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Abstract

We prove a Jensen formula for slice-regular functions of one quaternionic variable. The

formula relates the value of the function and of its first two derivatives at a point with its

integral mean on a three dimensional sphere centred at that point and with the disposition

of its zeros. The formula can be extended to semiregular slice functions.
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1 Introduction and preliminaries

The aim of this note is to prove a Jensen formula for slice-regular functions of one quaternionic
variable. We show how the results obtained in [10] can be applied to extend to any slice-regular
function the formula proved by Altavilla and Bisi in [1] for slice-preserving functions. The formula
relates the value of the function and of its first and second derivatives at a point on the real
axis, its integral mean on a three dimensional sphere centred at that point, and the position of
its zeros. The formula can be generalized to semiregular slice functions, where also poles enter
in the formula. See [2, Theorem 5.2] for another Jensen-type formula for slice-regular functions,
in which the integration is performed on a two-dimensional slice of the domain.

Slice-regular functions constitute a recent function theory in several hypercomplex settings
(see [5, 6, 4, 8]). This class of functions was introduced by Gentili and Struppa [5] for functions
of one quaternionic variable. Let H denote the skew field of quaternions, with basic elements
i, j, k. For each quaternion J in the sphere

S = {J ∈ H | J2 = −1} = {x1i + x2j + x3k ∈ H | x2
1 + x2

2 + x2
3 = 1}

of imaginary units, let CJ = 〈1, J〉 ≃ C be the subalgebra generated by J . Then we have the
“slice” decomposition

H =
⋃

J∈S

CJ , with CJ ∩ CK = R for every J,K ∈ S, J 6= ±K.

A differentiable function f : Ω ⊆ H → H is called (left) slice-regular on Ω if, for each J ∈ S,
the restriction

f |Ω∩CJ
: Ω ∩ CJ → H

∗Partially supported by GNSAGA of INdAM
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is holomorphic with respect to the complex structure defined by left multiplication by J . For
example, polynomials f(x) =

∑
m xmam with quaternionic coefficients on the right are slice-

regular on H and convergent power series are slice-regular on an open ball centered at the origin.
Let x0, x1, x2, x3 denote the real components of a quaternion x = x0 + x1i + x2j + x3k. In

the following, we use the *-algebra structure of H given by the R-linear antiinvolution x 7→
x̄ = x0 − x1i − x2j − x3k. Let t(x) := x + x̄ = 2Re(x) be the trace of x and n(x) := xx̄ =
x2
0 + x2

1 + x2
2 + x2

3 = |x|2 the norm of x. We also set Im(x) = (x − x̄)/2 = x1i+ x2j + x3k.
Let H ⊗R C be the algebra of complex quaternions, with elements w = a + ıb, a, b ∈ H,

ı2 = −1. Every quaternionic polynomial f(x) =
∑

m xmam lifts to a unique polynomial function
F : C → H⊗R C which makes the following diagram commutative for every J ∈ S:

C ≃ R⊗R C
F

−−−−→ H⊗R C

ΦJ

y
yΦJ

H
f

−−−−→ H

where ΦJ : H ⊗R C → H is defined by ΦJ(a + ıb) := a + Jb. The lifted polynomial is simply
F (z) =

∑
m zmam, with variable z = α+ ıβ ∈ C.

In this lifting, the usual product of polynomials with coefficients in H on one fixed side
(the one obtained by imposing that the indeterminate commutes with the coefficients when two
polynomials are multiplied together) corresponds to the pointwise product in the algebra H⊗RC.

The remark made above about quaternionic polynomials suggests a way to define H-valued
functions on a class of open domains in H. Let D ⊆ C be a set that is invariant with respect
to complex conjugation. In H ⊗R C consider the complex conjugation that maps w = a+ ıb to
w = a− ıb (a, b ∈ H). If a function F : D → H⊗R C satisfies F (z) = F (z) for every z ∈ D, then
F is called a stem function on D. Let ΩD be the circular subset of H defined by

ΩD =
⋃

J∈S

ΦJ(D).

