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The concept of Turing instability, namely that diffusion can destabilize the homogenous steady state, is
well known either in the context of partial differential equations (PDEs) or in networks of dynamical
systems. Recently, reaction–diffusion equations with non-linear cross-diffusion terms have been investi-
gated, showing an analogous effect called cross-diffusion induced instability. In this article, we consider
non-linear cross-diffusion effects on networks of dynamical systems, showing that also in this framework
the spectrum of the graph Laplacian determines the instability appearance, as well as the spectrum of the
Laplace operator in reaction–diffusion equations. We extend to network dynamics a particular network
model for competing species, coming from the PDEs context, for which the non-linear cross-diffusion
terms have been justified, e.g. via a fast-reaction limit. In particular, the influence of different topology
structures on the cross-diffusion induced instability is highlighted, considering regular rings and lattices,
and also small-world, Erdős–Réyni, and Barabási–Albert networks.
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1. Introduction

A large number of real-life phenomena, for example in chemistry, ecology and biology, give rise to a rich
variety of complex behaviours, including pattern formation. The spirals that originate from chemical
reactions, fish skin and animal coat patterning, and spatial vegetation patterns result from a sponta-
neous drive for self-organization into regular structures, both in time and space. Mathematical principles
that can drive the process of pattern formation have been established by Alan Turing in 1952. In his
seminal article on the theory of morphogenesis [1], he discovered that patterns can arise as a result
of the dynamical interplay between reaction and diffusion. This theory, known as Turing instability,
provides a general and elegant explanation for the variety of patterns appearing in living systems: diffu-
sion perturbs and destabilizes a homogeneous stable equilibrium, yielding to spatially inhomogeneous
steady states.

On the other hand, Turing instability can also occur in networks of dynamical systems. In the seminal
article by Othmer and Scriven [2], a general mathematical framework for the analysis of instabilities in
networks has been proposed and applied to regular lattices or small networks. Later, it has been further
explored and extended to more complex networks [3, 4], and even later to multiplex [5–7], time-varying
[8] and stochastic [9] networks. Recently, Turing bifurcations have been investigated on one-dimensional
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2 C. KUEHN AND C. SORESINA

random ring networks where the probability of a connection between two nodes depends on the distance
between them by using graphons [10]. The surprising finding is that the conditions leading to Turing
instability are the same for both, the reaction–diffusion and the network systems, but while in the contin-
uum case, we look at the eigenvalues of the Laplace operator, in the network case we need the spectrum
of the graph Laplacian.

The graph Laplacian of an undirected network with N nodes is a real, symmetric and positive semi-
definite matrix, whose elements are given by

lij = kiδij − aij, i, j = 1, . . . ,N, (1.1)

where aij are the elements of the adjacency matrix and ki is the degree of the node i, defined as

ki =
N∑

i=1

aij, i = 1, . . . ,N, aij =
{
1, i ↔ j,

0 i � j,
i, j = 1, . . . ,N.

In many areas and applications, it turns out that the eigenvalues of the graph Laplacian are useful tools,
and for this reason, they have been intensively studied [11–16]. The eigenvalues �α and eigenvectors
v(α) = (v(α)

1 , . . . , v(α)

N )� of the graph Laplacian L are determined by

N∑
j=1

lijv
(α)

j = �αv(α)

i , i, α = 1, . . . ,N.

For an undirected network, eigenvalues are real and non-negative. It can be easily proven that 0 is an
eigenvalue, 0 = λ1 ≤ λ2 ≤ · · · ≤ λN ≤ N, and that λ2 > 0 if the network is connected. In particular, the
eigenvalue λ2 is often called algebraic connectivity, and it holds that

λ2 ≤ 2|E|
N − 1

,

where |E| is the number of edges, and 2|E| can be obtained by summing the diagonal elements of the
graph Laplacian. Properties of the spectrum have been investigated for particular network structures [17]
including random graphs with given expected degrees [18] or more general random graphs [19]. More-
over, the spectrum of the graph Laplacian, as a quantity that encodes the topological structure of the
underlying graph, also influences the dynamical properties, such as the stability of the synchronous state,
which has been investigated for quite some time [20, 21] and has more recently been referred to as master
stability function approach [22–25].

The diffusion on the network given by the graph Laplacian only is a linear diffusion and considers
pairwise interactions. More recently, non-linear diffusion (also called non-linear coupling or, in ecology,
non-linear dispersal), and higher-order interactions on networks have been proposed and investigated,
see for instance [26–29].

It is widely accepted that the Turing instability is induced by diffusion and requires an activator–
inhibitor scheme of interaction between agents [30]. However, in the context of continuous space
reaction–diffusion systems a cross-diffusion model has been proposed (and later justified, e.g. via a
fast-reaction limit) to describe the spatial segregation of the species [31]. In this model, also known as
Shigesada–Kawasaki–Teramoto (SKT) system, the reaction part does not generate an activator–inhibitor
mechanism, but spatial patterns may arise thanks to cross-diffusion terms. These terms model those

D
ow

nloaded from
 https://academ

ic.oup.com
/com

net/article/12/2/cnad052/7616730 by U
niversita degli Studi di Trento user on 04 M

arch 2024



CROSS-DIFFUSION INDUCED INSTABILITY ON NETWORKS 3

situations in which the movements of individuals of a species depend not only on the species itself but
also on the presence of other species. This mechanism can also be observed in other contexts: for instance
in the presence of chemotaxis, or also in epidemiology, where the movements of susceptible individu-
als are clearly influenced by the presence of infected ones [32]. Then, cross-diffusion can destabilize a
homogeneous equilibrium and induce pattern formation, even when it is not possible via standard diffu-
sion terms; this phenomenon is known as cross-diffusion-induced instability. Reaction–cross-diffusion
models have been extensively studied from different points of view and related to several applications
(see [33–40] and references therein).

