely to be less affected by problems of vanishing
gradients.

The overall architecture of the resulting CNN is shown in
Fig. 2. It can be broken down into three types of functional
blocks: an input block, a sequence of 10 hidden blocks, and
an output block. We built our network to process as input
SAR and InSAR features computed from a single TanDEM-
X acquisition pair. To this end, we begin each block structure
with a 2D convolution operation, which simultaneously applies
a 3D kernel across all input features while sliding along the
spatial dimensions of the datacube. In order to preserve the
shape of the input, the feature-stack is padded before each
convolution along its spatial dimensions. In the input and
output blocks, two 1×1 convolutional operations are applied
in sequence to gradually increase and decrease the number
of input features. Each convolutional layer is followed by a
batch normalization operation, which shifts and scales the data
to be approximately zero mean with unitary variance. This
operation was found to lead to better and faster convergence, as
it allows for using higher learning rates as well as reducing the
sensitivity to the initialization of the model-weights [71]. For
all but the last layer, we apply the rectified linear unit (ReLU)
as a non-linear activation function, which clips negative values
to zero and preserves positive ones. In the last block, the
second convolutional operation is directly followed by a linear
activation function to deliver the final regression output.

We purposefully avoid to change the spatial resolution of
the features in all layers (e.g. by applying pooling layers) as
we want to limit any unnecessary loss in geometric resolution.

The network performance was assessed over a dedicated
validation set, sampled from areas geographically discon-
nected from those of the training and test sets, respectively.
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Fig. 2: The proposed CNN architecture for CHM regression. It can be functionally split into one input block, 10 hidden blocks
and an output block.

Fig. 3: Example of input feature maps: (a) backscattering coefficient σ0, (b) local incidence angle θinc, (c) TanDEM-X edited
DEM, (d) interferometric coherence γtot, (d) volume decorrelation factor γvol and (f) height of ambiguity hamb.

More details on these aspects are addressed later on in section
V.

B. Input features

As input feature maps to the network we selected the
following quantitites, derived from TanDEM-X geocoded and
co-registered bistatic products:

• Backscattering coefficient σ0 in HH polarization, com-
puted according to (5),

• Associated local incidence angle θinc,
• Total interferometric coherence γtot, derived by Φ-Net

[65],
• Volume decorrelation factor γvol, computed from (2),
• Height of ambiguity hamb, computed from (4),
• Global TanDEM-X edited DEM.

θinc and hamb are both required to correctly inform the model
of the dependency of γvol, γtot and σ0 on such geometry-
related features, as described in (2), (3) and (5). The DEM
is used as input feature to exploit the capability of CNNs
to recognize spatial patterns in the data, and thus to better
contextualize the radar-related input features with respect to
the observed terrain characteristics.

An example of input feature maps is presented in Fig. 3.
From the resulting input and output datacubes, we derived
patches of 15 × 15 pixels, corresponding to an extension
on ground of 375 × 375 m2 or, equivalently, to an area of
approximately 14ha. The patches are sampled at runtime,
from areas which contain forested pixels (i.e. covered by the
reference LVIS dataset) and which are fully covered by the
input sources to the deep learning architecture.
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C. Training strategy

To train the model we use a mini-batch strategy, consisting
in the constant update of the model-weights based on the
iterative prediction over individual batches of training samples.
We use batches composed of 250 patches each.

At each training iteration we build a new batch of randomly
sampled patches and we then perform a forward pass in which
the canopy height for the current batch is estimated. The
quality of the prediction is then assessed by computing a loss
function. This function quantifies the prediction error by com-
puting the mean squared error (MSE) between the prediction
and its associated ground-truth. It also includes a regularization
term in the form of the l2-norm (i.e. the Euclidean distance)
among the model weights. We can therefore express the
training objective as the solution to the minimization of the
following loss function:

Loss =
1

n

n∑
i=1

(ŷi − yi)
2
+ λ ·

m∑
j=1

w2
j , (6)

where ŷi is the ith canopy height sample predicted by the
model, yi is the corresponding ith ground-truth sample, wj is
the jth weight of the model, n is the total number of samples,
m is the total number of weights and λ is a factor which scales
the impact that the l2-norm has on the overall loss.

The impact of each model-weight on the loss is computed
as the gradient of the loss with respect to that weight (i.e.
the partial derivative). By applying the chain rule, the local
gradient is iteratively back-propagated from the output layers
to the input of the network. Given the resulting set of local
gradients, the corresponding weights are then updated follow-
ing a stochastic gradient descent (SGD)-based strategy; for
our work we apply the commonly used Adam optimization
algorithm [72]. The initial learning-rate of the network is set
to 10−4.

