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Abstract: We propose an effective model to describe the bias induced on cosmological
observables by Laniakea, the gravitational supercluster hosting the Milky Way, which was
defined using peculiar velocity data from Cosmicflows-4 (CF4). The structure is well described
by an ellipsoidal shape exhibiting triaxial expansion, reasonably approximated by a constant
expansion rate along the principal axes. Our best fits suggest that the ellipsoid, after
subtracting the background expansion, contracts along the two smaller axes and expands
along the longest one, predicting an average expansion of ∼ −1.1 km/s/Mpc. The different
expansion rates within the region, relative to the mean cosmological expansion, induce
line-of-sight-dependent corrections in the computation of luminosity distances. We apply
these corrections to two low-redshift datasets: the Pantheon+ catalog of type Ia Supernovae
(SN Ia), and 63 measurements of Surface Brightness Fluctuations (SBF) of early-type
massive galaxies from the MASSIVE survey. We find corrections on the distances of order
∼ 2 − 3%, resulting in a shift in the inferred best-fit values of the Hubble constant H0
of order ∆HSN Ia

0 ≈ 0.5 km/s/Mpc and ∆HSBF
0 ≈ 1.1 km/s/Mpc, seemingly worsening the

Hubble tension.
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1 Introduction

Roughly a century ago, astronomers collected evidence that we live in an expanding Uni-
verse [1]. To date, the most commonly accepted description of such an expansion is built
upon the assumptions of homogeneity and isotropy of the Universe on sufficiently large
scales, encoded in a class of solutions of the Einstein field equations based on the Friedmann-
Lemaître-Robertson-Walker (FLRW) class of metrics:

ds2 = −c2dt2 + a2(t)
(

dr2

1 − Kr2 + r2dΩ2
)

, (1.1)

where K is the (constant) spatial curvature, and a(t) is the scale factor. Null geodesics for
the above metric indicate that the spectra of photons travelling in an expanding Universe
shift towards the red. About two decades ago, observations of photons produced by the
explosions of type Ia supernovae (SN Ia) provided evidence that the expansion of the Universe
is accelerating [2, 3], challenging our understanding of gravity as a solely attractive force.
Within the frameworks of General Relativity and FLRW models, such an acceleration requires
an exotic source of energy-momentum labelled Dark Energy (DE). The standard cosmological
model, the ΛCDM model (also dubbed concordance model), describes a spatially flat (K = 0)
FLRW Universe in which DE is interpreted as a cosmological constant Λ [4], and where
most of the matter in the Universe is described by a collisionless, non-relativistic perfect
fluid labelled Cold Dark Matter (CDM) [5].
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The success and popularity of the concordance model comes from its effectiveness at
describing a variety of cosmological observations with only 6 parameters [6–10]. On the other
hand, their inference heavily relies on the existence of sources with standardized physical
properties, which allow the computation of distances and the construction, after assuming
that the law of physics are the same everywhere, of a cosmic “distance ladder”. To some
extent, this jeopardizes the predictive power of the ΛCDM model since some of the hypotheses
that we would like to verify through cosmological observations are sometimes assumed to
interpret the observations themselves. To phrase it differently, it is not always possible
to derive distances to standardized sources without assuming a cosmological model, which
inevitably introduces biases in our cosmological inferences. One such bias could be our
underlying assumptions of homogeneity and isotropy, i.e. the Cosmological Principle (CP).
Whilst the latter seems a reasonable working assumption a posteriori, supported by a variety
of uncorrelated observations [10–14], the existence of (large-scale) structures reveals the
limits of the CP [15–22].

To deal with these limitations, a particularly successful approach is to consider small
perturbations on top of a spatially flat FLRW model. These small perturbations are well
understood in the linear regime, where the Einstein field equations can be solved analytically,
and provide a powerful tool to describe the evolution of the early Universe. Eventually, the
small perturbations that are not smoothed out by the cosmological expansion survive long
enough to enter the non-linear regime, and evolve into the complex cosmic web of structures
we observe today. Unfortunately, the non-linearity of the Einstein field equations makes it
difficult to describe the spacetime geometry around these structures, and analytical solutions
can be obtained only for simplified models with a high degree of symmetry.

It is worth stressing that we perform our cosmological inference in a highly inhomogeneous
and anisotropic environment, and therefore we are far from being Copernican observers. The
impact an inhomogeneous environment could have on the observer and on the background
geometry has been extensively discussed in the literature [23–32], and is usually referred to
as backreaction. The effects of the latter are often quantified by means of some averaging
scheme [33–37], within the working hypothesis that the averaged geometry on sufficiently large
scales is well described by the FLRW metric, and that on intermediate scales backreaction is
described by some effective modification of the (averaged) Friedmann equations. Unfortunately,
at the time of writing there is no general consensus for what concerns how to perform these
averages, and their impact on cosmological observables, with a spectrum of possibilities ranging
from no impact at all [38–40], to backreaction being responsible for the inferred accelerated
expansion of the Universe [41, 42] (see also refs. [43, 44] for examples of the intermediate
spectrum, and ref. [45] for a proposed classification of different backreaction mechanisms).

With current surveys reaching ∼ O(1%) accuracy in the determination of cosmological
parameters, and the concurrent appearance of tensions among independent inferences of
the latter [6, 10, 46], it is becoming of utmost importance to assess the impact of the local
environment on our cosmological inference. It is possible to adopt a completely agnostic
attitude for what concerns the details of such an environment and adopt the cosmographic
approach recently developed and used in refs. [47–51]. Despite being a flexible and powerful
framework, the latter comes at the cost of a large and potentially impractical number of
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free parameters. Another option is to start from a few simplifying assumptions about the
nature of the inhomogeneities, and build upon these to compute their impact on cosmology
by directly solving the Einstein field equations. This approach was recently adopted, among
others, in refs. [52–55], where the Universe was described using the Lemaître-Tolmann-Bondi
(LTB) metric [56, 57], a spherically symmetric inhomogeneous solution of the Einstein field
equation which recovers (i.e. can be made indistinguishable from) a flat FLRW Universe
on cosmological scales.