Knowing all these ingredients, we are interested in the extension and the study of non-linear cross-
diffusion and cross-diffusion-induced instability on complex networks. In addition to the natural pairing
between continuous and discrete space models, this extension has been naively inspired by the discretiza-
tion of reaction–cross-diffusion equations using finite differences [41]. In fact, the (regular) mesh can be
viewed as a regular lattice. Moreover, a natural question at this point is when/if the discretized systems
show the same patterns as the continuous model (depending on the number of mesh points).

The theory of pattern formation on networks has been developed for several network structures and
dynamical rules, and several works have also investigated cross-diffusion terms (or coupling) [42–44],
where, however, the cross-diffusion terms considered are relatively simple (linear). We show that the
theory of pattern formation on networks still holds considering general non-linear cross-diffusion terms
(written in terms of the graph Laplacian). Also in this case, the conditions for cross-diffusion-driven
instability are the same for the network and the continuous space case, where the eigenvalues of the
graph Laplacian play the role of the eigenvalue of the Laplace operator. Then, we propose and investigate
the SKT cross-diffusion model for competing species on a network. The model generalizes the model
investigated in [45] including only standard diffusive coupling, which is known to have no heterogeneous
(positive) steady states in the weak competition regime. As in the continuous setting, cross-diffusion is
the key ingredient in producing stable patterns, i.e. non-homogeneous (on the nodes of the network)
steady-state solutions. Our attention is however focused on the network structures (from regular rings,
two-dimensional-lattices to different complex/random graphs) in order to show, how they influence the
possible dynamics of the system. In particular, we look at the spectrum of the graph Laplacian (or its
distribution for random graphs). The aim of this work is mainly to point out that non-linear cross-diffusion
terms can be useful ingredients in the study of complex systems, and that they can give rise to very rich
dynamics depending crucially on the network topology.

The article is organized as follows. In Section 2, we establish the general framework for cross-
diffusion systems on networks, and we extend the Turing instability analysis to cross-diffusion-induced
instability. In Section 3, we propose a cross-diffusion model for competing species, inspired by the dis-
cretization of the SKT model on a one-dimensional domain. This model is analysed on different network
structures, from regular rings and lattices, to more complex networks. The non-homogeneous steady
states are studied, and the distributions of the eigenvalues for different network structures are presented.
The focus of this section is to understand if particular structures are more favourable to leading to cross-
diffusion-induced instability. Finally, in Section 4 some concluding remarks can be found. The formal
fast-reaction limit leading to the non-linear cross-diffusion terms in the SKT model on networks is
presented in Appendix A. The Python scripts for the simulations are freely accessible in the GitHub
folder [46].

2. The general framework

In this section, we extend the Turing instability analysis on networks to cross-diffusion systems. This
type of system can model complex natural phenomena in which non-trivial and non-linear effects also
affect the diffusion of the involved quantities. For instance, in ecology, competition of species can cause
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4 C. KUEHN AND C. SORESINA

migrations as a prey species tries to avoid predators, while in epidemiology susceptible individuals may
try to avoid infected ones.

We consider an undirected network of N nodes. The network topology is encoded in the graph Lapla-
cian L ∈ R

N×N . On each node, we consider two state variables (φi,ψi) = (φi(t),ψi(t)), evolving over
time. The dynamics on each node is influenced by different components:

- the single node dynamics, described by the functions f , g,

- standard coupling (random movements), expressed as a diffusive flux of a species to other nodes in
terms of potential difference. The coupling parameters, also called diffusion coefficients, are denoted
by Di, i = 1, 2.

- non-linear cross-diffusion effects, modelling the influence on the coupling of one state variable due
to the other one. For instance, in ecology, the presence of a species may increase the diffusion of
others. The cross-diffusion coefficients are denoted by Dij, i, j = 1, 2, while non-constant functions
ci, i = 1, 2 describe the type of interaction.

- self-diffusion effects, due to the presence of the same state variable. The self-diffusion coefficients
are denoted by Dii, i = 1, 2, while non-constant functions si, i = 1, 2 describe the type of interaction.

All the considered functions are supposed to be regular enough (at least sufficiently smooth). Then, the
network dynamics can be modelled by

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

φ̇i = f (φi,ψi) − D1

N∑
j=1

lijφj − D11

N∑
j=1

lijs1(φj)φj − D12

N∑
j=1

lijc1(ψj)φj,

ψ̇i = g(φi,ψi) − D2

N∑
j=1

lijψj − D22

N∑
j=1

lijs2(ψj)ψj − D21

N∑
j=1

lijc2(φj)ψj,

i = 1, . . . ,N,

(2.1)

where the overdot denotes time differentiation, and lij are the elements of the graph Laplacian L as defined
in equation (1.1) and they appear in the diffusion terms (standard, cross- and self-diffusion) since they
encode the network structure.

As usual in Turing instability analysis, we consider a stable steady state for the single node dynamics
(φ∗,ψ∗), such that

f (φ∗,ψ∗) = g(φ∗,ψ∗) = 0, tr(J∗) < 0, det(J∗) > 0,

where the matrix J∗ is the Jacobian of the single node dynamics evaluated at the homogeneous steady
state

J∗ =
(

fφ(φ∗,ψ∗) fψ(φ∗,ψ∗)
gφ(φ∗,ψ∗) gψ(φ∗,ψ∗)

)
.

