
Expert Systems With Applications 211 (2023) 118627

A
0

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

Online distributed evolutionary optimization of Time Division Multiple
Access protocols
Anil Yaman a,∗, Tim van der Lee b, Giovanni Iacca c

a Department of Computer Science Vrije, Universiteit Amsterdam, Amsterdam, 1081 HV, The Netherlands
b Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, 5600MB, The Netherlands
c Department of Information Engineering and Computer Science, University of Trento, Trento, 38123, Italy

A R T I C L E I N F O

Keywords:
Distributed evolutionary algorithm
Network protocol
Online adaptation
Time Division Multiple Access
Multi-objective optimization

A B S T R A C T

With the advent of cheap, miniaturized electronics, ubiquitous networking has reached an unprecedented
level of complexity, scale and heterogeneity, becoming the core of several modern applications such as smart
industry, smart buildings and smart cities. A crucial element for network performance is the protocol stack,
namely the sets of rules and data formats that determine how the nodes in the network exchange information.
A great effort has been put to devise formal techniques to synthesize (offline) network protocols, starting from
system specifications and strict assumptions on the network environment. However, offline design can be hard
to apply in the most modern network applications, either due to numerical complexity, or to the fact that
the environment might be unknown and the specifications might not available. In these cases, online protocol
design and adaptation has the potential to offer a much more scalable and robust solution. Nevertheless, so far
only a few attempts have been done towards online automatic protocol design. These approaches, however,
typically require a central coordinator, or need to build and update a model of the environment, which adds
complexity. Here, instead, we envision a protocol as an emergent property of a network, obtained by an
environment-driven Distributed Hill Climbing (DHC) algorithm that uses node-local reinforcement signals to
evolve, at runtime and without any central coordination, a network protocol from scratch, without needing a
model of the environment. We test this approach with a 3-state Time Division Multiple Access (TDMA) Medium
Access Control (MAC) protocol and we observe its emergence in networks of various scales and with various
settings. We also show how DHC can reach different trade-offs in terms of energy consumption and protocol
performance.
1. Introduction

A fundamental element in many engineering and industrial appli-
cations is the use of networked systems: be it environment monitoring,
smart industries, smart cities, or distribution systems, networks of vari-
ous scales and complexity are employed today practically everywhere.
One of the most important aspects in network design is the protocol
stack, which determines the way (data format and rules) the nodes in
a network communicate with each other (Holzmann, 1991).

Traditionally, network protocols have been modeled as a reactive
system, i.e., a two-player game where an agent (a node in the network)
reacts – by performing a certain action – to predefined conditions in the
environment (the rest of the network): for instance, the agent retries a
packet transmission if it does not receive an acknowledgment. As such,
a protocol can be described with an automaton, for which formal spec-
ifications can be logically expressed and verified. For that, one usually
needs to have complete knowledge about (and strict assumptions on)

∗ Corresponding author.
E-mail addresses: a.yaman@vu.nl (A. Yaman), t.lee@tue.nl (T. van der Lee), giovanni.iacca@unitn.it (G. Iacca).

the environment. This approach, rooted in the theory of Temporal Logic
and infinite Büchi automata (Büchi & Landweber, 1990), has been the
gold standard in protocol design and verification for decades. Since the
late ’60, an impressive number of theoretical and practical results have
been obtained in this area, gearing towards the automatic synthesis of
protocol from service specifications (Saleh, 1996) and the development
of automatic model checker tools, such as SPIN (Holzmann, 1997).

Despite these many successes, this approach to protocol design has
also limitations. First of all, it assumes, in general, the environment
– and all its states – to be known: this might not be the case of some
modern network applications, where the environment conditions might
be unpredictable. Furthermore, this approach models the environment
as a whole, i.e., without describing the mutual interactions between the
other nodes in the network. Two notable exceptions to this approach,
that instead model also these interactions, are the reported in Al Dallal
and Saleh (2012) and Finkbeiner and Gölz (2017). Another issue is the
vailable online 27 August 2022
957-4174/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.eswa.2022.118627
Received 27 April 2022; Received in revised form 16 August 2022; Accepted 16 Au
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

gust 2022

http://www.elsevier.com/locate/eswa
http://www.elsevier.com/locate/eswa
mailto:a.yaman@vu.nl
mailto:t.lee@tue.nl
mailto:giovanni.iacca@unitn.it
https://doi.org/10.1016/j.eswa.2022.118627
https://doi.org/10.1016/j.eswa.2022.118627
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2022.118627&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Expert Systems With Applications 211 (2023) 118627A. Yaman et al.

2
b
w

g
&
p
s
(
2
m
m
W
m
d
o
a
‘

f
b
o
P
e

o
p
a
2

numerical (time and space) complexity of these methods, which makes
them impractical when the number of protocol and environment states
grows (Vardi, 2018). Finally, and this is arguably the main limitation,
this approach fundamentally follows a waterfall design model, as the
design and verification steps are performed offline, before deployment,
and usually no online adaptation or feedback design cycles are con-
sidered. This is the case of projects such as x-kernel (Hutchinson &
Peterson, 1991), Horus and Ensemble (Birman et al., 2000) and—to
some extent—ANTS (Wetherall et al., 1998): all these tools offer a
great level of modularity and abstraction, but—as pointed out in Keller
et al. (2008)—their being based on offline design limits their flexibility
and applicability. With the exception of ANTS, which also provides a
way to dynamic reprogramming/redeploying the protocol code over
the network, in all the other cases if one wants to change the protocol
code all network nodes must be manually reprogrammed with the new
protocol implementation: clearly, not only this approach disrupts the
operation of the network, but also it becomes expensive when the
network size increases.

In contrast to this traditional ‘‘rigid’’ offline approach, online pro-
tocol design and adaptation (Lee et al., 2020) has the potential to
offer a much more scalable and robust solution. Some researchers
have even suggested that flexibility – in the form of self-adaptation
and empowerment, i.e., the principle of agents performing the actions
which maximize the number of reachable states – should be the key de-
sign principle in modern network engineering (Kalmbach et al., 2018;
Kellerer et al., 2015, 2019). Nevertheless, so far only a few attempts
have been done in this direction, oriented towards the grand vision
of autonomic or self-adaptive networking (Bouabene et al., 2009; Xiao,
016). Most of these attempts are based on Machine Learning (ML) and
io-inspired techniques, although they suffer from some limitations, as
e briefly summarize below.
Machine Learning: Various solutions based on collective intelli-

ence (Wolpert et al., 1999) and Reinforcement Learning (RL) (Peshkin
Savova, 2002; Stampa et al., 2017; Tao et al., 2001) have been

roposed in the context of routing protocols and particularly in IoT
ystems (Woźniak et al., 2020), such as Wireless Sensor Networks
WSNs) (Alsheikh et al., 2014; Förster & Murphy, 2011; Kulkarni et al.,
010); other works (He et al., 2019) used Deep Learning (DL) to
odel and optimize the physical layer, or optimization and consensus
echanisms to reduce energy consumption (Wadhwa et al., 2022;
oźniak et al., 2021). Albeit quite powerful, the main limitation of
ost of these approaches is that they often require a large amount of
ata collected from the network at runtime, in order to build (i.e., train
ffline) a model of the protocol, to be used later for online adaptation
nd optimization. In this sense, we can consider these methods as
‘semi-online’’.
Bio-inspired techniques: a large body of research exists in this

ield, as surveyed for instance in Nakano (2010). Similarly to the ML-
ased methods, most of the existing literature focuses however on
ffline optimization, based on Swarm Intelligence algorithms, such as
article Swarm Optimization (Guo & Lv, 2020) or Ant Routing (Zhang
t al., 2020), and especially on Evolutionary Algorithms (EAs)1. In

the context of EAs, a seminal paper is represented by the study (El-
fakih et al., 1999). Later on, Genetic Programming (GP) has been
successfully used to evolve – i.e., optimize offline – protocol adap-
tors (Van Belle et al., 2003), wireless protocols based on Carrier Sense
Multiple Access (CSMA) (Tekken-Valapil & Kulkarni, 2017), aggrega-
tion protocols (Weise et al., 2007; Weise & Tang, 2011; Weise et al.,
2008), or MAC access protocols (Lewis et al., 2006; Roohitavaf et al.,

1 Interestingly, a loop between network engineering and evolutionary the-
ry exists. Recent evidence has shown that the ‘‘hourglass’’ shape of most
rotocol stacks is the result of an implicit evolutionary process that led to
minimal complexity, maximal robustness architecture (Akhshabi & Dovrolis,
011; Dovrolis, 2008; Siyari et al., 2017).
2

2018). The latter have been evolved also by means of evolvable Fi-
nite State Machines (FSMs) (Hajiaghajani & Biswas, 2015a, 2015b;
Sharples & Wakeman, 2000). As for online methods, an interesting
bio-inspired (distributed) learning approach was introduced in Su and
Van Der Schaar (2010), where each node observes the other nodes’
behavior and forms internal conjectures on how they would react to
its actions, to then choose the action that maximizes a local utility
function: the authors demonstrated, analytically and through numerical
simulations, that this method reaches Nash equilibria corresponding
to optimal traffic fairness and throughput. Other works have inves-
tigated distributed EAs (Iacca, 2013) and distributed GP (Johnson
et al., 2005; Valencia et al., 2010) to evolve the nodes’ parame-
ters and functioning logics of WSNs, or distributed optimization in
multi-agent network systems. Finally, two notable online methods are
STEM-Net (Aloi et al., 2014) and Fraglets (Yamamoto et al., 2007).
The first one is a wireless network where each node uses an EA ‘‘to
reconfigure itself at multiple layers of the protocol stack, depending
on environmental conditions, on the required service and on the in-
teraction with other analogous device’’ (Aloi et al., 2014). The latter
is based on the concept of ‘‘autocatalytic software’’ (Tschudin & Ya-
mamoto, 2005), or chemical computing (Miorandi & Yamamoto, 2008):
essentially, protocols emerge automatically as collections of ‘‘fraglets’’,
i.e., combinations of code segments and parameters which are evolved,
respectively, by distributed GP (Yamamoto & Tschudin, 2005) and dis-
tributed EAs (Alouf et al., 2010), and spread over the network through
opportunistic (epidemic) propagation (Alouf et al., 2007) regulated by
interactions with the environment. On top of this, an additional EA
optimizes the combination of protocols (Imai & Tschudin, 2010).

