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ABSTRACT

Real-world experience teaches us that to manage emergencies, efficient crisis response coordination is crucial; ICT
infrastructures are effective in supporting the people involved in such contexts, by supporting effective ways of
interaction. They also should provide innovative means of communication and information management. At present,
centralized architectures are mostly used for this purpose; however, alternative infrastructures based on the use of
distributed information sources, are currently being explored, studied and analyzed. This paper aims at investigating
the capability of a novel approach (developed within the European project OpenKnowledge') to support centralized
as well as decentralized architectures for information gathering. For this purpose we developed an agent-based e-
Response simulation environment fully integrated with the OpenKnowledge infrastructure and through which
existing emergency plans are modelled and simulated. Preliminary results show the OpenKnowledge capability of
supporting the two afore-mentioned architectures and, under ideal assumptions, a comparable performance in both
cases.
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INTRODUCTION

All phases of emergency response management - that in the following we will reference as emergency response (e-
Response) activities — depend on data from a variety of sources. Moreover, during an emergency it is critical to have
the right data, at the right time, displayed logically and contextually, to respond and take the appropriate actions. At
present, most of the information management infrastructures required for dealing with emergencies are based on
centralized architectures that (i) are specifically designed prior to the emergency, (ii) gather centrally the available
information, (iii) distribute it upon request to the appropriate agents (e.g., emergency personnel, doctors, citizens).
While centralized infrastructures provide a number of significant advantages (in terms of quality control, reliability,
trustworthiness, sustainability, etc.), they also present some well-known intrinsic problems (e.g., physical and
conceptual bottlenecks, communication channel overloads, single point of failure). All these issues are taken into
account in the design and deployment of current mission-critical centralized systems. However, information sharing
breakdowns are still possible and have occurred also in recent emergency events, such as the catastrophic passage of
Hurricane Katrina in New Orleans in 20052 Alternative data management (both for gathering and providing
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information) infrastructures are currently being explored, studied and analyzed (Lorincz, Malan, Fulford-Jones,
Nawoj, Clavel, Shnayder, Mainland, Welsh, Moulton, 2004; Mecella, Catarci, Angelaccio, Buttazzi, Krek, Dustdar,
Vetere, 2006; D’Aprano, de Leoni, Mecella, 2007) in order to support data sharing also in the absence of a
centralized infrastructure.

In this study, we explore the flexibility and adaptability of the framework developed within the FP7 European
project OpenKnowledge’. This framework provides a distributed infrastructure, that enable peers to find and
coordinate with each other by publishing, discovering and executing interaction models, i.e. multi party
conversational protocols; the key novelty of the approach is that no a-priori agreement or knowledge of the
conversation partners is needed to have meaningful interactions. In this paper, the proposed OpenKnowledge (OK)
infrastructure is used to explore its capability to support both centralized and decentralized architectures for
information gathering in open environments.

For this purpose, we built a simulation—based test-bed fully integrated with the OK platform. The final goal of such
virtual environment is to evaluate this framework in the e-Response domain. In particular, we implemented an e-
Response simulation environment through which existing emergency plans based on real-data are modelled and
simulated. Moreover, a suite of experiments has been designed and run to evaluate the performance of the OK e-
Response system under specific assumptions. Preliminary results show the system's capability of supporting the two
afore-mentioned architectures and a comparable performance in both cases. To summarize, the main contributions
of the present paper are:

e The full use and testing of the current release of the OpenKnowledge infrastructure in a realistic and demanding
use case;

e The provision of an agent-based simulation environment in which to evaluate interaction models, coordination
tasks and diverse emergency information-gathering models;

e A preliminary analysis and comparison between the effectiveness of the OpenKnowledge infrastructure in
centralized (hierarchical) and decentralized (p2p) information gathering.