In this paper we shall adopt a similar approach, making a few simplifying symmetry
assumptions for what concerns the geometrical nature of our local environment. Specifically,
our goal is to derive an effective model for our home in the Cosmos, Laniakea [58, 59], a
large supercluster hosting the Milky Way. The tempting assumption of spherical symmetry
appears unfeasible for such a supercluster, and we therefore seek a description capturing the
impact of its anisotropies. In the remainder of this paper we argue that the latter can be,
at first order, well described by an ellipsoidal inhomogeneity exhibiting triaxial expansion,
moving with peculiar velocity vBF with respect to the cosmological rest frame, where vBF is
the bulk flow (or average peculiar velocity) within the inhomogeneity. We will assume that
the metric of the Universe can be effectively described by a piece-wise solution, such that the
interior of Laniakea is spatially flat and characterized by three different scale factors, and
where the exterior part is described by the standard flat FLRW background. We stress that
such a description can at best be an effective one, as it introduces discontinuities in the metric
at the boundary of the ellipsoid. Using our effective description we compute the impact of
the different expansion rates in the interior of Laniakea on the redshift-distance relation for
an observer located in the Milky Way. It is important to stress that these corrections do not
alter the background geometry and depend on the position of the observer, and therefore can
be classified as weak backreaction effects, according to the nomenclature proposed in ref. [45].

The rest of the paper is then organized as follows. In section 2 we model Laniakea using
the Cosmicflows-4 (CF4) velocity field reconstruction. In section 3 we derive the corrections
induced by the effective model for Laniakea on comoving distances and redshifts, and the
possible effects thereof on cosmological parameter inference, with particular attention to the
Hubble constant H0. Finally, in section 4, we summarize our findings, discuss our results,
and draw concluding remarks. A more technical discussion concerning luminosity distances
in our toy model for Laniakea versus the FLRW metric can be found in appendix A, where
we also provide a summary of the main symbols for the variables used in the paper in table 2.

2 A toy model for Laniakea

Our goal is to derive an effective description of Laniakea going beyond the traditional
working assumption of spherical symmetry to model the local Universe.1 To get a qualitative
understanding of the influence of anisotropies, we propose a toy model which describes
Laniakea as a homogeneous ellipsoid, expanding at different rates along its principal axes.
Being homogeneous, the interior of the ellipsoid is assumed to be at rest in its comoving

1The code used to derive the main results of this paper is publicly available at https://github.com/Leolard
o/Laniakea_Backreaction_nb.
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frame. In other words, any relative motion between a pair of points in the interior is due to
the triaxial expansion, and there are no peculiar motions induced by density gradients. With
such a description, the interior of the ellipsoid behaves similarly to a Bianchi I spacetime
filled with dust and a cosmological constant, as described by the generalized Heckmann-
Schucking solution [60]. Overdensities exhibiting triaxial profiles naturally emerge from
ellipsoidal gravitational collapse [61, 62], and a Bianchi I profile in particular is expected
when the spatial curvature of the inhomogeneity is negligible during the linear regime of a
fully anisotropic gravitational collapse [63, 64]. However, in the following we neglect any
time evolution for the anisotropies and assume instead that inside Laniakea the background
Hubble factor is shifted by a line-of-sight dependent constant. In other words, given the fact
that Laniakea’s effective redshift is extremely low, we can safely assume that corrections
induced by the time evolution of the anisotropies are at first order negligible.

2.1 What is Laniakea?

Peculiar velocities of galaxies, interpreted as the difference between their recessional velocities
caused by the expansion of the Universe and their observed velocities (also corrected for the
observer’s peculiar motion), can be used to partition the inhomogeneous local Universe in
gravitational basins of attraction (see e.g. ref. [65] for the detailed definition of the latter).
These basins are obtained by studying the behaviour of streamlines, that is, curves tangent
to the peculiar velocity field. To construct a streamline one starts from an arbitrary initial
point, labelled seed, and integrates its peculiar velocity field for an infinitesimal displacement
(i.e. to a nearby cell). The curve connecting the two tangent vectors at these points defines
the beginning of the streamline. One then repeats the process iteratively, until the peculiar
velocity field eventually reaches a critical point, i.e. an attractor, where the streamline stops.
A basin of attraction is defined as a spatial region such that all the streamlines therein
contained converge towards the same attractor. In other words, a basin of attraction can be
interpreted as a region of space where, apart from the cosmological expansion, the trajectories
of test particles are mainly influenced by the gravitational field within its volume. The
volumes associated to these gravitational basins are therefore used to identify large scale
structures in the local Universe.

In ref. [58], using velocity measurements from Cosmicflows-2 (CF2) [66] to reconstruct the
(linear) peculiar velocity and density fields in the local Universe, Laniakea was defined as one
such gravitational basin and recognized as being the supercluster containing the Milky Way.
In this work we shall consider the most recent determination of Laniakea obtained in ref. [59],
which uses the (grouped) velocity and density field reconstruction of ref. [67], derived from
the latest Cosmicflows-4 (CF4) data release [68]. In this reconstruction, Laniakea consists
of 4079 cells within a grid of 1283 cells covering a volume of 1 (Gpc/h)3, with h being the
reduced Hubble constant. For reference, the furthest and closest cells on its boundary are
at redshifts z = 0.082 and z = 0.005 respectively. Our catalog for the velocity field consists
of a 643 cells grid covering the same volume with a lower resolution.2 The velocities and
dispersions for the cells in Laniakea are therefore obtained from the lower resolution grid
using a first order cloud-in-cell interpolation.

2Both grids are publicly available at https://projets.ip2i.in2p3.fr//cosmicflows/.
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It is interesting to assess the likelihood of a structure like Laniakea in the ΛCDM model.
The velocity field reconstruction of refs. [59, 67] predicts that the average density contrast in
the interior of Laniakea is ⟨δ⟩ = 0.012. We can compare this value with σR, the expected
variance in the density field predicted by the ΛCDM model3 for a sphere of radius R. For
a sphere covering the same volume as Laniakea, i.e. with radius R = 110 Mpc/h, we found
σ110/h = 0.058, implying that these types of structures are well within the predictions of
the standard model.

2.2 Spatial geometry

The starting point for our analysis is to derive an effective description of the spatial geometry
of Laniakea. To capture its anisotropies, we look for the ellipsoidal shape which best describes
the 4079 cells defining the structure. Our best fit4 is an ellipsoid centered at supergalactic
coordinates SGX = −9.23, SGY = −47.06, and SGZ = 85.08, with semiaxes of lengths 48.61,
128.74 and 166.38 in units of Mpc/h. This ellipsoid is rotated with respect to the supergalactic
Cartesian axes SGX, SGY, and SGZ by angles of −27◦, 16◦, and 74◦ respectively.

The goodness of the fit can be tested through a conformal rescaling of the axes of the
ellipsoid into a unit sphere and by computing the average radius and standard deviation
thereof. Doing this exercise, we find an average radius of 0.97 and a standard deviation of
0.23, indicating that the ellipsoid is a good description on average, but that large spatial
deviations occur. For reference, in figure 1 we plot the surface of Laniakea alongside our
best-fit ellipsoid, its centre and principal axes.

