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A B S T R A C T

We present a general framework to deal with multicriteria portfolio decision analysis problems in which
between-projects independence or within-project independence do not necessarily hold. The Choquet integral
preference model is a non-additive integral widely used in multicriteria decision analysis to take into account
the possible interactions between criteria. In this case, we apply the Choquet integral, on the one hand, to
deal with the interactions between criteria used to evaluate the projects and, on the other hand, to take
into account the interactions between projects in the portfolio global evaluation. To reduce the number of
parameters necessary to define the considered preference model and keep the problem tractable, we use the
2-additive Choquet integral that assigns a value to each entity and to each pair of entities only. An example
shows how to apply our proposal to a multicriteria portfolio decision analysis problem.
1. Introduction

Portfolio selection has been a long standing issue in Operations
Research and the well-known knapsack problem is probably the oldest
and foremost example. In the knapsack problem, given a reference set,
the goal is to find the subset of the reference set that satisfies one or
more resource constraints and maximizes a profit function. As often
happens, reality presents further elements of complexity such as the
need to consider multiple periods [1,2], uncertainty [3], and spatial
implications [4], to cite just three extensions of the knapsack problem.

In parallel, in the field of Decision Analysis, the seminal paper
by Golabi et al. [5] built the foundations of, and triggered interest in,
the problem of selecting the best subset (portfolio) of items, in contrast
to the common use of value functions to find a single best alternative.
Since then, considerations have been made on the possibility to account
for interdependencies and multiple criteria. The proposal of Stummer
and Heidenberger [6] is a good example of how interactions were
considered. Their methodology allows for multiple-objectives and the
existence of an interaction term in the objective function that is active
only if a lower bound threshold on the number of selected projects
with some given characteristics is exceeded. The optimization problem
proposed by Stummer and Heidenberger [6], which had been solved by
the authors by enumeration for up to 30 variables, was then object of
some algorithmic studies which tried to solve it with particle swarm
optimization [7] and scatter search [8]. The idea of adding a term
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in the objective function was followed, among others, by de Almeida
and Duarte [9] and Gutjahr and Pichler [10]. In their methods, the
terms associated to synergies were not discussed in depth and were
bounded from above by the values of the individual projects leading
to the possible synergies. Other attempts to model interdependencies
between projects or between criteria were made by Gomes et al. [11]
and Barbati et al. [12], respectively, in both cases by means of the
Choquet integral. Similarly, also Liesiö et al. [13] acknowledged the
need to evaluate interactions in Robust Portfolio Management method.

It is safe to say that the formal definition and inception of Portfolio
Decision Analysis (PDA) as a stand-alone field of study represented a
turning point. According to Salo et al. [14], the goal of PDA is to
study formulations of portfolio problems, especially with respect to
the objective function, such that they are truly representative of the
preferences of the Decision Maker (DM). The merit of the contribution
by Salo et al. [14] is very much related to their emphasis on the proper
use of decision analysis techniques.

More recently, Morton et al. [15] proposed to extend PDA to the
case when elements of the reference set can be evaluated on multi-
ple criteria and called it Multiple Criteria Portfolio Decision Analysis
(MCPDA). Moreover, they also provided some conditions under which
additive value functions can be representative of the preferences of the
DM.
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The idea of combining a multicriteria approach with PDA has gen-
erated interest and extensions in the fuzzy context [16]. Furthermore,
it has pushed others to adapt well-known multiple criteria decision
analysis (MCDA) methods, for instance weighing methods as the FI-
Tradeoff [17] and the ANP [18], to the concept of portfolio selection.
A review on extensions of MCDA methods to the case of portfolio selec-
tion was offered by Kandakoglu et al. [19]. Further research has also
explored extensions of MCPDA for decisions under uncertainty [20,21]
and the applicability of Dominance-based Rough Set Approach [22].

In spite of the independence conditions considered by Morton et al.
[15] and the wide use of the additive value function, it has been
observed that interactions can appear for subsets of projects as well as
criteria. In the former case, especially relevant for portfolios, when mul-
tiple projects can be selected, Liesiö et al. [23] considered interactions
between projects as ‘‘extra benefits and/or cost savings when particular
project combinations are started’’. Project and product cannibalization
is a typical example of negative interaction: consider, for example, the
launch of two competing products on the market. Similarly, interactions
between criteria can happen when it is too simplistic to express the
value of a project as a weighted sum of the contribution of all the
relevant criteria, i.e. when the condition of preference independence
does not hold [24].

As recalled by Liesiö et al. [25] in a recent survey on PDA, some
attempts have been made to relax the conditions behind additive value
functions in the search for more flexible models. Two approaches have
been used: in the first case, interactions are modeled by means of
constraints and/or dummy projects [23] whereas, in the second case,
non-additive value functions, e.g. multilinear and multiplicative forms,
were employed.

A more axiomatic approach was followed by Liesiö [26], when he
considered specific sets of conditions leading to the use of the additive-
linear, additive-multilinear, and multilinear forms, respectively. Fol-
lowing the same stream of research, Liesiö and Vilkkumaa [27] showed
that two simple conditions imply another specific functional form. Such
a form is invariant under permutations of the projects and has only
(𝑛 − 1) characterizing parameters, each of which is a positive scaling
onstant associated to specific cardinalities of subsets of projects, and
ot to the projects themselves. Hence, this approach assumes equal
mportance of projects and also that the interaction does not depend
n what subset of projects it refers to, but only on its cardinality.

The literature shows the need to account for possible interdependen-
ies at both criteria and project levels. For example, Durbach et al. [28]
onsidered problems with possible non-negative interactions between
rojects and tested some heuristics, both in terms of their cognitive
urden and their accuracy to reach a portfolio that is close to the
ptimum. They concluded that also their heuristics ‘‘must use at least
ome interaction information’’. In fact, the most pragmatic approaches,
.g. Stummer and Heidenberger [6],de Almeida and Duarte [9], only
onsider interactions between projects and not criteria. On the other
and, other approaches, in the search of axiomatic validation often lead
o methods that require a large number of parameters and/or difficult
nteractions with the DM.

The discrete Choquet integral can be seen as a generalization of
oth the weighted average and the ordered weighted averaging opera-
ors [29]. In its more general formulation it can account for interactions
or all possible subsets of a reference set with 𝑛 elements, in which case
t requires the definition of 2𝑛 − 2 parameters, whose elicitation is a
eterrent for its use in practical applications. For this reason, compro-
ise solutions appeared in the literature and the most relevant goes
nder the name of 2-additive Choquet integral: interactions are limited
o pairs of elements and yet such an aggregation function is often a very
ood approximation and satisfies a number of desirable properties [30].
urthermore, Beliakov [31] studied the scalability of Choquet-based
napsack problems when they are solved using commercial software
nd showed the much greater tractability of 2-additive capacities with
2

espect to general ones. i
We acknowledge the need for computationally tractable and flexible
ools for the evaluation of portfolios of projects which can consider
nteractions at both criteria and projects levels. To fill this gap, in
his paper, we will not focus on either interactions between criteria
r interactions between projects. Conversely, the contribution of this
aper is a holistic model, based on the 2-additive Choquet integral,
o evaluate projects and portfolios in the presence of interactions both
ithin the set of criteria and the set of projects. The model represents
generalization of well-known methods in MCPDA based on additive

alue functions. In particular, we present two different approaches:
n the first, we provide a unique optimal portfolio based on two
epresentative measures compatible with the preference information
rovided by the DM; in the second, following the principles of Ro-
ust Portfolio Modeling [13] and Stochastic Multicriteria Acceptability
nalysis [32], we compute different optimal portfolios taking into
ccount several samples of models compatible with the preferences of
he DM presenting the frequencies with which they are obtained.

The rest of the manuscript is organized as follows. Section 2 in-
roduces the necessary notation and some examples motivating a de-
arture from the commonly used additive value function in MCPDA.
ection 3 recalls the notions of capacity and Choquet integral. Section 4
resents our proposal to apply the Choquet integral in MCPDA to
elax some well-known independence conditions. In particular, Sec-
ions 4.4–4.6 will describe the first approach mentioned before aiming
o compute a single optimal portfolio. Section 5 shows how to apply
his approach to find the optimal portfolio under a number of budget
onstraints in a well-known example from the literature. Section 6
resents the robust approach showing its application to the same
xample. Finally, Section 7 summarizes the manuscript and draws some
onclusions.

. Notation, definitions and motivating examples

Given a finite non-empty reference set of 𝑞 projects {𝑝1,… , 𝑝𝑞}, we
all portfolio any of its subsets. Within this very general framework,
CPDA aims to employ the body of knowledge of decision analysis

o identify portfolios such that the ‘‘value function’’ of the DM is
aximized under several constraints [15]. In the following, 𝑄 is the

ndex set of the projects, that is, 𝑄 = {1,… , 𝑞}. Let us also assume that
rojects are evaluated on 𝑛 attributes 𝐺 = {𝑔1,… , 𝑔𝑛} and let 𝑁 be the

index set of criteria, that is, 𝑁 = {1,… , 𝑛}. Denoting by 𝑌𝑗 the set of
possible values achievable by a project on attribute 𝑔𝑗 we have:

• 𝑌 𝑖 = ∏

𝑗∈𝑁 𝑌𝑗 is the space of variation of the 𝑖th project. Note that,
for sake of simplicity, we shall assume that the sets of attribute
levels are the same for each project. Therefore, we denote by
𝑌 𝑃 the space of variation of each project 𝑖 ∈ 𝑄. A vector 𝐲𝑖 =
(

𝑦𝑖1,… , 𝑦𝑖𝑛
)

∈ 𝑌 𝑃 can be interpreted as a description of the 𝑖th
project with respect to its attribute levels as 𝑦𝑖𝑗 is its evaluation
on attribute 𝑔𝑗 ;

• Let us consider the multiset1 of projects 𝐘 =
{

𝐲1,… , 𝐲𝑞
}

∈
𝑞 times

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑌 𝑃 ×⋯ × 𝑌 𝑃 . We call 2𝐘 the power set of 𝐘, that is, the set com-
posed of all subsets of 𝐘. This allows a (multicriterial) definition
of a portfolio as an element of 2𝐘. Before proceeding, let us observe
that each portfolio can equivalently be represented by a binary
vector in {0, 1}𝑞 using the bijection 𝜓 ∶ 2𝐘 → {0, 1}𝑞 that assigns
each 𝐘𝑘 ∈ 2𝐘 to a binary vector 𝐳𝐘𝑘 ∈ {0, 1}𝑞 such that

𝑧𝐘
𝑘

𝑖 =
{

1 if 𝐲𝑖 ∈ 𝐘𝑘,
0 if 𝐲𝑖 ∉ 𝐘𝑘.

1 We use multisets instead of sets as it cannot be excluded that two different
rojects could have the same criteria evaluations, then ending up as being
ndistinguishable elements of the same set.
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Note 2.1. In the following, for the sake of simplicity, we shall use
interchangeably the terms criterion 𝑔𝑗 ∈ 𝐺 and criterion 𝑗 ∈ 𝑁 as well
as project 𝐲𝑖 ∈ 𝐘 and project 𝑖 ∈ 𝑄.