In this work, we continue along this research direction on online
evolution of protocols. We consider a network of spatially distributed,
locally connected nodes, and – to illustrate our method’s applicability
– we focus on a Time Division Multiple Access (TDMA)-based Medium
Access Control (MAC) protocol, where given a time frame consisting of
a fixed number of time slots, each node should learn in which slots it
should transmit, listen, or stay idle, see Fig. 1 for an example. TDMA
protocols are of particular interest in modern network research since
the existing protocols are usually not suitable to handle the most recent
network instances such as WSNs (Lee & Cho, 2017), vehicular ad-hoc
networks (Sun et al., 2020) or underwater acoustic networks (Yun et al.,
2013). On the other hand, this approach is applicable also to other
protocols and stack layers.

Our proposed solution works as follows. Starting from a tabula rasa,
nodes automatically learn the optimal protocol configuration – the one
that minimizes collisions and/or reduces the energy consumption (for
which we use, as proxy, the number of slots used for transmit/listen ac-
tions) – online, and in a distributed manner. To do this, we propose an
environment-driven approach, based on our previous work (Yaman &
Iacca, 2021), in which each node in the network runs in situ a minimal-
ist evolutionary search, receives reinforcement signals corresponding
to its actions, and occasionally shares its protocol parameters with its
neighbors. This approach aims to optimize the collective behavior of a
population of agents that interact with a certain environment, and uses
such interaction to drive a distributed evolutionary search.

We should note that similar approaches have has been proposed
in earlier literature, although those were primarily focused on ‘‘em-
bodied’’ collective robotics (Bredeche et al., 2018). This concept was
initially conceptualized, for the case of a single robot, in Eiben et al.
(2010), and later extended to the case of distributed evolution (over
groups of robots) in Bredeche et al. (2012), including environment-
driven adaptation (Haasdijk et al., 2014), and real-time constraints (Pri-
eto et al., 2016). However, to the best of our knowledge an approach of
this kind has never been applied to the evolution of network protocols.

Compared to traditional (offline) protocol design, as well as to
other methods for MAC protocol optimization, the advantages of our
approach are manifold:



Expert Systems With Applications 211 (2023) 118627A. Yaman et al.
Fig. 1. Example network model used for evolving TDMA MAC protocols: each node has a time frame consisting of 𝑆 slots, where each slot 𝑠𝑖 , 𝑖 ∈ {1,… , 𝑆} can be either ‘‘T’’
(transmit), ‘‘L’’ (listen) or empty (idle).
1. Scalability: since there is no central unit that guides the evolu-
tionary search, this method can potentially scale up to very large
networks.

2. Robustness: since the evolutionary search runs continuously and
open-ended, it allows a form of continual learning that can respond
adequately to different network conditions, even unknown prior to
deployment.

3. Environment-independence: the proposed method is fairly agnos-
tic to the environment: by definition, the other nodes’ behavior –
in our case, the structure of their time frames – is not known a
priori as it will adapt online via embedded evolution. Furthermore,
differently from other works such as Su and Van Der Schaar (2010),
there is not even the need to build a node-local conjecture on how
the other nodes would behave. In essence, our only assumptions are:
(1) the node actions are taken from a finite action set that is the same
for all nodes in the network (in our case: transmit, listen, idle); (2)
each action is associated to a certain reinforcement signal that is the
same in all the network; (3) for each transmission an ack packet can
be received at the transmitter to acknowledge that the transmitted
packet has been received correctly.

4. Full decentralization: one distinct characteristic of our proposal
w.r.t. the existing evolutionary approaches to MAC protocol opti-
mization, which are typically centralized, such as the aforemen-
tioned works based on GP (Lewis et al., 2006; Roohitavaf et al.,
2018) or those based on evolved FSMs (Hajiaghajani & Biswas,
2015a, 2015b; Sharples & Wakeman, 2000), is that our approach
is fully distributed (decentralized) and works online rather than
offline.

The remaining of this paper is organized as follows. In the next
section, we introduce the TDMA problem and the proposed Distributed
Hill Climbing algorithm. In Section 3, we present the experimental
setup, while the numerical results are discussed in Section 4. Finally,
in Section 5 we draw the conclusions and hint at future works.

2. Methods

In this section, we present first (Section 2.1) the problem settings,
i.e., how we model the network and how we perform the evaluation
process. Then, we describe the proposed method (Section 2.2).

2.1. Problem settings

The network, illustrated in Fig. 1, can be represented as a graph
𝐺 = (𝑉 ,𝐸) consisting of a set of nodes 𝑉 , and undirected edges
3

𝐸 ⊂ 𝑉 × 𝑉 which represent the possibility of communication between
the nodes (Ergen & Varaiya, 2010). Two nodes, seed and target, are
selected in the network. All the packets originating from the seed node
and are targeted to the target node.

Each node 𝑛𝑖 has a time frame, 𝑻𝑭 𝑖, consisting of 𝑆 time slots
that can take one of three values: ‘‘T’’, ‘‘L’’ or empty, to indicate
transmit, listen, and idle actions, respectively. We assume that the time
frames of all nodes have the same length and that their time slots are
synchronized. In addition, each node has a queue data structure 𝑄𝑖 of
unlimited size to allow storing packets if they cannot be transmitted.

The evaluation process of the whole network is performed for 𝐾
time steps. The process starts at time step 𝑡1 = 1 by simultaneously
executing the action in the first time slot of each node. Then, at each
time step 𝑡𝑘, 𝑘 ∈ {2,… , 𝐾}, the action to be executed is the one in the
next slot in the time frame, until the last slot is reached. Once the last
slot is reached, the next action to be executed becomes the one from
the time slot, and so on. This process is repeated until the last time step
𝑡𝐾 is reached.

During the evaluation process, a predefined number of packets are
introduced into the queue of the seed node with a certain frequency.
Depending on the actions in the time slots of the nodes, these packets
are transmitted and received across nodes. For instance, if there is a
packet in the queue of a node, and the action in the current time slot is
‘‘T’’, then the node attempts to transmit the packet. Every node in the
neighborhood that performs the action ‘‘L’’ in the same time step can
receive the packet. However, a collision occurs when a node performing
the action ‘‘L’’ has more than one neighbor that is attempting to
transmit a packet at the same time. This can be observed in Fig. 1. In the
first time slot, 𝑠0, while ‘‘Node 3’’ listens, its two neighbors ‘‘Node 1’’
and ‘‘Node 2’’ try to transmit at the same time, which causes a collision.
In this case the packet cannot be received. If there are no collisions, the
packet is received by the neighbor and put into its queue. The neighbor
that receives the packet sends an acknowledgment. In this case, the
transmitting node removes the packet from its queue. If a packet is
received at the target node, it is removed from its queue. The number
of packets received at the target node and the number of time steps
took for each packet to reach the target are recorded.

The goal of the problem is to assign an action to each time slot of the
time frame of each node in such a way to allow all packets generated
at the seed node to reach the target node (100% delivery rate). Ideally,
it is also desirable to reduce the number of used slots (i.e., slots
assigned to transmit and listen actions), to reduce the network energy
consumption.

As a note, to avoid multiple transmissions of the same packet we
include an additional data structure to keep track of the received



Expert Systems With Applications 211 (2023) 118627A. Yaman et al.

t

1
1
1

b
i
r
w
H
w
b
(
i

(

p
e

Table 1
Node behavior reinforcement associations (NBRAs).

Behavior ID Action Queue Outcome 𝑟𝑘
1 Transmit Empty – 𝑟1
2 Transmit Non-empty (ack) received 𝑟2
3 Transmit Non-empty (ack) not received 𝑟3
4 Idle Empty 𝑟4
5 Idle Non-empty 𝑟5
6 Listen Empty (packet) received 𝑟6
7 Listen Non-empty (packet) received 𝑟7
8 Listen Empty (packet) not received 𝑟8
9 Listen Non-empty (packet) not received 𝑟9

packets in each node. To achieve that, we simply record the packet
ID of each packet in each node when they are received. Moreover, if
a node receives a packet with the same ID that was received before, it
simply ignores it and does not send an acknowledgment.