The idea to explore and test the effectiveness of different data management architectures in “real-world” e-Response
setting is not new. It is recognized (Bellamine-Ben Saoud, Dugdale, Pavard and Ben Ahmed,2004) that realistic
computer simulations can be a valuable tool to investigate innovative solutions, such as new collaborative
information systems, new cooperation configurations and communication devices. In fact, several multi agent-based
simulation applications have been developed in diverse domains (Murakami, Minami, Kawasoe, Ishida, 2002;
Bellamine-Ben Saoud et al, 2004; Bellamine-Ben Saoud, Ben Mena, Dugdale, Pavard and Ben Ahmed, 2006;
Kanno, Morimoto, Furuta , 2006; Massaguer, Balasubramanian, Mehrotra, Venkatasubramanian , 2006).

Related research works are either specifically devised for the emergency management area or focused more on the
architectural aspect. In particular CASCOM® , WORKPAD*, EGERIS®, EUROPCOM® , POMPEI’, POPEYE? ,
WIN? are among such projects. For example, in the CASCOM project (Context-Aware Business Application Service
Coordination in Mobile Computing Environments) an intelligent agent-based peer-to-peer (Ip2p) environment was
developed (Helin, Klusch, Lopes, Fernandez, Schumacher, Schuldt, Bergenti, Kinnunen, 2005). Also, in the
FireGrid project (Han, Potter, Beckett, Pringle, Sung-Han, Upadhyay, Wickler, Berry, Welch, Usmani, Torero,
Tate,2009), a software architecture to help fire-fighters in e-Response events has been built. They realized an
integrated system where real-time sensor data are processed using sophisticated models, running on HPC resources
accessed via a Grid interface, and finally presented to humans using a command-and-control multi-agent system. In
this case, a mechanism based on the OpenKnowledge approach would allow each agent to execute, and eventually
modify, the workflow, thanks to the sharing of the multi-agent protocol.

In what follows, we first focus on a brief description of the OpenKnowledge framework. We then present the e-
Response case study that we are using to ground our approach on realistic data and emergency plans. Next, we
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describe the e-Response simulation environment architecture and, later on, we present the experimental test-bed
designed for the evaluation; preliminary results of centralized vs. decentralized information management
architectures are also discussed. In the final section, we draw our conclusion and future work.

THE OPENKNOWLEDGE FRAMEWORK

The OpenKnowledge framework has been developed within the European project OpenKnowledge and provides the
underlying peer-to-peer infrastructure needed to run our experiments. The core concepts in OpenKnowledge are
(Robertson, Giunchiglia, van Harmelen, Marchese, Sabou, Schorlemmer, Shadbolt, Siebes, Sierra, Walton,
Dasmahapatra, Dupplaw, Lewis, Yatskevich, Kotoulas, Perreau de Pinninck. and Loizou, 2008): (1) the interactions
between agents, defined by interaction models published by the authors on a peer-to-peer infrastructure with a
keyword-based description; and (2) a distributed infrastructure, denoted as OpenKnowledge Kernel, that supports
the publishing, discovery, execution, monitoring and management of the various interaction models.

The OpenKnowledge kernel (Siebes R., Dupplaw D., Kotoulas S., Perreau de Pinninck A., van Harmelen F.,
Robertson D., 2007) provides the layer that assorted services and applications can use to interact using a
choreography-based architecture able to deal both with the semantic heterogeneity of the actors and with their
discovery. The framework allows a direct translation of a choreography-oriented design, such as UML activity
diagrams, into an executable application. The core concept is the interaction model, a multi party conversational
protocol performed by different applications and service providers. These actors are the participants (called also
peers) of the interactions, and they play roles in them. In an interaction all the roles have equal weight; the behavior
of all the participants and, in particular, their exchange of messages are specified

Interaction models are written in Lightweight Coordination Calculus (LCC) (Robertson, 2004-1, Robertson, 2004-2)
and published by the authors on a distributed discovery service (DDS) with a keyword-based description
(Koutoulas, Siebes, 2007). LCC is an executable choreography language based on process calculus. An interaction
model in LCC is a set of clauses, each of which defines how a role in the interaction must be performed. Roles are
described by their type and by an identifier for the individual peer undertaking that role. Participants in an
interaction take their entry-role and follow the unfolding of the clause specified using a combination of the sequence
operator (‘then”) or choice operator (‘or’) to connect messages and changes of role.

