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Abstract — Protection-oriented (P Class) Phasor 

Measurement Units (PMUs) are required to estimate the 

synchrophasor, the frequency and the Rate of Change of 

Frequency (ROCOF) of ac voltage or current waveforms with 

high accuracy and low latency to detect possible anomalous 

events in power systems promptly and effectively. The classic 

architecture of many commercial PMUs relies on the direct 

frequency Down-Conversion and Filtering (DCF) of the 

collected input waveform. However, the adopted low-pass filters 

are generally optimized for harmonic disturbance rejection, 

while no much attention is usually devoted to overshoot 

minimization, which is instead of crucial importance when 

sudden phase or amplitude steps occur. Recalling that in 

principle the Gaussian filters exhibit zero-overshoot in the case 

of step changes, in this paper two alternative Finite Impulse 

Response (FIR) approximations of the Gaussian filter (one 

based on the windowing method and the other on the cascaded 

boxcar filters, respectively) are proposed and compared. Several 

simulation results (obtained in the P Class testing conditions of 

the IEEE/IEC Standard 60255-118-1:2018) confirm that both 

filters provide better results than those obtained with the classic 

triangular impulse response filter suggested in the Annex D of 

the Standard. Also, the results in the case of step changes exhibit 

almost zero overshoot and the same response times. However, 

due to the different frequency response in the stopband, the 

Gaussian filter approximation based on the cascade of boxcar 

filters provide slightly more accurate results than in the case 

when the windowing method is used, even though the latter 

provides a better approximation of the Gaussian impulse 

response. 

Keywords—Phase Measurement Unit (PMU), Gaussian filter, 

Finite Impulse Response (FIR), boxcar filters, uncertainty. 

I. INTRODUCTION 

With the rapid diffusion of volatile renewable energy 
sources and distributed generation, the operating conditions of 
the power grids become more and more dynamic [1]. In this 
context, Power Measurement Units (PMUs) with high 
accuracy and low latency play a vital role in power systems 
monitoring and protection not only at the transmission level, 
but also at the distribution level [2, 3]. For this reason, a large 
diffusion of low-cost, high-accuracy PMUs is expected. 

The Protection-oriented (P Class) PMUs are required to 
estimate synchrophasor with high accuracy and low latency in 
order to detect possible anomalous operating conditions 
promptly and effectively. To this end, a variety of estimation 
techniques based on digital signal processing have been used 
over the last few years. The classic Discrete Fourier 
Transform (DFT) algorithm is one of the simplest and most 
common approaches, and it is frequently used in practice, due 
to its low computational complexity and its inherent capability 
to reject harmonics in coherent sampling conditions. To 

improve the performance of DFT-based algorithms under 
frequency deviations and under the effect of narrowband 
interferers, several variants of the Interpolated DFT (IpDFT) 
exist [4-8]. However, the IpDFT approach inherently relies on 
static signal model. Therefore, it is not very suitable to track 
amplitude and phase oscillations changing dynamically over 
time. In order to improve the estimation accuracy under 
dynamic conditions, a model based on the Taylor’s series 
expansion of the phasor was proposed in [9, 10]. The Taylor’s 
series coefficients and, consequently, the synchrophasor 
amplitude and phase are then estimated by finding the least-
squares solution of an overdetermined linear system, which 
relates the ideal signal model with the collected samples [11]. 
Following and extending the same approach, the so-called 
Taylor Fourier Transform (TFT) can estimate the dynamic 
phasor magnitude and phase of a given number of harmonics 
too. Further improvements can be obtained if the fundamental 
signal frequency is estimated a priori [12, 13]. Indeed, in this 
way the coefficients of the linear system used for Taylor’s 
series parameters estimation can be computed with better 
accuracy.  