The stem function F = F1 + ıF2 : D → H ⊗R C induces the (left) slice function f = I(F ) :
ΩD → H in the following way: if x = α+ Jβ = ΦJ(z) ∈ ΩD ∩ CJ , then

f(x) = F1(z) + JF2(z),

where z = α+ ıβ.
The previous lifting suggests also the definition of the slice product of two slice functions

f = I(F ) and g = I(G). It is the slice function f · g = I(FG) obtained by means of the product
in the algebra H ⊗R C. We recall the formula that links the slice product to the quaternionic
pointwise product: if f(x) = 0, then (f · g)(x) = 0, while for every x such that f(x) 6= 0 it holds
(f · g)(x) = f(x)g(f(x)−1xf(x)).

The function f = I(F ) is called slice-preserving if F1 and F2 are real-valued (this is the case
already considered by Fueter [3] for holomorphic F ). In this case, f(x) = f(x) for each x ∈ ΩD,
and the slice product f · g coincides with the pointwise product of f and g for any slice function
g.

The slice function f is called circular if F2 ≡ 0. In this case, if x = α + βJ ∈ H \ R,
f(y) = f(x) for every y in the sphere Sx = α+ βS.

If the stem function F is holomorphic, the slice function f = I(F ) is called (left) slice-
regular. We shall denote by SR(ΩD) the right H-module of slice-regular functions on ΩD. When
the domain D intersects the real axis, this definition of slice regularity is equivalent to the one
proposed by Gentili and Struppa [5]. This approach to slice regularity has been developed on
any real alternative *-algebra. See [6, 7, 8] for details and other references.
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1.1 The slice derivatives and the spherical operators

The commutative diagrams shown above suggest a natural definition of the slice derivatives
∂f
∂x ,

∂f
∂xc of a slice functions f . They are the slice functions induced, respectively, by the derivatives

∂F
∂z and ∂F

∂z :
∂f

∂x
= I

(
∂F

∂z

)
and

∂f

∂xc
= I

(
∂F

∂z

)
.

With this notation a slice function is slice-regular if and only if ∂f
∂xc = 0 and if this is the case

also the slice derivative ∂f
∂x is slice-regular. These derivatives satisfy the Leibniz formula for slice

product of functions.
We now recall from [6] two other operators that describe completely slice functions. Let

f = I(F ) be a slice function on ΩD, induced by the stem function F = F1 + ıF2, with F1, F2 :
D ⊆ C → H.

Definition 1. The function f◦
s : ΩD → H, called spherical value of f , and the function f ′

s :
ΩD \ R → H, called spherical derivative of f , are defined as

f◦
s (x) :=

1

2
(f(x) + f(xc)) and f ′

s(x) :=
1

2
Im(x)−1(f(x)− f(xc)).

If x = α + βJ ∈ ΩD and z = α + ıβ ∈ D, then f◦
s (x) = F1(z) and f ′

s(x) = β−1F2(z).
Therefore f◦

s and f ′
s are slice functions, constant on every set Sx = α + β S. Observe that on

ΩD ∩R, the spherical value of f coincides with f . The functions f◦
s and f ′

s are slice-regular only
if f is locally constant. Moreover, the formula

f(x) = f◦
s (x) + Im(x)f ′

s(x)

holds for each x ∈ ΩD \R. If F is of class C1, the formula holds also for x ∈ ΩD∩R. In particular,
if f is slice-regular, f ′

s extends to the real points of ΩD with the values of the slice derivative ∂f
∂x .