Messages are either outgoing to (‘=) or incoming from (‘<=’) another peer in a given role. A peer can take, during
an interaction, more roles and can recursively take the same role (for example when processing a list). Message
input/output or change of role is controlled by constraints defined using the normal logical operators for conjunction
and disjunction. In its definition, LCC makes no commitment to the method used to solve constraints, so different
participants might operate different constraint solvers (including human intervention). Figure 4 (in the next section)
shows the LCC clauses for some interactions relevant to our experiments.

The peers that want to perform some task, such as verifying the state of flooding in some area, or providing the
water-level information service, search for published interaction models for the task by sending a keyword-based
query to the DDS. The DDS collects the published interaction models matching the description (the keywords are
extended adding synonyms to improve recall) and sends back the list.

Interaction models and peers are designed by possibly different entities, and therefore the constraints and the peers'
knowledge bases are unlikely to be perfectly corresponding. The heterogeneity problem is dealt splitting the task in
three phases and limiting its scope: (1) the DDS selects the interactions by matching their descriptions using a
simple query expansion mechanism; (2) the peers compare the constraints in the received interaction models with
their own capabilities, and (3) finally the peers need to map the terms appearing in constraints and introduced by
other peers (Besana, Robertson, 2007). The scope of the matching problem is limited to the specific interaction
model in the second phase, and to the specific interaction run in the third phase.

The peer capabilities are provided by plug-in components, called OpenKnowledge Components (OKC). An OKC
exposes normally a set of Java methods that are compared to the constraints in the interaction models. The
comparison is performed between the signatures of the constraints and of the methods, transforming them into trees
and verifying their similarity (Giunchiglia, McNeill, Yatskevich, Pane, J., Besana, Shvaiko , 2008). The signatures
can be annotated with the semantics of each parameter, which, in turn, can be structured terms. The comparison
process creates automatically adaptors that connect the constraints to the methods. An adaptor has a confidence level
that reflects the similarity between each constraint and the best matching method: the average of all the confidences



of constraints gives a measure of how well the peer can execute an interaction, and it is used to select the most
fitting one.

Once the peer has selected an interaction, it advertises its intention of interpreting one of its roles to the DDS by
subscribing to it. Figure 1 shows the status of a network when roles in at least one interaction are all subscribed by at
least one peer: e.g., IM; has all the roles subscribed, while role 3, rs, is subscribed by two peers (P; and P,). The
peers have installed locally their OKCs: some shared OKCs can be found online (e.g., OKC;, OKC,, and OKCy),
and are available to all, while some OKCs might be private to a peer (OKC, for example is installed only on P,).

THE E-RESPONSE CASE STUDY

We applied the OpenKnowledge framework in a case study involving emergency response coordination activities. In
particular, our case study regards the evolution of a flooding event in Trento (Italy). The work moved its steps from
a preliminary analysis on this kind of disaster.
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Figure 1: OpenKnowledge Architecture

The available analysis resulted from documents related to the current flood emergency plan in the Trentino region
(Municipality of Trento, 2002, Autonomous Province of Trento, 2005) and from interviews with experts. We
identified emergency agents (e.g., firemen, police, buses), the main organizations involved (e.g., Emergency
Coordination Center, Fire Agency, Civil Protection Unit), a hierarchy between the actors (e.g., emergency chief,
subordinates), service agents (e.g., water level sensors, route services, weather forecast services, GIS services) and a
number of possible scenarios, that is, possible interactions among the agents. Our analysis resulted in the modeling
of the pre-alarm and the evacuation phases of the emergency plan.