Another well-known signal processing approach (which is 
also suggested in the Annex D of the IEEE/IEC Standard 
60255-118-1:2018 [14]) is the so-called direct Down-
Conversion and Filtering (DCF) method. This approach relies 
on the amplitude demodulation of the in-phase and quadrature 
components of the acquired digitized voltage and current 
signals followed by two Low-Pass Filters (LPFs) acting in 
parallel. The DCF method retains the amplitude and phase 
oscillations occurring in a given bandwidth, while removing 
the image of the fundamental as well as possible harmonics, 
interharmonics and part of the broadband noise floor. 
Therefore, the specifications of the LPFs and the related 
design procedure are of vital importance to ensure that the 
performance of the DCF method is compliant with the P Class 
or M Class requirements of the Standard. Generally, the Finite 
Impulse Response (FIR) filters are used to this purpose, partly 
because both their design is quite flexible and their phase 
response can be linear, so avoiding phase distortion. Thus, an 
FIR filter with a two-cycle-long triangular impulse response 
is reported, as an example, in the Annex D of the IEEE/IEC 
Standard for P class PMUs [15]. However, such a filter can 
provide a good harmonics rejection only when the 
fundamental frequency is very close to the nominal value (i.e., 
50/60 Hz), while the pass-band and stop-band specifications 
are not considered at all. In the presence of off-nominal 
frequency deviations, a high rejection of harmonics can be 
achieved by using adaptive filtering techniques [16]. A filter 
design mask for potential M Class filters is proposed in [17]. 
Some conservative LPF filter design criteria for PMUs are 
also described in [18]. The underlying idea of such criteria is 



to preserve the dynamic synchrophasor amplitude and/or 
phase oscillations, while removing multiple narrowband 
interferers effectively. However, to the best of Authors’ 
knowledge no deep research studies up to now have 
considered the problem of FIR filter design with the idea of 
mitigating the over- and undershoots, which instead may have 
a crucial impact in the most important scenario in which the P 
Class PMUs are supposed to be used, namely when sudden 
step-like changes occur [19]. To this regard, it is well known, 
that Gaussian filters exhibit no overshoot in the case of step-
like input changes. However, Gaussian filters cannot be 
exactly implemented with finite difference equations, i.e., 
using digital filter design techniques. For this reason, two 
alternative approximated Gaussian filters for DCF-based 
synchrophasor estimation are proposed and compared in this 
paper. The former one relies on the windowing method, while 
the latter one relies on the cascade of multiple boxcar filters.  

The rest of the paper is organized as follows. In Section II 
the general design criteria of the FIR approximated Gaussian 
filters are introduced. In Section III, the results of multiple 
simulation results in the P Class testing conditions specified 
in the IEEE/IEC Standard are reported and compared with the 
state of the art. Finally, Section IV concludes the paper.  

II. DCF METHOD BASED ON THE GAUSSIAN FILTER   

A. Synchrophasor estimation based on DCF 

The synchrophasor of an ac waveform at nominal 
frequency f0 is defined as a complex dynamic quantity, whose 
amplitude and phase angle at the UTC reference instants may 
change over time. The discrete-time signal acquired by the 
PMU with sampling rate fs=L∙f0 (where L is an integer number) 
can be modeled as: 

 ( ) ( ) ( ) ( ) ( )0cos 2
s

f
x n A n n n n n

f
π θ η ε

 
= + + + 

 
 (1) 

where  

 ( ) ( )2
s

f
n n n

f
θ π ϕ

∆
= + , (2) 

A(n) φ(n) and Δf represent the time-varying amplitude 
changes, the time-varying phase fluctuations and the 
frequency deviation of the fundamental component, 

respectively, while η(n) and ( )ε ⋅  represent the narrowband 

interferers (i.e., harmonics or interharmonics) and the 
wideband noise, respectively. Thus, the dynamic 
synchrophasor is defined as 
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The block diagram related to the DCF estimation 
technique is shown in Fig. 1. This is in line with the approach 
suggested also in the Annex D of the IEEE/IEC Standard [14], 
although with some slight differences. The basic DCF 
technique assumes that the sampling signal frequency is 
disciplined by the synchronization module and that the 
sequence of acquired samples is mixed with two quadrature 
digital sinewaves. Two cascaded identical LPFs in parallel 
are then used to extract the in-phase (I) and quadrature (Q) 
components of the input ac waveform. Theoretically, a 
perfect frequency down-shifting of the fundamental to 0 Hz 
is obtained if the frequency of the signal generated by the 
digital quadrature oscillator is extracted from the input signal 
itself. As a result, LPFs with a narrower passband and a more 
relaxed transition band can be used, as explained in [18]. 
Frequency estimation and sinewave synthesis can be done in 
variety of ways, most notably through a Phase-Locked Loop 
(PLL), which however may suffer from unpredictable 
oscillations and stability problems during transients, due to 
its inherent nonlinearity. For this reason, in this paper the 
same IpDFT estimator with the Hann window adopted in [18] 
is used. This estimator relies on the two largest spectral 
samples around the frequency bin of the fundamental 
component and it exploits the analytical expressions that hold 
in the Hann window case to estimate possible off-nominal 
frequency deviations and, accordingly, to update the actual 
frequency of the quadrature oscillator sample by sample. In 
the DCF approach, the LPFs outputs provide an estimate of 
the real and imaginary parts of the dynamic phasor (3). 
Therefore, they can be used to easily derive the phasor 