2.3 Laniakea comoving frame and peculiar velocities

It is convenient to work with the peculiar velocity field in the Laniakea Comoving Frame (LCF).
The latter is defined as the frame in which the interior of Laniakea is (on average) at rest, with
origin at the centre of the ellipsoid and Cartesian coordinates defined by the principal axes.

To begin with, we compute the Bulk Flow (BF), the average velocity of the cells defining
Laniakea, whose components turn out to be vx

BF = −164±4, vy
BF = 19±2, and vz

BF = −96±3
km/s in the supergalactic Cartesian frame. Such a BF, in the picture of an expanding
ellipsoid embedded in a spatially flat FLRW Universe, describes the relative motion of the
inhomogeneity with respect to the cosmological rest frame (at the present time). If we were
to compute the radial velocity field of Laniakea with respect to its centre, this BF would
manifest itself as a dipolar contribution. We subtract such dipole by subtracting the BF from
every cell within Laniakea (note that the uncertainties on the BF value have a negligible
impact on our final results). The reconstructed radial peculiar velocity field in the LCF
vrcst

r is plotted, for reference, in figure 2.

2.4 Effective model

The notion of distance in General Relativity, and therefore in Cosmology, is observer-dependent
due to the general covariance of the Einstein field equations. In particular, the solution of the

3For this calculation we assume a flat ΛCDM model with Ωm = 0.31.
4We use a python package publicly available at https://github.com/aleksandrbazhin/ellipsoid_fit_python.
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constituting Laniakea’s surface in blue, with overlapped in light yellow the ellipsoid which best fits
their volume distribution. The orange star indicates the position of the Milky Way.

null geodesics equation for the metric in eq. (1.1) with K = 0 gives the following definition of
comoving distance χ̄ for a photon emitted at the time t = te and observed today at t = t0:5

χ̄ = c

∫ te

t0
dt

1
ā(t) = c

∫ z̄

0
dz̃

1
H(z̃) , (2.1)

where in the second equality we have introduced the FLRW cosmological redshift z̄ =
ā(t0)/ā(te) − 1, the FLRW Hubble parameter H̄ = ȧ/a (where the dot denotes a derivative
with respect to cosmic time), and adopted the common normalization choice ā(t0) = 1. Simply
put, whilst the “physical” distance between two points in an expanding FLRW Universe
evolves with time, their comoving distance as given by eq. (2.1) remains constant.

Most cosmological observations are based on two types of “physical” distances: the
angular diameter distance dA and the luminosity distance dL, which are properly defined in
any space-time [69]. The former relates the physical length of an object to its subtended

5In what follows we will refer to quantities computed in a background spatially FLRW metric through an
overbar, x̄.
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Figure 2. Radial peculiar velocity field of Laniakea after subtracting its Bulk Flow as
seen by an observer located at the origin of the LCF, and its projection along orthogonal
planes in the supergalactic Cartesian frame (an interactive version of this plot is available at
https://leolardo.github.io/Laniakea_Backreaction/).

angular size as perceived by a distance observer, dA ≡ δA/δΩ, where δA is the proper area of
the emitting surface perpendicular to the line-of-sight, and δΩ the subtended angular element.
The latter relates the bolometric (i.e. integrated along all frequencies) absolute luminosity L

of the emitter with the bolometric flux F measured by the observer. In any metric theory of
gravity where photon number is conserved, the angular diameter and luminosity distances are
related by Etherington’s distance-duality relation, dL = (1 + zobs)2dA.6 In a FLRW Universe
there is a very simple interpretation of the angular-diameter distance, d̄A = a(te)χ̄. In other
words, the angular diameter distance is just the comoving distance we would observe today
rescaled with the scale factor (hence the name) at the time light was emitted.

6We purposely used non-barred quantities here as the Etherington’s reciprocity theorem, at the basis
of the distance-duality relation, is true beyond the FLRW assumption, for the observed redshift zobs =
(λobs − λemit)/λemit, defined as the relative variation in the wavelengths of the photon from its emission to
its observation.
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On the other hand, deviations from homogeneity and isotropy significantly complicate
this picture. In particular, due to the peculiar motion of both the emitting source and
the observer (induced by the different density fields at the respective positions) and the
presence of inhomogeneities along the line-of-sight, the observed redshift zobs ̸= z̄ differs
from the cosmological one induced by the expansion of the Universe only. Using linear order
perturbation theory we can predict these effects from the knowledge of the density field, and
therefore correct observed redshifts to recover the cosmological ones. Neglecting lensing and
magnification effects (which are subdominant at lower redshifts, such as those relevant for
Laniakea, compared to peculiar motions [70, 71]), we can write the following relation between
the observed redshift zobs and the cosmological one z̄:

(1 + zobs) = (1 + z̄)
(

1 + vpec
c

)(
1 + vo

c

)
, (2.2)

where vpec and vo are the line-of-sight projections of the peculiar velocities of the source and the
observer respectively, which are assumed to be small compared to the speed of light vpec ≪ c.

The CF4 velocity reconstruction, and therefore Laniakea, has been defined collecting
redshifts of galaxies whose luminosity distance from us is known through some cosmology-
independent distance indicator. After correcting these redshifts zobs for the observer peculiar
motion (known for example from the CMB dipole), one then assumes a fiducial Cosmology
(i.e. Ē(z), defined from H̄(z) ≡ H0Ē(z)) to compute their cosmological redshift z̄ and peculiar
velocity vpec. Combining the measured vpec’s, one then uses linear order perturbation theory
to derive a reconstructed map of the peculiar velocity field in the nearby Universe.

With the goal of describing effectively Laniakea’s impact on observations, our main
model building assumption is the existence of a line-of-sight dependent function Hlos (θ, ϕ, z)
such that:

c
[
(1 + z̄)

(
1 + vpec

c

)
− 1

]
d̄L

≡ c
z

d̄L

≈ Hlos (θ, ϕ, z) , (2.3)

where z is the observed redshift corrected for the observer peculiar motion, i.e. (1 + z) =
(1 + zobs)/(1 + vo/c). In other words, we assume that all the cells in Laniakea are at rest
(comoving) with respect to each other, and any relative velocity between them is induced by
a different (anisotropic) expansion rate (rather than peculiar motions) v ≈ Hlos d̄L/(1 + z).