These phases unfold as follows: an Emergency Monitoring System (EMS) continuously gathers data from water
level sensors placed in strategic points (break points) along the river. It also checks weather information in order to
enrich the data needed to predict the evolution of a potential flooding. When a critical situation is registered, the
automatic system notifies the emergency chief so to make her/him able to take a decision on whether to enact the
evacuation plan or not. The evacuation plan consists of agents (e.g., emergency subordinates such fire-fighters)
moving to specific locations assigned by the chief. In order to move, they need to perform some activities: choosing
a path to follow by asking a route service; checking if the path is practicable by interacting with the Civil Protection
or with available reporters distributed in the area; proceeding along the path. The Civil Protection is able to serve
requests on the blockage state of a given path, since it continuously gathers information from reporters (e.g.,
sensors) scattered around the emergency area and reporting the water level registered at their locations.

Figure 2 gives a schematic view of the two phases involved in our case study. It shows the involved actors (denoted
by round circles), their interactions and the kind of information exchanged. The smooth rectangle denotes the



simulator, that is, the virtual environment where all the peers act; obviously, it doesn't correspond to any entity in the
reality, therefore, we don't describe it in this context. However, the simulator is essential for the simulation-based
test-bed and will be illustrated in detail in the next section.

The figure also shows two different evacuation sub-scenarios: in both of them, an agent need to get information on
route’s practicability but while in one case an emergency subordinate ES gets route information by asking the Civil
Protection CP (area above the red line), in the other one the agent interacts directly with reporters rl/r2/r5
physically present at the locations of interest (area below the red line). These two ways of gathering information are
referred to as centralized and decentralized strategies.

On the basis of the described case study, we built a test-bed which simulates the evacuation phase. More details on
the agents and their interactions involved in the evacuation phase are given in the next section.
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Figure 2: e-Response case study
THE E-RESPONSE SYSTEM ARCHITECTURE

Due to the critical nature of emergency situations, the infrastructures supporting crisis response operations require a
full testing and a proper evaluation. With this in mind, we built an e-Response simulation environment which makes
use of the OpenKnowledge kernel. The present simulation environment is based on the system presented in
(Marchese, Vaccari, Trecarichi, Osman, McNeill, 2008) and extends it both in a complete integration with the
OpenKnowledge kernel and in the inclusion of a realistic flood-simulator. Through simulations, it is possible to
estimate how the platform could perform in realistic emergency scenarios. In particular, the developed e-Response
simulation system is used to: (1) model the behaviour of each peer involved in an e-response activity, (2) execute
predefined interaction models within a P2P infrastructure and (3) visualize and analyze a simulated coordination
task through a Graphical User Interface (GUI). The e-Response system is composed of two main components: the
peer network and the e-Response simulator. Figure 3 sketches its overall architecture. All peers are equipped with
their specific OpenKnowledge plug-in component(s); each black arrow represents a different interaction model,
which also represents the flow of information between peers; the greys arrows indicate interactions among network
peers only. In the next two subsections, we illustrate the peer network and the e-Response simulator respectively.

The peer network

The peer network represents the group of agents involved in a simulated coordination task. An agent in the peer
network can interact with other agents, perform some actions (e.g., moving along a road) and gather information.
(e.g., sense the water level in its vicinity).

In order to perform an action or receive sensory information near its location, a peer must connect to the simulator
by enacting the “connect” interaction model. Once added to the simulation, the connected peer periodically receives
sensory information from the simulator via the “sensory-info” interaction model; finally, to perform an action, a
connected peer enacts the “coordinate-action” interaction model which models the action coordination with the
simulator. The connected network peers are called physical peers (shaded ellipses in Figure 3). Of course, not all
peers must connect to the simulator.



Non-physical peers, such as a route service that provides existing routes, do not need to communicate with the
controller but only with other peers in the peer network. In the real world such peers would not actually be in the
disaster area and could not affect it directly, but could provide services to peers that are there. Non-physical peers
are represented as not shaded ellipses in Figure. 3.

