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Abstract

Keeping users’ and organizations’ data secure is a challenging task. The situation is made
more complicated due to the ever-increasing complex dependencies among IT systems. In this
scenario, current approaches for risk assessment and mitigation rely on industry best practices
based on qualitative assessments that do not provide any measure of their effectiveness. In this
Thesis, we argue that the rich availability of data about IT infrastructures and adversaries must be
employed to quantitatively measure the risk and the effectiveness of security mitigation strategies.
Our goal is to show that quantitative measures of effectiveness and cost using security data are
not only possible but also beneficial for both individual users and organizations to identify the
most appropriate security plan. To this aim, we employed a heterogeneous set of security data
spanning from blacklist feeds and software vulnerability repositories to web third-party dynamics,
criminal forums, and threat intelligence reports. We use this data to model attackers and security
mitigation strategies and evaluate their effectiveness in mitigating attacks. We start with an
evaluation of filter lists of privacy extensions to protect individuals’ privacy when browsing the
Web. We then consider the security of billions of users accessing the Top 5K Alexa domains
and evaluated the effectiveness and cost of security mitigations at different levels of the Internet
infrastructure. We then evaluate the accuracy of SOC analysts in investigating alerts related
to cyber attacks targeting a network. Finally, we develop methodologies for the analysis of the
effectiveness of ML models to detect criminal discussions in forums and software updates to
protect against targeted attacks performed by nation-state groups.

Keywords
Security mitigation, Security data, Attacker model, Risk assessment





Contents

1 Introduction 3
1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Information Security Data: Collection and Models 11
2.1 Fully Structured and Visible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Abuse and Blacklist Feeds . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Software and Vulnerability Repositories . . . . . . . . . . . . . . . . . . . 13

2.2 Partially Structured and Visible . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Web Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Web Third-party Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.3 Network Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Unstructured and Not Visible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.1 Underground Forums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.2 Threat Intelligence Reports . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Other possible sources of security data . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.1 Internet Misconfigurations . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.2 Host Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.3 Social Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Integration of security data sources . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Web Tracking: Representation and Reasoning about Mitigations 31
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 A Formal Model for Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 Predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.2 General Derivation Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Tracking Specific Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

i



3.4 Using the Calculus for Tracking Relations . . . . . . . . . . . . . . . . . . . . . . 41
3.5 Instantiation and Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.6 Evaluation of Filter Lists Mitigations . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.6.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.6.2 Comparison of Effectiveness with Related Work . . . . . . . . . . . . . . . 50

3.7 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Pareto-Optimal Defenses for the Web Infrastructure 59
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2 Planning Attacks and Defenses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.1 Rule Dependencies and Attack Graph Generation . . . . . . . . . . . . . . 64
4.4.2 Application of Mitigations . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.5.1 Class of Attackers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.5.2 Attacker Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.6 Mitigations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.6.1 Application Layer Mitigations . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.6.2 Transport Layer Mitigations . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.6.3 Routing Layer Mitigations . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.6.4 Resolution Mitigations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.6.5 CA Mitigations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.6.6 Mitigation Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.7 Evaluation of Web Infrastructure Mitigations . . . . . . . . . . . . . . . . . . . . 78
4.7.1 Cyber-criminal Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.7.2 Infrastructure Providers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.7.3 Nation-State Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.7.5 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.8 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.9 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5 Measuring SOC Analysts Investigation of Cyber-attacks using the Entropy of
Task Complexity 91
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

ii



5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.3 A New Theory of Task Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3.1 A Recursive Model of Task Complexity . . . . . . . . . . . . . . . . . . . 95
5.3.2 Entropy of Tasks Complexity . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.4 SOC Analyst Task Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.4.1 Accuracy of the SOC Analyst Task . . . . . . . . . . . . . . . . . . . . . . 101

5.5 Attack Scenarios Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.6 Experimental Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.6.1 Experiment Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.6.2 Demographics and Ground Truth Determination . . . . . . . . . . . . . . 109

5.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.8 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.9 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6 A Graph-based Stratified Sampling Methodology for (Underground) Forums119
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.2 Ethical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.4 Forum Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.5.1 Annotation and Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.5.2 Training ML models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.6 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.7 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7 Software Updates Strategies against Advanced Persistent Threats 139
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
7.2 The Software Update Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.2.1 The Software Update Strategies . . . . . . . . . . . . . . . . . . . . . . . . 142
7.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.4 Data Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.4.1 Attack Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
7.4.2 Popular Products and CVEs . . . . . . . . . . . . . . . . . . . . . . . . . 153
7.4.3 Evolution in Exploiting Vulnerabilities . . . . . . . . . . . . . . . . . . . . 155
7.4.4 Software for Analysis of Update Strategies . . . . . . . . . . . . . . . . . . 156

7.5 Evaluation of Software Updates Mitigations . . . . . . . . . . . . . . . . . . . . . 156

iii



7.5.1 Survival Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
7.5.2 Classification of APT Campaigns . . . . . . . . . . . . . . . . . . . . . . . 158
7.5.3 Effectiveness and Cost of Updates Strategies . . . . . . . . . . . . . . . . . 159

7.6 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
7.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
7.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

8 Conclusions and Future Work 169

Bibliography 171

A IFOL Rules for Web Tracking 205
A.0.1 Examples of Complex Tracking Interactions . . . . . . . . . . . . . . . . . 206
A.0.2 Example of Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

B Rules for Web Infrastructure Model 211
B.0.1 Attacker rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
B.0.2 Defender rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

C Replication Guide for SOC Experiment 223
C.0.1 Mapping Attack Scenarios to Task Complexity . . . . . . . . . . . . . . . 223
C.0.2 Background and Skills questionnaire . . . . . . . . . . . . . . . . . . . . . 227
C.0.3 Manual Scoring procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

iv



List of Tables

1.1 Security Data Sources Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1 SotA on Web Privacy Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 Ground Truth Network Interactions and Mitigations . . . . . . . . . . . . . . . . . . . . . 35
3.3 Web Tracking Predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4 # of predicates and HTTP responses for the Top Alexa . . . . . . . . . . . . . . . . . . . 44
3.5 Timing for successful and failed proof attempts . . . . . . . . . . . . . . . . . . . . . . . . 46
3.6 Comparison allowed connections by tracker blocker tool . . . . . . . . . . . . . . . . . . . 52

4.1 Attacker actions by class of attacker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2 Mitigation cost per host . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3 Percentage of affected, protected, and potentially protected visits and cost for infrastruc-

ture adversaries for Alexa Top 5k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.4 Percentage of affected, protected, and potentially protected visits and cost for hacker group

and nation-state adversaries for Alexa Top 5k . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.5 Performances graph analysis for Alexa Top 5k . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.1 Task Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.2 SOC analyst sub-tasks complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.3 Task complexity of sub-tasks by attack scenario . . . . . . . . . . . . . . . . . . . . . . . . 105
5.4 Guidelines scoring MIRAI and EXIM tickets: attacker and victim IPs . . . . . . . . . . . 107
5.5 Guidelines scoring tickets phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.6 Skill technical questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.7 Number of Students, Groups and Tickets issued by Degree . . . . . . . . . . . . . . . . . . 110
5.9 Groups Mean and Std Skills and Background . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.10 Descriptive statistics weighted IC and SC Entropy produced by groups on an attack scenario111
5.11 Regression on total entropy by groups tickets containing true information referring to the

attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.12 Regression on total entropy by groups tickets containing false information referring to the

attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.1 Centrality Metrics for Members node type . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.2 Guideline Annotation Posts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.3 Population graph Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.4 Samples from Trading HF Population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

v



6.5 Crime type classes and # posts per sample . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.6 Comparison XGBoost performance using Trading HF random and proportional stratified

samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.7 XGBoost performance using Post-degree uniform sample and relative change compared to

Post-degree proportional sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.8 XGBoost Agreement Trading HF Random and Post-degree proportional classifiers. . . . . 132
6.9 Examples of Disagreement between trained models . . . . . . . . . . . . . . . . . . . . . . 133
6.10 XGBoost Disagreement Sample Performance. . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.11 SotA on Sampling Technique for supervised classification of criminal activities in forums . 136

7.1 Classification of Attack Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
7.2 Update strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
7.3 Update Intervals from SANS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
7.4 Methodology overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.5 Attack vector campaigns and software vulns . . . . . . . . . . . . . . . . . . . . . . . . . . 153
7.6 Top 10 client-side and Top 10 server-side/O.S. products exploited . . . . . . . . . . . . . . 154
7.7 Optimistic and pessimistic conditional probability of being compromised for different up-

date strategies and update interval with the associated # of updates . . . . . . . . . . . . 160
7.8 SotA on Advanced Persistent Threats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

B.1 Threat Model Predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

C.1 Causal relations and output sub-tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
C.2 Background question on Hacking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
C.3 Skills questions by category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
C.4 Guidelines scoring tickets phases MIRAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
C.5 Guidelines scoring tickets phases EXIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

vi



List of Figures

2.1 A fragment of the infrastructure relations while visiting researchgate.net . . . 15

3.1 Tracking Derivation Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 COPPA Derivation Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 Mapping of the predicates to the dataset. . . . . . . . . . . . . . . . . . . . . . . 43
3.4 The problem of determine Knows(w′, facebook.com) . . . . . . . . . . . . . . . . 47
3.5 Access graph Top 5 Alexa domains . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.6 Comparing Tracking Knowledge for Alexa Top 5. . . . . . . . . . . . . . . . . . . 49
3.7 Access reduction by mitigation from 2016 to 2019 . . . . . . . . . . . . . . . . . . 51

4.1 Graph-based analysis for Stackelberg planning . . . . . . . . . . . . . . . . . . . . 65
4.2 Dependency rules graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3 Pareto frontier for small hacker group attacker scenario . . . . . . . . . . . . . . . 80
4.4 Pareto frontiers for infrastructure attacker scenarios . . . . . . . . . . . . . . . . 82
4.5 Pareto frontiers for state-controlled attacker scenarios . . . . . . . . . . . . . . . 84

5.1 SOC analyst investigation of cyber-attacks decomposed in sub-tasks with their
causal relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.2 The network architecture and sequence of phases of the attack scenarios . . . . . 103
5.3 Sub-tasks and causal relations in attack scenarios. . . . . . . . . . . . . . . . . . . 104
5.4 Entropy for MIRAI and EXIM attack scenarios . . . . . . . . . . . . . . . . . . . 106
5.5 Experiment Timeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.6 The overall true and false content in the incident reports of each group by varying

skills levels and SOC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.1 Methodology for stratified sampling of Forums . . . . . . . . . . . . . . . . . . . . 121
6.2 Distribution of population and Trading HF random sample over different centrality

metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.1 Combinations of vulnerability reservation, disclosure, and exploitation events with
the presence of new updates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

vii



7.2 Number of distinct vulnerabilities exploited over the years by different attack
scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.3 Proportion of survival of CVE from publication (NVD) for all products and a
subset (Office, Flash Player, Reader, Air, and JRE ). . . . . . . . . . . . . . . . . 157

7.4 Classification of APT Campaigns. . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
7.5 Agresti-Coull Interval (CI) for the update strategies with different update intervals 161

A.1 Knows Visits Derivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
A.2 Knows by external trackers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
A.3 Network Interactions Derivations . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
A.4 Known by external trackers via Cookie Syncing . . . . . . . . . . . . . . . . . . . 208
A.5 Proof of req_COPPA(flashtalking .com) . . . . . . . . . . . . . . . . . . . . . . . 209

C.1 Example of technical questions to assess student skill levels . . . . . . . . . . . . 227

viii



1

"Why are such [ineffective security] policy choices made? Quite simply, the incentives on the
decision makers favour visible controls over effective ones. The result is what Bruce Schneier calls
‘security theatre’ – measures designed to produce a feeling of security rather than the reality.
Most players also have an incentive to exaggerate the threat from terrorism: politicians to ’scare
up the vote’ (as President Obama put it), journalists to sell more papers, companies to sell more
equipment, government officials to build their empires, and security academics to get grants.
The upshot is that most of the damage done by terrorists to democratic countries comes from
the overreaction... Security engineers have to understand all this; we need to be able to put risks
and threats in context, make realistic assessments of what might go wrong, and give our clients
good advice. That depends on a wide understanding of what has gone wrong over time with
various systems; what sort of attacks have worked, what their consequences were, and how they
were stopped (if it was worthwhile to do so)."

Ross Anderson, Security Engineering: A Guide to Building Dependable Distributed Systems
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Chapter 1

Introduction

The entire world is relying on IT systems, not only in business but also in other critical
areas like the healthcare and energy sectors. Increasingly complex software and infras-
tructure that heavily rely on third-party dependencies made IT systems fragile and at
risk of attacks. The NotPetya ransomware and the Solarwinds hack are just a few recent
examples of the impact of cyber attacks caused by, often hidden, dependencies in complex
IT systems. Thus, the need for secure systems and software to properly handle sensitive
data.

1.1 Problem Statement

A wide range of security mechanisms is advertised and discussed. From endpoint privacy
browser extensions and antivirus to protect users on the Web, to security protocols like
DNSSEC and IPsec, passing through Security Operation Centers and machine learning
algorithms to detect malicious activities. Individuals and organizations are expected to
invest more in security and are blamed when they fail to do so [172, 213, 324]. However,
individual users and organizations can hardly measure if and how much these security
mitigations are effective [360]. The ability to measure the efficiency of security mitigation
strategies for risk assessment and response purposes is currently a vital requirement to
avoid wasting resources on ineffective and costly solutions that do not provide any reduc-
tion of risk. Unfortunately, although the amount of security data produced and available
for collection spiked in the recent years [234, 280, 345], the same cannot be said for the
methodologies to analyze this data, extract key security principles, produce from them
measures of risk, and evaluate the effectiveness of security mitigations. This is also due
to the characteristics of this data, which vary in the security context in which a mitiga-
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tion strategy is evaluated, thus requiring ad hoc collection, data models, and procedures
to extract information. Security data are heterogeneous, from abuse and blacklist feeds
where researchers have full visibility and data are nicely structured and accessible, to
underground forums and threat intelligence reports where researchers have limited visi-
bility and data are highly unstructured. These characteristics also affect the automated
collection and application in each scenario, for example, data feeds on software vulnera-
bility can be automatically collected via API in machine-readable formats while criminal
discussions in underground forums require extensive preprocessing and analysis to obtain
actionable insights.

Table 1.1 summarizes the characteristics of the information security data covered in
this thesis to evaluate the effectiveness of security mitigation strategies. These character-
istics pose challenges to the collection, correlation, and analysis of data for a quantitative
evaluation of security mitigation strategies. The result is that currently, the evaluation
of risk and effectiveness of mitigations reduces to a qualitative assessment based on sub-
jective opinions and interpretations and not reproducible methodologies [29,92].
Current security mechanisms are deployed without knowledge of their effectiveness with
the risk of ignoring more effective alternatives. We lack appropriate methodologies to
quantitatively evaluate security mitigation strategies by employing the rich set of security
data sources available.

1.2 Research Questions

Since data are heterogeneous and security mitigations can be deployed in a variety of
different contexts, we cannot have a unique research question. Therefore, we instantiate
it for each specific security scenario. Our goal is to show that, by relying on security data
models for both attackers and defenders, an evaluation of security mitigations is possible
in any situation, from the evaluation of mechanisms to protect the privacy of individual
users when browsing their preferred e-commerce website to the analysis of security mit-
igation strategies for organizations facing nation-state groups. Indeed, our thesis takes
different perspectives for the evaluation of security mitigations in different dimensions by
considering both security-related and privacy-related scenarios. We furthermore, consid-
ered different types of control techniques [169]: corrective countermeasures (Chapters 3
and 4), in which we evaluated the reduction of the impact of a successful attack, detec-
tive countermeasures (Chapters 5 and 6), in which we evaluated discovery of attacks and
threats, and preventive countermeasures (Chapter 7), in which we evaluated reduction of
exposure.
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Table 1.1: Security Data Sources Characteristics

Full Partial Minimal

Security Data
Sources

Description Structured Visibility Automated
Collection

Actionable Chapter

Abuse and Blacklist
Feeds

Technical indicators of
known threats like IP
address, domains, file
hashes.

Chapter 3

Software and Vulner-
ability Repositories

Technical information on
sw vulnerability, affected
software, versions, avail-
able updates.

Chapter 7

Web Infrastructure Infrastructure entities
like ASes, NS, domains,
CDNs. and their depen-
dencies.

Chapter 4

Web Third-party
Dynamics

Third-party live interac-
tions like execution of ex-
ternal JS code and access
to trackers

Chapters 3
and 4

Network Monitoring Raw logs and security
events of network activi-
ties

Chapter 5

Underground Fo-
rums

Discussions and trading of
online illicit activities

Chapter 6

Threat Intelligence
Reports

Technical description of
adversary capabilities and
TTPs

Chapter 7

Web Privacy Scenario The prevalence of web tracking [196] is affecting users’ privacy
when browsing the Web. Large-scale studies analyzed trackers ecosystem and the effec-
tiveness of tracker blockers [124, 218]. However, individual users tend to browse to few
websites [53, 280] and thus lack a mechanism to evaluate the privacy risk and effective-
ness of tracker blockers in their specific scenario. Our goal is to provide a quantitative
evaluation of tracker blockers for an individual. We thus identify the following research
question:

RQ1 : How can we provide a third-party independent verification of empirical tracking
claims and the effectiveness of tracker blockers for individual users?

Internet infrastructure Scenario The Web is currently essential for business and
entertainment tasks we perform daily. The modern Web operates thanks to a variety
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of different protocols and relationships at different levels of the Internet infrastructure.
However, the complexity of the Web can be a vector for a number of attacks against
Web users [299]. A rich set of mitigations have been proposed to secure the Web, from
application-level protections like SRI to resolution and PKI security mechanisms like
DNSSEC and Certificate Transparency. However, it is still unclear the effectiveness of
each mitigation given the current status of the Web, with the result that the deployment
of security mechanisms is faltering [81,85,194,276]. Our goal is to provide a quantitative
evaluation of the deployment of security mechanisms at the different level of the Internet
infrastructure. We thus identify the following research question:

RQ2 : How can we evaluate the cost-effective selection of mitigations for securing the
Web given the current Internet infrastructure?

Security Operation Center Scenario The 2022 Verizon Data Breach Investigation
Report reported more than 900k intrusions [345]. To detect such attacks, IT infrastruc-
tures rely on Security Operation Centers (SOC) to monitor the alerts issued by IDS [84].
Current works focused on finding the true attacks and limiting false alerts [16,130]. How-
ever, correctly identifying and investigating the few alerts referring to an attack is a com-
plex task. Current metrics to evaluate the effectiveness of SOC overlooked this [294,295]
thus measuring only part of the performance of an analyst [180] that can lead to an
incorrect allocation of security resources [320]. Our goal is to provide a quantitative eval-
uation of the accuracy of SOC analysts’ incident reports depending on technical skills and
technological changes in the SOC. We thus identify the following research questions:

RQ3a: How to model the task complexity of investigating a cyber-attack?

RQ3b: How task complexity helps in comparing changes in accuracy due to technical
(skills of analysts) and technological differences (different filtering of alerts)?

Criminal activities in Underground Forums Scenario Forums are an important
medium for users to exchange information and offer cybercriminal services. Several works
employed machine learning classifiers to identify the type of posts [72, 259], the goods
offered [15,342], and the business interactions [47,318]. The performance of these classifiers
is based on the random selection of a subset of posts, without considering the forum
social network relationships. Our goal is to provide a quantitative evaluation of ML
classifiers performance trained to detect cyber criminal activities using different sampling
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methodologies that exploit social network information. We thus identify the following
research questions:

RQ4a: What are the changes in performance for a ML classifier using different cen-
trality metrics to generate stratified training samples?

RQ4b: What are the changes in performance using a different proportion compared
to the population for the stratified training samples?

Advanced Persistent Threats Scenario Enterprises are taking up to seven months
to update their machines with the most recent software version [184,286]. This behavior
seems irrational when dealing with highly skilled and organized attackers like Advanced
Persistent Threats (APT) [83, 275]. However, there is hardly any way to determine if a
better approach to software updates is necessary given that most of the studies on APTs
are qualitative analyses of a handful of campaigns [83, 275, 338]. Our goal is to provide
a quantitative evaluation of the effectiveness of software updates to protect against APT
campaigns. We thus identify the following research questions:

RQ5a: What are the APTs characteristics that quantitatively describe the landscape
of APT campaigns as observable from public reports?

RQ5b: Given a quantitative description of both APT campaigns and software updates,
how effective are different update strategies to protect against APT campaigns?

1.3 Contributions

The main contribution of this Thesis is a quantitative evaluation of security mitigation
strategies employing a heterogeneous set of information security data sources that differ in
terms of visibility, structure, collection procedure, and analysis. We define data models to
describe the underlying processes and relationships between threats and defense mecha-
nisms, instantiate them on heterogeneous security data, and evaluate security mitigations
with different threat models.

We show that quantitative measures of effectiveness and cost using security data are
not only possible but also beneficial for users and companies to identify better security
plans. To demonstrate that, in this Thesis, we present models and methodologies to
collect, organize, and analyze security data to quantitatively evaluate the effectiveness of
security mitigations.
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But what are the benefits of developing data models to evaluate the effectiveness of
security mitigations compared to a purely data-driven approach? With our approach,
we make explicit causal relations between attacker behaviors, the characteristics of the
network in which they act, and the security mitigations available for a defender. The
development of security data models allows researchers to investigate what-if scenarios
where otherwise part of the security data from attackers or security mitigations would be
rare to collect, lack at all, or would require to re-run entirely the empirical analysis. But
most importantly, with an explicit model of the underlying processes and relationships
we provide, along with a quantitative result of the effectiveness of security mitigations, a
transparent explanation of why certain mitigations succeed and others do not, why some
are worth it, and if so under which conditions.

To answer to RQ1 , we present a model of Web tracking practices based on
the client-side flow of data sharing exploited by Web trackers. We apply this model to
the network configurations of the Internet to independently check Web tracking practices
and evaluate tracking blocking tools. We showed the applicability of this approach for
individuals based on the Top 100 Alexa domains.

To answer to RQ2 , we show a graph-based analysis of Internet security miti-
gations to protect billion of Web users. We considered the infrastructure supporting the
Top 5k Alexa domains and determined that currently deployed security mechanisms are
ineffective and the centralization of infrastructures to a few entities makes them critical
for the security of the entire Internet. We identified mitigations that can increase the
security of the entire Web at a relatively modest cost of deployment.

To answer to RQ3a and RQ3b, we develop a model to evaluate SOC analysts
investigation of cyber-attacks through network monitoring. We described the process
and information required to analyze traces of the kill chain of an intrusion. We quan-
titatively measure the effect on the analyst performance of technical and technological
changes in the investigation of real attacks.

To answer to RQ4a and RQ4b, we present a methodology to create stratified
samples using information about the centrality metrics of the network for machine learn-
ing classification of online criminal activities and to evaluate their performance. We apply
our approach to a forum containing millions of posts on a variety of different topics to
measure the effects of the sampling technique. We find that classifiers trained with similar
samples can significantly disagree on the classification of criminal activities when deployed
on the entire forum.

Finally, to answer to RQ5a and RQ5b, we develop a methodology to evaluate
software update strategies to protect against APT campaigns. We constructed a rich
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database containing more than 350 APT campaigns from 86 APTs over a period of more
than 10 years. We observed that updating indiscriminately is not the solution and that
considering only publicly known vulnerable releases has the same risk profile of always
updating the software, but costs significantly less.

1.4 Thesis Structure

This Thesis is structured as follows:
Chapter 2 provides an overview of the sources of security data employed to evaluate

the effectiveness of security mitigation strategies. This chapter is partially based on the
related works, background, and motivation sections of the research papers.

Chapter 3 presents a model to describe Web tracking techniques and evaluate the
effectiveness of tracker blocker tools. I focused on threat modeling, data collection, and
evaluation of mitigations. Fabio Massacci focused on formal tractability. The chapter is
partially published in:

[331] Giorgio Di Tizio, Fabio Massacci. "A Calculus of Tracking: Theory and Prac-
tice" In Privacy Enhancing Technologies Symposium, Sciendo, 2021.

Chapter 4 presents a quantitative evaluation of security mitigation strategies at the
Internet layers to secure the Web. Patrick Speicher and I were jointly responsible for this
work. I focused on the threat modeling and data collection part, while Patrick Speicher
focused on the graph-based implementation. This chapter is partially published in:

[100] Giorgio Di Tizio, Patrick Speicher, Milivoj Simeonovski, Michael Backes, Ben
Stock, Robert Künnemann. "Pareto-Optimal Defenses for the Web Infrastructure:
Theory and Practice". In ACM Transactions on Privacy and Security, ACM, 2022.

Chapter 5 presents a model to compute the accuracy of tickets issued by SOC ana-
lysts during the investigation of cyber-attacks and implement a controlled experiment to
measure the changes in performances due to technical and technological differences in a
simulated SOC. I was the main author of this paper. I focused on developing the model,
the data collection, and the analysis of the data. Leon Kersten helped in the data collec-
tion. Martin Rosso developed the SAIBERSOC tool employed in the experiments [273].
The chapter is submitted to:

[99] Giorgio Di Tizio, Leon Kersten, Martin Rosso, Luca Allodi, Fabio Massacci.
"Measuring SOC Analysts Investigation of Cyber attacks using the Entropy of Task
Complexity". To be submitted to ACM CCS.
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Chapter 6 presents a methodology to generate stratified samples to train ML classifiers
and evaluates the effectiveness of different stratifications on the performance of classifiers
to detect criminal discussions in underground forums. I was the main author of this paper.
Gilberto Atondo Siu helped in the manual annotation of posts. The chapter is submitted
to:

[98] Giorgio Di Tizio, Gilberto Atondo Siu, Alice Hutchings, Fabio Massacci. "A
Graph-based Stratified Sampling Methodology for the Analysis of (Underground) Fo-
rums". Submitted to IEEE Transactions on Information Forensics and Security.

Chapter 7 presents an analysis of the Advanced Persistent Threats ecosystem and a
methodology to evaluate the effectiveness of software update strategies on historical data
about campaigns. I was the main author of this paper. I focused on the data collection and
evaluation of software update strategies. Michele Armellini helped in the data collection.
The chapter is partially published in:

[97] Giorgio Di Tizio, Michele Armellini, Fabio Massacci. "Software Updates Strate-
gies: a Quantitative Evaluation against Advanced Persistent Threats" In IEEE Trans-
action on Software Engineering, IEEE, 2022.

Finally, Chapter 8 reflects on the main contributions of this work and provides discus-
sion on future work.



Chapter 2

Information Security Data: Collection
and Models

To evaluate security mitigations we rely on information security data from a variety
of heterogeneous sources. Information can refer to the characteristics and structure of
the network on which we want to evaluate the security mitigations, for example, the
Internet dependencies between websites and content delivery networks and the software
vulnerabilities present on a machine, or to the characteristics and structure of a threat
for a network, for example, the software vulnerabilities exploited by an APT group, the
3rd-party trackers included in a website, and the trades in dark web forums. As discussed
in Chapter 1 information security data sources present different characteristics and not
all data are created for being used to analyze the effectiveness of security mitigation
strategies. Indeed, although some data sources like software vulnerability repositories are
intended to be shared, parsed, and analyzed, others like dark web forums discussions, are
intentionally resisting data collection and analysis. To extract meaningful measures of risk
and effectiveness of security mitigations, we need to identify from these security data the
underlying processes and relationships that allow the analysis to join together different
sources, describe attackers’ and defenders’ behaviors, and interpret and measure their
interactions. In this chapter, we present a list of data sources of security data employed
in this thesis to evaluate the effectiveness and cost of security mitigation strategies. We
present them in increasing order of complexity in terms of visibility and structure. We
discuss their characteristics and the challenges faced when collecting and analyzing this
data.

11
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2.1 Fully Structured and Visible

Some security data sources like vulnerability and abuse feeds are well structured and
immediately available in a static and clean way. Furthermore, researchers can access all
the information and check that, e.g., a malicious domain is indeed hosting an exploit kit
or a vulnerability is present in the latest version of Chrome.

2.1.1 Abuse and Blacklist Feeds

Technical indicators of abuse are used to identify the presence of malicious activities on
a network, prevent connections to known threats related to phishing, malware host, and
web tracking, or infer the security posture of network owners. Data are generated both
by the sharing communities [60, 112] and by specialized companies [61, 136]. Abuse and
blacklist feeds contain up-to-date information about known threats in the form of machine-
readable lists of indicators IP addresses, domain names, URLs, file hashes, and signatures
of exploits. Examples of such sources are AlienVault OTX, Symantec WINE [107], and
Virustotal for security-related blacklist feeds and Disconnect, EasyList, and EasyPrivacy
for privacy-related filter lists. Trackers and ads filter lists are loaded by browser extensions
like Disconnect, AdBlock Plus, and Privacy Badger to prevent connections to trackers’
domains while surfing the Web.

General issues for collection and analysis Abuse and blacklist feeds are often
available via API or some other machine-readable format. Although useful for an au-
tomatic investigation to detect intrusions or to prevent known threats, technical indi-
cators from blacklist feeds quickly become obsolete and suffer from poor accuracy and
coverage [197,284].

Raw data collection In the context of web tracking we collected the filter lists of
Ghostery, Disconnect, and EasyList in 2016 from previous works [44, 45] and compared
them with the filter lists of Disconnect, EasyList, EasyList&EasyPrivacy, and Privacy
Badger in 2019. The Privacy Badger filter list was generated by visiting the Top 200
Alexa domains in December 2019. Due to the risk of fingerprinting, after 2020 the Pri-
vacy Badger filter list is not created individually for each user but it is the same for all
users [126].

Data models construction From security data related to the known adverts and
trackers, we characterize the presence and spread of web trackers on the Web and iden-
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tify domains that are purely devoted to tracking from domains that behave differently
depending if users intentionally interact with them or include them as third parties.

2.1.2 Software and Vulnerability Repositories

Compared to a few years ago, the amount of publicly reported software vulnerabilities sky-
rocketed. Several vulnerability repositories are available to identify and catalog publicly
disclosed vulnerabilities. Famous databases are the MITRE CVE [222] and the National
Vulnerability Database (NVD) [233] which cover both commercial and open-source soft-
ware. Other databases like the Snyk vulnerability database [302] focus on vulnerabilities
on open source projects only like Maven, pip, and Debian.

These databases provide a rich set of information: from the timeline of reporting and
publishing the vulnerability, to the affected software products and versions, additional
resources like vendor advisory and available patches, presence of proof of concept exploits,
description of the weakness, and a ’technical assessment’ of the vulnerability.

Vulnerabilities are uniquely identified by a CVE ID that is reserved when a vulner-
ability is reported and then published on the vulnerability database. Software vendors
release security bulletins and advisories related to the presence of vulnerabilities in spe-
cific products and versions and the associated information to fix or update the software
product. Examples are the Adobe Security Bulletin and the Microsoft Security Guide.

To successfully evaluate security mitigations, along with vulnerability databases, in-
formation about the release of software versions is critical. Each software vendor provides
a list of release history for their products and links the affected software versions to a
specific CVE when applicable. The Common Platform Enumeration (CPE) Dictionary is
an attempt to provide a standardized and machine-readable format to describe software
products, versions, and packages.

General issues for collection and analysis Although some of the vulnerability and
software update databases like NVD and Microsoft Security Guide provide machine-
readable data that can be easily parsed to extract key information, most of the vendor
repositories are not intended for past versions indexing [226]. Another major challenge is
that most of the information provided by a CVE entry like the technical assessment or the
affected software versions requires expertise and manual effort. Thus, it is not uncommon
to observe inconsistencies and errors in the list of product names, the CVSS score [361],
the CVE publication date [31], and vulnerable versions [105].
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Raw data collection We employed the NVD to automatically extract the release and
published date for a set of CVEs collected from security reports (see Section 2.3.2 for
more details) as well as the list of products and versions affected. We then integrated this
information with the CPE Dictionary. From the CPE, we extracted the list of vulnerable
versions based on the CPE Match Strings. For example, CVE-2016-4113 affects all the
versions of Flash Player up to 21.0.0.213. The associated JSON NVD file does not provide
the entire list of affected versions (including the updates) in the CVE description but a
CPE URI of the form cpe:2.3:a:adobe:flash_player:*:*:*:*:*:*:*:*", "versionEndInclud-
ing":"21.0.0.213", we thus matched the CPE in the CPE dictionary to get the list of all
prior versions affected.

We then manually collected updates and versions for 5 widely employed software
products in the period of observation of the attacks (Office, Acrobat Reader, Air, JRE,
and Flash Player) for the Windows O.S. with the associated release date.

Data models construction From security data related to software versions, vulnera-
bilities, and updates, we characterize the underlying attack surface and security posture
of an organization in terms of installed software and strategies for software updates. This
conceptualization is put in relation to the responsiveness of software vendors by charac-
terizing the speed with which updates are released for different software and the interplay
between releases of updates and publications of software vulnerability information.

2.2 Partially Structured and Visible

Other security data sources can be partially structured where data must be retrieved
with interactions with systems following specific protocols and data can be dynamic, for
example, Web interactions and network logs. Researchers have partial visibility as it is not
always possible to have a complete and global view of the behavior of the infrastructure
from which the data is collected. An example is the Web interactions where trackers or
banners change depending on the location or exchange server-side information.

2.2.1 Web Infrastructure

The Internet is composed of a complex combination of services and protocols that rely on
each other to provide users the ability to browse the Web for fun and profit. Knowledge
about the dependencies and interactions required for the Web to properly work is employed
to determine points of failure of the infrastructure, the impact of attacks on critical
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Figure 2.1: A fragment of the infrastructure relations while visiting researchgate.net

infrastructure and large organizations [299], and analyze the effect of the application of
new security mechanisms [307].

To illustrate the most important infrastructure dependencies in the Web, consider the
following example summarized in Figure 2.1. A user browses through a gallery on the
popular image-hosting service researchgate.net. The browser first has to resolve this
domain to an IP. This is done through a series of DNS queries performed by the resolver
(usually first the user’s local resolver, then its ISP) to contact the authoritative NS. To
prevent forged or modified DNS responses, name servers can implement DNSSEC as a
security mechanism. Name servers can also provide information to set up a secure connec-
tion using TLS through the DANE protocol. The correct resolution of researchgate.net
depends on each of these NS. After resolution, the user connects to an IP, which belongs
to an autonomous system (AS). These ASes are interconnected, and packets need to be
routed via multiple ASes. On the network layer, the integrity of the packet transmission
depends on each AS that is traversed. The website can now be delivered by the web
server. To prevent a variety of attacks like Cross Site Scripting (XSS) or MITM attacks,
the web server delivers a sequence of HTTP response headers like CSP and HSTS. In
addition to its content, websites often include JS from external content delivery networks,
in this case, google-analytics.com, which in turn depends on various name servers, on
the AS the IP belongs to, etc. We further discuss the third-party dynamics in a web-
site in Section 2.2.1. In case the website and the third-party content are retrieved via
HTTPS, the authenticity of the connection depends on the signing CA and all root CAs
whose certificates come with the user’s browser, as any of these may supply the website’s
certificate.

General issues for collection and analysis A variety of platforms provide measure-
ments and technical information about the Web infrastructure like OpenINTEL, HTTP
Archive, and RIPE Atlas [103]. However, achieving a global and complete routing cov-
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erage, where all possible routes between ASes are covered is an infeasible task, if not
impossible [147, 242]. BGP data is available to a limited extent, leaving a meaningful
part of the AS-level topology hidden. Along with available datasets, ad hoc crawlers can
be developed to probe name servers and websites. For most of this information, static
crawlers are sufficient to collect information about the IPs, NSs, CAs, ASes, and HTTP
headers. It has been shown that a limited number of large organizations have a key role
in making the Web available and secure [174, 299]. One main challenge is to associate
different infrastructures like domains, NS, and AS to a single entity due to the presence
of aliases that require heuristics and manual investigation [174].

Raw data collection We considered the Top 5k Alexa domains obtained from Tranco [258]
on 1 Oct 2020. The data collected represents a snapshot of the status of the Internet at
a specific moment. Out of the 5k domains, 4608 were accessible (92%) at the time of
the crawl. The remaining domains either provide services not related to web browsing or
were down. We crawled each accessible domain to collect the web server configuration,
its CDNs, DNS data, routing data, geolocation, and (if applicable) CA information. The
data collection was performed from a single location at a European university.

We collected the strict-transport-security and Content-Security-Policy secu-
rity headers to determine the presence of the HSTS and CSP mitigation respectively. In
the case of CSP, we parse for the presence of the upgrade-insecure-requests directive. We
ignored the remaining policies. It is important to underline that we assumed a correct
implementation of the security headers and we did not parse them to determine misconfig-
ured policies. We discuss in Section 2.4.1 security data related to misconfigured security
mechanisms. We then probe the server with HTTP requests on the standard port 80 to
collect the sequence and type of redirections to an HTTPS connection.

For each website and CDN, we collect the list of authoritative NSs that are contacted
during iterative DNS resolution. We then queried for DNSSEC and DANE records. For
DANE, we requested the TLSA record for the website on port 443. For DNSSEC we
required the DNSKEY records for the zone, and we then trace the presence of the DS and
its RRSIG records in the parent zones up to the root zone. Although DNSSEC is prone
to misconfiguration [85] (e.g. expired signatures), we did not investigate these issues and
we discuss them in Section 2.4.1.

To model the internet connectivity, i.e., connectivity between ASes, we collect tracer-
outes provided by RIPE Atlas [268] for the set of autonomous systems considered in our
dataset. We observed traceroutes that have the domains from our dataset as their desti-
nation. For each ASN, we then retrieved the holder’s name. We assume that BGP routes
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are reasonably stable [265].
For each NS, website, and CDN, we include their geolocation in our dataset. We link

IPs to ASes using the RIPEstat database service [269] and we map ASes to countries
using the MaxMind database [215]. In addition, each CA is mapped to a specific country
using the information stored in the issuer section of the digital certificate.

For websites that support HTTPS, we use the X.509 certificate to identify the issuing
certification authority. To that end, we combine the information stored in Certificate
Fields that are reserved for the issuer of the certificate: Common Name (CN), Orga-
nization (O) and Organizational Unit (OU). Finally, to identify the country, i.e., the
administrative entity of CA, we collect the Country (C) field.

We then collected statistics about the number of visits to each domain using Alexa’s
UrlInfo API.

Data models construction From security data related to the Internet infrastructure,
we characterized the underlying processes and relationships between entities on the Web
that interact when users request content on the Internet. We describe routing interactions
among ASes, dependencies between domains and NS, domains and CA, as well as between
domain and content delivery networks. Based on these dependencies we characterized
attack vectors carried on different levels of the Internet infrastructure, and where security
mitigations like IPsec, DANE, DNSSEC, CT, HTTPS, HSTS, CSP, and SRI apply to
prevent attacks.

2.2.2 Web Third-party Dynamics

Online services heavily rely on third parties to provide ads, load external JavaScript code,
embed social media, and collect analytics. Third parties dependencies can create problems
in terms of security and privacy. For example, third-parties can be exploited to perform
malvertising, drive-by download, cryptojacking, and web tracking [231,335]. Third parties
are embedded using JavaScript or iframe in a web page. Although some of these inclusions
are observable in the source code of the web page, others are created dynamically and can
independently load further resources at run time [165,335]. Web tracking heavily relies on
the third-party dynamics between websites to track users online via stateful, e.g. cookies,
and stateless techniques, e.g. browser fingerprinting, or a combination of the two [125].
Requests to third parties can hide the exchange of identifiers to perform cookie sharing
among different trackers [284]. Although user tracking is regulated in the EU by the
General Data Protection Regulation (GDPR) and ePrivacy Directive, it is not uncommon
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to observe violations [58,214]. Collection of third-party dynamics on the Web is obtained
by directly interacting with the websites and the resources loaded during the visits with
crawlers that register a variety of information like URLs and domains contacted, sequence
of HTTP redirections, JavaScript loaded, data stored on the browser, etc.

General issues for collection and analysis Measurement of third-party dynamics
starts from a list of top websites like Tranco [258] that are accessed using crawlers. Dif-
ferent implementations of crawlers are available depending on the goals of the analysis.
Stateful crawler better emulates human behaviors by storing cookies and other persistent
data and the results observed are dependent on the previous browsing history. While
stateless crawlers provide results as a new user for each interacted website. A widely used
tool to dynamically crawl websites is OpenWPM [116].

Third parties and dependencies on a website can vary from the landing page and
its internal pages. Thus, crawlers must dynamically interact with different pages of the
website [34, 335] and implement bot mitigation techniques like random scrolling. Fur-
thermore, the identification of the third parties included in a website is challenging. The
dependencies are highly dynamic and present complex chains of intermediaries [284, 335]
that change the included resources over time [312]. Location and configurations of crawlers
can influence the collection of website behaviors [277] in particular for what concerns web
tracking practices [91]. Identification of owner organization behind included third-party
resources is a challenging task due to the complex relationships between companies [284]
and often requires a manual effort to avoid false positive [312].

Raw data collection To explore the security risk related to the inclusion of third-
party JavaScript code we obtained as a starting point the Top 5k Alexa domains from
Tranco [258] on the 1st October 2020. For each domain, we extract the external JS re-
sources that are loaded either statically or dynamically, analyze the protocol and check for
the presence of the subresource integrity using a crawler developed with the Selenium Web
driver, an object-oriented API for web-app testing that automates browsing of websites
from the command line. As the content of the landing page and its internal pages likely
differ [34], to avoid the risk of capturing a limited subset of third-parties [336], we further
visited up to 25 random internal pages obtained from the links on the landing page of
the visited domain. We employed the tldextract package [261] to extract the TLD+1 of
each resource. We consider a resource an internal page that belongs to the domain visited
if it shares the TLD+1 with the landing page of the domain but has a distinct URL by
excluding the fragment component. For example, from the landing page of the domain
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foo.com, the URL foo.com/#home is not considered an internal page while the URLs
foo.com/content/index.html and bar.foo.com/index.html are visited as internal pages.

To collect web tracking behaviors and dependencies we employed the 10k Site ID De-
tection 2016 and 2019 datasets1 collected using a stateful instance of OpenWPM. The
dataset contains the interactions during the subsequent visits of the 10k domains. In par-
ticular, it contains the list of URLs loaded, the HTTP responses, and the HTTP status
code. To compute the sequence of redirections exploited to track users among websites
and share cookies, we first extract the sequence of HTTP responses for each visited do-
main, then order the responses using the timestamp to avoid considering intermediate
redirections as the beginning of a new connection and extract the redirections from the
set of HTTP responses. Cookie syncing can be detected by analyzing URLs [124] and pay-
loads in POST requests. For illustrative purposes, we use here 200 empirically validated
domain pairs performing cookies syncing from [44].

Data models construction From security data related to the dynamic third-party
interactions with websites, we characterize the underlying processes of data sharing per-
formed by trackers employing HTTP redirects and exchange of cookies, like cookie syncing,
as well as the relationships between websites and CDNs on which domains depends on
via JS inclusions. Based on these interactions, we characterize attack vectors carried by
trackers and compromised CDNs to target the privacy and security of users on the Web.

2.2.3 Network Monitoring

Network monitoring allows IT services and SOC operators to identify phases of an attack,
from reconnaissance to exfiltration. These data sources can be either raw logs or security
events generated by security devices like Intrusion Detection Systems (IDS). This data
can be used to generate new detection signatures, collect artifacts like malware, define
the TTPs of the adversary, attribute the intrusion to a specific group, and remediate
effectively the attack. Network monitoring can be performed with different levels of
details from aggregate statistics related to the number of connections and packet sizes to
full packet collection [206,340].

Network activities are generated by a variety of sources like routers, firewalls, DNS
servers, and IDS sensors like Suricata and Snort. The logs are often matched against
signatures of anomalous and malicious behaviors. It is not uncommon for signatures to
produce a high amount of false positives, i.e. alarms generated without an actual security-

1https://webtransparency.cs.princeton.edu/webcensus/

https://webtransparency.cs.princeton.edu/webcensus/
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related event. This is because signatures are written in a way to cover a large spectrum
of malicious behaviors [16]. Thus, benign applications can also trigger the event. For
example, an unusual amount of requests towards a web server can be produced by a
DDoS attack or by a high amount of traffic due to a sale offer. A match will trigger an
event that will require an intervention to determine its validity.

Modern IT infrastructures are monitored by Security Operations Centers where these
sources are analyzed by a mix of automated rules and human analysts to filter true
alerts from false positives. The security operators triage alerts, logs, and events from the
network and its endpoints to determine if a malicious activity is occurring. Given the high
amount of data collected by the different sensors, SOCs may use a hierarchy where higher
tiers analysts treat a subset of escalated incidents but analyze each incident more in-
depth. Tier 1 analysts compose the largest group with generally less experienced analysts
compared to other tiers. This group focuses on real-time monitoring of security incidents,
triaging through a large number of alerts and logs per day, and does not spend much
time investigating each alert. Tier 1 analysts issue tickets related to incidents containing
information like IP/machine affected, malicious IP contacted, and attack vectors employed
to Tier 2. The Tier 2 analysts are often more experienced analysts who analyze each
incident in greater depth and make decisions on appropriate next steps to take, if any
(e.g. ignore, report to customers, engage attack containment strategy, etc.) [146,180].