To monitor the training status of the model, we group
the process into epochs of 500 batches each. At the end of
each epoch, the training-state of the model is evaluated on a
dedicated independent validation-set using the loss function in
equation (6).

The relative evolution of two losses, one computed on the
training set (i.e. the training loss) and the other computed on
the validation set (i.e. the validation loss), is used to determine
the completion of the training phase. If the network does not
improve in terms of validation loss for 30 consecutive epochs,
the learning rate is reduced by an order of magnitude. In order
to avoid overfitting of our network on the training samples, we
adopt an early-stopping approach to cease the training if the
network has not improved for a total of 35 consecutive epochs.
Finally, at the end of the training phase, we select the weights
corresponding to the epoch with the lowest validation loss.

D. Performance evaluation metrics

In order to test the performance of our trained model, we
perform an inference run for all input acquisitions that cover
the previously designated test-sites. The prediction accuracy
is evaluated using the mean error (ME), which identifies the

estimator’s bias, the mean absolute error (MAE), the mean
absolute percentage error (MAPE), the root mean squared error
(RMSE) and the coefficient of determination (R2), which are
defined as follows:

ME =
1

n

n∑
i=1

(ŷi − yi) , (7)

MAE =
1

n

n∑
i=1

|ŷi − yi| , (8)

MAPE =
100

n

n∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ , (9)

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)
2
, (10)

R2 = 1−
∑n

i=1 (ŷi − yi)
2∑n

i=1 (yi − ȳi)
2 , (11)

where ŷi is the predicted canopy height value, yi is the
corresponding reference value and ȳi is the mean reference
value.

V. FEATURE ANALYSIS

In this section we aim at obtaining a comprehensive
overview of the impact that different input settings have on
the final performance. In more detail, we are interested in
better understanding the following key aspects:

• The relevance that the different input features have in
term of regression performance, with particular interest
on the SAR backscatter and InSAR information comple-
mentarity.

• The impact that the SAR acquisition geometry has on the
prediction accuracy, and the role that ancillary geometric
features play in the contextualization of the side-looking
geometry peculiarity of SAR systems.

We also performed an analysis of the impact of ascending
and descending orbit directions on the final performance1.
We observed that training and testing with either ascending-
only or descending-only acquisitions, as well as with mixed-
orbit acquisitions paired with supplementary orbit direction,
acquisition time of day or no information, showed negligible
influence on the overall performance. Thus, to guarantee
the best possible temporal coverage, our results are based
on a similar ratio of both ascending and descending orbit
acquisitions, as reported in Tab. IV.

A. Baseline scenario

In order to properly conduct each of the proposed analyses,
we start by setting up a baseline scenario against which
the subsequent experiments will be compared. To this end,
we aim at building three homogeneous but not overlapping
subsets for a best-case scenario, one for each of the training,

1The considered TanDEM-X data was acquired in the morning in ascending
orbit direction and in the afternoon in descending orbit direction.
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Fig. 4: The reference CHM value distributions for the three
subsets, training, validation and test, as defined for the baseline
scenario.

validation and test phases. To do so, we geographically split
each of the four considered study areas into three sub-areas
of equal dimensions. From West to East, each resulting sub-
area is assigned to the validation, the training and the test sets,
respectively. This concept is depicted in Fig. 1. The histograms
of the reference CHM for the training, validation and test sets
are presented in Fig. 4. All subsets show similar distribution
trends, with most of the vegetation heights concentrated below
10m (short vegetation), and between 30m and 40m (which are
typical of mature primary tropical forest).

During the training phase the model weights are randomly
initialized. Similarly, all training and validation patches are
randomly shuffled after each one has been used once. These
elements of randomness, potentially cause the model to con-
verge towards different local minima during the training phase,
each time the process is repeated. In an effort to find the best
possible local solution, we train five independent models. For
each of them, we follow the training and validation procedure
detailed in section IV. Fig. 5 shows in practice the impact
of random weights initialization on the RMSE performance
of 4 test images, one for each test site. The different test
sites show different degrees of variability. When looking at
the overall variability, the RMSE spread is in the order of
several decimeters.

Given that the model was trained using 15 × 15 pixels
patches, the edges of each scene were symmetrically padded
by half of the patch size as a preprocessing step prior to the
inference. These borders were then removed to preserve the
original size. Furthermore, we enlarged internal areas with
invalid pixels by half the patch size as a final post-processing
step. These steps guarantee that the model is evaluated only
over areas with similar conditions with respect to the training
phase.