It turns out that the state (φ∗,ψ∗), where

φi = φ∗, ψi = ψ∗, i = 1, . . . ,N, (2.2)
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CROSS-DIFFUSION INDUCED INSTABILITY ON NETWORKS 5

is a homogeneous (on the nodes of the network) steady state for the network. Cross-diffusion induced
instability arises when (φ∗,ψ∗) becomes unstable to inhomogeneous perturbations thanks to cross-
diffusion terms.

We now want to find conditions for the destabilization of the homogeneous steady-state.

Proposition 2.1 Consider system (2.1) and the homogeneous steady state (φ∗,ψ∗) defined in (2.2).
Consider the characteristic matrix associated to the eigenvalues �α of the graph Laplacian

M∗
α = J∗ − �αD∗, α = 1, . . . ,N

where the matrix J∗ is Jacobian of the single node dynamics evaluated at the steady state and the matrix
D∗ is the linearization of the diffusion part evaluated at the steady state, given by

D∗ =
(

D1 + D11

(
s1(φ∗) + s′

1(φ∗)φ∗
) + D12c1(ψ∗) D12c′

1(ψ∗)φ∗
D21c′

2(φ∗)ψ∗ D2 + D22

(
s2(ψ∗) + s′

2(ψ∗)ψ∗
) + D21c2(φ∗)

)
.

Then, in order to destabilize the homogeneous steady state, the characteristic matrix M∗
α must have a

positive eigenvalue for at least one α corresponding to one eigenvalue �α of the graph Laplacian.

Proof. The linear stability analysis is effectively a suitable combination of the standard cases on networks
and in continuous media. We introduce small perturbations δφi, δψi to the homogeneous state as

(φi,ψi) = (φ∗,ψ∗) + (δφi, δψi), i = 1, . . . ,N,

and substitute this into equation (2.1). Linearized differential equations for δφi, δψi are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙δφi = fφ(φ∗,ψ∗)δφi + fψ(φ∗,ψ∗)δψi − D1

N∑
j=1

lijδφj

−D11

N∑
j=1

lij

(
s1(φ∗) + s′

1(φ∗)φ∗
)
δφj − D12

N∑
j=1

lij

(
c1(ψ∗)δφj + c′

1(ψ∗)φ∗δψj

)
,

˙δψ i = gφ(φ∗,ψ∗)δφi + gψ(φ∗,ψ∗)δψi − D2

N∑
j=1

lijδψj

−D22

N∑
j=1

lij

(
s2(ψ∗) + s′

2(ψ∗)ψ∗
)
δψj − D21

N∑
j=1

lij

(
c′
2(φ∗)ψ∗δφj + c2(φ∗)δψj

)
,

i = 1, . . . ,N,

and they can be written as

( ˙δφi˙δψ i

)
= J∗

(
δφi

δψi

)
− D∗

N∑
j=1

lij

(
δφj

δψj

)
, i = 1, . . . ,N. (2.3)
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6 C. KUEHN AND C. SORESINA

We consider the spectrum of the graph Laplacian

N∑
j=1

lijv
(α)

j = �αv(α)

i , i,α = 1, . . . ,N,

where�α and v(α) represent the eigenvalues and their associated eigenvectors, respectively. By expanding
the perturbations δφi, δψi over the set of Laplacian eigenvectors v(α)

i as

δφi(t) =
N∑

α=1

γαe
λα tv(α)

i , δψi(t) =
N∑

α=1

βαe
λα tv(α)

i , i, α = 1, . . . ,N.

where the constants γα and βα refer to the initial conditions, system (2.3) is transformed into N inde-
pendent linear equations for different normal modes, resulting in the following eigenvalue equation for
each α:

λα

(
γα

βα

)
= (J∗ − �αD∗)

(
γα

βα

)
= M∗

α

(
γα

βα

)
, α = 1, . . . ,N,

where the matrix

M∗
α = J∗ − �αD∗, α = 1, . . . ,N

is the characteristic matrix associated to the eigenvalues �α of the graph Laplacian. Then, in order to
destabilize the homogeneous steady state, the characteristic matrix M∗

α must have a positive eigenvalue
for at least one α corresponding to one eigenvalue �α of the graph Laplacian, since the mode associ-
ated to this eigenvalue is then unstable. Note that the eigenvalues of the graph Laplacian appear only in
combination with diffusion coefficients. �

Remark. Since the eigenvalues of the graph Laplacian are non-negative, the expression of the character-
istic matrixM∗

α turns out to be the same as in the PDEs setting, and the eigenvalues of the graph Laplacian
play the role of the eigenvalues of the Laplace operator. Then, the conditions on the parameters leading
to the instability of the homogeneous steady state are the same.

In summary, the Turing instability analysis in the continuous setting and on discrete models can
be adapted to cross-diffusion systems on networks. Note that depending on the single node dynamics,
it is not always possible to destabilize the homogeneous equilibrium by means of standard diffusion
terms only (in particular when the single node dynamics does not have the activator–inhibitor structure).
Cross-diffusion induced instability appears when the homogeneous steady state becomes unstable to
inhomogeneous perturbations, due to the additional presence of cross-diffusion terms.

Remark. When �α = 0 the characteristic matrix (3.4) reduces to the Jacobian J∗ of the single node
dynamics evaluated at the coexistence steady state. Therefore, the zero-eigenvalue provides information
about the dynamics of an isolated node. The non-zero eigenvalues instead account for the more complex
behaviour of the network.
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CROSS-DIFFUSION INDUCED INSTABILITY ON NETWORKS 7

3. The SKT model on networks

The goal of this section is to show a particular case in which the non-linear cross-diffusion term desta-
bilizes the homogeneous equilibrium state leading to non-trivial steady states and to study the role and
the influence of the network topology on these states. To achieve this, we present here a cross-diffusion
model on networks for competing species, analogous to the SKT model presented in the framework of
PDEs (see [33, 37] and references therein).