magnitude ( )Â n  and phase ( )ˆ nϕ . In accordance with the 

IEEE/IEC Standard, the fundamental frequency and its 
ROCOF can instead be tracked over time by using the 1st-
order and the 2nd-order Euler finite difference of the phase 
angles updated sample by sample, i.e.  
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However, when the output stream of synchrphasor data is 

decimated to be transferred to the Phasor Data Concentrator, 

it is recommended to average the values returned by (4) and 
(5) over subsequent, disjoint intervals of duration 1/RR (with 

RR being the Reporting Rate) to reduce the random noise 

variance. 

 
Fig. 1 - Block diagram of the DCF technique for synchrophasor, fundamental frequency and ROCOF estimation. 
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B. General design criteria of the Gassian filter  

As known, the LPFs used for synchrophasor estimation 
have to meet tight specifications to avoid that the spectral 
leakage and the limited attenuation of possible out-of-band 
interferers may excessively degrade synchrophasor estimation. 
To address such requirements, the problem of overshoot 
minimization during transients has been often overlooked in 
the literature. In the IEEE/IEC Standard the limits on 
overshoot are rather loose, i.e. 5% or 10% of step size for P 
Class and M Class PMUs, respectively. The overshoot size 
also typically affects the settling time and, indirectly, the 
response time. In principle, a Gaussian filter ensures zero 
overshoot with minimal rise and fall times when a step-like 
variation is considered. The impulse response and the Fourier 
Transform of an ideal Gaussian filter are  
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where t and f are the time variable (expressed in s) and the 
frequency variable (expressed in Hz), respectively. Assuming 
that the fundamental frequency is downshifted around 0 Hz, 
the LPF passband and stopband edges (denoted as fPB and fSB, 
respectively) should take the values reported in [18], i.e., 
fPB = 4.2 Hz and fSB = 48 Hz, respectively. This is essential to 
ensure a good tracking capability of amplitude and phase 
oscillations, while adequately rejecting the spectral leakage of 
the fundamental image component, the low-order harmonics 
and the wideband noise floor. However, the behavior of an 
ideal Gaussian filter depends on parameter σt only. Therefore, 
in the case at hand, the value of σt has to be set small enough 
to make the worst-case Total Vector Error (TVE) lower than 
the most conservative limit reported in the IEEE/IEC 
Standard, i.e. TVEmax = 1%. By replacing the analytical 
expression of the frequency response of the Gaussian filter in 
(6) into the upper bound expression for the TVE reported in 
[18], after a few algebraic steps it results easily that  
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where fh for h = 1, …, H-1 (with H ≤ 50) are the harmonic 
frequencies after mixing the input signal with the quadrature 
sinewaves, UH is the maximum allowed amplitude of all 
harmonics relative to the fundamental and SNR is the signal-
to-noise ratio computed by considering only the fraction of 
white noise power within the antialiasing filter bandwidth. 
Assuming f0=50 Hz, SNR=60 dB (in accordance with the 
experimental characterization reported in [20]), if the 
sampling frequency is in the order of a few kHz, it results from 
(7) that the lowest worst-case TVE value (quite smaller than 

1%) is achieved for σt ≈ 6 ms. 

