
IMPLICIT: A RECOMMENDER SYSTEM THAT USES IMPLICIT

KNOWLEDGE TO PRODUCE SUGGESTIONS.

Alexander Birukov, Enrico Blanzieri and Paolo Giorgini

April 2005

Technical Report # DIT-05-038

Implicit: A recommender system that uses implicit knowledge to produce
suggestions

Content areas:
The communication between agents (negotiation, coordination, sharing knowledge between agents)
Collaborative filtering, collaborative information retrieval, content filtering or case-based reasoning

The architecture of multi-agent systems (design, methodology and principles)

Abstract

The number of accessible web pages in Internet
increases every day and it becomes very diffi-
cult to deal with such a huge source of informa-
tion. There exist several approaches aimed to pro-
vide user with high-quality links extracted from the
thousands of irrelevant ones. We present a sys-
tem Implicit that combines recommender system
and multi-agent system approaches and is intended
to be used within community of people with simi-
lar interests. It produces suggestions by using im-
plicit knowledge of the members of a community
and complementing these suggestions with results
from search engines. Agents within the system in-
teract one another and share knowledge in order to
increase quality of the recommendations by using
similarities in the behavior of different users.

1 Introduction
Although searching the Internet is a day-to-day task of many
people, the problem of improving the quality of web search,
in particular, providing effective access to information avail-
able on-line, is still open. This problem arises as the result
of the huge number of pages on the World Wide Web. Be-
cause of the vast quantity of information available, it is not a
problem to find pages, but it is difficult to discover really rel-
evant and (or) interesting pages among those provided by a
search engine. Therefore, web search often results in a rather
time-consuming task.

There exist several approaches aimed to solve the stated
problem. Search engines are a common and prevailing tool
for searching the Web. However, they have several shortcom-
ings. For instance, a query may results in a huge quantity of
the pages. Another drawback is a lack of personalization in
a sense that sometimes “different users may merit different
answers to the same query”[Gori and Witten, 2004]. The
first shortcoming could be alleviated by formulating an ap-
propriate query for a search engine. Such a reformulation of
the query requires certain intuition and experience from the
user. What concerns the lack of personalization, we see the
need of supporting the concrete user, and not just responding
to the keyword which is context-free and impersonal.

Another solution is the use of Internet agents for assisting
the web browsing. In this field, we find personal assistants
that collect observations of their users’ behavior in order to
recommend new, previously unseen web pages that are rele-
vant to users’ queries. There exist also multi-agent systems,
where personal assistants collaborate one another for improv-
ing the quality of the suggestions. The Internet agent ap-
proach overcomes the shortcomings of the search engine ap-
proach from the personalization point of view. On the other
hand, there are other drawbacks like the low number of sug-
gestions generated or even the absence of them in the case of
a keyword that has been previously unseen for the personal
assistant agent. Sometimes personal assistants require extra
efforts from the user, e.g. specifying his/her area of interests
or answering additional questions.

Recommender systems can be also considered as tools for
the effective access to available information. They can be
classified as content-based, collaborative filtering and hybrid
systems. Content-based systems produce recommendations
by analyzing the content of previously browsed pages and us-
ing the obtained information to find pages with similar con-
tent. Collaborative filtering systems calculate similarity be-
tween the different users and provide the user with the pages
that have been selected by the similar users. Hybrid recom-
mender systems exploit both approaches to a certain extent.
However, majority of the recommender systems needs user
feedback and those systems that collect this feedback in ex-
plicit form force user to perform some extra work like rating
the items.

In this paper we presentImplicit, a multi-agent recom-
mender system. It combines Internet agents and a recom-
mender system.Implicit uses a search engine in order to
obtain a certain number of suggestions for any entered key-
word. Personal agents communicate and collaborate in order
to produce recommendations more suitable in the context of
the current community. So, we complement search engine
results with recommendations produced by the agents. This
helps to add personalization without decreasing significantly
the number of the pages. As in many recommender systems
we attempt to learn the user needs from the observations of
his/her behavior. One of the uncommon features is that we
use universal framework to produce different types of sug-
gestions: links, which are shown to the user, and agents IDs,
which are used internally and hints the user’s agent who it

would be useful to contact. In order to access the information
provided by the system, the user does not need to install ad-
hoc plugins or a new browser, it is just necessary to register
and then load the system homepage. Moreover, we use im-
plicit feedback collection mechanism and no additional work
is required from the users.