In what follows, we describe the agents and their interactions, which take place during the evacuation phase of
Figure 2. Such agents are:

Figure 3: The e-Response system’s architecture

Emergency Chief (EC): a top-level authority responsible for the coordination of all the emergency activities,
from the propagation of the alarm to resource allocation. In the simulation, it just sends the directive of moving
to a given location to its subordinates;

Emergency Subordinate (ES): an agent (e.g., a fire-fighter, a policeman, a doctor) which needs to move to a
specific location;

Route Service (RS): a service providing routes which connect two given locations and do not pass by a set of
“undesired” locations;

Civil Protection (CP): in our simulation, this agency informs people on the blockage status of a given route;
Reporter (r): an agent (e.g., citizen, sensor device) providing information on the water level registered at its
location. In our simulation, reporters are assumed to be sensor devices located at specific locations.

The interactions among the above agents - modeled as LCC specifications - can be recap as follows:

1.

2.

3.

4.

Start evacuation; the EC alerts its ES to go to a specific location. The team-member prepares to satisfy the
directive;

Find a route: a subordinate ES asks a route service RS for an existing route connecting its location to the
destination;

Check the route practicability: a subordinate ES requests information to the CP (centralized strategy) or asks
reporters dislocated in the interested area (decentralized strategy);

Gather real-time data from reporters: an agent (e.g., CP, ES) asks information about the water level to a group
of reporters;

The “Start evacuation” interaction model is the main one in the selected use case. It simulates the evacuation phase
and can be used in all those situations where an emergency chief sends the directive of reaching specific locations to
its subordinates. In short, an emergency subordinate ES receives an alert message from the chief and resolves some
constraints in order to set the goal to be achieved (reach the goal destination G) and get the current position. The



activities of ES thus evolve through three key roles: the goal achiever role which abstractly models the activity of
searching for a path and moving towards the goal; the free_path_finder role which defines the operations needed to
find a free path; the goal mover role which models the actions needed to move towards the goal destination. Figure 4
shows an LCC code snippet for two of the key ES roles. The constraints specified in bold indicate that they are
solved by enacting separate interaction models. This is a key functionality of the OK platform, since it allows to
write simple, modular and reusable LCC specifications. The lack of space prevents us to describe all the developed
LCC interactions. For more details, we direct the interested reader to the technical report (Trecarichi, Rizzi, Vaccari,
Marchese, 2008).

a (emergency_subordinate,FF) : :

a(free_path rinder (From, To, FreePath), EFRF) ::

alert (G) <= a(emergency_chief, FFC) then
null <- set_goal(G) and get_current_position (CurrPos) then null <- find path (From, To, Path) then
a(goal_achiever (CurrPos, G),FF) ( - v
//no paths are found
a(goal_achiever (From, To), GA) :: null <- Path=[] and makeEmptyList (FreePath)

(
//moving pzer already at destination
null <- equal (To,Fron) and setGoalAchieved(To)

or

(

or //check if the path is free
( //try to find a free path null <- reques_t_path_state (Path, PathState) and
a(free_path finder[From,To,FreePath), GR) then path_free (PathState) then

null <- assign(Path, FreePath)
//no free paths between From and To )
null <- FreePath=[] and setGoalUnreachabkle (To)

or or

//move towards the goal destination //search for an alternative path which is free
a(goal_mover (From, To, FreePath), G2) a(free_path_finder (From, To, FreePath), FRF)

Figure 4: LCC fragment for the emergency subordinate role
The e-Response Simulator

The simulator is designed to represent the environment where all the involved agents act. It is composed of three
modules which are themselves peers: the controller, the flood sub-simulator, and the visualiser (see Figure 3). The
controller regulates the simulation cycles and the management of the simulated agent activities; the flood sub-
simulator reproduces the actual evolution of the 1966 flood in Trento; the visualiser stores simulation information
used by the GUI to view a simulation run in a step-by-step way. The simulator does not interfere or help coordinate
peer’s actions in the peer network. It is used to simulate the real world.