The main drawback of Gaussian filters is that they are 
inherently non-causal and they cannot be exactly implemented 
using finite difference equations. Thus, only approximate 
solutions with a different level of accuracy can be used. In 
addition, the existing Infinite Impulse Response (IIR) 
approximations, although more accurate than the FIR ones for 
σt∙fs values greater than 3 [21], can hardly process streams of 
data in real-time. For this reason, in the following two 
alternative FIR-based approximate solutions are considered. 
The former one is obtained with the windowing method. The 

latter one results instead from the cascade of multiple boxcar 
filters. To make the maximum and mean square truncation 
errors between the impulse response of the ideal Gaussian 
filter and the approximated FIR solutions as small as possible, 
the FIR impulse response length should be N ≥ 6σt∙fs, i.e., long 

enough to represent the Gaussian bell shape within the ±3σt 
range. Of course, the value of N cannot grow unboundedly in 
order not to make the response time of the filter excessively 
long. Notice that in the continuous-time domain a duration of 
6σt corresponds to 36 ms, which is slightly less than 2 power 
line cycles at 50 Hz. This is the shortest possible duration of 
the impulse response of the digital FIR filter to keep the 
truncation error below an acceptable value. 

In the following subsections, first the design steps of two 
alternative FIR Gaussian filters are described; then a 
quantitative comparison between the time and frequency 
features of the ideal Gaussian filter and the FIR 
approximations is provided. 

C. FIR approximated Gaussian filter design based on the 

windowing method 

In general, the purpose of the windowing method is to 
choose a proper ideal frequency-selective filter (which always 
has a noncausal, infinite-duration impulse response) and then 
to window its ideal impulse response (properly shifting it in 
time) to obtain a linear-phase and causal FIR filter. In the case 
at hand, the impulse response of the FIR approximated 
Gaussian filter is  
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where w(n) is the chosen window function, gd( ) denotes the 
discrete-time impulse response of the Gaussian filter obtained 
by sampling (6), σ=σt∙fs and N, without loss of generality is 
assumed to be an odd number. As known, in general the 
window function should be chosen in such a way that the 
maximum stopband or passband approximation error of the 
ideal frequency response is below a given threshold. However, 
in this paper, we are not interested in the worst-case 
approximation errors of the ideal frequency response, but 
rather in the lowest possible worst-case TVE values based on 
(7). In particular, the Discrete-Time Fourier Transform 
(DTFT) of (8) using a Kaiser’s window of N ≥ 6σt∙fs =180 
samples (assuming that fs=5 kHz for the reasons explained in 
Section II.E) was computed and replaced to G(∙,∙) into (7). The 
value of the window parameter β (which defines the window 
shape and its spectral characteristics) was swept linearly 
within a reasonably broad range (i.e., from 0 to 5) to find 
heuristically the value that minimizes the worst-case TVE, 
assuming that H=50 (with the relative amplitude of all 
harmonics being UH=1%), SNR=60 dB, fPB = 4.2 Hz and 
TVEmax=1% in (7). Surprisingly, for short impulse responses 
(e.g., with length in the order of 2 power line cycles), the best 

results were obtained for β ≈ 0, i.e. when an almost rectangular 
window is used. This is due to the fact that the errors occurring 
in the transition band due to the wider spectral main-lobe of a 
Kaiser’s window with a larger β value tend to prevail over the 
benefits of decreasing the spectrum side-lobe magnitude and, 
consequently, over the residual interference of the harmonics 
at the output of the filter. 



D. FIR approximated Gaussian filter design based on 

cascaded boxcar filters 

Another way to implement an approximated FIR Gaussian 
filter is through the cascade of multiple boxcar filters [22]. A 
boxcar filter of length M is just a plain moving average filter 
whose impulse and frequency responses are given 
respectively by 
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where ω denotes the normalized angular frequency. If K is the 
number of cascaded boxcar filters, the overall impulse 
response hbK(n) is given by the convolution of K impulse 
responses defined as in (9). Thus, the total length of the FIR 
filter is N = KM – K + 1, and its frequency response is  

 ( ) ( ) ( )

( )
1 /2 sin / 2

sin / 2

K

j Nj

bK K K

M
H e e

M

ωω
ω

ω

− −
= . (11) 

If (9) is regarded as the Probability Density Function (PDF) 

of a uniform random variable, its standard deviation is 

( )2 1 /12M − . Due to the Central Limit Theorem (CLT), the 

PDF resulting from the convolution of K PDFs expressed as 

in (9) tends to exhibit a Gaussian shape with variance that 

grows by a factor K. Thus, hbK(n) tends to be Gaussian with 

standard deviation ( )2 1 /12K M − [22]. It is interesting to 

observe that the filter with a triangular impulse response 

mentioned in the Annex D of the IEEE/IEC Standard for P 

Class PMUs (which will be also considered for comparison 

in Section III) can indeed be regarded as a special case of a 

cascaded boxcar filter with K=2. However, better results can 
be achieved if the values of M and K are computed by solving 

the following optimization problem, i.e. 