General issues for collection and analysis Information security data related to
network activities are automatically collected in log files by the O.S., the applications, and
IDS. The logs and events have several different formats that vary based on the sensor [106].
Security Information and Event Management (SIEM) tools can help to automatically
parse, normalize, and combine different logs sources for inspection. However, humans are
still critical to perform in-depth analysis [16].

Raw data collection We employed the SAIBERSOC tool [273] to reproduce the net-
work traffic of attacks in a network and forward it to the Network Intrusion Detection
sensors to generate alerts. We collected the IDS alerts and logs for two attack scenarios:
the first reproduces the infection by the Mirai botnet, and the second is the exploitation
of a Remote Command Execution on an EXIM SMTP server. The IDS alerts contain
information on the IP address of the machines, the source ports contacted, the protocol
used, the alert body information like "ET TROJAN Mirai Botnet Domain Observed" or
"ET EXPLOIT bin bash base64 encoded Remote Code Execution", the Suricata rule
triggered, the number of time the rule is triggered, and the full packet captured by the
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IDS. The logs contain information on the connections to a machine and the DNS queries.
We further collected the tickets issued by the Tier 1 analysts during the investigation.

The tickets contain the following information for an attack: victim IP, attacker IP, re-
connaissance technique, the type of vulnerability exploited, server contacted to download
malware, C&C machine contacted for data exfiltration.

Data models construction From security data related to network activities, we char-
acterize the underlying procedure of cyber-attacks through the entire kill chain: from
the reconnaissance to the initial compromise and exfiltration. We identified the relations
between each phase and the data available from IDS in a SOC platform and how this
information is processed to identify the attack.

2.3 Unstructured and Not Visible

Finally, security data from underground forums and threat intelligence reports are based
on natural language and thus mostly unstructured. Furthermore, they provide limited
visibility for researchers. Underground forums are intentionally resisting collection and
analysis, while for threat intelligence reports researchers must rely on the (already limited)
visibility of security companies that claims a certain criminal group exploited a specific
CVE or used a certain attack vector as there is hardly any way to have access to the
telemetry.

2.3.1 Underground Forums

Analysis of underground forums provides timely information about adversaries’ capa-
bilities like exploits and malware, preferences in targeted software, and their criminal
infrastructure and business models. The major challenge is that only a minor part of the
discussions in these media refers to illicit activities [250].

Web forums are organized in boards that identify general categories of discussion
like "Beginner Hacking", "Ebook Bazaar", "Remote Administration Tools", etc. In each
board, members can start a new discussion, called thread, by writing an initial post. Some
boards are dedicated to networking and information sharing while others are dedicated
to the commerce of illicit products called marketplaces. Some web forums e.g. Hack
Forums are covering a broad set of illicit activities, while other forums are specialized to
certain topics like exploit kits and malware (e.g. Darkode), or blackhat search engine
optimization techniques (e.g. Blackhat World) [259]. Web forums also differ by how
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their content is accessible, where exist both open and closed forums. The latter requires
to be admitted by the existing members of the community or pay a fee [205].

Web forums discussions contain information about the type of cybercrime and goods
traded in marketplaces, their evolution, prices, and characteristics that make them suc-
cessful in the market [305, 341, 351]. Forums are analyzed to characterize the traded
exploits and malware to predict the likelihood of exploitation [17, 20]. The exploits and
associated CVEs discussed in posts can be used to identify preferences in targeted soft-
ware or prioritize updates, malware artifacts can be obtained to generate new signatures,
and the rates in which new exploits are introduced in the market can be analyzed to
determine changes in strategies by the adversaries.

The underground economy quickly evolved into a commoditization of cybercrime,
where criminals can buy specialized technical services for their illicit activities. These
models lower the entry barriers for criminals that do not require any more in-depth tech-
nical knowledge to perform cyber crime. For example, to infect web users, a criminal can
buy a RAT (Malware as a service), set up an Exploit Kit with a set of web browsers or
plugins exploits (Exploits as a service), and obtain victim traffic to reach the Exploit Kit
(Traffic Redirection as a Service) without knowledge of how to develop exploits or write
malware. Forums are observed to identify the emergence of such cybercrime-as-a-service
(CaaS) models and the criminals’ demands [15,76,318,342].

The social media structure of the web forums itself is useful to determine key fo-
rum members and the information flow in the network to detect new trends and define
interventions by law enforcement agencies to disrupt the markets [250,256].

General issues for collection and analysis Underground forums require significant
effort for the initial collection. Infiltration into closed web forums can require paying a
fee or obtaining an invitation from other members. The latter often requires establishing
credibility in the web forum by actively participating in the criminal trades and discus-
sions [17]. Once gained access, automated crawlers can scrape the forums to collect posts
and members’ information [252]. This requires ad-hoc crawlers to bypass anti-crawling
techniques [76]. Given the unstructured nature of web forums and social media and the
large volume of posts, ML and Natural Language Programming (NLP) techniques are em-
ployed to categorize and identify relevant data. This approach can employ unsupervised
methods to explore the forum and cluster discussions, or supervised methods to classify
posts. The latter requires manual annotation of posts to generate training samples for the
classifiers. This procedure is laborious and time-consuming and requires researchers to
identify and annotate a sample that allows the classifier to learn the key characteristics of
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the criminal topics. Another major challenge to both automated and manual inspections
of web forums is the use of dark jargon to hide criminal discussions into innocent-looking
posts [365].

Raw data collection We relied on the CrimeBB dataset [252], a database of under-
ground forums available under request for research. We focused on Hack Forums, which
is one of the largest and long-lived underground forums in the English language, famous
among the others for the release of the Mirai botnet source code. We considered all posts
and members that are classified as ’Offer’,’Request’,’Exchange’, and ’Tutorial’ by [72] and
posted before June 2018 to compare with related works. The dataset comprises ≈11.3M
posts from ≈447k members in ≈3M threads.

Data models construction From security data related to underground forum dis-
cussions, we characterized the underlying relationships and interactions between users
and online criminal activities like DDoS, exploitation of software vulnerabilities, malware
development, trading credentials, and spam using social network analysis and network
metrics like degree and eigenvector centrality.

2.3.2 Threat Intelligence Reports

Threat intelligence reports aim to identify and inform about all relevant threats and
provide context at each level of the organization [61]. A recent SANS report showed that
more than 82% of the CTI teams leverage this type of resource [287].

Threat intelligence reports can be employed for network detection, to enrich local
threat intelligence resources from the enterprise network (Section 2.2.3) to improve the
situation awareness on the threat landscape modus operandi, to inform business decisions,
to develop end-user awareness programs, and to perform threat hunting [61,287].

Threat intelligence reports can take the form of a blog post or a bulletin on a security
vendor website, an extensive technical report, or a conference presentation. The report
can be public or private as part of threat intelligence feeds subscriptions. The difference
between open source reports and paid ones stands in the number of details and indicators
provided by the vendors [61]. Reports can differ in their focus. Reports can discuss
a specific campaign targeting a software vulnerability, the results of reverse-engineering
malware, or longitudinal analysis of the modus operandi of threat actors [61].

The information available ranges from a list of IOCs like IP addresses and domains, file
hashes, modified registry keys, Powershell commands, etc. observed on a victim machine
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to a more high-level description of the TTPs exploited by a certain criminal group to per-
form the initial compromise, the elevation of privileges, and the exfiltration, the software
vulnerabilities exploited, the attribution to a specific group or government organization,
and the targeted sectors. In contrast to blacklist feeds that also cover IOCs in a struc-
tured way, technical reports provide additional context information and comprehensive
description of the attacks with causal and temporal relations among artifacts [161,199,289]

To improve threat intelligence sharing of the rich set of information available in
threat intelligence reports, several languages and formats have been proposed. Of par-
ticular interest is the MITRE Adversarial Tactics, Techniques & Common Knowledge
(ATT&CK) [5]. MITRE ATT&CK is a knowledge base of adversary tactics and techniques
observed to be employed by adversaries. It provides a standard high-level description of
techniques employed to achieve the different phases of an attack. For example, to achieve
persistence on a machine, adversaries can employ different techniques like boot or logon
initialization scripts (T1037), create or modify system process (T1543) or ex-
ploit Browser Extensions (T1176).

General issues for collection and analysis Threat intelligence information is ob-
tained from the telemetry and incident response investigation of individual security com-
panies, thus reports often lack validation, can be subject to marketing and geopolitical
agendas [195], and are based on non-overlapping information about APT campaigns [61,
197]. Furthermore, different naming schemes are employed by different companies thus
making it complicated to merge information from distinct sources. For example, Man-
diant, CrowdStrike, F-Secure, and Microsoft refer to the same group with four different
names: APT29, Cozy Bear, The Dukes, and YTTRIUM respectively.

Information about attacks is described informally in natural language thus making
challenging to recover key information like IOC, TTPs, CVEs exploited automatically.
Automatic extraction of information from technical reports using keywords [189] or Natu-
ral Language Programming (NLP) techniques lack accuracy and coverage [199]. The chal-
lenge of analyzing these reports is to discern if the meaning is referring to the present (the
actual campaign the report is discussing) or the past (additional information that creates
the context). Thus, a manual inspection of reports, although time- and labor-consuming,
is necessary to extract accurate information like CVEs, attack vectors employed, and the
date of the campaigns.

Raw data collection We considered APT groups that launched at least one campaign
from 2008 to 2020 (excluded) and for which a precise date for the campaign is present in
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at least one report.

We manually collected data about APT campaigns from more than 500 technical
reports and blogs. The final database contains information about 86 APT groups. For the
excluded APTs, we either did not find information for their campaigns, or the date of their
campaign was not known. For example, the Kaspersky article on Equation Group [175]
provides a list of CVEs but does not provide information about the campaign when
they were exploited. We started from the MITRE ATT&CK APT groups list. One
researcher first collected the reports associated with each APT group from the Threat
Actor Encyclopedia [328], which relies on sources like Malpedia, MISP, AlienVault, and
MITRE. Then the researcher extended this set of resources by searching on the Internet
for reports using as keywords the APT name as stated in MITRE (e.g. Stealth Falcon)
and the term "CVE" until data saturation was reached, i.e. new reports do not add
new information to the APT campaigns. The reports are obtained from cyber-security
companies like Kaspersky, FireEye, Palo Alto Networks, and Google Project Zero as well
as from technical forums and blogs.

Two researchers independently analyzed the content of each report manually to identify
the following information for a campaign: the date when the campaign is first observed,
the CVE(s) exploited, and the attack vector(s) employed.

We uniquely identify a campaign using the date in which it is first observed. If a cam-
paign employs different attack vectors and/or different CVEs, we create multiple entries
in the form <APT_name,attack_vector,date> or <APT_name,CVE,date>. Each entry
is linked to one or more reports containing this information.

Data models construction From security data related to APT campaigns, we charac-
terize the underlying behavior of APT when targeting their victim in terms of preference
of attack vectors, type of software vulnerabilities (e.g. 0-day vs public vulnerabilities) and
products, as well as their timeline and speed in vulnerability exploitation.

2.4 Other possible sources of security data

Other sources of security data that we did not employed in this thesis are available to
evaluate effectivess of security mitigation strategy. For completeness we describe the most
common ones.
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2.4.1 Internet Misconfigurations

Information security data about an infrastructure includes mismanagement and miscon-
figurations of networks that describe the security posture of an organization. Misconfigu-
ration can not only be exploited to compromise the owner of the misconfigured machine
but also to perform attacks on other users and organizations on the Internet. For exam-
ple, open DNS resolvers of an enterprise can be exploited to perform DDoS amplification
attacks against target hosts. Misconfigurations can not only affect network infrastructures
like DNS servers, routers, and web servers [366], but also the security mechanisms like
CSP and HTTPS making them ineffective [355].

Misconfigured Infrastructures At the routing level, BGP configuration errors can
produce short-lived route announcements that incorrectly modify the routing of packets
among Autonomous Systems (AS). For example, a misconfiguration forced Meta DNS
servers to disable BGP advertisements and took its network down [87].

Open SMTP servers that lack filtering of sources can be exploited to perform spam
campaigns on the Internet. Several UDP network protocol allows amplification if machines
are not properly configured among which NTP and DNS [274]. For example, open DNS
resolvers can be exploited to perform a DoS amplification attack by requesting ANY
queries with a spoofed IP [204,339].

Certification Authorities (CAs) are the fundamental block of the Web PKI on which
security mechanisms like HTTPS relies on. However, over the years CAs, intentionally or
unintentionally, miss-issued certificates [191]. The majority of the errors are produced by
mid and small-sized authorities that fail to populate fields, encode incorrectly the data,
or insert invalid DNS names [185].

Misconfigured Security Mechanisms To protect against DNS poisoning attacks,
DNS servers implement source port and query ID randomization. However, misconfig-
urations in the NS configuration can disable source port randomization or implement
a predictable ID generation algorithm [204]. DNSSEC is a hierarchical public key in-
frastructure (PKI) that prevents forged or modified DNS responses. However, it is not
uncommon to configure incorrectly this security mechanism making it ineffective or weak.
Common errors include missing DNSSEC records like DS or RRSIG that make it impos-
sible to validate the signature, presence of expired signatures, and use of weak keys [85].
Misconfiguration in DNSSEC can also propagate to other security mechanisms that rely
on it, for example, the DNS-based Authentication of Named Entities (DANE). DANE
is a mechanism to replace Certification Authorities (CAs) for the establishment of TLS
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connections and it is currently deployed for SMTP services encryption. Unsuccessful de-
ployment of DNSSEC and failure in changing TLSA records due to certificate changes
make DANE validations fail [193].

To protect against email spoofing attacks, email services can implement a set of se-
curity mechanisms among which DomainKeys Identified Mail (DKIM). DKIM relies on
digital signatures to verify the integrity of the email content. Similarly to the previous
security mechanisms incorrect or missing DKMIN records shared and weak keys allow
adversaries to bypass the protection and send spoofed emails [354].

Client-side security mechanisms to prevent a variety of threats like Cross Site Scripting
(XSS), Cross Site Request Forgery (CSRF), click-jacking, and MITM attacks are enabled
via HTTP response security headers by the web server. For example, accessibility of
cookies is limited by the presence of attributes like HttpOnly, Secure, and SameSite, the
X-Frame-Option header defend against click-jacking, the HTTP Strict Transport Security
(HSTS) header forces to upgrade to HTTPS connection, and the Content Security Policy
(CSP) mitigate a variety of threats among which XSS. However, the adoption and imple-
mentation of these mechanisms are poor and can lead to the bypass of the protection. It
is not uncommon that cookie protection [75, 277], click-jacking protection [74], and CSP
are inconsistent and misconfigured [276,355].

General issues for collection and analysis Several tools like ZMap, Masscan, Shodan
exist to perform Internet-wide scanning to probe machines for misconfiguration. In other
cases, interactive crawlers that mimic human behaviors are developed for an analysis of
a web site security posture. Collection can be influenced by the location [353] and the
configurations [277] of the crawler.

2.4.2 Host Monitoring

Data related to cyber attacks can be obtained from the enterprise machines or from (a
network of) isolated machines, called honeypots, specifically designed to collect intelli-
gence from intrusions and divert the attention of the attackers from the real assets of
a network. Depending on the level of details to collect honeypots can just simulate the
presence of a service and reply to probes (low-interaction) or implement a fully functional
machine with (vulnerable) services (high-interaction) [77].

In contrast to network monitoring, host monitoring focuses on logs generated by the
operating system (O.S.) and its application (e.g. the web browser). Host-based intrusion
detection (HIDS) and Endpoint Detection and Response (EDR) systems analyze system
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calls traces to determine malicious activities on a machine [202] and keep track of file
accesses, created processes, registry changes, and other system logs to identify patterns of
elevation of privileges, lateral movements, or malware execution [173]. To detect slow and
persistent attacks performed by Advanced Persistent Threats, data provenance graphs are
generated to include causal relationships between system calls [25, 150,153].

General issues for collection and analysis Host monitoring automatically generates
high volumes of logs that are hard to retain for more than a few days and it is still subject
to a high number of false positives [153]. Furthermore, each O.S. (Windows, Mac O.S.,
Linux) and application (Web server, database, etc.) produce its own logs with their format
and specific locations.

2.4.3 Social Media

Social media like Facebook, LinkedIn, and Twitter are critical platforms for communica-
tion. However, they are also a vehicle of a variety for malicious activities such as phishing,
malware delivery, spam, harassment, misinformation, and disinformation. Social media
were employed to perform both mass [148, 282] and targeted attacks [18] against their
users. Social media honey accounts can be set up to investigate the attackers’ behavior
in stolen social accounts [244]

However, social media provide also a platform for the timely sharing of information
about criminal activities by cyber-security experts from newly detected malware, to on-
going DDoS and data breaches. Twitter discussions can be employed to determine the
exploitability of software vulnerabilities [317], the presence of real-world exploits [281], or
to predict when a CVE will be exploited [82].

General issues for collection and analysis Social media platforms provide API for
data extraction. Although the access is much more standardized compared to under-
ground forums, it is sometimes limited by the platform itself. For example, Twitter API
allows one to retrieve only 1% sample of all the data matching certain parameters. The
collection and processing of social media content present similar challenges of the under-
ground forums (Section 2.3.1). The large volume of unstructured posts must be analyzed
with ML and NLP techniques by means of supervised or unsupervised methods.
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2.5 Integration of security data sources

Depending on the context, the integration of different security data sources can be used
to analyze and evaluate security mitigation strategies.

In Chapter 3 we integrated information from blacklists of known trackers (Section 2.1.1)
with third-party dynamics on the Web (Section 2.2.2) to evaluate the effectiveness of
tracker blocking tools. In Chapter 4 we integrated information about the Internet in-
frastructure (Section 2.2.1) with information about the third-party JS dynamics (Sec-
tion 2.2.2) to evaluate the effectiveness of mitigations for web users. While in Chapter 7
we integrated information about software vulnerabilities from NVD and software releases
from vendors (Section 2.1.2) with threat intelligence reports (Section 2.3.2) to evaluate
effectiveness and cost of software updates.

Other examples of integration are already widely employed in real-world settings
where network monitoring (Section 2.2.3) is combined with system-level monitoring (Sec-
tion 2.4.2) and enriched with external data like threat intelligence reports (Section 2.3.2),
social media (Section 2.4.3), abuse and blacklist feeds (Section 2.1.1), and software and
vulnerabilities repositories (Section 2.1.2) and correlated by SIEM tools to provide an
in-depth monitoring of the network [16].

However, several challenges exist when integrating different security data sources. One
challenge is to join different security data representations and formats in a common struc-
ture to perform the evaluation. This requires a data modeling process where the causal
relations between security data are clearly specified. Another challenge is the temporal
frame of the security sources, joining together sources from different time frames can
produce incorrect and biased results. Consider for example the integration of network
monitoring of DHCP logs that assign internal IP in a network with system-level logs. If
data refers to different points in time there is the risk to associate a suspicious IP with the
incorrect machine in the network. Similar considerations when employing IP blacklists
from abuse feeds and network monitoring due to IP address reuse [262]. Combination of
data from different sources among which forums, malware blogs, and abuse feeds to train
classifiers to detect malware [38] can be subject to sampling and temporal biases where
classifiers learn to distinguish malicious applications based on spurious features [37,255].
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Chapter 3

Web Tracking: Representation and
Reasoning about Mitigations

Online tracking techniques and the interactions among trackers have received increasing
attention in the last few years. In this chapter, we employ security data describing the
Web third-party dynamics and information from filter lists of known trackers to evaluate
the effectiveness of different privacy mitigations and determine if websites should comply
with privacy regulations. We propose a novel formal model that describes the foundations
on which the client-side process of data sharing behaves in terms of the network dynamics
on the Web (included CDNs, shared cookies, etc.). Any formal derivation in the model
corresponds to an actual tracking practice that can be implemented given the security
data available. With this approach, we explicit causal relations between network activities
on websites and tracking practices and explain why a certain tracking tool is better than
another for individual cases. We apply our model to a dataset obtained from OpenWPM
to evaluate the effectiveness of tracking mitigations up to Alexa Top 100.

3.1 Introduction

Online tracking of users for targeted advertising is the reality of today’s Internet and
the extent of such tracking has been the subject of an intense research activity [196].
Research studies span from facts-finding studies (e.g. [45,137]) to technical analysis both
for classical techniques (e.g. based on cookies syncing [248]) and novel techniques (e.g.
based on browser fingerprinting [114]). Economic analyses are also not uncommon (e.g.
[212]). Several mitigation tools also emerged to (partly) block trackers (e.g. Ghostery,
Disconnect, Adblock Plus, etc.) and researchers have also investigated whether they are
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effective (e.g. [218,272]) and their side-effects (e.g. [232,343]).
These robust research activities, which we sample in Table 3.1, generated a number

of open databases that provide internet snapshots1 and that can be used to experiment
with tracking behavior, the effectiveness of tracking mitigations as well as derive metrics
for a tracker market share or trackers concentrations [52], at least for what is measurable
from the Internet.2

The major privacy concern of the users is with whom and for which purposes their
personal information is shared and not by which technology [151, 243]. In other words,
users are not worried that an entity collects data when interacting with it but that these
data are shared with other entities. How can we provide a third-party independent ver-
ification of empirical tracking claims? A study might claim that tool A is more effective
than tool B at mitigating trackers but there is hardly any way for a third party to check
why and how unless one re-runs the entire study and traces all results. Even the claim
that a tracker burstnet.com can potentially know whoever visited website amazon.com is
hard to check unless one re-runs the entire study. We thus identify the following research
question:

RQ1 : How can we provide a third-party independent verification of empirical tracking
claims and the effectiveness of tracker blockers for individual users?

We answer such question by a formally grounded mechanism: a calculus of tracking for
the internet. We associate a formal relationship between various ways to exchange data
(access and inclusion of web pages, cookie syncing, redirects, etc.) as they are measurable
from the internet (and available in open datasets such as Web Census) and identify formal
rules that capture how internet visits can be tracked.

We can formally prove that a tracker can potentially know that a user visited a website.
The formal model allows one to determine if a website should comply with privacy laws
(e.g. COPPA) or to compare different mitigations and conclude whether a mitigation
is strictly better than another or at least quantitatively better along a Pareto frontier.
In contrast to a pure data-driven approach, a formal model produces a result that can
be independently checked [228] with a clear and transparent description on the causal
relations that produce that outcome.

For this approach to be a useful link between theory and practice, such calculus must

1E.g. Web Census: http://webtransparency.cs.princeton.edu/webcensus
2Obviously, data exchange agreements between owners of seemingly different trackers do affect con-

clusions based on the internet. Detecting such agreements is hard given the present information asym-
metry [11].

http://webtransparency.cs.princeton.edu/webcensus
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be tractable and the analysis can be performed on the fraction of the Internet visited by
a user as available from open datasets (e.g. OpenWPM) and we do so up to Alexa Top
100.

The overview of the key works in this area (Section 3.8) summarized in Table 3.1
shows that the majority of the research focused on large-scale analysis and technological
analysis, while no attempt has been done to formally describe the sharing procedures.

In this chapter we make the following contributions:
• We present a formal model that describes the passage of tracking information across

websites that can be externally measurable (Sections 3.2 and 3.3)
• We formalize some of the interesting tracking relations that can be captured by our

system (Section 3.4) and we discuss scalability issues and challenges (Section 3.5)
• We instantiate our model and compare the effectiveness of different mitigations

(Ghostery, Disconnect, Adblock Plus, and Privacy Badger) on the Top 5, Top
10, Top 50, and Top 100 visited domains (Section 3.6).

Goals: we provide a framework that generates a third-party independent verification of
tracking practices for individual cases, i.e. for single users that browse a limited number of
websites. Large-scale studies over millions of domains are unrealistic and inappropriate to
help users in determining the best countermeasure to enhance their privacy or determine
which websites should comply with COPPA. Furthermore, these studies lack transparency
and do not provide concrete evidence of the effectiveness of the mitigations analyzed
(as well as provide in some cases contrasting results). Our framework fills the gap by
providing an explanation, in the form of a formal proof, that can help users to evaluate
the effectiveness of different adds-on or provide a proof that shows if a website should
comply with COPPA.

Non-goals: we do not consider methods that rely on back-office data exchange for user
identification. For example, collecting browser fingerprinting and using it in back-office
data sharing. As such we could assert that certain websites perform fingerprinting but, in
absence of a publicly known relation between these websites on how fingerprints (or other
personal information) are shared, this would be a meager knowledge. Furthermore, the
application of the framework is not intended for large-scale analysis of the whole Internet,
where formal reasoning hardly scales.

3.2 A Formal Model for Tracking

We define a privacy threat when a website can know that a user visited other websites as
a result of a process of data sharing. The major concern for a user is not that a website
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Table 3.1: Web Privacy Topics addressed by the State of the Art

Research Research Topic [134][137][212][142][44][45][171][272][116][248][124][240][218][8][49][42][216][96] Our work

Fact finding

Analysis of the tracking ecosystem X X X X X X

Tracking coverage X X X X X X X X X

Search context exposure to tracking X X

Detection of hidden flow among
trackers

X X X X

Detection of privacy regulation vio-
lation

X

Detect duty compliance to privacy
regul.

X

Economic Cookie syncing incentives X X X

analysis Revenue with and without cookies X X X X

Effectiveness of blocking techniques X X X X X X

Technical Development of a detection mecha-
nism

X X X X

analysis Classification of Trackers X X X

Analysis of Tracking techniques X X X

Logic
Formal expression of privacy policy X X X

Formal analysis of tracking X

knows this is a recurring user, but that unrelated websites get knowledge of this activity
thanks to the exchange of data. We did not model tracking techniques that are not been
observed in the wild (e.g. [323]).

We represent entities like websites and trackers and their interactions with a set of
predicates and rules. Each rule is composed of one or more preconditions required to
activate a postcondition. Both preconditions and the postcondition are composed of
predicates. The predicates composing the precondition are in conjunction. With this
structure, it corresponds a formal representation using the Gentzen rules for the quantifier-
free fragment of intuitionistic first-order logic (IFOL) we reported in Appendix A. We use
IFOL since its proofs are constructive and thus there is a pairing between proofs and
tracking.

3.2.1 Predicates

Table 3.2 contains predicates that capture network interactions among websites and users
(in our analysis we reduced the websites to their PS3 and PS+1 of the URL4) as well
as the type of mitigations considered. IncludeContent(w ,w ′) indicates an inclusion of
some content of web site w′ in website w. The predicate IncludeContentcookie(w ,w

′)

describes, in addition, a transmission of cookies collected by w to w′. Redirectcookie(w ,w
′)

(Redirect(w ,w ′)) indicates a HTTP redirection from the website w to the website w′ with

3https://publicsuffix.org/
4For example, https://s.ytimg.com is reduced to ytimg.com.

https://publicsuffix.org/
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Table 3.2: Ground Truth Network Interactions and Mitigations

The predicates are obtained from ground truth data (G) and are not derived from rules of the model.

IncludeContent(w ,w ′) G website w includes 3rd-party content from the website w′ (e.g.
within an i-frame tag).

IncludeContentcookie(w ,w ′)G website w includes 3rd-party content from the website w′ sending
its cookies.

Redirect(w ,w ′) G website w redirects visitors to the website w′. w does not append
cookies in the redirection.

Redirectcookie(w ,w ′) G website w redirects visitors to the website w′. w appends its cook-
ies in the URL (or payload).

Visit(w) G intentional access to website w by a user.
Block_request(w) G extension blocks connections directed to the website w based on

filter lists (e.g. Disconnect).
Block_tp_cookie(w) G 3rd-party cookie blocking for website w.
Kids(w) G website w is directed to children under 13 y/o

(without) a transfer of cookies collected by w.
Block_request(w) indicates that the connection to the website w is blocked, for

example by an add-on. Block_tp_cookie(w) indicates that the website w is not al-
lowed to set cookies. These two mitigations protect users using different techniques. If
Block_request(w) is evaluated as true (e.g. Disconnect blocks the website w), then all
requests to w are blocked. If Block_tp_cookie(w) is evaluated as true (e.g. 3rd-party
cookie blocking protection is active), it means that the browser does not allow w to set
HTTP cookies, however, it does not block HTTP requests directed to w.

Table 3.3 summarizes the predicates that describe a possible exchange of users’ in-
formation between websites. Linkcookie(w ,w

′) and Link(w ,w ′) identify a possible path,
as a result of an inclusion or a redirection, between w and w′ that can be exploited for
tracking. Access(w ,w ′) and Accesscookie(w ,w

′) capture a successful redirection or inclu-
sion that forces a user to contact website w′ from the website w. Cookie_sync(w ,w ′)

indicates cookie syncing between w and w′ to share IDs.
The predicates in Table 3.2 are obtained from the collected data as we will see in

Section 3.5. The predicates in Table 3.3 are inferred from the rules of the model.

3.2.2 General Derivation Rules

We denote the pure "status" of the internet with N and the set of predicates capturing
a specific mitigation X on the internet snapshot N with N ∗X .
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Table 3.3: Web Tracking Predicates

The predicates are derived (D) from one or more rules of the model.

Link(w ,w ′) D websites w and w′ have a possible path to share information w/o exchange
of cookies.

Linkcookie(w ,w ′) D websites w and w′ have a possible path to share information via cookies
from w to w′.

Access(w ,w ′) D website w forces to access a resource in w′ via a redirection or an inclusion.
Accesscookie(w ,w ′) D website w forces to access a resource in w′ via a redirection (inclusion)

attaching w’s cookies.
Cookie_sync(w ,w ′) D website w synchronizes its cookies with the website w′. The operation is

unidirectional.
Knows(w ,w ′) D potential ability of website w to track users on a (possibly different) web-

site w′.
req_COPPA(w) D website w should comply to COPPA.

Definition 1 (Internet Snapshot). The symbol N , possibly with subscripts, denotes
a finite (possibly empty) set of instantiated predicates from Table 3.2 and Table 3.3 that
captures the interactions (inclusions, redirections, etc.) among websites observed on the
Internet.

For example, we can have N = {IncludeContent(w ,w ′),Redirect(w ′,w ′′), . . .} and
N ∗X = {Block_request(w ′), Block_request(w ′′), . . .}.

The turnstyle ` separates the assumptions on the left from the conclusions on the
right. The sequence of formulas on the left of ` are in conjunction.

The capital letters A, B, and C, possibly with subscripts, denote formulae of the
quantifier-free fragment of IFOL, whose predicates are drawn from Table 3.2 and Table 3.3.
The variable w ∈ W , possibly with apices, is a variable over websites. Constants (e.g
facebook.com) denote websites.

We can have domain-specific axioms of the form A → B that can be added to a
derivation with the rule:

N , A→ B ` C A→ B is Domain Axiom
N ` C

DomAx

We represent a domain-specific axiom A1 ∧ . . . ∧ An → B as a rule
A1, . . . , An

B
and

vice-versa as in IFOL, ` and→ are interchangeable. Tracking specific rules in Section 3.3
are indeed domain-specific axiom.
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3.3 Tracking Specific Rules

Information Flow In Figure 3.1a the rules IncludeW and RedirectW show how a link
between two websites w′ and w can be created. Rule Redirect (Include) in Figure 3.1a il-
lustrates how the redirection to (inclusion of) another website can be employed by trackers
to pass information, for example, cookies. The rule ImpRed (ImpInc) in Figure 3.1b shows
that the predicates Redirectcookie (IncludeContentcookie) implies the predicates Redirect

(IncludeContent).

Network Interactions Rules AccessToW and AccessTo in Figure 3.1a describe access
to resources with a possible propagation of information between two websites w and w′

(w/ or w/o an exchange of cookies). The rule PropagateAccess shows how the access
can be propagated through websites.

Third-party Tracking The rule 3rdpartyTracking in Figure 3.1a shows that 3rd-
parties present on a website w can track users. This rule can be applied recursively to
describe complex interactions among websites as shown in Appendix A. This rule does not
consider the possibility of browser fingerprinting (not blocked by the Block_tp_cookie

mitigation). Since we are interested in the data sharing process that brings to track users
and no information on how fingerprints are shared is available. Furthermore, as pointed
out by several works [143, 344], browser fingerprinting is not as accurate as cookies to
identify users. Thus, ad transactions carried out without the presence of cookies are not
enough to produce targeted advertisements [212]. We further discuss this extension in
Section 3.9.

Cookie Syncing The rule Sync in Figure 3.1c shows the preconditions required to im-
plement cookie syncing between websites w and w′. Cookie syncing requires the exchange
of cookies to link the IDs used by the two trackers. This technique is also called First to
Third-party Cookie Syncing [124]. Rule PropagateSync shows how to propagate cookie
syncing through a sequence of websites.

Tracking via Cookie Syncing In Figure 3.1c, the rule SyncTracking describes how
cookie syncing between websites w′ and w′′ allows one to track users even on websites
where a tracker is not explicitly present. This is known as Third to Third-party Cookie
Syncing [124]. We did not define a rule to describe cookie forwarding because it is a
special case of 3rdpartyTracking where the tracker passively receives the user’s history
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IncludeContent(w ,w ′)

Link(w ,w ′)
IncludeW

Redirect(w ,w ′)

Link(w ,w ′)
RedirectW

If a website w includes content
from (redirects to) site w′, then
there is a link between w and w′

that allows an exchange of infor-
mation.

Redirectcookie(w ,w ′)

Linkcookie(w ,w ′)
Redirect

IncludeContentcookie(w ,w ′)

Linkcookie(w ,w ′)
Include

During a redirection (inclusion)
it is possible to append a cookie
of w for w′.

Link(w ,w ′) ¬Block_request(w ′)

Access(w ,w ′)
AccessToW

Linkcookie(w ,w ′) ¬Block_request(w ′)

Accesscookie(w ,w ′)
AccessTo

If a website w includes content
from (redirects to) a website w′

(this case includes connections
exploiting social buttons) that is
not blocked by any extension,
then the user is forced to access
the resources of w′ from w.

Access(w ,w ′) Access(w ′,w ′′)

Access(w ,w ′′)
PropagateAccess

If a website w forces to access the
resources of w′ and w′ forces to
access the resources of w′′, then
the user that visits w is forced to
access website w′′.

Visits(w)

Access(w ,w ′) ¬Block_tp_cookie(w ′)

Knows(w ′,w)
3rdpartyTracking

If a user visits a website w that
forces to access a website w′ not
blocked by any mitigation, then
w′ knows that the user visited w.

(a) Tracking flow

IncludeContentcookie(w ,w
′)

IncludeContent(w ,w ′)
ImpInc

Redirectcookie(w ,w
′)

Redirect(w ,w ′)
ImpRed

Redirectcookie and
IncludeContentcookie are a
particular case of Redirect

and Include respectively.

(b) Tracking Implications

Accesscookie(w ,w
′) ¬Block_tp_cookie(w ′)

Cookie_sync(w ,w ′)
Sync

Cookie_sync(w ,w ′) Cookie_sync(w ′,w ′′)

Cookie_sync(w ,w ′′)
PropagateSync

A website w redirects the user to a website
w′ inserting cookies of w in the request. If
the connection to w′ is not blocked by any
mitigation and the browser allows w′ to set its
cookies then w′ can receive w’s cookies and
synchronize them with its cookies. Cookie
syncing can be propagated.

Knows(w ′,w) Cookie_sync(w ′,w ′′)

Knows(w ′′,w)
SyncTracking

The presence of cookie syncing with w′ allows
a website w′′ to track users on the website w

even if it is not explicitly present.

(c) Tracking with Cookie Sharing

Figure 3.1: Tracking Derivation Rules
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Knows(w ,w ′) Kids(w ′) w 6= w′

req_COPPA(w ′)
COPPAcomplRelease

If a website w tracks users on a children
related website w′, then w′ should com-
ply with COPPA. This rule covers case
(2).

Knows(w ,w ′) Kids(w ′) w 6= w′

req_COPPA(w)
COPPAcomplCollect

If a website w tracks users on a children
related website w′, then w should com-
ply with COPPA. This rule covers case
(4).

Kids(w) Knows(w ,w ′) BehavioralAds(w)

req_COPPA(w)
COPPAcomplBehav

If w is a children related website that
collects PII on an external website w′

then it can perform behavioral adver-
tising. This rule covers the cases (1)
and (3).

Kids(w) Cookie_sync(w ′,w)

req_COPPA(w)
COPPAcomplCS

It is a special case of COPPAcomplBehav.
If w is a children related website and
performs cookie syncing with w′ (i.e. it
receives cookies from w′) then it can cre-
ate profiles for its users for behavioral
advertising.

(a) COPPA compliant

Figure 3.2: COPPA Derivation Rules

collected by a 3rd-party. The cookies forwarded could be used for back-office exchange
that is outside of the scope of our model. All the rules assume the intention of the websites
to track users.

COPPA Compliance A website w must comply with COPPA if at least one of these
conditions hold [2]:

1. w is directed to children under 13 y/o and it collects PII.

2. w is directed to children under 13 y/o and it allows another website w′ to collect
PII.

3. w has a general audience, but it has actual knowledge that it collects PII from
children under 13 y/o.

4. w collects PII from users of a website w′ directed to children under 13 y/o.

However, websites that fall in conditions (1) and (3) and collect only persistent identifiers
(e.g. cookies) are not obliged to comply with COPPA if the persistent identifier is used for
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internal operations only. It is important to underline that this exception does not allow
behavioral advertising. Figure 3.2a shows the rules that describe when a website should
comply with COPPA. The predicate Kids(w) describes a website directed to children
under 13 y/o, req_COPPA(w) identifies a website that should comply with COPPA.

COPPAcomplRelease and COPPAcomplCollect describe conditions (2) and (4): if a
children-related website w′ allows a website w to track its users then both websites must
comply with COPPA. We impose w 6= w′ to not fall in the conditions (1) and (3) where
COPPA is not mandatory if used for internal activities. It is important to underline that
in our model the Knows predicate implies the employment of persistent identifiers (e.g.
cookies). The scenario described in COPPAcomplCollect is not always straightforward to
be observed due to the exchange of cookies (e.g. cookie syncing) among websites.

COPPAcomplBehav captures cases (1) and (3). Our model describes only personal
identifiers, thus we need to determine if a certain website uses this information for external
operations (e.g. behavioral advertising). BehavioralAds(w) could be instantiated using
the approach presented by Liu et al. [201] and we leave for future work the integration
with our model. Rule COPPAcomplCS shows a special case of COPPAcomplBehav where
a children-related website w receives cookies from another website. Cookie syncing is a
known technique utilized for behavioral advertising [248]. It is important to underline
that the opposite case (Cookie_sync(w ,w ′)), in which the children-related website w
sends cookies to an external website, is already covered by the rule COPPAcomplCollect
since Cookie_sync(w ,w ′) generates a Knows(w ′,w) that triggers the mentioned rule.

Do we really need a formal approach? Consider Youtube and assumeKids(youtube.com)

always holds (as sometimes it might be necessary to treat information according to
COPPA). We might be tempted to conclude that any website that includes cookies
from youtube.com should be COPPA compliant. This informal reasoning seems to imply
that any website importing a social button or a video from Youtube should be COPPA
compliant. However, by applying the set of rules we previously presented we can in-
stead prove that this is actually incorrect. Suppose Kids(youtube.com), we have an
IncludeContent(abc.com, youtube.com) due to the social gadget, and thus by applying
rules IncludeW, AccessToW, and 3rdpartyTracking we have Knows(youtube.com, abc.com).
At this point, none of the COPPA rules can produce req_COPPA(abc.com). Instead, it
is possible to trigger rule COPPAcomplBehav by showing that youtube.com is performing
behavioral advertising and thus should comply with COPPA.

As previously stated, the predicate Knows describes the potential ability of a website
to track users. Thus, the obtainment of the predicate req_COPPA is not by itself a
definitive proof of the need for compliance. However, it provides an explanation that can
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trigger further investigations by the FTC on which data are actually sent (for example,
due to a complaint from a parent). Websites must then prove that the exchange either
did not occur or did not contain children’s information.

3.4 Using the Calculus for Tracking Relations

We formally define tracking relations that are of practical interest through our formal
model. We illustrate some of these relations in the practical case of Alexa Top 5, 10, 50,
and 100 websites later in Section 3.6.

Flow Propagation Given the sharing of information through redirections, content in-
clusions, and cookie syncing and given a sequence of visited web sites, we can study
how the knowledge about this sequence is distributed on the Internet. This is possible
through a graph where we underline edges with predicate Knows(w ′,w) to identify the
websites that know if a user visited another website. We can map this representation to a
Venn diagram where we identify which trackers are directly and indirectly included in the
websites visited. We define a mapping between the predicate Knows and the set theory:

KnowsUser(N ,w) = {w∗ | N ` Knows(w ∗,w)} (3.1)

where KnowsUser(N ,w) represent the set of websites w∗ that are able to track a user on
the website w in an Internet snapshot N .

Lowest Tracking Coverage Our formal model generates relations between websites
through Knows predicates for a given N . We compare different mitigations to determine
which produces the lowest tracking coverage. A mitigation X in an Internet snapshot N
(N ∗X ), disables some Knows predicates.

Definition 2 (Mitigation subsumption). Let N be an Internet snapshot and N ∗X ,N ∗Y
two mitigations. We say that the mitigation N ∗X is more effective than N ∗Y iff ∀ pairs (w,
w′): N ,N ∗X ` Knows(w ′,w) implies N ,N ∗Y ` Knows(w ′,w).

Intuitively, any Knows predicate obtained from N applying the mitigation N ∗X is
also obtained from N applying N ∗Y . Unfortunately, this definition can be rarely applied.
Indeed, if the mitigations modify different parts of the graph of Knows predicates, the
results cannot be compared. Thus, we propose a quantitative analysis.

Given an Internet snapshot N , a mitigation N ∗X is better than a mitigation N ∗Y if both
conditions hold:
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• C1: The mitigation N ∗X blocks access to a smaller number of websites compared to
the mitigation N ∗Y

• C2: The trackers obtained with N ∗X are smaller in number compared to the trackers
obtained with N ∗Y

Given an Internet snapshotN , we define its access size and knowledge size respectively
as follows

||N ||A=
∑
w∈W

∣∣{(w,w∗) ∈ W2 | N ` Access(w ,w∗)
}∣∣

||N ||K=
∑
w∈W

∣∣{(w,w∗) ∈ W2 | N ` Knows(w ,w∗)
}∣∣

Site breakage, used to compare mitigations’ performance [166], is directly influenced by
the access size. We can now compare two mitigations N ∗X and N ∗Y

Definition 3 (Quantitative mitigation subsumption). Mitigation N ∗X is quantita-
tively more effective than mitigation N ∗Y iff the access size of X is larger (or equal) than
the access size of Y, ||N ∗X ||A ≥

∣∣∣∣N ∗Y∣∣∣∣A, and the knowledge size of X is smaller than the
knowledge size of Y, ||N ∗X ||K <

∣∣∣∣N ∗Y∣∣∣∣K.
Intuitively the mitigation X reduces the number of trackers that know the user’s visited

websites more than Y does, while still keeping a larger (or equal) number of accessible
sites than Y . The ideal performance would be to drop one accessed site per blocked
accessed tracker (i.e we lost only the tracker itself).

However, one of the major concerns in terms of privacy is not that a high number of
trackers knows about fragments of a user’s activity but that few trackers can reconstruct
(almost entirely) the activity of a user. For example, Google is present in roughly 80% of
the Top 1 million domains [116] and thus, has a high tracking coverage. We thus propose
an additional definition:

Definition 4 (Mitigation subsump. per tracker). Mitigation N ∗X is quantitatively
more effective than mitigation N ∗Y against the tracker w iff the access size of X is larger
(or equal) than the access size of Y, ||N ∗X ||A ≥

∣∣∣∣N ∗Y∣∣∣∣A, and the knowledge size of X
projected to w is smaller than the knowledge size of Y projected to w.

In other words, the mitigation N ∗X produces a higher reduction of websites where the
tracker w can control a user compared to the mitigation N ∗Y while still keeping a larger
(or equal) number of accessible sites than Y .

Unfortunately, it is hard to fulfill both conditions (as we will see in Section 3.6, Fig-
ure 3.7): being less tracked means losing more access.
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site_visits

id int

crawl_id small int

top_url text

http_responses

id int

visit_id int

url_id int

response_status int

location_id int

... ...

urls

id int

public_suffix text

url text

Visit(w) IncludeContent(w,w') Redirect(w,w') IncludeContentcookie(w,w') Redirectcookie(w,w')

Tables from OpenWPM used to instantiate the predicates Visits, IncludeContent , and Redirect of our model
(continuous lines). It is also possible to instantiate the predicates IncludeContentcookie and Redirectcookie

from the tables http_responses and urls (dashed lines) but in Section 3.6 we employed empirically
validated pairs from [44].