The rest of the paper is structured as follows. Section 2
describes theImplicit system in detail and Section 3 contains
some experimental results on the use of our system. Final
Sections 4 and 5 reviews related work and concludes the pa-
per, respectively.

2 Structure of the System
In this section we present a detailed description ofImplicit,
a multi-agent recommender system. The system exploits the
notion of Implicit Culture[Blanzieri and Giorgini, 2000] in
order to produce suggestions by using peculiarities of the
community where it works. Each user of the system has ded-
icated personal agent whose task is to assist the user during
his/her search and to provide him/her with the links in re-
sponse to the entered keyword. For this purpose agents con-
tact a search engine. Agents also produce recommendations
by means of the Systems for Implicit Culture Support (SICS)
module. This module uses implicit knowledge of the commu-
nity members to find links that are considered relevant. The
framework that produces these links is universal in a sense
that it is also used for discovering which agents it would be
useful to contact in order to obtain more relevant links. The
architecture of the system is represented in Figure 1.

Implicit consists of the client part and the server part. There
is an html/php user interface on the client side. On the server
side there are Java servlets and multi-agent platform imple-
mented using JADE (Java Agent Development Framework)
[Bellifemineet al., 2001]. JADE is a framework for develop-
ing multi-agent systems according to FIPA1 standards. Here
we present basic terms used in JADE and in our system.

Personal agentis an agent running on the server side that
receives search tasks from its user and then produces recom-
mendations in response to the query. The process of gener-
ating suggestions consists of several parts, implemented as
behaviors. Behavior is a procedure that implements tasks,
or intentions, of an agent. The agent is able to execute it
in response to different internal and external events. Behav-
iors are logical activity units that can be composed in various
ways to achieve complex execution patterns and that can be
concurrently executed.Scheduleris an internal agent compo-
nent that automatically manages the scheduling of behaviors
and determines which behavior to run now and what action
to perform as a consequence.Inbox is a queue of incoming
messages (ACL) from the user and from other agents. In or-
der to produce recommendations agent uses itsresourcesthat
consist ofbeliefsandcapabilities. Agent’s beliefs are the in-
formation available to the agent (e.g. information on user ac-
tions) and the capabilities are particular functionalities used
in the behaviors (e.g. the SICS module). The structure of the
personal agent is represented in Figure 2.

1FIPA. Foundation for Intelligent Physical Agents.
http://www.fipa.org/ .

SICS

GoogleAPI

SICS

GoogleAPI

SICS

GoogleAPI

User 2

User 1

AMS DF ARB

Search
Engine

User k

Agent k

Agent 2

User interface

Java servlets

Java servlets

User interface

Java servlets

User interface

html/php
html/php

html/phpExternal platform

Agent 1

Figure 1: Architecture of the system.Personal agentsprocess queries

from usersand interact with each other to exchange links;Agent Management System

(AMS)controls the platform. It provides agent registration, search, deletion and other

services;Directory Facilitator (DF) provides agents with other personal agents’ IDs.

Agent Resource Broker (ARB)deals with links to the services available on other plat-

forms.

When an agent receives a query message from the user, it
starts search behavior that consists of Google search behavior
and Platform search behavior. Platform search behavior com-
prises Internal search behavior and External search behavior.
During Google search behavior the agent process query to
Google search engine[Brin and Page, 1998] using Google
Web API. As soon as the agent receives the answer, it shows
the obtained links to the user and starts Internal search be-
havior. The SICS module is used during the search in order
to produce two kinds of suggestions: a http, ftp or resource
link and an ID of the agent to contact. In Internal search the
goal of the SICS module is to generate links based on the past
user actions. If this step fails, then the SICS tries to create
recommendation using internal agent resources such as the
local schemathat will be described below. All the generated
links are stored in the memory and External search behavior
is started. This behavior also uses the SICS but in this case
the goal of the SICS is to propose agents to contact. If there
are no suggestions then agent contacts Directory Facilitator.
Directory Facilitator (DF) according to FIPA standards is a
special agent that provides yellow pages service on the agent
platform. Actually, in our case, DF simply provides the agent
with the IDs of other personal agents on the platform. Having
filled the list of agents to contact, personal agent starts inter-
action — it sends query to every member of the list. When
all the agents are contacted we query new agents that were
suggested during the search and so on. When all suggested
agents are asked and they answered we show all the obtained
links to the user. In the present implementation, the agent