The loss behaviour of the overall best performing model
can be seen in Fig. 6. The results of the performance analysis
on such a model are shown in the first row (Baseline case)
of Tab. I. Here, the performance is computed for the joint
combination of all available predictions. The detailed values
for each test site and experiments can be found in Tab. III and
Tab. V (in Appendix).

Fig. 5: RMSE values obtained for each independent train-
ing run, computed on each test-site individually and overall
(Total). The best-run is automatically selected based on the
validation loss.

Fig. 6: The loss evolution computed on the training and
validation sets for the baseline scenario.

Overall, a good agreement between the prediction and the
reference measurements can be seen from the scatterplot in
Fig. 7, which comprises all test sites. Similar distributions of
the reference CHM and of the prediction can be identified.

When assessing the relationship between the estimation bias
and the canopy heights, Fig. 8 shows that the estimation bias
remains on average quite stable and close to 0m for CHM
below 35m, above which the model starts to increasingly
underestimate taller trees.

When looking at the performance of the individual test areas
in Tab. III and Fig. 9, as expected a clear relation with the
distribution of the reference canopy height can be assessed.
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Fig. 7: Scatterplot in logarithmic scale of the predicted and
reference canopy height values over all four test sites in
Gabon, Africa, together with the side distributions of both the
reference and the prediction for the baseline scenario.

The Mondah forest is predominantly characterized by large
extents of low vegetation, with isolated patches of tall forests.
This reflects on the MAE and MAPE metrics, which are the
smallest and the largest among all test sites, respectively. With
lower tree heights the absolute error scales accordingly, but
the relative estimation error has a bigger impact on average.
Differently, the site corresponding to the Pongara National
Park is characterized by a more homogeneous tree height
population. At first glance, the scatterplot in Fig. 9 shows
a good agreement between the predicted and the expected
canopy heights. Indeed, the performance is well balanced for
all metrics and it notably achieves a MAPE of only 16.21%,
while obtaining a R2 value of 0.82. A small cluster of samples
is spotted outside of the main distribution (in the low-right
corner of the image), corresponding to large values of canopy
height being strongly underestimated (such samples are also
clearly visible in the overall scatterplot in Fig. 7). This error
can be attributed to inconsistencies in the TanDEM-X edited
DEM, as represented in Fig. 10. Further investigations revealed
how the area lacked of TanDEM-X data during the first two
global coverages used for the generation of the global DEM,
requiring the automatic editing algorithm to rely on an ALOS-
based DEM to fill the gap. Unfortunately, also the ALOS-
based DEM showed some inconsistencies in the same area,
resulting in mutual calibration problems between the two
different DEM sources. This led to an underestimated terrain
height which was clipped to that of the adjacent sea level.

To quantify the impact of this non-negligible inconsistency
in the edited DEM, we manually masked the region (as
depicted in Fig. 10) and re-evaluated the performance metrics
on the remaining valid areas. This resulted in a loss of
4686 test samples, corresponding to 1.85% of the Pongara
samples, and 0.32% of the overall available test samples. The
results in Tab. V (Baseline w/ DEM mask case) show a

Fig. 8: Training sample distribution (blue histogram in the
background - left axis) compared to the ME, which represents
the regression bias (red lines in the foreground - right axis).
The boxplots display the regression bias spread (5th, 25th,
50th, 75th and 95th percentiles, respectively) across the CHM
range.

significant improvement across all metrics by removing the
critical region. Indeed, the RMSE performance was especially
negatively affected by the aforementioned problem, and saw
an improvement from 6.42m to 4.83m, making Pongara the
site with the best performance after Mondah. The overall
performance in Tab. I shows the MAPE fall to 14.91%, and
the R2 rise to 0.76.

The sites of Mabounié and Rabi exhibit similar behaviours,
as they are predominantly covered by tall forest structures
in the range of 25m to 45m of height. In this scenario, the
model uncertainty appears to increase, with the R2 metric in
particular being penalized by the very clustered concentration
of tree heights. The MAE for both sites also worsens to about
4.4 m, while the MAPE improves as the estimation error for
taller tree stand population has a lower relative impact on
average.

Next, we assess the impact of the local topography in com-
bination with the side-looking geometry of the instrument, by
evaluating the relationship between the local terrain slope and
the performance degradation. In order to compute a vegetation-
independent slope estimate, we use the DTM derived from the
LVIS measurements acquired during the AfriSAR campaign.
We then subdivide the slope range into equally sized intervals,
plotting for each of them the mean absolute error of all
associated predicted canopy heights (Fig. 11). For slopes from
0◦ to 40◦, an almost linear relationship can be identified
between slope inclination and mean absolute error. Notably,
the mean absolute error remains below the global average of
4.20m up to slope inclinations of 25◦, suggesting that the
performance remains reasonably consistent even over high-
relief terrain, where geometric distortions and geocoding errors
in the SAR imagery and LiDAR measurements may become
increasingly significant.