Figure 3.3: Mapping of the predicates to the dataset.

3.5 Instantiation and Scalability

We summarize the tables and columns employed to instantiate the predicates of our
model in Figure 3.3. The table site_visits contains the list of the Top 10k Alexa
visited domains. The table urls contains the set of URLs loaded during the crawling.
The table http_responses contains the HTTP responses.

From the dataset, we extracted the sequence of redirections and inclusions necessary
to instantiate the predicates. From table http_responses we employed visit_id (ids for
the top 10k websites), url_id (ids for URLs of the HTTP responses), response_status
(HTTP Status Codes), location_id (in case of redirection, ids for a new URL to visit.
NULL otherwise), and time_stamp (timestamps of HTTP responses).

Table 3.4 shows the number of HTTP responses received for the Top Alexa. The
responses are used to find the sequence of redirections. In addition, Table 3.4 shows the
number of predicates obtained by applying our model on the Top 10, 20, 30, 40, and 50
Alexa domains of the dataset without any mitigation. After visiting the Top 50 domains
the users contacted 190 different websites with more than 6k connections. The number
of redirections remains relatively small compared to the number of inclusions observed.

The number of HTTP responses in Table 3.4 for the Top 30, 40 and 50 domains are
slightly different from the values of Link(w ,w ′) because the crawler failed to collect some
HTTP responses during a sequence of redirections probably due to network problems.
However, we can correctly close the sequence even if a response is missing.
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Table 3.4: # of predicates and HTTP responses for the Top Alexa

Variables vs Top Domains 10 20 30 40 50
HTTP responses 925 1957 2864 3618 4530

IncludeContent(w ,w ′) 824 1803 2681 3391 4272
Redirect(w ,w ′) 101 154 184 229 261
Link(w ,w ′) 925 1957 2865 3620 4533
Linkcookie(w ,w ′) 3 3 3 5 6
Access(w ,w ′) 925 2272 3636 5024 6382
Accesscookie(w ,w ′) 3 3 3 5 6
Cookie_sync(w ,w ′) 3 3 3 7 8

Scalability

To show the decidability of our construction we rely on the relation between logic programs
and a fragment of intuitionistic logic (in particular Harrop formulae [221]).

Theorem 1 (PTIME Knows decidability). It is possible to decide whether the internet
snapshot N allows a website w∗ to know about the user’s visit to another website w

(N ` Knows(w ∗,w)) in polynomial time in the size of the snapshot N .

Proof. We rely on embedding both snapshot and rules as a Harrop formulae.

G ::= A | G1 ∧G2 | H → G | (3.2)

| G1 ∨G2 | ∀wG | ∃wG %Not used here

H ::= A | G→ A | ∀wH | H1 ∧H2 (3.3)

where A is a predicate, G is a goal formula and H is an Harrop formula. An internet
snapshot N is encoded as a (large) conjunction which is a Harrop formula. Each rule
from Section 3.3 is encoded as a goal formula. For example, 3rdpartyTracking can be
coded as a Harrop formula:

H::=∀w∀w′H︷ ︸︸ ︷

∀ww
′

H::=G→A︷ ︸︸ ︷
G::=G1∧G2∧G3︷ ︸︸ ︷

G::=A︷ ︸︸ ︷
Visits(w)∧

G::=A︷ ︸︸ ︷
Access(w,w

′
)∧

G::=H→A︷ ︸︸ ︷
Block_tp_cookie(w

′
) → ⊥ →

A︷ ︸︸ ︷
Knows(w

′
,w)

From Theorem A in [221] the pair of the query and the rules LJ from Appendix A are
a logic programming language. As we have no disjunction on the right of ` for the query
of interest, the rules (∨Ri) responsible for the PSPACE complexity of intuitionistic logic
do not apply.
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Since N is finite, there are at most O(|N |2) different constants as we have at most
two arguments for each predicate. Hence, the instantiation of all quantified formulae
embedding the rules generates at most O(|N |6) ground propositional rules (we have at
most three variables per rule), even if no optimization can be done (e.g. distinguishing
between content delivery networks and actual websites). Thus, the ground instantiation
of the rules is poly in the size of the snapshot and also the query of interest can be decided
in polynomial time.

We do not claim that the calculus of tracking for arbitrary formulae including knowl-
edge predicates is tractable. The presence of disjunction on the right would make decid-
ability jump to PSPACE [311]. From Theorem 1 follows that COPPA compliance rules
can be also encoded as Hereditary Harrop formulas using the knowledge relations as basic
atoms:

Corollary 1 (PTIME COPPA compliance). It is possible to decide whether the in-
ternet snapshot N requires a website w to be COPPA Compliant (N ` req_COPPA(w))
in polynomial time in the size of N .

The complexity of O(|N |6) is inadequate for the application of the approach beyond
very compact domains. Indeed our goal is not to provide Internet-scale analysis but
third-party verifiable evidence for individual cases where numbers are manageable. For
example, users rarely visit more than 100/120 websites [53, 239]5, the cookie duration is
typically short [145] and cliques, important for COPPA, are relatively small [116]. Thus,
scalability in this application is not a problem.

There may be more than one proof because a prover can choose to apply one rule
before another one according to a suitable heuristic that may lead to a faster proof search
(see GAPT [113] for additional information). Different proofs may also come from the
existence of different tracking possibilities on the Internet. The important thing is that
one can be found in polynomial time (see Theorem 1).

Theorem Proving Implementation We leverage the GAPT tool [113] to generate
proofs for the Knows and the req_COPPA predicates. We use the intuitionistic prover
Slakje [129] to produce formal proofs based on the rules in our model. We encode
the model and the data using the TPTP syntax. Figure A.5 in Appendix A shows an
example of proof for req_COPPA. The data used for the axioms is generated from actual
data obtained using OpenWPM. We instantiated the Kids(w) predicate using the Top

5Skewed towards tech-savvy users, thus these values are likely upper bounds.
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Table 3.5: Timing for successful and failed proof attempts

Run Slakje to prove Knows(fbcdn.net , facebook .com) and viceversa (not provable) with different visited
domains

# visited TPTP input Successful proof Failed proof
domains [# axioms] Time [sec] Time [sec]

5 75 1.4 1.1
10 209 1.8 1.6
50 867 10.5 19.3
100 2,343 1,469.8 >3,600

50 Alexa In the Kids and Teens category. This approach is fully automated by a script
that generates a sequence of axioms from the database, the model, and the conjecture to
prove.

We evaluated the performance of Slakje by assuming the Top 5, 10, 50, and 100 as
visited domains to generate a proof for Knows(facebook.com, fbcdn.net) and the vice
versa. Table 3.5 shows the performance with an Intel i7-8750H @ 2.20GHz and 2 GB
RAM for the Java VM.

As shown in Table 3.5, the time required to generate a proof increases with the number
of axioms. This number is dependent on the interactions observed by the user on the
visited websites. To improve performance we perform DBMS slicing by extracting only
the interactions that are obtained from the user’s visited websites (e.g. Top5, Top10, etc.)
and not the entire Internet interactions and then perform proof reconstruction. Unsound
search followed by proof reconstruction is a new trend in Automated Reasoning [54].
This is the minimum set of interactions (and thus axioms) that must be considered to
avoid missing possible tracking practices. For example, if we extract only the interactions
generated by visiting a website w and not all the other visited websites we can miss
interactions generated from other visits that reach w as shown in Figure 3.4.

3.6 Evaluation of Filter Lists Mitigations

We can now answer to RQ1 and evaluated our approach on the dataset previously pre-
sented with the filter list of three widely deployed extensions (Ghostery, Disconnect,
Adblock Plus). We neither consider the Firefox third-party cookie blocking feature
for unvisited websites6 nor other Firefox configurations that were either too restrictive

6This feature is unable to block Google in certain situations. Firefox employs by default the Google
search engine and, thus, establishes connections with Google domains if the website is not accessed
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Include Redirect

Include

Redirect Redirect

Include

Include

facebook.com

adobe.com

Interactions obtained w/ 
Visit(facebook.com)

Interactions obtained w/ 
Visit(adobe.com)

Websites w*: 
Knows(w*,facebook.com) w/ 

Visit(facebook.com)

Websites w*: 
Knows(w*,facebook.com) w/ 

Visit(facebook.com) AND 
Visit(adobe.com)

Determine which websites w′ knows about the visit of facebook.com (Knows(w′, facebook.com)) by an-
alyzing only on the interactions generated by the facebook.com visit misses interactions generated by
adobe.com (visited by the user) with facebook.com and thus potential trackers.

Figure 3.4: The problem of determine Knows(w′, facebook.com)

(e.g. block all cookies) or overlap (e.g. Firefox uses Disconnect blacklist). We used
the blacklist of Ghostery, Disconnect, and Adblock Plus from Bashir et al. [44, 45]
(the data was collected in 2016 too). We then compared the effectiveness of some of
the mitigations (Disconnect and Adblock Plus) in 2016 with their 2019 version. We
also extended the comparison with Privacy Badger and Adblock Plus (enforced with
EasyList&EasyPrivacy) in the 2019 scenario.

3.6.1 Results

Flow Propagation Figure 3.5 shows the graph of Access obtained by applying our rules
on the Top 5 Alexa domains without any mitigation. While Figure 3.6 shows the Venn
diagrams obtained computing the Knows predicates of the model without any mitigation
and with the Disconnect mitigation.

directly through its domain name (we assume non-tech-savvy users behave in this way). As a result,
Google domains (and all its subdomains) are whitelisted by Firefox and can bypass the third-party
cookies block.
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gstatic.com
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googlesyndication.com

yimg.com

youtube.com

ggpht.com
googlevideo.com

ytimg.com

Access predicates obtained without any mitigation in the Top 5 Alexa domains. Several connections are
made to different third-party domains. Understanding how many trackers can potentially know about
your youtube.com visits is far from trivial (even ignoring any back-office sharing agreement).

Figure 3.5: Access graph Top 5 Alexa domains

Lowest Tracking Coverage Figure 3.6a shows the Venn diagrams for the Top 5 do-
mains without any mitigation (N ∗B = ∅) while, Figure 3.6b shows the Venn diagram with
Disconnect mitigation (N ∗A = Disconnect). From Def. 2 we have that N ∗A is more
effective than N ∗B.

Comparing different Mitigations We compared the effectiveness of the filter list
of Ghostery, Disconnect, Adblock Plus (based on EasyList) in 2016 and Disconnect,
Adblock Plus (based onEasyList), Adblock Plus (enforced withEasyList&EasyPrivacy),
and Privacy Badger ("trained" on the Top 200 Alexa domains in December 20197) in
2019 based on the Def. 3 presented in Section 3.4. We extracted the requests from
the dataset and we recursively apply the filter lists of the different mitigations to the
connections established for the Top 5, 10, 50, and 100 Alexa domains. Except for
Privacy Badger, which provides the list of domains it "learned" either to block com-
pletely (Block_request(w)) or to stop setting the cookies (Block_tp_cookie(w)), for all
the other mitigations we rely on their blacklist of domains, i.e. only Block_request(w).

7Now the construction of the blocklist is not performed anymore on the individual machine due to the
risk of fingerprinting [126]
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(a) KnowsUser(N ,w) without mitigations. Each circle is a visited Top 5 Alexa site and includes trackers
which can potentially know about this visit
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(b) KnowsUser(N ,w) with Disconnect mitigation. Disconnect significantly limits potential trackers
when visiting youtube.com (from 9 to 4) and yahoo.com (from 9 to 3)

Figure 3.6: Comparing Tracking Knowledge for Alexa Top 5.
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The results are normalized to N without any mitigation.
We employed the filter lists from [44,45] and the database previously presented to an-

alyze the effectiveness of the mitigations in 2016. We then computed the current effective-
ness of the filter list of Adblock Plus (with and without the addition of the EasyPrivacy
list), Disconnect, and Privacy Badger in 2019 with an up-to-date database8 from June
2019. Figure 3.7 shows the comparison of the mitigations. The dashed line and the dash-
dotted line correspond to two different efficiency levels. The first is a 1-for-1 drop: for
each connection that the mitigation blocks, it blocks one tracker, while the second repre-
sents a 1-for-2 drop: for each connection that the mitigation blocks, it blocks two trackers.
Figure 3.7a shows that, among the filter lists in 2016, Disconnect is the most aggressive
mitigation up to the Top 100 domains, where Ghostery behaves similarly. Adblock Plus
is the most permissible mitigation in 2016. However, Adblock Plus shows a big increment
of efficacy in its 2019 version. For example, in the Top 100, a 26% reduction of the accessed
content generates a 66% decrement in trackers. It is worth mention that the filter list of
Adblock Plus from [45] is also roughly 46 times smaller than the list in 2019 and that cur-
rently there is overlap between EasyList and EasyPrivacy [166]. In contrast, Disconnect
does not significantly improve in 2019 with a more restrictive behavior. We found that the
combination of EasyList and EasyPrivacy (EasyList&EasyPrivacy) achieves the highest
protection at the cost of the most restrictive approach. Finally, Privacy Badger showed
a similar level of protection compared to Disconnect and EasyList&EasyPrivacy but
with a significantly higher number of connections allowed due to the balancing of blocking
connections and cookies.

3.6.2 Comparison of Effectiveness with Related Work

We compared our findings9 with the results of [124] and [218]. Albeit our analysis is
currently limited to the Top 100 domains, while [124] and [218] analyzed the top 10k and
200k domains respectively. It is still of interest to see if similar results can be obtained
from a formal model and thus justifiable to third parties instead of a pure experiment10.
Table 3.6 shows the comparison of the effectiveness of the mitigations in terms of percent-
age of allowed connections for different works. Fouad et al. [124] found that Disconnect
and EasyList&EasyPrivacy are roughly comparable in terms of % of allowed requests,

8The database contains the same information of the 2016 database with small differences in the
structure, for example, the 2019 version presents a table for the redirections.

9Here we limit our analysis for the 2019 database.
10The results of the previous works are obtained crawling the web with OpenWPM and the chosen

mitigation.
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(a) Effectiveness of the mitigations in 2016

(b) Effectiveness of the mitigations in 2019
Comparison between the fraction of potential trackers (counted as # of unique Knows) and the allowed
connections (counted as # of unique Access) on the Top 5, 10, 50, and 100 domains with different
mitigations. The most aggressive mitigations are Disconnect in 2016 and EasyList&EasyPrivacy in
2019. Adblock Plus significantly increased its efficacy in 2019, while Disconnect did not improve in
terms of protection. Privacy Badger shows performance comparable to Disconnect in terms of trackers
blocked with a less conservative approach.

Figure 3.7: From 2016 to 2019 mitigations reduced the amount of access to gain privacy
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Table 3.6: Comparison of % of allowed connections by Adblock Plus (AdB), Disconnect
(D), Privacy Badger (PB), and EasyPrivacy&EasyList (EL&EP) with previous works

Paper AdB D PB EL&EP
Our work 54.9% 33.5% 44.8% 16.4%
[124] ≈ 60% 34.6% 30-35% 39.3%
[218] 65-70% 25-30% ≈ 40% N.D.

while we found that EasyList&EasyPrivacy is significantly more aggressive. However,
we obtained similar values for Disconnect and Adblock Plus. Privacy Badger differs
from [124] but it is similar to [218] probably due to the different size of the "training
domains" used by the studies. Finally, as in [124] and [218], we confirmed that adblockers
are less effective than trackers blockers.

3.7 Limitations

The presented framework fills the gap between graph approaches, which scale but lack
transparency of the results, and manual inspection, which is explainable but cannot scale
even for a few domains (see Table 3.4 where considering only the top 10 domains requires
to analyze more than 900 interactions). For a user that wants to determine what is the
best adds-on she should install on her browser, large-scale studies ( [124, 218]) provide
contrasting and unverifiable claims (see Table 3.6). Our framework provides a more
focused analysis compared to Internet-scale crawling and an explanation of why a given
mitigation is better than another via a formal proof. The proof could then be traduced
to natural language format [271] to hide the complexity to the user.

Our model relies on observable sharing behaviors from the client-side and it misses
back-office information flows. While these mechanisms constitute a sizable part of the
data-sharing economy they cannot be externally measured until legislators would oblige
to divulge to which sites such information is shared. When this would be available the
model could be extended by including knows axioms for back-office data sharing. The
same applies to cookie syncing, as well as the usage of cookies obtained from cookie
forwarding, thus the results of cookie syncing represent a lower bound.

For the first approximation, we only focus on tracking based on cookies and we ignored
other techniques (e.g. fingerprinting) for which we do not know how the process of data
sharing is done and that it cannot be observed from the client-side.

The database is obtained from previous projects and it could be not representative
of the current status of the Internet. However, our model can be applied to any new
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OpenWPM database. Still, the results apply to what it is possible to collect and observe
using a crawler.

The filter lists of Ghostery, Disconnect, and Adblock Plus, obtained from [45], are
domain blacklists. To maintain consistency in the comparison11 with the 2019 version,
we compared only the domain blacklist (for EasyList and EasyPrivacy we used the rules
that begin with || and |).

The blacklist for Disconnect from [45] does not include any information about the
entity relationships12 that allows one to determine if a domain is loaded as first or third-
party. We thus decided to not include this feature also in the 2019 evaluation. Future
works can extend the analysis to consider the entity relationship. We did not produce
a blacklist for Ghostery in 2019 because it is proprietary software and does not provide
access to the blacklist and the mechanisms implemented. We plan to compare more
mitigations in the future.

The results obtained from the computation of the Knows predicate represent an upper
bound of the observable data sharing scenario, it shows the number of websites that
potentially can collect information about users’ habits due to the presence of interactions
among them. We highlight that this situation describes the worst possible scenario for
the privacy of a user, in which websites intentionally propagate the information collected
to other partners. This choice is more conservative than some current approaches that
only consider the elements of a blacklist as the all and only trackers.

3.8 Related Work

Over the last few years, researchers have identified different tracking techniques on the
Internet. To make the chapter self-contained we present an overview of the techniques.
Most papers examined the effectiveness of tracker blocking tools, while others focused on
trackers’ pervasiveness and the techniques used to track Internet users. We considered
works about the Online Advertising Ecosystem, privacy policies, and formal modeling of
the Internet infrastructure.

A Summary of User Identification HTTP Cookies are IDs associated with a user
and are set by websites through JavaScript codes or HTTP responses. Cookies are auto-
matically attached by the browser to all subsequent requests to the websites. The major

11EasyList and EasyPrivacy present a richer syntax, that allows one to block specific requests of scripts,
etc.

12https://feeding.cloud.geek.nz/posts/how-tracking-protection-works-in-firefox/

https://feeding.cloud.geek.nz/posts/how-tracking-protection-works-in-firefox/
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difference compared to browser fingerprinting is that the ID is stored locally on the user’s
machine [71,272].

Browser Fingerprinting is used by websites to collect information from the browser
to build a unique fingerprint [188]. For example, to personalize the content, a website
can request device-specific information like user-agent, HTTP headers, plugins and
browser extensions, fonts, screen resolution, OS, canvas and AudioContext [7,
114,225,303] via HTTP headers or JavaScript codes [8]. These attributes can be used to
generate a unique fingerprint for tracking purposes. Other approaches exploit O.S. and
hardware properties to generate device fingerprints that allow cross-browser tracking [78,
285].

Other Browser Storage, for example HTML5 localStorage, Flash LSOs, and HTTP
headers (e.g. ETag) [40, 304], are used by websites to store IDs and track users even if
HTTP cookies are deleted.

Other tracking techniques exploit browsing history [239] and caching process of DNS
records [179].

Data Sharing across Websites Cookie Syncing is an increasingly popular technique [248]
employed by trackers to share the IDs associated to a user [7,44,116]. A common cookie
syncing technique is to pass the IDs as parameters in an HTTP request. This proce-
dure allows the websites to map different IDs to a single user and link information from
different trackers.

Analysis of the Online Advertising Ecosystem Ghosh et al. [134] analyzed the
leakage of information in the Real-Time Bidding (RTB) protocol and modeled the revenue
of advertisers w/ and w/o syncing. Gill et al. [137] employed HTTP traces to model the
revenue earned by different trackers, whereas Marotta et al. [212] empirically estimated
the value of targeted advertisement depending on the presence or absence of cookies. We
aim to address an orthogonal problem, i.e. how can we formally prove that cookies are
employed for tracking users, independently from how trackers utilize them.

Iqbal et al. [166] developed a graph-based ML classifier of ads and trackers. The
tool builds a graph representation of the HTML structure, the network requests, and the
JavaScript in the web page to determine tracking practices from specific features. Gomer
et al. [142] analyzed how the search context exposes users to tracking practices using
directed network graphs based on referral header information. Bashir et al. [44, 45] de-
tected flows of information between advertisers based on retargeted ads. They constructed
an inclusion graph to model the advertising ecosystem, analyzed the graph properties,
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and simulated the impacts of tracker blocking tools like Disconnect and Adblock Plus.
Kalavri et al. [171] represented traffic logs through 1-mode and 2-mode graphs to highlight
the connected communities of the trackers and proposed an automated tracker detection
mechanism based on graph properties.
Several papers employed relationships between websites to investigate Web tracking activi-
ties. However, we lack a formal description of the trackers’ interactions to prove tracking
practices and privacy compliance.

Formal Models for IT-Security Speicher et al. [307] used a model based on AI
planning with grounded predicates in the context of the email infrastructure. Simeonovski
et al. [299] proposed a model based on property graphs in the context of Internet core
services.
We lack formal models to evaluate the effectiveness of mitigations against tracking prac-
tices.

Analysis of Children’s Online Privacy Protection Act Compliance Data collec-
tion and web tracking are regulated by data protection laws. For example, the General
Data Protection Regulation (GDPR) [3] is currently in force in the EU. Still, it is not
uncommon to observe violations [214].

When it comes to collect personal information from children additional laws are ap-
plied. In the U.S. the Children’s Online Privacy Protection Rule (COPPA) [2] imposes
requirements for websites that collect personally identifiable information (PII)13 from
children under 13 y/o. COPPA requires posting a privacy policy containing the personal
information collected, with who and for which goal this data is shared, to get verifiable
parental consent (for example calling a tool-free number), and to allow parents to re-
view the PII collected and revoke the consent. Determining if a website should comply
with COPPA is not easy. There have been several violations in the past, for example by
Playdom [1] and Youtube [4], with fines of several millions of dollars. Apart from U.S.
FTC reports, some studies developed frameworks to analyze Android apps to determine
violations [49, 266, 267]. However, there is not yet a tool for parents to determine such
violations due to the complex interactions among websites.

Several papers tried to formally express privacy policy (e.g. [96, 216]). In the context
of COPPA, Barth et al. [42] proposed a framework to formally describe this policy based
on first-order temporal logic.

13E.g. First and last name, home address, SSN, persistent identifiers (e.g. cookies, fingerprinting), etc.
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The state of the art focuses on the formal description of privacy policies. We lack a
formal description of tracking behavior to generate proofs that websites should comply
with privacy policies like COPPA based on security data.

3.9 Conclusions

We presented the first formal model to characterize tracking procedures based on data
sharing. From the model, we extracted sharing relations to determine the tracking ecosys-
tem, the effectiveness of different mitigations, and websites that should be COPPA com-
pliant. We evaluated these properties on a real dataset (Top 100 Alexa sites) extracted
from OpenWPM.

A tough question is whether the formal model bought us anything that we could not
derive from running an alternative graph algorithm like the one discussed in Chapter 4.
From a pure computational complexity perspective, the answer is no: being both in
PTIME a data-crunching procedure must exist that maps the result of one into result of
the other.

We argue that the difference is in the representation. A formal model produces a result
that can be independently checked [228]. For example, one can produce a minimal deriva-
tion that shows that a website should be COPPA compliant and such derivation could be
transformed (automatically) into a legal argument or a legal document. See [271] for a
practical example where a formal logic model based on Datalog (also a PTIME inference
framework) is used to reason about privacy practices and the results are presented to final
customers (the local health authority) in a table or natural language format that is far
easier to consume for them. It is important to underline that such proof is not by itself
a definitive proof of COPPA violation but can be used by e.g. parents to trigger a first
and more accurate investigation by appropriate agencies (e.g. FTC).

Future works can expand in several directions. Updated experimental results can
be obtained by crawling again the internet with OpenWPM or improved algorithms to
capture additional features. For example, the algorithm proposed by Fouad et al. [124],
can be implemented to extract new data about cookie syncing. Another interesting ex-
tension would be to consider disjunctions in the mitigations for the rules. For example,
in 3rdpartyTracking one could include a disjunction on the (un)blocking of cookies or
(dis)abling of scripts that are used for fingerprinting. We would also need to define
fingerprint data-sharing agreements among parties. This might happen at the price of
tractability. The model can be extended with mitigations that offer different fingerprints
to different websites (assuming that websites know about the fingerprint via back-office
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agreements).
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Chapter 4

Pareto-Optimal Defenses for the Web
Infrastructure

The integrity of the content a user is exposed to when browsing the web relies on a
plethora of non-web technologies and an infrastructure of interdependent hosts, commu-
nication technologies, and trust relations. Incidents like the Chinese Great Cannon make
it painfully clear: the security of end users hinges on the security of the surrounding
infrastructure: routing, DNS, content delivery, and the PKI.

There are many competing, but isolated proposals to increase security, from the net-
work up to the application layer. So far, researchers have focused on analyzing attacks
and defenses on specific layers. We still lack an evaluation of how, given the status quo of
the web, these proposals can be combined, how effective they are, and at what cost the
increase of security comes.

In this chapter, we employ security data from the Web infrastructure and its third-
party dynamics to develop a graph-based analysis that considers a complex attacker model
affecting different Internet layers and a multitude of security mitigations from IPsec to
DNSSEC and SRI. With this approach, we evaluate the security of billions of users against
several attack scenarios ranging from small hacker groups to nation-state actors. Our
security data model and analysis provide an explanation of which mitigations are effective
for each scenario, why, and under which conditions. Analyzing the infrastructure of the
Top 5k Alexa domains, we discover that the security mechanisms currently deployed are
ineffective and that some infrastructure providers have a comparable threat potential to
nations. We find a considerable increase of security (up to 13% protected web visits)
is possible at a relatively modest cost, due to the effectiveness of mitigations at the
application and transport layer, which dominate expensive infrastructure enhancements

59



4.1. INTRODUCTION 60

such as DNSSEC and IPsec.

4.1 Introduction

Billions of people use the web daily for business and private life. Given the success of
the web as a platform, the impact of attacks on the web is enormous. Users can be
unconsciously forced to visit a phishing website of their bank website, redirected to an
exploit kit using drive-by download attacks, execute scripts to mine cryptocurrency, or
perform DDoS attacks. Securing the user’s activity on the Web is a serious challenge:
not only do servers hosting a domain’s content need to be protected from compromise,
but the reliance of many sites on external JavaScript means that a compromised third
party will affect the including site’s security. Moreover, the internet’s infrastructure plays
a key role in securing a domain. This infrastructure covers resolution of domains to
IP addresses and routing of IP packets between different hosts. Even the mechanisms
to ensure confidentiality and availability like TLS rely on a Public Key Infrastructure
(PKI) system. Securing a website, therefore, is not something a site operator can achieve
on their own. Instead, actors like internet service providers, internet exchanges, name
service providers, content delivery networks, and certificate authorities influence the whole
ecosystem. Thus, the security of the web ecosystem hinges on the infrastructure and all
involved actors as a whole.

In this chapter, we present a methodology to evaluate existing security proposals
against mass attacks on the Web. Various proposals have been made to improve the secu-
rity of the Internet infrastructure in terms of routing (IPsec [177]), name resolution level
(DNSSEC [35]), website delivery (HTTPS [264], HSTS [154]), public-key infrastructure
(certificate transparency [190], DANE [155]), and third-party JS inclusions (CSP [43],
SRI [356]). They all raise the level of security, but which combination of proposals is the
most cost-effective, considering the current infrastructure? Are some of them too costly
to deploy or simply less effective than existing proposals? We thus identify the following
research question:

RQ2 : How can we evaluate the cost-effective selection of mitigations for securing the
Web given the current Internet infrastructure?

To close this research gap, we developed a methodology to investigate the effectiveness
of security mitigation strategies based on the graph database system Neo4J1. In this

1https://neo4j.com/

https://neo4j.com/
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chapter we make the following contributions:
• We represent Web entities (domains, NSs, ASes, etc.) and their relationships using

a property graph and exploited Neo4j reachability queries to compute attack graphs
and determine the impact and cost of different mitigations (Section 4.4).

• We define a threat model for web-based attacks, which covers both aspects of the
underlying infrastructure and web attacks themselves and a defender model which
considers different defensive actions, their associated costs, and potential depen-
dencies for deployment (e.g., DANE requires DNSSEC to be secure) (Sections 4.5
and 4.6).

• We analyzed the effectiveness and cost of different mitigation strategies securing
clients that visit the Alexa Top 5k considering three classes of attackers: cyber-
criminal groups, malicious infrastructure providers for cloud services and name res-
olutions, and nation-state attackers (Section 4.7).

• We create a web-based GUI at mitigation-web.github.io to analyze and investigate
optimal mitigation deployments with customizable costs.

Goals: We provide a methodology to evaluate the cost-effective selection of mitigations
for the entire Internet infrastructure as the result of global policy that aims at making the
web secure from mass attacks. We analyze the effect of mitigations that can avoid or limit
the attacker’s ability to affect user visits on websites. Our goal is to provide a framework
to identify criticalities for the security of the Web due to dependencies on countries and
infrastructure providers and help determine the mitigations that should be implemented
as policies.

Non-goals: We do not focus on the greater goal of the attacker. The results of exploit-
ing weaknesses of the Internet infrastructure can range from cryptojacking to phishing,
attacks against password managers, or DDoS [156, 181, 211, 238, 298, 316] depending on
the attacker’s motivation and falls outside the scope of this work. We do not consider
targeted attacks on specific individual hosts, software, or companies nor provide ad hoc
defenses for targeted individuals. The discussion of the incentives that can lead to the
application of the mitigations as global policies are outside the scope of this work.

4.2 Planning Attacks and Defenses

Planning is an area of AI dedicated to general-purpose mechanisms that automatically find
a plan, when given a high-level description of the (relevant part of) the world properties:
propositions, an initial state, and a goal condition (see [133] for an introduction). A plan
is a sequence of actions, each described in terms of a precondition and a postcondition,

https://mitigation-web.github.io/
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from the initial state to a state that fulfills the goal condition.
Speicher et. al. proposed Stackelberg planning, which can be seen as a two-fold classical

planning task [306]. Inspired by work on Stackelberg security games, the defender (leader)
moves first and the attacker (follower) can fully observe the defender’s action and can plan
their best response accordingly. In our notion of Stackelberg planning, the actions of the
attacker have an attacker reward which is used as an indicator of the severity of the
attack. Instead of a plan leading to a goal state, the set of attacker actions maximizing
the attacker reward is computed, e.g., the number of compromised domains. To prevent
attacks and thus lower the attacker reward, the defender can change the world state
through the application of defender actions, also referred to as “mitigations” which are
assigned a cost. The defender pursues the objective to simultaneously minimizes its own
cost and the attacker reward for the resulting state after applying the defender plan.

If the attacker can, e.g., get hold of 10 domains, the defender weighs the damage
done against its own cost. We avoid fixing this weight by instead considering the Pareto
frontier, i.e., the set of all Pareto optimal defender plans. A plan is dominated by another
plan, if the second plan is either cheaper (strictly lower cost) but as effective (lower or
same attacker reward), or vice versa (lower or same cost, strictly lower reward). Any
plan that is dominated by no other plan is Pareto optimal and thus part of the Pareto
frontier. The Pareto frontier gives us the set of all defender plans that are economically
reasonable, i.e., optimal for their respective budgets. It also gives us a step function from
budgets to the level of security, i.e., the remaining attacker reward, that is achieved by
the optimal plan for this budget. Our model introduced in Sections 4.5 and 4.6 can be
seen as a Stackelberg planning task, but instead of using Speicher et. al.’s algorithm to
compute the solution (i.e., the Pareto frontier), we developed a graph-based algorithm.

Speicher et. al [306] derived a general-purpose algorithm for Stackelberg planning,
which was successfully applied to the security of the email infrastructure [308]. Their
algorithm uses a diverse set of optimizations and pruning techniques to reuse informa-
tion gathered across different mitigation scenarios and to discover when mitigations are
applicable in no particular order. However, when applied on a more complex and rich
case like the Web and despite using all available optimizations, experiments only scaled
up to about 50 domains, exceeding the available memory of 88Gb after several days of
computation [329]. This is due to the problem size: reading the input file and initializing
internal data structures already takes hours, even though computing the attacker plan is
simple once these structures are in place.

Hence we developed a new approach based on the Neo4j graph database system that
allows one to store data in the form of a property graph (PG), i.e. a graph with different
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types of nodes and edges, and easily query the database by exploiting the relationships be-
tween nodes. As discussed in Section 2.2.1, the security of the Web relies on relationships
among several entities. The Web infrastructure (e.g. Figure 2.1) naturally maps into this
type of representation. From the Neo4j property graph and the set of rules of our model,
instead of enumerating all relevant attacker actions in an input file (like in [308, 329]),
we generate an attack graph that captures their relationships and thus allows efficient
computation of the attacker reward via reachability analysis and application of defender
actions via the removal of edges. Neo4j’s data structures are optimized for such queries.
Moreover, by representing the security data presented in Section 2.2.1 and Section 2.2.2
as a property graph, we drastically improve the generation time of this attack graph.

We use Neo4j to store and analyze a larger set of domains. In contrast to the fine-
grained deployment analysis via the Stackelberg planning algorithm [306], which consid-
ered the best-possible mitigation per host, we consider a fixed set of mitigation scenarios.
This is not necessarily optimal, as the optimal deployment can be a mix of two solutions.
On the other hand, policy decisions often do not afford a per-host policy. Hence, our
global policies are more realistic to be carried out.

4.3 Notation

We use the same notation for predicates and rules presented in Chapter 3. In contrast
to the model in Chapter 3, where the rules are relatively simple and compact, in this
scenario we do not provide a formal model as the rules are too complicated to generate
a proof. Indeed, as discussed in Sections 3.5 and 4.2 large-scale analysis for the whole
Internet cannot be addressed formally.

Given the complexity of the model, for readability, we directly instantiate variables to
a specific domain. For example, to describe all actions that compromise a website via XSS,
we could use the following action schema with the variable x in post and precondition
and we can limit the (value) domain of x to the set of (network) domains D:

x ∈ D XSS (x )

Cweb(x)

Using Neo4J, we can efficiently evaluate these properties and find all satisfying assign-
ments from variables to nodes in the graph.
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4.4 Methodology

We now present the approach to answer to RQ2 and evaluate security mitigation strate-
gies using our model and the security data collected.

Figure 4.1 summarizes the procedure to perform a graph-based analysis. We start from
the property graph describing the entire Web relationships. Starting from the attacker’s
initial assets we apply the rules of the model, that describe the attacker’s actions, to
generate an attack graph for the scenario. Finally, we apply a set of mitigations to
remove some edges of the attack graph. We then queried the resulting attack graph using
Neo4j to determine the reachability of the domains from the attacker node.

The attack graph is a directed graph with each node corresponding to a fact in the
Stackelberg planning task and two nodes being connected if there is an attacker action that
allows adding the latter (and only the latter) if the former is present. The initial assets
are facts, and thus the graph would have multiple roots, however, to simplify reachability
queries, we opted for a special root node attacker that connects to all initial assets and
is the only node that is not a fact. The leaf nodes are the set of ‘website compromised’
nodes that are reachable when no mitigations are deployed, so that by removing edges,
we can evaluate the impact of a countermeasure on the reachability of the leaves starting
from attacker.

Note the difference to attack trees [291], where the root nodes describe a single goal
and the parent-child relationship between subgoals can either be a conjunction (meaning
all subgoals need to be achieved to reach the parent goal) or a disjunction. Our attack
graphs are closer to Philips and Schwiler’s attack graphs [257], where nodes describe the
state of an attacker to a single goal. By contrast, we consider many goals and the state
of the attacker corresponds to the set of nodes on the path(s) to the goal(s).

4.4.1 Rule Dependencies and Attack Graph Generation

To exploit Neo4J’s strengths, we need to minimize the number of queries and computations
outside the query evaluation. We exploit the structure of our threat model to this end.
First, all rules have only a single postcondition. We can relate our rules in a dependency
graph (Figure 4.2). Nodes are conditions, i.e., predicates with variables. Two nodes
are connected if there is a rule with the first node as a precondition and the second
as postcondition. Only rules B.17 and B.18 have two preconditions, which we indicate
with the ∧ symbol. Second, the dependency graph reveals that there is only a single
loop (rules B.3, B.4) in this graph. Apart from this loop, every predicate can be derived
with a bounded number of steps that corresponds to the length of the equivalent path
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Figure 4.1: Graph-based analysis for Stackelberg planning
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in our dependency graph. This allows us to express the attacker search with a bounded
number of Neo4j queries that generate all predicates in the final state. The number of
applications of B.3 and B.4 is unbounded in general, but in practice (and on our dataset)
this fixpoint computation finishes after three steps. Disregarding the loop, we can use any
topological order of the dependency graph to iteratively build the corresponding attack
graph AG. At any step, we add the postconditions of the current rule r given that all
possible instances of its preconditions are already present in the attack graph AG and that
the graph conditions can be evaluated on property graph PG. The loop (B.3 and B.4) is
handled separately.2 In the resulting attack graph AG, a node represents an instantiation
of a predicate and an edge represents an instantiation of a rule.

We generate one AG per attack scenario. By fixing the attack scenario, we can compute
the effect of mitigations as a simple removal of edges and a reachability query in Neo4J.
Algorithm 1 is used to translate a property graph into an attack graph exploiting the rule
dependencies discussed before.

The algorithm applies to all threat models that can be described with a dependency
graph, i.e., have a single positive postcondition and where mitigations only disable, but
never enable attacker actions. It can handle loops but is most efficient if they concern
only a small number of nodes in the dependency graph. Starting from the initial asset for
the class of attackers, it traverses every rule in topological order w.r.t. the dependency
graph (lines 3 and 12). For convenience, we introduce a starting note attacker that is
connected to all the initial assets (line 1 and 2). For each rule, it formulates a query that
generates the set of nodes (= compromise predicates) and edges (=actions) that represent
applications of this rule valid for the property graph. Lines 6-9 handle the loop consisting
of B.3 and B.4. The resulting graph AG after line 8 contains all attacker plans as paths
starting from some ‘initial asset’ nodes.

4.4.2 Application of Mitigations

While the generation of the attack graph can be slow (several minutes), it allows a rapid
computation of attacker success in given mitigation scenarios (order of seconds). As each
edge in the attack graph corresponds to a rule, and mitigation predicates appear only in
preconditions, the application of a mitigation corresponds to the addition or removal of

2For the general case of any dependency graph: We first compute all strongly connected components
(SCCs) of the graph and replace any SSC with more than one node by a single placeholder node. Second,
we sort the graph consisting of all the (placeholder) nodes and process them according to this order. If
we encounter a placeholder, we perform the fixpoint computation of all the nodes which were originally
replaced by the placeholder.
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Algorithm 1: property graph to attack graph
Input: property graph PG, initial assets attacker
Output: attack graph AG
// initialize AG

1 Add to AG a single attacker node;
2 Add to AG the initial assets attacker as nodes with an edge to the attacker node;
// add compromised nodes

3 for ri ∈ [B.1, B.2] do
4 Add to AG the nodes in postcondition of ri to the nodes already in AG that are

preconditions for ri. The edge is labeled ri;

5 end
// apply B.3 and B.4 until fixpoint is reached

6 while fixpoint not reached do
7 Add to AG the nodes in postcondition of B.3 to the nodes already in AG that are

preconditions for B.3. The edge is labeled B.3;
8 Add to AG the nodes in postcondition of B.4 to the nodes already in AG that are

preconditions for B.4. The edge is labeled B.4;

9 end
// iteratively build graph

10 for ri ∈ [B.5, B.6, B.7, B.8, B.9, B.10, B.11, B.12, B.13,

B.14, B.15, B.16, B.17, B.18, B.19, B.20] do
11 Add to AG the nodes in postcondition of ri to the nodes already in AG that are

preconditions for ri. The edge is labeled ri;

12 end
// add mitigations

13 mark all edges in AG as removable if a defender rule applies to it and they have no
mitigation disabling dependency ;

14 for ca ∈{compromised CAs in AG} do
15 if ca not reachable for attacker then
16 mark all rules {B.9, B.15}, {B.12,B.14}, and {B.11,B.13} depending on ca as

removable;

17 end
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an edge in the attack graph.
For efficiency reasons, we apply mitigations in bulk, i.e., DNSSEC to all domains

where it is both applicable and useful in removing edges. Let M be a set of mitigations
(e.g., consisting of DNSSEC). To determine the cost and efficacy of applying M wherever
possible, we query all edges in AG corresponding to rules which are disabled by an action in
M and remove these edges. We say that a rule r is disabled by an action if the precondition
of r includes the effect of m in negated form. We compute the cost of M by multiplying
the number of domains for which we enabled DNSSEC with the cost of DNSSEC. The
computation of the remaining attacker’s successful paths is just a reachability query.

Using transactions, Neo4j permits us to store the unmodified attack graph, remove
edges, and unroll this transaction later to reestablish the unmodified attack graph quickly.

The advantage of this approach is the fast computation of mitigation cost and attacker
reward for a single set M. The downside is that for n classes of mitigations, we need to
consider all 2n combinations. This can be feasible for small n (e.g., in our case, n = 9). By
contrast, classical Stackelberg planning computes the best options for each host instead
of the best global policy, where, n additionally scales with the size of the attack graph.

The only mitigation-disabling predicate that cannot be statically computed, i.e., based
on the property graph, is the compromise of a certificate, because any trusted Certificate
Authority (CA) can issue a malicious certificate for a domain. As soon as the mitigations
are known, however, the certificate compromise can be determined. In our graph, we have
a limited number of CAs distributed over various countries, hence we can thus afford to
compute all compromised CAs (for simplicity), and then determine which of the attacker
rules B.9,B.15, B.12,B.14 or B.11,B.13 are being disabled. They are disabled (marked
with the ¬-symbol in Figure 4.2) if the corresponding mitigation was selected and the
‘cert compromised’ predicate preventing the mitigation is not reachable for the attacker.

4.5 Threat Model

We focus on infrastructure attacks, i.e., those that arise from physical, logical, and admin-
istrative dependencies in the Internet, as opposed to weaknesses in the protocol specifica-
tion or in the implementation. We, therefore, assume that protocols and web mitigations
achieve their stated goals, e.g., provide a secure communication channel, but the attacker
may break the trust assumptions, e.g., when a CA is compromised.
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Table 4.1: Attacker actions associated to class of attackers (nation-state (N), service
providers (S), small hacker groups (H)), paraphrased (full definition in Appendix B),
∗Mitigation due to sneakiness assumption.