Σaction of users

Executed action
New link

actions of users
Executed

q
u

eu
e

q
u

eu
e

filter

o
b

s

Pool

kernel

Proposer

module
Satisfaction

Executed

agent resources

BELIEFS

Composer

CAPABILITIES

agent

ACL messages

private
inbox

of behaviours

scheduler

be
ha

vi
ou

r
n

event detection

(i.e. agent intention)

active agent
behaviour

be
ha

vi
ou

r
2

be
ha

vi
ou

r
1

EVENT
internal/external

Figure 2: Internal architecture of personal agent
Agent executesbehaviorin response to different internal and external events.Scheduler

manages execution of the behaviors. ACL messages received from the user or from

other agents are stored ininbox. Resourcesconsisting ofbeliefs(information available

to the agent) andcapabilities(available functionality) are used to produce suggestions.

Satisfaction moduleselects links to thepoolusing behavior patterns produced byinduc-

tive modulefrom the observations on executed actions.Proposerselects the best link

from the pool.

performs the three types of search in the following order:
first Google search, then Internal search and finally, Exter-
nal search. Agents may also query each other, in this case the
respondent does not use the capability of contacting a search
engine, because the questioner has this capability too. Agent-
responder runs Internal search behavior in order to produce,
using its own observation history, links that the user of the
agent-questioner will probably accept. It also starts Exter-
nal search behavior in order to recommend to the questioner
other agents to contact. The techniques used within these two
behaviors are the same and are implemented within the SICS
module.

The basic architecture for the SICS is shown in Figure3
and consists of the following three basic components:Ob-
server moduleis the part of the SICS that watches and records
the actions performed by the user during the use of the sys-
tem. The next component,inductive module, analyzes the
stored observations and implements data mining techniques
to discover patterns in the user behavior. And, finally,com-
poserexploits the information collected by the observer and
analyzed by the inductive module in order to produce better
suggestions to its user or to other agents.

The SICS architecture requires the solution of two learning
problems. A problem of browsing patterns learning (induc-
tive module) and a problem of prediction of links the user will
accept (composer). The inductive module problem is a rather
standard learning problem: inducing the behavior patterns of
the groups. The problem is not solved yet. The solution of the
composer problem exploits the principles of instance-based
learning (namely, memory-based or lazy). For more general
description of these two problems see[Blanzieriet al., 2004].

The structure of the SICS allows to find out relevant links
from the observations and to discover relevant agents using
the same mechanism. For producing suggestions the SICS
adopts calculation of the similarity between the community

Observ.

user

user
user

user

user

Composer
Observer

Inductive

Module

DB

Figure 3:The basic architecture for the Systems for Implicit Culture Support con-

sists of the following three basic components:observerthat stores in a database (DB)

the information about the executed user actions in order to make it available for other

components;inductive modulethat analyzes the executed actions in order to discover

patterns of user behaviors;composerthat produces the links to suggest the user

members and therefore personalizes web search of the user to
some extent.