2.2. Proposed method: Distributed Hill Climbing

Algorithm 1 shows the proposed Distributed Hill Climbing (DHC)
algorithm for optimizing TDMA MAC protocols over a network consist-
ing of 𝑁 nodes. Each node 𝑛𝑖, 𝑖 ∈ {1,… , 𝑁} runs the DHC algorithm
independently. The DHC algorithm.2 starts with the initialization of the
time frame 𝑻𝑭 𝑖. Here, we initialize 𝑻𝑭 𝑖 with empty time slots, to allow
‘‘complexification’’ of the time frames and emergence of frames with a
minimum number of transmit/listen actions.3

Algorithm 1 Distributed Hill Climbing algorithm used to optimize the
ime frame 𝑻𝑭 𝑖 of node 𝑛𝑖 in a network.
1: procedure DistributedHillClimbing
2: 𝑻𝑭 𝑖 ← initialize() ⊳ Empty slots
3: 𝑓𝑖 = eval(𝑻𝑭 𝑖) ⊳ Local fitness
4: while True do
5: 𝑻𝑭 ′ ← mutate(𝑻𝑭 𝑖, 𝑚𝑟) ⊳ Mutation
6: 𝑓 ′ ← eval(𝑻𝑭 ′) ⊳ Local fitness
7: if 𝑓 ′ > 𝑓𝑖 then ⊳ Maximizing reward
8: 𝑓𝑖 ← 𝑓 ′

9: 𝑻𝑭 𝑖 ← 𝑻𝑭 ′

0: end if
1: end while
2: end procedure

2.2.1. Local fitness computation
During the evaluation process, each node executes its time frame

as discussed in Section 2.1. The fitness value of each node is then
computed locally, as a cumulative sum of scores. We refer to these
scores as reinforcements. Each reinforcement is associated to the node
ehavior (i.e., a combination of action, queue and outcome) displayed
n each time step of the evaluation. These reinforcements specify the
ewards for the possible node behaviors. For instance, a transmit action
ould be more preferable if there is a packet in the queue of a node.
owever, if the queue of a node is empty, performing a transmit action
ould be unnecessary. Therefore, to encourage/discourage specific
ehaviors, it is possible to define rewarding (positive) or punishing
negative) reinforcements depending on the preference of the action
n a certain situation.

The complete list of node behavior reinforcement associations
NBRAs) defined in our experiments is given in Table 1. For each

2 Code available at: https://github.com/anilyaman/Evolution-of-Protocols
3 On the other hand, random initialization is crucial in centralized ap-

roaches to obtain a diverse set of global network solutions that facilitate
xploration and crossover.
4

node behavior, the corresponding reinforcement value 𝑟𝑘 is provided
as the reward 𝑟(𝑡) at time step 𝑡. These reinforcements are aggregated
to compute the local fitness value 𝑓𝑖 of each node 𝑛𝑖, as follows:

𝑓𝑖 =

{

𝐶 if 𝑇𝐹𝑖,𝑗 is empty ∀𝑗 ∈ {1,… , 𝑆};
∑𝐾

𝑡=1 𝑟(𝑡) otherwise.
(1)

i.e., if all the time slots in 𝑻𝑭 𝑖 are empty, we set 𝑓𝑖 to a large nega-
tive constant value 𝐶, which is intended to encourage transmit/listen
actions. Else, we compute 𝑓𝑖 by aggregating the reinforcement values
𝑟(𝑡) obtained in each step 𝑡.

The NBRAs can be divided into two groups. The first group (ID: 2,
3, 5, 6, and 7) aims to encourage the reception and transmission of the
packets in the network. The second group (ID: 1, 4, 8, and 9) aims to
penalize unnecessary actions, thus implicitly minimizing the number of
slots used for transmit/listen actions, a proxy for energy consumption.

Since each node tries to maximize the sum of its rewards, these
reinforcements obviously play a crucial role in the optimization pro-
cess. In principle, for the first group of behaviors the nodes should be
rewarded/punished more severely since the actions corresponding to
those behaviors directly affect the transmission of packets. On the other
hand, the reinforcement signals for the second group can be relaxed,
since as said they aim mainly at reducing unnecessary actions. How-
ever, it is especially important to find a balance on the reinforcement
signals of the second group because if these rewards/punishments are
too high the nodes will avoid actions which are supposedly unnecessary
yet may lead to exploration of new connections and establishing of new
pathways. On the other hand, if these rewards/punishments are too
low, the nodes will perform too many unnecessary actions. Although
this may lead to several established pathways, it would also increase
the network energy consumption and yield to an unnecessarily high
number of duplicate packets. For instance, punishing a node in the cases
where it listens but nothing is received (behavior 8 and 9) would reduce
the number of listen actions in the time frame. However, this would
also reduce the probability of establishing possible new connections.
Similarly, behavior 4 rewards a node if it remains idle when the queue
is empty, yet other actions may be tried. To demonstrate that, we
performed a sensitivity analysis to show the difference in results when
different reinforcement values are used in behavior 4, 8, and 9, see
Table 2 in the next Section.

2.2.2. Mutation operator
The DHC algorithm uses a mutation operator to perturb the time

frame 𝑻𝑭 𝑖 of each node. The mutation operator (see Line 5 in Al-
gorithm 1) simply samples, for each time slot, a new value with a
probability of 𝑚𝑟 (mutation rate). Sampling is performed by select-
ing with uniform probability a random action different from the one
present in the time slot.

3. Experimental setup

In this section, we present our experimental setup: the proposed
algorithm settings (Section 3.1), the network settings (Section 3.2), and
the benchmark algorithms (Section 3.3). Our experiments have been
performed on a Linux workstation with 32 GB RAM and CPU Intel i7
with multi-threading at the level of runs. The code is implemented in
MATLAB.

3.1. Proposed algorithm settings

The exact reinforcement values used in the NBRAs (see 𝑟𝑘 in Ta-
ble 1) can be assigned differently. This in turn can change the re-
wards/punishments of certain actions. We tested the proposed algo-
rithm for seven different NBRA assignments, given in Table 2. These
particular assignments (in the following, referred to as ‘‘rules’’) were

defined based on domain knowledge. These rules differ only for the

https://github.com/anilyaman/Evolution-of-Protocols


Expert Systems With Applications 211 (2023) 118627A. Yaman et al.
Fig. 2. Example network with nine nodes spatially distributed in a grid topology. Seed and target nodes are shown in red and green, respectively.
Fig. 3. Examples of random networks with 81 nodes. Connection distance (𝑐𝑑) and connection probability (𝑐𝑝) are used to control the connectivity of the networks. Seed (in
location (0, 0)) and target (in location (1, 1)) nodes are shown in green and red, respectively.
Fig. 4. Ratio of used slots vs ratio of used resources (median across 28 runs) of CHC, CSA and the proposed DHC algorithm (with seven different rules × seven different mutation
rates) on grid topologies.
reinforcement values 𝑟4, 𝑟8 and 𝑟9, to assess their effect on the min-
imization of the used slots. The other reinforcement values concern
mainly the packet transmission, as discussed earlier in Section 2.2.

Among the tested rules, rule 1 is the most relaxed one in terms of
unnecessary slot use since it does not provide any rewards/punishments
for 𝑟4, 𝑟8 and 𝑟9. Rules 2 and 3 reward only for 𝑟4, to keep idle slots
empty if they are not used. Rules 4 and 5 aim to provide punishments
for unnecessary listen actions. Rules 6 and 7 provide both rewards
5

and punishments for not using unnecessary idle slots and performing
unnecessary listen actions, respectively.

We tested the proposed algorithm for seven mutation rate values fol-
lowing a geometric series, namely 𝑚𝑟 = {0.01, 0.02, 0.04, 0.08, 0.16, 0.32,
0.64}. The maximum number of function evaluations was set to 10 000.
However, to reduce the running time we stop the evolutionary process
as soon as a solution that obtains 100% delivery rate of the packets
to the target node is found (even though further refinement might be



Expert Systems With Applications 211 (2023) 118627A. Yaman et al.
Fig. 5. Ratio of used slots vs ratio of used resources (median across 28 runs) of CHC, CSA and the proposed DHC algorithm (with seven different rules × seven different mutation
rates) on random network configurations with 9 nodes.
Table 2
Rules for the node behavior reinforcement associations.

Rule ID 𝑟1 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6 𝑟7 𝑟8 𝑟9
1 −1 1 −1 0 −1 1 1 0 0
2 −1 1 −1 0.5 −1 1 1 0 0
3 −1 1 −1 1 −1 1 1 0 0
4 −1 1 −1 0 −1 1 1 −0.5 −0.5
5 −1 1 −1 0 −1 1 1 −1 −1
6 −1 1 −1 0.5 −1 1 1 −0.5 −0.5
7 −1 1 −1 1 −1 1 1 −1 −1

possible). For each rule and mutation rate, the algorithm was executed
for 28 independent runs.

3.2. Network settings

We tested the proposed algorithm on square (Manhattan-like) grids
and randomly generated network topologies consisting of 9, 36, and 81
nodes.