The zero set Df of f ′
s is called degenerate set of f (see [4, §7] for its properties). The spherical

value and the spherical derivatives satisfy the following Leibniz-type product rule (see [6, §5]):

(f · g)′s = f ′
s · g

◦
s + f◦

s · g′s. (1)

1.2 Normal function and multiplicities of zeros

Given a slice function f = I(F ) : ΩD → H, with F = F1 + ıF2, its conjugate function f c and its
normal function N(f) are the slice functions defined by

f c = I(F c) = I(F c
1 + ıF c

2 ) and N(f) = f · f c = f c · f,

where F c
µ(z) = Fµ(z) for µ = 1, 2, z ∈ D. The adjective normal here is justified by the fact that

N(f) can be seen as the norm of f in the *-algebra of slice functions with antiinvolution f 7→ f c

(in the literature, also the term symmetrization is used for the normal function). Observe that
at every real point a ∈ ΩD ∩ R, f c(a) = f(a) and N(f)(a) = |f(a)|2. When f is slice-regular,
also f c and N(f) are slice-regular, with N(f) always slice-preserving (we refer to [6, §6] for more
details about these functions).

Let V (f) = {x ∈ ΩD | f(x) = 0} be the set of zeros of the slice function f . We recall some of
its basic properties (see [4, 6]). The elements x ∈ V (f) can be of three types: real zeros (when
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x ∈ R), spherical zeros (when x 6∈ R and Sx ⊆ V (f)) or isolated nonreal zeros (when Sx 6⊆ V (f)).
For any slice function f , it holds

V (N(f)) =
⋃

y∈V (f)

Sy.

For every f ∈ SR(ΩD), f 6≡ 0, the set V (f) consists of isolated points (real or not real) or
isolated 2-spheres of the form Sx (with nonreal x).

Definition 2. Let f ∈ SR(ΩD), f 6≡ 0. Let ∆y(x) = N(x− y) be the characteristic polynomial
of y ∈ H. Given y ∈ V (f) and a non-negative integer s, we say that y is a zero of f of total
multiplicity s if ∆s

y divides N(f) and ∆s+1
y does not divide N(f) in SR(ΩD). We will denote

the integer s by m̃f (y).

Note that the total multiplicity is well-defined thanks to [6, Corollary 23]. It has the property:
m̃N(f)(y) = 2m̃f(y) for every y ∈ V (f). This can be proved as in [6, Theorem 26], where the
argument deals with slice-regular polynomials but it is valid for any slice-regular function (see
also [4, Proposition 6.14]). A more refined definition of multiplicity for zeros of f can be found
in [4, §3.6].

1.3 Slice-regularity and harmonicity

In this section we recall some results from [10] concerning the relation between slice-regularity and
harmonicity with respect to the standard Laplacian operator ∆4 of R4. The Cauchy-Riemann-
Fueter operator

∂CRF =
∂

∂x0
+ i

∂

∂x1
+ j

∂

∂x2
+ k

∂

∂x3

factorizes ∆4, since it holds:
∂CRF∂CRF = ∂CRF∂CRF = ∆4,

where

∂CRF =
∂

∂x0
− i

∂

∂x1
− j

∂

∂x2
− k

∂

∂x3

is the conjugated operator. For any i, j with 1 ≤ i < j ≤ 3, let Lij = xi
∂

∂xj
− xj

∂
∂xi

and let

Γ = −iL23+ jL13 − kL12 be the quaternionic spherical Dirac operator on Im(H). The operators
Lij are tangential differential operators for the spheres Sx = α+ β S (β > 0) and the operator Γ
factorizes the Laplace-Beltrami operator of the 2-sphere.

Proposition 3. ([10, Proposition 6.1]) Let Ω = ΩD be an open circular domain in H. For every
slice function f : Ω → H, of class C1(Ω), the following formulas hold on Ω \ R:

(a) Γf = 2 Im(x)f ′
s.

(b) ∂CRFf − 2 ∂f
∂xc = −2f ′

s.

Proposition 4. ([10, Corollary 6.2]) Let Ω = ΩD be an open circular domain in H. Let
f : Ω → H be a slice function of class C1(Ω). Then

(a) f is slice-regular if and only if ∂CRFf = −2f ′
s.