Agents use Agent Communication Language (ACL) and
standard FIPA protocols for link and agent ID exchange.
There is also a feedback protocol for the exchange of in-
formation about accepted/rejected links. A feedback from
one agent to another is sent as the result of the user
browsing behavior. We illustrate the use of communica-
tion protocols by the following short example. For in-
stance, a user searches information about“train timetable”
and asks his/her personal agent,pagent. Pagent starts
Google search, Internal and External searches. Since Google
search is finished the user has information about the links
(we consider only the first three links for this example)
provided by Google:www.nationalrail.co.uk/planmyjourney,
www.thetrainline.comandwww.railtrack.co.uk. Then Inter-
nal search is started in which the SICS module uses data
mining techniques to select agents that performed similar ac-
tions and then selects the link accepted for the keyword“train
timetable” by the agent with the highest similarity. During
External search behavior the SICS module selects agents that
performed similar actions and chooses such an agent that it
is likely to propose link that will be accepted by thepagent’s
user. Let us suppose that SICS suggested the linkwww.fs-
on-line.itduring Internal search and another agent to contact,
agent1, during External search. The personal agent sends a
request toagent1using FIPA Iterated Contract Net Proto-
col. Agent1receives the request frompagentand uses its
SICS module in order to produce suggestions. Let us con-
sider that Internal search behavior ofagent1produced the
link www.trenitalia.itselected from the links accepted by the
agent1’s user in the past. As a result,pagentreceives the link
www.trenitalia.itand shows it to the user. If the user accepts
the link www.trenitalia.it thenpagentstores the information
that this link is accepted and sends this information (using
feedback protocol) toagent1because it providedpagentwith
www.trenitalia.it. When the user leavesImplicit or starts a
new search all the not accepted links are considered to be re-

jected and all the agents involved in the dialog receive the
communication. In our example, if the user does not accept
www.trenitalia.it thenagent1receives the message that this
link is rejected. One of the benefits of our approach is that
feedback is collected without any effort from the user, such
as giving ratings to the items or specifying his/her interests.

The system uses thelocal schemain order to represent the
knowledge about the links that the user accepted in the past.
Basically, it is a tree with user interests in the nodes and links
in the leaves. The schema is stored in XML. The example of
local schemaone can find in[Blanzieriet al., 2004]. It is not
the only source of the locally available knowledge — one can
use some other variants such as “yellow pages” reference or
his/her own bookmarks.

System incorporates the capabilities of having some spe-
cial agents in the platform. Although each agent encapsu-
lates the ability of contacting the external search engine, it
is also possible to use agents called wrappers for transferring
the queries to other search engines like Yahoo! or Vivisimo.
The Agent Resource Broker (ARB) is the special agent which
main purpose is to provide personal agents with the links to
the services available on other platforms (wrappers for exam-
ple).

3 Experimental Results

In this section we present the experimental results obtained
with the proposed platform. We also define the measures
(precision and recall) estimating the quality of the recommen-
dations produced by the SICS.

The aim of the experiment is to understand how the inser-
tion of a new member into the community affects the rele-
vance, in terms of precision and recall, of the links produced
by the SICS. We also want to check the hypothesis that after
a certain number of interactions, personal agents will be able
to propose links accepted in previous searches.

In our experiment, interaction between agents and users is
replaced by interaction between agents and models of users,
namely sequences of search keywords and results about ac-
ceptance. The results are among the firstm links provided by
Google for each keyword and the rank of the list is adopted
as an identifier. Due to the fact that links provided by Google
for a certain keywords are reordered very quickly, before the
experiment we store the links in a dataset. During the simu-
lation we used the dataset instead of contacting Google. User
profile is a set of probabilities of choosing a specified link for
a specified keyword. The profile is built usingn keywords
k1, k2, . . . , kn and determining the probabilitiesp(j|ki)
of choosing thej-th link, j ∈ {1, . . . ,m} while search-
ing with thei-th keyword. We assume that the user accepts
one and only one link during search for the keywordki, so
m∑

j=1

p(j|ki) = 1. The user profile can be seen as a set of asso-

ciation rules with a probability of acceptance of a certain link
for a given keyword search. In our experiment the number of
keywordsn is equal to 10, the number of the links provided
by Google,m is equal to 10, the user profile is represented in
Table 1.