Finally, Fig. 12 shows prediction samples for each of the
four study areas for the Baseline scenario. In particular, sample
transects are plotted following the red solid lines, in order to
compare the estimated tree line with that of the reference.
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(a) Mabounié (b) Mondah

(c) Pongara (d) Rabi

Fig. 9: Baseline scenario: scatterplots of the reference CHM versus the predicted CHM for each of the four considered test-sites in logarithmic
scale.

TABLE I: Overall prediction performance for all the analyzed test case scenarios. Number of considered acquisitions = 12,
Number of pixels = 1465947.

Scenario Input features ME MAE MAPE RMSE R2

σ0 γtot γvol θinc DEM hamb [m] [m] [%] [m] [·]
Baseline x x x x x x -1.46 4.20 15.06 5.69 0.73
Baseline w/ DEM mask x x x x x x -1.38 4.12 14.91 5.41 0.76
w/o DEM x x x x - x -1.10 4.48 17.66 5.98 0.71
w/o θinc x x x - x x -2.48 4.65 15.85 6.30 0.67
w/o DEM, w/o θinc x x x - - x -1.39 4.80 17.96 6.34 0.67
w/o σ0 - x x x x x -1.51 4.37 15.38 5.95 0.71
w/o InSAR features x - - x x - -2.10 4.88 17.51 6.62 0.64
w/o γtot x - x x x x -1.69 4.31 15.32 5.80 0.73
w/o γvol x x - x x x -1.91 4.33 15.16 5.84 0.72
w/o hamb x x x x x - -1.07 4.19 14.98 5.67 0.74
w/o γvol, w/o hamb x x - x x - -1.13 4.22 15.10 5.75 0.73
w/o γtot, w/o hamb x - x x x - -2.07 4.59 15.70 6.42 0.66
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Fig. 10: Analysis of the Pongara test site, which is charac-
terized by a region of heavily underestimated tree heights: (a)
CHM prediction, (b) prediction error, (c) binary mask used for
the identification of the problematic area and (d) TanDEM-X
Global Edited DEM.

Fig. 11: The test sample distribution compared to the MAE. The
boxplots display the mean absolute error spread ((5th, 25th, 50th,
75th and 95th percentiles, respectively) across the terrain slope
range.

This shows an overall good agreement for both tall and low
vegetation heights. Also the TanDEM-X global edited DEM
is depicted for comparison purposes, indeed highlighting how
the mean phase center falls within the canopy. The DEM
struggles to match all changes in canopy height and in general
it maintains a non-linear relationship with the tree height.

B. Impact of DEM and local incidence angle

The side-looking acquisition geometry characterizing SAR
causes the TanDEM-X acquisitions to be intrinsically depen-
dent on the local incidence angle, which is related to the
acquisition geometry and the local topography. In order to
allow the network to better contextualize the variations in the
backscattered signal, ancillary information in the form of the

local incidence angle (θinc) and the TanDEM-X DEM were
assumed to be necessary additions to the input feature pool. To
test this assumption against the baseline scenario performance,
we repeat the tests in V-A, while removing θinc, the DEM or
both features.

The overall performance metrics are summarized in Tab.
I (cases: w/o DEM, w/o θinc and w/o DEM, w/o θinc). A
significant drop in estimation accuracy is associated to the
removal of one of the two features.

Moreover, Tab. I shows indeed that removing both features
from the input causes the performance to drop significantly,
but somewhat in line with the w/o θinc scenario.

C. SAR and bistatic InSAR feature comparison

One of the main advantages of the TanDEM-X constellation
is the capability to acquire bistatic InSAR information. As
described in [42], [35], the quality of the interferometric
product correlates with the composition of forests through the
volume scattering mechanism. To properly assess the impact
that the additional bistatic interferometric feature set shows
with respect to the available single-polarization backscatter
map, we present two more scenarios in which we selectively
remove one of the two feature sets and validate them against
the Baseline scenario. For both test scenarios we keep the
ancillary θinc and DEM features.

The accuracy for the SAR-only (w/o InSAR features case)
and InSAR-only (w/o σ0 case) predictions are presented in
Tab. I. Both scenarios see a decrease in the overall performance
when compared to the Baseline scenario. In particular, testing
the results for the SAR-only scenario sees the MAPE worsen
by 2.12% and the RMSE increase by 0.68m when compared
to the InSAR only scenario.