(b) ∂CRFf − 2∂f
∂x = 2f ′

s and 2
∂f ′

s

∂x = ∂CRFf
′
s.

Proposition 5. ([10, Theorem 6.3]) Let Ω = ΩD be an open circular domain in H. If f : Ω → H

is slice-regular, then it holds:
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(a) The spherical derivative f ′
s is harmonic on Ω (i.e. its four real components are harmonic).

(b) The following generalization of Fueter’s Theorem holds: ∂CRF∆4f = 0. As a consequence,
every slice-regular function is biharmonic.

2 A four dimensional Jensen formula

In order to obtain the quaternionic version of Jensen formula, we need three preliminary results.
Before giving the statements, we clarify what we mean in the following by log |g|, for a slice-
preserving function g = I(G) = I(G1 + ıG2) defined on Ω. Since G1 and G2 are real-valued, the
function g induced by the stem function G1 − ıG2 satisfies g(x) = g(x) for every x ∈ Ω. Note
that (g)′s = −g′s, a property we will use later. The function |g| induced by the real-valued stem
function (G2

1 + G2
2)

1/2 satisfies |g|(x) = |g(x)| for all x ∈ Ω. Moreover, g · g = |g|2. Finally,
the function log |g| = I

(
1
2 log(G

2
1 +G2

2)
)
is a circular, slice-preserving function on Ω \ V (g),

satisfying (log |g|)(x) = log |g(x)| for every x ∈ Ω \ V (g).
The first result we need was proved in [1, Theorem 2.1] using results from [10]. For complete-

ness we give a proof here.

Proposition 6. Let Ω = ΩD be an open circular domain in H. If g : Ω → H is slice-regular
and slice-preserving, then ∂

∂x log |g| is slice-regular and log |g| is biharmonic on Ω \ V (g). In
particular, this is true when g = N(f) for any slice-regular function f : Ω → H.

Proof. Let g = I(G) = I(G1+ ıG2) ∈ SR(Ω) be slice-preserving. Let ∆2 be the two-dimensional
Laplacian. Since G : D → C is holomorphic, ∆2 log |G| = 0 where G does not vanish. Therefore
∂
∂z log |G| is holomorphic on D \V (G), and ∂

∂x log |g| = I( ∂
∂z log |G|) is slice-regular. Since log |g|

is a circular slice function, its spherical derivative vanishes and then from point (b) of Proposition
4

∂
∂x log |g| =

1

2
∂CRF log |g|.

From point (b) of Proposition 5 we get

0 = ∂CRF∆4

(
∂
∂x log |g|

)
= 1

2∂CRF∆4∂CRF log |g| = 1
2∆

2
4 log |g|,

i.e. log |g| is biharmonic.

Remark 7. If g : Ω → H is slice-regular but not slice-preserving, then the function log |g|,
mapping x to log |g(x)|, can be not biharmonic. This can happen also if g is one-slice-preserving
(see [1, Remark 2.8]). We recall that a slice function f is one-slice-preserving if there exists J ∈ S

such that f(Ω ∩CJ ) ⊆ CJ .

Proposition 8. Let Ω be an open circular domain in H with Ω ∋ 0. If f : Ω → H is slice-regular
and f(0) 6= 0, then

∆4 log |N(f)|x=0 = −4Re

(
f(0)−1 ∂

2f

∂x2
(0)

)
+ 4Re

((
f(0)−1 ∂f

∂x
(0)

)2
)
.

Proof. In this proof we denote the spherical value and the spherical derivative of a slice function
f by vsf and ∂sf respectively. Let g = I(G) ∈ SR(Ω) be slice-preserving. Using Propositions 4
and 6, we get, outside V (g),

∆4(log |g|
2) = ∂CRF∂CRF (log |g|

2) = 2 ∂CRF
∂
∂x (log |g|

2) = −4 ∂s
(

∂
∂x (log |g|

2)
)
.