We consider two species, u and v, competing for the same resource. A system of ODEs describes the
dynamics of an isolated node

⎧⎨
⎩

u̇ = f (u, v) = r1u − a1u2 − b1uv,

v̇ = g(u, v) = r2v − b2uv − a2v2,
(3.1)

where r1, r2 are the growth rates, a1, a2 the intra-specific competition rates and b1, b2 the inter-specific
competition rates. It is simple to show that the outcomes of (3.1) can be the total extinction, competitive
exclusion or the coexistence of the species, depending on the parameter values and on the initial con-
ditions. The system admits a coexistence equilibrium (u∗, v∗) which is stable in the weak competition
regime (a1a2 − b1b2 > 0) and unstable in the strong competition regime (a1a2 − b1b2 > 0), when it
exists.

We consider now a network of N nodes, its topology being fixed by the Laplacian matrix of the
graph L = (lij)i,j=1,...,N . On each node the population sizes are denoted with ui, vi, i = 1, . . . ,N and the
dynamics on each node in case of isolation (neglecting the diffusion process) is given by (3.1). When the
nodes are connected in a network, we consider diffusive movements of the individuals between linked
nodes modelled in the usual way

−
N∑

j=1

lijuj =
N∑

j=1

(uj − ui), i = 1, . . . ,N.

Then, we consider cross- and self-diffusion effects, which cause extra movements of individuals due to
intra- and inter-competition pressure. In particular, individuals living on a node leave to reach other nodes
because of the presence of individuals of the same species (self-diffusion) or of the competing species
(cross-diffusion).

In detail, they can be described by

−
N∑

j=1

liju
2
j , −

N∑
j=1

lijvjuj, i = 1, . . . ,N.

Remark. This particular form can be justified by a mechanistic derivation exploiting processes happen-
ing at different time scales, similar to the SKT model in the PDEs context. The formal derivation can be
found in the Appendix.
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8 C. KUEHN AND C. SORESINA

Then, the system of ODEs describing the dynamics of the network is given by⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

u̇i = f (ui, vi) − d1

N∑
j=1

lijuj − D11

N∑
j=1

liju
2
j − D12

N∑
j=1

lijvjuj,

v̇i = g(ui, vi) − d2

N∑
j=1

lijvj − D22

N∑
j=1

lijv
2
j − D21

N∑
j=1

lijujvj,

i = 1, . . . ,N

(3.2)

where di, Dij, i, j = 1, 2 are the coupling strengths (or diffusion coefficients).
In order to investigate cross-diffusion instability effects, it is sufficient to consider D11 = D22 = 0

and d1 = d2 = d (analogous to the PDEs case). This choice corresponds to the simpler cross-diffusion
system

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

u̇i = f (ui, vi) − d
N∑

j=1

lijuj − D12

N∑
j=1

lijvjuj,

v̇i = g(ui, vi) − d
N∑

j=1

lijvj − D21

N∑
j=1

lijujvj.

i = 1, . . . ,N.

(3.3)

Following [45], it can be proven that the solutions to (3.3) with non-negative initial conditions remain
non-negative all the time. Here, we use the notation x ≤ y with x, y ∈ R

N to indicate that xi ≤ yi ∀i ∈
{1, . . . , n}.

Theorem 3.1 If u, v : R+ → R
N satisfy (3.3) and u(0), v(0) ≥ 0, then u(t), v(t) ≥ 0 for all t > 0.

Proof. We must prove the fact that the set

S = {(u1, v1) ∈ R
N × R

N : u1 ≥ 0, v1 ≥ 0}
is a positively invariant region for system (3.3). The calculations follow the proof in [45] for the system
with only standard coupling. Due to cross-diffusion, we have extra terms, but it is easy to see that they
have the correct sign configuration. �

Remark. When only linear diffusion is considered, a priori bounds for the solutions can be obtained.
With cross-diffusion terms, we cannot obtain comparison results as in [45, Theorem 3.2].

3.1 Cross-diffusion induced instability in the SKT model on networks

We now want to find conditions for the destabilization of the homogeneous steady state.

Proposition 3.2 Consider system (3.3) with the single node dynamics given in equation (3.1) in the
weak competition regime (namely a1a2 − b1b2 > 0). Consider the quantities α and β defined as in [33]

α := (b2u∗ − a2v∗)v∗, β := (b1v∗ − a1u∗)u∗,
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CROSS-DIFFUSION INDUCED INSTABILITY ON NETWORKS 9

and parameter d as bifurcation parameter. Then,

• if D12α + D21β ≤ 0, then no bifurcation points can appear, independently of the network topology.

• if D12α + D21β > 0, a bifurcation point can appear depending on the eigenvalues of the Laplacian of
the graph. In detail, we obtain the following threshold

� > �∗ = det(J∗)
D12α + D21β

.