Table 1: Basic profile.The probabilities of acceptance links for a set of

keywords. Links are numbered1..10.
Google rank of the link

keyword 1 2 3 4 5 6 7 8 9 10
tourism 0 0 0.05 0.4 0.05 0.2 0.1 0.05 0.1 0.05
football 0.05 0 0.1 0.3 0.3 0.1 0.1 0.05 0 0

java 0.35 0.3 0.05 0.05 0.05 0.05 0.05 0.1 0 0
oracle 0.1 0.1 0.45 0.2 0 0.05 0.05 0 0 0.05

weather 0 0.3 0 0 0.5 0 0 0.1 0.1 0
cars 0 0 0.05 0.4 0.05 0.2 0.1 0.05 0.1 0.05

dogs 0.05 0 0.1 0.3 0.3 0.1 0.1 0.05 0 0
music 0.35 0.3 0.05 0.05 0.05 0.05 0.05 0.1 0 0
maps 0.1 0.1 0.45 0.2 0 0.05 0.05 0 0 0.05

games 0 0.3 0 0 0.5 0 0 0.1 0.1 0

We use the following performance-related notions in order
to evaluate the quality of the suggestions:

• Link is considered to berelevant to a particular keyword
if the probability of its acceptance, as specified in the
user profile, is greater than some pre-defined relevance
threshold.

• Precisionis the ratio of the number of relevant links sug-
gested to the total number of irrelevant and relevant links
suggested.

• Recall is the ratio of the number of relevant links pro-
posed to the total number of relevant links.

We compute recall in a slightly different way. The total
number of relevant links is adjusted by adding a number of
relevant links proposed by the agents to a number of relevant
links presented in the user profile. We do it despite the fact
that in reality the links from the agents already exist in the
user profile, because in such a way model of interactions be-
comes more similar to a real-life situation, where users (and
their agents as well) have different collections of links. How-
ever, with such an interpretation of recall, the quality of sys-
tem suggestions is underestimated.

Assuming that all the users are members of the same com-
munity and have similar interests, the profile for each user
is derived from the basic profile given in Table 1 by adding
noise. We add noise uniformly distributed in [0.00,...,0.05]
to each entry of the profile and then renormalized entries in
order to keep the sum of each row equal to 1. Following this
procedure we generate 5 different profiles.

From our set of 10 keywords for each agent we generate
25 sequences of 25 keywords by extraction with repetition.
Each sequence is used for a search session modelling the user
query behavior. We also need to model the user acceptance
behavior. Given a keyword in the sequence of keywords, ac-
cepted result is generated randomly according to the distrib-
ution specified in the profile. Other links obtained from the
agents are marked as rejected.

In a simulation we run 25 search sessions for each agent in
the platform. At the end of each session the observation data
were deleted. We repeat the search sessions several times in
order to control the effect of the order of the keywords and
link acceptance. We run 5 simulations for 1,2,3,4,5 agents.
With 1 agent in the platform, the agent acts alone without
interactions with the others. With 5 agents we have a small
community where agents interact with each other. We set the

1 2 3 4 5

0.64
0.66
0.68
0.7

0.72
0.74

precision

Nagents

2

1

1Ã-ÃPersonalÃagent

2Ã-ÃAllÃtheÃagents

Figure 4: Average precision of 25 simulations with different
number of agents.

1 2 3 4 5
0.08
0.1

0.12
0.14
0.16
0.18
0.2

0.22
0.24

recall

Nagents

2

1

1Ã-ÃPersonalÃagent

2Ã-ÃAllÃtheÃagents

Figure 5: Average recall of 25 simulations with different
number of agents.

relevance threshold used to determine the relevance of links
equal to 0.1.

We compute precision and recall of the links proposed by
the agents. In Figure 4 line 1 represents precision of the links
produced by the personal agent only. The SICS module incor-
porated in the agent produces these links by analyzing stored
observations. Line 2 represents precision of the links pro-
posed by all the agents including the personal one. The agents
were discovered at the External search stage or provided by
the DF. In Figure 5 we have analogous curves for recall.