# attack
vector

precondition outcome applicable mitigations attacker
class

in
it
ia
lc

om
pr
om

is
e (B.1) attacker

control
country compro-
mised and entity
(AS,IP,name server or
CA) associated to this
country

entity com-
promised

none N

(B.2) attacker
control

AS compromised and
IP i belongs to AS

i compro-
mised

none N,S

(B.3) attacker
control

IP i compromised and
domain d resolves to i

d compro-
mised

none N,S,H

(B.4) attacker
control

domain d compromised
and d resolves to IP i

i compro-
mised

none N,S,H

ro
ut
in
g

(B.7) routing
compro-
mise

AS2 potentially en
route from AS1 to
AS3 and AS2 compro-
mised

routing from
AS1 to AS3

compro-
mised

IPsec N,S

(B.8) routing
control

AS1 compromised routing from
AS1 to AS2

compro-
mised

none N,S

D
N
S

(B.6) DNS poi-
soning

name server d′ queried
when resolving d and
d′ compromised

resolution of
d compro-
mised

none N,S,H

(B.10) DNS
hijacking

name server d′ queried
when resolving d and
d′ in AS2 and AS1

geolocated in country
and routing from AS1

to AS2 compromised

resolution of
d from coun-
try compro-
mised

DNSSEC on d′ N,S

ce
rt
ifi
ca
te

co
m
pr
. (B.16) certificate

spoofing
some CA is compro-
mised

certificate
of d can be
forged

Certificate Transparency∗

(on d’s CA); DANE (on
d’s authoritative NS)

N,S

(B.17) DANE
record
spoofing

some CA is compro-
mised and d′ authori-
tative for d and d′ com-
promised

certificate
of d can be
forged

Certificate Transparency∗

(on d’s CA)
N,S
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(B.18) trust
chain
compro-
mise

CA a is compromised
and TLSA assumes
trust in a

certificate
of d can be
forged

Certificate Transparency∗

(on d’s CA)
N,S

co
nt
en
t

(B.5) XSS XSS vulnerability on d website on
d compro-
mised

none N,S,H

(B.9) website
MITM

Domain d resolves to
IP in AS2 and AS1

geolocated in country
and routing from AS1

to AS2 compromised

access to
website on d

from country
compro-
mised

HTTPS + HSTS +
HTTPS-Redirect (unless
certificate of d can be
forged)

N,S

(B.11) from DNS
poisoning

resolution of d compro-
mised

website on
d compro-
mised

HTTPS + HSTS +
HTTPS-Redirect (unless
certificate of d can be
forged)

N,S,H

(B.12) from DNS
hijacking

resolution of d from
country compromised

access to
website on d

from country
compro-
mised

HTTPS + HSTS +
HTTPS-Redirect (unless
certificate of d can be
forged)

N,S

vi
a
C
D
N
s/
JS

in
cl
us
io
n

(B.13) from DNS
poisoning

resolution of d′ com-
promised and d in-
cludes JS from of d′

website on
d compro-
mised

SRI (res. from d′); se-
cure incl. (res. from d′)
(unless cert. of d′ can
be forged); HTTPS +
HTTPS-Redirect (unless
cert. of d′ can be forged);
upgrade-insecure-requests
on d (unless cert. of d′

can be forged)

N,S,H

(B.14) from DNS
hijacking

resolution of d′ from
country compromised
and d includes JS from
of d′

access to
website on d

from country
compro-
mised

SRI (res. from d′); se-
cure incl. (res. from d′)
(unless cert. of d′ can
be forged); HTTPS +
HTTPS-Redirect (unless
cert. of d′ can be forged);
upgrade-insecure-requests
on d (unless cert. of d′

can be forged)

N,S
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(B.15) via rout-
ing

d includes JS from d′

and AS1 located in
country and d′ within
AS2 and routing from
AS1 to AS2 compro-
mised

access to
website on d

from country
compro-
mised

SRI (res. from d′); se-
cure incl. (res. from d′)
(unless cert. of d′ can
be forged); HTTPS +
HTTPS-Redirect (unless
cert. of d′ can be forged);
upgrade-insecure-requests
on d (unless cert. of d′

can be forged)

N,S

(B.19) third-
party JS-
inclusion

d includes from d′ and
d′ is compromised

website on
d compro-
mised

SRI for resources from d′ N,S,H

(B.20) website
compro-
mised

d is compromised website on
d compro-
mised

none N,S,H

Our threat model consists of a set of attacker rules that, given the higher number
and complexity compared to the model in Chapter 3, we listed in a paraphrased form
in Table 4.1 and formally defined in Appendix B. We define an entity (e.g. a NS, a
route between ASes, etc.) in our model as compromised if the attacker can affect the
integrity of the entity. For example, a route between two ASes is compromised if an
attacker can pose as a MITM in the communication. Similarly, a NS is compromised if
the attacker can tamper with the DNS response. These rules describe a layered model in
which we depicted the different attacks that can be carried out for each layer: routing-
level attacks can be used to compromise the integrity of packet transmission, DNS-level
attacks can compromise the integrity of the name resolution and application-level attacks
can compromise the content of the website. The combinations of the attacker’s actions lead
to a loss of confidentiality and integrity for the users visiting the websites. For example,
an attacker that can perform a MITM attack can both actively inject/modify content
(loss of integrity) or passively eavesdrop on the communication (loss of confidentiality).

4.5.1 Class of Attackers

We considered three classes of attackers with different capabilities: small cyber-criminal
groups, malicious service providers, and nation-states. Each class has access to a given
set of compromised entities, e.g., ASes, websites, CAs, or NSs that translate into a subset
of rules described in Table 4.1. Not all of the attack vectors are available to all classes
of attackers as some are traits specific to particular attackers. In Table 4.1 we identified
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which classes hold the capability for each attack vector. This will be used in the analysis
in Section 4.7. We underline that this assignment is not definitive as, e.g., small hacker
groups can also compromise CAs, but our framework allows us to define different scenarios
of adversaries targeting users of the web.

We evaluate the impact of an attacker in terms of the number of websites it can
compromise, weighted by the number of visits to these web sites, i.e., the attacker plan
maximizing

∑
i∈countries Visitsi ,d for Visitsi ,d being the estimated number of visits for the

web site d from the Country i.3

By computing the maximum attacker reward, we can measure the potential impact of
attacks on the Internet and the efficacy of the mitigations in scenarios characterized by
the initial assets of the attacker and the set of rules available to the attacker.

For the class of attackers considered, stealthiness is of the utmost importance to avoid
attribution and retaliation [104], in particular for service providers and countries. There-
fore, for a first approximation, we ignored attacks that can be easily detected and that can
result in global exposure to a company or country, e.g., BGP hijacking attacks. Hence,
our attacker is ‘sneaky’. We discuss the limitations in Section 4.8.

4.5.2 Attacker Rules

The threat model is described in terms of attacker actions that are instances of the rules
in Table 4.1. The predicates capture which entities (ASes, IPs, domains, CAs, NSs) exist,
how they are related and which mitigations have been deployed, but also the state of the
attack. The state of the attack is represented by the following predicates:

• An entity can be compromised globally, or for users from a country, in which case
it can deliver malicious content.

• A route between two ASes can be compromised, in which case the attacker can
inject/reroute packets on this route.

• The DNS resolution of a domain can be compromised (for all users or for users from
a country), in which case the attacker can manipulate DNS queries for this domain.

The complete model and the list of predicates are presented in Appendix B along
with the intuition for each rule. Here, we only consider an example for illustration.
Say we consider China as an attacker mounting a Great Cannon-like attack, i.e., Chi-
nese authorities intercept requests to included JavaScript resources and modify their con-

3We use the number of visits per month as retrieved from Alexa, thus we are assuming the attacks
to be stealthy and to persist for some time. Furthermore, we ignore countries that constitute less than
0.01% of the website’s visitors.
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tent [211]. Suppose users visit the popular website www.diply.com. By rule B.1, China
controls the AS7144, over which packets from Japanese users may be routed when con-
tacting a10-67.akam.net, which is in AS21342. By rule B.7, this route is compromised.
a10-67.akam.net is the authoritative NS for cdn.diply.com, the resolution of this do-
main is considered compromised by rule B.10. As www.diply.com includes JavaScript
code from cdn.diply.com, this website is vulnerable to JavaScript injection after per-
forming a DNS poisoning for cdn.diply.com (rule B.14). The injected JS can force
visitors to perform a DDoS attack against target websites [211].

4.6 Mitigations

The defender model consists of a set of actions that aim to minimize the attacker’s reward
by implementing a set of mitigations. Each defender action has an associated cost and
mitigates one or more attack vectors as summarized in Table 4.1. A mitigation can present
some preconditions to be met before the deployment (e.g., DANE requires DNSSEC, Cer-
tificate Transparency requires the presence of HTTPS, etc.). In Appendix B we formally
defined the preconditions for each mitigation. In our analysis we allow a mitigation to be
deployed only if its preconditions hold.

We now present the mitigations that can be applied at different levels of the Internet
infrastructure.

4.6.1 Application Layer Mitigations

SRI CDNs are a major target for attackers, as thousands of websites often depend on a
particular resource they host, e.g., widely used libraries like jQuery. A modification of this
resource can infect the users of the including website. With Sub Resource Integrity (SRI),
the including website provides the hash value of each resource hosted on a third-party
server with the script tag. The browser compares this hash value to the hash value of the
retrieved file. If the values do not match, the browser does not execute the resource.

This type of attack is widespread and can be implemented in large scale as shown by
the Great Cannon attack [28,211]. The implementation of SRI for the resources retrieved
from Baidu could have reduced the impact of this attack [333].

Although the adoption of SRI is growing [81], it is not suited for resources that change
over time, e.g., versioned JS libraries, or dynamically generated scripts.5 This scenario

4Some prefixes are partially used at this location.
5To temporarily handle this mismatch, the external resource can be retrieved from a local repository.



4.6. MITIGATIONS 74

is not uncommon, however, it is often caused by minor changes (e.g. recompilation) that
can be easily avoided [312].

Other mitigations Another mitigation could be Content Security Policies (CSP) [309].
For a first approximation, we decided to not consider CSP for mitigating XSS in our
model because the adoption is currently strongly limited by the required cooperation
with third-parties [312], with the result that most of the deployments are insecure and
enable inline scripts [73, 355, 357]. Given that CSP is mainly used to prevent inline
XSS [120, 357] and does not prevent other attack vectors available for our classes of
attackers (e.g. compromise of whitelisted CDNs), we are confident that CSP would not
affect the overall results. We discuss the extension of the model in Section 4.10.

4.6.2 Transport Layer Mitigations

TLS The HTTP connection between a client and a website can be secured through TLS
to achieve authenticity, integrity, and confidentiality. At the time of writing, HTTP is the
default protocol in almost6 all major browsers. As we assume users to not specifically ask
for HTTP over TLS (HTTPS) connections, websites need to implement a redirect and set
an appropriate HSTS header (see below) for this mitigation to be effective.

Redirects and HSTS While a secure redirect is not a mitigation in itself, it is necessary
to provide a secure connection for the exchange of an HSTS policy through the strict--
transport-security header. Indeed the header is ignored in an HTTP connection [154].
To ensure that any further access to the server is directly conducted over HTTPS, it
is necessary to implement an HSTS policy.7 An HSTS policy is an HTTP header that
informs the browser that the specific domain and (if explicitly declared) its subdomains
must be accessed via HTTPS for a certain period of time. All major browsers come with
an HSTS preload list that contains a set of domains for which the browser automatically
creates an HTTPS connection. However, it is required to keep a HSTS header to maintain
the domain in the preload list.8

6Only the most recent version of Chrome [55] and Firefox in private mode [56] use HTTPS by default.
Safari defaults to HTTP.

7Under rare circumstances, a redirect can increase security by itself: if a network injection attack is
possible on an included resource, a redirect ensures that the malleable resource is not loaded because it
would constitute mixed content (see Rule B.15).

8https://hstspreload.org/#continued-requirements

https://hstspreload.org/#continued-requirements
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Secure inclusions and CSP upgrade-insecure-requests directive To secure inclu-
sions from third-party websites, subresources should be loaded through a secure connec-
tion, either explicitly specifying the HTTPS protocol or using a Content Security Policy
with an upgrade-insecure-requests directive. The latter informs the browser that all
the site’s insecure URLs must be replaced with HTTPS.

An attacker can exploit subresources retrieved through HTTP by conducting a MITM
attack. This scenario is limited to the case in which the main web page is loaded over
HTTP as currently, modern browsers block mixed content for active resources. We stress
that different browsers handle mixed content differently, and outdated browsers might
still be vulnerable to this attack. We reserve a closer look at how legacy browsers change
the picture for future work and assume all browsers to block active mixed content.

4.6.3 Routing Layer Mitigations

IPsec To prevent attacks at the network layer from a malicious AS in the path between
two ASes, packets routed between the two ASes can be encrypted and authenticated
through a transport-level gateway-to-gateway tunnel. Various technologies provide this
functionality, but to provide a concrete cost estimate [80], we chose IPsec with a gateway-
to-gateway architecture [157,177]. We assume the implementation of an IPsec connection
to not be influenced by the geolocation of the endpoint and be the result of a private
agreement between AS owners.

4.6.4 Resolution Mitigations

DNSSEC To prevent DNS spoofing attacks, DNS records can be authenticated with
DNSSEC [35]. The adoption by end users is still very low [33], but it can be implemented
in the recursive resolver of the ISP [229]. We assume this and that the route from the user
to the recursive DNS resolver is secure. The latter assumption is necessary, as we do not
have data on how the visitors reach their recursive resolver and the opposite assumption
would render DNSSEC useless. As we will see (Section 4.7), DNSSEC achieves modest
security improvements despite this over-approximation.

We consider this mitigation for all domains where all the parent domains up to the
root already support DNSSEC. At the time of writing, DNSSEC is deployed in the root
servers and more than 90% of the TLDs [164].
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4.6.5 CA Mitigations

Certificate Transparency The authenticity of a web server on the Internet relies on
digital certificates issued by certificate authorities. In the last years, this model showed
many flaws including mistakenly issued certificates and CA compromise. Google pro-
posed the Certificate Transparency (CT) [190] project as a measure to detect misissued
certificates; this is done through a set of publicly available append-only certificate logs
that contain all the certificates present on the Internet. CAs must submit the certificate
to a log to receive a signed certificate timestamp required by the browser during the
TLS handshake. Domain owners can verify the list of digital certificates issued for their
domains and detect the presence of unauthorized ones. Chrome requires all certificates
issued after 30 April 2018 to be compliant with the CT policy and Safari requires signed
certificates timestamps. Given that Chrome and Safari alone cover more than 78% of the
desktop browser market share [310], and that Mozilla is planning to include support for
the CT project [217], we assume the entire CA ecosystem to be CT compliant. Given that
our threat model considers stealthy attacks, we ignored the scenario in which an attacker
issues a malicious certificate via a compromised CA. An attacker could potentially hide
the forgery by controlling both a CA and a CT log. Currently, browsers control CT logs
from different operators thus making the attack feasible only by controlling logs from
different operators. For a first approximation, we ignored this scenario. Furthermore,
distributed audit mechanisms like LogPicker [101] can prevent this attack. Nevertheless,
we investigate the effect of DANE as an alternative to CT in a separate scenario.

Other mitigations DNS-Based Authentication of Named Entities (DANE) [155] is a
DNS-level mitigation against vulnerabilities in the CA model [245]. DANE allows a client
to retrieve an end-entity certificate or a certificate to be found in the path to (including)
the trust anchor through DNS queries. This mitigation requires DNSSEC to be deployed.
Depending on the implementation, DANE can amend or side step the CA model. We
consider the case where DANE defines the website’s current end-entity certificate in its
record.

Although the adoption of DANE for email servers is growing, some challenges prevent
the adoption for the Web PKI [194]. As of now, all major browsers do not automatically
validate DNSSEC and DANE. We nevertheless assumed that this feature is implemented
and evaluated its effect as an alternative to CT in case of the presence of a non-stealthy
attacker in Section 4.7.

Other mitigations like the DNS Certificate Authority Authorization (CAA) allow do-
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main owners to specify via CAA records the CAs that are allowed to issue certificates for
the domain. However, this does not prevent a malicious CA to issue certificates [149]. We
thus ignored this mitigation.

4.6.6 Mitigation Cost

Table 4.2: Mitigation cost per host. Let r = 140 $/h the daily rate of an external
consultant.

Mitigation Cost per host Comment

SRI r*8h Consultant cost for 1 day. Exists tools to support (e.g.,
[170]). We do not consider any backup cost to handle
mismatches of hashes. Although SRI requires CORS to
be enabled for included resources, the cost for setting
up this header is negligible , since it requires a single
HTTP header to be set [312].

TLS r*8h Consultant cost for 1 day to modifying the web server
configuration to allow HTTPS connections (including
the effort of obtaining a certificate). We do not include
the cost of the digital certificate, given free CAs like
Let’s Encrypt.

Redirect / HSTS r*8h Consultant cost for 1 day.
Secure inclusions / UR r*8h Consultant cost for 1 day to check that all subresources

are available via HTTPS.
IPsec $56,000 per link Cost for a link speed of 10Gb/s. Including the cost

of two dedicated routers for $24,000 each [263] and the
consultant cost for configuration and maintenance per
year (about 80 consulting hours) [80].

DNSSEC $366,342 Cost of deploying in all the authoritative NS managed
by a company based on the maximum CAPEX from a
survey [229], one of which appear in the Alex Top 100.

CT $0 The CA ecosystem is already CT compliant and mitiga-
tion can only be applied if TLS is already deployed.

DANE $4,000 Cost of creating TLSA record for the certificate, similar
to [308]. Exists tools to automatically generate TLSA
records (https://ssl-tools.net/tlsa-generator).

We gather the cost based on publicly available data and try to keep the cost model
uniform, i.e., we do not take differences in cost of labor due to the location or structure
of the company into account. For example, youtube.com and google.com belong to the



4.7. EVALUATION OF WEB INFRASTRUCTURE MITIGATIONS 78

same company, but only recently announced they will share infrastructure [12]. We stress
that a uniform cost model, while being easy to convey, can never exactly represent the
actual operating cost in such a diverse set of companies as the Alexa Top 5k. Moreover,
what to include as a direct cost of a technology like DNSSEC is very much debatable. We
focus on the immediate cost of mitigations and convert all personnel cost from time esti-
mates into $ by considering the cost for an external consultant9 of r = 140 $/h. Table 4.2
lists the cost estimates. These values will be used to compute Pareto optimal defenses in
Section 4.7. The investigation of optimal mitigation deployments with custom costs can
be performed on our website mitigation-web.github.io.

4.7 Evaluation of Web Infrastructure Mitigations

We evaluated attacks on the Web carried by the different classes of attackers (a cyber-
criminal group, large infrastructure providers offering, e.g., cloud services or name res-
olution, and nation-state groups) and the impact that the mitigations have in securing
visitors on the Web. We model the purported threat by defining the set of assets initially
under attacker control (B.1-B.3 in Table 4.1).

For each attack scenario, we generated the attack graph. We then ran the analysis on
every combination of the mitigation strategies introduced in Section 4.6. We computed
from this: the impact of the attacker, in terms of % of visits in the Top 5k that can be
affected by the attack vectors in the status quo, the current efficacy, in terms of % of
visits in the Top 5k protected by the mitigations currently deployed, the potential efficacy,
in terms of % of visits that could be protected by the application of different mitigations
strategies (without breaking websites’ functionality) globally on the Web, and the cost
of applying these strategies to the status quo. In Tables 4.3 and 4.4, we report this
data for all sets of mitigation strategies we deem interesting – the totality of all 512
combinations would exhaust the space available here. For each scenario, we combined the
set of combinations in a Pareto frontier. The frontiers are a visualization of all Pareto
optimal combinations of mitigation strategy costs on the x-axis and the percentage of still
affected visitors on the y-axis. We removed each combination that is dominated by others
and plotted the remaining ones on a graph mapping cost to potential efficacy.

All these computations, including the Pareto frontiers, can be interactively explored
at mitigation-web.github.io.

The resulting Pareto frontiers depend on the costs discussed in Section 4.6.6. Despite

9Hourly rate (US) for a Computer Security System Specialist level 2 via Deloitte, Ltd [95].

mitigation-web.github.io
https://mitigation-web.github.io/
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our best efforts to justify our cost assumptions, the empirical data available is incomplete
and what needs to be taken into account is debatable. However, we can precompute each
countermeasure’s effect while also counting how often it is applied. The overall cost is
the sum of these counts weighted by their cost and can be computed on the fly. The
computation of the Pareto frontier is linear in the list of combinations once they are
sorted by their cost. Stakeholders can modify the cost assigned to all countermeasures or
determine the interval of costs in which the Pareto frontier does (not) change.

4.7.1 Cyber-criminal Group

In this threat scenario, shown in the leftmost column of Table 4.4, we consider a hacker
group that can compromise NS resolutions and exploit XSS vulnerabilities, the most
widespread type of vulnerabilities in web applications according to the OWASP founda-
tion (see Figure 4.3 for the Pareto frontier). We identified a subset of domains with XSS
vulnerabilities from Steffens et al. [313]. We took inspiration from the MyEtherWallet
attack on the 24th of April 2018 [326] to evaluate the impact of an attack performed by
cyber-criminal groups on the Web infrastructure. The original attack started by hijack-
ing Amazon’s Route 53 name servers via BGP. The attackers rerouted requests to this
name server to a malicious server that referred the users to a phishing website imitat-
ing MyEtherWallet. While our model excludes BGP hijacking as an attack vector due
to the possible global exposure, we instead model the situation where the hacker group
compromised the name servers directly. The initial asset is thus composed of more than
1500 Amazon’s Route 53 NS. With 2% of all page views on the Alexa Top 5k, the im-
pact is already considerable. The attacker compromises the DNS resolution for a set of
CDNs, like cdn-1.tstatic.net and content.jwplatform.com. This approach allows
the attacker to compromise all websites that rely on these CDNs for the inclusion of JS
resources. Furthermore, the Amazon Route 53 DNS servers are queried for the DNS
resolution of many domains, such as reddit.com, twitter.com or dropbox.com. IPsec,
DNSSEC, and DANE have no effect because we assumed the DNS servers themselves to
be compromised.10

The most effective countermeasure is to employ secure connections both for the web-
site via HTTPS, HTTPS-Redirect and HSTS (abbreviated H3 in the following) and the
external JS inclusions. Combining H3 with upgrade-insecure-requests (abbreviated
UR in the following), we achieve the maximum increase in security. This matches the

10For the actual BGP-based attack, the attacker cannot sign in the nameserver’s stead, hence
DNSSEC/DANE could appear as a possible mitigation in the high-cost range of the Pareto frontier
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Compromise of Amazon’s route 53 NS affects 2% of the Top 5k Alexa visit. The application of HTTPS,
Redirect, HSTS, and SRI reduces the affected visits below 1% with a minimal cost.

Figure 4.3: Pareto frontier for small hacker group attacker scenario
application-level countermeasures proposed by the developers in the aftermath [326]. In
summary, enforcing endpoint-level defense is the optimal solution for this threat.

4.7.2 Infrastructure Providers

Next, we analyze the potential threat that the centralization of infrastructure in the
Internet can pose to users in case an adversary gains control over them, and how to
mitigate a potential attack. We choose some of the biggest infrastructure providers:
Google, as a large provider of JS resources; Cloudflare and Amazon as two of the largest
CDNs; Dyn, as one of the largest providers of DNS services and GoDaddy, as the largest
domain registrar. The overall attacker success for each of the companies is shown in
Table 4.3. Figure 4.4 shows the Pareto frontier for each company. The initial asset is
generated starting from the owned ASes and CAs (if any) for each infrastructure provider.
Amazon, Google, and GoDaddy control certification authorities that are accepted trust
anchors in all major browsers. While CloudFlare and Dyn control ASes, but no CA. By
propagating the rules B.2,B.3,B.4 we compute the entire asset for the attack scenario. For
example for Dyn, we further add its 175 NSs serving about 576 domains in our dataset. In
Table 4.3, Google is the strongest player, affecting about 38% of the page views on the Top
5K Alexa domains. While Dyn only affects roughly 8% of the visits. In terms of attack
vectors, we observed that Google has a great impact on routing. As expected, Amazon is
able to compromise 3rd party resources either directly or via DNS spoofing. CloudFlare’s
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Table 4.3: Percentage of affected visits, protected visits, and potentially protected visits
and cost for infrastructure adversaries attacking the Alexa Top 5K. H3 is short for HTTPS,
HTTPS-Redirect and HSTS, UR is short for CSP’s upgrade-insecure-requests.

companies (as attackers)

Metric Google Amazon GoDaddy CloudFlare Dyn

Affected visits
in status quo

38.03% 16.55% 12.3% 10.21% 7.62%

Current efficacy in status quo (% of visits protected by the mitigations currently deployed)
H3 0.05% 0.05% 0.05% 3.15% 4.46%

H3, SRI 0.05% 0.08% 0.05% 3.15% 4.46%

H3, UR 0.05% 0.05% 0.05% 3.15% 4.46%

CT 0.05% 0.05% 0.05% 0.00% 0.00%

CT, H3 0.05% 0.05% 0.05% 3.15% 4.46%

Potential efficacy (% of visits that could be protected by the mitigations) and deployment cost in $1000
IPsec 0.00% 2,072 k$ 0.00% 0 k$ 0.00% 4,424 k$ 0.00% 5,992 k$ 0.00% 0k$

DNSSEC 0.00% 39,931 k$ 0.00% 40,297 k$ 0.00% 41,030 k$ 0.00% 40,297 k$ 0.00% 39,931 k$

DANE 0.00% 740 k$ 0.00% 740 k$ 0.00% 740 k$ 0.00% 0 k$ 0.00% 0k$

SRI 6.35% 3,393 k$ 6.30% 3,450 k$ 4.21% 440 k$ 1.85% 2,654 k$ 0.00% 42 k$

Sec. Incl. 0.00% 10 k$ 0.00% 14 k$ 0.00% 3 k$ 0.00% 64 k$ 0.00% 38 k$

UR 0.00% 5 k$ 0.00% 7 k$ 0.00% 3 k$ 0.00% 45 k$ 0.00% 11 k$

H3 0.15% 470 k$ 0.05% 2,133 k$ 0.17% 221 k$ 6.63% 2,486 k$ 6.49% 272 k$

H3, CT 2.42% 7,909 k$ 9.01% 8,880 k$ 11.11% 1,196 k$ 6.63% 2,486 k$ 6.49% 272 k$

H3, CT, SRI 7.60% 3,884 k$ 12.56% 5,638 k$ 11.18% 685 k$ 8.73% 5,140 k$ 6.49% 314 k$

H3, CT, UR 2.69% 8,430 k$ 9.30% 9,424 k$ 11.40% 1,263 k$ 6.69% 2,691 k$ 6.76% 309 k$

H3,CT,SRI,UR 7.87% 3,904 k$ 12.84% 5,802 k$ 11.44% 705 k$ 8.79% 5,325 k$ 6.76% 328 k$

major attack vectors are routing attacks and content compromise. Similarly, GoDaddy
can exploit routing attacks on JS inclusions and name resolution, while Dyn’s major
attack vector relies on DNS poisoning. The efficacy of currently deployed mitigations
on securing visits is marginal (0.05% for Google and Amazon), showing that the current
deployment is insufficient. However, if we apply a set of defenses globally, the potentially
protected visits on the Top 5K increases to almost 8% for Google and 13% for Amazon.

Across the board (Table 4.3), we see that the deployment of lower-layer mitigations
like IPsec, DNSSEC or DANE would add no additional security by themselves, even
though they are often applicable, which is indicated by non-zero cost values. For Google,
Amazon, and GoDaddy, we see that SRI has a tremendous effect, as those host or control
access to popular JS libraries, e.g., jQuery. This effect is less pronounced for Cloudflare
and zero for Dyn, as these exert less control via JS inclusion and, specifically for Dyn,
HTTPS is already protecting many connections. H3+CT gives an inverse picture; the
effect on Google is much weaker than SRI. It is important to underline that H3 deploys
HTTPS, but does not assume CT compliance. As now all CAs support CT, H3+CT is
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Goole affects 38% of the page views on the Top 5k Alexa, while Dyn, Cloudflare, GoDaddy, and Amazon
range between 7% and 16%. By applying a combination of HTTPs, Redirect, HSTS, SRI and upgrade
request the impact is reduced by 7%, 12%, 11%, 8%, and 6% for Google, Amazon, GoDaddy, Cloudflare,
and Dyn respectively. IPsec, DNSSEC, and DANE are ineffective.

Figure 4.4: Pareto frontiers for infrastructure attacker scenarios

the more realistic mitigation, deploying CT at zero cost. As expected, H3 has only a very
small impact in scenarios where the attacker controls a CA, highlighting the continued
benefit of CT. We observed that H3 is always the first point in the Pareto frontier,
confirming the intuition that securing access to the first party comes at a lower cost than
protecting against JS inclusions. Securing third-party resources always achieves a stark
improvement in security when combined with H3+CT, but comes at a high cost. Whether
SRI, Secure inclusions or CSPs upgrade-insecure-requests are cost efficient depends
on how websites include third-party resources and whether they are controlled by the
attacker. For Dyn and CloudFlare, UR is the best choice, as the direct compromise of the
third-party is less of an issue. By contrast, SRI by itself appears in the Pareto frontiers
for Google, Amazon, and GoDaddy due to their direct control of CDNs. In all cases but
Dyn, combining H3, SRI and UR achieves an increase over only H3 and SRI. This is
because UR enables the deployment of H3 on domains with insecure JS inclusions, where
a secure redirect would otherwise break functionality.

4.7.3 Nation-State Groups

In this scenario (Table 4.4, right-side columns), we consider the potential of three states
to mount an attack, assuming that local legislation permits such an attack (see Figure 4.5
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Table 4.4: Percentage of affected visits, protected visits, and potentially protected vis-
its and cost for hacker group and nation-state adversaries attacking the Alexa Top
5K. H3 is short for HTTPS, HTTPS-Redirect and HSTS, UR is short for CSP’s
upgrade-insecure-requests.

hacker group countries (as attackers)

Metric MyEtherWallet US CN GB

Affected visits in
status quo

2.04% 46.01% 18.64% 13.93%

Current efficacy in status quo (% of visits protected by the mitigations currently deployed)
H3 1.55% 0.00% 0.26% 0.00%

H3, SRI 1.55% 0.00% 0.26% 0.00%

H3, UR 1.55% 0.00% 0.26% 0.00%

CT 0.00% 0.00% 0.26% 0.00%

CT, H3 1.55% 0.00% 0.26% 0.00%

Potential efficacy (% of visits that could be protected by the mitigations) and deployment cost in $1000
IPsec 0.00% 0 k$ 1.45% 1,174,600 k$ 9.43% 216,104 k$ 11.92% 84,504 k$

DNSSEC 0.00% 0 k$ 0.01% 52,386 k$ 0.00% 37,000 k$ 0.00% 12,455 k$

DANE 0.00% 0 k$ 0.00% 740 k$ 0.00% 740 k$ 0.00% 740 k$

SRI 0.00% 69 k$ 5.46% 4,331 k$ 3.38% 730 k$ 5.15% 590 k$

Sec. Incl. 0.00% 67 k$ 0.00% 53 k$ 0.00% 23 k$ 0.00% 3k$

UR 0.00% 24 k$ 0.00% 35 k$ 0.00% 4 k$ 0.00% 3k$

H3 1.18% 1,827 k$ 0.04% 5,923 k$ 0.15% 544 k$ 0.05% 168 k$

H3, CT 1.18% 1,827 k$ 1.62% 11,538 k$ 9.53% 1,515 k$ 12.53% 641 k$

H3, CT, SRI 1.18% 1,897 k$ 8.15% 10,419 k$ 9.81% 1,398 k$ 12.91% 771 k$

H3, CT, UR 1.20% 1,989 k$ 1.64% 12,280 k$ 9.79% 1,666 k$ 12.82% 688 k$

H3, CT, SRI, UR 1.20% 2,014 k$ 8.34% 10,889 k$ 10.04% 1,499 k$ 13.14% 798 k$

for the Pareto frontier for each country). The Great Cannon attack, e.g., is believed to
have been mounted from China. The initial asset is obtained starting from rule B.1 by
including the NSs, ASes, domains, and IPs located in that country.

The US is the country with the highest attack potential: about 46% of the visits
on the Top5K are affected. By applying different mitigations, this reward can only be
reduced to 38%. Due to the importance of domains under US jurisdiction, many page
views would be directly compromised. The potential impact of China and GB is much
smaller. Where GB’s attack potential can be reduced from about 14% to about 1%,
China’s attack potential can only be reduced from 19% to 9%, which can be explained by
the relative autonomy of the Chinese Internet infrastructure. However, the single most
effective mitigation is IPsec, being nearly as effective as the combination of H3, CT, SRI
and, with marginal impact, UR. These mitigations are protecting foreign websites that
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The US can impact up to 46% of the visits in the Top 5K Alexa. Nation-state attacks potential can be
reduced by combining application-level mitigations like SRI, CSP upgrade requests, HTTPS, HSTS with
low-level protection like IPsec. This is particularly effective for GB where the affected visits reduce from
14% to 1%.

Figure 4.5: Pareto frontiers for state-controlled attacker scenarios

rely on Chinese infrastructure for routing, resolution, or content distribution, but not
Chinese websites. GB has an influence on foreign pages as well, but a larger share of
them is able to deploy helpful countermeasures. In particular, GB is the best scenario to
demonstrate the viability of IPsec, single-handedly reducing the attacker’s success from
14% to 2%. This is likely because of the GB’s access to transatlantic submarine cables.
By contrast, infrastructure that is routed via the US and China is often situated in the
same country, due to their size relative to their neighbors and China’s stated goal of
self-reliance.

From Table 4.4, SRI and then H3+SRI are the cheapest mitigation for the US, it is
H3 and then SRI for China and GB. In all three cases, the optimal countermeasure is
SRI, UR, H3, CT, and IPsec (USA, CN) or SRI, H3, and IPsec (GB).

DANE vs. Certificate Transparency To evaluate DANE, which proactively mit-
igates certificate forgeries, we considered a scenario where we artificially removed CT.
This has the same effect as forgoing the sneakiness assumption concerning after-the-fact
detection of certificate forgeries.

Note first that DNSSEC is a prerequisite to DANE and recall that it is not applicable
on all hosts. We find that the improvement in deploying DANE (asserting the current
end-entity certificate) in addition to DNSSEC is zero in all scenarios. The reason is as
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follows: DANE is only effective if, in addition to the domain and its NSs, all CDNs that
provide JS inclusions deploy DNSSEC. The majority of JS providers do not. We inspected
the remaining cases and, while DANE thwarts attacks based on certificate compromise,
other attacks (mostly on JS inclusions) still apply. Even applying H3 where possible, the
improvement from adding DANE remains zero.

4.7.4 Discussion

Overall, we find that the influence of the biggest players on the market, in particular
Google, is significant and comes close to the adversarial capabilities of a state-sponsored
attacker. At the same time, we find that regardless of the type of attacker we consider,
securing the most popular domains can be primarily achieved by deploying endpoint
mitigations such as HTTPS, HSTS, and SRI. This is sometimes augmented by the use of
UR. Additionally, IPsec plays a significant role in securing against the countries but not
against the service providers.

Moreover, deploying these comparatively cheap endpoint mitigations allows quartering
the user’s exposure against infrastructure attackers with a cost of less than $6M. On
average, this amounts to about $1,000 per domain. The exception is the Google scenario,
where such a decrease is not possible. Likewise, there is little defense against the US.

Despite the sneakiness assumption, DNSSEC achieves little at a high cost. Even
though theoretically, the amortized cost could make these countermeasures a viable al-
ternative considering the number of domains, this is not the case. On the other hand,
our analysis has indicated that IPSec is effective, although expensive, mitigation against
China and GB.

4.7.5 Performance

The graph-based analysis algorithm discussed in Section 4.4 reduces the analysis effort
for a given mitigation by precomputing the attack graph from the property graph. The
runtime of this precomputation step (called ‘attack graph generation’ in Table 4.5) de-
pends on the scenario of choice, ranging from about one minute for Dyn to 3 h for the
US, the country with the largest attack graph. The size of the generated attack graph
governs the time the status quo analysis takes, as it is a simple reachability query. Neo4j
is optimized for such queries, hence, even for the US attack graph that contains about
two million edges, the analysis takes less than a minute. This makes it feasible to analyze
different mitigation scenarios (which remove edges from the attack graph) and analyze
the efficacy of existing mitigations (which adds edges to the attack graph). We combine
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Table 4.5: Performances for Alexa Top 5k. The property graph used in these scenarios
has 70,975 nodes and 329,899 edges.

attack graph generation status
quo (s)

applying mitigation (s) current efficacy (s)

scenario runtime(s) # nodes # edges min med max min med max

US 9843.02 129,371 2,191,112 49.05 59.58 108.98 284.75 94.27 405.65 585.78
CN 558.57 43,812 252,343 6.36 9.87 24.85 35.66 10.91 52.13 83.06
GB 215.16 28,626 50,948 1.55 3.77 14.40 23.71 1.81 60.98 92.45
MyEtherWallet 48.36 12,568 26,010 0.28 1.10 9.96 19.27 0.24 166.70 243.98
Google 125.16 31,598 73,148 1.75 5.15 15.75 24.61 3.08 91.05 143.70
Amazon 979.73 62,131 167,317 8.45 14.16 24.33 34.83 11.60 76.74 115.64
Godaddy 111.44 27,652 33,770 0.89 2.92 13.65 22.20 1.30 40.88 75.76
CloudFlare 345.74 18,293 35,215 0.74 2.09 10.55 21.41 0.70 94.17 143.30
Dyn 33.15 5,152 5,387 0.1 1.43 9.79 18.72 0.08 77.85 116.25

the time to remove or add edges with the runtime of the reachability query and report
the minimum, median and maximum. As expected, there is quite a range: queries that
modify the graph are more expensive than reachability queries. Hence, the more edges a
mitigation removes, the higher the runtime. Half the queries in the largest attack graph
take less than two minutes. Computing the data needed for mitigation-web.github.io, i.e.,
generating the attack graphs and computing the potential and efficacy for all 256 combi-
nations of 8 mitigations, took about 52 h in total. All computations were performed on an
Intel Xeon E5-4650L @ 2.60GHz. Because a Neo4j Cypher query is always computed in
a single thread, we only made use of one CPU core. Further, 32Gb RAM was sufficient.

4.8 Limitations

As our analysis measures the efficacy of mitigations in terms of adversarial success, it
needs to be as precise as possible, ideally capturing all attacks, and only those attacks.
Dax and Künnemann outline how to establish soundness and completeness w.r.t. a Dolev-
Yao attacker interacting with the protocol according to specification [94], but we consider
this out of the scope and take this attacker model as granted.

Moreover, their results suggest a tight relation between rules in the attacker model and
protocol-level security properties. On the one hand, this gives guidance for the formulation
of new attack vectors. On the other hand, precisely describing protocol-level security
properties is known to be difficult and often done in conjunction with verification. Like
the Dolev-Yao model, our model assumes the absence of implementation-specific errors
induced by the user, which could at best be estimated at this point.

https://mitigation-web.github.io/
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In terms of ecological validity, our model must be evaluated on the overall results i.e. if
it actually describes the reality of securing the Internet infrastructure. This is particularly
challenging given that we aim to determine mitigations that should be implemented con-
sidering what-if scenarios where data about attacks are not (widely) available. We tried
when possible, e.g. in the evaluation of the cyber-criminal group scenario, to compare our
results with known deployed mitigations for similar situations. We leave for future work
the investigation of more systematic approaches.

We weigh the domains by the number of visits to reflect their popularity. This is not a
measure of the number of users that can potentially be infected, as the reward is additive
and thus counts visitors that frequent two domains twice. Some domains likely share more
users with each other (thehackernews.com and wired.com) than others (google.com and
bing.com). To compute the number of infected users, we would need information about
the intersection of visitors, ideally for all sets of Alexa-listed domains.

If the attacker has access to one of the NS potentially queried in the name resolution
of a domain, the integrity of the resolution is considered compromised. As there can
be more than one authoritative NS per domain and caching may prevent the iterative
resolution, this is an over-approximation. Similarly, we consider a route between two
ASes compromised if either of the endpoints is compromised, or if a compromised AS is
potentially en route. Additional inaccuracy is introduced by the fact that routes change
over time.

We assumed the attacker wants to avoid global exposure due to the forensic evidence.
As a result, we consider attacks against the PKI as mitigated if the target domain’s
certificate was signed by a CA compliant with Certificate Transparency. We showed in
Section 4.7 that this assumption does not impact the results by analyzing the case in
which CT is disabled and DANE is applied instead. Similarly, we exclude BGP hijacking
and attacks on the DNS root servers. For BGP hijacking, similar results can be obtained
by considering attacks at the network layer. Furthermore, it would require assumptions
on how the (sub-)prefix hijacking and the BGP routes propagate. We leave the imple-
mentation of these attacks for future works.

The threat model focuses on attacks that can lead an attacker to compromise the
content of a web site as a result of physical and logical dependencies. Our model can be
extended to describe additional web attacks, e.g. vulnerable libraries or server misconfig-
urations, that produce a direct compromise of the content of a web site with a structure
similar to rule B.5 for XSS without impacting the methodology discussed in Section 4.4.
We leave for future works this extension.

We over-approximate the efficacy of browser-level mitigations by assuming all users to
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use current browser versions. Our results thus have to be read either as a projection to
the future (about the potential of these mitigation techniques) or as a security analysis for
the share of users with recent browsers. This limitation can be overcome by determining
which browser versions implement which mitigation and using per-website data on browser
usage. We approximate the cost of mitigations by considering a uniform set of rules and
assuming similar cost of labor in the web security sector. All our estimates consider only
direct costs.

4.9 Related Work

The vulnerability of the Internet at the infrastructure level has been studied before
[70, 141], including the European BGP topology [127], and web attacks [300], but the
analysis of mitigations has been largely ignored. An exception is the analysis of the email
infrastructure by Speicher et.al. [308]. They compare mitigations in the email setting
and consider countries as defenders and attackers. A major difference is that most email
communication is captured by considering all pairs from a small number of providers,
which results in a drastically smaller problem size.
We lack analysis of the effectiveness of mitigation strategies to protect the Web at the
different layers of the Internet.

Our analysis follows the Stackelberg planning methodology [306], which was originally
proposed for mitigation analysis in simulated pentesting. This discipline is closely related
to attack graphs, which were first introduced by Philipps and Swiler [257]. Like planning,
attack graphs describe an attack (a plan) as a combination of atomic components (ac-
tions). Both aim at understanding threats that arise as combinations of atomic actions.
There are many flavors of attack graphs, including the monotonic formulation, where only
positive preconditions and postconditions are permitted [26, 135, 168, 178, 235, 246, 327].
The attacker task in our case is monotonic as well, it keeps gaining new assets, but never
loses any assets during the attack.

In terms of formal mitigation analysis, our setting relates to game-theoretic security
models, specifically to Stackelberg competitions, where the game consists of a single ex-
change of move and countermove. In our setting, each ‘move’ here consists of an entire
(defender- respectively attacker-) action strategy. These have been studied to allocate
physical defenses (e.g., [325]), deploy air marshals in planes, place honeypots and security
resources in network of computers and IoT devices [108–111,117], and deactivate products
or patch vulnerabilities in an enterprise network [118]. In particular, Serra et al. [118]
employed a Stackelberg game to compute the trade-off between the impact of vulnerabil-



89
CHAPTER 4. PARETO-OPTIMAL DEFENSES FOR THE WEB

INFRASTRUCTURE

ities and productivity in an enterprise network. They evaluated per-host protection on
synthetic enterprise graphs with up to 30k edges. In contrast, we focus on the analysis of
Pareto-optimal defenses on the entire Internet by focusing on global protections. Thus, we
have a different trade-off between scalability and precision. We evaluated our algorithm
on a snapshot of the Internet based on the Top 5k Alexa domains and attack graphs with
more than 2M edges.
Methodologies to allocate defenses are mainly focused on small (local) networks and syn-
thetic configurations.

Algorithmically, probabilistic defenses against an attacker with uncertainty raises the
complexity of the attacker plan task considerably, which is not necessary for our use case:
none of the mitigations rely on the adversary’s uncertainty about its placement. Another
line of research considers graphical security models that include defending nodes (e.g.,
[182,183]), so-called attack-defense trees, but scale worse than Stackelberg planning [119].

4.10 Conclusions

We proposed a holistic approach to securing the users from Web-based attacks, based on
an extensive model of attacks and defenses (with associated costs and security benefits),
and an optimized graph algorithm. We analyzed the susceptibility of the top 5K Alexa
domains against attackers ranging from cyber-criminal groups to infrastructure providers
and nation-state actors. We find that large infrastructure providers are almost as powerful
as nation-state attackers. We were able to compute solutions that significantly increase
the security of the users. Interestingly, while significant effort has been spent to develop
and deploy high-cost mitigations like IPsec or DNSSEC, our analysis highlights that the
increase in security is enabled merely by the usage of cheap endpoint defenses like HTTPS,
HSTS, and SRI.

Our approach is easy to extend and adapt, and thus provides a foundation for fu-
ture analyses at the web scale. For example, it can be easily extended with additional
mitigations like CSP. Likewise, new technological proposals to improve web security can
immediately be added to the mitigation model to compete against existing technologies.

While our approach scales well in the size of the property graph, it does not scale well
with the number of possible mitigations, limiting our analysis scenarios where mitiga-
tions are adopted globally, instead of host-by-host. Future work can investigate effective
pruning techniques on the defender level like some of those presented in [306] and [334].
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Chapter 5

Measuring SOC Analysts Investigation
of Cyber attacks using the Entropy of
Task Complexity

Security Operations Centers are critical socio-technical components of the security of
an IT infrastructure. Unfortunately, it is still unclear how to measure the accuracy of
the interplay between humans and technology when dealing with the alerts generated
by cyber-attacks. In this chapter, we propose to model the complex tasks that a SOC
analyst performs during the investigation of the kill chain of attack. With this approach,
we explicit the underlying processes required when investigating cyber-attacks to better
understand and measure the causal relations between SOC performance and technical
skills or technological changes. We evaluated our model with an experiment with 368
students using network traces of intrusions to determine the impact on ticket accuracy of
technical skills and technological changes in the SOC. We found that technical skills help
but (simple) technological changes do not.