Our triaxially expanding toy model describes the space-time region enclosed within the
ellipsoid defined in section 2.2 with a Bianchi I line element

ds2 = −dt2 + a(t)2dx2 + b(t)2dy2 + c(t)2dz2 , (2.4)

where a, b, c are three different scale factors, whilst the exterior (which we also refer to,
with abuse of language, as background) is described by the usual flat FLRW (1.1) one. In
a Bianchi I spacetime the cosmological redshift of light emitted by a source at the time
t = te along a line of sight parametrized by a versor C⃗ with components (Ca, Cb, Cc) can
also be written analytically as [72]

1 + z =

√
Ca

a2(te) + Cb
b2(te) + Cc

c2(te)√
Ca

a2
0

+ Cb

b2
0

+ Cc

c2
0

, (2.5)
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where the subscript 0 on the scale factors indicates their value at the time of observation. We
further assume that the anisotropies are small, and that the following relation between the
Hubble rates associated to the scale factors inside and the background one holds

Hi = H̄ + ∆Hi ∆Hi/H̄ ≪ 1 , (2.6)

where i = a, b, c. Given the relatively low-redshift of the Laniakea, as mentioned earlier, we
also neglect the redshift evolution of the anisotropies so that each ∆Hi is approximately
constant. Under these assumptions the functional dependence of the directional Hubble
parameter Hd is rather simple. Subtracting the average cosmological expansion H̄(z̄) from
the fiducial cosmology, the triaxial expansion along the principal axes of the ellipsoid (a, b, c)
(with constant expansion rates (∆Ha, ∆Hb, ∆Hc)) predicts that the velocity vector of a source
S with coordinates (x̃, ỹ, z̃) in the LCF is given by:

v⃗S = (vx̃, vỹ, vz̃) = (∆Hax̃, ∆Hbỹ, ∆Hcz̃) , (2.7)

resulting in the following radial velocity with respect to the centre of Laniakea

vth
r̃ =

(
∆Hax̃2 + ∆Hbỹ

2 + ∆Hcz̃
2)√

x̃2 + ỹ2 + z̃2 . (2.8)

We want to find the values of ∆Ha, ∆Hb, ∆Hc which best describe the radial velocity field
inside Laniakea, and evaluate the goodness of the fit. To do so, we run a Markov Chain
Monte Carlo (MCMC) using the emcee7 package [73] to maximize the Likelihood:8

log L = −1
2
∑

n

(
vn th

r̃ − vn rcst
r̃

)2

σ2
n

, (2.9)

where we have assigned flat priors −6 < ∆Hi < 6 km/s/Mpc on the Hubble rates along the
principal axes9 and where the index n runs along the 4079 coordinates defining Laniakea.

The uncertainty associated to vrcst
r , as described in [59], consists of a linear dispersion from

the reconstruction σv
lin obtained by averaging over multiple Hamiltonian Monte-Carlo (HMC)

realizations, and a flat nonlinear component σnl accounting from the presence of non-linear
structures that is the same for all the cells, which is one of the free parameters of the HMC
exploration with best fit σnl = 170 km/s. Since our peculiar velocity field is smoothed on a
grid of cells of volume ∼ (15.6 Mpc)3, we smooth accordingly our theoretical prediction (2.8)
averaging it over the 8 vertices of each cell. In table 1 we report the results of the analysis,
in terms of best fits and reduced χ2

ν , for three different choices of the dispersion: i) the linear
component only, ii) the non-linear one only, iii) the summation in quadrature of the two.

7https://github.com/dfm/emcee.
8To determine the convergence of the MCMC exploration we follow the prescription given in

https://emcee.readthedocs.io/en/stable/user/autocorr/ and check the estimated autocorrelation time τ every
100 steps for each chain, considering it convergent if the estimate has changed by less then 1%.

9We further verified that changing the prior to ±8 and ±10 does not significantly change the results.
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Dispersion ∆Ha (km/s/Mpc) ∆Hb (km/s/Mpc) ∆Hc (km/s/Mpc) χ2
ν p-value

i) σlin −0.71 ± 0.10 −0.98 ± 0.06 0.06 ± 0.02 7.903 < 10−5

ii) σnl = 170 km/s −3.40 ± 0.28 −0.65 ± 0.13 0.69 ± 0.03 0.987 0.72
iii)

√
σ2

nl + σ2
lin −2.99 ± 0.30 −0.85 ± 0.16 0.58 ± 0.03 0.751 1

Table 1. The results of our MCMC parameter exploration for the triaxial rates of expansion
∆Ha, ∆Hb, ∆Hc, and the corresponding chi-squared per degree of freedom χ2

ν (ν = 4076) for different
dispersion modelling choices.

The reduced chi-square χ2
ν of the residuals can be used to evaluate the goodness of the fit.

As expected, using only the linear component of the dispersion (case i)) leads to a terrible
fit, as it completely neglects the feedback of nonlinear structures on the first order peculiar
velocities. Cases ii), iii) correspond to two extreme scenarios, as the former underestimates
the error bars by neglecting the linear dispersion, and the latter overestimates them by
neglecting the correlations between σlin and σnl. One expects them to be anti-correlated, as
one can always absorb a constant component of the linear dispersion into the non-linear one.
Therefore the “true” uncertainty should lie between these two cases. On the other hand, we
notice that the parameters inferred in these two cases are compatible,10 and using only the
non-linear component of the dispersion leads to an excellent fit with χ2

ν ∼ 1. Therefore, for
the rest of this work we will restrict ourselves to the latter choice (case ii), for which the
results of the MCMC exploration are reported in figure 3 and whose theoretical prediction
for the velocity field is plotted in figure 4

In figure 5 we plot a 3-dimensional map of the spatial distribution of the residuals, and in
figure 6 their histogram in units of standard deviations. Whilst the histogram suggests that
the scattering of the residuals is Gaussian, we see from their spatial distribution that they
are non-random and arguably induced by a systematic underestimation of the theoretical
prediction for the radial velocities’ amplitudes. A plausible explanation for such distribution is
the presence of internal structures not captured by the homogeneous density profile assumed
for the ellipsoid, suggesting that higher order multipoles might be needed to fully capture its
behaviour. On the other hand, the fit remains excellent due to the large typical uncertainties
of the peculiar velocities, and from now on we will assume it to be a good effective description
of the internal dynamics of Laniakea.

2.5 Testing the homogeneity inside Laniakea

Just as in a FLRW Universe, the assumed spatial homogeneity inside Laniakea implies that
the relative velocities between any two pairs of points depend on their relative distance and
orientation, but not from their particular spatial location. In other words, if we consider two
sources and translate them along the same line-of-sight whilst keeping their distance fixed,
their relative velocity should not change. To test the validity of this working assumption,
we randomly pick 200 cells within Laniakea and for each of them compute the residuals
between the predicted and reconstructed peculiar velocity of any other cell in the map using

10The resulting best fit are compatible within 1σ, with the exception of Hc which is within 2σ’s.
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Figure 3. The Hubble rates along the principal semiaxes of the best fit ellipsoid from our MCMC
analyses. The results displayed assume a constant velocity dispersion of 170 km/s for each cell,
corresponding to case ii) from table 1.