Hereafter, we will assume the existence of a preference relation
≿𝑄 over 2𝐘, and a preference relation ≿𝑃 over 𝑌 𝑃 . That is, a DM has
complete, reflexive, and transitive preferences over 2𝐘 and 𝑌 𝑃 . ≻𝑄 and
≻𝑃 represent the asymmetric parts of ≿𝑄 and ≿𝑃 , respectively, while
∼𝑄 and ∼𝑃 represent their symmetric parts. Let us underline that the
bijection 𝜓 allows to define a preference relation ≿{0,1}𝑞 over {0, 1}𝑞

such that, for all 𝐘𝑘1 ,𝐘𝑘2 ∈ 2𝐘 and, consequently, 𝐳𝐘𝑘1 , 𝐳𝐘𝑘2 ∈ {0, 1}𝑞 ,

𝐘𝑘1 ≿𝑄 𝐘𝑘2 ⇔ 𝐳𝐘
𝑘1 ≿{0,1}𝑞 𝐳𝐘

𝑘2 .

It is useful to define some restrictions (subsets) with respect to
the projects and the criteria. These can be used to formulate two
independence conditions, which, in turn, will be employed to narrow
down the search for value functions that can be representative of ≿𝑄
and ≿𝑃 :

• Given a subset of attributes 𝐽 ⊆ 𝑁 , and two projects 𝐲𝑖1 , 𝐲𝑖2 ∈ 𝑌 𝑃 ,
(

𝐲𝑖1𝐽 , 𝐲
𝑖2
𝑁⧵𝐽

)

∈ 𝑌 𝑃 is a project having the evaluations of 𝐲𝑖1 for
criteria in 𝐽 and the evaluations of 𝐲𝑖2 for criteria in 𝑁 ⧵ 𝐽 ;

Example 2.1. Considering 𝑁 = {1, 2, 3, 4}, the two projects 𝐲𝑖1 =
(0.7, 0.2, 0.1, 0.4), 𝐲𝑖2 = (0.6, 0.5, 0.2, 0.3), and the criteria subset 𝐽 = {1, 2}
one has
(

𝐲𝑖1𝐽 , 𝐲
𝑖2
𝑁⧵𝐽

)

= (0.7, 0.2, 0.2, 0.3) .

• Given a subset of projects 𝐼 ⊆ 𝑄, and two portfolios 𝐘𝑘1 ,𝐘𝑘2 ∈
2𝐘,

(

𝐘𝑘1𝐼 ,𝐘
𝑘2
𝑄⧵𝐼

)

is a portfolio having the same projects of 𝐘𝑘1
regarding 𝐼 and the same projects of 𝐘𝑘2 regarding 𝑄 ⧵ 𝐼 . The
same definition can be equivalently stated using vectors of binary
variables: if 𝐳𝐘𝑘1 , 𝐳𝐘𝑘2 ∈ {0, 1}𝑞 , then

(

𝐳𝐘𝑘1𝐼 , 𝐳𝐘𝑘2𝑄⧵𝐼

)

is a binary
vector having the same components of 𝐳𝐘𝑘1 with respect to 𝐼 and
the same components of 𝐳𝐘𝑘2 with respect to 𝑄 ⧵ 𝐼 .

Example 2.2. Considering 𝑄 = {1, 2, 3, 4, 5} and the two portfolios

𝐘𝑘1 =
{

𝐲1, 𝐲2, 𝐲4
}

and 𝐘𝑘2 =
{

𝐲1, 𝐲3, 𝐲5
}

if 𝐼 = {1, 2, 3} ⊆ 𝑄, then,
(

𝐘𝑘1𝐼 ,𝐘
𝑘2
𝑄⧵𝐼

)

=
{

𝐲1, 𝐲2, 𝐲5
}

.

This restriction can be equivalently expressed thinking in terms of
binary vectors. Considering the two binary vectors associated to 𝐘𝑘1
and 𝐘𝑘2 , we have

𝐳𝐘
𝑘1 = (1, 1, 0, 1, 0) and 𝐳𝐘

𝑘2 = (1, 0, 1, 0, 1) ,

and if 𝐼 = {1, 2, 3} ⊆ 𝑄, then
(

𝐳𝐘
𝑘1

𝐼 , 𝐳𝐘
𝑘2

𝑄⧵𝐼

)

= (1, 1, 0, 0, 1)

2.1. Independence conditions

Drawing from the previous results by Morton et al. [15], we are
ready to recall two independence conditions that can greatly simplify
the search for a representative value function. If the first condition
holds, then it is enough to evaluate projects with respect to the at-
tributes on which the projects differ, as the attributes for which they
have the same score, become irrelevant.

Definition 2.1 (Within-Project Independence [15]). Given a set of criteria
𝐽 ⊆ 𝑁 , ≿𝑃 is within-project independent w.r.t 𝐽 if and only if ∀𝐲𝑖1 , 𝐲𝑖2 ∈
𝑌 𝑃 ,
(

𝐲𝑖1 , 𝐲𝑖3
)

≿
(

𝐲𝑖2 , 𝐲𝑖3
)

⇒
(

𝐲𝑖1 , 𝐲𝑖4
)

≿
(

𝐲𝑖2 , 𝐲𝑖4
)

,

3

𝐽 𝑁⧵𝐽 𝑃 𝐽 𝑁⧵𝐽 𝐽 𝑁⧵𝐽 𝑃 𝐽 𝑁⧵𝐽
for all 𝐲𝑖3 , 𝐲𝑖4 ∈ 𝑌 𝑃 .

If the condition holds for all 𝐽 ⊆ 𝑁 , then ≿𝑃 is within-project independent
over 𝑁 .

In the literature on MCDA, within-project independence is known
as mutual preference independence [33,34]. It is also well-known that,
if it holds, then there exist marginal value functions 𝑢𝑗 ∶ 𝑌𝑗 → R such
that the value of each project 𝐲𝑖 ∈ 𝑌 𝑃 can be represented by an additive
value function,

𝑢(𝐲𝑖) =
𝑛
∑

𝑗=1
𝑢𝑗

(

𝑦𝑖𝑗
)

. (1)

That is, given any two projects 𝐲𝑖1 =
(

𝑦𝑖11 ,… , 𝑦𝑖1𝑛
)

and 𝐲𝑖2 =
(

𝑦𝑖21 ,… ,

𝑦𝑖2𝑛
)

, the greater the value 𝑢(𝐲𝑖) the better the project represented by
𝐲𝑖, i.e.,

𝑢(𝐲𝑖1 ) ⩾ 𝑢(𝐲𝑖2 ) ⇔ 𝐲𝑖1 ≿𝑃 𝐲𝑖2 .

Several methods have been proposed in the literature to obtain the
functions 𝑢𝑗 , starting from those presented by Fishburn [35] arriving
to those applying the ordinal regression paradigm [36,37]. However, a
description of these methods goes beyond the aim of the paper since
our proposal is independent on the way the 𝑢𝑗 functions are obtained.

The next example shows a simple case where within-project in-
dependence does not hold and the additive formulation (1) cannot
represent the preferences of the DM.

Example 2.3. Consider two projects represented by the follow-
ing two vectors of attribute levels, 𝐲𝑖1 = (0.7, 0.2, 0.3, 0.4) and 𝐲𝑖2 =
(0.6, 0.5, 0.3, 0.4), and the preference 𝐲𝑖1 ≿𝑃 𝐲𝑖2 . If ≿𝑃 is between-project
independent with respect to 𝐽 = {1, 2}, then

(0.7, 0.2, 𝑦3, 𝑦4) ≿𝑃 (0.6, 0.5, 𝑦3, 𝑦4)

for any choice of 𝑦3 and 𝑦4. Conversely, if the preference between
(0.7, 0.2, 𝑦3, 𝑦4) and (0.6, 0.5, 𝑦3, 𝑦4) depends on 𝑦3 and 𝑦4, then ≿𝑃 cannot
be within-project independent with respect to 𝐽 = {1, 2}. For example,
if

(0.7, 0.2, 0.1, 0.4) ≿𝑃 (0.6, 0.5, 0.1, 0.4)

and (0.7, 0.2, 0.2, 0.3) ≺𝑃 (0.6, 0.5, 0.2, 0.3)

then ≿𝑃 is not within-project independent with respect to 𝐽 = {1, 2}.
Trying to represent this preference by Eq. (1), we have

1. (0.7, 0.2, 0.1, 0.4) ≿𝑃 (0.6, 0.5, 0.1, 0.4) ⇔ 𝑢1(0.7)+𝑢2(0.2) ⩾ 𝑢1(0.6)+
𝑢2(0.5),

2. (0.7, 0.2, 0.2, 0.3) ≺𝑃 (0.6, 0.5, 0.2, 0.3) ⇔ 𝑢1(0.7)+𝑢2(0.2) < 𝑢1(0.6)+
𝑢2(0.5).

onstraints 1. and 2. are contradictory and, therefore, the additive
alue function in (1) cannot represent the DM’s preferences.

The following condition, called between-project independence, can
ow be defined. Note that it can be interpreted as an extension of the
riginal between-project independence proposed by Morton et al. [15].

efinition 2.2 (Between-Project Independence). Given 𝐘, 𝑄 and 𝐼 ⊆
, ≿𝑄 is between-project independent with respect to 𝐼 if and only if,

∀𝐘𝑘1 ,𝐘𝑘2 ∈ 2𝐘,
(

𝐳𝐘
𝑘1

𝐼 , 𝐳𝐘
𝑘3

𝑄⧵𝐼

)

≿{0,1}𝑞
(

𝐳𝐘
𝑘2

𝐼 , 𝐳𝐘
𝑘3

𝑄⧵𝐼

)

⇒
(

𝐳𝐘
𝑘1

𝐼 , 𝐳𝐘
𝑘4

𝑄⧵𝐼

)

≿{0,1}𝑞
(

𝐳𝐘
𝑘2

𝐼 , 𝐳𝐘
𝑘4

𝑄⧵𝐼

)

,

for all 𝐘𝑘3 ,𝐘𝑘4 ∈ 2𝐘.

If the definition holds for all 𝐼 ⊆ 𝑄, then ≿𝑄 is between-project

independent over 𝑄.
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In simple words, Definition 2.2 implies that the global preference of
a portfolio over another is not dependent on the common projects in
the set 𝑄 ⧵ 𝐼 .

If ≿𝑄 is between-project independent over 𝑄, then, the preferences
of a DM, can be represented by a function 𝑢 ∶ 2𝐘 → [0, 1] such that for
all 𝐘𝑘 ∈ 2𝐘

𝑢
(

𝐘𝑘
)

=
∑

𝐲𝑖∈𝐘𝑘
𝑤𝑖 ⋅ 𝑢

(

𝐲𝑖
)

(2)

where 𝑢 ∶ 𝑌 𝑃 → R is the projects value and 𝑤𝑖’s are suitable positive
scaling constants.

In the following example, we shall illustrate a case in which bet-
ween-project independence does not hold. Meanwhile, we reckon that,
whereas criteria independence can sometimes be achieved by prop-
erly restructuring a decision problem, e.g. by splitting criteria into
subcriteria, project independence cannot be obtained by manipulating
the problem because the interdependencies among subsets of projects
depend on their intrinsic nature and projects cannot be decomposed
into subprojects.