5



Since g is slice-regular, g is anti-regular (i.e. in the kernel of ∂
∂x ) and it holds, by the Leibniz rule

for slice product,

∂
∂x (log |g|

2) = I
(

∂
∂z (log |G|2)

)
= I

(
1

|G|2
∂
∂z (|G|2)

)
= 1

|g|2
∂
∂x (g · ḡ) =

1
|g|2

∂g
∂x · ḡ.

Therefore
∆4(log |g|

2) = −4 ∂s

(
1

|g|2
∂g
∂x · ḡ

)
.

Since |g|−2 is circular, from the Leibniz rule (1) for spherical value and derivative we get

∆4(log |g|
2) = − 4

|g|2 ∂s

(
∂g
∂x · ḡ

)
= − 4

|g|2

(
∂s(

∂g
∂x ) · vsḡ + vs(

∂g
∂x ) · ∂sḡ

)
. (2)

Now we set g = N(f). Firstly we must compute ∂s(
∂
∂x(f · f c)) · vs(N(f)). Since ∂

∂x (f · f c) =
∂f
∂x · f c + f · ∂fc

∂x , we compute separately the two terms at x = 0. The first one is

(
∂s

(
∂f
∂x · f c

)
· vs(N(f))

)

|x=0
=
(

∂
∂x

(
∂f
∂x · f c

))

|x=0
|f(0)|2,

where we used the fact that the spherical derivative extends to R as the slice derivative. Then

(
∂s

(
∂f
∂x · f c

)
· vs(N(f))

)

|x=0
=

(
∂2f
∂x2 (0) f(0) +

∣∣∣∂f∂x (0)
∣∣∣
2
)
|f(0)|2. (3)

The second term is
(
∂s

(
f · ∂fc

∂x

)
· vs(N(f))

)

|x=0
=
(

∂
∂x

(
f · ∂fc

∂x

))

|x=0
|f(0)|2

=

(∣∣∣∂f∂x (0)
∣∣∣
2

+ f(0)∂
2f

∂x2 (0)

)
|f(0)|2. (4)

It remains to compute the two terms coming from vs
(

∂
∂x (f · f c)

)
· ∂sN(f). Since ∂sN(f)|x=0 =

−∂sN(f)|x=0 = − ∂
∂x (f · f c)|x=0, the first one is equal to

(
vs(

∂f
∂x · f c) · ∂sN(f)

)

|x=0
= −2∂f

∂x (0)f(0) Re
(
f(0)∂f∂x (0)

)
, (5)

whilst the second one is
(
vs(f · ∂fc

∂x ) · ∂sN(f)
)

|x=0
= −2f(0)∂f∂x (0) Re

(
f(0)∂f∂x (0)

)
. (6)

Putting it all together, using (3), (4), (5), (6) in (2), we get

∆4 log |N(f)|x=0 =
1

2
∆4(log |N(f)|2)|x=0

= − 2
|f(0)|2

(
2Re

(
f(0)∂

2f
∂x2 (0)

)
+ 2

∣∣∣∂f∂x (0)
∣∣∣
2
)

− 2
|f(0)|4

(
−4
(
Re
(
f(0)∂f∂x (0)

))2)

= −4Re
(
f(0)−1 ∂2f

∂x2 (0)
)
+ 4Re

((
f(0)−1 ∂f

∂x (0)
)2)

,

where we used the fact that, for any a ∈ H, it holds −2|a|2 + 4Re(a)2 = 2Re(a2).
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Remark 9. The formula of the previous proposition is still valid when x = 0 is replaced by any
real point x where f(x) 6= 0.

Given a nonconstant function f ∈ SR(Ω), let Tf : Ω \ V (N(f)) → Ω \ V (N(f)) be the
diffeomorphism defined by Tf (x) = f c(x)−1xf c(x) (see e.g. [4, Proposition 5.32]). Note that Tf

and its inverse Tfc map any sphere Sx onto itself. Let Sf : Ω\V (N(f)) → H be the map defined
by

Sf (x) =

{
f ′
s(x)f(x)

−1xf(x)f ′
s(x)

−1 if x 6∈ Df ,

x if x ∈ Df .