The grid-like networks have been chosen to represent cases with a
regular topology and a fixed number of connections per node (apart
from the nodes at the border of the network, each node has 2(

√

𝑁 −
1) connections). The random networks, instead, have been chosen
to represent partially connected mesh networks, where the number
of connections Both kinds of networks are representatives of widely
adopted network topologies in real-world applications (Hekmat, 2006).
6

In the case of grid networks, the seed and target nodes are placed
in opposite corners. An example grid network structure with 9 nodes is
illustrated in Fig. 2.

In the case of random topologies, we considered a 2D Cartesian
plane [0, 1]2 where the seed and target nodes are assigned to the coordi-
nates (0, 0) and (1, 1), respectively, while the remaining 𝑁 −2 nodes are
assigned to random (𝑥, 𝑦) coordinates. The connectivity of the random
networks are adjusted based on two parameters, connection distance (𝑐𝑑)
and connection probability (𝑐𝑝). A connection is established between two
nodes when the Euclidean distance between them is smaller than 𝑐𝑑,
with probability 𝑐𝑝: i.e., for all 𝑖, 𝑗 ∈ {1,… , 𝑁} where 𝑖 ≠ 𝑗, node 𝑛𝑖
is connected to node 𝑛𝑗 if dist(𝑛𝑖, 𝑛𝑗) < 𝑐𝑑 and 𝑟𝑎𝑛𝑑 < 𝑐𝑝, where dist()
is the Euclidean distance and 𝑟𝑎𝑛𝑑 is a real valued uniform random
variable in [0, 1]. For 9, 36 and 81 nodes we set 𝑐𝑑 to 0.8, 0.5, and
0.3, respectively. For each network size, we considered four 𝑐𝑝 values,
namely 𝑐𝑝 = {1, 0.5, 0.25, 0.125}. Therefore, in total we considered 12
random network configurations with various sizes and connectivity,
see Fig. 3 for two examples. For each random network configuration
we generated 28 networks and ran the algorithm once for each one
independently.

For both kinds of networks (grid and random), we set the number
of time slots 𝑆 to be equal to the number of nodes 𝑁 . During the
evaluation process of the networks, 𝑀 = 5 packets are generated in
the seed node to be delivered to the target node. We set the number of
steps 𝐾 to 𝑀 × 𝑆.



Expert Systems With Applications 211 (2023) 118627A. Yaman et al.
Fig. 6. Ratio of used slots vs ratio of used resources (median across 28 runs) of CHC, CSA and the proposed DHC algorithm (with seven different rules × seven different mutation
rates) on random network configurations with 36 nodes.
3.3. Benchmark algorithms

To compare the results of our proposed approach, we considered
seven centralized offline algorithms from the literature. For these algo-
rithms, we conducted the optimization in a centralized (network-level)
fashion, i.e., optimizing global network solutions obtained by concate-
nating the time frames of all nodes. The evaluation was performed as
described in Section 2.1, in this case after deconstructing the global
network solution into individual node time frames.

Contrarily to the proposed distributed approach, where each node
locally maximizes its aggregated reward, see Eq. (1), the centralized
algorithms do not make use of any online reinforcement during the
fitness evaluation. Instead, they use a posteriori objective functions
based on the global performance of the networks, namely the hop
distance of the packets to the target node, and the node activity (used
slots). The former is computed as follows:

𝑓 (1) = max
𝑖=1,…,𝑀

(

min
𝑐=1,…,𝐿𝑖

(

ℎ𝑐𝑖
)

)

(2)

where ℎ𝑐𝑖 = hop(𝑝𝑐𝑖 , 𝑛𝑡𝑎𝑟𝑔𝑒𝑡). Here, 𝑝𝑐𝑖 indicates the 𝑐th copy of the 𝑖th
packet and hop() measures the shortest hop distance from the node
reached by 𝑝𝑐𝑖 to the target node 𝑛𝑡𝑎𝑟𝑔𝑒𝑡, whereas 𝐿𝑖 and 𝑀 indicate,
respectively, the number of copies of a given packet and the number
of unique packets originating from the seed node (in our case 𝑀 = 5).
Finally, 𝑓 (1) is scaled in [0, 1] by dividing the maximum possible hop
distance in a network (from any node to the target node).
7

For the latter, we simply find the average number of non-empty slots
per node as follows:

𝑓 (2) = 1
𝑁𝑆

𝑁
∑

𝑖=1

𝑆
∑

𝑗=1
𝐴(𝑖, 𝑗) (3)

where:

𝐴(𝑖, 𝑗) =

{

1, if 𝑇𝐹𝑖,𝑗 is ‘‘T’’ (transmit) or ‘‘L’’ (listen),
0, otherwise.

We divide the benchmark algorithms into three groups:

1. Group 1 (Pareto multi-objective optimization): NSGA-II (Deb
et al., 2002) and MSEA (Tian et al., 2019). The two algorithms were
configured to perform Pareto optimization minimizing 𝑓 (1) and 𝑓 (2).
For these experiments we used the implementation of NSGA-II and
MSEA available in the PlatEMO platform (Tian et al., 2017), with
the default parameter settings. The representation and evolutionary
operators were adjusted to handle our ternary representation.

2. Group 2 (scalarized multi-objective optimization): Centralized
Hill Climbing with 2 Objectives (CHC2O), Centralized Simulated
Annealing with 2 Objectives (CSA2O) and Genetic Algorithm with
2 Objectives (GA2O). In this group, we minimize the sum of two
objectives as 𝑓 (1) + 𝑓 (2) ∈ [0, 2]. The implementation of CHC2O and
CSA2O is the same as CHC and CSA (in Group 3), except for the
use of the second objective. In the case of GA2O, we configured
the algorithm with roulette wheel selection with 10 elites, 1-point
crossover operator with 0.9 probability, and the mutation operator
used in DHC.



Expert Systems With Applications 211 (2023) 118627A. Yaman et al.
Fig. 7. Ratio of used slots vs ratio of used resources (median across 28 runs) of CHC, CSA and the proposed DHC algorithm (with seven different rules × seven different mutation
rates) on random network configurations with 81 nodes.
3. Group 3 (single-objective optimization): Centralized Hill Climb-
ing (CHC) and Centralized Simulated Annealing (CSA) algorithms.
The CHC and CSA iteratively perform mutations on a single cen-
tralized global network solution. In CHC, only solutions that are
better or equal to the current solution are accepted for the next
iteration, whereas CSA uses a temperature parameter 𝑇 to accept
worse solutions based on the probability 𝑒(𝑓𝑛𝑒𝑤−𝑓𝑜𝑙𝑑 )∕𝑇 . 𝑇 is scheduled
to be reduced at each iteration to decrease this probability (𝑇 ←
𝛼𝑇 , 𝛼 < 1) (Kirkpatrick et al., 1983). In our experiments, we assign
0.9 for 𝛼. Both CHC and CSA minimize 𝑓 (1).

The rationale for choosing the aforementioned algorithms is the
following. The algorithms in the first group aim at finding an explicit
trade-off between the two objectives of interest, i.e., the maximum
distance to the target and the number of used slots, formulated as
in Eqs. (2) and (3), respectively. Thus, the comparison with these
algorithms should reveal if our method is able to find at least simi-
lar trade-offs, even though it does not explicitly search for trade-off
solutions. For comparison, we chose to use NSGA-II, MSEA as they
are well-known multi-objective algorithms for which public imple-
mentations are available. The algorithms in the second group aim
instead at finding trade-offs based on a scalarized function (please
remember that each of the two objectives in Eqs. (2) and (3) is scaled
in [0, 1], thus we do not use weights). Comparing our method with
the algorithms in the second group should then give us insight on
the capability of DHC to find good trade-offs between network per-
formance and energy consumption w.r.t. approaches that, instead of
8

performing Pareto optimization, solve a single-objective optimization
problem. CHC, CSA and GA have been selected for being closely related
to our proposed method (although they are, obviously, centralized).
Moreover, GA was added to the comparison to show how a canonical
population-based, single objective evolutionary algorithm can perform
on this task. Finally, the algorithms in the third group are included
in the comparison to show how CHC and CSA (chosen, again, for
being closely related to our proposed method) perform when they are
configured to optimize only 𝑓 (1). This final comparison should rule out
the effect of the scalarization applied to the algorithms in the second
group.

For the population-based algorithms (NSGA-II, MSEA, and GA2O)
we used a population of 50 solutions and we set the maximum number
of function evaluations to 10 000 (without any early stop). For CHC and
CSA (both with single and two objectives) we set 10 000, with early stop
in case of 100% delivery rate solution found.

4. Experimental results

We analyze the numerical results obtained with the proposed al-
gorithm from two different perspectives: scalability, i.e., we evaluate
how the performance of DHC change depending on the network size
(Section 4.1), and robustness, i.e., we evaluate how our method is able
to cope with various kinds of network perturbations and show adaptive
capabilities (Section 4.2).