Example 2.4. Let us consider 5 different projects 𝐘 =
{

𝐲1,… , 𝐲5
}

evaluated on 𝑛 criteria and the following portfolios

𝐘𝑘1 =
{

𝐲1, 𝐲2, 𝐲4
}

, 𝐘𝑘2 =
{

𝐲1, 𝐲3, 𝐲4
}

,

𝐘𝑘3 =
{

𝐲1, 𝐲2, 𝐲5
}

, 𝐘𝑘4 =
{

𝐲1, 𝐲3, 𝐲5
}

.

Let us suppose that, for the DM, 𝐘𝑘1 is at least as good as 𝐘𝑘2
(

𝐘𝑘1 ≿𝑄 𝐘𝑘2
)

and 𝐘𝑘4 is preferred to 𝐘𝑘3
(

𝐘𝑘4 ≻𝑄 𝐘𝑘3
)

. This means
that

𝑢
(

𝐘𝑘1
)

⩾ 𝑢
(

𝐘𝑘2
)

and 𝑢
(

𝐘𝑘3
)

< 𝑢
(

𝐘𝑘4
)

.

If we rewrite them using (2), we obtain

𝑤1 ⋅ 𝑢(𝐲1) +𝑤2 ⋅ 𝑢(𝐲2) +𝑤4 ⋅ 𝑢(𝐲4) ⩾ 𝑤1 ⋅ 𝑢(𝐲1) +𝑤3 ⋅ 𝑢(𝐲3) +𝑤4 ⋅ 𝑢(𝐲4)
𝑤1 ⋅ 𝑢(𝐲1) +𝑤2 ⋅ 𝑢(𝐲2) +𝑤5 ⋅ 𝑢(𝐲5) < 𝑤1 ⋅ 𝑢(𝐲1) +𝑤3 ⋅ 𝑢(𝐲3) +𝑤5 ⋅ 𝑢(𝐲5),

which can be further simplified into

𝑤2 ⋅ 𝑢(𝐲2) ⩾ 𝑤3 ⋅ 𝑢(𝐲3) and 𝑤2 ⋅ 𝑢(𝐲2) < 𝑤3 ⋅ 𝑢(𝐲3),

respectively. This shows a contradiction and therefore there does not
exist an additive value function, i.e. (2), representative of the pref-
erences of the DM. The contradiction is obtained because ≿𝑄 is not
between-project independent with respect to 𝐼 = {1, 2, 3} (see Defini-
tion 2.2).

If conditions 2.1 and 2.2 hold, then, there exist 𝑢𝑗 ∶ 𝑌𝑗 → R for all
𝑗 ∈ 𝑁 such that for all 𝐘𝑘 ∈ 2𝐘

𝑢
(

𝐘𝑘
)

=
∑

𝐲𝑖∈𝐘𝑘
𝑤𝑖 ⋅ 𝑢

(

𝐲𝑖
)

=
∑

𝐲𝑖∈𝐘𝑘
𝑤𝑖

𝑛
∑

𝑗=1
𝑢𝑗

(

𝑦𝑖𝑗
)

. (3)

Fig. 1 offers a snapshot of the portfolio selection problem when
intra- and between-project independence conditions hold and (3) can
be used. In addition, in a large number of applications, e.g. [38,39], it
is assumed that projects are anonymous and a property of symmetry
can be assumed. Consequently, 𝑤1 = ⋯ = 𝑤𝑛. As we shall reckon, this
greatly simplifies the search for a suitable value function 𝑢 and it has
been considered an initial assumption by many modelization proposals
as, e.g., the one by Liesiö [26].

3. Non-additive measures and the Choquet integral

Given the restricted applicability of the model based on additive
value functions, it is natural to explore more general representations
which can accommodate violations of intra- and between-project inde-
pendence conditions.

Definition 3.1 (Normalized Capacity [40]). A normalized capacity over
a set 𝑆 is a function 𝜇 ∶ 2𝑆 → [0, 1] such that
4

Fig. 1. Portfolio evaluation under intra- and between-project independence conditions.

(1a) 𝜇(∅) = 0 and 𝜇(𝑆) = 1,
(2a) 𝐴 ⊆ 𝐵 ⊆ 𝑆 ⇒ 𝜇(𝐴) ⩽ 𝜇(𝐵).

Definition 3.2 (Discrete Choquet Integral [41]). Given a list 𝐱 =
(𝑥1,… , 𝑥𝑛) ∈ R𝑛 and a normalized capacity 𝜇 defined over 𝑆 =
{1,… , 𝑛}, the discrete Choquet integral of 𝐱 with respect to 𝜇 is defined
as

𝐶ℎ𝜇(𝐱) =
𝑛
∑

𝑖=1
(𝑥𝜎(𝑖) − 𝑥𝜎(𝑖−1))𝜇(𝐴𝜎(𝑖)) (4)

where 𝜎 is permutation on 𝑆 = {1,… , 𝑛} such that 𝑥𝜎(1) ⩽ ⋯ ⩽ 𝑥𝜎(𝑛),
with the convention 𝑥𝜎(0) ∶= 0 and 𝐴𝜎(𝑖) ∶= {𝜎(𝑖),… , 𝜎(𝑛)}.

Interestingly, weighted averages and ordered weighted averaging
(OWA) functions are special cases of the Choquet integral, when
the normalized capacity is additive and symmetric, respectively [41].
Hence, the Choquet integral can combine the expressive power of both.

To make things easier, in general, a Möbius transformation 𝑚 of the
capacity 𝜇 and 𝑘-additive capacities are used:

• The Möbius transformation 𝑚 of the capacity 𝜇 [42] is a set
function 𝑚 ∶ 2𝑆 → R such that, for all 𝑇 ⊆ 𝑆

𝜇(𝑇 ) =
∑

𝑅⊆𝑇
𝑚(𝑅) and 𝑚(𝑇 ) =

∑

𝑅⊆𝑇
(−1)|𝑇 ⧵𝑅|𝜇(𝑅),

that is, each normalized capacity is associated to its Möbius
representation, and vice-versa;

• A capacity 𝜇 is 𝑘-additive [43] iff its Möbius transformation 𝑚 is
such that 𝑚(𝑇 ) = 0 for all 𝑇 ⊆ 𝑆 ∶ |𝑇 | > 𝑘. In words, a 𝑘-additive
capacity is a capacity which can model interactions for subsets of
cardinality at most 𝑘 and, conversely, shows an additive behavior
for subsets with greater cardinalities.

2-additive capacities are a flexible approach for representing non-
additive preferences between criteria that have been applied in a
number of real-world applications, including citation-based journal
ranking [44], preference modeling in hotel selection [45], evaluation of
projects for the requalification of abandoned buildings [46], warehouse
location selection [47], location selection for underground natural gas
storage [48], analysis of SME’s propensity for open innovation [49],
and selection of logistics operating models [50]. For this reason, we
model interactions between both criteria and projects using the Cho-
quet integral equipped with 2-additive capacities. In this case, thanks to
the Möbius transformation, constraints (1a) and (2a) can be rewritten
as

(1b) 𝑚(∅) = 0 and
∑

𝑚({𝑖}) +
∑

𝑚({𝑖, 𝑗}) = 1,

𝑖∈𝑆 {𝑖,𝑗}⊆𝑆
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v

𝐶

a

(

(2b) ∀𝑖 ∈ 𝑆 and ∀𝑇 ⊆ 𝑆 ⧵ {𝑖}, 𝑚({𝑖}) +
∑

𝑗∈𝑇
𝑚 ({𝑖, 𝑗}) ⩾ 0,

while the Choquet integral in Eq. (4) can now be equivalently rewritten
as:

𝐶ℎ𝑚(𝐱) =
∑

𝑖∈𝑆
𝑚({𝑖}) ⋅ 𝑥𝑖 +

∑

{𝑖,𝑗}⊆𝑆
𝑚({𝑖, 𝑗}) ⋅min{𝑥𝑖, 𝑥𝑗}. (5)

In this context, the importance of 𝑖 ∈ 𝑆 is not related only to itself
but also to its contribution to all possible 𝑇 ⊆ 𝑆 ⧵ {𝑖}. Analogously,
the importance attached to the pair of elements {𝑖, 𝑗} depends on their
contribution to all possible 𝑇 ⊆ 𝑆 ⧵ {𝑖, 𝑗}. For this reason, the Shapley
index 𝜑({𝑖}) [51] and the Murofushi index 𝜑({𝑖, 𝑗}) [52] are used to
evaluate the importance of 𝑖 ∈ 𝑆 and the importance of {𝑖, 𝑗} ⊆ 𝑆,
respectively. In the case of a 2-additive measure, the two indices can
be written in the simple forms,

𝜑({𝑖}) = 𝑚({𝑖}) +
∑

𝑗∈𝑆⧵{𝑖}

𝑚({𝑖, 𝑗})
2

, 𝜑({𝑖, 𝑗}) = 𝑚({𝑖, 𝑗}). (6)

4. 2-Additive Choquet integral for project and portfolio evaluation

In this section, we shall explain how the 2-additive Choquet integral
can be used to compute the value of projects 𝐲𝑖 ∈ 𝐘 and the value of
portfolios 𝐘𝑘 when ≿𝑃 is not within-project independent over 𝑁 (see
Definition 2.1) and ≿𝑄 is not between-project independent over 𝑄 (see
Definition 2.2).

4.1. Projects’ values computed by means of the 2-additive Choquet integral

Considering the set of criteria 𝐺 = {𝑔1,… , 𝑔𝑛} on which projects 𝐲𝑖
are evaluated, we consider a 2-additive capacity 𝜇 defined over 𝐺 and
its Möbius transformation 𝑚. The value of 𝐲𝑖 ∈ 𝐘 is therefore obtained
by

𝐶ℎ𝑚(𝐲𝑖) = 𝐶ℎ𝑚(𝑦𝑖1,… , 𝑦𝑖𝑛)

=
∑

𝑗∈𝑁
𝑚({𝑔𝑗}) ⋅ 𝑢𝑗 (𝑦𝑖𝑗 )

+
∑

{𝑗1 ,𝑗2}⊆𝑁
𝑚({𝑔𝑗1 , 𝑔𝑗2}) ⋅min

{

𝑢𝑗1 (𝑦
𝑖
𝑗1
), 𝑢𝑗2 (𝑦

𝑖
𝑗2
)
}

(7)

and the Möbius parameters have to satisfy the constraints (1b) and (2b)
that, in this case, are rewritten as follows:

(1c) 𝑚(∅) = 0 and
∑

𝑔𝑗∈𝐺
𝑚({𝑔𝑗}) +

∑

{𝑔𝑗1 ,𝑔𝑗2 }⊆𝐺
𝑚({𝑔𝑗1 , 𝑔𝑗2}) = 1,

(2c) ∀𝑔𝑗1 ∈ 𝐺 and ∀𝑇 ⊆ 𝐺 ⧵ {𝑔𝑗1}, 𝑚({𝑔𝑗1}) +
∑

𝑔𝑗2∈𝑇
𝑚
(

{𝑔𝑗1 , 𝑔𝑗2}
)

⩾ 0.