The Controller

The controller is the core of the simulator: it drives the simulation cycles and keeps track of the current state of the

world. In order to achieve that, it needs to know what changes are happening to the world and updates its state

accordingly. After updating its state, it also informs the relevant peers of these changes. The simulation thus evolves

through cycles (or time-steps). A simulation cycle foresees two main operations:

e Gathering changes: the controller receives information about the changes that happened to the world: (a) it
receives the disaster (e.g., flood) changes from the disaster sub-simulator via the “flood” interaction model and
(b) it serves requests of performing (move) actions with the “coordinate-action” interaction model (see Figure
3). In this latter interaction, the controller verifies whether certain actions are legal or not before they are
performed, and if a certain action is illegal, the peer is informed of the reason of failure;

o Informing peers: the controller sends information about the changes that happened in the world: (a) it sends, at
each time-step, local changes to each connected peer via the “sensory-info” interaction model and (b) it sends to
the visualiser information on - (i) the locations of all connected peers; (ii) the status of the reporter peers (e.g.,
available, responding to requests) and (iii) the water level registered; here, the “visualiser” interaction model is
used.

Before a simulation cycle commences, some preliminary activities are performed such as: establishing key
parameters (e.g., maximum number of simulation cycles, timeouts, water level thresholds), connecting with the
flood sub-simulator, sharing with it the initial topology of the world, and adding connecting peers. Once a



simulation cycle terminates, the controller updates the time-step and starts the next cycle. Notice that, due to the
modularity of the above architecture, it is reasonably easy to add as many disaster sub-simulators (e.g., landslides,
earthquake, volcanic eruption, etc.) as needed;

The Flood-SubSimulator

The flood sub-simulator goal is to simulate a flood in town of Trento (Italy). The equation defined in its core OKC is
based on flooding levels and flooding timings deduced from a work presented in (Alkema, Cavallin, De Amicis and
Zanchi, 2001). This study is based on the digital terrain model of the river Adige valley, on historical hydrological
data of the flood experienced in Trento in 1966, on the localization of ruptures of the river Adige's dikes and on
floodplain topography changes from year 1966 to year 2000.

To the purpose of our test-bed the territory is divided into flooded areas: each area is characterised by the maximum
water height reached during the inundation and the time when this level was touched. We digitalised these flooded
areas from (Alkema et al., 2001) analysis assuming that the time required to reach the maximum flood level was
always one hour. We then stored this digitalised data in different tables in a geographical database. Each table has a
field representing x,y coordinates of digitalized points. At simulation time, only the data of the interested area are
joined in a single table using an Open Geospatial Consortium standard spatial SQL query.

The flood sub-simulator has been developed in Java and it is fully integrated into the OpenKnowledge kernel. The
main component is an OK peer that subscribes to two interaction models. The first interaction model is enacted at
the beginning of the simulation. It shares the topology (e.g., point of interests and roads) of the world between the
controller and the flood sub-simulator peers and stores, in the controller local knowledge, the connection state of the
sub-simulator. The second interaction model is used by the controller at every time step, in order to get from the
flood sub-simulator flood level changes registered at nodes in the topology.

The Visualiser

This component enables the GUI used to visualise the simulation. In particular, the GUI shows the information
provided by the controller through the “visualiser” interaction model. At every time-step, the visualiser receives the
changes and updates its history according to the new information. The update results in a change on the GUI. Figure
6 shows the appearance of the GUI in two simulated scenarios.
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Figure 6: Emergency GUI

A green dot represents a reporter agent available for giving information on the water level registered; a grey dot
represents a reporter agent giving this information; the water level at a location is depicted as a blue circle, which
size depends on how high the water level is; the hat represents the emergency subordinate.



For more detailed information on the simulator’s implementation please refer to the technical report (Trecarichi et
al., 2008).