 ( )2

,
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such that 1 ,O sKM K T f− + =  where TO is the wanted 

observation interval duration. Since variables K and M can 

just take integer values, the set of possible solutions includes 

a finite number of elements. Therefore, the best pair of (K, M) 

values can be found through exhaustive search, by replacing 

(11) to G(∙,∙) into (7), and by checking a posteriori if the 
constraint on TVEmax is still met in the very same conditions 

described in Section II.C. 

E. Filters characteristics comparison 

Assuming that the sampling frequency fs is set to 5 kHz 
(i.e., large enough to avoid aliasing due to harmonics if a 
suitable anti-aliasing filter is used), the length of the FIR filters 
for σt = 6 ms should be N ≥ 180, as shown in Section II.C. 
However, the best solution to the cascaded boxcar filters 
optimization problem assuming an overall impulse response 
of length of about 2 cycles was obtained for K=4 and M = 52. 
Therefore, to enable a fair comparison of the two alternative 
FIR approximate Gaussian filters considered in this paper, 

N = 205 coefficients (i.e., slightly more than 2 power line 
cycles) were used in both cases. 

The magnitude and impulse responses of the Gaussian 
filter of both FIR solutions as well as the absolute 
approximation errors in the time domain are shown in Fig. 
2(A)-(C), respectively. Fig. 2(A) shows that both filters 
approximate the Gaussian frequency response with high 
accuracy in the passband. The magnitude responses of both 
FIR filters in the stopband instead differ considerably from the 
ideal one. This behavior was expected and it is due partly to 
the presence of zeros in the FIR filters transfer functions and 
partly to the obvious impossibility to model an exponentially 
decreasing decay through polynomials. The boxcar filter 
decades slightly faster than the ideal Gaussian in the passband. 
In the stopband, the magnitude response of the cascaded 
boxcar filter exhibits deeper notches than in the case of the 
FIR filter designed with the windowing method, especially 
around 100 Hz. This indicates that the solution based on the 
cascaded boxcar filters provides a better suppression of the 
fundamental image component, which is notoriously quite 
critical when short observation intervals are considered [23].  

The impulse responses in Fig. 2(B) and above all the 
related time-domain absolute approximation errors plotted in 
Fig. 2(C) show that the windowing method provides a better 
approximation of the ideal Gaussian function than the chosen 
four-stage cascaded boxcar filter. Indeed, the Root Mean 
Square (RMS) errors are 4.3×10-5and 1.6×10-3, respectively. 

III. SIMULATIONS AND RESULTS 

To evaluate the estimation accuracy of the DCF estimator 
based on the FIR approximated Gaussian filters designed as 
described in Section II and to compare their performance with 
those obtained with the triangular impulse response filter 

 

 

 
Fig. 2. Magnitude responses (A), impulse responses (B) and impulse 

response absolute error (C) of the FIR approximated solutions 

implemented approximately over 2 nominal power line cycles with the 

windowing method and by cascading 4 boxcar filters.  



suggested in the Annex D of the IEEE/IEC Standard, multiple 
Monte Carlo simulations were performed in various P Class 
testing conditions specified in [14], i.e. 

• Case a: considering off-nominal frequency deviations 

ranging from -2 Hz to 2 Hz; 

• Case b: considering off-nominal frequency deviations 

ranging from -2 Hz to 2 Hz, and including one 
harmonic at a time from the 2nd up to the 50th one, with 

amplitude equal to 1% of the fundamental.  

• Case c: considering a sinusoidal Amplitude 

Modulation (AM) with modulation index equal to 0.1 

and modulating tone frequency up to 2 Hz. 

• Case d: considering a phase modulation (PM) with 

modulation index 0.1 rad and modulating tone 

frequency up to 2 Hz. 

• Case e: considering ±10% amplitude step changes. 

• Case f: considering ±π/18 phase step changes. 