In this context, for all 𝑔𝑗 ∈ 𝐺, 𝑚({𝑔𝑗}) has to be interpreted as the
importance of criterion 𝑔𝑗 (when it is considered alone), while for all
{𝑔𝑗1 , 𝑔𝑗2} ⊆ 𝐺, 𝑚

(

{𝑔𝑗1 , 𝑔𝑗2}
)

is a value representing the magnitude and
the polarity of the interaction between criteria 𝑔𝑗1 and 𝑔𝑗2 : positive
(if 𝑚

(

{𝑔𝑗1 , 𝑔𝑗2}
)

> 0), negative (if 𝑚
(

{𝑔𝑗1 , 𝑔𝑗2}
)

< 0) or null (if

𝑚
(

{𝑔𝑗1 , 𝑔𝑗2}
)

= 0). Let us observe that if 𝑚
(

{𝑔𝑗1 , 𝑔𝑗2}
)

= 0 for all
{𝑔𝑗1 , 𝑔𝑗2} ⊆ 𝐺, then, the 2-additive Choquet integral in Eq. (7) boils
down to the additive value function shown in Eq. (1) and, therefore,
can be considered its generalization.

Example 4.1. Let us reconsider Example 2.3 and try to replicate the
preferences of the DM using the 2-additive Choquet integral recalled
above. In this case, considering the following DM’s preferences

𝐲𝑖1 = (0.7, 0.2, 0.1, 0.4) ≿𝑃 (0.6, 0.5, 0.1, 0.4) = 𝐲𝑖2

𝐲𝑖3 = (0.7, 0.2, 0.2, 0.3) ≺ (0.6, 0.5, 0.2, 0.3) = 𝐲𝑖4
5

𝑃

and considering a Möbius measure over the set of criteria 𝐺 = {𝑔1, 𝑔2,
𝑔3, 𝑔4}, these preferences are translated into the two following con-
straints:

𝐶ℎ𝑚(𝐲𝑖1 ) ⩾ 𝐶ℎ𝑚(𝐲𝑖2 ) ⇔ 0.1 ⋅ 𝑚({𝑔1}) − 0.3 ⋅ 𝑚({𝑔2})

− 0.3 ⋅ 𝑚({𝑔1, 𝑔2}) − 0.2 ⋅ 𝑚({𝑔2, 𝑔4}) ⩾ 0

𝐶ℎ𝑚(𝐲𝑖3 ) < 𝐶ℎ𝑚(𝐲𝑖4 ) ⇔ 0.1 ⋅ 𝑚({𝑔1}) − 0.3 ⋅ 𝑚({𝑔2})

− 0.3 ⋅ 𝑚({𝑔1, 𝑔2}) − 0.1 ⋅ 𝑚({𝑔2, 𝑔4}) < 0 .

They are satisfied, for example, by the Möbius measure

𝑚({𝑔1}) = 0.5893, 𝑚({𝑔2}) = 0.3750, 𝑚({𝑔3}) = 0.0178

𝑚({𝑔4}) = 0.3750, 𝑚({𝑔2, 𝑔4}) = −0.3571

considering null the values corresponding to all other interactions.
One can therefore observe that, differently from an additive value
function, the 2-additive Choquet integral can represent the preference
information provided by the DM.

4.2. Portfolios’ values and the 2-additive Choquet integral

Let us consider the set of projects 𝐘 =
{

𝐲1,… , 𝐲𝑞
}

and a portfolio
𝐘𝑘 ∈ 2𝐘. To compute the value of 𝐘𝑘 using the 2-additive Choquet inte-
gral one has to define a capacity 𝜇 over 𝐘 and, consequently, its Möbius
transformation 𝑚 ∶ 2𝐘 → R. Known the values of projects 𝐲1,… , 𝐲𝑞
computed as described in Eq. (7), that is, 𝐶ℎ𝑚(𝐲1),… , 𝐶ℎ𝑚(𝐲𝑞), these
alues are aggregated by the 2-additive Choquet integral

ℎ𝑚
(

𝐘𝑘
)

=
∑

𝐲𝑖∈𝐘𝑘
𝑚
(

{𝐲𝑖}
)

⋅ 𝐶ℎ𝑚
(

𝐲𝑖
)

+

+
∑

{𝐲𝑖1 ,𝐲𝑖2 }⊆𝐘𝑘
𝑚
(

{𝐲𝑖1 , 𝐲𝑖2}
)

⋅min
{

𝐶ℎ𝑚
(

𝐲𝑖1
)

, 𝐶ℎ𝑚
(

𝐲𝑖2
)}

(8)

in which 𝑚 has to satisfy constraints (1b) and (2b) that, in this context,
re reformulated as:

1d) 𝑚(∅) = 0 and
∑

𝐲𝑖∈𝐘
𝑚({𝐲𝑖}) +

∑

{𝐲𝑖1 ,𝐲𝑖2 }⊆𝐘

𝑚({𝐲𝑖1 , 𝐲𝑖2}) = 1,

(2d) ∀𝐲𝑖1 ∈ 𝐘 and ∀𝐓 ⊆ 𝐘 ⧵ {𝐲𝑖1}, 𝑚({𝐲𝑖1}) +
∑

𝐲𝑖2∈𝐓

𝑚
(

{𝐲𝑖1 , 𝐲𝑖2}
)

⩾ 0.

The Möbius parameters in Eq. (8) can be interpreted as follows:

• for all 𝐲𝑖 ∈ 𝐘, 𝑚
(

{𝐲𝑖}
)

is the importance of project 𝐲𝑖 in the family
of projects 𝐘 (when it is considered alone, therefore, without
taking into account interactions between projects);

• for all 𝐲𝑖1 , 𝐲𝑖2 ∈ 𝐘, 𝑚
(

{𝐲𝑖1 , 𝐲𝑖2}
)

is a value representing the
interaction between projects 𝐲𝑖1 and 𝐲𝑖2 that can be positive (if
𝑚
(

{𝐲𝑖1 , 𝐲𝑖2}
)

> 0), negative (if 𝑚
(

{𝐲𝑖1 , 𝐲𝑖2}
)

< 0) or null (if
𝑚
(

{𝐲𝑖1 , 𝐲𝑖2}
)

= 0). Let us observe that if 𝑚
(

{𝐲𝑖1 , 𝐲𝑖2}
)

= 0 for
all {𝐲𝑖1 , 𝐲𝑖2} ⊆ 𝐘, then, the 2-additive Choquet integral boils
down to the additive portfolio value shown in Eq. (2) in which
𝑤𝑖 = 𝑚

(

{𝑔𝑖}
)

, ∀𝐲𝑖 ∈ 𝐘.

In this way, we have a more general method to evaluate portfolios,
which considers pairwise interactions within the sets of criteria and
projects. Fig. 2 presents a sketch of this approach.

Example 4.2. We reprise Example 2.4 and try to represent the pref-
erences 𝐘𝑘1 ≿𝑄 𝐘𝑘2 and 𝐘𝑘4 ≻𝑄 𝐘𝑘3 using the 2-additive Choquet
integral described above. Without loss of generality and for the sake of
simplicity, let us assume that the five projects 𝐲1,… , 𝐲5 have the same
value as computed by Eq. (7). The two preferences provided by the DM
are therefore translated by the following constraints

𝐶ℎ𝑚
(

𝐘𝑘1
)

⩾ 𝐶ℎ𝑚
(

𝐘𝑘2
)

𝐶ℎ𝑚
(

𝐘𝑘3
)

< 𝐶ℎ𝑚
(

𝐘𝑘4
)
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Fig. 2. Portfolio evaluation with the Choquet integrals equipped with 2-additive
normalized capacities.

which can be expanded and rearranged into

𝑚
(

{𝐲2}
)

− 𝑚
(

{𝐲3}
)

+ 𝑚
(

{𝐲1, 𝐲2}
)

− 𝑚
(

{𝐲1, 𝐲3}
)

+ 𝑚
(

{𝐲2, 𝐲4}
)

− 𝑚
(

{𝐲3, 𝐲4}
)

⩾ 0

𝑚
(

{𝐲2}
)

− 𝑚
(

{𝐲3}
)

+ 𝑚
(

{𝐲1, 𝐲2}
)

− 𝑚
(

{𝐲1, 𝐲3}
)

+ 𝑚
(

{𝐲2, 𝐲5}
)

− 𝑚
(

{𝐲3, 𝐲5}
)

< 0,

respectively. Such inequalities are satisfied, for example, by the Möbius
measure

𝑚({𝐲1}) = ⋯ = 𝑚({𝐲5}) = 𝑚
(

{𝐲2, 𝐲4}
)

= 𝑚
(

{𝐲3, 𝐲5}
)

= 0.1429

considering null the values corresponding to all other pairs of projects.
One can therefore observe that, differently from the additive value
function in Eq. (2), the 2-additive Choquet integral in Eq. (8) can
represent the preferences given by the DM on the four considered
portfolios.

4.3. Estimation of parameters

As shown in the previous sections by two illustrative examples,
the 2-additive Choquet integral could represent preferences provided
by the DM accounting for, on the one hand, interactions between
criteria and, on the other hand, interactions between projects. The
greater flexibility of the method is nevertheless counterbalanced by
the necessity to define a greater number of parameters than those of
simpler models such as the weighted sum. Indeed, the use of the 2-
additive Choquet integral to compute the comprehensive value of a
project 𝐲𝑖 (see Eq. (7)) implies the knowledge of 𝑛 +

(𝑛
2

)

parameters,
where 𝑛 is the number of criteria on which the projects are evaluated.2
Analogously, the use of the 2-additive Choquet integral to compute
the comprehensive value of a portfolio 𝐘𝑘 (see Eq. (8)) implies the
knowledge of 𝑞 +

(𝑞
2

)

parameters, where 𝑞 is the number of projects
that can be included in the portfolio.3 This means that in a small
problem as the one we considered in Examples 2.3 and 2.4 where
five projects were evaluated on four criteria the number of necessary
parameters is twenty-five. Hence, a direct elicitation of the parameters
appears prohibitive even for small-scale problems, let alone in settings
where possibly hundreds of projects are considered, as shown, for
instance, by Mild et al. [38]. For this reason, and for the difficulty of

2 One value 𝑚({𝑔𝑗}) for each 𝑔𝑗 ∈ 𝐺 = {𝑔1,… , 𝑔𝑛} and one value 𝑚({𝑔𝑖, 𝑔𝑗})
for each {𝑔𝑖, 𝑔𝑗} ⊆ 𝐺.

3 One value 𝑚({𝐲𝑖}) for each 𝐲𝑖 ∈ 𝐘 =
{

𝐲1,… , 𝐲𝑞
}

and one value 𝑚({𝐲𝑖1 , 𝐲𝑖2})
for each {𝐲𝑖1 , 𝐲𝑖2} ⊆ 𝐘.
6

the interpretation of the values of parameters, we do not use a direct
preference elicitation, but an indirect one based on the aggregation–
disaggregation paradigm [37]. We ask the DM some comprehensive
preference statements regarding projects and portfolios from which
compatible parameters of the model can be inferred. In this way, the
DM is more comfortable in providing such a type of preference in an
easy language instead of providing exact numbers to the parameters
of the model and, moreover, this task may require a smaller cognitive
effort.

To infer the parameters of the 2-additive Choquet integral to com-
pute the projects’ value and the Portfolios’ value, we propose a two-step
procedure. In the first step, we infer the Möbius measure 𝑚 over the
set of criteria 𝐺 useful to compute the value of each project (see
Section 4.4); on the basis of the projects value computed in this way,
in the next step, we compute the Möbius measure 𝑚 over 𝐘 (see
Section 4.5). The reason for not inferring both measures simultaneously
will be later clarified.