THE EXPERIMENTAL TEST-BED

We built a test-bed which is based on simulations and integrated with the OpenKnowledge platform. With such test-

bed, we want to evaluate the OK framework in the e-Response domain. We designed a series of experiments with a

three-fold aim:

e Put the OpenKnowledge framework in action in a realistic (and demanding) scenario;

e Demonstrate that the technology provided by OpenKnowledge supports different models of information
gathering (centralized vs. distributed scenario);

e Investigate when and in which cases the OK paradigm can improve performance in emergency tasks.

In respect to the last point, the hypotheses to be tested are that: (1) under ideal conditions, the OK system exploited
in its decentralized nature is comparable in performance to traditional centralized systems and (2) it improves on
conventional centralized systems when specific fault conditions arise. In this paper, we only test the first hypothesis,
leaving the exploration of the second one to future work.

In the context of our experiments, what we measure as performance is: (i) the percentage of times an emergency
subordinate arrives at destination; (ii) the number of time-steps needed to achieve this goal. These indicators are
used to compute the results of the experiments and to make a comparison among them. A preliminary analysis on
the variables which may affect the experimental results was carried out. Among the variables considered, those used
in the experiments reported here, are: (A) the number of emergency subordinates; (B) the destination assigned,
(therefore the routes to be followed); (C) the flooding law; (D) the locations where reporters are present; (E) the
number of reporters at each location;

The experiment design

Two types of experiments were designed to simulate the two evacuation scenarios differing on the information
gathering strategy. The scenarios evolve under ideal conditions, i.e., the absence of faults (like failures in
communication and inaccurate signalling) is assumed.

In order to interpret appropriately the obtained results, it is important to recall the assumptions made:

I. The Civil Protection (CP) peer has infinite resources: it can serve any number of simultaneous requests and its
communication channel never breaks. Bottleneck problems due to overwhelming requests thus never occur;

Il. An emergency subordinate asking information to a group of reporters will receive all the answers within a time-
step. This is due to how the time-step interval is set: the value is such that the time elapsing between one time-
step and the next one is sufficiently high to guarantee the replies from all the reporters.

Under the above assumptions, we simulate a scenario where advantages and disadvantages of both centralized and
decentralized architectures are kind of balanced. Table 1 summarizes the experiment configuration: each experiment
is run 10 times; at each run, the only variables that change are the destination assigned and the locations where
reporters are present. Such locations are determined according to the set of routes associated with the destination
assigned. The flooding law, the number of emergency subordinates and reporters remain unchanged during all runs.

Variable Settings
Exp N° | Information Gathering | Runs | A B C D E
1 centralized 10 1 | 1 destination x run | fixed [ 60 x run | 1
2 decentralized 10 1 | 1 destination x run | fixed [ 60 x run | 1

Table 1: Experiments configuration
Experimental results

In order to run an experiment, a number of processes equal to the number of total agents considered need to be
launched. For this purpose, we developed a Java program that reads the selected configuration variables from a
database and then launches the processes with different combination of parameters. This mechanism exploits the
distributed nature of the OK platform. For example, while the DDS is run in one server, the processes associated



with the reporter peers are launched in a different machine. Each experiment consists in the simulation of the
evacuation scenario described in the previous section. Independently on the kind of strategy adopted, the final goal
of an emergency subordinate is to safely reach the assigned destination. There are three situations which may
happen: (1) the agent reaches the destination by following the first route found; (2) the agent finds blocked routes
but finally reaches the destination after a number of alternative paths and (3) the agent doesn’t reach the destination
at all. We refer to each situation as the outcome of the experiment.

We run each experiment 10 times. The simulations were visualized on the GUI in order to analyze the movements of
the emergency peers and verify the correct mechanism in the coordination among the agents.
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Figures 5-a) and 5-b) show a simulation run for the centralized and the decentralized scenario respectively. Figure 5-
a) shows the agent out from the flooded area; here, all the dots are grey, meaning that all reporters are being queried
by the Civil Protection; some of them register high levels of water. Figure 5-b) shows the agent moving along a
route which can be deduced by the grey dots ahead the agent; these dots represent in fact those reporters located
along the route followed and therefore queried by the moving agent; all the other reporters remain available. Here,
the OK paradigm is exploited in its decentralized nature, since the information gathering is based on the use of
distributed information reporter agents and not on a unique provider, as in the first case.