In the previous experiments, we used as InSAR-related
input features both the interferometric coherence (γtot) and the
volume decorrelation factor (γvol), derived from the original
coherence, as well as the ancillary height of ambiguity (hamb)
information, to help the network to better contextualize the
relationship between the volumetric decorrelation effects and
the acquisition geometry, as detailed in section II. In order
to fully understand the importance that each single InSAR-
related feature holds for solving the regression problem, we
alternatively remove each of these from the input set, achieving
the regression performance detailed in the last five rows of Tab.
I. Notably, removing either the coherence (w/o γtot case) or
the volume decorrelation factor (w/o γvol case) results in a very
consistent and minor loss in the overall prediction accuracy.

Removing hamb from the input (w/o hamb case) sees the
regression performance fall in line with the baseline scenario.
This is an interesting result given that both γtot and the γvol
over vegetated areas are strictly related to hamb [42]. To better
contextualize this result, we set up two further scenarios in
which we never use hamb and we alternate γtot and γvol as
sole InSAR-based input features. This refers to the w/o γvol,
w/o hamb and w/o γtot, w/o hamb cases in Tab. I, respectively.

The results in Tab. I suggest that γtot does not require
information about the acquisition hamb in order to maximise
the prediction accuracy, while the addition of γvol helps to
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Fig. 12: Prediction examples over the four considered test sites for the Baseline scenario. For each area, the prediction, the reference,
the estimation error and sample vertical transect (identified by the red line), are presented from left to right, respectively. The transects in
the rightmost column compare the reference CHM (in green) with our predictions (in blue), on top of ALS-derived DEM (in brown). The
corresponding TanDEM-X Global Edited DEM is plotted (in red) for visual comparison, highlighting how the mean phase center lies within
the canopy.

further improve the performance bringing it in line with the
baseline scenario. Contrary to γtot, using γvol also requires
the additional information about hamb in order to achieve
comparable results.

D. Comparison with the RVoG model

In order to help better contextualize the performance of the
proposed DL model, we implemented a high level comparison
of the baseline scenario with the RVoG model, which is
often used in the literature [23], [24], [73], [74]. Given the
relationship expressed in (3), the RVoG model parametrizes
the vertical reflectivity function F (z) as a two-layer model
consisting of a Dirac-like ground component and a vegetation
volume component, which is modelled as a continuously
extended volume layer of randomly oriented scatterers [21].
This results in the complex volume coherence γvol to depend
on multiple model parameters, requiring fully-polarimetric
acquisitions or external reference data in order to allow for the
model inversion. By following the strategies detailed in [73]
and [74], it is possible to reduce the number of unknowns

required for the inversion, ultimately allowing the canopy
height hv to be directly estimated from single-pol acquisitions
according to the following relationship:

hv = hamb

(
1− 2

π
sin−1(|γvol|)

)
. (12)

The resulting equation is independent of external sources,
and only requires information about the height of ambiguity
hamb and the estimated volume decorrelation γvol, making
it feature-compatible with our proposed method. Using this
model approximation, we repeat the tests detailed in the
baseline scenario to provide a direct comparison between the
two approaches.

The resulting performance metrics presented in Tab. II show
that the overall performance of the approximated RVoG model
is worse than the one of the proposed DL model, with a RMSE
of 8.33m that is sharply higher than the 5.69m obtained in
the proposed baseline scenario. Of particular interest is the
comparison between Fig. 13 and Fig. 7. It is possible to
note that the RVoG model typically fails to properly predict
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TABLE II: Overall prediction performance for the DL baseline
case compared to the RVoG predictions. Number of considered
acquisitions = 12, Number of pixels = 1465947.

Scenario ME MAE MAPE RMSE R2

[m] [m] [%] [m] [·]
Baseline -1.46 4.20 15.06 5.69 0.73
RVoG 0.84 6.49 33.87 8.33 0.43

Fig. 13: Scatter plot in logarithmic scale for the RVoG model,
comparing the predicted and reference canopy height values
over all four test sites in Gabon, Africa, together with the side
distributions of both the reference and the prediction for the
baseline scenario.

the height of canopies below 10m and tends to overestimate
up to about 30m of height. For higher tree heights the bias
decreases but the uncertainty of the prediction increases. This
behaviour can partially be explained by the approximations
and assumptions used by the RVoG model, as well as by
the lack of proper ground topography information to precisely
estimate the height of ambiguity.