.

the best fit values of table 1 (case ii). We plot in figure 7 the histogram of their distribution
for each realization (black contours), together with their bin average and the 16th and 84th

quantiles (blue dots and corresponding error bars). Comparing the latter with a Gaussian
(solid red line) we see that their distribution is skewed towards the right, confirming that on
average the theoretical prediction underestimates the absolute value of the radial velocities,
as expected due to the non linear motion sourced by smaller substructures within the volume
of Laniakea. On the other hand, deviations from Gaussianity are relatively small and we
conclude (a posteriori) that the working assumption of homogeneity is a reasonable one.

2.6 Comparison with a spherical model

It is interesting to compare our results to those we would obtain averaging over the anisotropies,
i.e. assuming an homogeneously expanding spherical model S centered at the origin of the
LCF. Running a similar MCMC analysis for a single parameter ∆Hsph we find:

∆Hsph = 0.39 ± 0.02 χ2
ν sph = 1.06 , (2.10)
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Figure 4. The theoretical prediction for the velocity field for the best fit values ∆Ha = −3.41,
∆Hb = −0.64, ∆Hc = 0.69, and its projection along orthogonal planes in the supergalactic Carte-
sian frame. It is straightforward to realize by comparing these with figure 2 that the model
prediction tends to underestimate the amplitude of the radial peculiar velocity field, but cap-
tures remarkably well its spatial distribution. (An interactive version of this plot is available at
https://leolardo.github.io/Laniakea_Backreaction/.)

and comparing the Bayesian Information Criterion (BIC) for the ellipsoidal and spherical
models we find ∆BIC ≈ −283, showing very strong evidence that the triaxial model for
Laniakea is preferred.11 Interestingly, the best fit for ∆Hsph is positive, in contrast with the
fact that the average expansion rate within the ellipsoidal model (∆Ha + ∆Hb + ∆Hc) /3 ≈
−1.11 ± 0.09 is negative. This simple exercise highlights the relevance that local anisotropies
might have on parameter estimation of LSS properties.

11It is important to stress that allowing for an inhomogeneously expanding model a la´ LTB might change
the result. However, a comparison with such a model goes beyond the scope of the present work.
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Figure 5. The spatial distribution of the residuals vn th
r̃ − vn rcst in units of standard deviations.

Their spatial distribution, despite being compatible with a Gaussian (see figure 6), is non-random and
most likely due to the presence of internal structures which are not captured by our simple model. In
particular, one can notice towards the center of the structure a relatively large outflow not predicted
by the triaxial model. The Milky Way is marked by an orange star. (An interactive version of this
plot is available at https://leolardo.github.io/Laniakea_Backreaction/.)

3 Weak backreaction of Laniakea on cosmological observables

3.1 Comoving and luminosity distances

Now that we have developed a simple but robust effective model to describe the interior of
Laniakea, we are in a position to estimate its impact on cosmological observables and, in
particular, distances. For the remainder of this section, an upper bar on any cosmological
quantity x̄ refers to it as given in a flat FLRW Universe, whereas non-barred cosmological
quantities x are computed in our toy model for Laniakea. We are interested in comparing
the inferred distance to the same object in the two models, where with “same object” we
mean that the observed “cosmological” redshift of the source is the same z̄ = z.12

12In appendix A we perform a similar comparison but identify the “same” object as the one which emitted
the photon at the cosmological time t = te, and show that the two results are consistent if one allows te to be
different but sets z = z̄.
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Figure 6. A normalized histogram of the residuals in units of standard deviations for the interior of
Laniakea fitted by a triaxially expanding ellipsoid. For easier comparison with a normal distribution
we plot on top of the histogram a normalized Gaussian with standard deviation σ = 1.

Figure 7. The distribution of the residuals between the reconstructed and predicted radial velocities
with respect to 200 randomly chosen cells within Laniakea. Each individual distribution is plotted in
black, and their binned average represented by the blue dots, with error bars indicating the 16th and
84th quantiles within the bin. We also plot for easier comparison a Gaussian distribution with unit
variance (solid red line).
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In a FRLW Universe the luminosity distance d̄S to a source S is given by:

d̄S (zS) = (1 + zS) χ̄S(zS) , (3.1)

where χ is the comoving distance defined in eq. (2.1). Let us consider two points A and
B on the same line-of-sight, with B further away than A. It is convenient to rewrite the
FLRW luminosity distance to B as:

d̄B(zB) = (1 + zB) (χ̄A(zA) + χ̄AB(zA, zB)) , (3.2)

where the quantity χ̄AB (zA, zB) is defined as

χ̄AB (zA, zB) = c

∫ zB

zA

dz̃
1

H̄(z̃)
, (3.3)

(these are a trivial re-writing of eqs. (2.1) and (3.1)).
Of course the computation of these distances changes in our toy model, which predicts

a direction-dependent expansion rate H(z, θ, ϕ) inside Laniakea. On the other hand, since
we are working with small anisotropies restricted to the interior of Laniakea, let us assume
that if the point A lies on its boundary then the luminosity distance to B can be written
as the sum of two terms

dB (zB, θ, ϕ) = (1 + zB)
(

c

∫ zA

0
dz̃

1
H (z̃, θ, ϕ) + c

∫ zB

zA

dz̃
1

H̄ (z̃)

)
= (1 + zB) [χA(zA, θ, ϕ) + χ̄AB (zA, zB) ] ,

(3.4)

where we have introduced a line-of-sight dependent “generalized” version of the FLRW
comoving distance:13

χA(zA, θ, ϕ) ≡ c

∫ zA

0
dz̃

1
H (z̃, θ, ϕ) . (3.5)

It is important to stress that the above effective description, in particular the decomposition
of the integral in eq. (3.4), neglects the impact of the discontinuity of the metric at the
boundary of Laniakea in our toy model. On the one hand, this is unavoidable as it is not fully
understood how to embed an anisotropic Bianchi inhomogeneity into a FLRW background
apart from very particular cases. In a realistic scenario, one should expect some smooth
continuous transition to occur around the boundary between the two metrics, which can be
mimicked by approximating the step functions between the two region with a boundary of
sharp hyperbolic tangents. On the other hand, given the practical nature of the effective
description proposed here, we will assume that these boundary effects are small compared
to the first order effects described here.