In all the testing conditions listed above, 50 waveforms of 
at least 2 s each were generated. The initial phase of the 
fundamental component is increased linearly from 0 to 2π. 
The sampling frequency fs is set to be 5 kHz with the output 
results decimated cycle by cycle, assuming that the reporting 
rate is 50 frame/s. To make the simulation results more 
realistic, white Gaussian noise with zero mean and variance 
such that SNR=60 dB was added to all data records. The 
maximum Total Vector Errors (TVE), the absolute Frequency 
Errors (|FE|) and the absolute ROCOF Errors (|RFE|) obtained 
over repeated simulations in the testing conditions labeled as 
Case a to d are reported Table I, where they are also compared 
with the results obtained when the DCF technique is used with 
the P Class triangular impulse response filter mentioned in the 
Standard. The response time values in Cases e and f obtained 
using the same LPFs are instead reported in Table II. The 
IEEE/IEC Standard limits for a reporting rate of 50 frames/s 
are also shown for the sake of comparison.  

As shown in Table I, the accuracy of the DCF method with 
the two alternative FIR approximated Gaussian filters is 
generally better than in the case when the filter with the 
triangular impulse response is used. Also, the accuracy of both 
the approximated Gaussian filters is quite comparable in all 
testing conditions with a slight preference for the cascaded 
boxcar filter solution. The TVE limits are met in all cases. The 
FE and RFE values show that in some P Class testing 
conditions the DCF estimator is not able to meet the 
requirements of the IEEE/IEC Standard. However, this is not 
due to the designed filters, but rather to the Euler-based 
estimators used to compute the first and second derivative of 
the phase angle. Even if the one-cycle average inside the 
output decimator tends mitigate this problem, no criteria are 
currently applied to keep FE and RFE under control. In fact, 
further filter design criteria should be applied to this purpose. 
The response time obtained with both FIR filters in the case of 
amplitude or phase steps are almost the same. Also, they are 
lower than those achieved with the filter with a triangular 
impulse response and meet the limits specified in the 
IEEE/IEC Standard.  

To demonstrate the effectiveness of both design strategies 
to mitigate the overshoots, the estimated amplitude and phase 
values during two positive step changes in the Case e and f 
are shown in Fig. 3. The curves in Fig. 3 confirm that both 
FIR approximated Gaussian filter as well as the triangular 
filter ensure a negligible overshoot, as expected. The small 
fluctuations before and after the step change are mainly due to 
the infiltration of the image component of the fundamental, 
which cannot be filtered out completely. To further investigate 
the effect of possible step-like changes, the tests of Cases e 
and f were repeated by increasing linearly the angle at which 
the steps occur from 0 to 2π. The maximum undershoot and 
overshoot values at the pre- and post-transition times (denoted 
as tpre and tpost) defined in the IEEE/IEC Standard are shown in 
Table III. Clearly, such values are minor and they are strongly 
influenced by the infiltration of the image component of the 
fundamental, as already explained above. 

TABLE I –MAXIMUM TVE, |FE| AND |RFE| VALUES OBTAINED WITH THE DCF ESTIMATOR AND THE TWO ALTERNATIVE FIR APPROXIMATED GAUSSIAN 

FILTERS DESIGNED AS EXPLAINED IN SECTION II OR IEEE/IEC THE FILTER WITH A TRIANGULAR IMPULSE RESPONSE SUGGESTED IN THE ANNEX D OF THE 

IEEE/IEC STANDARD. THE IMPULSE RESPONSE OF ALL FILTERS IS ABOUT 2 NOMINAL CYCLES LONG THE TESTS ARE SPECIFIED IN THE IEC/IEEE 

STANDARD 60255-118-1. IN ALL CASES, A NOISE FLOOR SUCH THAT SNR = 60 DB IS ASSUMED. THE P CLASS LIMITS SPECIFIED IN THE IEEE/IEC 

STANDARD ARE ALSO SHOWN FOR THE SAKE OF COMPARISON. 