5.1 Introduction

IT infrastructures are constantly monitored by humans and machines to identify the pres-
ence of malicious activities on a network. The alerts generated by IDS are processed in
a Security Operations Center (SOC) that filters false alarms from events that need fur-
ther investigation and response. To effectively triage alerts, SOCs may use a hierarchy
where higher tiers treat a subset of escalated incidents but analyze each incident more
in-depth. Tier 1 analysts compose the largest group with generally less experienced an-
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alysts compared to other tiers. This group focuses on real-time monitoring of security
incidents, triages a large number of alerts and logs per day, and does not have much time
to investigate each alert. Tier 2 analysts are often more experienced analysts who analyze
each incident in greater depth and make decisions on appropriate next steps to take if
any (e.g. ignore, report to customers, engage in attack containment strategy, etc.). This
in-depth analysis is possible because Tier 2 analysts only deal with incidents escalated
from Tier 1 analysts [146]. Thus, the accuracy of the reported incident by the Tier 1
analyst is of critical importance to allow Tier 2 analysts to perform in-depth investiga-
tions. The lack of ground truth of cyber-attack makes SOC performance evaluation a hard
task [273] and current performance metrics are detached from the real-world experience of
analysts [180,321]. The misalignment between performance metrics and analyst tasks can
create suboptimal security outcomes when SOC operations favor increasing metrics scores
(e.g. by reducing the mean time-to-analyze) over performing accurate analyses of secu-
rity events. This in turn can lead to analysts burnout [320] as well as making impossible
comparisons across SOC configurations, or differently managed SOCs [273,294]. A recent
approach to solve this problem is to analyze cyber-attacks and defenders’ performance
in isolated and virtualized environments [273, 332]. Even in a controlled environment, it
is hard to measure performance due to the different complexity of the operations exe-
cuted by attackers and defenders. Evaluating the performance based only on the outcome
(success or failure of detection) will likely produce imprecise results [332].

In this chapter, we propose a novel approach by extending Wood’s classical theory of
task complexity [359] and recursively defining the tasks and acts performed during the
analysis of a cyber-attack. We investigated the following questions:

RQ3a: How to model the task complexity of investigating a cyber-attack?

RQ3b: How task complexity helps in comparing changes in accuracy due to technical
(skills of analysts) and technological differences (different filtering of alerts)?

We focus on the process of analyzing traces (using alerts) of cyber-attacks to determine
the phases of the intrusion from Tier 1 analysts. Our focus is on the complexity of the
investigation of the attack itself. In this chapter we make the following contributions:

• we extended Wood’s theory of task complexity by employing entropy to describe
how information and acts are distributed and concur in the complexity of a task.
We apply the model to describe the investigation of the kill chain of cyber-attacks
by a SOC analyst (Section 5.3).

• we propose an approach to measure the accuracy of SOC analysts’ incident reports
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based on the correct and wrong content of a ticket produced during the investigation
weighted by the associated complexity (Section 5.4).

• we evaluate how analysts’ skills and SOC alert filtering affects the accuracy in a
controlled experiment with 368 students using traces of real attacks (Sections 5.6
and 5.7).

We provide the low-level details to compute the complexity score in the Appendix C.0.1.
Non-goal: We do not aim to model the overall complexity of a SOC analyst’s daily

job activity that includes several tasks not related to the investigation and reporting of
cyber-attacks [180,322].

5.2 Background

To make the chapter self-contained we introduce the key concepts related to SOCs and
task complexity.

Security Operations Centers Security operations centers (SOC) aim to monitor,
detect, report, and, oftentimes respond to incoming cyberattacks or other security inci-
dents in an organization. SOCs oftentimes employ (network) intrusion detection systems
(NIDS), that capture network traffic and generate alerts on suspicious activities defined
by an organization [372] and encoded in so-called signatures. Because of the general-
ity of many of those signatures, (N)IDSs are known to generate a very high volume of
alerts [371], of which the vast majority are either irrelevant (i.e. not indicating actual
suspicious behaviour), or false positives [321]. In SOCs, human analysts are assisted by
technology (in the form of correlation engines, also called SIEMs) with the role of identify-
ing incidents from the noisy data [321]. Most SOCs employ a Tier-ed system, where Tier
1 analysts have the crucial role of distinguishing ‘wheat from chaff’ to pass on relevant
information to the higher tiers on potential incidents in a monitored environment [321].

Much of the literature has focussed on the hardship of finding ‘true positive’ alerts
in a sea of ‘false positives’ [16, 130]; yet, an often overlooked task of a (tier 1) analyst is
that of correctly investigating a ‘true positive’ alert such that appropriate, complete, and
timely information is passed on through to the higher tier analysts.

Correctly identifying and investigating a ‘true positive’ is a highly complex task, where
the analyst pieces together information cues from multiple sources, and references multiple
stages of an attack [273]. Despite it being key to determining the performance of a Tier
1 analyst, it is often hidden in aggregate metrics [294,295] or overlooked altogether.
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Indeed, as almost all alerts are ‘not interesting’ (see the ‘base rate fallacy’ first outlined
in [39]), simply characterizing a Tier 1 performance on the basis of their ability to mark
false positives as such can lead to misleading conclusions. On the other hand, the ability
of Tier 1 to execute complex tasks involving multiple and diverse information sources
should be captured to appropriately describe an analyst’s performance in identifying and
characterizing the (few) alerts that matter.

Task Complexity and the Wood’s Basic Model One key factor that determines
human performance is the complexity of the task. The seminal work of Wood [359]
defined the complexity of a task as a function of its structure. Wood identified two task
components:

• acts : are the actions required to create the product.
• information cues : are pieces of information utilized by an individual to perform

decisions during a task.
From these elements, he defined two complexity dimensions: component and coordinative
complexity. Wood’s component complexity is a direct function of the number of distinct
acts and information cues needed to achieve a given task. The component complexity
considers the redundancy of the acts and information cues (component redundancy). For
example, if an act is performed multiple times to achieve a specific task, the component
complexity is reduced to a single act. The component redundancy also applies in case the
same knowledge, defined in terms of information cues, is used by different acts related to
a task. An act takes part in the overall complexity if it requires one or more information
cues. Wood’s coordinative complexity is a function of the relationship between informa-
tion cues and acts typically as causal relations between acts, in which an act must be
performed before another.

We started from the Wood’s model [359] to define a model for the SOC tasks com-
plexity because it is the most widely used objective complexity model [203] and other
attempts to describe task complexity [59, 152, 278] are based on the elements of Wood’s
model [152, 203]. A limitation of Wood’s model is that focused on "simple" tasks and
does not scale up to more complex and structured tasks, such as those of a SOC analyst.
Consider a task in which there are dozens of distinct information cues that must be em-
ployed to perform a single act. For example, an analyst has commonly to relate alerts
from different sensors and sources (e.g. alerts from a Network Intrusion Detection System
with alerts from a Cloud environment) and evaluate them in the scope and context of
the monitored environment together with relevant metadata such as information about
the targeted systems (e.g. vulnerability data), and other network data and logs on net-
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Table 5.1: Task Elements

Element Definition Example
Act An act is an atomic action that com-

poses a (sub-)task.
Analysis of the connections response
status in an IDS log.

External Inputs
(IE)

Inputs not produced by any other
sub-task associated with the task.

IP address in an alert, domain name of
a malware C&C.

Total Inputs
(IT )

All inputs utilized by the acts com-
posing a certain (sub-)task. Con-
tains both IE and the inputs that
are the result of previous acts or sub-
tasks.

IP address of a compromised machine
in the network obtained from a previ-
ous sub-task and used to determine lat-
eral movements.

work/system activities temporally adjacent to the event of interest. This task should have
a higher complexity than a task with the same amount of information cues that can be
split into several smaller independent subtasks with a subset of the inputs each. In Wood’s
theory, two tasks with the same number of inputs, but a different distribution of those
over the acts, would have the same complexity. This can lead to a task underestimation
that is the main source of burnout [320].

5.3 A New Theory of Task Complexity

We define task complexity by means of its entropy to measure the accuracy of SOC
analyst incident reports on tasks of comparable complexity. High accuracy of incident
reports results in more valuable information for the Tier 2 analyst analysis when the
ticket is escalated. Similarly, low accuracy report results in a higher workload for the Tier
2 analysts, that must determine all the errors in the escalated tickets. Yet such analysis
only makes sense if the tasks relative complexity can be assessed.

5.3.1 A Recursive Model of Task Complexity

To recursively evaluate the complexity of a task, we identify the following elements: Acts,
External Inputs (IE), and Total Inputs (IT ). Table 5.1 summarizes each element. We
always satisfy the following constraints: IE ≤ IT and #Acts ≤ IT .

A task can be composed of a sequence of sub-tasks and recursively, a sub-task can be
split into several sub-sub-tasks. A (sub-)task is atomic if it is composed of a single act.
A sub-task does not take part in the complexity if it does not require any input.

We considered component redundancy in which if the same sub-task is repeated mul-
tiple times to achieve a specific task, the sub-task is counted only once. An example is
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the analysis of malware, in which the executable is uploaded multiple times on different
antivirus scanners. Indeed, the procedure can be automated e.g. using VirusTotal.

In contrast with Wood [359], we consider the reuse of the same input over different
acts as part of the overall complexity as one needs to know that the information must be
used multiple times. For example, a symmetric key to encrypt C&C communications is
required to decode both client and server packets.

The classification of an input as an external one depends on the point where one
computes the complexity. For example, when computing the IE and IT for a sub-task
referring to the identification of the attack vector phase, one could consider all inputs to
be external, even if some of them come from other sub-tasks. We consider an external
input if it does not come from any other sub-task that the analyst must perform to
identify the kill chain of an attack. Following the previous example, the information that
an internal IP is compromised is necessary to identify the lateral movement phase of an
attack. This information does not come from any external sources but it is the result of a
previous sub-task of the investigation. We will then evaluate the correctness of sub-tasks
depending on the successful achievements of previous sub-tasks whose output is required
as input (see further Section 5.6).

Given the #Acts, IE, and IT , we can compute two dimensions of complexity that
aggregate and generalize the original Woods elements into different dimensions:

Information Complexity (IC) is obtained by the ratio of IE and IT . It is a value
between 0 and 1. A value near 1 means that the information required to perform a task is
obtained mostly from external sources and is not the result of internal processing of sub-
tasks composing the task. Given a fixed value of IT , the smaller the IC the more complex
the task because it requires producing a higher amount of information to complete the
task. While this definition seems, at first sight, counterintuitive, its entropy provides
the right intuition as we shall see later in the section. As the produced information is
necessary to perform subsequent acts in the task, it generates a causal relation between
acts.

IC =
IE
IT

(5.1)

Structural Complexity (SC) is obtained by the ratio of #Acts and IT . It is a value
between 0 and 1. A value near 1 means that there is a more uniform distribution of
information (i.e. the inputs) over all acts. Given a fixed value of IT , the smaller the SC,
more complex the task as it requires each act to process more information on average.
The reciprocal of the Structural Complexity describes the average number of inputs for
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each act.
SC =

#Acts

IT
(5.2)

5.3.2 Entropy of Tasks Complexity

Shannon entropy defines the amount of information contained in a random variable which
is linked to how difficult is to guess the result of the variable (in our case how much
"surprise" a variable reading produces). A random variable with a probability p equal
to 1 makes the task of guessing the value straightforward. Hence, from a complexity
perspective, a value close to 1 is easy to guess and no complex analysis is needed.

We define the entropy of a task complexity over the Information and Structural Com-
plexity to measure the amount of information to produce and employ in an act respectively.

HIC = −(IC) ∗ log2(IC) (5.3)

HSC = −(SC) ∗ log2(SC) (5.4)

For example, a task with HIC = 0 means that the amount of new information that
the SOC analyst needs to produce is zero and can just rely on the external information
provided by the IDS.

5.4 SOC Analyst Task Complexity

We now answer to RQ3a by instantiating the complexity of the investigation of cyber-
attacks by a SOC analyst and using that to measure the accuracy of the incident reports
and thus the effectiveness of technical and technological changes in the SOC.

Each SOC organization may include among the duties associated with a Tier 1 analyst
different sub-tasks and unfortunately T1 analysts spend most of their time looking at
irrelevant data [16, 322]. So our model focuses on the specific task of the analyst to
identify an attack from the sequence of alerts issued by the SOC, i.e. when they figured
out that they might be looking at an alert that involves an attack. Following the MITRE
ATT&CK tactics framework [5], the analyst should eventually identify:

• victim
• attacker
• reconnaissance steps
• exploited vulnerabilities
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The task of investigating cyber-attacks by a SOC analyst can be complex if observed externally with
several different inputs to consider. However, it is decomposed into a sequence of sub-tasks in relation
to each other. Each sub-task requires part of the overall input of the general task. Depending on the
scenario, the sub-task can be further split into a sequence of acts. A SOC analyst activity includes also
additional tasks not related to the investigation of the phases of an attack. The investigation typically
starts from the identification of a victim or attacker machine and then pivots to determine all attack
phases (reconnaissance, vulnerability exploited, malware C&C, data exfiltration). Different information
(IP address1 , IP address2 , . . . ) must be processed by different sub-tasks (Identif. Victim, Identif.
Attacker, . . . )

Figure 5.1: SOC analyst investigation of cyber-attacks decomposed in sub-tasks with their
causal relations

• malware delivery
• exfiltration steps

Figure 5.1 shows the investigation of cyber-attacks as a causal bayesian network [253].
Each phase is a sub-task that uses outputs produced by other sub-tasks as inputs for its
acts. For example, the identification of the victim produces as output the exploited victim
IP, which can then be used to identify the exploited vulnerability. Instances of attacks
are dynamic and evolve but this does not change the types of the Tier 1 analyst’s tasks.
A type does not change over time thus we do not need to model their evolution [359].

Table 5.2 summarizes for each sub-tasks the IE, IT , output, and causal relations with
other sub-tasks. There are many possible outputs for each sub-task. Here, we focus on
the outputs indicated in bold in Table 5.2.
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Table 5.2: SOC analyst sub-tasks complexity

In the most general scenario, for each sub-tasks, each alert body is unique. The same alert body may be
reused for different sub-tasks. The reuse of inputs takes part in the overall complexity (Section 5.4). A
sub-task can produce different outputs, we reported in bold the one used in the experiment (Section 5.6)

Sub-task IE IT Output(s) Causal Req(s) Description
Identif.
Victim

IP address1 ,
IP position1 ,
alert body1

IE(Identif. Victim) +

IT (analyze body_alert1 ) −
IE(analyze body_alert1 )

IP Victim,
system type,
. . .

/ Identified by an alert in which a des-
tination/source receives/sends a sus-
picious packet.

Identif.
Attacker

IP address2 ,
IP position2 ,
alert body2

IE(Identif. Attacker) +

IT (analyze body_alert2 ) −
IE(analyze body_alert2 )

IP Attacker,
geolocation, . . .

/ Identified by an alert in which a
source/destination sends/receives a
suspicious packet to/from a victim.

Identif.
Recon

IP position3 ,
alert body3

IE(Identif. Recon) +

IT (analyze body_alert3 ) −
IE(analyze body_alert3 )

Recon tech-
nique, timing,
. . .

Identif.
Victim OR
Attacker

Identified by alert(s) in which the at-
tacker sends probes to IP(s) of the
network.

Identif.
Vuln.

IP position4 ,
alert body4

IE(Identif. Vuln.) +

IT (analyze body_alert4 ) −
IE(analyze body_alert4 )

Vuln ex-
ploited, sw
affected, . . .

Identif.
Victim OR
Attacker

Identified by an alert in which the
attacker sends a packet containing an
exploit to the victim.

Identif.
Malware
Delivery

IP address3 ,
IP position5 ,
alert body5

IE(Identif. Mw Delivery)+
IT (analyze body_alert5 ) −
IE(analyze body_alert5 )

IP Server,
malware fam-
ily, . . .

Identif.
Victim OR
Attacker

Identified by an alert in which the
victim initiates a suspicious connec-
tion towards an external IP.

Identif.
Exfiltr.

IP address4 ,
IP position6 ,
alert body6

IE(Identif. Exfiltr.) +

IT (analyze body_alert6 ) −
IE(analyze body_alert6 )

IP C&C, exfil-
trated info, ge-
olocation, . . .

Identif.
Victim OR
Attacker

Identified by an alert in which the
victim initiates a suspicious connec-
tion towards an external IP.

Sub-task - Identification Victim The victim can be identified by alerts that describe
suspicious activities directed to or from a machine in the network.

Example 5.4.1. An alert reporting that a machine in the network has received a packet
matching the signature of an exploit or an alert reporting that a machine has sent a packet
containing credentials.

The sub-task can be split into two sub-sub-tasks :
• analyze body_alert/log
• analyze the IP

The first sub-sub-task can be recursively expanded in terms of IT , IE, and # Acts.

Example 5.4.2. The body of the alert can contain information like HTTP requests, user-
agent, encoding, etc. (IE). Furthermore, an analyst should first get the URL contacted,
and then probe the content of the malicious website (# Acts). The expansion depends on
the specific scenario and we will instantiate them in Section 5.5.

The second sub-sub-task can be seen as an act that requires considering as information
the IP address and its position (source or destination of the connection) in the alert. The
IP position is important to contextualize the results of the analysis of the body alert.

There is no causal relation between the two sub-sub-tasks (analyze the IP and analyze
body alert) as well as between other sub-tasks.
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Sub-task - Identification Attacker The attacker can be identified by processing
similar alerts as the one used for the previous sub-task. We have the same structure of
the Identification Victim.

Example 5.4.3. An alert reporting that a certain external source has sent to a destination
in the network a suspicious packet containing an exploit or a probe or an alert reporting
that a certain machine in the network has sent a suspicious packet containing credentials
to an external machine.

Sub-task - Identification Reconnaissance The (active) reconnaissance phase can be
identified by processing alerts related to attacker’s actions aimed at gathering information
from the victim or the network.

Analysts can link the reconnaissance to an attack using either the attacker or the
victim IP because not all scans are linked to attacks and different IPs can be employed
in sequence to perform different steps of the kill chain (e.g. reconnaissance and ex-
ploitation can be performed using different machines) [198]. There is a causal rela-
tion between the sub-tasks (Identification Victim/Identification Attacker and
Identification Reconnaissance). Thus, the victim/attacker IP information is not
considered part of IE but it is instead obtained from a previous sub-task.

In case of a scan, multiple packets are sent thus the analyst needs to observe n alerts
and analyze n body_alert and n times the sender information. There is no causal relation
between these n acts. Given that most of the SOC alerting software (e.g. IDSs) auto-
matically cluster scan attempts into a single alert, the analyst does not need to analyze n
distinct alert body, but a single alert that summarizes a scan attack. This alert body will
contain additional information to use as an external input: the information that there
have been several probes.

Example 5.4.4. An alert reporting that a certain external source has (repeatedly) con-
tacted IPs in the network on specific ports.

Sub-task - Identification Vulnerability The vulnerability exploited during an attack
can be identified by processing alerts related to the exploit phase performed by the attacker
against the victim. Similarly to the reconnaissance sub-tasks, there is a causal relation
with either the sub-tasks Identification Victim or Identification Attacker. In
case the type of vulnerability requires multiple payloads (e.g. weak password or race-
condition via brute force), multiple alerts are clustered by the SOC tool by adding in
the body of the alert information about the brute-force attempt. Also, there is no causal
relation between alerts related to e.g. different failed logins.
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Example 5.4.5. An alert reporting that an external source sent to a destination in the
network a suspicious packet containing an exploit.

Sub-task - Identification Malware Delivery The malware delivery phase can be
identified by processing alerts related to a suspicious connection from the victim to an
external IP belonging to the attacker.

Example 5.4.6. An alert reporting that a second-stage malware or an exploit for privilege
escalation was downloaded by an internal machine.

The analysis of the alert can require a sequence of acts to resolve the domain contacted,
access the website content, and decode the content to determine the presence of an exploit.
Thus, there is a causal relation between the sub-tasks Identification Victim/Attacker
and Identification Malware Delivery.

Sub-task - Identification Exfiltration The exfiltration phase can be identified by
processing alerts with a structure similar to the delivery phase. The difference stays in
the alert content analyzed by the SOC analyst.

Example 5.4.7. An alert reporting a suspicious connection started from the victim to-
wards an external IP, in which the source sends sensitive information e.g. credentials to
an external machine.

5.4.1 Accuracy of the SOC Analyst Task

We measure the accuracy using the overall correct (true information (T)) and wrong
(false information (F)) content of the tickets referring to actual attacks using the sum of
the entropy of the correctly and incorrectly achieved sub-tasks, weighted by their total
input IT . These values measure the accuracy of the SOC analyst in investigating attacks
by looking at the information issued in the tickets. We underline that the values are
computed on tickets that identified actual attacks because the unrelated tickets do not
have a characterization of their complexity. Let t ∈ tickets , p ∈ phases we define:

H(IC|T ) =
∑
t

∑
p∈Correct

IT p ∗HICp (5.5)

H(IC|F ) =
∑
t

∑
p∈Wrong

IT p ∗HICp (5.6)

H(SC|T ) =
∑
t

∑
p∈Correct

IT p ∗HSCp (5.7)
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H(SC|F ) =
∑
t

∑
p∈Wrong

IT p ∗HSCp (5.8)

The outcome on each dimension (IC and SC) can be influenced by the skills of the
analyst, as well as by the SOC tools available. We performed an experiment to deter-
mine the effect of these factors on the accuracy of SOC analyst tickets related to the
investigation of a cyber-attack.

A question that can arise is how to handle path dependencies, in particular when
measuring false information produced by SOC analysts where an early mistake in the in-
vestigation, can propagate to the subsequent steps. From Figure 5.1, we can observe that
the only mistakes that can influence the next phases of the investigations relate to the
identification of the attacker and victim, from which other phases of the attack are based
(i.e. reconnaissance, vulnerability, malware delivery, and exfiltration). However, in our
model, false information in the identification of a phase is considered independent from
false information in the other parts of the tickets. The motivation is that, although e.g.
a wrong attacker can lead to looking into unrelated alerts, the actual error is performed
on the subsequent sub-task where the analyst failed to interpret correctly the information
clues and determine that the alert is unrelated to the actual attack. For example, in the
experiments (see Section 5.6), we observed tickets where the NS server was incorrectly
identified as the attacker, and the subsequent vulnerability was incorrectly classified as
a DNS RCE. In this case, although the incorrect classification of the attacker leads the
analyst to look into DNS log requests, the false information in the vulnerability identifi-
cation is due to the fact that the analyst did not correctly identify the connection as a
benign DNS query.

5.5 Attack Scenarios Complexity

We instantiated the model of SOC task complexity (Section 5.4) with two attack scenarios
injected in a platform that emulates a SOC infrastructure [273]. The scenarios’ sub-tasks
could be solved in different ways i.e. processing different alerts.

We present the two attack scenarios available in the tool [273] used for the controlled
experiment.

Attack scenario MIRAI This attack reproduces the phases of an infection by the
MIRAI botnet [30]. Figure 5.2a summarizes the phases of the attack. The malware scans
several ports on the subnet /22 of the internal network from the IP 199.19.215.23. It
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Attacker 
199.19.215.23 

121.145.34.0/22

Victim
121.145.34.116(1) RECONNAISSANCE: Port scan 

(2) VULNERABILITY: Brute force attack on SSH login

(1) RECONNAISSANCE 

(1) RECONNAISSANCE 

 Malware 
Delivery 
Server

91.198.120.42

(3) DELIVERY: Download shellcode

Attacker 
199.19.215.29 

(4) EXFILTRATION: username, pw

(a) MIRAI Attack Scenario

Attacker
54.37.60.203

121.145.34.0/22

Victim
121.145.34.27

(1) RECONNAISSANCE: Port scan 

 Malware 
Delivery 
Server

192.124.249.8

(3) DELIVERY: Download shellcode

Attacker
46.38.239.190

(4) EXFILTRATION: username, pw

Attacker
31.220.56.38

(2) VULNERABILITY: RCE  EXIM

(b) EXIM Attack Scenario

Figure 5.2: The network architecture and sequence of phases of the attack scenarios

attempts a brute-force password attack on the SSH port. It eventually gets access to
an internal machine with IP 121.145.34.116 (the actual victim IP cannot be shown for
anonymity purposes). From this machine, it downloads a shellcode to escalate from an
external domain p.pi.fi (IP 91.198.120.42), and finally exfiltrates the credentials to the
external IP 199.19.215.29.

Attack Scenario EXIM This attack reproduces the exploitation of a Remote Com-
mand Execution vulnerability against the EXIM SMTP server [88]. Figure 5.2b sum-
marizes the phases of the attack. The attacker performs a stealthy scan from the IP
54.37.60.203 to determine the vulnerable server on the IP 121.145.34.27. The at-
tacker sends a payload from another IP 31.220.56.38 to exploit the vulnerability on
the server. It downloads an exploit from exploit-db.com (IP: 192.124.249.8), and fi-
nally, it exfiltrates sensitive data to an external machine with domain l6asd8cs-google-
support.abc.xn-p2a.jetzt (IP: 46.38.239.190).

Table 5.3 summarizes the # Acts, IT , IE, and the entropy for the two complexity
dimensions. The overall complexity and entropy are also computed for the entire attack
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Figure 5.3: Sub-tasks and causal relations in attack scenarios. Details in Appendix C.0.1

scenario. Figure 5.4 shows the entropy of the task complexity dimensions for MIRAI and
EXIM. Each point represents a sub-task corresponding to the identification of one phase
of the overall attack. Each phase can not only differ by the IC and SC but also on the
total amount of information required (IT ). Figures 5.3a and 5.3b show the instantiation
of Figure 5.1 for the MIRAI and EXIM attack scenario respectively.

Our model is based on the concept of objective task complexity where the task com-
plexity is only defined by the task characteristics and is independent of the task perform-
ers. Therefore, although SOC analysts could interact with the task in different ways, for
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Table 5.3: Task complexity of sub-tasks by attack scenario. Details in Appendix C.0.1

MIRAI EXIM
Sub-task # Acts IE IT H(IC) H(SC) # Acts IE IT H(IC) H(SC) Causal Requirements
Identification Victim 2 3 3 0.0 0.270 2 3 3 0 0.270 -
Identification Attacker 2 3 3 0.0 0.270 2 3 3 0 0.270 -
Identification Reconnaissance 2 3 4 0.216 0.347 4 2 5 0.366 0.178 1
Identification Vulnerability 4 3 6 0.347 0.270 2 2 3 0.270 0.270 1
Identification Delivery 3 3 5 0.306 0.306 4 3 6 0.347 0.270 1
Identification Exfiltration 2 3 4 0.216 0.347 4 3 6 0.347 0.270 1
Overall Task 15 18 25 0.236 0.306 18 16 26 0.299 0.255 4

example similarly to what was observed by Mantovani et al. [208], by skipping information
and steps, the overall complexity of the task and sub-tasks do not change. Our model
allows one to measure the overall performance that can be influenced by the approach
and knowledge of the analyst as we will show in section 5.7.

We classified tickets as related to either MIRAI or EXIM if at least one attacker
IP/domain or victim IP is present in the ticket in the "Attacker IP" or "Victim IP"
fields. All other tickets were considered unrelated to the scenarios. Only for the tickets
that identify one of the two scenarios, the researchers analyzed the rest of the tickets
to determine which sub-tasks were correctly or incorrectly performed. If a group issued
two tickets for the same attack, only the most complete one was considered. Each sub-
task reported in Table 5.2 is scored with one of the following values: OK, NO, and
MAY. Table 5.4 and Table 5.5 show the general guidelines utilized for the scoring. The
rules in Table 5.4 apply to tickets that contain at least one attacker or victim IP in the
corresponding fields. While Appendix C.0.3 in the appendix describes the instantiation
for the two scenarios.

5.6 Experimental Procedure

We describe the experiment structure, the demographics of the groups, and the scoring
mechanism.

5.6.1 Experiment Structure

The experiment started with a short introduction to a compacted version of MITRE
Att&ck Tactics (Reconnaissance, Initial Access, and Command & Control). Followed
by an introduction to the tools used in the experiment (Kibana and Squert). Students
practiced with the tools via a warm-up exercise. Figure 5.5 summarizes the timeline of
the experiment.
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The Entropy for Information Complexity (IC ) and Structural Complexity (SC ) for the MIRAI and EXIM
sub-tasks with different values of IT . Different sub-task can present a similar value in one complexity
dimension but differ in the other. For example, the sub-task Exim Vulnerability and Exim Exfiltration
present a similar structural complexity but the latter has a higher information complexity as it requires
one to produce more information to perform the sub-task.

Figure 5.4: Entropy for MIRAI and EXIM attack scenarios

Introduction to MITRE 
Att&ck Tactics

Introduction to Kibana 
and Squert tools

Warm-up exercise

Main experiment

Report attacks

30 
minutes

15 
minutes

70 
minutes

The experiment consisted of an introduction to the phases of an attack following the MITRE Att&ck
framework, followed by an introduction to the tools, and a warm-up exercise. The main experiment
consisted of 50 minutes of alert investigations and 20 minutes for reporting the attacks.

Figure 5.5: Experiment Timeline
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Table 5.4: Guidelines scoring MIRAI and EXIM tickets: attacker and victim IPs

Score EXIM Attacker EXIM Victim MIRAI Attacker MIRAI Victim
OK The reported at-

tacker IPs include
only the Attacker
IP ∨ (the Attacker
IP ∧ ≤2 wrong IPs ∧
correct explanation)

The reported victim
IPs include only the
Victim IP ∨ (the
Victim IP ∧ ≤2
wrong IPs ∧ correct
explanation)

The reported at-
tacker IPs include
(at least 2 out of
3 Attacker IPs ∧
≤2 wrong IPs) ∨ (1
Attacker IP and ≤ 2
wrong IPs ∧ correct
explanation)

The reported victim
IPs include only the
Victim IP ∨ (the
Victim IP ∧ ≤2
wrong IPs ∧ correct
explanation)

NO The reported at-
tacker IPs include
(the Attacker IP ∧
>2 wrong IPs) ∨ (a
mix of IPs from the
two attack scenarios)
∨ (only wrong IPs
but ’EXIM Victim’
contains the Victim
IP)

The reported vic-
tim IPs include (the
Victim IP ∧ >2
wrong IPs) ∨ (a
mix of IPs from the
two attack scenar-
ios) ∨ (only wrong
IPs but ’EXIM At-
tacker’ contains the
Attacker IP)

The reported at-
tacker IPs include
(the Attacker IP ∧
>2 wrong IPs) ∨ (a
mix of IPs from the
two attack scenarios)
∨ (only wrong IPs
but ’MIRAI Victim’
contains the Victim
IP)

The reported victim
IPs include (the Vic-
tim IP ∧ >2 wrong
IPs) ∨ (a mix of IPs
from the two attack
scenarios) ∨ (only
wrong IPs but ’MI-
RAI Attacker’ con-
tains the Attacker
IP)

EMPTY The reported at-
tacker IP is empty

The reported victim
IP is empty

The reported victim
IP is empty

The reported at-
tacker IP is empty

MAY Everything else Everything else Everything else Everything else

Table 5.5: Guidelines scoring tickets phases

Score Explanation Example Attributed Complexity
OK (The reported attacker’s IPs include only

actual Attacker’s IPs ∨ the reported vic-
tim’s IPs include only actual Victim’s
IPs) ∧ phase is right

Reported the C&C
server IP for the ex-
filtration phase

+H(IC)/H(SC)

NO (The reported attacker’s IPs do not in-
clude any actual Attacker’s IPs ∧ the re-
ported victim’s IPs do not include any ac-
tual Victim’s IPs) ∨ phase is wrong

Reported a wrong IP
for the C&C server
and the victim.

−H(IC)/H(SC)

MAY Everything else Reported the C&C
server IP along with
other wrong IPs.

0
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The main experiment consisted of 50 minutes of live investigations followed by 20
minutes of reporting the attacks on an online platform. The students were allowed to ac-
cess the tools during the reporting phase. We asked the group to fill out tickets with
the attacks identified. The ticket form asks to insert the information in the output
column of the sub-tasks in Table 5.2 in bold (Identification Victim, Identification At-
tacker, Identification Reconnaissance, Identification Vulnerability, Identification Delivery,
and Identification Exfiltration). The groups were allowed to issue up to 5 tickets.

SOC Filtering Rules We employed two types of SOCs that differ only in the deacti-
vation of a set of rules related to policy violations (e.g. due to the use of TOR or P2P
connections) and not on the rules that are triggered by the attack scenarios. This is to
simulate a less fine-tuned SOC environment that generates noisy alert output [346]. The
SOC Basic contains all default rules from Suricata, while the SOC Filter contains all
rules of Basic filtering out the ones related to policy violations. We injected into the two
SOC the same network traffic that includes the two attack scenarios (MIRAI and EXIM).
We assign groups randomly to the two SOC types.

Students Background and Skills Assessment Some days before the experiment,
students were asked to individually fill out a short questionnaire to self-assess their back-
ground on a Likert scale from 1 to 5 regarding the following topics: Web programming,
Network Security, Network Analysis, and Hacking. To reduce interpretations in the self-
assessment, instead of the classical terms like "Familiar" and "Expert", we "instantiated"
the possible options with more concrete entries. For example, for assessing the Hacking
background we used "I have attended a couple of lectures in a course", "I am a profes-
sional pen tester (SANS certified or similar)...". Table C.2 in the Appendix shows an
example of the instantiation.

In addition, we asked the students ten questions on technical aspects of the same topics
of the background. The questionnaire is inspired by the SANS workforce test. We have
considered using the SANS questionnaire directly but we have decided not to because
the complete test requires over an hour to assess the participant’s skills. Table 5.6 shows
for each topic, the number of questions asked. Each question is structured as a multiple
choice in which there is a unique right answer.
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Table 5.6: Skill technical questions

Category # of questions
Web programming 2
Networking 5
Network analysis 2
Vulnerability 1

5.6.2 Demographics and Ground Truth Determination

Participants Demographics Students belonged to two distinct degrees. The first
degree, Spec, is enrolled in a Computer Science MSc and students were recruited from
a cyber-security course that requires participants to have completed a set of prerequi-
site courses on information security topics like Network Security and Security Testing.
The second degree, Gen did not require any prerequisite courses on security. Thus the
Spec group presents a security-based educational background compared to the Gen group.
Furthermore, students in the Spec attended a specific lecture and an exercise on IDS us-
ing Snort. Students were free to organize in groups of at most 2 members. We collected
data in three rounds carried out in three consecutive academic years. The first and third
experiments were carried out in presence, while the second experiment was carried out
online due to the COVID-19 pandemic (we discuss the possible impact in Section 5.8).

Table 5.7 summarizes the final number of students, groups, and tickets divided by
degree (Spec, Gen) considered in the analysis. We had 368 students in the experiment
composing 184 groups. Table 5.9 shows the average background and skills of the groups
as a sum of the individual assessments.

Scoring of Tickets For each round, two researchers manually inspected the tickets
issued by each group and determine if the ticket identified or not one of the two scenarios
(MIRAI or EXIM) by analyzing the IPs and domains identified by the group. The first
two rounds were evaluated by two researchers, the third round was evaluated by one of the
previous researchers and a third researcher who was not involved in the previous rounds.
We ignored the tickets from groups composed of a single student or for which at least
one student in the group did not submit the skill assessment questionnaire, for a total of
33 groups. For some of these cases, we identified misspelled student IDs. We manually
investigated IDs and linked questionnaires to tickets issued if the ID does not differ by
more than one digit. We assessed the agreement in the annotation of the sub-tasks by the
two researchers using the Cohen κ. For the first two rounds, we obtained values that range
between 0.97 and 1 for the different phases, for the third round the values range between
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Table 5.7: Number of Students, Groups and Tickets issued by Degree

Degree # students # groups Filter # groups Basic # tickets
Gen 320 78 82 409
Spec 48 13 11 79
Total 368 91 93 488

Table 5.9: Groups Mean and Std Skills and Background

Overall Skills (Groups of 2) Spec Gen
(n=48) (n=320)

Mean Std Mean Std
Tested Assessment, range [0,20] 17.7 1.6 12.0 3.4

Self-assessment, range [2,10]
Background Hacking 4.9 1.0 3.3 1.4
Background Web Programming 4.7 1.2 3.8 1.6
Background Network Analysis 5.5 1.1 3.4 1.3
Background Network Security 5.5 1.0 3.5 1.1

0.87 and 1. This indicates an almost perfect agreement [187] between the annotators. 6
tickets for which the two researchers did not eventually reach an agreement were dropped
from the analysis.

5.7 Results

We performed the Kuder-Richardson 20 test to check internal reliability for the entire
set of skills assessment questions (α = 0.72). Our value meets the threshold as stated
by Nunnally [237]. The Pearson correlation coefficient between the background and the
technical questions shows a moderate correlation (ρ=0.49, p < 0.0001).

Among the various groups, 21 out of 184 groups (11.4%) issued a ticket related only
to the EXIM scenario, 58 out of 184 (31,5%) issued a ticket related only to the MIRAI
scenario, and 73 (39.7%) issued tickets related to both scenarios. We ignored tickets that
did not refer to either the EXIM or MIRAI attack scenarios as our goal is to investigate the
accuracy of the investigation of cyber-attacks and not on irrelevant alerts. Furthermore,
the experiment potentially incentivized students to report as many attacks as possible
due to the absence of negative scoring.

We report in Table 5.10 the descriptive statistics of the accuracy of the incident reports
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Table 5.10: Descriptive statistics of the weighted IC and SC Entropies in tickets produced
by groups identifying an attack scenario divided by true and false information outcomes

H(IC) H(SC)

Num Mean Std Median Mean Std Median
True Info 2.14 1.65 1.73 4.34 2.37 4.05
False Info 5.70 2.81 5.99 4.87 2.27 4.54

issued by the groups for the two attack scenarios as defined in Section 5.4.1.
We then answer to RQ3b by investigating to which extent technical skills and SOC

play a role in producing more true information and fewer false information over the tickets
related to the two attacks issued by a group.

Figure 5.6 shows the overall true and false information in tickets for IC and SC as a
function of the groups’ skill levels and by SOC type.

To evaluate the factors that influence the quality of the tickets, we run a linear re-
gression model over the overall entropy outcomes of the SOC analysts as described in
Section 5.4.1.

H = β0 + β1Skills + β2SOC type + β3Degree (5.9)

where:
• H is one of H(IC|T ), H(IC|F ), H(SC|T ), and H(SC|F ).
• Skills : is a numeric value from 0 to 20 that describes the overall skills level of the

group. This is obtained via the scoring of the skills assessment questionnaire as the
sum of the skills of the group members.

• SOC type: is a categorical value that identifies the SOC type of the group (Filter,
Basic)

• Degree: is a categorical value that identifies the degree of the group (Gen, Spec).
Table 5.11 and Table 5.12 show the results.
Skills have a statistically significant effect on correct information in tickets with better
information complexity ( IC) and structural complexity (SC). SOC filtering rules have
an effect only along the SC dimension.

A possible explanation is that the filtering of irrelevant information by the SOC tool
does not help the analyst in the parts of the tasks that require producing new information
to continue the investigation. This dimension of complexity is instead influenced by the
skills of the analyst in extracting the relevant information from the act and using it for
the subsequent acts.

As shown in Table 5.12 skills and SOC do not play a role in reducing the wrong in-
formation contained in the tickets and escalated to Tier 2. Interestingly Spec-students
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(a) Overall true and false information in tickets for Information Complexity (IC ). The analysts’ skill level
is positively related to higher accuracy (true information) in the incident reports
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(b) Overall true and false information in tickets for Structural Complexity (SC ). The analysts’ skill level
is positively related to higher accuracy (true information) in the incident reports

Figure 5.6: The overall true and false content in the incident reports of each group by
varying skills levels and SOC. For each group corresponds two points with a positive
and negative value on the y-axis representing the true and false information outcome
respectively
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Table 5.11: Regression on total entropy by groups tickets containing true information
referring to the attacks

H(IC|T ) H(SC|T )
c 0.70 2.31∗∗
Skills 0.09∗ 0.13∗
SOC type (Filter = 1) 0.44 0.81∗
Degree (Spec = 1) 0.01 -0.17
R2 0.06 0.06
F statistic 3.17∗ 3.16∗
(∗) p < 0.05; (∗∗) p < 0.01; (∗ ∗ ∗) p < 0.001

Table 5.12: Regression on total entropy by groups tickets containing false information
referring to the attacks

H(IC|F ) H(SC|F )

c 4.60∗ ∗ ∗ 4.39∗ ∗ ∗
Skills 0.06 0.03
SOC type (Filter = 1) 0.29 -0.03
Degree (Spec = 1) 1.12 1.16
R2 0.04 0.04
F statistic 2.02 2.02

(∗) p < 0.05; (∗ ∗ ∗) p < 0.001

have a small impact in increasing the false information outcome on the Structural dimen-
sion. An explanation could be that more skilled and specialized people tend to be more
paranoid.
Improving the skills of a SOC analyst or the accuracy of IDS rules do not seem to help
in reducing the amount of wrong information from the ticket that is escalated.

We then investigated if the two SOC are equivalent in the amount of false information
produced in the tickets related to an attack. From Table 5.12 we have that the overall
false information content is not influenced by the SOC type. We ran a Wilcoxon TOST to
determine if the accuracy on the two SOC is equivalent and reject the null hypothesis that
the amount of false information outcomes in a ticket related to a real attack significantly
differs from one SOC to the other:

H01 = H (complexity |FP ∧ Filter) < δ1H (complexity |FP ∧ Basic) (5.10)

H02 = H (complexity |FP ∧ Filter) > δ2H (complexity |FP ∧ Basic) (5.11)
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where complexity is either IC or SC, δ1=0.8 and δ2= 1
0.8

as are common values used
to compare products [219]. The max of the p values for the two tests is max(p1, p2)=0.01
for both HIC and HSC . In other words, the two filterings are statistically equivalent.
An improved filtering mechanism is equivalent to a basic filtering mechanism from the
perspective of the false information in tickets potentially related to actual attacks.

Better accuracy in the escalated tickets must be addressed with a mechanism that
rewards on-point incident reports issued compared to many reports with little to no value
related to the attack. A significantly more advanced filtering mechanism might therefore
help in reducing the irrelevant tickets escalated to Tier 2 that are outside of the scope of
this work and should be subject to a separate experiment.

5.8 Limitations

The experiment was performed in three runs carried one year apart from each other. The
first and third experiments were performed in presence, while the second was performed
online due to the restriction of the COVID-19 pandemic. The structure, tasks, and
resources available to the students did not change between the runs. For example, the
groups could search for any information on the Internet in all three runs. Nevertheless, we
controlled if the different set-ups influenced the accuracy by performing a Wilcoxon rank
sum test on the total true and false information outcome and no significant difference was
found.

The model proposed describes only a part of the Tier 1 SOC analyst activity focusing
on the investigation of cyber-attacks to report to a Tier 2 analyst. It does not describe
the overall complexity of a SOC analyst’s daily activity that includes, among others, the
analysis of irrelevant alerts.

In terms of external validity, our results are obtained from experiments with students
and not professional SOC analysts. There is a debate on whether the population of cyber-
criminals differs from that of students and ethical hackers [63,162,163]. In the context of
SOC, most Tier 1 positions are entry-level roles [373] for which the student population
can be an acceptable approximation.

5.9 Related Work

We present the state-of-the-art related to Security Operations Centers and task complex-
ity.
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SOC A critical aspect in a SOC is to measure its performance [180, 321, 322]. Several
works tried to investigate the procedure, performance, and needs of SOCs. Shah et al. [294]
measured the effectiveness of SOC based on the time spent in an alert investigation and the
simulation of different case studies describing the increase of alert arrival rate or decrease
of alert service rate. Furthermore, they investigated mechanisms for a fair allocation of
SOC resources based on customer agreement and priority of alerts [293]. Ganesan et
al. [130] developed an optimization algorithm to allocate analysts to sensors subject to
a set of constraints like the analysts’ expertise, the number of sensors, and work-shift
schedules. In contrast to an analysis of resource allocations on the SOC alerts, we instead
focus on the complementary problem of analyzing the accuracy of the investigations on
these alerts.

Kokulu et al. [180] identified a set of issues from interviews with SOC analysts and
managers. In particular, current performance metrics like response time or the number
of tickets issued are not effective in describing the performance of a SOC. Alahmadi et
al. [16] found that human analysts are still fundamental to determine the validity of alerts
and security tools are often unreliable and lack context for the investigation.

Sundaramurthy et al. [321] performed an anthropological study to determine conflicts
in SOCs between the analyst needs and the metrics, tools, and rules imposed by the or-
ganization. In a related work [320], they modeled the burnout of SOC analysts in terms
of factors related to automation, operational efficiency, and management metrics. In par-
ticular, they observed that an incorrect assignment of tasks based on skill levels, e.g. too
complex tasks for entry-level or too repetitive tasks for expert analysts, causes burnout.
Our model of task complexity can be used to discern complex tasks from repetitive tasks
that can be automated. Van Ede et al. [340] developed a semi-supervised deep learning
system to automatically correlate security events and reduce alert fatigue for SOC ana-
lysts. Chiba et al. [84] developed a tool to prioritize the analysis of domains to reduce
repeated investigations.
We lack appropriate metrics to determine SOC analysts’ accuracy during the investiga-
tion of cyber-attacks.