Observe that if f is slice-preserving, then Sf (x) = x for every x.

Proposition 10. Let f ∈ SR(Ω) be nonconstant. The map Sf is a diffeomorphism of the open
set Ω \ (V (N(f)) ∪Df ).

Proof. Let x ∈ Ω \ (V (N(f)) ∪ Df ) and y = Sf (x). Since y ∈ Sx, we have f ′
s(y) = f ′

s(x) and
then

f ′
s(y)

−1yf ′
s(y) = f(x)−1xf(x).

Since

f(x)x f(x)
−1

= n(f(x))f(x)−1x
f(x)

n(f(x))
= Tfc(x),

it holds Tfc(x) = f ′
s(y)

−1yf ′
s(y). Therefore x = Tf

(
f ′
s(y)

−1yf ′
s(y)

)
and the map y 7→ Tf

(
f ′
s(y)

−1yf ′
s(y)

)

is the inverse of Sf on Ω \ (V (N(f)) ∪Df ).

Let B(0, r) be an open ball with centre 0 and radius r with closure contained in Ω and let
f ∈ SR(Ω) be nonconstant. Assume that f 6= 0 on ∂B(0, r). Under this condition, the map
Sf applies ∂B(0, r) onto itself. From what recalled in §1.2, the zero set V (f) ∩ B(0, r) consists
of a finite number of isolated real points r1, . . . , rm, of isolated spheres Sx1

, . . . , Sxt
and isolated

nonreal points at+1, . . . , al. We choose one spherical zero ai in every sphere Sxi
, for i = 1, . . . , t.

We are now able to state the four-dimensional Jensen formula for slice-regular functions.

Theorem 11. Let Ω be an open circular domain in H. Let Br = B(0, r) be an open ball whose
closure is contained in Ω. If f : Ω → H is slice-regular and not constant, f(0) 6= 0 and f 6= 0 on
∂Br, then it holds:

log |f(0)|+
r2

4
Re

((
f(0)−1 ∂f

∂x
(0)

)2
)

−
r2

4
Re

(
f(0)−1 ∂

2f

∂x2
(0)

)
=

=
1

2|∂Br|

∫

∂Br

log |f(x)|dσ(x) +
1

2|∂Br|

∫

∂Br

log |f ◦ Sf (x)|dσ(x)

−
m∑

k=1

(
log

r

rk
+

r4k − r4

4 r2r2k

)
−

l∑

i=1

(
2 log

r

|ai|
+

|ai|
4 − r4

4 r2|ai|4
(
t(ai)

2 − 2|ai|
2
))

where the first sum ranges over the real zeros r1, . . . , rm of f in Br and the second one over the
non-real zeros a1, . . . , al of f in Br, repeated according to their total multiplicities.

Proof. Let x = α+Jβ ∈ ∂Br \Df and let z = α+ıβ. Since f(x) 6= 0, N(f)(x) = f(x)f c(Tfc(x)).
Moreover, if f = I(F ) = I(F1 + ıF2) and J ′ = f(x)−1Jf(x), then Tfc(x) = f(x)−1xf(x) =
α+ J ′β and

f c(Tfc(x)) = F1(z) + J ′F2(z) = F1(z)− F2(z)J ′ = F1(z) +KF2(z),

7



where K = −F2(z)J
′F2(z)

−1 = −f ′
s(x)J

′f ′
s(x)

−1 ∈ S. Therefore f c(Tfc(x)) = f(Sf(x)) and
then

log |N(f)(x)| = log |f(x)|+ log |f(Sf(x))| on ∂Br \Df .