4.4. Inferring a Möbius measure over the set of criteria 𝐺

As already suggested, the aggregation–disaggregation approach is
used to infer the Möbius measure over 𝐺 = {𝑔1,… , 𝑔𝑛}. The DM can
provide the following preference information in terms of comparison
between projects in 𝐘:

• 𝐲𝑖1 is at least as good as 𝐲𝑖2 , denoted by 𝐲𝑖1 ≿𝑃 𝐲𝑖2 (translated to
the constraint 𝐶ℎ𝑚

(

𝐲𝑖1
)

⩾ 𝐶ℎ𝑚
(

𝐲𝑖2
)

),
• 𝐲𝑖1 is preferred to 𝐲𝑖2 , denoted by 𝐲𝑖1 ≻𝑃 𝐲𝑖2 (𝐶ℎ𝑚

(

𝐲𝑖1
)

>
𝐶ℎ𝑚

(

𝐲𝑖2
)

),
• 𝐲𝑖1 is indifferent to 𝐲𝑖2 , denoted by 𝐲𝑖1 ∼𝑃 𝐲𝑖2 (𝐶ℎ𝑚

(

𝐲𝑖1
)

=
𝐶ℎ𝑚

(

𝐲𝑖2
)

),
• 𝐲𝑖1 is preferred to 𝐲𝑖2 more than 𝐲𝑖3 is preferred to 𝐲𝑖4 (𝐶ℎ𝑚(𝐲𝑖1 ) −
𝐶ℎ𝑚(𝐲𝑖2 ) > 𝐶ℎ𝑚(𝐲𝑖3 ) − 𝐶ℎ𝑚(𝐲𝑖4 ) and 𝐶ℎ𝑚(𝐲𝑖3 ) − 𝐶ℎ𝑚(𝐲𝑖4 ) > 0),

• the intensity of preference of 𝐲𝑖1 over 𝐲𝑖2 is the same as the one
of 𝐲𝑖3 over 𝐲𝑖4 (𝐶ℎ𝑚(𝐲𝑖1 ) − 𝐶ℎ𝑚(𝐲𝑖2 ) = 𝐶ℎ𝑚(𝐲𝑖3 ) − 𝐶ℎ𝑚(𝐲𝑖4 ) and
𝐶ℎ𝑚(𝐲𝑖3 ) − 𝐶ℎ𝑚(𝐲𝑖4 ) > 0),

where 𝐲𝑖1 , 𝐲𝑖2 , 𝐲𝑖3 , 𝐲𝑖4 ∈ 𝐘. Additionally, the DM can also provide
further statements on the criteria in 𝐺:

• 𝑔𝑗1 is at least as important as 𝑔𝑗2 (translated to the constraint
𝜑({𝑔𝑗1}) ⩾ 𝜑({𝑔𝑗2})),

• 𝑔𝑗1 is more important than 𝑔𝑗2 (𝜑({𝑔𝑗1}) > 𝜑({𝑔𝑗2})),
• 𝑔𝑗1 and 𝑔𝑗2 are equally important (𝜑({𝑔𝑗1}) = 𝜑({𝑔𝑗2})),
• the difference of importance between 𝑔𝑗1 and 𝑔𝑗2 is greater than

the difference of importance between 𝑔𝑗3 and 𝑔𝑗4 (𝜑({𝑔𝑗1}) −
𝜑({𝑔𝑗2}) > 𝜑({𝑔𝑗3}) − 𝜑({𝑔𝑗4}) and 𝜑({𝑔𝑗3}) − 𝜑({𝑔𝑗4}) > 0),

• the difference of importance between 𝑔𝑗1 and 𝑔𝑗2 is the same as the
difference of importance between 𝑔𝑗3 and 𝑔𝑗4 (𝜑({𝑔𝑗1})−𝜑({𝑔𝑗2}) =
𝜑({𝑔𝑗3}) − 𝜑({𝑔𝑗4}) and 𝜑({𝑔𝑗3}) − 𝜑({𝑔𝑗4}) > 0),

• 𝑔𝑗1 and 𝑔𝑗2 are positively [negatively] interacting (𝜑({𝑔𝑗1 , 𝑔𝑗2}) >
0 [< 0]),

• 𝑔𝑗1 and 𝑔𝑗2 are not interacting (𝜑({𝑔𝑗1 , 𝑔𝑗2}) = 0),

where 𝑔𝑗1 , 𝑔𝑗2 , 𝑔𝑗3 , 𝑔𝑗4 ∈ 𝐺. Let us observe that, to get more precise
information about the type of interactions between criteria and about
their magnitude, one could also use the methodological background
presented by Siskos and Burgherr [53]. Indeed, the type of information
asked in that case can easily be translated into the constraints of our
model.



Omega 126 (2024) 103076M. Brunelli and S. Corrente

s

w
t
o
i
o
p

I
I
c
o
i
c
𝑆
𝐸
w
m
c
c
e
p

4

t
k
a
t
i

d
c
c
𝜀
s
t

M
b
v

w

t

w

p
l
m

c
t

m

p
H

At this point we call compatible model a Möbius measure 𝑚 over 2𝐺

atisfying the following set of constraints

𝐸𝐷𝑀 ,
∑

𝑔𝑗∈𝐺
𝑚({𝑔𝑗}) +

∑

{𝑔𝑗1 ,𝑔𝑗2 }⊆𝐺
𝑚({𝑔𝑗1 , 𝑔𝑗2}) = 1,

𝑚({𝑔𝑗1}) +
∑

𝑔𝑗2∈𝑇
𝑚({𝑔𝑗1 , 𝑔𝑗2}) ⩾ 0, ∀𝑔𝑗1 ∈ 𝐺 and ∀𝑇 ⊆ 𝐺 ⧵ {𝑔𝑗1}

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

𝐸𝑚

(9)

here 𝐸𝐷𝑀 is the set of constraints translating the preference informa-
ion described above. After transforming strict inequalities into weak
nes using an auxiliary variable 𝜀 (for example, 𝐶ℎ𝑚

(

𝐲𝑖1
)

> 𝐶ℎ𝑚
(

𝐲𝑖2
)

s transformed into 𝐶ℎ𝑚
(

𝐲𝑖1
)

⩾ 𝐶ℎ𝑚
(

𝐲𝑖2
)

+𝜀), to check for the existence
f at least one compatible model one has to solve the following LP
roblem

𝜀𝑚 = max 𝜀 subject to,
𝐸𝑚.

(10)

f 𝐸𝑚 is feasible and 𝜀𝑚 > 0, then, at least one compatible model exists.
n the opposite case (𝐸𝑚 is infeasible or 𝜀𝑚 ⩽ 0), there is not any
ompatible model and the reason can be checked, for example, using
ne of the methods presented in [54].4 If 𝐸𝑚 is feasible and 𝜀𝑚 > 0,
n general, more than one compatible model exists, and, consequently,
hoosing only one of them could be considered arbitrary. Denoting by
𝑚 the space of compatible models defined by the set of constraints
𝑚 ∪ {0 ⩽ 𝜀 ⩽ 𝜀𝑚}, to make the inference procedure more robust,
e propose to compute the barycenter of a large sample of compatible
odels in 𝑆𝑚. At first, since the constraints in 𝐸𝑚∪{0 ⩽ 𝜀 ⩽ 𝜀𝑚} define a

onvex and bounded polytope, the Hit-And-Run (HAR) method [55,56]
an be applied to sample a large number of compatible models. We then
stimate its barycenter [57]5 and use it to compute the value of each
roject 𝐲𝑖 ∈ 𝐘, that is, 𝐶ℎ𝑚

(

𝐲𝑖
)

.

.5. Inferring a Möbius measure over the set of projects 𝐘

Once the projects’ values have been obtained, the computation of
he value of each portfolio 𝐘𝑘 ∈ 2𝐘, as shown in Eq. (8), implies the
nowledge of a Möbius measure over 𝐘. To get such a measure, we
pply again the aggregation–disaggregation approach asking the DM
o provide some preference information on projects in terms of their
mportance or interaction:

• 𝐲𝑖1 is at least as important as 𝐲𝑖2 (translated to the constraint
𝜑({𝐲𝑖1}) ⩾ 𝜑({𝐲𝑖2})),

• 𝐲𝑖1 is more important than 𝐲𝑖2 (𝜑({𝐲𝑖1}) > 𝜑({𝐲𝑖2})),
• 𝐲𝑖1 and 𝐲𝑖2 have the same importance (𝜑({𝐲𝑖1}) = 𝜑({𝐲𝑖2})),
• the difference of importance between 𝐲𝑖1 and 𝐲𝑖2 is greater than

the difference of importance between 𝐲𝑖3 and 𝐲𝑖4 (𝜑
(

{𝐲𝑖1}
)

−
𝜑
(

{𝐲𝑖2}
)

> 𝜑
(

{𝐲𝑖3}
)

− 𝜑
(

{𝐲𝑖4}
)

and 𝜑
(

{𝐲𝑖3}
)

− 𝜑
(

{𝐲𝑖4}
)

> 0),
• the difference of importance between 𝐲𝑖1 and 𝐲𝑖2 is the same

of the difference of importance between 𝐲𝑖3 and 𝐲𝑖4 (𝜑
(

{𝐲𝑖1}
)

−
𝜑
(

{𝐲𝑖2}
)

= 𝜑
(

{𝐲𝑖3}
)

− 𝜑
(

{𝐲𝑖4}
)

and 𝜑
(

{𝐲𝑖3}
)

− 𝜑
(

{𝐲𝑖4}
)

> 0),

4 If 𝜀 does not appear in any of the constraints in 𝐸𝐷𝑀 (because the
ecision-maker did not provide any strict preference regarding projects or
riteria as well as any information about the possible interaction between
riteria), the space defined by the set of constraints 𝐸𝑚 is unbounded since
is not constrained (neither from below nor from above). To avoid this, it is

ufficient to add the constraint −𝑀 ⩽ 𝜀 ⩽𝑀 , with 𝑀 being a positive number,
o 𝐸𝑚.