Modeling Task and Complexity Votipka et al. [349] and Wong et al. [358] inves-
tigated the procedures that reverse engineers and malware analysts employ to inspect
software through interviews with experts. They modeled workflows performed during
the analysis without a measure of task complexity. Mantovani et al. [208] performed an
experiment with 72 reverse engineers to measure differences in their strategies. They mea-
sured performance in terms of time to obtain the binary flag. They observed that experts
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skip more blocks by identifying patterns and inspecting functions with a mix of forward
and backward techniques. They provided a measure of code complexity using metrics
like lines of codes and cyclomatic complexity. Similarly, Aonzo et al. [32] investigated
static/dynamic features selection strategies by expert and novice malware analysts and
compare them with ML systems. They observed similar choice of features by humans,
although the performance significantly differ. However, both works neither measured the
complexity of the overall task of reverse engineering (RE) the binary nor employed these
metrics to measure the accuracy of the analysis.
Procedures for complex tasks, like malware analysis, lack a model to measure the com-
plexity of their phases that can be used to compare the accuracy of the activity.
Our model of task complexity can be applied in these scenarios to investigate how the
accuracy and the analysis process change depending on the complexity of the tasks of RE.

Liu and Li [203] categorized the literature on task complexity based on three view-
points: structuralist, resource requirement, and interaction viewpoints. In the structural-
ist (e.g. [59,203,359]) viewpoint, task complexity is obtained by the structure of the tasks
as a function of the number of elements required or the interactions between these ele-
ments. In the resource requirement viewpoint (e.g. [270]), task complexity is obtained,
among the others, by the amount of cognitive, physical, and mental demands needed by
the task performer. Instead, in the interaction viewpoint (e.g. [144]), task complexity is
seen as a subjective term obtained from the interaction between the task and the task
performer characteristics (e.g. knowledge, previous experience).
We lack the application of task complexity theory to complex scenarios related to cyber-
security.
In this work, we build upon the structuralist viewpoint, and in particular, we extended
Wood model [359] to determine a replicable measure for task complexity for SOC analyst
tasks.

Controlled experiments in cyber-security tasks Several works tried to analyze
relations between performance in security tasks and factors like years of expertise, back-
ground, and education [9,10,19,64,115,241] as well as the cognitive process employed [192].
Rosso et al. [273] built a tool to evaluate SOCs performance via the injection of synthetic
attacks into the network traffic. We build upon this open-source tool to measure the
accuracy of SOC analyst tickets using an extension of task complexity theory. In the
context of secure development, Ruef et al. [279] found that more knowledge of program-
ming languages does not reduce the risk of including security bugs in code. While Braz et
al. [64] showed that instructing developers to focus on security issues improves the detec-
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tion of vulnerabilities. Votipka et al. [348] found that development experience and security
training (by means of MOOC participation) have no impact on the type of vulnerability
inserted while coding, while it can help in discovering them [350].
We lack controlled experiments for SOC to determine factors that influence the accuracy
of investigating cyber-attacks

5.10 Conclusions

In this chapter, we proposed a method to model the accuracy of SOC analyst investigation
of cyber-attacks using a model of task complexity. We evaluated our model with three
experiments with a total of 368 students to determine the impact on the accuracy of
incident reports of the analyst’s technical skills and technological changes in the SOC.

Our model can be applied in related tasks regarding malware analysis to evaluate the
impact of task complexity in the analysis process [358]. Future works can investigate
extensions of the model to deal with dynamic complexity. For example, an Incident
Response team needs to interact with a dynamic environment in which the attack evolves
over time, also in response to the defender’s action [65]. Similarly to [208], the analysis
can be extended by collecting more fine-grained data about the interactions of the analyst
with the tools and alerts.
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Chapter 6

A Graph-based Stratified Sampling
Methodology for the Analysis of
(Underground) Forums

Researchers analyze security data obtained by scraping underground forums to study
abuse and cybercrime activities. Due to the size of the forums and the domain expertise
required to identify criminal discussions, most approaches employ supervised machine
learning techniques to automatically classify the posts of interest. However, human anno-
tation is costly. How can we select samples to annotate that account for the structure of
the forum? In this chapter, we present a methodology to generate stratified samples based
on information about the centrality properties of the population and evaluate classifier
performance. With this approach, we explicit relations between social network behavior
of users and identification of suitables samples for the investigation of online criminal
activities. We observe that by employing a sample obtained from a uniform distribution
of the post-degree centrality metric, we maintain the same level of precision but signifi-
cantly increase the recall (+30%) compared to a sample whose distribution is respecting
the population stratification. We find that classifiers trained with similar samples disagree
on the classification of criminal activities up to 33% of the time when deployed on the
entire forum.

6.1 Introduction

Underground forums contain valuable information related to cybercriminal activities.
However, this information is hard to retrieve given the large number of unrelated dis-
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cussions in threads and posts. Current approaches rely on keyword searches and machine
learning (ML) algorithms to identify and classify discussions. Many studies [15, 72, 259,
342] use supervised ML algorithms due to the increased accuracy where classifiers are
trained on human-labeled data. Human labeling of data is a resource-intensive process,
particularly as multiple annotators are required. For cybercrime forums, where jargon
and specialised language abounds, annotators also require domain expertise. Therefore,
there is a need for identifying the best use of limited resources. The choice of the sample
data is a key feature that can impact the performance of the ML classifier. Current ap-
proaches randomly pick posts to annotate on a subset of the forum that is promising for
the topic to investigate.

In this chapter, we investigate how the performance of the classifier is impacted by
sampling methodology. In particular, we propose a methodology to generate stratified
samples based on network centrality metrics and compare the classifier performances. We
address the following research questions:

RQ4a: What are the changes in performance for a ML classifier using different cen-
trality metrics to generate stratified training samples?

RQ4b: What are the changes in performance using a different proportion compared
to the population for the stratified training samples?

In this chapter we make the following contributions:

• A graph DB representing the structure and interactions in an underground forum.
We release the anonymized structure to facilitate data analysis and future research.
Due to ethical reasons, the access to the actual content stored in the graph (posts,
thread, and member names) is subject to a formal data sharing agreement with the
Cambridge Cybercrime Centre 1

• A methodology for the generation of stratified samples based on graph metrics to
train ML classifiers and for the validation of their performance on the population.

• An analysis of the impact on ML classifiers performance due to changes in the
characteristics of the samples.

Non-goal: We are not interested in tuning the classifiers to obtain the best performance
on a given sample. We do not aim to determine pitfalls in the design and implementation
of experiments using ML systems [37,255].

1https://www.cambridgecybercrime.uk/process.html
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Our methodology consists of: 1) Graph DB generation: the forums (F), boards (B), threads (T), posts,
and members (M) are represented in terms of nodes and edges to highlight relationships. 2) Population
extraction: a subgraph of the forum(s) is identified for the generation of samples for the topic. The
resulting subgraph, projected based on some rules, is the population from which the sample is generated.
3) Distribution extraction: A graph metric is applied to the sub-graph to determine the distribution of
the feature on the population. 4) Sample generation: A sample that respects the stratification is created.
In contrast, the current SotA methodology filters the forum for interesting discussions and randomly
extracts posts from the identified subset.

Figure 6.1: Methodology for stratified sampling of Forums

6.2 Ethical Considerations

This work requires individuals to read posts on a forum. We note the dataset is collected
from the public Internet and is used for research on collective behaviour, without aiming
to identify particular members. Given that users in underground forums hide behind
a username, it is not possible to obtain consent from users as that would require us
to identify them first. In accordance with the Menlo Report [102], we informed the
ethics committee so that we could waive the requirement for informed consent. The
ethics committee at the Department of Computer Science & Technology, University of
Cambridge, considered and approved this research.

6.3 Methodology

We present our methodology to generate stratified samples based on centrality metrics
from a population of members in a forum. Figure 6.1 summarizes our overall procedure
in comparison with the current state of the art approach.
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Step 1: Graph Database generation

We map a forum into a graph G(V,E), in which v ∈ V can be a board (B), a thread (T),
or a member (M) node type and e ∈ E can be one of the following relationships:

• Forum discuss−−−−→Board : a forum discusses one or more general topics defined in boards.
Boards can cover a broad range of topics related to Online Gaming, Cryptography,
Reverse Engineering, RATs, etc.

• Board include−−−−→Thread: a board includes one or more member-contributed topics re-
lated to the general topic of the board.

• Member
post{content,post_type}−−−−−−−−−−−−−−→Thread: a member posts one or more comments inside

a given thread. The comment is defined in the relationship property content. The
post is also classified for its intent, for example, an offer, a request for services, an
exchange, or a tutorial.

• Member
interact{weight}−−−−−−−−−→Thread: a member interacts with one or more threads with a

certain frequency given by the number of posts as described by the property weight.
The schema of the graph DB is reported after the application of Step 1 in Figure 6.1.
Nodes of the same type are connected through a different node type. For example, two
members are connected if they post on the same thread or if they post in two different
threads included in the same board. The interact edge is needed only for the graph
analysis part. For performance reasons, this type of edge is created when the entire DB is
generated. Be Aij the adjacent matrix of interact andWij the matrix of weights associated
with each interact relationships. For simplicity, in the sequel, we will use directly G(V,E),
Aij, and Wij as referring to the selected subset from the entire forum.

Step 2: Population projection

Given a topic of interest for the analysis of cybercrime activities on a forum (e.g. eWhor-
ing [251], marketplace offered goods [301, 342], etc.) a ML classifier must be trained on
a sample that contains, among the others, examples of the topic of interest. Given that
most activities in the underground forums are legitimate [250] and only a subset deals
with criminal activities, the sample is typically obtained from a sub-graph of the entire
forum that is promising and representative for the study of the topic. This sub-graph
represents the population from which a sample is generated for training and testing. The
population is obtained following a selection rule, for example by identifying specific boards
and threads that deal with the topic of interest via keyword searches.

In terms of graph representation, this approach traduces in a subset of the graph DB
based on the selection rule.
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Table 6.1: Centrality Metrics for Members node type

Centrality Metric Formula Description
Post-degree post_centralityi =

∑
jWij ∗Aij Measure the amount of posts for a

member i.
Thread-degree thread_centralityi =

∑
j Aij Measure the amount of distinct

threads a member i posts into.
Eigenvector eigenvector_centralityi =

1
λmax

∑
j Aij ∗

eigenvector_centralityj

Measure the activity of a member i

in highly participated threads.

Step 3: Distribution extraction

We compute for each member of the population a value describing its posting activity
based on a centrality metric. We then compute the distribution of posts inducted by the
member’s value on the metric. The post is the unit of the population of interest for the
analysis of cybercrime activities and composes the training sample for the ML model.

Centrality Metrics over Members

Table 6.1 summarizes the centrality metrics employed in the analysis and the meaning
in the context of social network analysis. All metrics are computed for all nodes vi ∈ V
where vi belongs to the Member node type.

Post-degree centrality measures the amount of activity in terms of the number of
posts of the members composing the population.

Thread-degree centrality measures the number of distinct threads with which the
members interact. This metric differs from the post-degree centrality because it is used
to discern members that are mainly active in a few threads from members that interact
in different discussions.

Eigenvector centrality measures how much members participate in "hot" (highly par-
ticipated) threads by looking at the importance of the thread nodes to which a member
node is linked.

Distribution induced by centrality metrics

Once the distribution of the centrality metric over the members is obtained, we compute
the distribution of posts in the population induced by the metric on the members and we
normalize the distribution. The resulting distribution describes the percentage of posts
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associated with members of the population with a certain value for the centrality metric.
For all metrics, we observed a few members with extreme values for a metric. For example,
few members have a post-degree centrality greater than 10 000.

The skewed distribution induced by the centrality metric can affect the sampling
mechanisms. The size of the bins of the distribution must be adjusted to avoid biased
sampling due to sample size. Suppose one wants to generate a sample of S posts, the
percentage of posts in each bin must be greater than 1

S
such that at least one post can

be picked from each bin. One would want to be able to pick at least 25 elements from
each bin to have statistically significant results [13]. To achieve this, we transform the
distribution using the logarithm in base 10 and merge together into the same bin posts
to have a percentage of the overall sample size greater or equal than 25

S
posts.

Step 4: Stratified Sample generation

Based on the distribution of posts inducted by a centrality metric on the members, we
generate stratified samples whose distribution respect the characteristics of the popula-
tion. For example, suppose that the distribution of the posts of the population based
on the post-degree centrality is such that 70% of the posts are obtained from members
with post-degree centrality less than 10, 20% of the posts are obtained from members
with post-degree centrality less than 100, and 10% with less than 1 000. In particular, we
generated 2 types of samples:

• Proportional Sample: that presents the same distribution (proportion) of the cen-
trality metric as the population. The sample will be composed of 70% of its size of
posts from members that posted less than 10 posts, of 20% of posts from members
that posted less than 100, and of 10% of posts from members that posted less than
1 000.

• Uniform Sample: that presents a uniform distribution of the centrality metric.
Along with the previous example, the new sample will present an equal number
of posts from members that posted less than 10, less than 100, and less than 1 000.

The generation of the sample can be subject to more constraints. For example, a max-
imum number of posts to include in the sample or the need to include available annotated
posts (belonging to the population) to reduce the manual effort of the annotation. In
terms of annotation, a coding scheme and standardized procedure must be developed to
label each sample. Table 6.2 summarizes an example of the coding scheme for Atondo Siu
et al.’s [301] crime type classifier, which provides anonymized examples for each class. If
some classes are rare and the sample does not include enough posts for them, we ignore
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Table 6.2: Guideline Annotation Posts

Crime Type Description Anonymized Example
Not criminal Unrelated to crime. Including sharing, selling

of games points, skins, etc.
"Xbox One. Comment if you
want to play.", "This post is to
warm that the user X account
was compromised by an hacker
that also threat me"

Access to system Exploitation of vulnerabilities (e.g. SQLi)
where there is no innocent usage (e.g. pen-
testing). Excluding the use of malware.

"How to access a phone’s text
messages and calls without
physical access to it."

Bots & Malware Botnet, malware, and related services. Ex-
cluding social network bots.

"How to make my server file (of
RAT) FUD????"

DDoS & booting DDoS attack and stress testing. Excluding
posts selling hosting with DoS protection.

"Would you be interested in in-
vesting in a SST service 100%
money would be made back
plus more."

Spam Spam, email sharing, or marketing services.
The technique employed must be clearly
stated (e.g. use of Adfly). Including traf-
fic generated, social network bots, request for
views and subscribers.

"Earn passive money with
clickbank"

Trading credentials Trading accounts including gaming and social
network. Including free accounts/credentials.
Excluding sell of domains, accounts in which
the seller is the owner of the domain or service
the accounts belong to.

"Selling sickest kik"

VPN & hosting VPN and hosting services. Including requests
and offers of VPN.

"I am looking for someone to
host OMCPool.net in return for
a share in the profits."

these rare classes and label them as part of the main class. Each sample must be inde-
pendently annotated by at least two annotators to avoid subjective interpretation of the
text. A metric like Cohen’s or Fleiss’s κ must be employed to measure inter-annotator
agreement. The posts with different annotations are reevaluated by all annotators jointly.
The sample will be used to train the ML classifier.

Validation of ML classifiers performance

Once a ML classifier is trained on a sample, we evaluate its performance using an inde-
pendent test sample that belongs to the same population.

To compare different sampling strategies, we directly run the classifiers on the entire
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population to determine the percentage of posts belonging to a class. We extract a
random sample from the set of posts in which the two classifiers disagree respecting the
stratification, annotate it, and evaluate the performance on that sample only. We then
compute the Agresti Coull confidence interval [14] to determine the range of agreement
between classifiers on each class. The Agresti Coull CI is used when the sample size is
greater than 40 [67]. Differences in performance between the two classifiers are only due
to the set of posts in which the classifiers disagree.

6.4 Forum Dataset

We relied on the CrimeBB dataset [252], a database of underground forums available
upon request. We focused on Hack Forums (HF), which is the largest and long-lived
underground English-language forum, famous for the release of the Mirai botnet source
code. We represented the HF database in a graph DB using Neo4j2, a graph database that
explicitly represents relationships between entities. The forum contains ≈680k members,
with ≈42M posts over more than 4M threads.

We observed a user, likely the forum administrator, that presented an extreme number
of posts in different threads. We observed that the posts were related to managing the
forum and did not add any value to the analysis. We thus removed this member from the
analysis. We further considered all threads and posts up to June 2018 to compare with a
sample obtained from the related works [301].

6.5 Analysis

We computed the centrality metrics using the Neo4j Graph Data Science (GDS) Library.
The GDS library exploits an in-memory graph projected from the DB to efficiently run
graph algorithms on large graphs.

We evaluate the performance of the classifiers over samples obtained using our method-
ology on different centrality metrics and compare the performance with a sample obtained
using random sampling from Atondo Siu et al. [301] from the same period of time. To
reduce the manual effort of the annotation, we constrained the generation of the new
samples by keeping as many entries from the random sample as possible that respect the
distribution of the centrality metric considered.

2https://neo4j.com/



127
CHAPTER 6. A GRAPH-BASED STRATIFIED SAMPLING METHODOLOGY

FOR (UNDERGROUND) FORUMS

Table 6.3: Population graph Statistics

Selection Rule # Nodes # Edges
Subset of posts and members that are classified as ’Of-
fer’,’Request’,’Exchange’, and ’Tutorial’ by [72]

≈447k (member),
≈3M (thread)

≈11.3M (post),
≈9.6M (interact)

We first identified the population from which the random sampling of posts from [301]
has been extracted to compute the population centrality metrics. The sample in [301] is
composed of several samples:

• General HF Random Sample: 500 posts extracted randomly from the entire HF.
• Trading HF Random Sample: 1 500 posts extracted randomly from all posts in HF

classified as ‘Offer’, ‘Request’, ‘Exchange’, and ‘Tutorial’ by Caines et al. [72]3.
• Currency HF Random Sample: 2 000 posts extracted randomly from all posts in HF

from members that published at least one post in the Currency Exchange board.
We focus the analysis on the Trading HF Random Sample because it can be easily de-
scribed by the application of a selection rule and it is general enough to include discussions
on different crime topics. We thus identified the population from which the sample was
obtained:

• Trading HF Population: The subgraph obtained by the threads in HF and their
subset of posts and members that are classified as ‘Offer’, ‘Request’, ‘Exchange’,
and ‘Tutorial’ by Caines et al. [72].

Table 6.3 summarizes the selection rule for the block and the characteristics of the
graph population. Table 6.4 summarizes the samples for the analysis and their sampling
strategy.

Figure 6.2 shows the distribution of the centrality metrics for the posts of the Trading
HF population and the 1 500 posts of the Trading HF random sample from Atondo Siu et
al. [301]. Each bin contains the posts associated with members whose centrality metric is
strictly less than the bin value on the x-axis. The Trading HF random sample distribution
is already similar to the population distribution because the sample size is large enough.
For example, the probability p that a post belongs to a member with less than 10 posts is
≈8% (Figure 6.2a) for the population. Thus, the standard error of the sample proportion

is given by
√

p(1−p)
n

=0.0137 for n=1500. We expect the sample proportion to be within

3The sample for training used in [72] is based on the following boards: Beginner Hacking, Premium
Sellers, and additional 13 boards chosen at random (Computer and Online Gaming; Cryptography and
Encryption Market; Decompiling, Reverse Engineering, Disassembly, and Debugging; Domain Trading;
Ebook Bazaar; HF API; Marketplace Discussions; Remote Administration Tools; Secondary Sellers Mar-
ket; Shopping Deals; Web Browsers; Windows 10; World of Warcraft)
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Table 6.4: Samples from Trading HF Population

Sample Name Sampling Strategy # Posts
Trading HF random Simple random sampling from population 1 500
Post-degree Proportional Proportional stratified sampling from post-degree popula-

tion distribution
1 500

Thread-degree Proportional Proportional stratified sampling from thread-degree pop-
ulation distribution

1 500

Eigenvector Proportional Proportional stratified sampling from eigenvector popula-
tion distribution

1 500

Post-degree Uniform Uniform stratified sampling from post-degree population
distribution

1 500
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Figure 6.2: Distribution of population and Trading HF random sample over different
centrality metrics. The distribution is obtained by merging together bins to obtain bins
with enough posts to be sampled given the sample size. All posts in a bin belong to
members whose centrality metric is strictly less than the value on the bin.

0.92±0.0137 and that is the case for our Trading HF random sample that presents a
probability p̂=0.908.

6.5.1 Annotation and Classes

We obtained the 1 500 posts sample of the Trading HF random sample from Atondo Siu
et al. [301] and used the same coding scheme (summarized in Table 6.2). We manually
classified the posts in one of the classes of crime as described in Table 6.5. Atondo
Siu et al. [301] considered a larger set of criminal types. However, by looking at the
classes in Atondo Siu’s sample, we did not find enough instances for all classes4. For

4Indeed the analysis in [301] is performed with the addition of the 500 posts from the General HF
and the 2000 posts from the Currency HF random samples
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Table 6.5: Crime type classes and # posts per sample

Crime Type Description Trading HF
random

Post-degr.
Propor.

Thread-degr.
Propor.

Eigenvector
Proport.

Post-degr.
Uniform

Not criminal Unrelated to crime 1041 1048 1050 1055 983
Access to system Exploitation of vulnerabilities (e.g.

SQLi)
57 56 53 56 78

Bots & Malware Bots, malware, and related services 157 156 154 144 164
DDoS & booting DDoS attack and stress testing 59 59 57 62 63
Spam Spam, email sharing, or marketing

services
46 43 46 42 61

Trading credentials Trading accounts 106 104 105 103 115
VPN & hosting VPN and hosting services 34 34 35 38 36

a first approximation, we ignored these rare classes and classify them as not criminal.
This approximation does not affect the comparison of the performance between samples
because all samples are annotated with the same annotation procedure. For all stratified
samples, we reused as many posts as possible from the Trading HF random sample to
reduce the manual effort.

Three researchers independently annotated the posts for the post-degree, thread-
degree, and eigenvector proportional samples. Two of them were involved in the initial
annotation of the Trading HF random sample. The new annotated posts for each sample
were 34, 39, and 90 respectively. We report Fleiss’s κ that measures the agreement among
multiple annotators. The Fleiss’s κ ranges from 0.68 to 0.79. A value greater than 0.6
indicates a substantial agreement [187]. Two researchers further annotated 432 posts to
generate the uniform samples for the post-degree centrality metric. We report Cohen’s κ
that measures the agreement between two annotators. Cohen’s κ is 0.74 for the uniform
post-degree sample.

6.5.2 Training ML models

We evaluated the performance using the XGBoost model, a state-of-the-art model that
showed promising results in classifying posts in underground forum [15, 72, 301] and it is
less subject to overfitting of training data compared to other classifiers [301]. We consider
as input to the classifier a text composed of the post content, the thread title, and the
board title from the forum. We pre-processed the text to convert capitalized letters to
lowercase, remove stop-words, tokenize the input, and lemmatize the words using the
NLTK library [6]. We extract a vector of lexical features using tf-idf. Given that most
posts in the sample are classified as not criminal, we re-sampled the training set using
SMOTE to overcome imbalances among classes.
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6.6 Performance

We now report the ML classifier performance trained on the different samples and apply
our methodology to validate their performance on a representative sample of the popula-
tion. For the crime type classes DDoS and Spam we observed that the classifier did not
predict any post in 53% of the repeated stratified holdout for the Trading HF random
sample due to the inability of the classifier to recognize samples of these classes. Similarly
for the Post-degree, Thread-degree, and Eigenvector proportional samples, where classi-
fier did not predict any post as DDoS or Spam in 36%, 46%, and 26% of the stratified
holdout runs respectively. This behavior is probably due to a lack of posts for these classes
in the sample that allows the classifier to extract significant characteristics. Any attempt
to retrospectively get more data on those classes will bias the sample by construction
and thus, to avoid unfair performance comparison, we ignored DDoS and Spam in the
analysis.

Proportional Samples via Centrality Metrics

We now address RQ4a by looking at the performance of the classifier using the different
centrality metrics to generate training samples. We compare the performance of the
ML models using as the training set the Trading HF random sample from Atondo Siu
et al. [301] and the post-degree, thread-degree, and eigenvector proportional stratified
samples. For testing we used a new 500 posts test sample obtained randomly from the
population, annotated by two researchers (Cohen’s κ=0.75). We performed a repeated
stratified holdout for the training and test sample with 30 different random seeds and
average the results using the geometric mean. The geometric mean is best suited to
summarize ratios [123]. The stratification in the holdout depends on the sample used for
training. For example, when using the Trading HF random sample, the stratification is
based on its class distribution5, when using the post-degree sample the stratification is
based on the population post-degree centrality distribution, and similarly for the other
samples.

Table 6.6 shows the performance and the relative change considering the Trading HF
random sample as the reference value in performance. From the results, we did not observe
significant differences in the overall precision and recall compared to the Trading HF
random sample. This can be explained by the fact that the Trading HF random sample
already presents a distribution similar to the population distribution for all centrality

5This is the common approach performed by the state-of-the-art.
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Table 6.6: Comparison XGBoost performance using Trading HF random and proportional
stratified samples

Precision Recall
Class Random Post-degr. Thread-degr. Eigenvector Random Post-degr. Thread-degr. Eigenvector
Not Criminal 0.78 0.77 0.78 0.78 0.93 0.94 0.93 0.93
Access to system 0.54 0.52 0.57 0.51 0.24 0.24 0.24 0.23
Bots & Malware 0.65 0.68 0.61 0.67 0.53 0.51 0.54 0.54
Trading credentials 0.59 0.61 0.64 0.60 0.58 0.56 0.57 0.53
VPN & hosting 0.54 0.54 0.54 0.54 0.23 0.23 0.23 0.27
Geometric Mean 0.61 0.62 0.62 0.61 0.44 0.43 0.44 0.44
Relative Change / +1.64% +1.64% +0.00% / -2.27% +0.00% +0.00%

Table 6.7: XGBoost performance using Post-degree uniform sample and relative change
compared to Post-degree proportional sample

Class Precision Recall
Not Criminal 0.83 0.89
Access to system 0.52 0.40
Bots & Malware 0.64 0.66
Trading credentials 0.59 0.64
VPN & hosting 0.54 0.36
Geometric Mean 0.62 0.56
Relative Change +0.00% +30.23%

metrics (see Figure 6.2) and the change in the number of posts compared to the Trading
HF random sample is small (2.2% for the post-degree, 2.6% for the thread-degree, and
6% for the eigenvector proportional stratified sample respectively).

Proportional vs Uniform Sample

To address RQ4b and determine if the distribution of the centrality metric plays a sig-
nificant role in the ML performance, we trained the XGBoost model with a sample that
significantly differs in the distribution of a centrality metric compared to the population.
We generated using our methodology (Section 6.3) a uniform sample based on the post-
degree centrality metric and compared it with the performance of the model trained with
the same centrality metric but using the proportional sample.

Table 6.7 show the results and the relative change compared to the proportional sam-
ple, whose results are reported in Table 6.6). We observed that the overall precision using
the uniform sample is the same as the proportional sample but in contrast, the recall
significantly improves (+30.23%).
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Table 6.8: XGBoost Agreement Trading HF Random and Post-degree proportional clas-
sifiers.

Class #Agree #Random only #Proportional only CI Agreement
Not Criminal 9 219 317 213 491 294 270 (0.947,0.947)
Access to system 120 068 25 986 32 058 (0.671,0.676)
Bots & Malware 561 925 103 996 67 620 (0.765,0.767)
Trading credentials 715 415 138 050 80 540 (0.765,0.766)
VPN & hosting 123 767 22 998 26 924 (0.710,0.714)

Agreement between classifiers

The differences in performance between the Trading HF random and the post-degree
proportional stratified sample are relatively small if one only looks at Table 6.6. However,
this difference can be significant when the classifier is deployed to classify an entire forum
with millions of posts. We investigated the real impact of this small variation by running
the classifiers trained on the Trading HF random and post-degree proportional sample on
all population posts (Table 6.3). We then computed the proportion of posts that were
classified the same by both classifiers and the Agresti Coull CI to determine the range of
agreement. Table 6.8 shows the per-class agreement and disagreement for the Trading HF
random sample and post-degree proportional sample. The agreement for the crime type
classes ranges between 67% and 76%, thus although trained with very similar samples,
the two classifiers differ up to 1 out of 3 posts for certain crime type classes when deployed
on the entire forum.

We provide some anonymized examples of posts in which the Trading HF random and
post-degree stratified sample disagreed. Table 6.9 shows the anonymized examples, the
classification of each classifier, and the annotation.

We now investigate the performance on those posts in which the two classifiers dis-
agree. To investigate the disagreement and determine which classifier performed better,
we randomly picked for each class, 100 posts for which the classifiers disagreed. A total of
500 posts were manually re-annotated to create a new test set to measure the performance
of the classifiers on the disagreement (Cohen’s κ=0.80). This test sample allows one to
investigate the region in which the boundaries of the classifier change due to the sample
characteristics. Table 6.10 summarizes the performance of the classifiers on the test sam-
ple extracted from the disagreement posts. Although the overall performances are similar,
in contrast to what was observed in Table 6.6 we have more significant differences in the
precision and recall for certain crime type classes. For example, the Trading HF random
sample has better precision for VPN & hosting, while the post-degree proportional sample
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Table 6.9: Examples of Disagreement between trained models

Example Post-
degree
Centrality

Thread-
degree
Centrality

Eigenvector
Centrality

Classification
Random

Classification
Post-
Degree

Annotation

"Help Keylogger. If you
crypted you risk to made it un-
stable. It must be FUD to not
be detected"

3.8 ∗ 102 3.5 ∗ 102 2 ∗ 10−4 Bots &
Malware

Not crimi-
nal

Bots &
Malware

"To have a botnet: take a mp3
file, infect it and upload on a
hosting to download"

7.0 ∗ 101 6.8 ∗ 101 3.3 ∗ 10−4 VPN &
hosting

Bots &
Malware

Bots &
Malware

"This post is to warm that the
user X account was compro-
mised by an hacker that also
threat me"

1.1 ∗ 103 9.4 ∗ 102 1.6 ∗ 10−3 Not crimi-
nal

Trading
credentials

Not crimi-
nal

"Hello, I updated this program
to create a relaxing game. This
is the virus scan for the pro-
gram. Enjoy"

5.3 ∗ 102 3.8 ∗ 102 2.1 ∗ 10−4 Bots &
Malware

Not crimi-
nal

Not crimi-
nal

"Hacking using IP. Where is the
scanner link? Do I need to find
it on the website?"

3 3 6.04∗10−7 Not crimi-
nal

Access to
system

Access to
system

"I have a social network md5
password. I need to decrypt it.
Any idea?"

1.5 ∗ 101 1.5 ∗ 101 1.8 ∗ 10−4 Access to
system

Bots &
Malware

Access to
system

"Hosting service - DDoS protec-
tion and VPS hosting with 24/7
support. We accept requests.
You will enjoy it"

1.7 ∗ 102 1.4 ∗ 102 1.2 ∗ 10−3 Not crimi-
nal

VPN &
hosting

VPN &
hosting

"I am using these Proxies so I
share with you [IP addresses]"

1.3 ∗ 101 1.2 ∗ 101 6.2 ∗ 10−4 VPN &
hosting

Not crimi-
nal

VPN &
hosting

"How many Netflix accounts
can you sell for 5 cents?"

1.3 ∗ 102 1.1 ∗ 102 1.8 ∗ 10−4 Trading
credentials

Not Crimi-
nal

Trading
creden-
tials

"I have thousands of accounts
in [SOCIAL NETWORK] that
have many contributions as re-
quested by you"

1.5 ∗ 102 1.4 ∗ 102 2.3 ∗ 10−5 Not crimi-
nal

Trading
credentials

Trading
creden-
tials

has better precision and recall for the Trading credentials. Given that the performance
on the posts in which the classifiers agreed is the same, either both are right or both are
wrong, we expect the corresponding classifiers to perform better in these classes when
dealing with the entire forum because in the regions where the classifiers differ they have
better performance. For example, the classifier trained with the post-degree proportional
sample incorrectly classified as VPN & hosting the following anonymized example: "I
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Table 6.10: XGBoost Disagreement Sample Performance.

Precision Recall
Class Random Post-degree Proportional Random Post-degree Proportional
Not Criminal 0.36 0.39 0.53 0.57
Access to system 0.39 0.38 0.33 0.33
Bots & Malware 0.58 0.61 0.53 0.43
Trading credentials 0.41 0.56 0.49 0.65
VPN & hosting 0.68 0.53 0.47 0.49
Geometric Mean 0.47 0.48 0.46 0.48
Relative Change / +2.13% / +4.35

made lots of money by hosting Minecraft on a server I rent", while the classifier trained
with the Trading HF random sample correctly did not classify it as related to VPN or
hosting. Conversely the classifier trained with the Trading HF random sample classified
as Trading credentials the following anonymized example: "Why would you want to un-
verify a Paypal account?", while the classifier trained with the post-degree proportional
sample correctly did not classify it as related to trading credentials.

6.7 Limitations

In Section 6.5 we relied on a previously obtained classification of post types to identify
the population of interest (Trading HF population). The population is thus affected by
the precision and recall of the Caines et al. [72] classifier. However, this does not influence
the overall results because the centrality metrics are computed by considering classified
posts as the entire and only population.

The presence of time biases in which future posts are used to predict previous posts [255]
is not an issue because the aim is to classify the entire set of posts available at a certain
point in time.

The classifiers trained with samples are not tuned to obtain the best achievable pre-
cision and recall thus the results are not comparable with the related work that aim at
proposing the best-fitted classifier on a given dataset.

6.8 Related Work

Analysis of Underground Forums Several works analyze underground forums to
study specific areas of cybercrime. Common approaches rely on natural language pro-
cessing (NLP) and supervised ML using random samples for training and testing.
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In the context of the classification of posts, Portnoff et al. [259] proposed an automated
classification of post type (buy, sell, and exchange currency), product offered/requested,
and price. They also evaluated the performance of the supervised classifier by training and
testing over eight forums. They observed that the tool performance significantly drops
if used across forums. Similarly, Caines et al. [72] evaluated the performance of different
statistical models and heuristics on labeling post type, author intent, and addressee in
Hack Forums. Van Wegberg et al. [342] trained a SVM classifier to identify the type of
listings (e.g. cash-out, malware, remote access tools (RATs), accounts, etc.) discussed in
eight marketplaces and determine their associated revenue. Atondo Siu et al. [301] trained
a supervised ML systems to classify posts in HF) into a class of crime (Non-criminal, Access
to system, Bots & Malware, eWhoring, Currency Exchange, DDoS, Identify Theft, Spam,
Trading credentials, VPN ) and analyzed the digital currency utilized in each class. They
observed that there was a massive shift to Bitcoin after Liberty Reserve was taken down,
and there was a demand for exchanging PayPal.

In the context of cybercrime-as-a-service (CaaS), Akyazi et al. [15] measured the ty-
pology of CaaS services in HF via a supervised ML classifier and observed only a few CaaS
categories discussed extensively (botnet, reputation escalation, and traffic-as-a-service).
Sun et al. [318] investigated Concession-Abuse-as-a-Service and performed an investiga-
tion of the techniques employed in four underground forums. Bhalerao et al. [47] analyzed
business-to-business interactions in two underground forums (HF and Antichat). They
trained supervised ML classifiers to determine the product offered and the reply class
(buying, selling, or other). From this classification, they built an interaction graph be-
tween members to determine the presence of supply chains in the criminal markets.

Several studies focus on predicting criminal activities based on forum discussions.
Pastrana et al. [250] developed a SVM to classify posts of key actors in HF and predict
potential which actors might be of interest to law enforcement. Van Wegberg et al. [341]
investigated vendors and product characteristics to predict product success via regression
analysis. They observed a positive correlation with features like the presence of a refund
policy, customer support, and the use of vendor names. Sun et al. [319] studied the
differences between private and public messages in underground forums and developed
ML classifiers to predict presence of private interactions from public features. Yuan et
al. [365] developed a tool to automatically identify new dark jargon in underground forum
posts using NLP.

The availability of forum discussions over several years allows researchers to investi-
gate the evolution of these ecosystems. Soska and Christin [305] performed a longitudinal
analysis of 16 online marketplaces for two years to estimate the sales volume and the type
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Table 6.11: SotA on Sampling Technique for supervised classification of criminal activities
in forums

Sampling Technique Papers
Simple Random [342], [250], [72], [319], [47], [251], [301], [15], [318]*

Unspecified [259], [305]
Stratified using network centrality metrics Our work

* Stratified Random sampling

of products exchanged. They observed significant gross income for big marketplaces like
Silk Road in the order of hundreds of thousands of dollars per day. Furthermore, they
observed that the volume of sales was not significantly impacted by the law enforcement
take-downs. Pastrana et al. [251] investigated eWhoring activities on underground fo-
rums for more than ten years. They trained a ML classifier to identify threads offering
‘packs’ and then determine the origins of the images, the main actors actively engaged
in this activity, and their profits. They built a social network graph of members active
in eWhoring discussions and identified the key actors using the h-index and eigenvector
centrality. They observed how the interest of these users moves from gaming and hacking
to market-related topics after the interaction in eWhoring threads. Allodi [17] investi-
gated exploits traded in a Russian black market and their likelihood of exploitation in the
wild. Vu et al. [351] performed a longitudinal analysis of the trading activities in HF and
their evolution over different ‘eras’. They observed how currency exchange and payments
account for the majority of the contracts and payments are performed using Bitcoin and
PayPal.

Table 6.11 summarize the papers by the sampling techniques employed to train clas-
sifiers.
Current approaches for supervised ML training rely on a sample obtained through random
sampling from interesting discussions and do not employ information of the "population"
of the social network.

Social Network Analysis of Underground Forums Several works investigate the
properties of online social networks to identify influential actors and analyze topics of
interests [160,250,251,351,370]. Motoyama et al. [224] analyzed social network dynamics
from leaks of 6 underground forums. In particular, they generate social network relation-
ships based on ‘friend’ requests, private messages, and thread discussions. They evaluated
how the social degree of these relations impacts their trading. Garg et al. [131] employed
social network analysis (SNA) to determine sub-communities inside forums, the correla-
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tion between centrality metrics for members, and the impact on the network structure of
banned members. Pastrana et al. [250] employed SNA, logistic regression, and clustering
to identify members that interact with known criminals and predict their likelihood of be-
ing involved in future criminal activities. Almukaynizi et al. [23] employed social network
metrics as features to predict the exploitation of vulnerabilities discussed in forums.

SNA is extensively used to identify key actors in underground forums [159, 250, 367].
Our centrality metric approach is similar to Pete et al. [256], who constructed undirected
graphs of six underground forums based on 6 months of observation, computed network
statistics, and analyzed the network structure. Using centrality metrics they identified
important members in the network and performed a qualitative analysis of the topics
covered. In contrast to our work, their focus is on insights into the structures of different
small forum snapshots. We instead propose a methodology to identify relevant samples
for training ML classifiers based on the characteristics of the population of the entire
forum, which can span several years of observation.

Social Network Analysis in underground forums is mainly focused on identifying key
actors and field experts and how social relations influence the criminal activities in these
forums. We lack an analysis of the use of social network characteristics, like centrality,
to select representative posts from the population.

Sample Representativeness in Online Social Network Prior work has analyzed
sampling techniques for online social networks to recover the properties of the network
in case the entire social network cannot be used and a sample must be extracted (e.g.
via Twitter API [223]) or to extract representative samples or samples with specific char-
acteristics, e.g. high degree centrality [207]. These sampling techniques rely on random
node extraction, random edges extraction, exploration via random walks [139, 368], and
snowball sampling. Studies investigated how the different sampling techniques conserve
the ranking of nodes, the visibility of groups [352], how robust different centrality met-
rics are [89] and proposed variants to preserve the properties of the original network, in
particular ratio of nodes and edges and topology, based on hierarchical community and
densification power law [364].

This line of research focuses on extracting a representative subgraph from a large network
by trying to maintain the unknown properties of the population.
We are focusing on extracting sample elements exploiting known network characteristics
of the entire population to improve ML classification.
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6.9 Conclusions

We presented a methodology to generate new samples exploiting information about the
centrality properties of the population and evaluate the performance of the classifiers. We
observed a significant increase in recall using a uniform distribution of the post-degree
centrality metric to generate the training sample. Other centrality metrics like thread
and eigenvector did not differ in the overall performance. We also observed that the
agreement between classifiers trained with similar samples can significantly disagree in
their classification when the classifiers are deployed on the entire underground forum.
We leave for future work further analysis using other distribution and centrality metrics
like, for example between centrality, or other graph analysis techniques like for example
clustering.



Chapter 7

Software Updates Strategies against
Advanced Persistent Threats

Software updates reduce the opportunity for exploitation. However, since updates can also
introduce breaking changes, enterprises face the problem of balancing the need to secure
software with updates with the need to support operations. In this chapter, we propose
a methodology to quantitatively investigate the effectiveness of software updates strate-
gies against attacks of Advanced Persistent Threats (APTs). We modeled interactions
between APTs behavior in terms of attack vectors and software vulnerabilities exploited
and speed of deployment of updates. This allows one to investigate what-if scenarios for
updating organizations software. We extracted security data from vulnerability, software
repositories, and threat intelligence reports to create a manually curated dataset of APT
attacks covering 86 APTs and 350 campaigns from 2008 to 2020. The dataset includes
information about attack vectors, exploited vulnerabilities (e.g. 0-days vs public vulner-
abilities), and affected software and versions. Contrary to common belief, most APT
campaigns employed publicly known vulnerabilities. If an enterprise could theoretically
update as soon as an update is released, it would face lower odds of being compromised
than those waiting one (4.9x) or three (10.5x) months. However, if attacked, it could
still be compromised from 14% to 33% of the times. As in practice enterprises must do
regression testing before applying an update, our major finding is that one could avoid
≈33% of all possible updates restricting oneself only to versions fixing publicly known
vulnerabilities without significant changes to the odds of being compromised compared
to a company that updates for all versions.

139
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7.1 Introduction

A recent study [184] shows that it takes more than 200 days for an enterprise to align 90%
of their machines with the latest (not known to be vulnerable) software version given the
need to perform regression testing [249].

Such behavior is rational because not all vulnerabilities are always exploited in the
wild [62], and several authors have determined that the actual risk of slow updates against
‘mass attackers’ is limited [20, 51] and often due to specific types of vulnerabilities such
as those traded in Black Markets [17] or with other predictable characteristics [82, 167].
Hence, risk analysis might be an effective approach when considering ‘mass attackers’
which might well be ‘work averse’ and stick to old exploits until they are no longer
profitable [22]. However, many companies also face Advanced Persistent Threats (APTs).
APTs are highly specialized professionals [275] that use a variety of customized strategies
[195], often leveraging on spearphishing [337] and 0-days [83, 209] to maintain a stealthy
profile [83]. In this scenario, slow updates do not seem appropriate.

Yet, not all the APTs are really sophisticated [314]. Some reports challenged some of
these ‘allegations’ and observed that APTs often reuse tools, malware, and vulnerabili-
ties [90,200,337]. These reports are based on threat intelligence data with few overlaps [61]
thus capturing only partial information of the APT attacks [197,314].

These conflicting claims may be due to the lack of a systematic study. Indeed, previous
works on APTs analysis [83, 275, 338, 347] mostly reported a qualitative analysis of a
handful of APTs. However, relying on qualitative estimations is known to produce risk
miscategorization and wrong prioritization [29,186] due to several factors like judgmental
biases [186], agenda-setting, and framing [290]. Framing of individual reports can produce
a distorted perception of the risk. We lack a broad view of the APT landscape that allows
companies to correctly assess the advantages and disadvantages of current approaches to
software updates. Data acquisition of APT campaigns, i.e. specific attacks conducted
by APT groups, is currently a challenging task. Semi-automated approaches based on
report parsing [189] proved to be too riddled with false positives because the associations
between APTs and software vulnerabilities (identified by a CVE) are based on the presence
of keywords and not on the semantics of the document. Here our research questions are
as follows:

RQ5a: What are the APTs characteristics that quantitatively describe the landscape
of APT campaigns as observable from public reports?
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RQ5b: Given a quantitative description of both APT campaigns and software updates,
how effective are different update strategies to protect against APT campaigns?