VI. ANALYSIS OF THE GENERALIZATION CAPABILITY IN
THE SPATIAL DOMAIN

As highlighted in section I, the goals for our proposed
DL framework include the capability to extend the work on
both larger-scales and across different scenarios. In order to
investigate the generalization capabilities of the network, we
choose to adopt a leave-one-site-out cross-validation approach,
by which we iteratively set aside one of the four study-areas
to be solely used to test the model performance, leaving
the other three sites for training and validation. Within each
experiment, we start from the study area assignment strategy
detailed in section V-A and depicted in Fig. 1, but we reassign
the rightmost third area of each of the three training and
validation sites to be part of the training set instead. This
choice guarantees that we can dispose of enough training
samples to replace those which are lost by dedicating a
whole site to testing alone. Furthermore, given the implicit
assumption that data-driven approaches are fundamentally

(a) Mabounié (b) Mondah

(c) Pongara (d) Rabi

Fig. 14: The geographical composition of training, validation and test
sets, for each of the four cross-validation permutations implemented
for the spatial generalization analysis.

TABLE III: Results for the baseline scenario presented in
section V and for all cross-validation permutations of the
spatial transfer analysis. Each metric is evaluated for each test
site individually and overall.

Performance Metrics
N◦ Acq. ME MAE MAPE RMSE R2 N◦ Pixels

Unit [m] [m] [%] [m] [·]
Baseline Scenario

Mabounié 4 -0.75 4.41 14.22 5.73 0.46 410018
Mondah 4 0.31 2.49 27.51 3.65 0.88 88371
Pongara 2 -2.31 3.92 16.21 6.42 0.82 253394
Rabi 4 -1.78 4.39 13.60 5.60 0.40 714164
Overall 12 -1.46 4.20 15.06 5.69 0.73 1465947

Spatial Transfer Analysis
Mabounié 4 0.18 4.41 15.00 5.68 0.47 410018
Mondah 4 0.53 2.37 27.31 3.49 0.89 88371
Pongara 2 -3.97 5.65 23.73 7.96 0.73 253394
Rabi 4 -2.49 4.82 14.61 6.20 0.27 714164
Overall 12 -1.87 4.70 17.06 6.28 0.68 1465947

limited in their application scope by the comprehensiveness
and representativeness of the training set composition, the
proposed test approach represents a fair attempt to provide
a rich-enough training pool to the network, while keeping
the test area geographically isolated. The subdivision of the
different sites for training, validation and testing is presented
in Fig. 14 for each of the four cross-validation permutations.

The results for each testing permutation are presented in
Tab. III, together with those of the baseline scenario for each
test site for comparison purposes. Overall, the results show an
appreciable loss in regression accuracy when compared to the
baseline scenario. MAE and MAPE increase from 4.2m and
15.1%, to 4.7m and 17.1%, respectively, while R2 drops from
0.73 to 0.68. The test results for the Mabounié and Mondah
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(a) Mabounié (b) Mondah

(c) Pongara (d) Rabi

Fig. 15: Spatial transfer analysis: cross-validation scatterplots for each of the four test-sites in logarithmic scale.

sites show a better agreement with the baseline performance,
indicating that the complexities of both areas were equivalently
well captured by the remaining training sites.

In the case of the Pongara area, the performance is con-
siderably degraded. A comparison of the scatterplot in Fig. 15
with that if Fig. 9 suggests that in the cross-validation scenario
the model struggles to regress higher canopies, essentially
saturating at around 45m of height. As described in Sec. III-A,
the sites of Mondah and Pongara are partially covered by
Mangroves. In particular, Pongara presents taller canopies than
those found in Mondah. Indeed, Fig. 16 highlights how the
underestimation problem is evident close to the shorelines,
where the WorldCover Map predicts mangrove coverage. We
conclude that removing Pongara from the training set, severely
limits the amount of tall mangrove examples, compromising
the regression performance.

Finally, the analysis of the Rabi test site also highlights a
performance lower than expected. In particular, the prediction

associated with the TanDEM-X imagery acquired on the 28th

of October 2016 displays significant underestimation issues.
A specific investigation into the problem revealed that the
underestimated area coincides with that of an anomalous drop
in backscatter intensity. Fig. 17 shows a comparison between
the examined acquisition and a reference one, which does not
display the same issues. Neither the reference dataset, nor high
resolution optical satellite imagery give a potential explanation
for the drop in backscatter intensity. We suppose that this
could have been induced by severe weather conditions, as
thunderstorm are known to be capable of causing strong
attenuation of the backscatter returns [75].

VII. DISCUSSION

The results of the experiments related to the feature analysis
presented in Section V provide interesting insights on the
capabilities of TanDEM-X data in combination with deep
learning for forest height retrieval, which are extremely useful
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Fig. 16: Example of underestimation over Pongara: (a) CHM
prediction, (b) reference Lidar CHM, (c) prediction error and
(d) corresponding land cover map. The areas covered by tall
mangroves are particularly affected by error.