From these figures we can note that the increase of com-
munity members causes the increase of the agents’ recall. It
is probably conditioned by the fact that when we have more
agents we also have more interactions between them. The
agents provide each other with only one link. So, having
growth of the number of links provided by the agents dur-
ing the search, there is an increase of the percentage of rel-
evant links proposed by the agents and therefore an increase
of recall. Moreover, the increase of recall appears without a
decrease of precision and the precision keeps on a rather high
level — from 0.63 to 0.75. The value of recall is also rather
good and changes from 0.09 to 0.23. We also studied the
statistical significance of the difference between agents with
the same profile and in different simulations. We performed
t-Tests with Bonferroni correction, namely dividingp-value
by the number of tests we have performed, in order to control
type I error. These tests prove that the average recall for 4 and
5 agents is consistently better (p < 0.01) than the average re-

call of the simulations with smaller number of agents. The
results also prove the hypothesis that after a certain number
of interactions, agents are able to propose links based on the
past user actions.

In other words the obtained results prove that our way of
complementing search engine with recommendations, pro-
duced as a result of collaboration, makes sense and allows
performing web search in a more qualitative way.

For the moment we did not run yet any experiment for a
number of agents bigger than five. However, we suppose that
after a certain number of agents, increasing the number of
the community members will cause only a moderate improve-
ment of the performances.

4 Related Work
In this section we briefly discuss the papers related to our
work.

A market-based recommender system is presented by Wei
et. al [2003]. It is a multi-agent system where agent acts
on behalf of its user and sells the slidebar space where rec-
ommendations can be displayed. Other agents participate in
this auction in order to show their links on this slidebar. The
agent-initiator of the auction chooses the most profitable of-
fers and displays them to the user. Providers of the links ac-
cepted by the user receive reward. Agents adopt multiple het-
erogeneous recommendation methods and try to make better
suggestions in order to increase their profit.

A multi-agent recommender system is considered by Yu
and Singh[2002]. MARS is a referral system for knowledge
management that assigns software agent to each user. The
agents interact in order to produce answers to the queries of
their users. The agents are also able to give each other re-
ferrals to other users. There is a complex model of interac-
tions in the system in a sense that it is important from who
the query comes — there could be a different set of actions
for the different agents. The system uses pre-determined on-
tologies, shared among all the agents, to facilitate knowledge
sharing between them, while we emphasize the implicit sup-
port of knowledge by managing documents, links and refer-
ences to people. Differently from our system, the agents do
not answer all questions but only those related to their own
user interests. The paper is focused more on knowledge (in
general) search rather than on web search. Finally, the sys-
tem is mail-based whileImplicit is a web-based system that
adopts FIPA standards and JADE platform.

Degemmis et. al[2004] present a recommender system
that incorporates collaborative filtering techniques and learn-
ing user profiles techniques. Thus, this system combines
collaborative approach with content-based approach. The
knowledge about users is represented in user profiles and used
within the collaborative filtering algorithm to reduce the time
of the recommendation generation.

A collaborative multi-agent web mining system “Collab-
orative Spiders” is given by Chau et. al[2003]. There
are different types of agents responsible for retrieving web
pages, performing post-retrieval analysis, interacting with
users, sharing information about user search sessions, per-
forming profile matching and carrying out retrieval and analy-

sis tasks according to a schedule. Before search the user has
to specify the area of the interests and privacy or publicity
of the search. One of the sufficient differences between this
system andImplicit is that the user should analyze excessive
output looking through a number of similar already finished
search sessions.

Zhu et. al[2005] present WebICLite - a recommender sys-
tem that uses behavior models to predict relevant web pages.
They conceptualize web browsing as a search for a specific
well-defined information need and make assumption that this
need can be identified from the pages the user visits and the
actions that he/she applies to the pages. Several specific al-
gorithms for identifying information-need-revealing patterns
are considered and compared. These algorithms are used in
order to turn the inferences about user information needs into
the queries for a standard search engine which does the actual
retrieval of recommended pages.

Macedo et. al[2003] apply a recommender system ap-
proach not only to support user navigation on the Web, but
to assist and to augment the natural social process of ask-
ing for recommendations from other people. WebMemex is
a system that provides recommendations based on the brows-
ing history of the people well-known to the users. In order to
obtain the list of such users, a contact list from Yahoo Mes-
senger is used. The system allows the user to keep privacy of
web search by hiding his/her browsing for a certain time. The
recommendations generated within the system are based on
the links between the related documents visited by the users.