In this chapter we make the following contributions:

• We build a structured, manually verified database in Neo4j of 86 APTs and more
than 350 campaigns based on an exhaustive search of over 500 technical reports and
blogs and up to 22 different resources for each APT. The database [330] is available
on Zenodo

• We present a methodology to quantify and compare the effectiveness and cost of
software update strategies on historical data about campaigns

• We quantitatively evaluate the effectiveness and cost of different software updates
strategies, in terms of the conditional probability of being compromised and the
number of updates required for 5 widely used software products (Office, Acrobat
Reader, Air, JRE, and Flash Player) for the Windows O.S.

Goal: We provide a quantitative analysis of the risk against APT to allow companies
to make rational decisions on software updates.

Non-goal: We do not propose new mechanisms to detect and mitigate APTs attacks.

7.2 The Software Update Problem

If a company could only update for new functionalities, the choice would be obvious: why
fixing what is not broken? Yet, companies must update for security reasons too. However,
it is not uncommon that vulnerability fixes are merged with feature changes in a single
update. Every time a new version of a software is published, one can

• update immediately;
• wait some time (e.g. for regression testing) and update;
• skip the update.

This choice may be influenced by asynchronous events related to the reservation, disclo-
sure, and exploitation of software vulnerabilities in the current release.

Unfortunately, a company cannot fully decide in advance the configuration they will
have when hit (or most frequently not hit) by an attacker as it depends on the attacker’s
choice. A company can only decide on the software updates strategy. To capture what
can happen we introduce some terminology.
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Table 7.1: Classification of Attack Scenarios

Scenario Description

Unknown-Unknown/
Unpreventable (UU/U)

The vulnerability is exploited before a CVE was reserved, before its public
disclosure, and before an update was released.

Unknown-Unknown/
Preventable (UU/P)

The vulnerability is exploited before a CVE was reserved, before its public
disclosure, but after an update was released.

Known-Unknown/ Un-
preventable (KU/U)

The vulnerability is exploited after a CVE was reserved, before its public
disclosure, and before an update was released.

Known-Unknown/
Preventable (KU/P)

The vulnerability is exploited after a CVE was reserved, before its public
disclosure, and after an update was released.

Known-Known/ Un-
preventable (KK/U)

The vulnerability is exploited after a CVE was reserved, after its public
disclosure, and before an update was released.

Known-Known/ Pre-
ventable (KK/P)

The vulnerability is exploited after a CVE was reserved, after its public
disclosure, and after an update was released.

Terminology

For each vulnerability we identified five instants of time:
• Vulnerability Reserved time (tVr): when the CVE entry for the vulnerability is re-

served by MITRE;
• Vulnerability Published time (tVp): when the CVE for the vulnerability is published

in NVD;
• Vulnerability Exploited time (tVe): when the vulnerability is observed to be exploited

in the wild;
• Update release time (tUr): when an update that addresses the vulnerability is re-

leased.
• Update deployed time (tUd

): when an update that addresses the vulnerability is
deployed.

Table 7.1 shows how we can classify attack scenarios based on the instant of time tVe

and its relative position with the other events: tVr , tVp , and tUr . Figure 7.1 summarizes
the possible combinations of the different events.

7.2.1 The Software Update Strategies

To answer RQ5b, we describe the update strategies, summarized in Table 7.2, for an
enterprise based on what was discussed previously: update, wait and then update, or
skip. It is important to underline that disabling automated updates is not uncommon
in enterprise networks [226, 362]. This is mainly due to compatibility issues between
the updated software and internal projects [57, 249] that can produce disruption of the
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At the time when a software update is available, we have 4 cases: Case 1) there is no reservation and
publication of vulnerabilities before and after the release of an update for the current version. In this case,
there is no exploitation of the vulnerability. Case 2) after a software update is released, a vulnerability is
reserved and disclosed for the current version. Case 3) before the release of a software update a vulnerability
is reserved for the current version, but the disclosure happens after the update release. Case 4) the
reservation and disclosure of a vulnerability for the current version happen before the release of an update.
Different update strategies can be applied but are all constrained by the presence of a new release. The
exploitation events (vertical lines) can happen at any instant of time asynchronously from the reservation-
disclosure process and the release of updates. They are classified following Table 7.1

Figure 7.1: Combinations of vulnerability reservation, disclosure, and exploitation events
with the presence of new updates.

enterprise work. In this case, delays are introduced to perform regression testing.

We considered the application of a software update with a certain delay, starting from
the date on which the strategy bases its decision. We considered different update intervals
to determine how the probabilities change if a more responsive approach is employed. We
leverage update intervals data from SANS [286] based on a variety of enterprises (Govern-
ment, Financial Services, Healthcare, and Consulting) and from Kotzias et al. [184] based
on 28k enterprises. Table 7.3 shows the update intervals from SANS and maps them to
our update strategies.

Immediate strategy: The enterprise updates its software as soon as a new version is
available (tUr) and without delay. If multiple updates are released in the same time inter-
val, the update takes the most recent one. The update is applied even if a vulnerability
for the previous version is not present yet. This is the theoretical limit for the enterprise
because it is bounded only by the release speed of the vendor. However, this approach is
likely impractical because updates require some time to be deployed in an enterprise to
not break other functionalities.

Planned strategy: The company updates its software to each new version with a delay
from the release date (tUr). If multiple updates are released in the same time interval, the
company takes the most recent one. This delay factors in the time for regression testing
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Table 7.2: Update strategies

Each strategy represents an approach for updating the software. The Immediate strategy represents the
upper bound achievable by an enterprise. The Planned, Reactive, and Informed Reactive are evaluated with
different update intervals that represent different levels of responsiveness.

Strategy Update Interval Description

Immediate / Update to each newest version as soon as it is available
without any delay

Planned 1, 3, 7 months Update to each newest version but wait a delay before the
deployment

Reactive 1, 3, 7 months Update to the first new (non vulnerable) version only after
the publication in NVD of a CVE, wait a delay before the
deployment

Informed Reactive 1, 3, 7 months Update to the first new (non vulnerable) version only after
the reservation by MITRE of a CVE entry, wait a delay
before the deployment

Table 7.3: Update Intervals from SANS [286]

Percentage of enterprises that update weekly, monthly, quarterly, or with other delays. We evaluated the
strategies with these update intervals. Enterprises that update weekly are comparable to the Immediate
strategy. We associated 7 months for the update interval of ’Other’ from [184].

Update interval % Enterprises Update Strategy Correspondence

Weekly 24.9 Immediate
Monthly 57.5 Planned/Reactive/Informed Reactive within 1 month delay
Quarterly 7.7 Planned/Reactive/Informed Reactive within 3 months delay
Other 10.0 Planned/Reactive/Informed Reactive within 7 months delay
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and update deployment. The delays are taken from Table 7.3. As in the Immediate
strategy, the update is not triggered by the knowledge of vulnerabilities but only on the
availability of a new update.
Reactive strategy The enterprise updates the software only after the publication of a
vulnerability by NVD (tVp) with a delay taken from Table 7.3. The new version installed
is the first non-vulnerable update available at that time.
Informed Reactive strategy The enterprise updates the software only after the reser-
vation of a vulnerability by MITRE (tVr). The new version installed is the first non-
vulnerable update available at that time. This strategy describes an enterprise that pays
an annual subscription fee to get information about the non-publicly disclosed vulnera-
bilities from companies that provide 0-day data information (e.g. Exodus Intelligence,
Zerodium). The strategy presents an update interval as the Reactive and Planned strate-
gies.

7.3 Methodology

In this section, we present a methodology to evaluate the effectiveness and cost of update
strategies. The definition of probabilistic risk assessment [121] is:

Risk = Pr(Compr |Attack) · P(Attack) · Impact (7.1)

How to determine P(Attack) is still an unsolved problem in cyber-security [21] while
the Impact of cyber-attacks has received extensive discussion [27, 92]. We focus on
P(Compr |Attack) i.e. the conditional probability of being compromised given an at-
tack (or campaign as used in this chapter). We propose a methodology to compute the
conditional probability of being compromised in Eq. 7.1 by employing historical data
about releases available, vulnerabilities, and their exploitation in campaigns. Table 7.4
overviews our methodology.

Table 7.4: Methodology overview

Step 1: Extract APT and software data
INPUT APT groups from MITRE Att&ck

OUTPUT A set of campaigns in the form <APT_name,CVE,date>,
<APT_name,attack_vector,date> and a set of software updates in the
form <sw,update,release_date>
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PROCEDURE Identify campaigns information and software releases:
• Collect resources describing campaigns for each APT based on Threat Actor

Encyclopedia [328] and Internet searches using the MITRE APT name and
"CVE" as keywords;

• Manually extract from resources the key information: date when campaign
is observed, CVE(s) exploited, attack_vector employed;

• For each CVE, automatically extract software and versions affected from
NVD;

• Manually extract from software vendors website the update number and
date of release.

Step 2: Instantiate update strategy
INPUT A set of software updates (<sw,update,release_date>), update strategy (Immedi-

ate, Planned, Reactive, Informed Reactive), CVEs exploited in APT campaigns
OUTPUT A matrix that describes the application of updates for the software in the period

[2008-2020]
PROCEDURE Create a matrix with rows identifying software versions and columns identifying

months in [2008-2020] that determines the installed software version at a given
time:

• Select the entry corresponding to the first vulnerable version available on
01/2008 (same for all strategies);

• Select another entry corresponding to a new version depending on the up-
date strategy: on the release date of an update for the software (Immediate)
or with a delay (Planned), on the publication (Reactive) or reservation date
(Informed Reactive) of a CVE for the software with a delay;

• Consider availability of non-vulnerable updates at the time of publication
of a CVE when computing delay for Reactive and Informed Reactive.

Step 3: Instantiate APT campaigns events
INPUT Set of events for different campaigns (<APT_name,CVE,date>)

OUTPUT A set of matrices of campaigns. Each matrix describes the software versions tar-
geted by a certain campaign in the period [2008-2020]

PROCEDURE For each campaign, create a matrix with rows identifying software versions and
columns identifying months in the [2008-2020] that determine targeted software
version at a given time:

• Extract the affected software versions from the CVEs;
• Select the entry of the affected software versions from the date of the cam-

paign up to 2020.

Step 4: Generate pessimistic scenarios
INPUT A matrix that describes the application of updates for the software in the period

[2008-2020]
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OUTPUT A matrix that describes the application of updates for the software in the period
[2008-2020] and maintains both versions during the transition month

PROCEDURE Update matrix to maintain the previous version in the month in which a new
update is installed:

• For each month in which the software version is updated to a new ver-
sion, keep the entry corresponding to the previous version installed for that
month only.

Step 5: Compute conditional probability of being compromised
INPUT A set of matrices of update strategies and a set of matrices of campaigns events

OUTPUT The conditional probability of being compromised given a set of campaigns are
targeting you (P(Compr |Attack)) based on the update strategy, # of updates
performed

PROCEDURE Compute successful campaigns targeting installed software in the period [2008-
2020]. For each matrix of update strategy:

• Select a matrix of campaign events and compute the element-wise product
of the matrix with the update strategy matrix to identify the intersection
of installed and targeted software versions;

• Sum rows of the resulting matrix to determine the months when a campaign
is successful, save the campaign if successful;

• Continue with another matrix of campaign events until no more campaigns.
• Compute conditional probability as the number of successful campaigns

divided by the number of matrix campaigns considered;
• Compute the number of updates counting non-empty rows in the matrix of

update strategy.

Step 6: Compare strategies effectiveness
INPUT The successful campaigns for the different update strategies

OUTPUT Confidence Intervals (CI) for update strategies
PROCEDURE Compare the CI intervals of different update strategies:

• Compute the Agresti-Coull 95% CI for the proportion of successful cam-
paigns by update strategy;

• Compare intervals, if they overlap update strategies are similar;
• Compute pair-wise agreement of successful campaigns for pair of update

strategies and Agresti-Coull 95% CI for the resulting proportion of agree-
ment. The interval identifies the expected range of proportion of campaigns
that succeed against both update strategies.



7.3. METHODOLOGY 148

Step 1: Extract APT and software data

To collect data we analyzed both unstructured (technical reports, blogs about APT cam-
paigns, and vendor’s repositories) and structured (MITRE Att&ck and NVD repositories)
public sources.

We do not perform open coding because the information in the reports is determin-
istic and already based on the MITRE industry standards on CVEs 1 and Initial Access
Tactic2. The association of CVEs and attack vectors to a certain APT is based on ex-
plicit attribution in the consulted resources. Let us consider the following snippet from a
Mandiant report referring to APT123:

"In June 2014, the [Arbor Networks] blog highlighted that the backdoor was utilized in
campaigns from March 2011 till May 2014. Following the release of the article, FireEye
observed a distinct change in RIPTIDE’s protocols and strings. . . . FireEye dubbed this
new malware family HIGHTIDE.
On Sunday August 24, 2014 we observed a spear phish email sent to a Taiwanese gov-
ernment ministry. Attached to this email was a malicious Microsoft Word document
(MD5: f6fafb7c30b1114befc93f39d0698560) that exploited CVE-2012-0158. It is worth
noting. . ."

we extracted the following information: date=08/2014; CVE=CVE-2012-0158; attack
vector=spearphishing attachment.

The entries were then reviewed by a third researcher, not involved in the initial manual
analysis, to resolve inconsistencies. Cohen’s κ values are 1, 0.976, and 0.863 for the CVE,
date, and attack vector respectively (42 disagreements over 652 entries) which show a
good agreement among the raters. Total agreement on CVEs is unsurprising as CVEs are
unique strings and are reported by copying and pasting the string into the data collection
form. Such agreement would not happen between a manual rater and an automatic
procedure as we already noted for DAPTSET [189] which is so riddled with false positives
to be unusable. Simply, an automatic procedure will collect all CVEs including those that
a human rater will see as clearly irrelevant (past campaign, related examples, etc.). Most
disagreements are on the attack vector as the mapping of the natural description into the
corresponding MITRE Att&ck category is sometimes amenable to interpretation (27 out
of the 42 disagreements).

1https://www.cve.org/About/History
2https://attack.mitre.org/tactics/TA0001/
3https://www.mandiant.com/resources/darwins-favorite-apt-group-2

https://www.cve.org/About/History
https://attack.mitre.org/tactics/TA0001/
https://www.mandiant.com/resources/darwins-favorite-apt-group-2
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To resolve uncertainty among resources, we made the following conservative assump-
tions:

• if report A says CVE-1 is exploited by an APT campaign and report B says CVE-2
is exploited we mark both CVE-1 and CVE-2 as exploited by the APT in question.

• if report A says an APT campaign started on month X and report B says an APT
campaign started on month Y we mark them as two distinct campaigns.

It is not uncommon that different security companies have non-overlapping information
about APT campaigns [61,197]. We discuss the implications of this choice in Section 7.6.

Step 2: Instantiate update strategies

We employed a matrix representation to compare update strategies and APT campaigns.
Each strategy is represented as a matrix in which the rows represent the versions of

the different products (e.g. Acrobat Reader 9.2, Flash Player 11.0.1.152 ) and the column
a specific date with a month-base granularity (e.g. 12/2009). A matrix cell is 1 if, on that
date, that version of the product is installed and otherwise 0. For a first approximation,
we avoid considering the presence of multiple versions installed for the same product4.

All strategies start from the same version, which is the oldest vulnerable version of
a campaign that is available at the beginning of 2008. A strategy updates its version
based on the release date of a new version, the publication date, and the reservation
date of a CVE for the Immediate and Planned, Reactive, and Informed Reactive strategy
respectively.

The first two strategies (Planned and Immediate) update when a new release for the
software is available (w/ and w/o an update interval respectively). If multiple software
versions are released on the same date, they will update to the newest consistent version.5

For the latter two strategies (Reactive and Informed Reactive) the next version in-
stalled, if available, is the first most recent version that is not affected by the CVE. We
also considered the availability of updates based on the attack scenario in Step 4.

Identification of the outcome of attack scenarios

Depending on the availability of an update at the time of the publication of the CVE we
have to discern two scenarios:

4We assume an update is applied on enterprise’s machines at once.
5For example, if the current JRE version installed is 6u6 and a new update for JRE 5u13 is released

after that, the update is ignored because it represents a downgrade of a major update.
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• The release of an update is available before the publication of the CVE (tUr ≤ tVp).
The time when a company may decide to update because it is aware of the vulner-
ability is correctly computed from the time when a new vulnerability is published.
This is the (implicit) assumption in [184,226].

• The release of an update is available after the publication of the CVE (tVp < tUr).
In this case, computing the time when a company may decide to update from the
time of publication of the vulnerability will include an interval of time where a
vulnerability for the version of a product is known but a non-vulnerable version
has not been released yet (tUr − tVp). The time available to the company must be
computed from the time when the release is available.

Step 3: Instantiate APT campaigns events

We created a matrix for each APT campaign with the same rows and columns of the
update strategy matrix in Step 2. An entry is set to 1 if the version is affected by a CVE
exploited by the campaign from the date when the campaign starts until 2020.

Step 4: Generate pessimistic scenarios

The updates and attacks have a month-based granularity because most of the resources
do not contain information about the exact day in the month in which an update is
published or a campaign is performed. We further discuss the limitation of these data in
Section 7.6.

To balance possible interleaves between updates and campaigns within the same
month, we performed two analyses: a pessimistic APT-first scenario and an optimistic
Update-first scenario, that assume the campaign is executed before or after the update
respectively.

To simulate the APT-first scenario, we create a new matrix from the update strategy
matrix where we maintained the previous version also in the month in which the new
update is installed. In other words, the two versions coexist in the month. Thus, we
simulate the application of the update later in the month while allowing the APT to
exploit the vulnerability. This is done by keeping selected the entry corresponding to the
previous version also in the column in which we move to another version for each update
strategy matrix generated in the Step 2.
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Step 5: Compute conditional probability of being compromised

We evaluate at each instant of time, with a month-base granularity, the sequence of ver-
sions installed on a set of software products for each strategy and compare them with the
software exploited by the APTs to determine the potentially successful campaigns.6 We
use the term potentially successful because the success of exploiting a vulnerability de-
pends on the characteristics of the execution environment [93]. A campaign is considered
successful if it exploits at least one of the software products considered. From the matrix
of updates obtained from Step 2,5 and the matrix of campaigns obtained from Step 3, we
compute the conditional probability of being compromised given one is targeted by the
campaigns at a given instant of time ti. The probability is computed as the number of
potentially successful campaigns at time ti over the total number of campaigns active at
that instant of time.

P (Compr|C, t = ti) =
|potentially successful campaignsti |

|active campaignsti |
(7.2)

where:
• |potentially successful campaignsti | is the number of active campaigns at time ti that

exploit at least one version of a product currently installed at that time.
• |active campaignsti | is the total number of active campaigns at time ti.

We computed the |potentially successful campaignsti | by performing an element-wise prod-
uct of the matrix of update strategy with each matrix describing an APT campaign. The
resulting matrix identifies the versions that were installed and exploited by the campaign
in a given month. With the sum of the rows of the resulting matrix, one obtains a vector
of values ≥ 0 for each ti .7 If an entry at time ti is > 0, then the campaign is included in
|potentially successful campaignsti |.

The overall percentage of potentially successful campaigns over the total number of
campaigns in the entire interval of time is computed as:

P (Compr|C) = |potentially successful campaigns|
|campaigns|

=
|{C |∃ti : C ∈ potentially successful campaignsti}|

|campaigns|

(7.3)

In other words, the total number of potentially successful campaigns is obtained from the
6For example, in 12/2009 the CVE-2009-4324, affecting Acrobat Reader up to version 9.2, is exploited

in the wild. If at any time from 12/2009 an update strategy updates to one of these versions, then the
campaign is potentially successful.

7Values can be > 1 if campaigns can exploit different products.
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set of campaigns that could be successful in at least one instant of time ti. If a campaign
can succeed in several instants of time, it is counted only once in the period of interest.

The number of software updates is obtained from the matrix representing the strategy,
by counting the number of rows that contain at least one non-zero entry in the columns.

Step 6: Compare strategies effectiveness

For each update strategy, we obtain from Eq. 7.3 a probability of being compromised based
on the sample of campaigns considered. To predict the range in which the probability of
being compromised for the entire population of campaigns resides we compute a confidence
interval (CI). In case of binary outcomes (success, failure), we compute the Agresti-Coull
confidence interval [14] that is recommended when the sample size is ≥ 40 [67]. From the
CIs of different update strategies, we can then compare their performance. Two strategies
are similar if their CIs significantly overlap.

We then determine the percentage of campaigns for which the two strategies behave
in the same way by computing the proportion of campaigns that either succeeded or
failed against both strategies. By computing the Agresti-Coull interval for the resulting
proportion we obtain the range of similarity of the two strategies in terms of the percentage
of campaigns that both succeed or failed against two update strategies.

7.4 Data Overview

For more than half of the APT campaigns saturation is reached with at most 5 distinct
resources, while for some APTs we collected more than 15 and up to 22 different re-
sources. Only for 11 APTs, we collected a single resource, which typically is a white
paper containing detailed information about the APT’s activity over an extended period.

We now answer RQ5a with a quantitative analysis of the attack vectors employed,
the vulnerabilities exploited, and the software products targeted to understand the APT
ecosystem.

7.4.1 Attack Vectors

We analyzed the attack vectors exploited in the different campaigns with the presence and
absence of software vulnerability. Table 7.5 shows the different attack vectors and the
number of campaigns in which are observed. We underline that a campaign can employ
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Table 7.5: Attack vector campaigns and software vulns

# of Campaigns
Attack vector w/o vuln w/ at least one vuln

Spear phishing 130* 122*
Drive-by Compromise 15* 34*
Supply Chain Compromise 5* 0
Valid Accounts 3* 1
External Remote Services 3 0
Exploit Public-Facing Appl. 3* 7
Replic. via Remov. Media 0 1
Undetermined 38* 9*
Total 197 (190 unique) 174 (162 unique)

* Contains duplicates due to multiple attack vectors.

one or more attack vectors.8

We can observe that spear phishing is the main attack vector [337], present in 130
campaigns that do not exploit any vulnerability and 122 campaigns that exploit at least
one vulnerability. Interestingly drive-by compromise is not only employed when a vulner-
ability is present but also used to facilitate campaigns that employ social engineering to
trigger users to download malware.

We have 47 campaigns for which we do not know the attack vector. For 9 of them,
the report identified the vulnerability exploited but not the attack vector.9 If this infor-
mation is not present in the report, we avoided making assumptions. For the remaining
campaigns, the information about the attack vector was vague or missing.10

7.4.2 Popular Products and CVEs

We observed 118 unique vulnerabilities exploited by the APTs in at least one campaign
between 2008 and 2020. Some CVEs are exploited in several campaigns by different APTs.

Table 7.6 shows the ten most targeted client-side applications and the ten most tar-
geted server/O.S. products based on the exploited CVEs. A campaign is counted over
different products if the CVE employed is applicable to different software products. For ex-
ample, CVE-2012-0158 affects Office, SQL server, Visual Fox Pro, and Commerce Server.11

8For example, it is not uncommon to have campaigns that exploit both spearphishing and drive-by
compromise.

9For example, some vulnerabilities (e.g. CVE-2012-0158) can be exploited via spearphishing tech-
niques and drive-by compromise.

10For example, the Sony hack campaign in 2014 [236].
11We do not have information about the exact software targeted. For example, they could all have
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Table 7.6: Top 10 client-side and Top 10 server-side/O.S. products exploited

The products are obtained from the CVEs exploited in a campaign. If a CVE affects multiple products, all
the software are considered. Products are distinguished in client-side, server-side applications, and O.S.

Vendor Product Software # Campaigns (%)
Microsoft Office Client 68 (41.9%)
Microsoft Windows 2008 Server O.S. 49 (30.2%)
Microsoft Windows 7 O.S. 43 (26.5%)
Microsoft Windows Vista O.S. 41 (25.3%)
Microsoft Windows 2012 Server O.S. 39 (24.0%)
Adobe Flash Player (EOL) Client 35 (21.6%)
Microsoft Windows 8.1 O.S. 29 (17.9%)
Microsoft Commerce Server Server 19 (11.7%)
Microsoft SQL server Server 19 (11.7%)
Microsoft Visual Basic Client 19 (11.7%)
Microsoft Visual FoxPro Client 19 (11.7%)
Microsoft BizTalk Server Server 18 (11.1%)
Microsoft Windows 10 O.S. 18 (11.1%)
Microsoft Windows 8 O.S. 14 (8.6%)
Microsoft IE (EOL) Client 13 (8.0%)
Adobe Acrobat Reader Client 11 (6.8%)
Microsoft .NET framework Client 5 (3.1%)
Adobe Air Client 5 (3.1%)
Oracle JRE Client 4 (2.5%)
Oracle JDK Client 4 (2.5%)

Office is by far the major target of campaigns followed byWindows O.S. and Flash Player.
This is coherent with the attack vectors previously observed as they are commonly ex-
ploited via spearphishing with malicious attachments.

APTs tend to "share" vulnerabilities during their campaigns. Only 8 APTs (Stealth
Falcon, APT17, Equation, Dragonfly, Elderwood, FIN8, DarkHydrus, and Rancor) ex-
ploit CVEs that are not used by anyone else.12 We are aware of vulnerabilities (e.g
CVE-2017-0144) that are associated with Equation and used by other APTs, but we
did not find enough information about the date when the vulnerabilities were employed.
Roughly 35% of the APTs exploit CVEs observed in campaigns of other groups. 17 APTs
share 4 or more vulnerabilities, while many APTs sharing a single vulnerability have only
exploited that vulnerability during their campaigns (14 out of 20).

exploited Office.
12Only three APTs have exploited more than one vulnerability during all their campaigns.
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The number of unique vulnerabilities employed in Unknown-Unknown (UU) and Known-Unknown (KU)
attack scenarios grows significantly in recent years, compared to the first years of observation. On average
around 5 distinct vulnerabilities per year are exploited by APTs.

Figure 7.2: Number of distinct vulnerabilities exploited over the years by different attack
scenarios.

7.4.3 Evolution in Exploiting Vulnerabilities

Figure 7.2 shows the evolution of the number of unique vulnerabilities exploited in the
*-unknown attack scenarios13 in our database. It represents a lower bound of the vulner-
ability exploited in the wild. Project Zero [260] collects information about 0-days in the
wild by including also unattributed attacks. The mean number of distinct vulnerabilities
exploited per year is roughly 5. We can observe how the numbers grew significantly in
recent years. However, it can be influenced by the limited number of reports for cam-
paigns in the early period (2008-2011), where it was less likely to report information about
cyber-attacks. The drop for 2019/2020 is due to the natural delay of publicly reporting
campaigns caused by the proximity of the period of data collection with the date of the
campaigns themself. Thus, we expect the values to be higher if recomputed in the future.

Looking at the occurrence of a CVE in an APT campaign, the majority of the APTs
prefer to exploit CVE already published, with few APTs as exceptions.14

13Either already reserved (KU) or not reserved (UU).
14Stealth Falcon, PLATINUM, APT17
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7.4.4 Software for Analysis of Update Strategies

As discussed in Section 7.3, the collection of update releases from vendors’ websites is a
manual procedure. Here, for a first approximations, we focus on collecting updates for a
subset of all software targeted by APTs.

Table 7.6 shows the most targeted products by vendor. We decided to cover the most
exploited client-side product for each vendor because (1) from Table 7.5 most of the cam-
paigns exploit attack vectors directed to client-side software and (2) it is not uncommon
to have products from these vendors in an enterprise computer. For Adobe, the Flash
Player product is end of life (EOL) thus we decided to include the other two software
products Reader and Air. Even if Flash Player is EOL in 2020 we still think it is interest-
ing to see how different update strategies would affect the security of enterprises because
it has been frequently exploited in the last years. Also, vendors’ EOL of products, unfor-
tunately, does not coincide with the disappearance from the field and end of exploitation
as we are observing with Internet Explorer [176].

For a first approximation, we limited the analysis to the Office 2016 release only,
as different releases (Office 2013, Office 365) can be seen as different products as they
require buying a different license each. We considered the Knowledge Base (KB) updates
from the Microsoft Update Catalog as the versions of the software. We assumed that KB
updates for Office are cumulative, i.e. the package contains all previously released fixes.
In summary, we collected releases of updates for 5 different software products from 3
different vendors: Office, Flash Player, Acrobat Reader, Air, and JRE. We considered
only releases for Microsoft Windows O.S. as it covers at least half of the enterprise
computers [315]. With this set of software products, we cover 44% of the campaigns (that
exploit software vulnerabilities), 62% of the APT groups, and 33% of the CVEs.

7.5 Evaluation of Software Updates Mitigations

We now present an analysis of the speed of exploitation of individual vulnerabilities and
the prevalence of *-Unknown and Known-Known attacks in APT campaigns. We then
quantitatively evaluate the effectiveness and cost of the different update strategies against
the APT campaigns.

7.5.1 Survival Analysis

We performed a preliminary survival analysis on the vulnerabilities to compute the interval
in months that passed from the publication of the CVE and the first campaign that
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The survival is based on the first time the CVE is exploited in a campaign. More than half of the
vulnerabilities are exploited for the first time within one month from the publication. However, there is
high survivability of a small set of CVEs (roughly 10%) that are exploited after more than 1 year from
the publication. If we consider only Office, Flash Player, Reader, Air, and JRE the behavior is similar.

Figure 7.3: Proportion of survival of CVE from publication (NVD) for all products and
a subset (Office, Flash Player, Reader, Air, and JRE ).

exploited the CVE (exploit age). Figure 7.3 shows the Kaplan-Meier plot for all the
products in our database and for the set of products discussed in Section 7.4 (Office,
Flash Player, Reader, Air, and JRE ). We can see that roughly 40% of the vulnerabilities
are exploited for the first time before the publication. This is coherent with what was
observed by Chen et al. [82], where 49% of the CVEs are exploited before the NVD score
is published. Furthermore, roughly 27% of the vulnerabilities are exploited the first time15

within a month from the publication from NVD showing that APTs are fast to exploit
new CVE [122]. Another interesting fact is that a significant number of vulnerabilities are
exploited a few months before the NVD publication. This phenomenon can be partially
explained because the observation of attacks in the wild brings software vendors to know
about the vulnerability and thus the publication of a CVE. It is important to underline
that this value does not mean that ≈40% of the campaigns are unpreventable because 1)
*-Unknown attacks can exploit several vulnerabilities16 and 2) many of these CVEs are
exploited multiple times from different APTs after months from their first exploitation.

15Among all the APTs.
16A famous example is Stuxnet.
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If we only consider the vulnerabilities exploited the first time in KK attacks (as in [50]),
we observe that roughly 47% of them are exploited within 30 days from their publica-
tions17. In contrast with previous results [227], we observed a long tail for part of the
vulnerabilities, one out of 10 CVEs is exploited after one year from its publication, and 1
out of 20 after more than two years.

7.5.2 Classification of APT Campaigns

The majority of campaigns exploited at least one vulnerability in a KK attack (after publication by NVD
and after reservation by MITRE). Only a few launched UU attacks (both before reservation by MITRE
and before publication by NVD).

Figure 7.4: Classification of APT Campaigns.

Each APT campaign exploiting at least one vulnerability fits into one of these (possibly
overlapping) groups:

• Campaigns with at least one Known-Known (KK) attack . In other words, the
campaign exploited at least one vulnerability (either preventable or unpreventable)
that was already present in the NVD database.

17Bilge et al. [50] observed a similar value of roughly 42%
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• Campaigns with at least one Known-Unknown (KU) attack. In other words, the
campaign exploited at least one vulnerability (either preventable or unpreventable)
that was not present in the NVD database but an entry was already reserved by
MITRE.18

• Campaigns with at least one Unknown-Unknown (UU) attack. In other words, the
campaign exploited at least one vulnerability (either preventable or unpreventable)
that was not even reserved by MITRE.

Out of 352 campaigns, less than half of them employ at least one vulnerability (Ta-
ble 7.5). Figure 7.4 shows the resulting Venn diagram for the 162 campaigns of interest.
119 out of 162 campaigns employed only vulnerabilities in Known-Known attacks.
APTs heavily exploit known CVE to compromise their target. The prioritization of
updates is thus a key factor that can significantly reduce the impact of APTs campaigns.

7.5.3 Effectiveness and Cost of Updates Strategies

We now answer RQ5b by applying our methodology (Section 7.3) to compute the overall
probability of being compromised (Eq. 7.3) in the interval of time [Jan 2008-Jan 2020]
with the updates strategies and update interval presented in Section 7.2 for the software
discussed in Section 7.4.4. Table 7.7 summarizes the results in terms of the number of
updates required, the conditional probability, and the odds ratio for the optimistic (Update
first) and pessimistic (APT first) scenarios.

Updating the software as soon as a new release is available (Immediate strategy)
provides the optimal lower-bound probability of being compromised. Even in this case,
roughly 1 out of 4 campaigns can compromise the target. Although an immediate update
can be applied in some critical situations, if we consider a more realistic approach in
which the software is updated with some delay in the month (Immediate with APT first),
the odds of being compromised increases by a factor of 5. What stands out is that the
Planned strategy obtains the same probability of being compromised as a strategy that
waits for the presence of public vulnerabilities (Reactive strategy). However, waiting to
update when a CVE is published presents ≈33% fewer updates. Thus, if an enterprise
cannot keep up with the updates and need to wait before deploying them, can consider
being simply reactive. For the Planned strategy the number of updates decreases with
bigger intervals because the updates are shifted outside of the period of observation. If a
longer update interval is used, the probability of being compromised increases by a factor
of ≈10 and ≈21 for 3 months and 7 months update intervals respectively. Comparing

18Thus, a small number of people known already some information about the vulnerability. E.g.
vulnerability researchers.
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Table 7.7: Optimistic (Update first) and pessimistic (APT first) overall conditional prob-
ability of being compromised for different update strategies and update interval with the
associated # of updates for the period [01/2008-01/2020]

Update Strategy #Updates Prob. Odds

Interval (Update first — APT first)

/ Immediate 364 22.2-58.3% 1x-4.9x

1 Month

Planned 361 58.3-66.7% 4.9x-7.0x

Reactive 247 58.3-66.7% 4.9x-7.0x

Informed Reactive 257 58.3-66.7% 4.9x-7.0x

3 Months

Planned 354 75.0-77.8% 10.5x-12.3x

Reactive 247 75.0-77.8% 10.5x-12.3x

Informed Reactive 257 75.0-77.8% 10.5x-12.3x

7 Months

Planned 341 86.1-87.5% 21.7x-24.5x

Reactive 244 86.1-87.5% 21.7x-24.5x

Informed Reactive 254 86.1-87.5% 21.7x-24.5x

the Reactive and Informed Reactive strategies, there is no advantage in knowing about
not publicly known vulnerabilities if the enterprise waits to update. We observed that
to perform better than the Reactive, the Informed Reactive must apply immediately the
update otherwise the advantage is lost even with a single month of delay.

We reported in Figure 7.5 the Agresti-Coull Interval for each update strategy for the
different update intervals. The Planned, Reactive, and Informed Reactive strategies are
identical as we see a significant overlap of the CI among these three strategies. In the case
of an optimistic Update-first scenario, we observe that there is a clear difference between
the Immediate and the Planned strategies, while this advantage is lost in the case of the
pessimistic APT-first scenario. To evaluate the similarity we computed, for each pair
of strategies, the proportion of campaigns that either succeeded or failed against both
strategies. We estimate the Agresti-Coull CI for the resulting proportions. The results
show that the Planned and Reactive behave in the same way for at least 94% up to 100%
of the campaigns

Either you update always and immediately to the new versions or just updating lately
has the same risk profile but costs you a lot more than updating rarely [213].
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(a) Update-first (optimist) scenario. There is a difference between the Immediate and the other strategies.
However, Planned, Reactive, and Informed Reactive behave similarly thus updating to each new version
with some delay or relying on reserved CVE does not worth it.
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(b) APT-first (pessimist) scenario. The Immediate and Planned present a similar behavior for the 1
month update interval but differ with bigger intervals. In the pessimistic scenario the Planned, Reactive,
and Informed Reactive behave similarly thus updating to each new version with some delay or relying on
reserved CVE does not worth it.

Figure 7.5: Agresti-Coull Interval (CI) for the update strategies with different update
intervals

7.6 Limitations

The dataset obtained is based on publicly available reports. While this is just a small part
of existing campaigns, this work is the first that tries to aggregate a manually validated
dataset of APTs campaigns, CVE, and vulnerable products and it is a first step in the
direction of an open and extensive dataset on APT campaigns.

The process to obtain information about campaigns was semi- automated but required
manual effort to analyze and extract the key information about campaign dates, CVE,
and attribution. We assume that this type of information reported by reputable secu-
rity companies is not deliberately wrong, and our methodology strives to find multiple
sources reporting the same campaign to control for possible errors. Since keyword-based
automated searches (e.g. [189]) present limitations in the number of false associations
that they generate, we decided that a manual approach would provide a more precise
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description of the APT ecosystem. Although the manual extraction of information from
reports does not present difficulties, it can include erroneous matching of APT campaigns.
To limit that, the manual analysis was performed by two researchers independently and
inconsistencies were resolved by a third researcher.

We decided to ignore reports about campaigns where not enough information about
the start and attribution was available. Thus, it is possible that certain vulnerabilities
discussed in the reports are not included in the dataset.

We applied a conservative approach in extracting information from different reports
reporting mutually disjoint CVEs exploited on the same date. Thus, potentially assuming
fewer campaigns with a higher number of CVEs each. The probability of being compro-
mised must be seen as an upper bound of what APT can achieve. However, the odds
ratio between update strategies remains the same.

We relied on the NVD data as the industry standard but it is known to contain errors
in the list of product names, CVE publication date [31], and vulnerable versions [105,230].
We leave for future work the application of these approaches to find inconsistencies. We
relied on the data of observation of the campaigns as reported in the reports we consulted.
This information could be wrong and detect only a more recent campaign. We tried,
when possible, to find multiple resources about the campaign. The collection of release
dates for the software discussed in Section 7.4.4 is collected manually given that vendors’
repositories are not intended for past versions. Thus, the releases collected and employed
in the evaluation might have errors and this could affect the Immediate and Planned
strategies.

We used a month-based date granularity for the publication of the CVE, the release
of new versions, and the date of the campaigns because the exact day in the month in
which the campaign started is not known. This decision has a potential impact on the
results. If a campaign for a CVE published on 29/01/2017 started on 01/02/2017 then
in our case the exploit age is one month, even if the CVE is exploited a few days after
the publication. However, the results we observed (e.g. exploit age of vulnerabilities) are
coherent with previous observations of attacks in the wild [50], thus we think that the
number of these cases is minimal and do not affect the results.

The same considerations apply to the results in Table 7.7: if a release is performed on
15/02/2019 and a campaign exploiting the software is executed on 03/02/2019, the month
granularity would traduce both actions as performed on 02/2019. We thus considered two
complementary scenarios: an optimistic scenario (Update first) and a pessimistic scenario
(APT first). In the Update first the example above will traduce in the defender be able
to update before the execution of the campaign. While in the APT first we assumed the
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Table 7.8: State of the Art on APTs - Main Research Topics

Research Category State of the Art This work

APTs data sources [195] X

Metrics for TI sources [197], [61]
Attackers characteristics [83]*, [338]*, [337] X

Detection of attacks [138], [369], [48], [79], [128], [210], [209], [66], [254], [132],
[283], [297], [220], [296], [153], [150], [25]

Game Theory [158], [363], [283]
Exploitation likelihood [210], [363] X

Analysis of update releases - X

* Performed high level analysis on few APTs campaigns.

opposite.
Finally, those companies that have an update interval that is less than a month will

present a probability of being compromised that stays between the Immediate Update-first
and the Immediate APT-first scenarios.

We assumed that a campaign will be carried on from the date when the campaign
started up to the end of the observation (i.e. 2020). This causes an inflation of the
number of campaigns that are active at a given instant of time in Eq. 7.2. However, we
follow a conservative approach and assumed that if an APT has access to a vulnerability
it will always be able to employ it given that one is under attack. We discuss extensions
in the Section 7.8.

7.7 Related Work

Table 7.8 shows the research categories addressed by the state-of-the-art on APTs. The
majority of the research activity focused on the detection of APTs campaigns while few
papers tried to characterize their behavior, estimate the risk, and evaluate update strate-
gies from real data.

APT and Metrics for Threat Intelligence sources Lemay et al. [195] presented
a description of different resources about the activities of more than 40 APTs. Li et
al. [197] utilized a set of metrics (Volume, Differential contribution, Exclusive contribu-
tion, Latency, Accuracy, and Coverage) to compare different public and private Threat
Intelligence (TI) data feeds. They observed that in the majority of the data feeds there
is no overlapping of Indicator of Compromise (IOC) and a high number of false positives.
Similarly, Bouwman et al. [61] analyzed two paid TI and observed very few overlaps in
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the indicators for 22 APTs. The distinction is confirmed with a comparison with open
TI data. Furthermore, they observed that TI data is employed in the decision process of
companies, but there is a lack of metrics to determine the quality of these data. Several
works [189, 199, 289] proposed a (semi-)automated approach based on report parsing to
generate a database of IOC. However, merely relying on the results of the automated ap-
proach generates many false positives. For example in [189], we observed that CVEs are
wrongly associated to the admin@338 group in a report about the Poison Ivy malware,
where several campaigns from different actors are described. We provide a manually cu-
rated database from which we can quantitatively evaluate the impact and cost of software
update strategies.

Several studies evaluated the overlap among threat data feeds, showing poor accuracy.
Mechanisms to semi-automatically extract information from reports are prone to false-
positive.

Analysis of attackers characteristics Ussath et al. [338] analyzed 22 reports about
APT campaigns and mapped them into the three phases of an attack (initial compromise,
lateral movements, and Command&Control). They found that most of them employ social
engineering techniques and living-off-the-land techniques. Furthermore, they noted that
0-day vulnerabilities are not exploited frequently by APTs. Chen et al. [83] studied 4 APT
campaigns to analyze the phases of these attacks and determine possible countermeasures.
Urban et al. [337] analyzed 93 APT reports (66 different APTs) and determined that
spearphishing is the main attack vector. They then collected OSINT data like domain
names and social media information of 30 companies to determine how much information
is available to the adversaries. Additional works on APTs analysis focused on describing
the phases of the attacks and possible countermeasures [275], the analysis of the malware
employed in a few well-known campaigns [347], or the prevalence of living-off-the-land
techniques in certain samples [41].

To the best of our knowledge, we are the first to analyze more than 350 campaigns
exploiting 118 different CVEs from the inspection of more than 500 reports. This mas-
sive analysis makes it possible to draw significant conclusions on the efficacy of update
strategies.

Although several works provided insights into the APT ecosystem, the analysis focused
on a handful of campaigns that make it hard to draw significant conclusions on the char-
acteristics of APTs.
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Detection of attacks An orthogonal problem is detecting live APTs attacks once they
get into the network. Different research proposed to employ machine learning [25,79,132],
information flow tracking [66, 150, 153, 220], statistical correlation [292], and big data
analysis [48, 128,209,210].

Shu et al. [297] employed a temporal computational graph to perform threat hunting
activities via graph patterns matching and analyzed a case study on a DARPA threat
detection competition. Pei et al. [254] developed a framework to generate a multi-
dimensional weighted graph based on log entries and identify attacks by the presence
of dense connections among logs using unsupervised learning techniques. They evaluated
it over 15 APTs campaigns.
The state-of-the-art focused mainly on the detection and response against APT attacks,
while there is a lack of investigation on the orthogonal problem of prevention.

Game Theory Hu et al. [158] presented a two-layer attack/defense game to study APT
attackers that make use of insiders and compute the best strategies for the attacker and
defender. Sahabandu et al. [283] formulated a game-theoretic model to determine the
optimal defender strategy in terms of tracking information flow (Dynamic Information
Flow Tracking). Yang et al. [363] proposed a Nash game to model the response strategy
and minimize the loss of an enterprise against lateral movements in the network of APTs
in the network. We instead focus on the initial access phase of APTs campaigns and we
evaluated the efficacy of software update strategies based on real data of attacks.
Game theory is extensively applied to find an optimal strategy against targeted attacks.
However, these studies employ artificial data and networks.

Analysis of exploitation likelihood Many works employed ML and statistical meth-
ods to analyze vulnerabilities and predict the exploitation likelihood by joining data from
resources like NVD, Exploit DB [62], historical data on attacks [20, 167], Dark Web fo-
rums [24], and Twitter [82, 281]. An extensive discussion of the academic literature on
empirical cyber risk can be found in [360].

Other works investigated actual compromises using logs. Marchetti et al. proposed
a framework to prioritize the internal clients of an organization that are most likely to
be compromised by an APT using internal (network logs and flow records) and external
(social media) data [210] and to detect data exfiltration using a set of host-based features
and flow records analysis [209]. Similarly, Bilge et al. [51] and Liu et al. [204] employed
supervised learning algorithms to determine machines at risk of infection from internal
logs on binary file appearance, external data of misconfigured services (e.g. DNS or BGP),
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and malicious behaviors (e.g. spam or phishing).
We extend this line of research by proposing a methodology to evaluate the probability

of being compromised by APTs and the cost associated with the update strategy.
Analysis of historical data about vulnerability and attacks as well as live information
provided by logs and social platforms allows one to evaluate the exploitation likelihood.