13Note that with the definition of “comoving” distance of eq. (3.5), as long as we can neglect the redshift
evolution of the anisotropies (as we are assuming in our toy model), the luminosity distance dL ≡ (1 + z)χ is
consistent with the one for a Bianchi I Universe derived in ref. [72], eqs. (108) and (111), in the limit of small
redshifts and eccentricities.
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Let us now focus our attention to the following crucial question: for sources B to which
we assign a cosmological redshift zB (for example after correcting for their and our own
peculiar motions), how different would be our inference of their luminosity distances in a
Universe with or without Laniakea? To answer this question within our toy model, let us
consider the difference between eqs. (3.4) and (3.1). It is useful to define the quantity ∆χA

∆χA(z̄A, θ, ϕ) = c

∫ z̄A

0
dz̃

1
H (z̃, θ, ϕ) − 1

H̄(z̃)
, (3.6)

which represents the change in the comoving distance to a point A at the boundary of
Laniakea obtained using the expansion rate in Laniakea rather than the FLRW one. In the
previous section we found that for each line-of-sight Hd(z, θ, ϕ) − H̄(z) ≡ ∆H(θ, ϕ) is at
most of the order of a few km/s/Mpc, and therefore ∆H/H̄ can be treated as a perturbative
quantity. After Taylor expanding around it and neglecting higher order terms we find

dB(zB, θ, ϕ) − d̄B(zB) ≈ (1 + zB) ∆χA(z̄A, θ, ϕ) , (3.7)

from which we can finally rewrite the main contribution to the relative corrections of the
luminosity distance in our effective model as

dB − d̄B

d̄B

≡ δdB

d̄B

≈ ∆χA

χ̄B
. (3.8)

In figure 8 we plot these corrections for a homogeneous and isotropic full-sky distribution
of sources over the redshift range 0 < z < 0.1, as seen by an observer in the Milky Way. We
can identify two main concurring effects: the quadrupolar behaviour expected from a triaxial
model with two contracting axes and an expanding one, and the hemispherical asymmetry
induced by the observer’s offset from the center of the ellipsoid. Because of the latter, the
portion of sky closest to the edge of Laniakea will be less affected since photons will travel a
shorter distance within the inhomogeneity (a similar effect has been suggested in ref. [74] to
explain an observed anisotropic distribution of low-z sources in Pantheon+, but where the
offset is from the center of a spherical distribution). A similar conclusion can be drawn from
figure 9, where the relative corrections are plotted as functions of redshifts for a number of
representative line-of-sights. For the remainder of this work, we will refer to those corrections
for convenience as Laniakea’s backreaction.

3.2 Low-z SN Ia and impact on H0

To assess the impact of Laniakea’s backreaction on the determination of H0 from low-z SN Ia
we compare redshifts and distance moduli measurements from the Pantheon+ catalog [75]
with our prediction for the distances eq. (3.8).

Since our effective model has been obtained through the analysis of peculiar velocities,
to avoid bias induced by double counting of corrections, we use redshifts corrected for the
kinematic CMB dipole but not for PV. In figure 10 we plot the histogram of the relative
corrections of the luminosity distance of each supernova in the sample and for those in the
redshift range 0.023 < z < 0.15, some of which are used by the SH0ES collaboration in
ref. [46] to measure H0. As expected, since the relative corrections are inversely proportional
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Figure 8. Relative corrections on the luminosity distance for a homogeneous and isotropic full-
sky distribution of sources up to redshift z = 0.1 in (RA,Dec). The size of the circles is inversely
proportional to the redshifts of the sources, as indicate in the upper legend.

Figure 9. Corrections to the apparent magnitude of sources in the Hubble diagram line-of-sights with
fixed Declination DEC = −10 as a function of the redshift and the Radial ascention. The corrections
are approximatively constant within the interior of the ellipsoid and vanish asymptotically outside.
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Figure 10. The distribution of the relative corrections of the luminosity distance induced by Laniakea’s
backreaction on SN Ia from the Pantheon+ catalog. The black line represents the total Pantheon+
sample, whilst the blue line only those used by the SH0ES collaboration for the determination on H0.

to the distances from the sources, their impact is completely negligible (< 0.1%) for most of
the supernovae in the full sample. On the other hand, the histogram for the low-z subset
exhibits a moderate skewness towards higher values of the relative correction, which can be
as large as 1.8%. In figure 11 we plot the corrections on the luminosity distance of the low-z
supernovae as function of their position in the sky in RA and DEC.

To compute the impact that these corrections have on the H0 determination we used the
distance modulus µ from the low-z subset of Pantheon+ SN Ia and use, for simplicity, only
the diagonal part of the covariance matrix for the errors.14 H0 is then obtained by minimizing
the sum of the residuals between the luminosity distances derived from the observed distance
modulus and the low-z cosmographic expansion of dL [76] up to quadratic order, assuming
a deceleration parameter q0 = −0.55. More specifically, we assume that in our toy model
the distance modulus of a source i can be written

µi = 5 log
{

czi

H0

[
1 + 1

2 (1 − q0) zi

](
1 + ∆χi

χi

)}
+ 25 , (3.9)

where ∆χi represents the change in the comoving distance from the observer to the boundary
of Laniakea along the line-of-sight to the source i, as in eq. (3.8). We found that the impact
on the best fits for H0 obtained with and without corrections is an effective shift of order

14The main reason behind this choice is that the full covariance matrix already incorporates corrections
induced by peculiar velocities. Our toy model predicts that inside Laniakea all the sources are at rest (comoving),
so that we should get rid of such corrections (and their correlations with other sources of uncertainty) for
objects in its interior. Consistency would then require to recompute the full Pantheon+ covariance matrix
within this hypotheses, which goes beyond the scope of the present work.
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Figure 11. The position in the sky of the low-z subset of SN Ia in Pantheon+, color-coded with the
amplitude of the relative correction to the luminosity distance induced by Laniakea’s backreaction.