5 Let us observe that a compatible model can be represented by a vector of
öbius parameters satisfying constraints in 𝐸𝑚. Therefore, the barycenter can

e computed averaging, component by component, the sampled compatible
7

ectors [57].
• 𝐲𝑖1 and 𝐲𝑖2 are positively [negatively] interacting (𝜑
(

{𝐲𝑖1 , 𝐲𝑖2}
)

>
0 [< 0]),

• 𝐲𝑖1 and 𝐲𝑖2 are not interacting (𝜑
(

{𝐲𝑖1 , 𝐲𝑖2}
)

= 0),

here 𝐲𝑖1 , 𝐲𝑖2 , 𝐲𝑖3 , 𝐲𝑖4 ∈ 𝐘.
Analogously, the DM can provide some information on portfolios

hey know well:

• 𝐘𝑘1 is at least as good as 𝐘𝑘2 , denoted by 𝐘𝑘1 ≿𝑄 𝐘𝑘2 (𝐶ℎ𝑚(𝐘𝑘1 ) ⩾
𝐶ℎ𝑚(𝐘𝑘2 )),

• 𝐘𝑘1 is preferred to 𝐘𝑘2 , denoted by 𝐘𝑘1 ≻𝑄 𝐘𝑘2 (𝐶ℎ𝑚(𝐘𝑘1 ) >
𝐶ℎ𝑚(𝐘𝑘2 )),

• 𝐘𝑘1 is indifferent to 𝐘𝑘2 , denoted by 𝐘𝑘1 ∼𝑄 𝐘𝑘2 (𝐶ℎ𝑚(𝐘𝑘1 ) =
𝐶ℎ𝑚(𝐘𝑘2 )),

• 𝐘𝑘1 is preferred to 𝐘𝑘2 more than 𝐘𝑘3 is preferred to 𝐘𝑘4
(𝐶ℎ𝑚(𝐘𝑘1 ) − 𝐶ℎ𝑚(𝐘𝑘2 ) > 𝐶ℎ𝑚(𝐘𝑘3 ) − 𝐶ℎ𝑚(𝐘𝑘4 ) and 𝐶ℎ𝑚(𝐘𝑘3 ) −
𝐶ℎ𝑚(𝐘𝑘4 ) > 0),

• the intensity of preference of 𝐘𝑘1 over 𝐘𝑘2 is the same as the one
of 𝐘𝑘3 over 𝐘𝑘4 (𝐶ℎ𝑚(𝐘𝑘1 )−𝐶ℎ𝑚(𝐘𝑘2 ) = 𝐶ℎ𝑚(𝐘𝑘3 )−𝐶ℎ𝑚(𝐘𝑘4 ) and
𝐶ℎ𝑚(𝐘𝑘3 ) − 𝐶ℎ𝑚(𝐘𝑘4 ) > 0),

here 𝐘𝑘1 ,𝐘𝑘2 ,𝐘𝑘3 ,𝐘𝑘4 ∈ 2𝐘.
If we use 𝐸𝐷𝑀𝑄 to denote the set of constraints translating the

reference information expressed by a DM as the above mentioned
inear equalities and inequalities, then a compatible model is a Möbius
easure 𝑚 over 𝐘 satisfying the following set of constraints

𝐸𝐷𝑀𝑄 ,
∑

𝐲𝑖∈𝐘
𝑚({𝐲𝑖}) +

∑

{𝐲𝑖1 ,𝐲𝑖2 }⊆𝐘

𝑚({𝐲𝑖1 , 𝐲𝑖2}) = 1,

𝑚({𝐲𝑖1}) +
∑

𝐲𝑖2∈𝑇

𝑚
(

{𝐲𝑖1 , 𝐲𝑖2}
)

⩾ 0, ∀𝐲𝑖1 ∈ 𝐘 and ∀𝑇 ⊆ 𝐘 ⧵ {𝐲𝑖1}.

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

𝐸𝑚

(11)

Considering that, also in this case, the strict inequalities are converted
into weak ones by the use of the auxiliary variable 𝜀, to check for
the existence of a compatible model one has to solve the following LP
problem:

𝜀𝑚 = max 𝜀, subject to,
𝐸𝑚.

(12)

If 𝐸𝑚 is feasible and 𝜀𝑚 > 0, then, at least one compatible model exists,
while, in the opposite case (𝐸𝑚 is infeasible or 𝜀𝑚 ⩽ 0), there is not any
ompatible model and the reasons can be checked by using one of the
wo methods presented in [54].6

If 𝐸𝑚 is feasible and 𝜀𝑚 > 0, in general, more than one compatible
model 𝑚 exists. Also in this case, denoting by 𝑆𝑚 the space of compati-
ble models defined by the set of constraints 𝐸𝑚∪{0 ⩽ 𝜀 ⩽ 𝜀𝑚}, to choose
one representative compatible model, we apply the same procedure
used in the previous section to select one Möbius measure 𝑚 over 𝐺
among those in 𝑆𝑚. At first, we sample a large number of compatible

odels from 𝑆𝑚 by using, for example, HAR. After that, its barycenter is
estimated by averaging the sampled compatible models, and then used
to compute the value of each portfolio 𝐘𝑘 ∈ 2𝐘 as shown in Eq. (8).

Other strategies could be followed to estimate 𝑚 and 𝑚. For exam-
le, the two steps presented above can be merged into a unique step.
owever, this would result in a unique problem where

(

𝑛 +
(𝑛
2

)

)

+
(

𝑞 +
(𝑞
2

)

)

parameters had to be estimated at once. Compared to the
divide and conquer logic inspiring the two steps procedure, this would
be both cognitively and computationally more demanding. In fact, (i)
more questions on pairs of portfolios may be necessary, and these are
more cognitively demanding than questions between pairs of projects,

6 The considerations made in footnote 4 hold also for the LP problem (12).
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and (ii) sampling would not be done from a convex and bounded
polytope (for which efficient algorithms, such as HAR, exist) but from
a more general feasible set stemming from inequalities using Eq. (8).

Let us conclude this section observing that, if 𝐸𝑚 is infeasible, or
𝑚 ⩽ 0 then, the absence of 2-additive measure 𝑚 over 𝐘 compatible

with the preferences provided by the DM could be explained by the
necessity to take into account interactions between more than two
projects.7 In this case, one could overcome the problem by taking into
account a 𝑘-additive capacity with 𝑘 > 2. In contrast, we should note
that a significantly larger number of parameters need to be specified,
resulting in a need for a substantial amount of preference information
to be provided by the DM to assign them a value.

4.6. Finding an optimal portfolio

Having presented the two-step procedure for computing the value
of a given portfolio with the 2-additive Choquet integral, we can now
formulate an optimization problem to obtain the optimal portfolio;
that is, the portfolio with the greatest value which satisfies a number
of constraints. In other words, the entries of the binary vector 𝐳 =
𝑧1,… , 𝑧𝑞) can be considered as variables and therefore, based on
q. (8), the objective function can be written as

ℎ𝑚 (𝐘, 𝐳) =
𝑞
∑

𝑖=1
𝑧𝑖 ⋅ 𝑚

(

{𝐲𝑖}
)

⋅ 𝐶ℎ𝑚
(

𝐲𝑖
)

+

+
∑

{𝑖1 ,𝑖2}⊆𝑄
𝑧𝑖1 ⋅ 𝑧𝑖2 ⋅ 𝑚

(

{𝐲𝑖1 , 𝐲𝑖2}
)

⋅min{𝐶ℎ𝑚
(

𝐲𝑖1
)

, 𝐶ℎ𝑚
(

𝐲𝑖2
)

}

(13)

where 𝑧𝑖’s are the only variables contained in the function since
𝐶ℎ𝑚(𝐲𝑖), for all 𝑖 ∈ 𝑄, were computed in the first step of the procedure,
while, 𝑚({𝐲𝑖}) and 𝑚({𝐲𝑖1 , 𝐲𝑖2}), with 𝑖, 𝑖1, 𝑖2 ∈ 𝑄 were computed in the
econd step of the procedure.

Assuming that the DM provides some linear constraints of differ-
nt nature (resource constraints, cost constraints, logic constraints,
tc.) [9], the optimization problem becomes

max
𝐳∈{0,1}𝑞

𝐶ℎ𝑚(𝐘, 𝐳) subject to

𝐂𝐼𝑛𝑒𝑞𝐳 ⩽ 𝐛𝐼𝑛𝑒𝑞
𝐂𝐸𝑞𝑢𝑎𝑙𝐳 = 𝐛𝐸𝑞𝑢𝑎𝑙

} (14)

here 𝐂𝐼𝑛𝑒𝑞𝐳 ⩽ 𝐛𝐼𝑛𝑒𝑞 and 𝐂𝐸𝑞𝑢𝑎𝑙𝐳 = 𝐛𝐸𝑞𝑢𝑎𝑙 are matrix-form formulations
f inequality and equality constraints, respectively. We call 𝐳𝑂𝑝𝑡 the so-
ution of the optimization problem above, 𝐘𝑂𝑝𝑡 ∈ 2𝐘 its related portfolio
omposed of projects 𝐲𝑖 ∈ 𝐘 such that 𝑧𝑂𝑝𝑡𝑖 = 1 and 𝐶ℎ𝑚(𝐘, 𝐳𝑂𝑝𝑡) the

value of the optimal portfolio.

5. An example

Let us consider an extension of the portfolio selection problem
presented by de Almeida and Duarte [9] where R&D projects were
evaluated on four criteria (𝑔1: Expected Return, 𝑔2: Probability of
Success Associated with the project, 𝑔3: Degree of Strategic Impact on
the organization, 𝑔4: Degree of impact on the operational processes)
to build a portfolio of projects. Using the notation introduced in the
previous sections, 𝐺 = {𝑔1, 𝑔2, 𝑔3, 𝑔4}, 𝑁 = {1, 2, 3, 4}, 𝐘 = {𝐲1,… , 𝐲10},
and 𝑄 = {1,… , 10}.

The evaluations of the projects on the considered criteria are shown
in Table 1.

Let us observe that projects 𝐲3–𝐲10 are the same considered by de
Almeida and Duarte [9], whereas the first two projects, 𝐲1 and 𝐲2, were
introduced by us.

7 The same applies in case 𝐸𝑚 is infeasible or 𝜀𝑚 ⩽ 0 meaning that there
is not any 2-additive measure over 𝐺 able to represent the preferences of the
DM.
8

Table 1
Performances of the ten R&D projects on the four considered criteria and their value.

Project 𝑔1 𝑔2 𝑔3 𝑔4 𝐶ℎ𝑚(𝐲𝑖)

𝐲1 0.25 0.2 0.2 0.6 0.2765

𝐲2 0.15 0.2 0.1 0.8 0.2581

𝐲3 0.7 0.15 0.7 0.4 0.5305

𝐲4 0.9 0.05 0.9 0.9 0.6733

𝐲5 0.4 0.5 0.35 0.3 0.4029

𝐲6 0.4 0.6 0.3 0.4 0.4494

𝐲7 0.3 0.7 0.1 0.7 0.5066

𝐲8 0.25 0.8 0.2 0.6 0.5203

𝐲9 0.15 0.8 0.1 0.8 0.5348

𝐲10 0.05 0.9 0.05 0.7 0.5109

Applying the aggregation–disaggregation approach, let us assume
that the DM provides the following preference information: 𝐲1 is pre-
erred to 𝐲2 and 𝐲9 is preferred to 𝐲8. Formally, considering the binary

relation ≿𝑃 between projects, this preference can be written as:
1 ≻𝑃 𝐲2, and , 𝐲9 ≻𝑃 𝐲8.

t can be seen that, considering 𝐽 = {1, 3, 4} ⊆ 𝑁 , ≿𝑃 is not within-
project independent with respect to 𝐽 (see Definition 2.1) and, there-
fore, over 𝑁 . Consequently, an additive value function as the one in
Eq. (1) cannot represent this preference information.

We shall therefore use the procedure described in Section 4.4 to
check for a Möbius measure over 𝑁 so that the 2-additive Choquet
integral can represent the preferences given by the DM. Hence, in 𝐸𝑚,
in addition to the two linear constraints translating the two pieces of
preference given by the DM, following what was considered in [9], we
add also the constraints translating the preference information over the
set of criteria as follows:

• ‘‘Expected Return’’ and ‘‘Probability of Success Associated with
the project’’ are equally important (translated to the constraint
𝜑({𝑔1}) = 𝜑({𝑔2})),

• ‘‘Probability of Success Associated with the project’’ is more im-
portant than ‘‘Degree of Strategic Impact on the organization’’
(𝜑({𝑔2}) > 𝜑({𝑔3})),

• ‘‘Degree of Strategic Impact on the organization’’ is more im-
portant than ‘‘Degree of impact on the operational processes’’
(𝜑({𝑔3}) > 𝜑({𝑔4})).