Fig. 17: Prediction comparison for the same area in Rabi,
resulting from two different TanDEM-X acquisitions. The
prediction on the left presents a significant region of under-
estimation (a), well aligned with a region of low backscatter
values (c). The image on the right does not present either
pattern (b)(d).

for understanding the impact and the relationship of different
input features.

From the baseline scenario in Section V-A, where all
input features are considered, we observe a sudden increase
in the estimation bias for trees taller than 35m, resulting
in underestimation. On the one hand, this behaviour might
be linked to the poor availability of training samples for
such heights, as it can be inferred from the corresponding
histogram. On the other hand, it could be due to the limited
penetration capability of X band, which leads to saturation

effects in the data when the radar wave is not able to penetrate
deep enough into extremely tall vegetation [68]. Moreover,
by separately analyzing the different test sites, one can note
that none of the considered performance metrics is on its own
sufficient to conclusively evaluate the prediction performance
of the model. This happens as the different scenarios, and
in particular their canopy height distributions, have different
impacts on the accuracy metrics.

By analyzing the impact of the DEM and the local incidence
angle as input features, one can notice that removing the DEM-
derived θinc map has a bigger impact than removing the DEM
itself. This is probably caused by the fact that θinc shows
an intrinsic dependency on the slant-range distance, which is
directly mirrored in SAR features such as the backscatter. The
performance analysis in the baseline scenario (Section V-A)
already demonstrated the potential impact of inconsistencies
in the input DEM, pointing out the overall relevance that the
DEM holds in terms of inference performance. These two
insights suggest that the model is able to partially substitute
the information contained in the DEM with that of θinc, but not
vice-versa. As expected, both features are required to achieve
peak accuracy, with neither of them being able to completely
supersede the other one.

Regarding the impact of SAR and bistatic InSAR features,
the five considered test scenarios resulted in the following
intuitions:

• We noted that removing the backscatter information has
a significantly smaller impact than removing the InSAR
features.

• The removal of either the coherence or the volume
decorrelation factor causes a minor loss in the over-
all accuracy. This suggests that, while not completely
redundant, both features hold very similar information.
This is in line with the theoretical expectations of their
respective definitions, as the volume decorrelation factor
quantifies a constituent decorrelation source of the total
interferometric coherence, as detailed in (2).

• The use of the total coherence γtot does not strictly
require information about the height of ambiguity hamb,
whereas the use of the volume decorrelation factor γvol
requires information about hamb. The use of either γtot
or γvol (and hamb) achieves similar performance, while
using both matches the baseline scenario. Differently, the
use of both γtot and γvol drops the requirement for the
presence of hamb. We think that these inconsistencies
between the γtot and γvol cases might come from the fact
that γvol is potentially more sensitive to changes in hamb

than γtot, as the latter still contains the other decorrelation
factors, as described in (2).
Furthermore, the composition of the utilized TanDEM-
X data set presented in the Appendix (Tab. IV) shows
that the vast majority of data were acquired with hamb

in the 75m to 90m range. Only 3 products have hamb

between 67m and 69m, and other 3 hamb between 44m
and 50m. For hamb values above 60m, the γvol decay over
forested areas has been shown to be relatively small [42],
whereas it rapidly increases when hamb falls below 50m.
This suggests that our test set is not representative enough
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across the hamb range to require a complete complex
modelling of the relationship between γvol and hamb.

The additional comparison of the proposed baseline scenario
with the RVoG model confirms the potential of the proposed
DL framework for canopy height estimation, with a consid-
erable performance improvement of almost 3m in terms of
RMSE.

Finally, the preliminary analysis on the spatial generaliza-
tion capability of the neural network presented in Section VI
highlights that this is able to correctly regress forest height
when considering previously unseen areas. Nevertheless, given
the strong dependence of the achievable performance on the
distribution of the training data set, we are aware that the cur-
rently designed architecture still needs to be further optimized
in order to reach a level of robustness and generalization which
is suitable for a reliable large-scale inference. Indeed, given
the focus on the AfriSAR 2016 Campaign test sites, only a
limited amount of both TanDEM-X acquisition geometries and
kinds of vegetation were considered to train the network.