∆H0 = HLan
0 − H̄0 ≃ 0.5 km/s/Mpc when applied to the low-z Pantheon+ dataset. Despite

the fact that we have only used the diagonal part of the covariance matrix, since this type of
correction is systematic and of cosmological origin we expect a similar shift to occur also when
the correlations between different uncertainties are accounted for. It is interesting to note
that the SH0ES collaboration also find a larger value of H0 of ≈ 0.3 km/s/Mpc when only
SN Ia in the range 0.06 > z > 0.0.15 are considered in the analysis (see variant 35 in table 5
of ref. [46]). This corroborates our results, showing that removing the seemingly most biased
sources (essentially those within Laniakea) leads to larger values of the Hubble constant.15

3.3 Surface Brightness Fluctuations and impact on H0

Surface Brightness Fluctuations (SBF) are a promising cosmological tool providing an
alternative way to calibrate the intrinsic magnitude M of SN Ia, which can also be used
to infer directly the value of H0. It is interesting to compare the impact of our corrections
on these sources with the one they had on Pantheon+, to get a qualitative estimate of how
Laniakea’s backreaction affects a less sparse distribution of data at lower z. We use SBF
measurements from ref. [77], which consist of a catalog of 63 sources with corresponding
observed distance modulus, uncertainty and velocities (from which we infer the redshifts).
In figure 12 we plot the histogram of these corrections, and in figure 13 the positions of the
sources in RA and Dec, color-coded with the corresponding corrections. Being on average
closer to the observer than the low-z sources in Pantheon+, the average correction is bigger.
Using again the low-z cosmographic expansion of dL and minimizing the sum of the residuals
we find a shift in the best fit values ∆H0 = HLan

0 − H̄0 ≃ 0.9 km/s/Mpc.

15We are grateful to the anonymous referee for pointing us to this interesting result.
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Figure 12. The distribution of the corrections for the SBF sources from ref. [77].

Figure 13. The position on the sky of SBF sources from ref. [77], color-coded with the amplitude of
the relative correction induced on them by Laniakea’s backreaction.

4 Discussion

The interplay between the constituents of the cosmic web and the coarse-grained description
endorsed by the Copernican principle remains an elusive riddle of modern Cosmology. This
work tries to shed some light on the subject by deriving an effective description of the weak
backreaction of our local Universe on Cosmological observables. We focus on the Laniakea
supercluster, the gravitational basin of attraction hosting the Milky Way. The rationale
behind the choice of Laniakea’s boundary as averaging scale is readily explained: by definition
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of gravitational basin, geodesics of test masses (i.e. streamlines) starting in its interior are
confined within the latter, thereby remaining “isolated” from the rest of the Universe (apart
from its the background evolution).

In order to capture Laniakea’s spatial anisotropies we propose an ellipsoidal model
exhibiting triaxial expansion. To keep it simple, we neglect the time evolution of the
anisotropies and assume a constant expansion rate along each direction. Furthermore, we
approximate its interior as homogeneous and spatially flat. Figures 5 and 7 show the goodness
of the latter assumptions within the precision of current data. The different expansion rates
inside and outside the ellipsoid induce a line-of-sight dependent correction to the comoving
distances computed in a FLRW background, cf. eq. (3.6). We estimate the impact of these
corrections on luminosity distances in eq. (3.8), and plot in figure 8 their values as a function
of RA and Dec for an idealized distribution of sources isotropically distributed in the redshift
range 0 < z < 0.1, as seen by an observer in the Milky Way.

To assess their impact on cosmological inference, we computed these corrections for
two low-z catalogs of standardizable sources used to measure the value of H0, SN Ia from
Pantheon+ [46, 75] and SBF of early-type massive galaxies from ref. [77]. A visual summary
of these corrections and their distribution on the sky is given in figures 10 and 13. Using
the cosmographic low-z expansion of the luminosity distances [76] corrected with Laniakea’s
backreaction, and adopting a reference value of q0 = −0.51 for the deceleration parameter,
we found that the best fit values for H0 are shifted towards higher values of ∆HSN Ia

0 ≈
0.5 km/s/Mpc and ∆HSBF

0 ≈ 1.1 km/s/Mpc respectively. The latter is significantly bigger
than the former because of the redshift distribution of the sources. SBF, being observed at
lower redshifts, will be more affected by Laniakea’s backreaction as the latter is inversely
proportional to the comoving distance to the source. From a fundamental point of view
these shifts are not surprising. As mentioned in section 2, Laniakea is on average overdense
and thus the expansion rate inside, on average, slower. For an apparent source outside
Laniakea to have the same apparent magnitude m as in a FLRW background, therefore, it
is required that the expansion rate outside is on average larger. In other words, the value
of the Hubble rate inferred from a source outside the structure will be akin to a weighted
average between the two different expansion rates, with the weights depending on the ratio
between the lengths of the paths inside and outside Laniakea.

These results seemingly worsen the recently established tension between the inferred
value of H0 from early and late times Universe probes, which has been argued to potentially
be the sign of new cosmological physics (see for example refs. [78–83]). This might appear
to be in contradiction with the possibility, explored for example in refs. [74, 84–93], that
local gravitational physics could alleviate the Hubble tension. Amongst these, a class of
models achieve a lowering of H0 under the assumption that we live in an underdense region,
whose inner expansion rate is on average larger than the background one. Some results in the
literature, see for example refs. [94–96], seem to corroborate the latter assumption finding
evidence of local voids which averaged on spheres of r ≳ 100Mpc have density contrasts of
δ ≤ −0.1, unexpected within the ΛCDM model. Computing the average density contrast
of a sphere centered in Laniakea with radius r ≈ 110 Mpc (i.e. the average distance of the
boundary of the ellipsoid from the center) using the CF4 reconstruction we found δ ∼ −0.06,
within the prediction of the concordance model (see for example figure 6 of ref. [55]), and in
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agreement with the expectations from the Sibelius-DARK constrained realisation simulation
(see figure 4 of ref. [97]) and sample variance in the Supernovae distribution [98]. However,
this sphere is not centered in the Milky Way, which might explain why the result differs from
the aforementioned ones. Indeed, overdensities such as Laniakea are surrounded by voids
(from which they have collected matter), and therefore any sufficiently spherical average will
include these under-dense regions. On the other hand, refs. [55, 79, 99] also found no evidence
of any large void or overdensity, thus disfavoring a local resolution of the Hubble tension. Our
analysis corroborates these results, suggesting instead that the tension is likely to be (slightly)
worsened by Laniakea’s backreaction. An important caveat, however, is that our analysis
does not exclude the possibility that large voids in the annular region between 110 − 400 Mpc
outside Laniakea could balance and overcome the backreaction from Laniakea, like a rather
picturesque Matryoshka doll. Alternative modelling choices accounting for the impact of
these voids are therefore required to fully understand the impact our cosmic environment’s
gravitational backreaction, which will be the focus of forthcoming studies.