Expert Systems With Applications 211 (2023) 118627A. Yaman et al.

d
u
s

Fig. 8. Delivery rate of the network (first column) and fitness trend of two randomly selected nodes (second and third columns) during example evolutionary processes performed for
the robustness experiments. The rows provide example processes for 36cp1, 36cp05, 36cp025 and 36cp0125 problem instances with addition, removal, relocation, and reinitialization
perturbations respectively. The blue dots indicate the end of the evolutionary process before applying the perturbation (starting from the initial network until 100% delivery rate
is achieved).
4.1. Evaluating scalability

The complete comparison of the results is given in Table 3. The
results of DHC and Group 3 are the best results obtained across all
mutation rates tested (see Section 4.3 for the parameter analysis). We
should note that, except for the cases marked by ‘‘-’’, all the compared
algorithms reach 𝑓 (1) = 0 (distance to target node), which yields 100%
elivery rate. For this reason, we compare the algorithms on 𝑓 (2) (slot
se). In the case of Group 1, we select from the final Pareto front the
olution with 𝑓 (1) = 0 and minimum 𝑓 (2) for comparison. Once again,

it is worth stressing that our method does not optimize explicitly nor
𝑓 (1) or 𝑓 (2), but it optimizes node-local rewards, see Eq. (1).

The results show the superiority in terms of scalability of DHC over
the benchmark algorithms. The standard deviations and statistical anal-
ysis of the results are provided in e Appendix. The significance of the
results is measured by the Wilcoxon rank-sum test (Wilcoxon, 1992)
and the Nemenyi test (Dems̈ar, 2006). When the size of the problem
is low (i.e., in the case of 9 nodes), the algorithms based on a multi-
objective optimization approach (in particular NSGA-II) and the ones
that combines two objectives (i.e., GA2O, CHC2O and CSA2O) find
better solutions in terms of ratio of used slots. On the other hand,
while the size of the problem increases, DHC is able to find solutions
with a smaller ratio of used slots relative to the other algorithms.
We observe a further improvement in the performance of DHC when
sparsity increases (i.e., 𝑐𝑝 decreases). However, the standard deviations
of the results provided by DHC are relatively higher than those obtained
by the multi-objective optimization algorithms, which might be due to
the fact that, differently from these algorithms, DHC does not minimize
explicitly the ratio of used slots.

4.1.1. Trade-off between slots and resources
Another important aspect to analyze is the effectiveness, in terms
9

of function evaluations, of the proposed approach. Fig. 4 shows the
results of CHC, CSA and the proposed DHC with the seven rules shown
in Table 2 in terms of used resources and used slots in the case of grid
topologies. Likewise, Figs. 5, 6, and 7 shows the results for the random
network configurations with 9, 36, and 81 nodes. Here, used resources
refer to the ratio of function evaluations needed to find a solution with
100% delivery rate, while used slots refer to the ratio of non-empty slots
in the solution found.

Overall, CHC and CSA are able to find a solution quickly. However,
they often find solutions with a large ratio of used slots. On the other
hand, DHC is able to find solutions with a smaller ratio of used slots,
although different reward/punishment assignments produce solutions
with different ratios of used slots. In particular, we observe that rules
which are more restrictive in terms of reward/punishment of unnec-
essary slot use (i.e., 5, 6, and 7) tend to find solutions with a smaller
ratio of used slots. However, they tend to use more fitness evaluations.
Furthermore, we observe that higher mutation rates provide more ran-
domness, resulting in similar results w.r.t. the CHC and CSA algorithms.
In those cases, the solutions are found quite quickly but the ratio of slot
use is high. Slightly higher mutation rates appear to be helpful for more
restrictive rules rather than for the less restrictive ones. Overall, the
best performing mutation rate ranges in 0.01−0.04. However, the exact
mutation rate that performs the best varies across different network
configurations and rules.

4.2. Evaluating robustness

We tested DHC in four scenarios which require adaptation of previ-
ously found solutions to new conditions of the network. These scenarios
include addition, removal, relocation and reinitialization of the nodes
in the network. In case of addition, 10 nodes were included into the
networks at random locations, with random time frames. In case of

removal, 6 randomly selected nodes were removed from the networks.



Expert Systems With Applications 211 (2023) 118627A. Yaman et al.
Fig. 9. Variation of the evolved TDMA MAC protocol performance for Centralized Hill Climbing (CHC), Centralized Simulated Annealing (CSA) and Distributed Hill Climbing (DHC)
with 7 different rules on grid networks with 3×3, 6×6 and 9 × 9 nodes.
In case of relocation, 18 randomly selected nodes were reassigned to
new randomly initialized locations. In the case of reinitialization, the
time frame of 18 randomly selected nodes were reinitialized randomly.

The experimental process involves first finding solutions for the
initial networks through the proposed distributed optimization pro-
cess, then applying each of the aforementioned perturbations, inde-
pendently. After each perturbation, we establish links based on the
𝑐𝑝 and 𝑐𝑑 parameters, as described in Section 3.2. Then, we run the
optimization process for 10 000 evaluations to find solutions adapted
to the new conditions. Examples of delivery rate and fitness trends
of the nodes during the evolutionary processes before and after the
perturbations can be found in Section 4.2.1.
10
Table 4 shows the results of DHC after perturbations. The ‘‘Used
resources’’ sub-table indicates the median of the ratio of the function
evaluations used to find a 100% delivery rate solution for the perturbed
networks, while the ‘‘Used slots’’ sub-table indicates the ratio of oc-
cupied slots in the corresponding solutions. ‘‘Initial solution’’ indicates
the median of the ratio of used resources and median of ratio of used
slots found for the initial network prior to the perturbation. We tested
the algorithm on random networks with 36 nodes, using the best rules
found in Table 3 (shown in bold for each network configuration).

Concerning the resource use, we observe that the algorithm can find
solutions to the perturbed networks in a short time, usually using less
than 10% of the allocated function evaluations. However, adaptation



Expert Systems With Applications 211 (2023) 118627

11

A. Yaman et al.

Fig. 10. Variation of the evolved TDMA MAC protocol performance for Centralized Hill Climbing (CHC), Centralized Simulated Annealing (CSA) and Distributed Hill Climbing (DHC)
with 7 different rules on random networks with 9 nodes and various levels of connection distance (𝑐𝑑) and connection probability (𝑐𝑝).



Expert Systems With Applications 211 (2023) 118627

12

A. Yaman et al.

Fig. 11. Variation of the evolved TDMA MAC protocol performance for Centralized Hill Climbing (CHC), Centralized Simulated Annealing (CSA) and Distributed Hill Climbing (DHC)
with 7 different rules on random networks with 36 nodes and various levels of connection distance (𝑐𝑑) and connection probability (𝑐𝑝).



Expert Systems With Applications 211 (2023) 118627

13

A. Yaman et al.

Fig. 12. Variation of the evolved TDMA MAC protocol performance for Centralized Hill Climbing (CHC), Centralized Simulated Annealing (CSA) and Distributed Hill Climbing (DHC)
with 7 different rules on random networks with 81 nodes and various levels of connection distance (𝑐𝑑) and connection probability (𝑐𝑝).



Expert Systems With Applications 211 (2023) 118627A. Yaman et al.

a
d
t
u
o
p

4

o
f
w
r
T
a
a

4

t
a
s

Table 3
Comparison of the algorithms on grid and random networks with 9 to 81 nodes. The problem size is computed as 𝑁 (no. of nodes) × 𝑆 (no. of slots), which yields to 𝑁2 since
we set 𝑁 = 𝑆. The value in each cell shows the ratio of used slots (median across 28 runs at the end of the optimization process) for the solutions found by the algorithms (‘‘–’’
indicates that no solution is found).

Problem Size Group 1 Group 2 Group 3 DHC

NSGA-II MSEA GA2O CHC2O CSA2O CHC CSA R1 R2 R3 R4 R5 R6 R7

Grid9 81 0.10 0.23 0.10 0.17 0.15 0.66 0.66 0.64 0.38 0.35 0.41 0.28 0.33 0.34
9cp1 81 0.07 0.22 0.07 0.07 0.07 0.60 0.60 0.50 0.31 0.31 0.32 0.25 0.28 0.25
9cp05 81 0.07 0.23 0.07 0.07 0.07 0.64 0.64 0.57 0.34 0.31 0.31 0.26 0.30 0.26
9cp025 81 – – 0.07 0.10 0.10 0.71 0.69 0.55 0.28 0.28 0.28 0.25 0.28 0.23
9cp0125 81 – – 0.07 0.07 0.12 0.75 0.73 0.56 0.27 0.28 0.27 0.23 0.27 0.25

Grid36 1296 0.43 0.55 0.49 0.31 0.31 0.63 0.64 0.60 0.44 0.43 0.37 0.46 0.41 0.52
36cp1 1296 0.45 0.56 0.54 0.38 0.38 0.55 0.59 0.35 0.35 0.50 0.34 0.39 0.39 0.50
36cp05 1296 0.43 0.56 0.49 0.33 0.33 0.40 0.53 0.40 0.35 0.38 0.38 0.25 0.26 0.41
36cp025 1296 0.42 0.58 0.48 0.32 0.31 0.58 0.60 0.47 0.31 0.29 0.29 0.21 0.25 0.37
36cp0125 1296 0.41 0.60 – 0.57 0.55 0.66 0.65 0.53 0.26 0.33 0.22 0.22 0.21 0.26

Grid81 6561 0.59 0.62 0.58 0.52 0.52 0.59 0.59 0.57 0.49 0.48 0.46 0.52 0.44 0.52
81cp1 6561 0.66 0.65 0.63 0.63 0.64 0.49 0.49 0.42 0.67 0.67 0.67 0.83 – 0.66
81cp05 6561 0.60 0.62 0.59 0.55 0.56 0.43 0.44 0.38 0.49 0.58 0.50 0.51 0.56 0.50
81cp025 6561 0.59 0.64 0.58 0.52 0.52 0.51 0.57 0.46 0.43 0.51 0.45 0.46 0.49 0.48
81cp0125 6561 0.59 0.64 – 0.59 0.58 0.66 0.65 0.50 0.37 0.39 0.36 0.37 0.37 0.39
a
i
t
c
C
(
n
c
(
p

s

Table 4
Results found by DHC (median across 28 runs) on the initial network (‘‘Initial
solution’’) and after perturbing the initial network by addition, removal, relocation,
and reinitialization of nodes (each perturbation is considered independently).