Proof. We proceed with the linearized analysis close to the homogeneous steady state in which ui =
u∗, vi = v∗, i = 1, . . . ,N in the weak-competition regime. Then, according to Section 2, the
characteristic matrix associated to an eigenvalue � of the graph Laplacian is

M� = J∗ − �D∗ =
(−a1u∗ −b1u∗

−b2v∗ −a2v∗

)
− �

(
d + D12v∗ D12u∗

D21v∗ d + D21u∗

)
. (3.4)

Since in the weak competition case tr(J∗) < 0 and det(J∗) > 0 and, remembering that the graph Laplacian
has non-negative eigenvalues, then the characteristic matrix has a negative trace and its determinant deter-
mines the stability/instability of the homogeneous steady state. Then, a cross-diffusion induced instability
may appear if its determinant becomes negative for at least one �, since the mode associated to this
eigenvalue is then unstable. Taking d as the bifurcation parameter, the determinant can be written as

det(M�) = A�d2 + B�d + C�, (3.5)

where the coefficients A�, B�, C� of the second-order polynomial in d are given by

A� = �2, B� = D12v∗�2 + D21u∗�2 − tr(J∗)�, C� = −(D12α + D21β)� + det(J∗).

In order to have a negative determinant, we need C� < 0. Note that there are two cases:

• if D12α + D21β ≤ 0, then C� < 0 independently on �. Therefore, no bifurcations can appear,
independently of the network topology.

• if D12α + D21β > 0, then C� can be negative for a sufficient large �. Therefore, bifurcations can
appear depending on� the eigenvalues of the Laplacian of the graph. In detail, the condition C� < 0
gives the following threshold

� > �∗ = det(J∗)
D12α + D21β

. �

Remark. This condition can be combined with other information on the spectrum of a particular graph
to prove the stability of the homogeneous state. Since �N ≤ N, the simplest observation is that if N <

�∗, then no cross-diffusion induced instability is possible. We can also obtain conditions regarding the
stability of a particular mode (eigenvalue). For instance, for a regular graph ofN nodes and degree 2K, we
know that the first non-trivial eigenvalue (also known as algebraic connectivity) satisfies�2 ≤ 2KN/(N−
1). If �∗ > 2KN/(N − 1), then the mode related to �2 is stable.
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10 C. KUEHN AND C. SORESINA

Remark. From equation (3.5), it is easy to see the cross-diffusion terms are the key ingredient to the
appearance of non-homogeneous steady states. In fact, if D12 = D21 = 0, then det(M�) > 0. This means
that, regardless of the network structure, standard diffusion terms cannot lead to Turing instability.

To characterize the instability region and the bifurcation points, we now look at the determinant of
the characteristic matrix as a second-order polynomial in �, namely

det(M�(�)) = Ad�
2 − Bd� + Cd,

where

Ad = d(d + D12v∗ + D21u∗), Bd = (D12α + D21β + d tr(J∗)), Cd = det J∗.

The instability region corresponds to the values of � for which det(M�) is negative. Since det(M�) is
a second-order polynomial in �, provided that its discriminant is positive, we can obtain an instability
region 
∗ = (�∗1,�∗2) for the eigenvalues of the graph Laplacian. In detail,

�∗1,∗2 = Bd ∓ √
B2

d − 4AdCd

2Ad
, provided that B2

d − 4AdCd > 0. (3.6)

3.2 Cross-diffusion induced instability and graph topology

This section is devoted to showing, how the obtained conditions and thresholds combine with the net-
work topology and what kind of non-homogeneous steady states arises thanks to cross-diffusion induced
instability. To this end, we use simple network topologies, in order to highlight the effect per see, but also
other different types of graphs, including random graphs such as small world and Erdős–Rényi networks.
The different network structures have been generated using the Python [47] package NetworkX [48]. The
same parameter set describes the dynamics, but different outcomes emerge as the result of the underlying
topology. As a key factor, the spectral properties of the graph Laplacian are compared.

The parameter values used in the simulations are

r1 = 5, r2 = 2, a1 = 3, a2 = 3, b1 = 1, b2 = 1, d = 0.03, d12 = 3, d21 = 0, (3.7)

and correspond to the weak competition case (a1a2 − b1b2 > 0), namely the homogeneous steady state
is stable for the single node dynamics. The remaining parameters related to the network structure will be
specified each time in the text.

Remark. In the simulations, we do not vary the linear diffusion parameter d. As in the PDEs case,
large values of d tend to stabilize the homogeneous state.

3.2.1 Regular ring lattice A 2K-regular ring lattice is a graph with N nodes in a ring structure in which
each node is connected to its 2K neighbours (K on either side) [49]. The associated graph Laplacian is a
matrix with three bands (in the centre and in the corners NE and SW), defined by

lij =

⎧⎪⎨
⎪⎩
2K, i = j,

−1, 0 < min{(i − j)mod N, (j − i)mod N} ≤ K,

0, otherwise.
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CROSS-DIFFUSION INDUCED INSTABILITY ON NETWORKS 11

(a)
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Fig. 1. Structure of a 2K-regular ring lattice and of its graph Laplacian. (a) Structure of the regular 2K-ring with N = 30, K = 8, in
which the 2K nearest neighbours (K on each side) of a particular node are highlighted in magenta. (b) Structure of the corresponding
graph Laplacian, where grey dots indicate non-zero elements. For interpretation of the color references, the reader is referred to
the web version of this article.

The structure of the network and of the graph Laplacian are shown in Fig. 1. The closed formula for the
eigenvalues is

�j = 2K −
K∑

k=1

2 cos

(
2πk(j − 1)

N

)
, j = 1, . . . ,N.

In Fig. 2, the spectrum of the graph Laplacian is reported for different values of N and K, in order
to study the possible appearance of patterns. The instability region 
∗ = (�∗1,�∗2), given in (3.6), is
marked with a red stripe. If at least one eigenvalue of the graph Laplacian is located in the instability
region 
∗, then the corresponding modes are destabilized, the trivial state becomes unstable and system
(3.3) admits a stable non-homogeneous steady state.