 Max. TVE (%) Max. |FE| (mHz) Max. |RFE| (Hz/s) 

Test case Std. limit 
Windowing 

method 

Cascaded 
boxcar 
filters 

Triangular 

filter 
Std. limit 

Windowing 
method 

Cascaded 
boxcar 
filters 

Triangular 

filter 
Std. limit 

Windowing 
method 

Cascaded 
boxcar 
filters 

Triangular 

filter 

a 1 0.12 0.08 0.83 5 6.5 6.2 11.7 0.4 1.7 0.69 6.18 

b 1 0.25 0.19 0.83 5 8.1 6.5 13.1 0.4 2.5 1.27 6.38 

c 3 0.12 0.08 0.19 60 5.8 5.7 3.9 2.3 0.68 0.40 0.66 

d 3 0.11 0.07 0.42 60 5.4 5.6 5.6 2.3 0.69 0.41 0.70 

TABLE II –MAXIMUM SYNCHROPHASOR, FREQUENCY AND ROCOF RESPONSE TIME OBTAINED WITH THE DCF ESTIMATOR AND THE TWO ALTERNATIVE 

FIR APPROXIMATED GAUSSIAN FILTERS DESIGNED AS EXPLAINED IN SECTION II OR IEEE/IEC THE FILTER WITH A TRIANGULAR IMPULSE RESPONSE 

SUGGESTED IN THE ANNEX D OF THE IEEE/IEC STANDARD. THE IMPULSE RESPONSE OF ALL FILTERS IS ABOUT 2 NOMINAL CYCLES LONG. THE P CLASS 

LIMITS SPECIFIED IN THE IEEE/IEC STANDARD ARE ALSO SHOWN FOR THE SAKE OF COMPARISON. 

 Synchrophasor response time(cycles) Frequency response time(cycles) ROCOF response time(cycles) 

Test case Std. limit 
Windowing 

method 

Cascaded 
boxcar 
filters 

Triangular 

filter 
Std. limit 

Windowing 
method 

Cascaded 
boxcar 
filters 

Triangular 

filter 
Std. limit 

Windowing 
method 

Cascaded 
boxcar 
filters 

Triangular 

filter 

e 2 1.75 1.75 1.79 4.5 2.6 2.5 2.8 6 3.1 3 3.2 

f 2 1.75 1.75 1.79 4.5 2.6 2.5 2.8 6 3.1 3 3.2 

 



IV. CONCLUSIONS 

In this paper, two alternative FIR approximated Gaussian 
filter (based on the windowing method and on multiple 
cascaded boxcar filters, respectively) are used to estimate the 
synchrophasor magnitude and phase through the direct Down-
Conversion and Filtering (DCF) technique. The rationale of 
this study is to ensure compliance with the P Class IEEE/IEC 
Standard requirements, while avoiding estimation overshoots 
during the transients associated with step-like events. Both 
filters rely on a common criterion for ideal Gaussian filter 
design, followed by a specific optimization procedure to 
maximize filter performance when impulse responses of about 
two power line cycles are considered. Both implementations 
are able to adequately preserve dynamic synchrophasor 
amplitude or phase oscillations and to remove harmonics and 
noise. The results of amplitude and phase step tests confirm 
that the overshoot is negligible. Even though the windowing 
method provides a better approximation of the Gaussian 
impulse response, the accuracy of the DCF technique with the 
cascaded boxcar filter is slightly better because the image 
component of the fundamental is better suppressed. 
Unfortunately, the accuracy of frequency and ROCOF 
estimation is limited by the Euler-based method suggested in 
the IEEE/IEC Standard to compute the first and second 
derivative of the instantaneous phase. Further studies are 
currently ongoing to design approximate Gaussian derivative 
filters which could provide more accurate frequency and 
ROCOF estimates with zero overshoot as well.  
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TABLE III  –  MAXIMUM ABSOLUTE OVERSHOOT AND UNDERSHOOT 

VALUES OBTAINED WITH THE DCF ESTIMATOR AND THE TWO 

ALTERNATIVE FIR APPROXIMATED GAUSSIAN FILTERS AT THE PRE- 

AND POST-TRANSITION TIMES OF REPEATED AMPLITUDE AND PHASE 

STEP CHANGES OCCURRING WHEN THE FUNDAMENTAL PHASE RANGES 

FROM 0 TO 2 π. THE VALUES ARE RELATIVE TO THE STEP MAGNITUDE. 

 Amplitude step Phase step 

Windowing 

method 

tpre tpost tpre tpost 

1% 1% 0.5% 0.5% 

Cascaded 

boxcar filters 

tpre tpost tpre tpost 

0.5% 0.4% 0.3% 0.3% 

 

   
Fig. 3. Estimated phasor amplitude during an amplitude step change (A), 

and estimated phasor angle during a phase step change (B). 