Whilst our results suggest that Laniakea’s gravitational backreaction cannot provide a
resolution to the current cosmological tensions, its understanding is crucial to assess whether
the interplay between different mechanisms can satisfactorily handle the problem, as suggested
recently in ref. [100], and to understand the variations observed in the determination of the
Hubble constant from different sampling of sources at low and high redshifts, see for example
refs. [101–103]. In particular, Laniakea’s neighbours and the voids between them might play
an important role in the resolution of the Hubble tension, which motivates for better mapping
and modelling of our cosmic environment. To assess the impact of the local Universe on
our cosmological inference one needs two ingredients; an averaging scheme and an averaging
volume (scale). With no fundamental reason to determine either of the two, in this work we
suggested a data-driven approach based on a sensible definition of large scale structure. Whilst
the choice of a simplistic ellipsoidal shape for Laniakea might not be the most rigorous one,
it is a first step to capture the impact of its anisotropies. Upcoming surveys like DESI [104]
and 4HS [105] are expected to measure with unprecedented accuracy peculiar velocities up to
redshift z ≈ 0.15, and in the next future we will have in our hands extremely detailed maps
of the Universe around us. In preparation for that, it is important to learn how to navigate.
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A Comparing luminosity distances in FLRW and our toy model

In a pure FLRW Universe the redshift of a photon emitted at the emission time te observed
at t0 is given by:

1 + z̄ = a(t0)
a(te) . (A.1)

In a Bianchi I Universe, a photon emitted at the same time te will have instead a different
redshift given by eq. (2.5). To simplify the notation, let us refer to those quantities computed
using FRLW redshifts with a barred subscript, e.g. χ̄(z̄A) ≡ χ̄Ā. Notice that this is in general
different from χA(z̄A) ≡ χĀ. Using this notation, remembering that the expansion rate
outside Laniakea is the same in the two models, we can write the difference between eqs. (3.1)
and (3.4) for sources at zB and z̄B respectively as

dB − d̄B̄ = (1 + z̄B) [(χA − χ̄Ā) + (χ̄AB − χ̄ĀB̄)] + ϵ (χA + χ̄AB) , (A.2)

where we have introduced ϵ ≡ zB − z̄B. Let us compute explicitly the various terms entering
the above expression for fixed θ, ϕ. It is helpful to also define the quantity η ≡ zA − z̄A,
which is the difference in the redshift which an observer would measure for photons emitted
from a source at the boundary edge of Laniakea at a time tA in models with or without
inhomogeneity. Assuming that ϵ, η and ∆H/H̄ are small quantities, and that ∆H along
each line-of-sight is constant we can write:

(χA − χ̄Ā) = c

(∫ z̄A+η

0
dz̃

1
H(z̃) −

∫ z̄A

0
dz̃

1
H̄(z̃)

)

= c

(∫ z̄A

0
dz̃

(
1

H(z̃) − 1
H̄(z̃)

)
+
∫ z̄A+η

z̄A

dz̃
1

H(z̃)

)
≈ ∆χA + c

η

H(z̄A) ,

(A.3)

where ∆χA has been defined in eq. (3.6), and

(χ̄AB − χ̄ĀB̄) = c

∫ z̄B+ϵ

z̄A+η
dz̃

1
H̄(z̃)

− c

∫ z̄B

z̄A

dz̃
1

H̄(z̃)

= c

∫ z̄B+ϵ

z̄B

dz̃
1

H̄(z̃)
− c

∫ z̄A+η

z̄A

dz̃
1

H̄(z̃)

≈ c

(
ϵ

H̄(z̄B)
− η

H̄(z̄A)

)
,

(A.4)

(χA + χ̄AB) = c

(∫ zA

0
dz̃

1
H(z̃) +

∫ zB

zA

dz̃
1

H̄(z̃)

)

= c

(∫ zA

0
dz̃

1
H̄(z̃) + ∆H

+
∫ zB

zA

dz̃
1

H̄(z̃)

)

≈ c

(∫ zB

0
dz̃

1
H̄(z̃)

−
∫ zA

0

∆H

H̄2(z̃)

)

≈ χ̄B̄ + c

(
ϵ

H̄(z̄B)
− ∆H

∫ zA

0
dz̃

1
H̄2(z̃)

)
.

(A.5)
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Variable meaning Variants meaning
vBF bulk flow velocity inside Laniakea vx

BF, vy
BF, vz

BF Components of BF in supergalactic frame
vrcst

r Measured (reconstructed) radial pec vel
vpec l.o.s. peculiar velocity of source
vo l.o.s. peculiar velocity of observer
vS vector peculiar velocity of source vx, vy, vz components of vector PV
vth

r̃ l.o.s. peculiar velocity predicted by the toy model vn,th
r̃ indexed version

χ̄ Comoving distance in FLRW χ Comoving distance in Laniakea model
H̄ Hubble parameter in FLRW H, Hi Hubble paramrameter inside Laniakea

Hlos Directional Hubble parameter
∆Hi Hi − H̄ ∆Ha, ∆Hb, ∆Hc Components of ∆Hi

∆Hsph Hubble factor for a spherical model χ2
ν sph Reduced χ2 for spherical model

d̄L Luminosity distance in FLRW dL Luminosity distance in Laniakea model
d̄A Ang. diam distance in FLRW dA Ang. diam distance in Laniakea model

zobs, zB Observed redshift and observed redshift for a source B z̄ redshift in a pure FLRW Universe

Table 2. Summary of symbols used in the paper and their meaning.

Combining eqs. (A.3), (A.4) and (A.5) we can rewrite eq. (A.2) as

dB − d̄B̄ = (1 + z̄B)
[
∆χA + c

(
ϵ

H̄(z̄B)
+ η

H(z̄A) − η

H̄(z̄A)

)]

+ ϵ

[
χ̄B̄ + c

(
ϵ

H̄(z̄B)
− ∆H

∫ zA

0
dz̃

1
H̄2(z̃)

)]
. (A.6)

Keeping only linear order terms in η,ϵ and ∆H/H and dividing both sides of this equation
for d̄B̄ we can finally write the relative difference of the luminosity distances as:

dB − d̄B̄

d̄B̄

≈ ∆χA

χ̄B̄

+ ϵ

1 + z̄B
. (A.7)

Interestingly, the above expression shows that differences due to η ̸= 0 only appear at second
order. Eq. (A.7) has been obtained comparing the luminosity distance to the “same source”
B in the two models, where with “same source” we refer to a photon emitted at the same
cosmological time te along the same line-of-sight. In practical applications, however, one can
only observe redshifts, which is the reason why in the main text, section 3.1, we identify the
“same source” with one having the same observed redshift zB. It is straightforward to realize
that eq. (A.7) reproduces eq. (3.8) once we set z̄B = zB, or equivalently ϵ = 0.
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