On the other hand, if x ∈ ∂Br ∩Df then N(f)(x) = f(x)f c(x) = f(x)f(x) and |f(x)| = |f(x)| =
|f(x̄)|. Therefore

log |N(f)(x)| = log |f(x)| + log |f(Sf(x))| on ∂Br. (7)

The Jensen formula for f follows now from the formula proved in [1, Theorem 3.3] applied to
the slice-preserving regular function N(f), using equation (7), the formula N(f)(0) = |f(0)|2,
Proposition 8 and the fact that the total multiplicities of zeros of f are one half the total
multiplicities of them as zeros of N(f).

Remark 12. If f has no zeros in Br, the previous Jensen formula is a consequence of the mean
value formula for biharmonic functions applied to log |N(f)|. In this case the last two sums in
the formula are missing.

The Jensen formula can be extended to semiregular functions, the analogues of meromorphic
functions in the quaternionic setting (see [4, §5] and [9] for definitions and properties of these
functions). In the slice-preserving case, Jensen formula formula for semiregular functions was
proved in [1].

Let Ω be an open circular domain in H and let Br = B(0, r) be an open ball whose closure
is contained in Ω. Let f : Ω → H be semiregular. We denote by r1, . . . rm the real zeros of f in
Br, by a1, . . . , al the non-real zeros of f in Br (as above, in case of spherical zeros we choose one
spherical zero in every sphere), repeated according to their total multiplicities.

The poles of f can be real or spherical. In the latter case, if Sx is a spherical pole, the order
ordf (y) of the points y ∈ Sy are all equal, except possibly for one point of lesser order (see [4,
Theorem 5.28] and [9, Theorem 9.4]). We denote by p1, . . . , pn the real poles of f in Br, repeated
according to their order. Let Sy1

, . . . , Syp
be the spherical poles of f in Br of the first type, having

the property that all points in Syi
have the same order. Let Sz1 , . . . , Szq be the spherical poles of f

in Br of the second type, with the points zj ∈ Szj chosen such that ordf (zj) < maxz∈Szj
ordf (z).

Let if (zj) > 0 denote the isolated multiplicity of f at zj for j = 1, . . . , q, as in [11, Definition
3.12]. Set

s1 =
1

2

p∑

i=1

ordf (Syi
), s2 =

1

2

q∑

j=1

ordf (Szj ), s = s1 + s2,

where ordf (Sx) is the spherical order of f at Sx (which is two times the maximal order of the
points of the sphere [9, Theorem 9.4]). It holds if (zj) ≥ 1

2 ordf (Szj ) − ordf (zj) > 0 for every
j = 1, . . . , q ([4, Proposition 5.31]).

Choose points b1, . . . , bs1 ∈ ∪p
i=1Syi

and bs1+1, . . . , bs ∈ ∪q
j=1Szj (one point in each sphere,

repeated according to one-half the spherical order of the pole). Let al+1, . . . , al+q′ denote the
points z1, . . . , zq, repeated according to their isolated multiplicities (q′ =

∑q
j=1 if (zj)).

With these notations, we can state the Jensen formula for semiregular functions.

Theorem 13. Let Ω be an open circular domain in H and let Br = B(0, r) be an open ball whose
closure is contained in Ω. Let f : Ω → H be semiregular and not constant. Assume that 0 is not
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a pole nor a zero of f and ∂Br does not contain zeros or poles of f . Then it holds:

log |f(0)|+
r2

4
Re

((
f(0)−1∂f

∂x
(0)

)2
)

−
r2

4
Re

(
f(0)−1 ∂

2f

∂x2
(0)

)
=

=
1

2|∂Br|

∫

∂Br

log |f(x)|dσ(x) +
1

2|∂Br|

∫

∂Br

log |f ◦ Sf (x)|dσ(x)

−

m∑

k=1

(
log

r

rk
+

r4k − r4

4 r2r2k

)
−

l+q′∑

i=1

(
2 log

r

|ai|
+

|ai|
4 − r4

4 r2|ai|4
(
t(ai)

2 − 2|ai|
2
))

+
n∑

k=1

(
log

r

pk
+

p4k − r4

4 r2p2k

)
+

s∑

i=1

(
2 log

r

|bi|
+

|bi|
4 − r4

4 r2|bi|4
(
t(bi)

2 − 2|bi|
2
))

.