Problem Used resources

Initial solution Adaptation after perturbation

Addition Removal Relocation Reinit.

36cd05cp1 0.04 0.27 0.01 0.05 0.03
36cd05cp05 0.17 0.02 0.06 0.07 0.02
36cd05cp025 0.37 0.06 0.58 0.26 0.06
36cd05cp0125 0.57 0.25 0.35 0.59 0.86

Problem Used slots

Initial solution Adaptation after perturbation

Addition Removal Relocation Reinit.

36cd05cp1 0.34 0.64 0.49 0.64 0.67
36cd05cp05 0.25 0.49 0.32 0.33 0.53
36cd05cp025 0.21 0.37 0.21 0.21 0.54
36cd05cp0125 0.21 0.36 0.20 0.20 0.40

requires more evaluations in the case of the network with the highest
sparsity (𝑐𝑝 = 0.125).

Concerning the ratio of used slots, this seems to increase in general
fter perturbations. However, we observe that removal and relocation
o not appear to have a high impact, especially in sparse networks. On
he other hand, addition and reinitialization produces an increased slot
se in all networks. This is likely due to the random reinitialization
f the time frames occurring during the addition and reinitialization
rocesses.

.2.1. Runtime behavior of the evolutionary process
Fig. 8 shows the delivery rate of the networks and the fitness trends

f two randomly selected nodes during the evolutionary processes per-
ormed for the robustness experiments. For example, in the experiment
ith the addition perturbation (shown in the first row), 100% delivery

ate is achieved around the 200th generation with the initial network.
hen, the perturbation decreases the delivery rate. However, DHC is
ble to recover from the perturbation and achieve 100% delivery rate
gain in about 30 generations.

.3. Parameter analysis

We report in the heatmaps shown in Figs. 9–12 the variation of
he evolved TDMA MAC protocol performance (as % of used resources
nd used slots, average values across 28 runs of each algorithmic
14

etting at the end of the optimization process, i.e., either as soon as
viable protocol configuration capable to obtain 100% delivery rate
s found, or after 10000 evaluations) w.r.t. the mutation rate (%) and
he rule ID used in DHC, as well as the two baseline single-objective
entralized algorithms, namely Centralized Hill Climbing (CHC) and
entralized Simulated Annealing (CSA), for the cases of grid networks
9, 36 and 81 nodes), as well as random networks with 9, 36, and 81
odes, respectively. For the random networks, we consider different
ombinations of connection distance (𝑐𝑑) and connection probability
𝑐𝑝) values. In the heatmaps, darker (lighter) color means worse (better)
erformance.

The main findings that can be inferred from the figures can be
ummarized as follows:

• Concerning the used resources (first column of each figure), apart
from the case of random networks with 81 nodes and 𝑐𝑑=0.3,
𝑐𝑝=1 (Fig. 12(a)), in all the tested settings low mutation rates tend
to lead to higher % resource consumption. This is particularly
evident in the grid topologies when DHC is configured to use
rules from R2 to R7. Another interesting case is random networks
with 9 nodes and 𝑐𝑑=0.8, 𝑐𝑝=0.125 (Fig. 10(g)), where CHC
and CSA perform quite poorly for the lowest values of mutation
rate. Apart from the two aforementioned peculiar cases, when
higher mutation rates are used the resource consumption tends
to be lower, with most of the algorithms reaching roughly similar
values.

• Concerning the used slots (second column of each figure), in
most cases there is a trend similar to that observed for the used
resources (the lower the mutation rate, the worse the perfor-
mance), with some exceptions represented by e.g. the random
networks with higher values of 𝑐𝑝, especially with 36 and 81
nodes (Figs. 11(b), 11(d), 12(b), and 12(d)). Overall, apart from
these four cases DHC appears to use in general less slots than both
centralized approaches.

Apart from these two trends, this analysis reveals that in general the
optimal mutation rate depends on the network size and the specific
DHC rule adopted for the online protocol evolution. This observation
suggests, for instance, a possible extension of DHC to use (self-)adaptive
mutation rates.

5. Conclusions

We proposed a decentralized, online evolutionary optimization al-
gorithm, referred to as Distributed Hill Climbing (DHC), for optimizing
a TDMA MAC protocol on a distributed network of nodes. In the
proposed approach, each node evolves its time frame locally. To do

that, we devised a set of reinforcement rules to assign predefined scores



Expert Systems With Applications 211 (2023) 118627A. Yaman et al.

B

B

B

B

D

D

D

E

E

E

F

F

G

H

H

H

H

H

H

to the actions of the nodes and compute their local fitness accordingly.
Overall, we tested seven different reinforcement rules. We found that
the DHC algorithm was able to evolve, in all the tested network scenar-
ios, efficient TDMA MAC protocols with %100 delivery rate. Moreover,
even though Distributed Hill Climbing was not configured to explicit
minimize the node activity (i.e., the number of used time slots, that
can be seen as a proxy for energy consumption), different reinforcement
rules allowed the emergence of various protocols with different quality
in terms of node activity.

We compared our algorithm with seven centralized single and multi-
objective approaches, in which the optimization is performed at a
global network level concatenating the time frames of all nodes in
the network. In the multi-objective cases, we introduced a second
objective function to minimize explicitly the node activity. Based on
our comparisons, the benchmark algorithms with the explicit second
objective showed better performance in terms of node activity only on
the low-dimensional scenarios. On the other hand, DHC showed better
performance when the network size increased.

Furthermore, the evaluation of the scalability the proposed algo-
rithms revealed another important finding: in fact, the DHC algorithm
was able to obtain the best performances (in terms of energy con-
sumption) especially in the case of larger, sparser networks, typically
requiring less function evaluations to converge. Moreover, we observed
that the proposed algorithm is able to quickly adapt the protocol to
network perturbations such as node addition, removal, relocation and
reinitialization. These two features (scalability and robustness), which
derive from the decentralized nature of our method, represent its main
advantages.

One possible disadvantage of our method is the necessity of pre-
defining reinforcement rules (such as those presented in Table 2, which
as we have seen affect the overall evolution of the TDMA protocol.
Finding these reinforcement association rules may be difficult in some
specific contexts.

Therefore, one possible direction for future investigations will be
to extend the algorithm to other rules. Another possibility would be
to apply it to different network layers, where online adaptation might
provide an even greater benefit. Moreover, it would be interesting
to compare the proposed method against other, more recent meta-
heuristics for single-objective optimization, e.g., based on Swarm In-
telligence (Heidari et al., 2019; Li et al., 2020; Wang et al., 2019;
Yang et al., 2021), metaphor-less methods, such as the one proposed
in Ahmadianfar et al. (2021), or methods that make use of information
feedback models (Wang & Tan, 2019). Finally, verifying the proposed
protocols in hardware would add further experimental value to the
proposed method.

CRediT authorship contribution statement

Anil Yaman: Conceptualization, Methodology, Software, Valida-
tion, Formal analysis, Investigation, Resources, Data curation, Writing –
original draft, Writing – review & editing, Visualization. Tim van der
Lee: Methodology, Validation, Writing – review & editing. Giovanni
Iacca: Conceptualization, Methodology, Validation, Formal analysis,
Investigation, Resources, Writing - original draft, Writing - review &
editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability
15

Data not applicable. The code is accessible publicly.
Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.eswa.2022.118627.

References

Ahmadianfar, I., Heidari, A. A., Gandomi, A. H., Chu, X., & Chen, H. (2021). RUN
beyond the metaphor: an efficient optimization algorithm based on Runge Kutta
method. Expert Systems with Applications, 181, Article 115079.

Akhshabi, S., & Dovrolis, C. (2011). The evolution of layered protocol stacks leads to
an hourglass-shaped architecture. In SIGCOMM conference (pp. 206–217). ACM.

Al Dallal, J., & Saleh, K. A. (2012). Synthesizing distributed protocol specifications from
a UML state machine modeled service specification. Journal of Computer Science and
Technology, 27(6), 1150–1168.

Aloi, G., Bedogni, L., Felice, M. D., Loscri, V., Molinaro, A., Natalizio, E., Pace, P.,
Ruggeri, G., Trotta, A., & Zema, N. R. (2014). STEM-net: an evolutionary
network architecture for smart and sustainable cities. Transactions on Emerging
Telecommunications Technologies, 25(1), 21–40.