VIII. CONCLUSIONS

In this work we presented a novel study on the potential
of deep learning for the regression of forest height from
TanDEM-X bistatic InSAR data. We proposed a fully convo-
lutional framework, which is capable of delivering tree height
estimates from a single TanDEM-X acquisition, enabling the
creation of large-scale and up-to-date geomaps. We trained the
model in a supervised fashion using LVIS data from the 2016
AfriSAR campaign, consisting of ALS-derived canopy height
maps covering tropical forests in Gabon, West Africa. We
achieved an overall regression performance of 4.12m MAE,
14.9% MAPE and 5.41m RMSE, for a best-case scenario
(baseline).

Our feature analysis showed that the regression performance
is primarily driven by InSAR features and that ancillary
information about the acquisition geometry as well as scene
topography are crucial to deliver peak performance. We also
performed a high-level comparison of the baseline scenario
settings with the single-polarization approximation of the
RVoG model. The obtained performance is in line with or
above the performance of state-of-the-art methods for canopy
height estimation using TanDEM-X data, presented in [19],
[23], [24] and using Sentinel-2 and Sentinel-1 data as in [28],
[29].

Our spatial transfer analysis demonstrated that under suit-
able conditions the network is capable of correctly transferring
knowledge acquired during training onto previously unseen
regions of the same geographical area.

Our experiments have also highlighted that the achievable
accuracy remains strongly connected with the characteristics
of the training set, requiring a careful balancing in order to
preserve performance over different challenging scenarios. We
also encountered saturation problems for very tall canopies,
which we attribute to two separate phenomena: on the one
hand, the limited penetration capabilities of X band over
forested areas and, on the other hand, a general lack of labelled
data for very tall trees above 40m.

In order to mitigate these effects, in future works we will
extend the analysis to higher resolutions, as TanDEM-X prod-
ucts with fewer looks have already shown a certain potential to
retrieve the location of the ground surface [76]. Furthermore,
we will investigate smarter sampling and balancing approaches
for our training dataset, aiming at homogenizing the network
performance. As a final remark, we would like to point out
that the proposed spatial transfer analysis was performed
on a limited region of interest (the state of Gabon), and
thus should be considered as a preliminary assessment of
the generalization capability of the network. Therefore, more
effort will also be devoted to the generalization of the model
for large-scale inference, e.g. by considering a larger span
of viewing geometries and InSAR configurations, as well
as forest types, local terrain characteristics and spaceborne-
derived reference data.

APPENDIX: ADDITIONAL TABLES

The complete list of utilized TanDEM-X CoSSC (single-
look co-registered L1b bistatic) products for this work is pre-
sented in Tab. IV. The performance for all analyzed scenarios
as in section V and for each test site, separately, is summarized
in Tab. V. Note that the performance of the baseline scenario
can already be found in Tab. III.

TABLE IV: List of the utilized TanDEM-X CoSSC products
and main acquisition parameters. AIID is the unique acqui-
sition item identifier, E[θi] is the mean incidence angle at
beam center, hamb is the height of ambiguity in meters and
the orbit direction is characterized as A for ascending and D
for descending.

List Acquisition Date AIID E[θi] hamb Orbit Direction
1 2015-10-12 1318689 47.7 91.4 A
2 2015-10-12 1318689 47.7 90.6 A
3 2015-10-12 1316435 47.7 88.6 A
4 2015-10-23 1322791 46.3 80.9 A
5 2015-10-23 1322791 46.2 81.4 A
6 2015-10-23 1322791 46.2 84.4 A
7 2015-11-03 1322908 44.5 78.8 A
8 2015-11-03 1322908 44.5 76.3 A
9 2015-11-03 1322908 44.5 76.8 A
10 2015-11-03 1322908 44.5 79.3 A
11 2015-11-14 1323042 47.7 82.1 A
12 2015-11-22 1323134 42.7 79.6 D
13 2015-11-22 1323134 42.6 77.5 D
14 2015-12-08 1323317 31.3 49.6 D
15 2015-12-14 1323371 40.6 76.0 D
16 2015-12-14 1323371 40.6 75.0 D
17 2015-12-25 1323439 38.5 68.3 D
18 2015-12-25 1323439 38.4 68.5 D
19 2015-12-25 1323439 38.4 67.0 D
20 2015-12-28 1325427 46.2 74.2 A
21 2015-12-28 1325427 46.2 74.8 A
22 2015-12-28 1325427 46.2 74.6 A
23 2015-12-30 1325426 28.8 44.3 D
24 2015-12-30 1325426 28.8 44.5 D
25 2016-10-17 1381828 37.1 80.9 D
26 2016-10-17 1381828 37.1 80.3 D
27 2016-10-17 1381828 37.1 78.5 D
28 2016-10-28 1382273 39.3 85.9 D
29 2016-10-28 1382273 39.3 85.3 D
30 2016-10-28 1382273 39.3 87.3 D
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