Solving the LP feasibility problem (10), we find that 𝐸𝑚 is feasible
and 𝜀𝑚 > 0. Therefore, there are infinitely many models compatible
with the preferences given by the DM. We sampled 100,000 Möbius
measures from the space defined by the constraints in 𝐸𝑚 finding,
consequently, an estimation of its barycenter. More precisely we have
𝑚({𝑔1}) = 0.4055, 𝑚({𝑔2}) = 0.3362, 𝑚({𝑔3}) = 0.2706, 𝑚({𝑔4}) = 0.1446.
Similarly, the Möbius values for pairs of criteria, which represents the
polarity and the intensity of interactions, can be found in Fig. 3

Computing the Choquet integral of each project using Eq. (7) and
considering the estimation of the barycenter of 𝐸𝑚, the values of the
projects are obtained and shown on the last column of Table 1. As
one can see, the two preference statements 𝐲1 ≻𝑃 𝐲2 and 𝐲9 ≻𝑃 𝐲8
are satisfied.

At this point, to compute the values of portfolios, we proceed as
explained in Section 4.5. We assume that the DM is able to express
some preferences on the following four portfolios

𝐘1 =
{

𝐲1, 𝐲2, 𝐲4
}

, 𝐘2 =
{

𝐲1, 𝐲3, 𝐲4
}

,

𝐘3 =
{

𝐲1, 𝐲2, 𝐲5
}

, 𝐘4 =
{

𝐲1, 𝐲3, 𝐲5
}

stating that 𝐘1 is preferred to 𝐘2 and 𝐘4 is preferred to 𝐘3. Formally,
considering the preference relation ≿ over 2𝐘, this can be written
𝑄
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Fig. 3. Möbius values for pairs of criteria.

as 𝐘1 ≻𝑄 𝐘2 and 𝐘4 ≻𝑄 𝐘3. Also in this case, independently of the
values associated to the ten projects, an additive value function, as
the one shown in Eq. (2), is not able to represent this preference.
Indeed, considering 𝐼 = {1, 2, 3}, it can be seen that ≿𝑄 is not between-
project independent with respect to 𝐼 and, consequently, over 𝑄 (see
Definition 2.2 and Example 2.4).

The DM includes further preference information on projects:

• all projects have the same importance when considered alone: this
piece of preference information is translated to the constraints
𝑚({𝐲1}) = ⋯ = 𝑚({𝐲10}),

• 𝐲6, 𝐲7, 𝐲8, 𝐲9, 𝐲10 do not interact each other: this piece of prefer-
ence information is translated to the following constraints:

𝑚({𝐲𝑖1 , 𝐲𝑖2}) = 0, for all (𝑖1, 𝑖2)

such that 𝑖1 = 6,… , 9 and 𝑖2 = 𝑖1 + 1,… , 10.

All these constraints will therefore compose the set 𝐸𝐷𝑀𝑄 in the LP
problem (12).

To check if the 2-additive Choquet integral in Eq. (8) is able to
represent this preference information, we solved the LP feasibility
problem (12) finding that 𝐸𝑚 is feasible and 𝜀𝑚 > 0. This means that it is
possible to define infinitely many Möbius measure over 𝐘 such that the
2-additive Choquet integral can represent the preferences given by the
DM. Again, we sampled and averaged 100,000 compatible models from
the space defined by the constraints in 𝐸𝑚 to estimate its barycenter.
The Möbius values of projects are all equal to 0.0522 while the Möbius
values for pairs, representing interactions, are reported in Fig. 4.

Considering the constraints presented in [9] regarding Work Force,
Equipment, Energy and Cost associated to the 10 projects as given in
Table 2, we can formulate the optimization problem to be solved to
obtain the optimal portfolio consisting, therefore, on the choice of the
projects in 𝐘 maximizing the portfolio value and such that the four
constraints mentioned above are satisfied.

The optimization problem can therefore be formulated as follows:

max
𝐳∈{0,1}10

𝐶ℎ𝑚(𝐘, 𝐳) subject to

10𝑧1 + 15𝑧2 +⋯ + 3𝑧10 ⩽ 60,

39𝑧1 + 30𝑧2 +⋯ + 12𝑧10 ⩽ 160,

65𝑧1 + 70𝑧2 +⋯ + 55𝑧10 ⩽ 380,

190𝑧1 + 160𝑧2 +⋯ + 40𝑧10 ⩽ 1000.

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

𝐸𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠
(15)

Solving it, we found 𝐳𝑂𝑝𝑡 = (0, 0, 0, 1, 1, 0, 1, 1, 1, 1) ∈ {0, 1}10 and,
consequently, the optimal portfolio is 𝐘𝑂𝑝𝑡 = {𝐲4, 𝐲5, 𝐲7, 𝐲8, 𝐲9, 𝐲10} ⊆ 𝐘
with value 𝐶ℎ𝑚(𝐘, 𝐳𝑂𝑝𝑡) = 0.2174. Checking if there exists another
portfolio presenting the same maximal value, we solve again problem
(15) adding

𝑧 + 𝑧 + 𝑧 + 𝑧 + 𝑧 + 𝑧 ⩽ 5
9

4 5 7 8 9 10
Table 2
Constraints on the ten R&D projects under consideration.

Project Work force Equipment Energy Cost

𝐲1 10 39 65 190

𝐲2 15 30 70 166

𝐲3 18 38 63 205

𝐲4 35 45 80 250

𝐲5 8 20 53 107

𝐲6 8 18 58 112

𝐲7 5 20 58 97

𝐲8 5 12 60 83

𝐲9 3 16 54 85

𝐲10 3 12 55 40

Availability 60 160 380 1000

to 𝐸𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 to make the previously obtained optimal solution unfea-
sible. This yields the optimal value 0.2171, which is lower than the
original optimum, meaning that the optimal portfolio 𝐘𝑂𝑝𝑡 is unique.

5.1. Analysis of the results

Given the relatively small size of the problem, its solutions can be
enumerated. Fig. 5 shows that the optimal point saturates, or almost
saturates, the constraints on workforce and energy (see Figs. 5(a)
and 5(c)), while the other constraints have a significant slack (see
Figs. 5(b) and 5(d)). Thus, this suggests that there is probably space
for rearranging resources. In fact, no other point in Fig. 5(d) exists with
(i) a higher value (ii) that satisfies all the constraints. If we consider a
point with higher intercept, as the red dot in Fig. 5(c), we can see that
it yields a greater value, but violates the constraints.

Many applications in portfolio decision analysis consider only one
budget constraint as, very often, other resources can be acquired at a
given cost and therefore multiple constraints can be aggregated into
one expressed in monetary terms. In this case, we can consider the
optimization problem with the budget constraint only and study the
inclusion/exclusion of projects from the optimal portfolio as a function
of the budget. Fig. 6 shows the results. Clearly, the optimal portfolio
is empty when the budget is null, and the first project to be added
is the tenth, as it is the least expensive. Note also that, due to this
characteristic, the tenth project is often included and then excluded in
the optimal portfolio and acts as a ‘‘filler project’’.

6. An alternative approach

It is important to acknowledge that the methodology presented until
now relied on the accuracy of the barycenters of the spaces 𝑆𝑚 and
𝑆𝑚 in representing the DM’s preferences. This holds true when the
expressed preference information is specific enough to narrow down
the explored spaces 𝑆𝑚 and 𝑆𝑚. However, in all other cases, this
assumption may not be reliable.

A more cautious and exploratory approach—which includes a vari-
ability analysis of the optimal portfolios that can be obtained by
probing the two spaces—can be inspired by the principles of Ro-
bust Portfolio Modeling [13] and Stochastic Multicriteria Acceptability
Analysis [32,58]. This approach involves a sampling phase in 𝑆𝑚 to
search for a compatible model 𝑚 over 𝐺, followed by a sampling phase
in 𝑆𝑚 to find compatible models 𝑚. Next, the optimal portfolio is
computed for each pair (𝑚,𝑚). Finally, the resulting set of portfolios
is analyzed and used to aid the selection of a final portfolio. This
procedure is sketched and compared to the original one in Fig. 7.

Let us observe that the sampling of 𝑚 from 𝑆𝑚 and the sampling of 𝑚
from 𝑆 are not independent since the second is dependent on the first.
𝑚
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Fig. 4. Interaction values represented by Möbius transforms for pairs of projects.
Fig. 5. Projections of all 1024 (210) possible portfolios, feasible and unfeasible, onto 2-dimensional planes where one dimension is the portfolio value and the other is its demand
in terms of one of the problem constraints. Availability thresholds of resources are denoted by a vertical dashed line, and the optimal portfolio with a green larger dot. For a
correct visualization of colors the reader may have to refer to the online version.
Fig. 6. Inclusion of projects into the optimal portfolios with respect to different budget levels. On the 𝑥-axis one find the budget ×100.
Indeed, as evident in Eq. (8), the computation of the Portfolios’ values is
dependent on the Projects’ values that are computed by Eq. (7). From
a formal point of view, each 𝑚 ∈ 𝑆𝑚 defines a space 𝑆𝑚 from which
a model 𝑚 could be sampled. To take into account this dependence,
first, we sample 1,000 compatible models 𝑚 from 𝑆𝑚. Then, for each
𝑚 sampled in 𝑆𝑚 we sample another 1,000 𝑚 from 𝑆𝑚 so that a total
of 1, 000, 000 pairs (𝑚,𝑚) compatible with the DM’s preferences are
available. The portfolio optimization problem (14) is solved for each
of them. The result is a list of potentially optimal portfolios with their
frequencies.
10
If the set of potentially optimal portfolios with their relative fre-
quencies is considered too dispersed, two strategies can be employed.
The first strategy contemplates the elicitation of further preference
information from the DM: such information, expressed in the form of
equality and inequality constraints, reduces the size of the spaces 𝑆𝑚
and 𝑆𝑚 from which the pairs (𝑚,𝑚) are sampled, and possibly also
the number of the potentially optimal portfolios. The second strategy,
loosely based on Occam’s razor, selects only pairs (𝑚,𝑚) which are
the most parsimonious in terms of interactions between criteria and
between projects. That is, even though we know that, most likely,
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Fig. 7. A comparison between two approaches: optimization based on barycenters vs.
onte Carlo study and analysis of potentially optimal solutions.

n additive model is not compatible with the expressed preferences,
e still want to find the most parsimonious (in terms of required

nteractions) non-additive model, namely, a non-additive model pre-
enting the minimum necessary number of interactions. Having a lower
umber of parameters the model becomes more interpretable and,
oreover, the space from which the vectors of parameters have to be

ampled becomes smaller, diminishing therefore the variability of the
arameters themselves. In the following, let us remind the procedure
resented by Arcidiacono et al. [59] and apply it, on the one hand, to
ind a parsimonious 2-additive measure defined over the set of criteria

compatible with the preferences given by the DM and, on the other
and, to find a parsimonious 2-additive measure defined over the space
f portfolios 𝐘 compatible with the preferences given by the DM:

• If we consider the set of constraints 𝐸𝑚, then to find a parsimo-
nious 2-additive measure over 𝐺 presenting the minimum number
of necessary interactions between criteria, one has to solve the
following MILP problem:

min
∑

{𝑗1 ,𝑗2}⊆𝑁
𝛾𝑗1𝑗2 , subject to

𝐸𝑚 ∪ {𝜀 = 𝜀𝑚},

−𝛾𝑗1𝑗2 ⩽ 𝑚
(

{𝑔𝑗1 , 𝑔𝑗2}
)

⩽ 𝛾𝑗1𝑗2 , ∀{𝑗1, 𝑗2} ⊆ 𝑁,

𝛾𝑗1𝑗2 ∈ {0, 1}, ∀{𝑗1, 𝑗2} ⊆ 𝑁.