Alouf, S., Carreras, I., Miorandi, D., & Neglia, G. (2007). Embedding evolution in
epidemic-style forwarding. In International conference on mobile adhoc and sensor
systems (pp. 1–6). IEEE.

Alouf, S., Neglia, G., Carreras, I., Miorandi, D., & Fialho, Á. (2010). Fitting genetic
algorithms to distributed on-line evolution of network protocols. Computer Networks,
54(18), 3402–3420.

Alsheikh, M. A., Lin, S., Niyato, D., & Tan, H.-P. (2014). Machine learning in wireless
sensor networks: Algorithms, strategies, and applications. Communications Surveys
& Tutorials, 16(4), 1996–2018.

Birman, K., Constable, B., Hayden, M., Hickey, J., Kreitz, C., Van Renesse, R., Rodeh, O.,
& Vogels, W. (2000). The horus and ensemble projects: Accomplishments and
limitations. In DARPA information survivability conference and exposition. Vol. 1 (pp.
149–161). IEEE.

ouabene, G., Jelger, C., Tschudin, C., Schmid, S., Keller, A., & May, M. (2009). The
autonomic network architecture (ANA). Journal on Selected Areas in Communications,
28(1), 4–14.

redeche, N., Haasdijk, E., & Prieto, A. (2018). Embodied evolution in collective
robotics: A review. Frontiers in Robotics and AI, 5, 12.

redeche, N., Montanier, J.-M., Liu, W., & Winfield, A. F. (2012). Environment-driven
distributed evolutionary adaptation in a population of autonomous robotic agents.
Mathematical and Computer Modelling of Dynamical Systems, 18(1), 101–129.

üchi, J. R., & Landweber, L. H. (1990). Solving sequential conditions by finite-state
strategies. In The collected works of J. Richard Büchi (pp. 525–541). Springer.

eb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2),
182–197.

ems̈ar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal
of Machine Learning Research, 7(Jan), 1–30.

ovrolis, C. (2008). What would darwin think about clean-slate architectures? SIG-
COMM Computer Communication Review, 38(1), 29–34.

iben, A. E., Haasdijk, E., & Bredeche, N. (2010). Embodied, on-line, on-board evolution
for autonomous robotics. In Symbiotic multi-robot organisms: reliability, adaptability,
evolution (pp. 361–382). Springer.

l-fakih, K., Yamaguchi, H., & Bochmann, G. (1999). A method and a genetic algorithm
for deriving protocols for distributed applications with minimum communication
cost. Journal of Physics A - Mathematical General, 863–868.

rgen, S. C., & Varaiya, P. (2010). TDMA scheduling algorithms for wireless sensor
networks. Wireless Networks, 16(4), 985–997.

inkbeiner, B., & Gölz, P. (2017). Synthesis in distributed environments. arXiv:1710.
05368.

örster, A., & Murphy, A. L. (2011). Machine learning across the WSN layers. In
Emerging communications for wireless sensor networks. IntechOpen.

uo, K., & Lv, Y. (2020). Optimizing routing path selection method particle swarm
optimization. International Journal of Pattern Recognition and Artificial Intelligence,
Article 2059042.

aasdijk, E., Bredeche, N., & Eiben, A. E. (2014). Combining environment-driven
adaptation and task-driven optimisation in evolutionary robotics. PLoS One, 9(6),
1–14.

ajiaghajani, F., & Biswas, S. (2015a). Feasibility of evolutionary design for multi-access
MAC protocols. In Global communications conference (pp. 1–7). IEEE.

ajiaghajani, F., & Biswas, S. (2015b). MAC protocol design using evolvable state-
machines. In International conference on computer communication and networks (pp.
1–6). IEEE.

e, H., Jin, S., Wen, C.-K., Gao, F., Li, G. Y., & Xu, Z. (2019). Model-driven deep
learning for physical layer communications. Wireless Communications, 26(5), 77–83.

eidari, A. A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., & Chen, H. (2019).
Harris hawks optimization: Algorithm and applications. Future Generation Computer
Systems, 97, 849–872.

ekmat, R. (2006). Ad-hoc networks: fundamental properties and network topologies.

Springer Science & Business Media.

https://doi.org/10.1016/j.eswa.2022.118627
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb1
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb1
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb1
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb1
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb1
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb2
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb2
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb2
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb3
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb3
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb3
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb3
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb3
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb4
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb4
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb4
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb4
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb4
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb4
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb4
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb5
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb5
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb5
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb5
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb5
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb6
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb6
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb6
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb6
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb6
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb7
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb7
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb7
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb7
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb7
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb8
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb8
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb8
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb8
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb8
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb8
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb8
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb9
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb9
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb9
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb9
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb9
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb10
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb10
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb10
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb11
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb11
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb11
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb11
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb11
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb12
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb12
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb12
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb13
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb13
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb13
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb13
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb13
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb14
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb14
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb14
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb15
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb15
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb15
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb16
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb16
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb16
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb16
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb16
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb17
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb17
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb17
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb17
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb17
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb18
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb18
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb18
http://arxiv.org/abs/1710.05368
http://arxiv.org/abs/1710.05368
http://arxiv.org/abs/1710.05368
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb20
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb20
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb20
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb21
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb21
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb21
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb21
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb21
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb22
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb22
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb22
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb22
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb22
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb23
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb23
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb23
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb24
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb24
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb24
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb24
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb24
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb25
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb25
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb25
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb26
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb26
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb26
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb26
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb26
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb27
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb27
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb27


Expert Systems With Applications 211 (2023) 118627A. Yaman et al.

H

H

X
Y

Y

Y

Y

Holzmann, G. J. (1991). Design and validation of computer protocols. Vol. 512. Prentice
Hall.

olzmann, G. J. (1997). The model checker SPIN. IEEE Transactions on Software
Engineering, 23(5), 279–295.

utchinson, N. C., & Peterson, L. L. (1991). The x-kernel: An architecture for
implementing network protocols. IEEE Transactions on Software Engineering, 17(1),
64–76.

Iacca, G. (2013). Distributed optimization in wireless sensor networks: an island-model
framework. Soft Computing, 17(12), 2257–2277.

Imai, P., & Tschudin, C. (2010). Practical online network stack evolution. In
International conference on self-adaptive and self-organizing systems (pp. 34–41). IEEE.

Johnson, D. M., Teredesai, A. M., & Saltarelli, R. T. (2005). Genetic programming
in wireless sensor networks. In European conference on genetic programming (pp.
96–107). Springer.

Kalmbach, P., Zerwas, J., Babarczi, P., Blenk, A., Kellerer, W., & Schmid, S. (2018).
Empowering self-driving networks. In Afternoon workshop on self-driving networks
(pp. 8–14).

Keller, A., Hossmann, T., May, M., Bouabene, G., Jelger, C., & Tschudin, C. (2008).
A system architecture for evolving protocol stacks. In International conference on
computer communications and networks (pp. 1–7).

Kellerer, W., Basta, A., & Blenk, A. (2015). Flexibility of networks: a new measure for
network design space analysis? arXiv:1512.03770.

Kellerer, W., Kalmbach, P., Blenk, A., Basta, A., Reisslein, M., & Schmid, S. (2019).
Adaptable and data-driven softwarized networks: Review, opportunities, and
challenges. Proceedings of the IEEE, 107(4), 711–731.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated
annealing. Science, 220(4598), 671–680.

Kulkarni, R. V., Forster, A., & Venayagamoorthy, G. K. (2010). Computational intelli-
gence in wireless sensor networks: A survey. Communications Surveys & Tutorials,
13(1), 68–96.

Lee, J.-H., & Cho, S. H. (2017). Tree TDMA MAC algorithm using time and frequency
slot allocations in tree-based WSNs. Wireless Personal Communications, 95(3),
2575–2597.

Lee, T. V. D., Exarchakos, G., & Groot, S. H. D. (2020). Distributed reliable and energy-
efficient scheduling for LR-WPANs. ACM Transactions on Sensor Networks, 16(4),
1–20.

Lewis, T., Fanning, N., & Clemo, G. (2006). Enhancing IEEE802.11 DCF using genetic
programming. In Vehicular technology conference. Vol. 3 (pp. 1261–1265). IEEE.

Li, S., Chen, H., Wang, M., Heidari, A. A., & Mirjalili, S. (2020). Slime mould algorithm:
A new method for stochastic optimization. Future Generation Computer Systems, 111,
300–323.

Miorandi, D., & Yamamoto, L. (2008). Evolutionary and embryogenic approaches to au-
tonomic systems. In International conference on performance evaluation methodologies
and tools (pp. 1–12).

Nakano, T. (2010). Biologically inspired network systems: A review and future
prospects. IEEE Transactions on Systems, Man, and Cybernetics, 41(5), 630–643.

Peshkin, L., & Savova, V. (2002). Reinforcement learning for adaptive routing. In
International joint conference on neural networks. Vol. 2 (pp. 1825–1830). IEEE.

Prieto, A., Bellas, F., Trueba, P., & Duro, R. J. (2016). Real-time optimization of dy-
namic problems through distributed embodied evolution. Integrated Computer-Aided
Engineering, 23(3), 237–253.