Analysis of update releases From the client-side, Nappa et al. [226] proposed a
systematic analysis of the update process and update delay on client applications, and
performed a survival analysis of vulnerabilities based on data from Symantec. Similarly,
Kotzias et al. [184] presented a longitudinal study of the update behavior for 12 client
software and 112 server applications based on data from 28k enterprises. Sarabi et al. [288]
employed Symantec dataset to model users’ update delay as a geometric distribution and
study 4 different products (Chrome, Firefox, Thunderbird, and Flash Player).

From the vendor-side, Arora et al. [36] analyzed vendors’ patch behavior as a function
of several factors like disclosure time, characteristics of the vendor, and severity of the
vulnerability. Clark et al. [86] studied if agile methods produce a higher number of
vulnerabilities in Firefox. They observed that rapid software releases do not increase the
number of vulnerabilities in the code. Ozment and Schechter [247] analyzed the impact
of legacy code on the number of vulnerabilities observed OpenBSD versions.

Similar to our work, Beres et al. [46] employed a discrete-event simulator to determine
the exposure reduction produced by different security policies by varying update speed
and mitigations. However, they modeled events like exploits and updates availability
assuming fixed exponential functions looking at global trends observed by a security firm.

We present a quantitative evaluation of the effectiveness and cost of realistic update
strategies by using historical data about APT campaigns.
Several works analyzed the update behavior of clients and vendors. However, there are
only theoretical works on the efficacy of updates against targeted attacks for an enterprise.

7.8 Conclusions

In this work, we proposed a methodology to quantitatively investigate the effectiveness and
cost of software updates strategies against APT Campaign. We applied the methodology
to build a database of APT campaigns and presented an analysis of the attack vectors,
vulnerabilities, and software exploited by 86 different APTs in more than 350 campaigns
over 12 years. The database is publicly available on Zenodo [330].

In contrast to expectations, we showed that preventive mechanisms like updates can
influence the probability of being compromised by APT. However, software updates
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based on wrong measures of risk can be counterproductive. Our analysis shows that
a purely Reactive update strategy (wait until a vulnerability gets out) presents results
very similar to a Planned strategy (always update to the newest version), but with ≈33%
fewer updates. Furthermore, the Informed Reactive strategy, where updates are applied
based on reserved information about not publicly known vulnerabilities (e.g. by pay-
ing for information on 0-days), does not produce significant advantages compared to
the Reactive strategy and it is useless if the enterprise waits before applying the update.
In summary, for the broadly used products we analyzed, if you cannot keep updating
always and immediately (e.g. because you must do regression testing before deploying an
update), then being purely reactive on the publicly known vulnerable releases has the same
risk profile than updating with a delay but costs significantly less.

Future work can extend the analysis to a more complete set of software products and
evaluate a subset of campaigns by targeted enterprises, attacker preferences, or network
exposure based on IDS alerts [21]. To achieve that, one would require to have company-
specific information to move from a conditional probability to an absolute probability.

We also plan to extend the evaluation by considering campaigns as active only for a
limited period. Further data about the lifetime of campaigns in the wild is required.
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Chapter 8

Conclusions and Future Work

This dissertation has shown how to develop models and methodologies to quantitatively
evaluate the effectiveness of security mitigation strategies using the security data available
in different scenarios. Our results create an opportunity for individuals and companies
to increase their security by selecting the most appropriate security mitigation strategy
for their needs based on a systematic and quantitative evaluation of effectiveness and
costs. For what concerns the privacy of users on the Web, we modeled tracking practices
and evaluated the effectiveness of different filter lists of privacy extensions. Our approach
allows a third-party independent verification of tracking claims and filter lists performance
for individual users. In the complementary context of the security of Web users, we
modeled several attacks and mitigations at different layers of the Internet. We evaluated
the Internet security posture and observed that currently deployed security mitigations are
ineffective. An increase in security can be achieved with relatively cheap mitigations at the
application level like HSTS, HTTPS, and SRI. Future works can investigate the difference
in security and privacy perceived by varying the point of collection of the security data
and by extending the attack scenarios and available mitigations.

Our model of task complexity allowed us to employ security data about incidents to
measure the accuracy of SOC analyst investigation. The model allows one to determine
the impact on the performance of changes in the technical skills of the analyst as well as
in the tools employed to investigate the intrusion. Future works can further expand the
quantitative analysis of these socio-technical components’ performance, for example on
specific phases of an investigation like malware analysis or in a dynamic context like an
incident response case.

To deal with unstructured data describing criminal activities we developed methodolo-
gies to represent and analyze their complex relationships. In the context of underground
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forums, we presented a methodology to generate samples for training ML classifiers based
on the network characteristics obtained by the interactions of the members in the forum.
We then showed how to evaluate ML performance on the entire forum to identify changes
in performance from similar samples. In the context of APTs, we showed how current
best practices on software updates are detached from reality as they lack a quantitative
view of the APT landscape. Organizations cannot keep the pace of the updates and, while
criticized for that, their behavior is rational as the risk of being compromised does not
change. This work raised the interest of Trend Micro. We are planning to extend this
work with an analysis of the effectiveness of the update strategies discerning targeted and
untargeted attacks and by varying the victim profile.

This thesis is an attempt to incentivize the application of effective, in contrast to vis-
ible, defense mechanisms. Independently from the security data characteristics, be them
fully structured and visible like blacklist feeds and software vulnerability repositories or
unstructured and not visible like underground forum discussions and threat intelligence
reports, we showed that with appropriate methodologies that rely on data models con-
struction of the key processes and relationships between attackers and defenders from
security data, we can measure the real effectiveness of security mitigation strategies. By
making explicit the causal relations between threats characteristics, the targeted network,
and the security mitigations available, we obtain results that are put in context and pro-
vide a transparent explanation of why certain mitigations succeed and others do not, why
some are worth it, and if so under which conditions.
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Appendix A

IFOL Rules for Web Tracking

We have the following rules for intuitionistic logic:

A ` A
(Ax)

N ` A A,N ` B
N ` B

(Cut)
N , A,A ` B
N , A ` B

(CL)

N ` B

N , A ` B
(WL)

N `
N ` B

(WR)
N ` A

N ,¬A `
(¬L)

N , A `
N ` ¬A

(¬R)

N , A,B ` C

N , A ∧B ` C
(∧L)

N ` A N ` B

N ` A ∧B
(∧R)

N , A ` C N , B ` C

N , A ∨B ` C
(∨L)

N ` A

N ` A ∨B
(∨R1)

N ` B

N ` A ∨B
(∨R1)

N ` A N , B ` C

N , A→ B ` C
(→L)

N , A ` B

N ` A→ B
(→R)

In our derivations, we do use neither ∨Ri nor ∨L rules as we are only interested in deriving
knowledge predicates.

Construct Proof of Tracking

We show that from a derivation we can reconstruct the connections responsible for the
tracking.

Theorem 2 (Map proofs to configurations). Given a derivation of Knows(w ∗,w)

from an internet snapshot N (N ` Knows(w ∗,w)), one can extract an essential subset of
the configuration Nω⊆N such that N \Nω 6`Knows(w ∗,w).

205



206

Proof. This result follows from the existence of uniform proofs1 for the fragment of in-
terest [69] and the existence of a feasible interpolation for intuitionistic logic [68, 140].
Given a derivation of N ` Knows(w ∗,w) one can construct a uniform proof and the
existence of the interpolant guarantees that we have a set of formulae that only includes
constants shared from the antecedent (the internet configuration) and the succedent (the
knowledge predicate). Hence we can use the proof to reconstruct the tracking steps and
data exchanges responsible for Knows(w ∗,w) in a subset N1, as the predicates present
in the proof and the interpolant. We can then eliminate N1 from N and try to derive
N \N1 ` Knows(w ∗,w). If we succeed, it means there is another way to exchange data, so
we extract a new subset N2 and continue the process until for Ni, i = 1 . . . no derivation
is possible. As deciding a single query is decidable in polynomial time (See Theorem 1)
the process terminates after a polynomial number of interactions. The union of all sets
Ni is the desired set Nω.

As immediate from the proof above, one could also stop the search as soon as the first
subset of the internet snapshot, N1, responsible for the tracking is identified. This is what
we do with a theorem prover.

A.0.1 Examples of Complex Tracking Interactions

Figures A.1a, A.1b and A.2 show different cases of tracking. Figure A.1a describes the use
of first-party cookies on a website. Figures A.1b and A.2 describe the practice of tracking
carried out by third-party websites. In the first case, the tracker is directly present on the
website, while in the latter it is included by a third-party website. Figure A.3a describes
the leaf of recursion where website w accesses itself because either it uses content from itself
or it redirects to its content. Figure A.3b describes how to propagate user’s information
through websites. The browser is forced to load the resources from w, the resources used
by w from w′, and the resources used by w′ from w′′. We can also model particular cases
where w shares cookies with w′ (Accesscookie(w ,w

′)), but w′ does not propagate its cookies
to w′′ (Link(w ′,w ′′)). Thus, we obtain (Access(w ,w ′′)).

Figure A.4 illustrates how cookie syncing allows an attacker to track users on websites
where it is not explicitly present.

1A finite constructive process applies uniformly to every formula, either producing an intuitionistic
proof of the formula or demonstrating that no such proof can exist.
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Visits(w)

Link(w ,w) ¬Block_request(w)

Access(w ,w) ¬Block_tp_cookie(w)

Knows(w ,w)

If a user visits a website w that is allowed to store cookies, then w can know that the user visited it. This
is a special case of 3rdpartyTracking in Figure 3.1a. In this case ¬Block_tp_cookie(w) is always true
because there are not 3rd-party cookies.

Link(w ,w ′) ¬Block_request(w ′)

Access(w ,w ′) Visits(w) ¬Block_tp_cookie(w ′)

Knows(w ′,w)

If a user visits a website w that forces to access resources from another website w′, then if the website
w′ is not blocked by any mitigation, it can know that the user visited w.

Figure A.1: Knows Visits Derivations

Visits(w)

Link(w ,w ′) ¬Block_request(w ′)

Access(w ,w ′)

Link(w ′,w ′′) ¬Block_request(w ′′)

Access(w ′,w ′′)

Access(w ,w ′′) ¬Block_tp_cookie(w ′′)

Knows(w ′′,w)

If a user visits a website w that accesses resources from a 3rd-party website w′, the website may not only
track the user but it can also redirect (include) another website w′′ that can set its cookie if no mitigation
blocks it. This situation describes both Third parties that include trackers and Basic tracking initiated by
a tracker [124], where w′ tracks/does not track w (it can be verified with the rule 3rdpartyTracking).

Figure A.2: Knows by external trackers

Link(w ,w) ¬Block_request(w)

Access(w ,w)

Linkcookie(w ,w) ¬Block_request(w)

Accesscookie(w ,w)

It is the leaf of the derivation corresponding to the access of a sequence of resources.

Link(w ,w ′) ¬Block_request(w ′)

Access(w ,w ′) Link(w ′,w ′′) ¬Block_request(w ′′)

Access(w ,w ′′)

If a website w accesses resources of website w′, and w′ has a link to content from w′′, then there is an
access between w and w′′ only if w′′ is not blocked by any extension. We can also use Accesscookie(w ,w ′)

and Linkcookie(w
′,w ′′) to describe a link with exchange of cookies between w and w′′ (Linkcookie(w ,w ′′)).

Figure A.3: Network Interactions Derivations
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Knows(w ′,w)

Linkcookie(w
′,w ′′) ¬Block_request(w ′′)

Accesscookie(w
′,w ′′) ¬Block_tp_cookie(w ′′)

Cookie_sync(w ′,w ′′)

Knows(w ′′,w)

w′ can track a user on w and redirects the user to another 3rd-party website w′′ inserting the cookie
information. The two 3rd-party websites can share their cookies and w′′ can track users on w even if it
is not directly embedded. This situation can be mitigated if either w′ or w′′ are either blocked by an
extension or cannot set cookies. This is called 3rd-2-3rd party cookie syncing.

Figure A.4: Known by external trackers via Cookie Syncing

A.0.2 Example of Proof

We employ the getLKProof method in Slakje to generate a proof as a sequence of se-
quents. The proof can be visualized using the prooftool of GAPT, however, it is extremely
verbose. Figure A.5 shows the proof for req_COPPA(flashtalking .com), where PII can
be potentially collected from thesaurus.com.
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ax
visit(thes)

` visit(thes)

ax
includeContent(thes, flt)

` includeContent(thes, flt)

ax
link(thes, flt)

` link(thes, flt)
→: l,∀l,∀l, IncludeW

includeContent(thes, flt)

` link(thes, flt)

ax
¬block_requests(flt)

` ¬block_requests(flt)
∧ : R

includeContent(thes, flt),

¬block_requests(flt)

` link(thes, flt) ∧ ¬block_requests(flt)

ax
access(thes, flt)

` access(thes, flt)

→: l,∀l,∀l, AccessToW
includeContent(thes, flt),

¬block_requests(flt)

` access(thes, flt)
∧ : R

visit(thes),

includeContent(thes, flt),

¬block_requests(flt)

` visit(thes) ∧ access(thes, flt)

ax
¬block_tp_cookie(flt)

` ¬block_tp_cookie(flt)

∧ : R
visit(thes),

includeContent(thes, flt),

¬block_requests(flt),

¬block_tp_cookie(flt)

` (visit(thes) ∧ access(thes, flt)) ∧ ¬block_tp_cookie(flt)

ax
knows(flt, thes)

` knows(flt, thes)

→: l,∀ : l,∀ : l, 3rdpartyTracking
visit(thes),

includeContent(thes, flt),

¬block_requests(flt),

¬block_tp_cookie(flt)

` knows(flt, thes)

ax
kids(thes)

` kids(thes)

∧ : R
visit(thes),

includeContent(thes, flt),

¬block_requests(flt),

¬block_tp_cookie(flt)

` knows(flt, thes) ∧ kids(thes)

ax
req_coppa(flt) ` req_coppa(flt)

→: l,∀ : l,∀ : l, COPPAcomplColl
visit(thes),

includeContent(thes, flt),

¬block_requests(flt),

¬block_tp_cookie(flt),

kids(thes)

` req_coppa(flt)

Figure A.5: Proof of req_COPPA(flt = flashtalking .com), where thes is the children-
related website thesaurus.com
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Appendix B

Rules for Web Infrastructure Model

This appendix contains the complete threat model used to describe Web-based attacks.
Table B.1 contains the entire list of predicates used in the model. Each predicate in
the precondition of an action is in conjunction with the other predicates; the presence of
disjunctions in a rule is used as shorthand to represent different rules for the same action
with a shared part in the precondition.

Table B.1: Threat Model Predicates

Predicate Description

x
loc−−→ cn x ∈ AS ∪ IP ∪D ∪NS is located in cn ∈ Country

d
A−→ i d ∈ D ∪NS has address i ∈ IP

i
orig−−→ a i ∈ IP belongs to a ∈ AS

c
JS−→ d d ∈ D contains JS scripts hosted in the element c ∈ D

avail_over_
HTTPS (c, d)

The JS resources retrieved from c by d are available over HTTPS

e
DNS−−−→ d e ∈ NS is one of the authoritative name servers of d

p
parent_zone
−−−−−−−−→ e p ∈ NS manages the parent zone of the element e ∈ NS

a
RTE(b)−−−−−→ c Given a, b, c ∈ AS, the route from a to c passes through b

C(x) x ∈ AS ∪ IP ∪ D ∪ Country ∪ NS ∪ CA is compromised. In case
x ∈ D∪NS, x can be used to directly (indirectly) affect user’s visits
(Globally compromised)

Cweb(d) The website hosted on d ∈ D is compromised. JS included from d is
not necessarily compromised as well (Website access compromised).

Cweb(c, d) The website on d ∈ D is considered compromised for all the visitors
from c ∈ Country. (Website access compromised from c)

XSS(d) d ∈ D is vulnerable to XSS
Upgrade Requests(d) d ∈ D employs the field upgrade-insecure-requests in the CSP

to force HTTPS for all the resource requests.
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SRI(d, c) d ∈ D implements the Sub-Resource Integrity mitigation for all the
resources, used by d, stored in c ∈ D. It is assumed d 6= c

IPsec(a, b) The packets routed between a ∈ AS and b ∈ AS are protected via
IPsec

DNSSEC(f) The element f ∈ NS implements DNSSEC
HTTPS(d) The element d ∈ D implements HTTPS
l_HTTPS(d, e) All the JS resources, used by d ∈ D and hosted in e ∈ D, are

explicitly using HTTPS in the source code
l_HTTPS_ compat(d, e) All the JS resources, used by d ∈ D and hosted in e ∈ D, are either

explicitly using HTTPS in the source code or a protocol-relative URL
HSTS(d) d ∈ D implements the header strict-transport-security
Redirect(d) d ∈ D redirects HTTP connections to HTTPS. The redirection is

either temporary or permanent
CT (d) The digital certificates, for d ∈ D, are signed by CAs that are com-

pliant with the CT
DANE(d) d ∈ NS implements DANE
IDNS(d) The DNS resolution of d ∈ D is compromised (Globally compromised

DNS ).
IDNS(d, e) The DNS resolution of d ∈ D is compromised for the visitors from

c ∈ Country (Country compromised DNS )
IR(i, j) The route between i, j ∈ IP is compromised
ICA(d) d ∈ D is vulnerable to certificate authority attacks
TLSA_0(a), TLSA_2(a) a ∈ CA is present in the certificate chain of the TLSA record with

certificate usage field 0 or 2

Using the notation of the Boolean Logic, the symbol ¬ in front of a predicate negates
the predicate itself.

B.0.1 Attacker rules

This section describes the propagation rules for the attacker used in the threat model.
We provide each rule, followed by the intuition of what kind of attack it represents.

Initially Compromised Nodes

x∈AS∪IP∪NS∪CA

cn∈Country x
loc−→cn C(cn)

C(x) (B.1)
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Intuition: All the autonomous systems, IPs, name servers and certificate authorities
associated to a malicious country are under the control of the attacker.

i ∈ IP a ∈ AS i
orig−−→ a C(a)

C(i) (B.2)

Intuition: All the IPs, that belong to an autonomous system compromised by the
attacker, are considered under the control of the attacker.

i ∈ IP d ∈ D ∪NS d
A−→ i C(i)

C(d) (B.3)

Intuition: If a domain (name server) resolves to an IP address under the control of the
attacker, then also the domain (name server) is considered compromised.

i ∈ IP d ∈ D ∪NS d
A−→ i C(d)

C(i) (B.4)

Intuition: The same applies in the opposite direction. If a domain or NS is compro-
mised, the corresponding IP is also considered compromised.

Content Compromise

d ∈ D XSS (d)

Cweb(d) (B.5)

Intuition: If a web server is vulnerable to XSS attacks then the attacker can gain control
of the content of the website. We did not consider using CSP because its impact on the
functionality of a website is currently not measurable. For example, CDNs often inject
scripts in websites and thus the cost of deploying a CSP can hardly be measured [312].

DNS Compromise

d ∈ D e ∈ NS e
DNS−−−→ d C(e)

IDNS(d) (B.6)

Intuition: If one of the authoritative name servers of a domain is under the control of
the attacker, then the DNS resolution for this domain is considered compromised1. An
attacker can modify the DNS resolution and map the domain name to a different IP.

1Due to the fact that there is no information about which authoritative NS is queried by a client, this
is a simplification implemented in the model. Furthermore, if the attacker is able to compromise one of
the authoritative NS for a domain, it is possible that it is also able to compromise the other NSs.
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Route Compromise

a,b,c∈AS a6=b 6=c C(b)

a
RTE(b)−−−−→c ¬IPsec(a,c) i

orig−−→a j
orig−−→c

IR(i, j) (B.7)

Intuition: If a route from one AS to another is IPsec protected and passes through
a third AS under the control of the attacker, then the route is insecure and the two
endpoints of the communication could be targeted by an attack.

This rule does not consider the case in which the sender or the destination is compro-
mised, because IPsec cannot protect against this scenario.

a ∈ AS C(a) i ∈ IP j ∈ IP i
orig−−→ a

IR(i, j) (B.8)

Intuition: If the sender AS is under the control of the attacker, then all the routes
originating from this AS are deemed to be insecure. This scenario describes the situation
where a country or a provider implements surveillance over its population. Note that the
case in which an endpoint is compromised is captured by (B.2), which would mark the
respective IP and thus domain or name server compromised.

Route to Web Server Compromise

e∈Country d∈D a∈AS i,j∈IP

d
A−→j i

orig−−→a a
loc−→e IR(i,j)

¬(HTTPS(d)∧¬ICA(d)∧Redirect(d)∧HSTS(d))

Cweb(e, d) (B.9)

Intuition: If a route between a client and a web server is insecure, assuming the worst
scenario in which a non-tech-savvy user accesses the web server via HTTP (at the time
of writing HTTP is the default protocol used by browsers if a protocol is not explicitly
defined), then the attacker can implement a MITM attack in the following cases:

• Case 1: If the web server does not implement HTTPS, then the attacker can eaves-
drop and replace the content retrieved from the web server;

• Case 2: If the web server implements HTTPS but it does not redirect to HTTPS,
then, for the hypothesis previously presented, the attacker can eavesdrop and replace
the content retrieved from the web server. The HSTS header does not provide any
protection if Redirect is not implemented; indeed the header is ignored in an HTTP
connection [154];
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• Case 3: If the web server implements HTTPS and redirects HTTP traffic to HTTPS
but it does not implement HSTS, then the attacker can compromise the connection
before the redirection phase;

• Case 4: If the web server implements HTTPS but it is vulnerable to certificate
authority attacks2, then a malicious CA can forge digital certificates for the domain
and use them to authenticate connections to malicious web servers.

In Case 3 we ignore the use of a permanent redirection and we require, in addition,
the presence of the strict-transport-security header. This choice is because the
redirection is not a secure mitigation and the HSTS provides a better security compared
to the Permanent redirection:

• HSTS covers the entire domain;
• HSTS implements a preloaded list3;
For those domains that are not in the preloaded HSTS list, the first access to a

web server is still insecure even if all the previous requirements are met.4 For a first
approximation, we assumed the attacker to not be allowed to exploit this vulnerable
window.
The postcondition declares that all the connections originating from the country where the
sender AS is located, are compromised. This is an upper-bound assumption because there
could exist ASes in the country that do not present an insecure route. This simplification
is due to the fact that there is no information about the location within the country of
the client contacting the web server.

Route to Name Server Compromise

a∈AS i,j∈IP e∈Country a
loc−→e i

orig−−→a

f
DNS−−−→d f

A−→j IR(i,j) ¬DNSSEC (f )

IDNS(d, e) (B.10)

Intuition: If a route between a client and a name server is insecure and the NS does not
implement the DNSSEC protocol, then the attacker can redirect the client to a malicious
NS or can implement a DNS cache poisoning attack. Thus, the DNS resolution of the
domain is compromised for all connections originating in the country where the client AS

2See rules: B.16, B.17, B.18
3It is a list of domains that are automatically configured with HSTS. This list is integrated into the

browser.
4A possible mitigation for this scenario is to increase the number of domains contained in the preloaded

HSTS list.
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is located5.

From DNS to Domain Compromise

IDNS(d) ¬(HTTPS(d)∧¬ICA(d)∧Redirect(d)∧HSTS(d))

Cweb(d) (B.11)

Intuition: If a web server has a Globally compromised DNS 6 and either it does not
fulfill all the conditions to establish a secure connection or the attacker is able to forge
a malicious certificate for the website, then the attacker can redirect all the clients to a
malicious web server that can claim to be the legitimate one.

IDNS(d,e) e∈Country

¬(HTTPS(d)∧¬ICA(d)∧Redirect(d)∧HSTS(d))

Cweb(e, d) (B.12)

Intuition: The same situation applies in case the web server has a Country compromised
DNS ; the only difference lies in the post condition, where the attacker can only redirect
the clients from the particular country to a malicious web server.

IDNS(c) c
JS−→d ¬SRI (d ,c)

¬(HTTPS(d)∧Redirect(d))∨ICA(c)

¬l_HTTPS(d ,c)∨ICA(c) ¬UpgradeRequests(d)∨ICA(c)

Cweb(d) (B.13)

Intuition: If a CDN, that provides JS resources for a certain web server, has a Globally
compromised DNS, then the attacker can redirect the client to a CDN that provides
malicious JS resources. This scenario is possible if all these conditions are met:

• The web server does not implement SRI, thus the JS resource can be replaced with
a malicious one.

• The protocol to retrieve the resource from c is not HTTPS or the attacker is able to
forge a certificate for the CDN.

• The web server does not implement the upgrade-insecure-requests field in the
CSP or the attacker is able to forge a certificate for the CDN.

• The website is not accessible via HTTPS or does not redirect automatically to the
secure protocol or the attacker is able to forge a certificate for the CDN

5This is the same simplification presented in rule B.9
6This means that the attacker has control over the content provided by one of the authoritative NSs

for this domain.
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Note that the website on d is required to implement a redirect to HTTPS only if it uses
protocol-relative URLs. In case d does deliver its content via HTTP and includes resources
explicitly via HTTPS it is able to protect against this attack on the resolution of c.

IDNS(c,e) e∈Country c
JS−→d ¬SRI (d ,c)

¬(HTTPS(d)∧Redirect(d))∨ICA(c)

¬l_HTTPS(d ,c)∨ICA(c) ¬UpgradeRequests(d)∨ICA(c)

Cweb(e, d) (B.14)

Intuition: The same situation applies in case the CDN has a Country compromised
DNS ; the post condition presents the same structure of rule B.12.

Inline JS Injection

c∈Country i,j∈IP d1,d2∈D d2
JS−→d1 a∈AS

i
orig−−→a d2

A−→j IR(i,j) a
loc−→c ¬SRI (d1 ,d2 )

¬(HTTPS(d1 )∧Redirect(d1 ))∨ICA(d2 )

¬l_HTTPS(d1 ,d2 )∨ICA(d2 ) ¬UpgradeRequests(d1 )∨ICA(d2 )

Cweb(c, d1) (B.15)

Intuition: If the route from a client to a CDN, that provides JS resources to a web
server, is insecure7 and all these conditions are met:

• The web server does not implement SRI: in this case a MITM attacker can drop the
legitimate JS resource and can replace the content with malicious code.

• The protocol used to retrieve the resources of the CDN in the web server HTML code
of d1 is not HTTPS or the attacker can forge a malicious certificate for the CDN.

• The web server does not implement the upgrade-insecure-requests field in the
CSP or the attacker can forge certificates for the CDN.

• The website is not accessible via HTTPS or does not redirect automatically to the
secure protocol or the attacker can forge a certificate for the CDN

Then, the attacker can intercept the JS requests and inject malicious JS code.
Note that we required that any mitigation (UpgradeRequests or l_HTTPS ) does not

break the functionality of the website by requiring that the resource is available over
HTTPS (see Appendix B.0.2).

7This model assumes that the web server does not implement a proxy to retrieve the resources from
the CDN on behalf of clients.
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Certificate Compromise

a∈CA d∈D e∈NS C(a)

e
DNS−−−→d ¬CT (d) ¬DANE(e)

I CA(d) (B.16)

Intuition: If a certificate authority is under the control of the attacker and these con-
ditions are met:

• The web server’s digital certificates are signed by CAs that are not compliant with
the Certificate Transparency project.

• The authoritative NSs of the domain do not implement the DANE protocol.
Then, the attacker can forge malicious digital certificates for the domain and use them to
generate authenticated connections to malicious web servers.

a∈CA d∈D e∈NS C(a)

e
DNS−−−→d ¬CT (d) C(e)

I CA(d) (B.17)

Intuition: If, in the same scenario of rule B.16, one of the NS is under the control of the
attacker, the DANE protocol cannot be trusted. For example, the attacker can modify
the TLSA records and insert a new hash of a digital certificate signed by the compromised
CA.

a∈CA d∈D e∈NS C(a) e
DNS−−−→d

¬C(e) (TLSA_0 (d ,a)∨TLSA_2 (d ,a))

I CA(d) (B.18)

Intuition: If, in the same scenario of rule B.16, the authoritative NS is not compromised
and implements the DANE protocol, the attacker can forge new digital certificates if one
of these two conditions is met:

• The TLSA certificate usage field is 0 and the compromised CA is in the Certificate
Chain8

• The TLSA certificate usage field is 2 and the compromised CA is in the Certificate
Chain from the Server certificate to the Trust anchor.

Third-party JS Injection

d, e ∈ D e
JS−→ d ¬SRI (d , e) C(e)

Cweb(d) (B.19)

8The model assumes that the TLSA record defines the entire chain; this is the most secure approach.
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Intuition: If a web server contains a JS resource that is not protected via Subresource
Integrity and is hosted in a domain under the control of the attacker, then the attacker
can modify the content of the JS script with malicious code.

Access compromised to website access compromised

d ∈ D C (d)

C web(d) (B.20)

Intuition: If a domain d is globally compromised, the website on d is compromised as
well.

B.0.2 Defender rules

This section describes the propagation rules for the defender used in the threat model.
We describe only those rules that require some preconditions to be implemented. The
remaining mitigations have no preconditions.

Secure Inclusions

d , c ∈ D c
JS−→ d avail_over_HTTPS (c, d)

l_HTTPS (d , c) (B.21)

Intuition: If a web server contains JS resources from a different domain which are all
available over HTTPS, then the defender can explicitly enforce HTTPS for retrieving the
JS resource in the source code. We do not allow new domains to use protocol-relative
URLs (l_HTTPS_compat) because it is an anti-pattern. and if resources are available
over HTTPS they can always be retrieved explicitly over HTTPS even if the domain d is
using HTTP.

d , c ∈ D
∧

c.c
JS−→d

avail_over_HTTPS (c, d)

UpgradeRequests(d) (B.22)

Intuition: If the entry UpgradeRequests of the CSP is utilized, we need to check that all
the JS resources retrieved from all the different domains c are retrievable over HTTPS.
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Redirection to HTTPS and HSTS

d ,c∈D HTTPS(d)
(
∧

c.c
JS−→d

(l_HTTPS(d ,c)∨

(l_HTTPS_compat(d ,c)∧avail_over_HTTPS(c,d))))
∨UpgradeRequests(d)

Redirect(d) (B.23)

Intuition: To implement a redirection over HTTPS to the domain d, it must implement
HTTPS and all the included JS resources from external domains must be retrieved over
HTTPS (either explicitly or using protocol-relative URLs). This is required to not break
a functionality of the domain d (due to mixed-content).

Indeed, if a redirection over HTTPS is established, but the JS resources are not retriev-
able over HTTPS, it will trigger a mixed-content warning in all the major browsers. In
case the domain employs protocol-relative URLs (l_HTTPS_compat), it is also required
to have the resource available over HTTPS. The predicates obtained from the rules B.21
and B.22 already required the availability of the resources over HTTPS.

d ∈ D HTTPS (d)

HSTS (d) (B.24)

Intuition: The precondition to implement the security header HSTS is the presence of
HTTPS on the domain.

DNSSEC

e, p ∈ NS
∧

p.p
parent_zone−−−−−−−→e

DNSSEC (p)

DNSSEC (e) (B.25)

Intuition: The precondition to deploy DNSSEC on a name server is the implementation
of DNSSEC in all the parent zones.

DANE

e ∈ NS DNSSEC (e)

DANE (e) (B.26)

Intuition: The precondition to deploy DANE on a name server is the implementation
of DNSSEC.
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Certificate Transparency

d ∈ D HTTPS (d)

CT (d) (B.27)

The precondition to employ Certificate Transparency logs is that the domain implements
HTTPS, i.e., it has a digital certificate.
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Appendix C

Replication Guide for SOC Experiment

C.0.1 Mapping Attack Scenarios to Task Complexity

We present how to instantiate the two attack scenarios using the theory of SOC task
complexity and Table C.1 provides additional information about the causal relations of
the sub-tasks and their output that concur at the task complexity.

MIRAI Attack Scenario

Identification Victim An alert referring to a connection to a MIRAI server. The
alert body1 analysis is composed of a single act with as external input the malware domain
name.

Identification Attacker Alerts refer to scan attempts against the network. The
alert body2 analysis is composed of a single act with as external input the scan attempt.

Identification Reconnaissance Starting from the victim IP, alerts refer to multiple
port scan probes sent to the victim IP. The alert body3 analysis is composed of a single
act with as external inputs the scan technique and the multiple attempts.

Identification Vulnerability Starting from the victim/attacker, logs in Kibana show
attempts of connection to the SSH port that end in a successful connection. The alert body4
analysis is composed by three acts: first investigate the connections from/to the attack-
er/victim IP via Kibana, then from this connection identify the port contacted, and finally
analyze the connections status. The external inputs are the use of Kibana and the number
of attempts. Additional inputs are the port number and the connection status produced
by the previous acts.
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Identification Malware Delivery Starting from the victim IP, an alert referring to
the request of content from an unusual external IP. The alert body5 analysis is composed
by two acts: find the resource requested ((/apex )) and then inspect the resource content
(a shellcode). The resource requested is an external input, while the resource content is
produced by the previous act.

Identification Exfiltration Starting from the victim IP, an alert referring to the con-
nection to a C&C. The alert body6 analysis is composed of a single act that inspects
the content of the transmitted data. The external input in the alert is the credentials
submitted to the external IP.

EXIM Attack Scenario

Identification Victim An alert referring to a RCE. The alert body1 analysis is com-
posed of a single act with as external input the RCE info.

Identification Attacker An alert referring to a RCE. The alert body2 analysis is com-
posed of a single act with as external input the RCE info.

Identification Reconnaissance Starting from the victim IP, logs show scans to dif-
ferent victim’s ports where the victim IP replied with a RST/ACK (port closed). Finally,
the attacker finds the SMTP port open. The alert body3 analysis is composed by three
acts: first investigate the connections towards the victim IP via Kibana, then identify
that multiple ports are contacted, and analyze the reply (RST/ACK). The external input
is the use of Kibana, while the attempted connections to multiple ports and the RST/ACK
packets sent as a response are input produced by the previous acts.

Identification Vulnerability Starting from the victim or attacker IP, an alert referring
to the exploitation of a RCE. The alert body4 analysis is composed of a single act with as
external input the RCE info.

Identification Malware Delivery Starting from the victim IP, logs refer to the request
for content from an external IP. The alert body5 analysis is composed by three acts: first
investigate the connections established by victim IP via Kibana, then identify a connection
to an external IP, and resolve the IP to the suspicious domain exploit-db.com. The external
input is the use of Kibana, while the establishment of a SSL connection and the domain
name contacted are inputs produced by the previous acts.
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Identification Exfiltration Starting from the victim IP, logs refer to the connection
to an external IP. The alert body5 analysis is composed by three acts: first investigate
the external connections generated from the victim IP via Kibana, then identify a con-
nection to an external IP, and resolve the IP to the suspicious domain l6asd8cs-google-
support.abc.xn-p2a.jetzt. The external input is the use of Kibana, while the establishment
of a SSL connection and the domain name contacted are inputs produced by the previous
acts.



226

Table C.1: Causal relations and output sub-tasks

Sub-task Causal Rela-
tion

Rationale Output

Identif.
Victim

/ To determine the victim the position is crucial
because, for example, the attacker does not ex-
filtrate its credential to the victim but only vice
versa

IP address of the vic-
tim, the type of sys-
tem infected, its de-
partment, etc.

Identif.
Attacker

/ To determine the attacker the position is crucial
because, for example, the victim does not send an
exploit to the attacker but only vice versa

IP address of the at-
tacker, its geoloca-
tion, etc.

Identif.
Recon

Identif.
Victim OR
Identif.
Attacker

The analyst needs first to identify the victim/at-
tacker IP and then can proceed to identify the
alert as part of the reconnaissance phase of the
attack. In the case of multiple probes, to iden-
tify a recon phase the order of probed systems
or ports does not matter thus there is no causal
relation. In this case, information cue related to
the attacker/victim IP and its position in the n

alerts do not change

Scan technique, the
timing, etc.

Identif.
Vuln.

Identif.
Victim OR
Identif.
Attacker

The analyst first needs to identify the victim or
the attacker to determine the vulnerability ex-
ploited. In case the type of vulnerability requires
multiple payloads the victim and attacker IPs, as
well as their position, do not change and do not
have a causal relation for the analysis. The in-
formation remains the same as in the one-shot
payload

Type of vulnerabil-
ity exploited (SQLi,
RCE, etc.), the soft-
ware affected, etc.

Identif.
Malware
Delivery

Identif.
Victim OR
Identif.
Attacker

To determine the infrastructure delivering mal-
ware additional inputs are required: the external
IP contacted, the IP of the victim/attacker, and
the position as source and target in the alert. In-
deed, the position is a critical information as the
victim receives malware from external IP and not
vice versa. Instead of the victim IP, an analyst
can also employ a previously identified attacker
IP as an additional source, for example by deter-
mining that both the attacker IP and the malware
server IP are from the same subnet

IP address of the
server contacted,
the malware family
downloaded, etc.

Identif.
Exfiltr.

Identif.
Victim OR
Identif.
Attacker

To determine the victim the position is crucial
because, for example, the attacker does not ex-
filtrate its credential to the victim but only vice
versa

IP of the C&C, ex-
filtrated information,
geolocation of the
C&C, etc.
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C.0.2 Background and Skills questionnaire

Table C.2 shows an example of the instantiation of the background level with a concrete
example and the associated numerical value used to present the results. Table C.3 shows
the entire list of skills questions by category while Figure C.1a and Figure C.1b show two
examples of the technical questions to assess students’ skill levels related to networking
and vulnerability respectively.

Table C.2: Background question on Hacking

Options Value
"I have attended a couple of lecture on Hacking or security in a course or on some website" 1
"I have attended a course/tutorial on buffer overflow or software testing" 2
"I have used a fuzzer or vulnerability scanner in hands-on labs or during short internships" 3
"I have used vulnerability & network scanners during my professional experiences (>3 months)" 4
"I am a professional pen tester (e.g. SANS certified) in my work (>3 years work) or have an
equivalent professional certification"

5

(a) Networking question in the technical assess-
ment related to gathering DNS information

(b) Vulnerability question in the technical assess-
ment related to software vulnerability identifica-
tion

Figure C.1: Example of technical questions to assess student skill levels
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Table C.3: Skills questions by category

Category Question
Networking "Background: Hosts on the Internet keep track of the common names (like web-

site.org) and the IP addresses (like 127.88.50.109) using a database called the Do-
main Name System. Hosts typically check a local hosts file first (files like /etc/hosts
or %systemroot%system32driversetchosts). If there is no entry in that file, then a
host will request the address of a server that it wishes to contact, say www.google.com,
and the DNS server the host is configured to use will return the IP Address so the
connection can begin. Host A on your network performs a DNS lookup of website.org
and gets the result 127.98.101.45 Host B on your network performs a DNS lookup of
website.org and gets the result 127.129.58.111 Which of the following could explain
why?"

Networking "The client on either side of a TCP session maintains a 32-bit sequence number it
uses to keep track of how much data it has sent. This sequence number is included
on each transmitted packet, and acknowledged by the opposite host as an acknowl-
edgement number to inform the sending host that the transmitted data was received
successfully. Consider the following lists of sequence and acknowledgement numbers,
where packet 2 is delayed and arrives out of sequence. Complete the sequence with
the missing values"

Networking "Given the following output of the dig (domain information groper) command. What
is the value recorded in the DNS cache for www.google.com?"

Networking "What is the port through which the server replied to the following wget request?"
Networking "What is the problem shown by the following output of tcpdump?"
Vulnerability "What is the vulnerability of vulnPrint()?"
Web Progr. "Where is this code located to handle HTTP request?"
Web Progr. "When programming sockets for a server in C, what is the correct order of the needed

functions?"
Net. Analysis "Write the source and the destination ports, basing on the following output of tcp-

dump"
Net. Analysis "What is the option to obtain the epoch time in the output of tcpdump?"
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C.0.3 Manual Scoring procedure

Table C.4 and Table C.5 shows the instantiation of the guidelines for the scoring of the
tickets for the two scenarios depicted in Figure 5.2.

Table C.4: Guidelines scoring tickets phases MIRAI

Score Identification
Reconnaissance

Identification
Vulnerability

Identification
Malware Delivery

Identification
Exfiltration

OK (Ticket reported
only (199.19.215.23
(and possibly
199.19.215.29,
91.198.120.42) in
"Attacker IP"
field or in the
explanation) ∨
(121.145.34.116
in the "Victim
IP" field or in the
explanation)) ∧
(Port Scan/SSH
Scan/O.S. Scan in
"reconnaissance"
action or in the
explanation)

(Ticket reported
only (199.19.215.23
(and possibly
199.19.215.29,
91.198.120.42) in
"Attacker IP"
field or in the
explanation) ∨
(121.145.34.116 in
"Victim IP" or in
the explanation))
∧ (Weak Password
in "vulnerability"
action or in the
explanation)

Ticket reported
only 91.198.120.42
or p.pi.fi (and pos-
sibly 199.19.215.29,
199.19.215.23) in
"http requests"
action or in the
explanation

Ticket reported
only 199.19.215.29
(and possibly
199.19.215.23,
91.198.120.42) in the
"data exfiltration"
action or in the
explanation

NO (Ticket did not re-
port (199.19.215.23
neither in "Attacker
IP" field nor in
the explanation)
∧ (121.145.34.116
neither in "Victim
IP" field nor in
the explanation))
∨ (Port Scan/SSH
Scan/O.S. Scan not
in "reconnaissance"
action nor in the
explanation)

(Ticket did not re-
port (199.19.215.23
neither in "Attacker
IP" field nor in
the explanation)
∧ (121.145.34.116
neither in "Victim
IP" field nor in
the explanation))
∨ (Weak Password
not in "vulnerability
action" nor in the
explanation)

Ticket did not re-
port (91.198.120.42
or p.pi.fi neither in
http requests action
nor in "Attacker
IP" field nor in
the explanation) ∧
(121.145.34.116 not
in "http requests"
action)

Ticket did not re-
port (199.19.215.29
neither in data
exfiltration action
nor in "Attacker
IP" field nor in
the explanation) ∧
(121.145.34.116 not
in "data exfiltration"
action)

MAY Everything else Everything else Everything else Everything else
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Table C.5: Guidelines scoring tickets phases EXIM

Score Identification
Reconnaissance

Identification
Vulnerability

Identification
Malware Delivery

Identification
Exfiltration

OK (Ticket reported
only (54.37.60.203
(and possibly
31.220.56.38,
192.124.249.8,
and 46.38.239.190)
in "Attacker IP"
field or in the
explanation) ∨
(121.145.34.27 in the
"Victim IP" field or
in the explanation))
∧ (Port Scan/SSH
Scan/O.S. Scan in
"reconnaissance"
action or in the
explanation)

(Ticket reported
only (31.220.56.38
(and possibly
54.37.60.203,
192.124.249.8,
and 46.38.239.190)
in "Attacker IP"
field or in the
explanation) ∨
(121.145.34.27 in
"Victim IP" or in
the explanation))
∧ (Remote Code
Execution in "vul-
nerability" action or
in the explanation)

Ticket reported only
192.124.249.8 or
exploit-db (and pos-
sibly 31.220.56.38,
54.37.60.203, and
46.38.239.190) in
"http requests ac-
tion" or in the
explanation

Ticket reported
only 46.38.239.190
or l6asd8cs-google-
support.abc.xn-
p2a.jetzt (and pos-
sibly 31.220.56.38,
54.37.60.203, and
192.124.249.8) in the
"data exfiltration"
action or in the
explanation

NO (Ticket did not
report (54.37.60.203
neither in "Attacker
IP" field nor in
the explanation)
∧ (121.145.34.27
neither in "Victim
IP" field nor in
the explanation))
∨ (Port Scan/SSH
Scan/O.S. Scan not
in "reconnaissance
action" nor in the
explanation)

(Ticket did not
report (31.220.56.38
neither in "Attacker
IP" field nor in
the explanation)
∧ (121.145.34.27
neither in "Victim
IP" field nor in the
explanation)) ∨ (Re-
mote Code Execution
not in "vulnerability
action" nor in the
explanation)

Ticket did not re-
port (192.124.249.8
or exploit-db neither
in "http requests"
action nor in "At-
tacker IP" field nor
in the explanation) ∧
(121.145.34.27 not in
"http requests" ac-
tion)

Ticket did not re-
port (46.38.239.190
or l6asd8cs-google-
support.abc.xn-
p2a.jetzt neither in
"data exfiltration"
action nor in "At-
tacker IP" field nor
in the explanation)
∧ (121.145.34.27 not
in "data exfiltration"
action)

MAY Everything else Everything else Everything else Everything else
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