We can observe in Fig. 2a that the value of non-zero eigenvalues increases when K increases (and N
is fixed); for small values of K the spectrum lies below the threshold value �∗1 while increasing K we
pass from a situation in which part of the spectrum is located in the instability region to a situation in
which only the smallest non-zero eigenvalue is present. Finally, for K > 25 all the non-zero eigenvalues
are greater than the threshold value�∗2, namely no stable pattern can appear. On the contrary, increasing
N with a fixed K leads to smaller eigenvalues in the spectrum intersecting the instability region (Fig. 2b).
However, this will lead to different non-homogeneous solutions.

In Fig. 3, we show different stable steady states of the cross-diffusionmodel (3.3) for the ring structure
of N = 100 nodes and four different values of K, corresponding to different locations of the spectrum
with respect to the instability region (Fig. 2a). In particular, the dots mark the values of the variables ui or
vi at the stable configuration.WithK = 3, the stable configuration is not homogeneous (namely the nodes
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12 C. KUEHN AND C. SORESINA

(a) (b)

Fig. 2. Cross-diffusion driven instability on 2K-regular rings for different values of K and N = 100 (a) and different values of N
and K = 10 (b). Grey dots mark the eigenvalues of the Graph Laplacian, while green dots highlight the smallest and the largest
non-zero eigenvalues. Horizontal lines denote the values �∗1, �∗2 from equation (3.6) (red dotted) and �∗ (green solid), and
the instability region 
∗ = (�∗1,�∗2) is marked with the red stripe (values relevant to the parameter set in equation (3.7)). For
interpretation of the color references, the reader is referred to the web version of this article.

do not reach the steady state (u∗, v∗) but different values). With higher K different stable configurations
can appear, showing a pattern on the network.

3.2.2 Two-dimensional lattices We consider here three different two-dimensional grid graphs: triangu-
lar, square and hexagonal lattices, sketched in Fig. 4. Note that, except for ‘boundary nodes’, each node
in the lattice has the same degree: 6 in the triangular lattice, 4 in the square lattice and 3 in the hexagonal
lattice.

In Fig. 4, we show the location of the spectra of the three topologies (N = 110) with respect to the
instability region (obtained using the parameter set in equation (3.7)). Note that the value of the largest
eigenvalue does not change significantly increasing N, since the lattices are almost regular. It can be
observed that non-homogeneous steady states cannot appear on the hexagonal grid, while in the triangular
and square lattices, the homogeneous steady state is unstable. The steady patterns on a triangular and
square lattice with N = 400 nodes are shown in Fig. 5 with respect to the u variable. In this figure,
different colours denote different values of the state variable u and each node in the networks is coloured
accordingly to the final steady state. The parameter set is the same for both network structures but the
final steady states are different: on the square lattice (Fig. 4b) we clearly see an alternation of nodes with
higher population and nodes with lower population, contrary to what we observe on a triangular lattice
(Fig. 4a).

3.2.3 Random graphs We now turn our attention to several random graphs. Also in this case, we want
to study the influence of a particular structure on the emergence of stable patterns in the network. As in
the previous section, we look at the non-zero eigenvalues of the graph Laplacian. Of course, since we are
now dealing with random graphs, we consider the distribution of the eigenvalues (mean values and the
corresponding variance) obtained with several realizations of the same random graph.

We consider the following random graphs (briefly recalling the definition and some properties).
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CROSS-DIFFUSION INDUCED INSTABILITY ON NETWORKS 13

(a) (b)

(c) (d)

Fig. 3. Steady-state solution for different values of K on a 2K-regular ring of N = 100 nodes and parameter set as in equation (3.7).
Initial conditions are random perturbations of the homogeneous state. Identifying each node via its index i ∈ {1, 2, . . . ,N}, different
kinds of patterns appear.

- Regular-random graph
A random-regular graph is chosen uniformly from the set of all K-regular graphs with N nodes.

- small-world graph (Watts–Strogatz) [50] Starting with a regular ring of N nodes in which every node
has degree K, each of the edges, in turn, is rewired with some probability p, namely removed and
replaced with one that joins two nodes chosen uniformly at random. When p = 0, we still have
the initial K-regular ring, while with p = 1 we obtain a random graph. In the small-world region
corresponding to values 10−4 < p < 10−1, the resulting networks are characterized by a small
average path length and a large clustering coefficient.

- binomial graph (Erdős–Réyni) [51] Considering N nodes, each of the possible edges is chosen with
probability p.

- preferential attachment model (Barabási–Albert) [52] A graph of N nodes is grown by attaching new
nodes each with K edges that are preferentially attached to existing nodes with a high degree.
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14 C. KUEHN AND C. SORESINA

Fig. 4. Cross-diffusion driven instability on triangular (�), square (�) and hexagonal (�) lattices (with N = 110). Grey dots mark
the eigenvalues of the Graph Laplacian, while green dots highlight the smallest and the largest non-zero eigenvalues. Horizontal
lines denote the values�∗1, �∗2 from equation (3.6) (red dotted) and�∗ (green solid), and the instability region
∗ = (�∗1,�∗2)
is marked with the red stripe (values relevant to the parameter set in equation (3.7) and d = 0.03). For interpretation of the color
references, the reader is referred to the web version of this article.