Roohitavaf, M., Zhu, L., Kulkarni, S., & Biswas, S. (2018). Synthesizing customized net-
work protocols using genetic programming. In Genetic and evolutionary computation
conference companion (pp. 1616–1623).

Saleh, K. (1996). Synthesis of communications protocols: an annotated bibliography.
SIGCOMM Computer Communication Review, 26(5), 40–59.

Sharples, N., & Wakeman, I. (2000). Protocol construction using genetic search
techniques. In Workshops on real-world applications of evolutionary computation (pp.
235–246). Springer.

Siyari, P., Dilkina, B., & Dovrolis, C. (2017). Emergence and evolution of hierarchical
structure in complex systems. In Dynamics on and of complex networks (pp. 23–62).
Springer.

Stampa, G., Arias, M., Sánchez-Charles, D., Muntés-Mulero, V., & Cabellos, A. (2017).
A deep-reinforcement learning approach for software-defined networking routing
optimization. arXiv:1709.07080.

Su, Y., & Van Der Schaar, M. (2010). Dynamic conjectures in random access networks
using bio-inspired learning. Journal on Selected Areas in Communications, 28(4),
587–601.
16
Sun, Y., Zhang, Z., Li, X., Xiao, S., & Tang, W. (2020). An extensible frame structure for
time division multiple access medium access control in vehicular ad-hoc networks.
Transactions on Emerging Telecommunications Technologies.

Tao, N., Baxter, J., & Weaver, L. (2001). A multi-agent, policy-gradient approach to
network routing. In International conference on machine learning.

Tekken-Valapil, V., & Kulkarni, S. S. (2017). Derivation of network reprogramming
protocol with Z3. arXiv:1709.06604.

Tian, Y., Cheng, R., Zhang, X., & Jin, Y. (2017). PlatEMO: A MATLAB platform for
evolutionary multi-objective optimization. IEEE Computational Intelligence Magazine,
12(4), 73–87.

Tian, Y., He, C., Cheng, R., & Zhang, X. (2019). A multistage evolutionary algorithm
for better diversity preservation in multiobjective optimization. IEEE Transactions
on Systems, Man, and Cybernetics, 51(9), 5880–5894.

Tschudin, C., & Yamamoto, L. (2005). Self-evolving network software. Praxis Der
Informationsverarbeitung Und Kommunikation, 28(4), 206–210.

Valencia, P., Lindsay, P., & Jurdak, R. (2010). Distributed genetic evolution in WSN.
In International conference on information processing in sensor networks (pp. 13–23).
ACM/IEEE.

Van Belle, W., Mens, T., & D’Hondt, T. (2003). Using genetic programming to generate
protocol adaptors for interprocess communication. In International conference on
evolvable systems (pp. 422–433). Springer.

Vardi, M. Y. (2018). The siren song of temporal synthesis. In International conference
on concurrency theory.

Wadhwa, S., Rani, S., Verma, S., Shafi, J., & Wozniak, M. (2022). Energy efficient
consensus approach of blockchain for IoT networks with edge computing. Sensors,
22(10), 3733.

Wang, G.-G., Deb, S., & Cui, Z. (2019). Monarch butterfly optimization. Neural
Computing and Applications, 31(7), 1995–2014.

Wang, G.-G., & Tan, Y. (2019). Improving metaheuristic algorithms with information
feedback models. IEEE Transactions on Cybernetics, 49(2), 542–555. http://dx.doi.
org/10.1109/TCYB.2017.2780274.

Weise, T., Geihs, K., & Baer, P. A. (2007). Genetic programming for proactive
aggregation protocols. In International conference on adaptive and natural computing
algorithms (pp. 167–173). Springer.

Weise, T., & Tang, K. (2011). Evolving distributed algorithms with genetic
programming. IEEE Transactions on Evolutionary Computation, 16(2), 242–265.

Weise, T., Zapf, M., & Geihs, K. (2008). Evolving proactive aggregation protocols. In
European conference on genetic programming (pp. 254–265). Springer.

Wetherall, D. J., Guttag, J. V., & Tennenhouse, D. L. (1998). ANTS: A toolkit for
building and dynamically deploying network protocols. In Open architectures and
network programming (pp. 117–129). IEEE.

Wilcoxon, F. (1992). Individual comparisons by ranking methods. In Breakthroughs in
statistics (pp. 196–202). Springer.

Wolpert, D., Tumer, K., & Frank, J. (1999). Using collective intelligence to route
internet traffic. In Advances in neural information processing systems (pp. 952–960).

Woźniak, M., Sikora, A., Zielonka, A., Kaur, K., Hossain, M. S., & Shorfuzza-
man, M. (2021). Heuristic optimization of multipulse rectifier for reduced energy
consumption. IEEE Transactions on Industrial Informatics, 18(8), 5515–5526.

Woźniak, M., Siłka, J., Wieczorek, M., & Alrashoud, M. (2020). Recurrent neural
network model for IoT and networking malware threat detection. IEEE Transactions
on Industrial Informatics, 17(8), 5583–5594.

iao, Y. (2016). Bio-inspired computing and networking. CRC Press.
amamoto, L., Schreckling, D., & Meyer, T. (2007). Self-replicating and self-modifying

programs in fraglets. In Workshop on bio-inspired models of network, information and
computing systems (pp. 159–167). IEEE.

amamoto, L., & Tschudin, C. (2005). Genetic evolution of protocol implementations
and configurations. In International workshop on self-managed systems and services
(pp. 34–2007070218786). IFIP/IEEE.

aman, A., & Iacca, G. (2021). Distributed embodied evolution over networks. Applied
Soft Computing, 101, Article 106993.

ang, Y., Chen, H., Heidari, A. A., & Gandomi, A. H. (2021). Hunger games search:
Visions, conception, implementation, deep analysis, perspectives, and towards
performance shifts. Expert Systems with Applications, 177, Article 114864.

Yun, C., Cho, A.-R., Kim, S.-G., Park, J.-W., & Lim, Y.-K. (2013). A hierarchical
time division multiple access medium access control protocol for clustered un-
derwater acoustic networks. Journal of Information and Communication Convergence
Engineering, 11(3), 153–166.

Zhang, X., Li, J., Qiu, R., Mean, T.-S., & Jin, F. (2020). Optimized routing model of
sensor nodes in internet of things network. Sensors and Materials, 32(8), 2801–2811.

http://refhub.elsevier.com/S0957-4174(22)01675-X/sb28
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb28
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb28
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb29
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb29
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb29
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb30
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb30
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb30
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb30
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb30
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb31
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb31
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb31
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb32
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb32
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb32
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb33
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb33
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb33
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb33
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb33
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb34
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb34
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb34
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb34
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb34
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb35
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb35
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb35
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb35
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb35
http://arxiv.org/abs/1512.03770
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb37
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb37
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb37
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb37
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb37
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb38
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb38
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb38
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb39
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb39
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb39
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb39
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb39
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb40
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb40
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb40
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb40
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb40
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb41
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb41
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb41
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb41
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb41
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb42
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb42
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb42
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb43
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb43
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb43
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb43
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb43
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb44
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb44
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb44
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb44
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb44
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb45
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb45
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb45
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb46
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb46
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb46
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb47
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb47
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb47
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb47
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb47
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb48
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb48
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb48
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb48
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb48
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb49
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb49
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb49
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb50
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb50
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb50
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb50
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb50
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb51
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb51
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb51
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb51
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb51
http://arxiv.org/abs/1709.07080
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb53
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb53
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb53
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb53
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb53
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb54
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb54
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb54
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb54
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb54
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb55
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb55
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb55
http://arxiv.org/abs/1709.06604
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb57
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb57
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb57
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb57
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb57
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb58
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb58
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb58
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb58
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb58
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb59
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb59
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb59
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb60
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb60
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb60
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb60
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb60
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb61
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb61
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb61
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb61
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb61
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb62
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb62
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb62
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb63
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb63
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb63
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb63
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb63
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb64
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb64
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb64
http://dx.doi.org/10.1109/TCYB.2017.2780274
http://dx.doi.org/10.1109/TCYB.2017.2780274
http://dx.doi.org/10.1109/TCYB.2017.2780274
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb66
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb66
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb66
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb66
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb66
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb67
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb67
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb67
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb68
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb68
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb68
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb69
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb69
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb69
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb69
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb69
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb70
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb70
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb70
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb71
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb71
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb71
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb72
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb72
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb72
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb72
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb72
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb73
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb73
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb73
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb73
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb73
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb74
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb75
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb75
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb75
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb75
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb75
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb76
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb76
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb76
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb76
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb76
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb77
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb77
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb77
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb78
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb78
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb78
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb78
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb78
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb79
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb79
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb79
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb79
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb79
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb79
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb79
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb80
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb80
http://refhub.elsevier.com/S0957-4174(22)01675-X/sb80

	Online distributed evolutionary optimization of Time Division Multiple Access protocols
	Introduction
	Methods
	Problem settings
	Proposed method: 
	Local fitness computation
	Mutation operator


	Experimental setup
	Proposed algorithm settings
	Network settings
	Benchmark algorithms

	Experimental results
	Evaluating scalability
	Trade-off between slots and resources

	Evaluating robustness
	Runtime behavior of the evolutionary process

	Parameter analysis

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Appendix A. Supplementary data
	References