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(16)

Denoting by {𝛾∗𝑗1𝑗2 ∶ {𝑗1, 𝑗2} ⊆ 𝑁} the solution of the previous
MILP problem, the pairs of criteria {𝑔𝑗1 , 𝑔𝑗2} for which the cor-
responding 𝛾∗𝑗1𝑗2 is equal to 1 are those necessary to represent
the DM’s preferences. Vice versa, the pairs of criteria {𝑔𝑗1 , 𝑔𝑗2}
for which the corresponding 𝛾∗𝑗1𝑗2 is null are not necessary to
represent the DM’s preferences and, therefore, can be removed;

• If we consider the set of constraints 𝐸𝑚, then, to find a parsimo-
nious 2-additive measure over 𝐘 presenting the minimum number
of necessary interactions between projects, one has to solve the
following MILP problem:

min
∑

{𝑖1 ,𝑖2}⊆𝑄
𝛾𝑖1𝑖2 , subject to

𝐸𝑚 ∪ {𝜀 = 𝜀𝑚},

−𝛾𝑖1𝑖2 ⩽ 𝑚
(

{𝐲𝑖1 , 𝐲𝑖2}
)

⩽ 𝛾𝑖1𝑖2 , ∀{𝑖1, 𝑖2} ⊆ 𝑄,

𝛾𝑖1𝑖2 ∈ {0, 1}, ∀{𝑖1, 𝑖2} ⊆ 𝑄.

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(17)

Denoting by {𝛾∗𝑖1𝑖2 ∶ {𝑖1, 𝑖2} ⊆ 𝑄} the solution of the previous MILP
problem, the pairs of projects {𝐲𝑖1 , 𝐲𝑖2} for which the correspond-
ing 𝛾∗𝑖1𝑖2 is equal to 1 are those necessary to represent the DM’s
preferences. Vice versa, the pairs of projects {𝐲𝑖1 , 𝐲𝑖2} for which
the corresponding 𝛾∗𝑖1𝑖2 is null are not necessary to represent the
11

DM’s preferences and, therefore, can be removed.
.1. Example

In the example presented in Section 5, the total number of possible
ortfolios is 210. Taking into account the technical constraints on the
riteria at hand, by enumeration, we checked that 563 of them are fea-
ible. Considering the DM’s preferences over criteria and projects, the
ampling procedure presented in the previous section shows that 98 out
f the 563 feasible portfolios are potentially optimal with normalized
requencies varying between 10−6 and 0.0691. This number is large,
specially discounting the fact that a number of feasible portfolios are
learly non-optimal. Let us assume that the DM is able to provide the
ollowing additional preferences over projects:

• project 𝐲5 is preferred to project 𝐲4 (𝐲5 ≻𝑃 𝐲4),
• project 𝐲3 is preferred to project 𝐲6 (𝐲3 ≻𝑃 𝐲6).

oreover, let us add the following technical requirements about the
sed 2-additive Choquet integrals:

• The 2-additive measure 𝑚 defined over the set of criteria 𝐺 has
to be parsimonious (it has to present the minimum necessary
number of interactions),

• The 2-additive measure 𝑚 defined over the set of projects 𝐘 has
to be parsimonious (it has to present the minimum necessary
number of interactions).

The procedure we used is presented in Algorithm 1 and its steps are
articulated as follows:

Algorithm 1

1: Require: Preference information over criteria
(

𝐸𝐷𝑀
)

, Preference
information over portfolios

(

𝐸𝐷𝑀𝑄
)

2: Check for a compatible 2-additive measure over 𝐺
3: Check for a compatible parsimonious 2-additive measure over 𝐺
4: Sample 1,000 compatible parsimonious 2-additive measures 𝑚 over
𝐺

5: for each 𝑚 sampled in step 4: do
6: Check for a compatible 2-additive measure over 𝐘
7: Check for a compatible parsimonious 2-additive measure over 𝐘

8: Sample 1,000 compatible parsimonious 2-additive measures 𝑚
over 𝐘

9: for each 𝑚 sampled in step 8: do
0: Compute the optimal portfolio
1: end for
2: end for
3: Give statistical information on the optimal portfolios obtained

Step 1: We take into account the preference information on projects,
criteria and portfolios specified in Section 5. This preference
information is translated into inequality and equality constraints
as explained in Sections 4.4 and 4.6, respectively. These con-
straints, together with technical constraints related to the 2-
additive Choquet integral generate the sets of constraints 𝐸𝑚
(see Eq. (9)) and 𝐸𝑚 (see Eq. (11)),

Step 2: Solve the LP problem (10) to check for the existence of at least
one 2-additive measure over 𝐺 such that the Choquet integral is
able to represent the preferences of the DM over criteria and
projects. In this case, we find that 𝐸𝑚 is feasible and 𝜀𝑚 > 0
meaning that there exists such a measure,

tep 3: Solve the MILP problem (16) to check for a 2-additive mea-
sure over 𝐺 presenting the minimum number of interactions
necessary to represent the preferences of the DM,
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Step 4: Sample 1,000 parsimonious 2-additive measures over 𝐺 from
the space defined by the following set of constraints,

𝐸𝑚 ∪ {0 ⩽ 𝜀 ⩽ 𝜀𝑚},

𝑚
(

{𝑔𝑗1 , 𝑔𝑗2}
)

= 0, ∀{𝑗1, 𝑗2} ⊆ 𝑁 ∶ 𝛾∗𝑗1𝑗2 = 0.

⎫

⎪

⎬

⎪

⎭

Let us observe that the last constraint is used to impose that
the interactions between the pairs of criteria not necessary to
represent the preferences of the DM are null,

tep 5: As already observed in the previous section, each compat-
ible parsimonious 2-additive measure over 𝐺 sampled in the
previous step constraints the space from which a parsimonious
2-additive measure over 𝐘 can be taken,

tep 6: Solve the LP problem (12) to check for the existence of at least
one 2-additive measure over 𝐘 such that the Choquet integral is
able to represent the preference of the DM over the portfolios.
We find always that 𝐸𝑚 is feasible and 𝜀𝑚 > 0 meaning that there
exists such measure,

Step 7: Solve the MILP problem (17) to check for a 2-additive mea-
sure over 𝐘 presenting the minimum number of interactions
necessary to represent the preferences of the DM,

tep 8: Sample 1,000 parsimonious 2-additive measures over 𝐘 from
the space defined by the following set of constraints:

𝐸𝑚 ∪ {0 ⩽ 𝜀 ⩽ 𝜀𝑚},

𝑚
(

{𝐲𝑖1 , 𝐲𝑖2}
)

= 0, ∀{𝑖1, 𝑖2} ⊆ 𝑄 ∶ 𝛾∗𝑖1𝑖2 = 0.

⎫

⎪

⎬

⎪

⎭

Let us observe that the last constraint imposes that the interac-
tions between projects that are not necessary to represent the
preferences of the DM are null,

teps 9–10: For each pair of measures (𝑚,𝑚) sampled in steps 4: and
8:, respectively, solve the MILP problem (14) to find the optimal
portfolio,

tep 13: Give information on how many different portfolios have been
obtained through the considered procedure in the 1,000,000
simulations and the frequencies with which they have been
obtained.

Applying the procedure described in Algorithm 1, we end up with
he following three different portfolios
𝑜𝑝𝑡
1 = (0, 0, 1, 0, 1, 1, 1, 1, 1, 0)
𝑜𝑝𝑡
2 = (0, 1, 0, 1, 0, 0, 1, 0, 1, 0)
𝑜𝑝𝑡
3 = (0, 1, 0, 1, 1, 0, 0, 0, 0, 0)

hat are obtained with normalized frequencies equal to 0.6134, 0.3860,
nd 0.0006, respectively. This means that the addition of the con-
traints translating the new pieces of preference information over
rojects and the technical constraints related to the parsimonious 2-
dditive Choquet integral permits to reduce the number of potentially
ptimal portfolios from 98 to 3.

Let us observe that if we had applied the ‘‘less robust’’ procedure
escribed in Sections 4.4–4.6, that is, (i) compute an estimate of the
arycenter of a sample of parsimonious 2-additive measures over 𝐺
ompatible with the preferences of the DM and, consequently, the
rojects’ values, (ii) compute an estimate of the barycenter of a sample
f parsimonious 2-additive measures over 𝐘 compatible with the pref-
rences of the DM, and (iii) compute the optimal portfolio solving the
ILP problem (14) considering the two estimated barycenters, then we
ould have got the optimal portfolio
𝑜𝑝𝑡
𝑏𝑏 = (0, 0, 1, 0, 1, 1, 1, 1, 1, 0),

hat is also the most frequently obtained by using the ‘‘robust’’ proce-
ure described in detail before.
12
7. Conclusions

We introduced a model for portfolio decision analysis and selection
that is sufficiently general to consider, simultaneously, interactions
between criteria and projects. By doing so we overcame the limitations
of using an additive value function, that is, the intra- and between-
project independence conditions presented by Morton et al. [15]. We
proposed the use of the Choquet integral, and in the attempt to strike a
reasonable tradeoff between generality of the model and computational
tractability, we adopted 2-additive capacities that assign a value to
each item and to each pair of items only. Both capacities (on the set of
criteria and on the set of projects) are obtained using the aggregation–
disaggregation approach in a 2-steps procedure that takes into account
the preference information provided by the Decision Maker (DM).
Either way, the approach based on 2-additive capacities remains more
general than the additive value function: in the absence of interactions
between criteria and projects, our model collapses into (and therefore
is compatible) with the one employing additive value functions.

We proposed two alternative ways to operationalize this model: (i)
the two capacities necessary to compute, on the one hand, the value
of each project and, on the other hand, the value of each portfolio, are
the estimations of the barycenter of the space defined by this preference
information; (ii) the space of all compatible models is probed, and an
optimal portfolio is computed for each sampled model. This second
approach allows for an analysis of potentially optimal portfolios and
frequencies with which they are obtained.

To show the applicability of our proposal, we considered an example
from the literature in which the optimal portfolio of R&D projects has
to be selected.

Let us observe that even if the proposed approach considers 2-
additive capacities, this is not a strict requirement. Indeed, if the
2-additive Choquet integral is not able to represent the preferences of
the DM, the approach can easily be extended to a 𝑘-additive capacity
with 𝑘 > 2.

A possible improvement could be adding flexibility in the con-
straints. Future works could, for instance, use fuzzy optimization to
consider the boundaries of the regions of feasible portfolios fuzzy
instead of crisp.
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