We compare these different graph topologies and the appearance of cross-diffusion-induced insta-
bility. As in the previous sections, we are interested in the spectrum of the graph Laplacian. Since we
deal with particular classes of random graphs, general results cannot be achieved by just looking at a
particular realization. For each type of structure, we fix the number of nodes N = 100 varying the
other network parameters (the probability p for Watts–Strogatz and Erdős–Réyni graphs, the number of
edges of a node for random-regular and Barabási–Albert graphs). In Fig. 6, the location of the spectra of
these topologies with respect to the instability region (obtained using the parameter set in equation (3.7))
is shown. We generate 1000 realizations of each type of random graphs and each parameter value,
obtaining a distribution of the eigenvalues. Grey dots mark the mean of the eigenvalues of the Graph
Laplacian, while green dots and error bars highlight the mean and variance of the smallest and the largest
non-zero eigenvalues. As for the previous cases, horizontal lines denote the values �∗1, �∗2 from equa-
tion (3.6) (red dotted) and�∗ (green solid), and the instability region
∗ = (�∗1,�∗2) is marked with the
red stripe.

In a regular-random graph it can be seen that the cross-diffusion induced instability appears on aver-
age in the region when 2 ≤ K/2 ≤ 13 and N = 100, while greater values of the node-degree only lead
to a very small probability of instability and the homogeneous steady state is expected to be stable. In
a small-world network, with K/2 = 15 being fixed, we report in Fig. 6b the averages and variances of
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CROSS-DIFFUSION INDUCED INSTABILITY ON NETWORKS 15

(a) (b)

Fig. 5. Steady state (u variable) on a triangular and square lattices with N = 400 nodes. The parameter set is reported in equa-
tion (3.7) and setting d = 0.03. Initial conditions are random perturbations of the homogeneous state. Different colours denote
different values of the state variable u and each node in the networks is coloured accordingly to the final steady state. (a) Triangular
and (b) square. For interpretation of the color references, the reader is referred to the web version of this article.

the eigenvalues for different values of the probability p of rewiring an edge in a larger interval than the
small-world regime. It turns out that the systems show, with a probability well bounded away from zero,
non-homogeneous steady states for the considered values of p because at least one averaged eigenvalue is
always located well within the instability region. Depending on the number of eigenvalues in the instabil-
ity region, different types of stable patterns can be observed. For the Erdős–Rényi graph, cross-diffusion
induced instability is most likely to appear for small values of the probability p of choosing an edge,
while it is not likely to occur for larger values. In order to better compare this structure with the other
types, we consider p ≈ 4K/(N − 1), which for large N approximates the average number of links for
one node. With N = 100 and K = 30, we obtain p ≈ 0.3, for which the systems display cross-diffusion
induced instability with a probability well bounded away from zero. Finally, the Barabási–Albert graph
is quite different from the others. The spectrum has a large variance, and especially for large values of K
(that in this case represents the number of edges chosen for every new node in the growing process). We
observe that the possibility of pattern formation really depends much more on the particular realization
of the graph in comparison to the other graph structures.

A final observation has to be made on the non-homogeneous steady state that arises through cross-
diffusion induced instability. Its shape is still quite regular and ‘smooth’ as reported for regular rings in
the previous section, but small variations from this regular configuration appear (see Fig. 7). For the other
structures instead, the system tends to a stable non-homogeneous configuration that however does not
present the characteristic shape of valleys and bumps.

In addition to the phenomenological discussion, ecological back-interpretation is also important.
The first crucial observation is that cross-diffusion enables the coexistence of the species with a
non-homogeneous distribution. In fact, without cross-diffusion, the homogeneous distribution of the pop-
ulations (namely all nodes reach the same steady state) is the only outcome. This fact is indeed important
in ecology: homogeneity and synchronization of metacommunities may be harmful to species’ survival.
Cross-diffusion also affects the populations’ abundance as observed in the PDEs model. Looking at
the total abundance of the species on the network for the simulations presented in the articles and the
parameter set considered, we observe a small decrease in the total abundance of population u and an
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16 C. KUEHN AND C. SORESINA

(a) (b)

(c) (d)

Fig. 6. Comparison of different graph topologies and the appearance of cross-diffusion induced instability. Grey dots mark the
eigenvalues of the Graph Laplacian, while green dots and error bars highlight the mean and variance of the smallest and the largest
non-zero eigenvalues, obtained with 1000 realization of the random graphs. Horizontal lines denote the values �∗1, �∗2 from
equation (3.6) (red dotted) and �∗ (green solid), and the instability region 
∗ = (�∗1,�∗2) is marked with the red stripe (values
relevant to the parameter set in equation (3.7) and d = 0.03). For interpretation of the color references, the reader is referred to the
web version of this article.

increase in the total abundance of population v with respect to the homogeneous case (without cross-
diffusion). For instance, for the ring topology (N = 100, K = 10), parameter set as in equation (3.7) and
d = 0.03, species u decreases of 1.78% while species v increases of 12.3%. This quantitative difference
reflects the difference in the order of magnitude of the population sizes at the homogeneous steady state
(see for instance Fig. 3) and it is a limitation of the particular parameter set. However, the qualitative
trend highlights a counter-intuitive effect driven by cross-diffusion, namely that although species u tries
to avoid v, it is actually v that benefits from this. However, it is worthwhile to say that the total popu-
lation abundance is not the only factor measuring the advantages/disadvantages of the two competing
populations.