5 Conclusion and Future Work
In this paper we have presented an agent-based recommender
system that extracts implicit knowledge from user browsing
behavior. The knowledge is necessary to suggest links or
agents to a group of people and to their personal agents. Per-
sonal agents use universal mechanism of producing sugges-
tions about links and agents IDs. Learning capabilities are
used by agents to produce results even without interaction.
Interactions allow a user to use the already acquired experi-
ence of members of his/her community. This increases the
quality of the search. The process of collecting feedback and
producing recommendations is completely hidden from the
user and therefore does not require any kind of extra work
from the user.

Implicit can be modified in several ways. It could be en-
hanced with the capability of analyzing content of visited web
pages. In such a way it would combine content-based and
collaborative approaches. Classification of the users on “ex-
perts” and “novices” could also be implemented in order to
take into account information about the author of the recom-
mendation.

References
[Bellifemineet al., 2001] Fabio Bellifemine, Agostino

Poggi, and Giovanni Rimassa. Developing multi-agent
systems with a fipa-compliant agent framework.Software
- Practice and Experience, 31(2):103–128, 2001.

[Blanzieri and Giorgini, 2000] Enrico Blanzieri and Paolo
Giorgini. From collaborative filtering to implicit culture:

a general agent-based framework. InProceedings of the
Workshop on Agents and Recommender Systems, Barcel-
lona, 2000.

[Blanzieriet al., 2004] Enrico Blanzieri, Paolo Giorgini,
Fausto Giunchiglia, and Claudio Zanoni. Implicit culture-
based personal agents for knowledge management.Lec-
ture Notes in Artificial Intelligence, 2926:245–261, 2004.

[Brin and Page, 1998] Sergey Brin and Lawrence Page. The
anatomy of a large-scale hypertextual Web search engine.
Computer Networks and ISDN Systems, 30(1–7):107–117,
1998.

[Chauet al., 2003] Michael Chau, Daniel Zeng, Hsinchun
Chen, Michael Huang, and David Hendriawan. Design
and evaluation of a multi-agent collaborative web mining
system.Decis. Support Syst., 35(1):167–183, 2003.

[Degemmiset al., 2004] Marco Degemmis, Pasquale Lops,
Giovanni Semeraro, Maria Francesca Costabile, Oriana
Licchelli, and Stefano Guida. A hybrid collaborative rec-
ommender system based on user profiles. InICEIS (4),
pages 162–169, 2004.

[Gori and Witten, 2004] Marco Gori and Ian Witten. The
bubble of web visibility. Communications of the ACM,
2004.

[Macedoet al., 2003] Alessandra Alaniz Macedo, Khai N.
Truong, Jose Antonio Camacho-Guerrero, and Maria
da Graca Pimentel. Automatically sharing web experi-
ences through a hyperdocument recommender system. In
HYPERTEXT ’03: Proceedings of the fourteenth ACM
conference on Hypertext and hypermedia, pages 48–56,
New York, NY, USA, 2003. ACM Press.

[Wei et al., 2003] Yan Zheng Wei, Luc Moreau, and
Nicholas R. Jennings. Recommender systems: a market-
based design. InAAMAS ’03: Proceedings of the second
international joint conference on Autonomous agents and
multiagent systems, pages 600–607, New York, NY, USA,
2003. ACM Press.

[Yu and Singh, 2002] Bin Yu and Munindar P. Singh. An
agent-based approach to knowledge management. In
CIKM ’02: Proceedings of the eleventh international con-
ference on Information and knowledge management, pages
642–644, New York, NY, USA, 2002. ACM Press.

[Zhuet al., 2005] Tingshao Zhu, Russ Greiner, Gerald
Haubl, Bob Price, and Kevin Jewell. Behavior-based rec-
ommender systems for web content. InIUI ’05: Pro-
ceedings of the 10th international conference on Intelli-
gent user interfaces. Workshop: Beyond Personalization
2005, New York, NY, USA, 2005. ACM Press.