Proof. The proof is based on the fact that one can find a slice-preserving regular function g on
an open neighbourhood Ω′ of Br such that gf has a slice-regular extension h on Ω′. For every
real pole pk ∈ Br , let

g
(1)
k (x) = −(x− r2p−1

k )−1(x− pk)rp
−1
k

and for every spherical pole bi, let

g
(2)
i (x) = ∆r2b−1

i
(x)−1∆bi(x)r

2|bi|
−2.

Observe that g
(1)
k is the reciprocal of the slice-preserving quaternionic r-Blaschke factor Bpk,r and

g
(2)
i (x) is the reciprocal of the normal function N(Bbi,r) (see e.g. [1] for definition and properties
of quaternionic r-Blaschke factors Ba,r). We can set

g = g
(1)
1 · · · g(1)n g

(2)
1 · · · g(2)s .

Then g is a slice-preserving regular function on a neighbourhood Ω′ of Br, such that |g| = 1 on
∂Br, having zero set V (g) = {p1, . . . , pn} ∪ {Sb1 , . . . , Sbs} (with multiplicities equal to the orders
of the poles for f). We can assume that all the zeros and poles of f stay in Ω′. Then gf extends
regularly to a function h ∈ SR(Ω′).

If the order of f is constant on every spherical pole (q = q′ = 0), then V (h)∩Br = V (f)∩Br

with equal total multiplicities. The Jensen formula for f now follows from the formula for h,
using the following facts:

1. |h(0)| = |f(0)||g(0)| = |f(0)|
∏n

k=1
|pk|
r

∏s
i=1

|bi|
2

r2 .

2. On ∂Br, since |g| = 1 and g is slice-preserving, it holds |h| = |f | and log |N(h)| = 2 log |g|+
log |N(f)| = log |N(f)|.

3. From [1, Lemma 3.1] (or from Proposition 8), it follows that

∆4 log |N(h)|x=0 = ∆4 log |N(f)|x=0 +∆4 log |N(g)|x=0 =

= ∆4 log |N(f)|x=0 − 2

n∑

k=1

p4k − r4

r4p2k
− 2

s∑

i=1

|bi|
4 − r4

r4|bi|4
(
t(bi)

2 − 2|bi|
2
)
.

If the order of f varies on some spherical pole Sbj , then V (h) vanishes also at the points
z1, . . . , zq, with total multiplicities equal to the isolated multiplicities if (zj). The Jensen formula
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for f follows from the formula for h, using properties 1, 2, 3 above and the equality

q∑

j=1

(
2 log

r

|zj |
+

|zj |
4 − r4

4 r2|zj|4
(
t(zj)

2 − 2|zj |
2
))

if (zj)

=

l+q′∑

i=l+1

(
2 log

r

|ai|
+

|ai|
4 − r4

4 r2|ai|4
(
t(ai)

2 − 2|ai|
2
))

.

Remark 14. An example of semiregular function that has a spherical pole where the order
is not constant, is given by f(x) = (x2 + 1)−1(x + i). It has no zeros and one spherical pole
at S = Si, whose points have all order 1, except for x = −i, that has order 0 and isolated
multiplicity 1. One obtains the Jensen formula for f on Br (r > 1) by multiplying f on the left
by the slice-preserving function

g = g
(2)
1 = r2(x2 + r4)−1(x2 + 1).

and applying Theorem 11 to the product h = gf = r2(x2 + r4)−1(x + i), which is slice-regular
on H \ Sr2i, a neighbourhood of Br. This example shows that the contribution to the formula of
spherical poles with nonconstant order can cancel out. This happens when if (zj) =

1
2 ordf (Szj )

for every j = 1, . . . , q.
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