4. Conclusion and Outlook

In this article, we have investigated the cross-diffusion induced instability, already known in reaction–
cross-diffusion systems of PDEs, in networks of dynamical systems. The cross-diffusion terms are
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CROSS-DIFFUSION INDUCED INSTABILITY ON NETWORKS 17

(a) (b)

Fig. 7. Non-homogeneous steady state on a small-world network with N = 100 and K = 30 for different values of the probability
p. The parameter set is reported in equation (3.7) and d = 0.03. Initial conditions are random perturbations of the homogeneous
state.

non-linear and also written using the graph Laplacian, as the standard diffusive coupling. We established
the general framework, and we have shown that in this case the linearization slightly differs from the
standard case and the PDEs case. Then, we adapted and investigated the SKT cross-diffusion model for
competing species on a network. As already known in the context of reaction–cross-diffusion models,
the cross-diffusion terms can destabilize the homogeneous equilibrium state and cause the appearance
of organized states and patterns, which is not possible only with standard diffusion terms. The important
finding is that the obtained conditions for cross-diffusion induced instability in the network framework
are the same as the continuous case, where the role of the eigenvalues of the Laplace operator is played
by the eigenvalues of the graph Laplacian. Also in this case, an instability region, which depends on the
model parameter, characterizes the possibility of observing patterns, understood as non-homogeneous
states on the nodes of the network, and the location of the eigenvalues of the graph Laplacian determines
their presence and shape. Finally, we have analysed different network structures (such as regular rings,
two-dimensional lattices and different random graphs) in order to show how the network structure influ-
ences the possible outcomes of the system. In particular, we have looked at the spectrum of the graph
Laplacian (or its distribution for random graphs). We conclude that cross-diffusion induced instability
depends on the network structure: for instance, for the SKT network model in the weak competition case
it is more likely to appear on triangular lattices, and on small-world and Barabasi–Albert random graphs.

One key aim of this work is to point out that non-linear cross-diffusion terms can be a useful tool to
model complex systems, and that they can give rise to richer dynamics than with just standard diffusion
coupling. In particular, as in the PDEs setting, these non-linear cross-diffusion terms might be derived (at
least formally) by a fast-reaction limit. Several research directions arise at this point. On the one hand,
we can look at the dynamical and bifurcation aspects of this topic. As widely investigated for cross-
diffusion PDEs systems, we want to find an entropy functional or a Lyapunov function for networks
in order to achieve global stability results [53–55]. Furthermore, a deeper investigation of the system
outcomes combined with the bifurcation structure (that can be computed by the continuation software
pde2path [56]) may reveal the presence of periodic patterns, as in the PDEs case. On the other hand,
one could take an even more detailed look at the influence of the graph topology. In this regard, the
parallel between continuous and discrete models is intriguing. Inspired by the discretized version of
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18 C. KUEHN AND C. SORESINA

(a) (b)

Fig. 8. Different way to model the dynamics of two species on a network: the species evolve, compete and move (a) on the same
network or (b) on a multilayer network.

the PDEs model involving the Laplace operator, we considered in this article different graph topologies,
changing completely the corresponding operator in the continuous case. Therefore, it would be interesting
to understand the limit model back to the continuous case. Moreover, following [3], it seems possible to
extend the analysis to directed networks and, considering for instance the SKT model on networks, it can
also be possible to consider the dynamics of the two competing species evolving on different networks,
as sketched in Fig. 8. This would lead us to consider the dynamics on a multilayer network [6, 57, 58],
where the two layers can be different, for which the extension of the theory of Turing patterns has already
been presented in [5–7]. It could also be interesting to study other types of cross-diffusion terms involving
different nodes: for instance, in the SKT model, the movement of one species from node i to node j is
influenced by the presence of the same species or the competing one on node j. In this scenario, there
is an information flow or knowledge about the status of the other nodes, or it can be seen as a weighted
network with link weights depending on the quantities on each node. Finally, one could study possible
applications of cross-diffusion systems on networks, ranging from ecology and landscape modelling to
disease spreading [42, 59], that are characterized by a strong interplay between dynamics and network
structure.
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A. Derivation of the SKT model on networks

As for the SKT model in the PDEs setting, the particular expression of the cross-diffusion terms can be
justified (at least formally) also for the SKT model on networks exploiting different time scales.

To this end, we consider two possible states of the individual of the population u on each node,
namely quiet and scared individuals, denoted by uAi and uBi, i = 1, . . . ,N, respectively. Then, the total
population u on each node is given by ui = uAi + uBi, i = 1, . . . ,N. Moreover, we model the movements
from one node to the others using the standard diffusive coupling and assuming that scared individuals
have a larger diffusion coefficient than quiet individuals dA. The transition from the quiet to the scared
state and vice-versa depends on the competing species v and it happens on a faster time scale (denoted
by ε). The system of equations for the network dynamics is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u̇Ai = (r1 − a1ui − b1vi)uAi − dA

N∑
j=1

lijuAj + 1

ε

(
uBi

(
1 − vi

M

)
− uAi

vi

M

)
,

u̇Bi = (r1 − a1ui − b1vi)uBi − (dA + d̂M )

N∑
j=1

lijuBj − 1

ε

(
uBi

(
1− vi

M

)
− uAi

vi

M

)
,

v̇i = (r2 − b2ui − a2vi)vi − d
N∑

j=1

lijvj.

i = 1, . . . ,N,

(A.1)

where M ≥ r2/b2 is a constant needed to ensure that the transition rate from the scared to the excited
state is positive.

When the transition from one state to the other is much faster than the competition process, namely
ε → 0, we expect

uBi

(
1− vi

M

)
− uAi

vi

M
= 0 i = 1, . . . ,N.

Together with ui = uAi + uBi i = 1, . . . ,N, one can obtain uAi and uBi as function of ui and vi. Moreover,
by adding the equation for uAi and uBi allows us to reduce system (A.1) to a two-species system on
each node. The limiting system corresponds (at least formally) to system (3.3) with only the non-linear
cross-diffusion term in the equations for the state variables ui (namely D21 = 0).

Therefore, from the modelling perspective, the non-linear cross-diffusion term naturally incorporates
processes occurring at different time scales. In particular, the avoidance mechanism of species u versus
species v described by the dichotomy of quiet/excited is encapsulated in the cross-diffusion term.
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