Figure 7 shows the outcome distribution obtained by running 10 times the first experiment. As can be seen, 70
percent of the times, the experiment has outcome (1) (the peer reaches the destination without problems) while 30
percent of the time, the outcome is (3). The outcome (2) is never obtained. Although we setup the routes in order to
cover different kind of areas (either safe or flood-prone areas), the case where an agent finds free routes after a re-
routing never happens. This could be explained by considering how the design of the flooding law and its “speed”
affects the evolution of the scenario. The outcome distribution related to the second experiment, which simulates the
decentralized scenario, is identical to the one found for the first experiment and hence is not reported here. This
result can be explained with the assumptions previously made: asking information on the route’s practicability to
either the Civil Protection or reporters scattered around the city doesn’t make the difference.

Figure 8 shows the time taken (measured as the number of simulation time-steps) by an agent to reach the goal
location according to the shortest distance (in terms of intermediate locations) between the initial position and the
final destination. The trend is shown for both experiments. It can be observed that, in both cases, the time needed to
achieve the goal is nearly equal to the shortest distance. This can be explained by how the simulation is designed —
an agent moves from a location to the next one exactly in a time-step — and by the missing outcome (2). Finally,
Figure 8 reveals very similar trends for both centralized and decentralized scenarios. Again, this is mainly due to the
assumptions made and the variable settings.

In view of the results described above, we can conclude that our first expectation is met: the use of the OK
framework supports both architectures (centralized and decentralized) and provides comparable performances under
the selected - ideal - assumptions.

CONCLUSIONS AND FUTURE WORK

The aim of this paper is to show how the OK framework is capable to support the coordination of emergency
activities and how, in absence of fault conditions, the OK p2p framework is comparable in performance to
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traditional centralized gathering approaches. An agent-based e-Response simulation system fully integrated with the
OpenKnowledge infrastructure has been developed. The system currently runs on Java and exploits the distributed
nature of the OK platform. It is used to model specific emergency scenarios and agents in terms of both LCC
specifications and OKC’s components. A suite of experiments has been designed and run to evaluate the
performance of the OK e-Response system in different scenarios and under specific assumptions. The preliminary
results thus obtained show how the OK infrastructure is equally effective in both centralized (hierarchical) and
decentralized (p2p) information gathering.

We are currently working on further experiments. In particular, we want to repeat the experiments here reported by
increasing the number of runs and by tuning parameters like the “speed” of the flood and the routes to follow, in a
way that diversified outcomes can be obtained. In this way, we could reconfirm our hypothesis in a more robust
setting. Also, we want to run experiments where specific fault conditions are injected. These experiments foresee
two types of fault conditions: failures in the communication channels and inaccurate signaling.

The following variables will be considered in addition to the ones already described:

o Distribution of trustworthy (reporter) peers: the number of reporter peers having a trustworthy behaviour, i.e.,
peers which always report accurate water level values. By setting this variable, the fault due to inaccurate
signaling, its location and its severity can be simulated.

e Degradation of the CPU communication channel: measured as the likelihood of a fault in the communication
channel of the Civil Protection agent. For example, a degradation of the 80% means to have this agent serving
incoming requests only 20% of the times.

e Distribution of degraded reporters’ communication channels: defines, for each reporter communication
channel, the probability of its disruption.

What we want to investigate by running these new experiments, is if - and eventually under which conditions - a
complete p2p architecture improves the overall performance and robustness over traditional centralized
architectures. Finally, from the point of view of the simulated scenarios and the agents involved, it would be
interesting to consider the reporter agents as mobile emergency agents rather than fixed sensors. In this way, we
could explore how the OK platform supports the coordination of team-members in an emergency site.
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